1
|
Justiz-Vaillant A, Pandit BR, Unakal C, Vuma S, Akpaka PE. A Comprehensive Review About the Use of Monoclonal Antibodies in Cancer Therapy. Antibodies (Basel) 2025; 14:35. [PMID: 40265416 PMCID: PMC12015915 DOI: 10.3390/antib14020035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2025] [Revised: 03/14/2025] [Accepted: 04/09/2025] [Indexed: 04/24/2025] Open
Abstract
Monoclonal antibodies (mAbs) targeting various pathways in cancer therapy play crucial roles in enhancing the immune system's ability to recognise and eliminate tumour cells. These therapies are designed to either block inhibitory immune checkpoint pathways or to target specific tumour cell markers for direct destruction. Additionally, mAbs can modulate the tumour microenvironment, enhance antibody-dependent cellular cytotoxicity, and inhibit angiogenesis, further amplifying their therapeutic impact. Below is a summary of monoclonal antibodies targeting key pathways, along with their indications and mechanisms of action, which are reviewed based on therapeutic mechanisms.
Collapse
Affiliation(s)
| | | | | | | | - Patrick Eberechi Akpaka
- Department of Pathology/Microbiology & Pharmacology, The University of the West Indies, St. Augustine Campus, St. Augustine 330912, Trinidad and Tobago; (A.J.-V.); (B.R.P.); (C.U.); (S.V.)
| |
Collapse
|
2
|
Liu A, Liang T, Wu W, Weng J, Wu H, Zhou F, Guo J. Protein concentration and analyzing charge variants in a co-formulation comprising three monoclonal antibodies: A cation-exchange chromatography approach. Int J Pharm 2025; 670:125138. [PMID: 39755343 DOI: 10.1016/j.ijpharm.2024.125138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2024] [Revised: 12/09/2024] [Accepted: 12/25/2024] [Indexed: 01/06/2025]
Abstract
In the realm of therapeutic antibodies, co-formulations comprising two or more monoclonal antibodies (mAbs) have emerged as a promising strategy, offering enhanced treatment efficacy, improved efficiency, and prolonged intellectual property protection. These advantages have sparked significant interest among both patients and pharmaceutical companies. However, the quantification and analysis of individual mAbs within such co-formulations pose a substantial challenge due to their similar physicochemical properties. To address this challenge, we introduce a pH gradient cation exchange chromatography (CEX) method designed to effectively separate three mAbs that share significant similarities in molecular weight, structure, and isoelectric points (pIs) etc. This versatile approach not only facilitates the accurate quantification of each mAb's concentration and their respective ratios within the co-formulation, but also allows for the comprehensive characterization of all charge variants present. In the case of a co-formulation containing three antibodies, the developed CEX method demonstrated superior performance compared to other techniques. The method's robustness was further underscored by its qualification parameters, including acceptable precision (RSD ≤ 3 %), accuracy (95 %-115 % recovery), and linearity (R2 > 0.99) across a range of 10 to 30 μg load for each mAb. Moreover, the method has been successfully applied in stability studies to quantitatively analyze individual mAb concentrations within co-formulations, marking a significant advancement in the field. Through this work, we contribute a crucial analytical insight into mAb co-formulations, especially those comprising three or more molecules, underscoring its considerable potential to propel the field of biotherapeutic co-formulations forward.
Collapse
Affiliation(s)
- Anyuan Liu
- BioDev Drug Product Development Department, WuXi Biologics, 190 Hedan Road, Shanghai 200131, China
| | - Tiantian Liang
- BioDev Drug Product Development Department, WuXi Biologics, 190 Hedan Road, Shanghai 200131, China
| | - Weiliang Wu
- BioDev Drug Product Development Department, WuXi Biologics, 190 Hedan Road, Shanghai 200131, China
| | - Jingwen Weng
- BioDev Drug Product Development Department, WuXi Biologics, 190 Hedan Road, Shanghai 200131, China
| | - Hongbing Wu
- BioDev Drug Product Development Department, WuXi Biologics, 190 Hedan Road, Shanghai 200131, China
| | - Fangyuan Zhou
- BioDev Drug Product Development Department, WuXi Biologics, 190 Hedan Road, Shanghai 200131, China.
| | - Jeremy Guo
- BioDev Drug Product Development Department, WuXi Biologics, 190 Hedan Road, Shanghai 200131, China.
| |
Collapse
|
3
|
Jain A, Mishra AK, Hurkat P, Shilpi S, Mody N, Jain SK. Navigating liver cancer: Precision targeting for enhanced treatment outcomes. Drug Deliv Transl Res 2025:10.1007/s13346-024-01780-x. [PMID: 39847205 DOI: 10.1007/s13346-024-01780-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/18/2024] [Indexed: 01/24/2025]
Abstract
Cancer treatments such as surgery and chemotherapy have several limitations, including ineffectiveness against large or persistent tumors, high relapse rates, drug toxicity, and non-specificity of therapy. Researchers are exploring advanced strategies for treating this life-threatening disease to address these challenges. One promising approach is targeted drug delivery using prodrugs or surface modification with receptor-specific moieties for active or passive targeting. While various drug delivery systems have shown potential for reaching hepatic cells, nano-carriers offer significant size, distribution, and targetability advantages. Engineered nanocarriers can be customized to achieve effective and safe targeting of tumors by manipulating physical characteristics such as particle size or attaching receptor-specific ligands. This method is particularly advantageous in treating liver cancer by targeting specific hepatocyte receptors and enzymatic pathways for both passive and active therapeutic strategies. It highlights the epidemiology of liver cancer and provides an in-depth analysis of the various targeting approaches, including prodrugs, liposomes, magneto-liposomes, micelles, glycol-dendrimers, magnetic nanoparticles, chylomicron-based emulsion, and quantum dots surface modification with receptor-specific moieties. The insights from this review can be immensely significant for preclinical and clinical researchers working towards developing effective treatments for liver cancer. By utilizing these novel strategies, we can overcome the limitations of conventional therapies and offer better outcomes for liver cancer patients.
Collapse
Affiliation(s)
- Ankit Jain
- Department of Pharmacy, Birla Institute of Technology and Science (BITS), Pilani Campus, Pilani, Rajasthan, 333031, India.
| | - Ashwini Kumar Mishra
- Department of Pharmaceutics, School of Pharmacy & Technology Management, SVKM'S NMIMS Deemed-to-be University, Shirpur, Maharashtra, 425405, India
- Central Ayurveda Research Institute, Jhansi, Uttar Pradesh, 284003, India
| | - Pooja Hurkat
- Dr. Hari Singh Gour Central University, Sagar, 470003, MP, India
| | - Satish Shilpi
- School of Pharmaceuticals and Population Health Informatics, FOP, DIT University, Dehradun, Uttarakahnad, India
| | - Nishi Mody
- Dr. Hari Singh Gour Central University, Sagar, 470003, MP, India
| | | |
Collapse
|
4
|
Iweala EEJ, Amuji DN, Oluwajembola AM, Ugbogu EA. Targeting c-Met in breast cancer: From mechanisms of chemoresistance to novel therapeutic strategies. CURRENT RESEARCH IN PHARMACOLOGY AND DRUG DISCOVERY 2024; 7:100204. [PMID: 39524211 PMCID: PMC11543557 DOI: 10.1016/j.crphar.2024.100204] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 09/28/2024] [Accepted: 10/18/2024] [Indexed: 11/16/2024] Open
Abstract
Breast cancer presents a significant challenge due to its heterogeneity and propensity for developing chemoresistance, particularly in the triple-negative subtype. c-Mesenchymal epithelial transition factor (c-Met), a receptor tyrosine kinase, presents a promising target for breast cancer therapy due to its involvement in disease progression and poor prognosis. However, the heterogeneous expression of c-Met within breast cancer subtypes and individual tumors complicates targeted therapy. Also, cancer cells can develop resistance to c-Met inhibitors through various mechanisms, including bypass signaling pathways and genetic mutations. The off-target effects of c-Met inhibitors further limit their clinical utility, necessitating the development of more selective agents. To overcome these challenges, personalized treatment approaches and combination therapies are being explored to improve treatment efficacy while minimizing adverse effects. Novel c-Met inhibitors with improved selectivity and reduced off-target toxicity show promise in preclinical studies. Additionally, targeted delivery systems aim to enhance drug localization and reduce systemic toxicity. Future directions involve refining inhibitor design and integrating c-Met inhibition into personalized treatment regimens guided by molecular profiling. This review explores the mechanisms by which c-Met contributes to chemoresistance in breast cancer and current challenges in targeting c-Met for breast cancer therapy. It discusses strategies to optimize treatment outcomes, ultimately improving patient prognosis and reducing mortality rates associated with this devastating disease.
Collapse
Affiliation(s)
- Emeka Eze Joshua Iweala
- Department of Biochemistry, College of Science and Technology, Covenant University, Ota, Nigeria
- Covenant Applied Informatics and Communication Africa Centre of Excellence (CApIC-ACE), Covenant University, Ota, Nigeria
| | - Doris Nnenna Amuji
- Department of Biochemistry, College of Science and Technology, Covenant University, Ota, Nigeria
- Covenant Applied Informatics and Communication Africa Centre of Excellence (CApIC-ACE), Covenant University, Ota, Nigeria
| | - Abimbola Mary Oluwajembola
- Department of Biochemistry, College of Science and Technology, Covenant University, Ota, Nigeria
- Covenant Applied Informatics and Communication Africa Centre of Excellence (CApIC-ACE), Covenant University, Ota, Nigeria
| | | |
Collapse
|
5
|
Toledo-Stuardo K, Ribeiro CH, González-Herrera F, Matthies DJ, Le Roy MS, Dietz-Vargas C, Latorre Y, Campos I, Guerra Y, Tello S, Vásquez-Sáez V, Novoa P, Fehring N, González M, Rodríguez-Siza J, Vásquez G, Méndez P, Altamirano C, Molina MC. Therapeutic antibodies in oncology: an immunopharmacological overview. Cancer Immunol Immunother 2024; 73:242. [PMID: 39358613 PMCID: PMC11448508 DOI: 10.1007/s00262-024-03814-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2024] [Accepted: 08/16/2024] [Indexed: 10/04/2024]
Abstract
The biotechnological development of monoclonal antibodies and their immunotherapeutic use in oncology have grown exponentially in the last decade, becoming the first-line therapy for some types of cancer. Their mechanism of action is based on the ability to regulate the immune system or by interacting with targets that are either overexpressed in tumor cells, released into the extracellular milieu or involved in processes that favor tumor growth. In addition, the intrinsic characteristics of each subclass of antibodies provide specific effector functions against the tumor by activating antibody-dependent cellular cytotoxicity, complement-dependent cytotoxicity, and antibody-dependent cellular phagocytosis, among other mechanisms. The rational design and engineering of monoclonal antibodies have improved their pharmacokinetic and pharmacodynamic features, thus optimizing the therapeutic regimens administered to cancer patients and improving their clinical outcomes. The selection of the immunoglobulin G subclass, modifications to its crystallizable region (Fc), and conjugation of radioactive substances or antineoplastic drugs may all improve the antitumor effects of therapeutic antibodies. This review aims to provide insights into the immunological and pharmacological aspects of therapeutic antibodies used in oncology, with a rational approach at molecular modifications that can be introduced into these biological tools, improving their efficacy in the treatment of cancer.
Collapse
Affiliation(s)
- Karen Toledo-Stuardo
- Programa de Inmunología, Instituto de Ciencias Biomédicas (ICBM), Facultad de Medicina, Universidad de Chile, Avda. Independencia 1027, Block I, 3er piso, Santiago, Chile
| | - Carolina H Ribeiro
- Programa de Inmunología, Instituto de Ciencias Biomédicas (ICBM), Facultad de Medicina, Universidad de Chile, Avda. Independencia 1027, Block I, 3er piso, Santiago, Chile
| | - Fabiola González-Herrera
- Programa de Inmunología, Instituto de Ciencias Biomédicas (ICBM), Facultad de Medicina, Universidad de Chile, Avda. Independencia 1027, Block I, 3er piso, Santiago, Chile
| | - Douglas J Matthies
- Programa de Inmunología, Instituto de Ciencias Biomédicas (ICBM), Facultad de Medicina, Universidad de Chile, Avda. Independencia 1027, Block I, 3er piso, Santiago, Chile
| | - María Soledad Le Roy
- Programa de Inmunología, Instituto de Ciencias Biomédicas (ICBM), Facultad de Medicina, Universidad de Chile, Avda. Independencia 1027, Block I, 3er piso, Santiago, Chile
| | - Claudio Dietz-Vargas
- Programa de Inmunología, Instituto de Ciencias Biomédicas (ICBM), Facultad de Medicina, Universidad de Chile, Avda. Independencia 1027, Block I, 3er piso, Santiago, Chile
| | - Yesenia Latorre
- Programa de Inmunología, Instituto de Ciencias Biomédicas (ICBM), Facultad de Medicina, Universidad de Chile, Avda. Independencia 1027, Block I, 3er piso, Santiago, Chile
- Escuela de Ingeniería Bioquímica, Pontificia Universidad Católica de Valparaíso, Valparaíso, Chile
| | - Ivo Campos
- Programa de Inmunología, Instituto de Ciencias Biomédicas (ICBM), Facultad de Medicina, Universidad de Chile, Avda. Independencia 1027, Block I, 3er piso, Santiago, Chile
| | - Yuneisy Guerra
- Programa de Inmunología, Instituto de Ciencias Biomédicas (ICBM), Facultad de Medicina, Universidad de Chile, Avda. Independencia 1027, Block I, 3er piso, Santiago, Chile
| | - Samantha Tello
- Programa de Inmunología, Instituto de Ciencias Biomédicas (ICBM), Facultad de Medicina, Universidad de Chile, Avda. Independencia 1027, Block I, 3er piso, Santiago, Chile
- Escuela de Ingeniería Bioquímica, Pontificia Universidad Católica de Valparaíso, Valparaíso, Chile
| | - Valeria Vásquez-Sáez
- Programa de Inmunología, Instituto de Ciencias Biomédicas (ICBM), Facultad de Medicina, Universidad de Chile, Avda. Independencia 1027, Block I, 3er piso, Santiago, Chile
| | - Pedro Novoa
- Departamento de Farmacia, Facultad de Farmacia, Universidad de Concepción, Concepción, Chile
| | - Nicolás Fehring
- Programa de Inmunología, Instituto de Ciencias Biomédicas (ICBM), Facultad de Medicina, Universidad de Chile, Avda. Independencia 1027, Block I, 3er piso, Santiago, Chile
| | - Mauricio González
- Programa de Inmunología, Instituto de Ciencias Biomédicas (ICBM), Facultad de Medicina, Universidad de Chile, Avda. Independencia 1027, Block I, 3er piso, Santiago, Chile
| | - Jose Rodríguez-Siza
- Programa de Inmunología, Instituto de Ciencias Biomédicas (ICBM), Facultad de Medicina, Universidad de Chile, Avda. Independencia 1027, Block I, 3er piso, Santiago, Chile
- Escuela de Ingeniería Bioquímica, Pontificia Universidad Católica de Valparaíso, Valparaíso, Chile
| | - Gonzalo Vásquez
- Programa de Inmunología, Instituto de Ciencias Biomédicas (ICBM), Facultad de Medicina, Universidad de Chile, Avda. Independencia 1027, Block I, 3er piso, Santiago, Chile
- Escuela de Ingeniería Bioquímica, Pontificia Universidad Católica de Valparaíso, Valparaíso, Chile
| | - Pamela Méndez
- Programa de Inmunología, Instituto de Ciencias Biomédicas (ICBM), Facultad de Medicina, Universidad de Chile, Avda. Independencia 1027, Block I, 3er piso, Santiago, Chile
| | - Claudia Altamirano
- Escuela de Ingeniería Bioquímica, Pontificia Universidad Católica de Valparaíso, Valparaíso, Chile
- Centro Regional de Estudio en Alimentos Saludables, Valparaíso, Chile
- Center of Interventional Medicine for Precision and Advanced Cellular Therapy (IMPACT), Santiago, Chile
| | - María Carmen Molina
- Programa de Inmunología, Instituto de Ciencias Biomédicas (ICBM), Facultad de Medicina, Universidad de Chile, Avda. Independencia 1027, Block I, 3er piso, Santiago, Chile.
| |
Collapse
|
6
|
Min Y, Chen Y, Wang L, Ke Y, Rong F, He Q, Paerhati P, Zong H, Zhu J, Wang Y, Zhang B. Supramolecular antibody-drug conjugates for combined antibody therapy and photothermal therapy targeting HER2-positive cancers. Int J Biol Macromol 2024; 278:134622. [PMID: 39127267 DOI: 10.1016/j.ijbiomac.2024.134622] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Revised: 08/07/2024] [Accepted: 08/07/2024] [Indexed: 08/12/2024]
Abstract
Antibody therapy of anti-HER2 monoclonal antibody (mAb) has been an important strategy in treating HER2-positive cancers. However, the efficacy is restricted by many factors, including the level of HER2 expressed by tumor cells and antibody resistance. To overcome these and boost the efficacy, a novel nanoparticle (NP) was constructed in this study for combined antibody therapy of antibody and photothermal therapy (PTT). This novel NP was assembled from 1-pyrenecarboxylic acid (PCA) functionalized anti-HER2 mAb and indocyanine green (ICG), a photothermal transduction agents (PTA), by non-covalent interactions, which was named as Anti-HER2 mAb-pyrene-indocyanine green (H-P-I). Notably, the constructed H-P-I NP not only maintained the affinity and cytotoxicity of anti-HER2 mAb, but also exhibited high photothermal conversion efficiency mediated by ICG. Both in vitro and in vivo assessments confirmed that compared with monotherapy of antibody or ICG, H-P-I demonstrated preferable efficacy in treating HER2-positive cancers. Further biochemistry analysis and pathological analysis ensured the biosafety of H-P-I administration. Taked together, this study proposes a feasible method for constructing tumor-targeted nano PTA based on anti-HER2 mAb through supramolecular self-assembly strategy, achieving synergistic antibody photothermal anticancer treatment, which has the potential to be a promising candidate for combination therapy of HER2-positive cancers.
Collapse
Affiliation(s)
- Yijia Min
- Engineering Research Center of Cell & Therapeutic Antibody, Ministry of Education, School of Pharmacy, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Yu Chen
- Engineering Research Center of Cell & Therapeutic Antibody, Ministry of Education, School of Pharmacy, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Lei Wang
- Engineering Research Center of Cell & Therapeutic Antibody, Ministry of Education, School of Pharmacy, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Yong Ke
- Engineering Research Center of Cell & Therapeutic Antibody, Ministry of Education, School of Pharmacy, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Fan Rong
- Engineering Research Center of Cell & Therapeutic Antibody, Ministry of Education, School of Pharmacy, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Qunye He
- Engineering Research Center of Cell & Therapeutic Antibody, Ministry of Education, School of Pharmacy, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Pameila Paerhati
- Engineering Research Center of Cell & Therapeutic Antibody, Ministry of Education, School of Pharmacy, Shanghai Jiao Tong University, Shanghai 200240, China
| | | | - Jianwei Zhu
- Engineering Research Center of Cell & Therapeutic Antibody, Ministry of Education, School of Pharmacy, Shanghai Jiao Tong University, Shanghai 200240, China; Jecho Institute, Shanghai 200240, China.
| | - Yin Wang
- Engineering Research Center of Cell & Therapeutic Antibody, Ministry of Education, School of Pharmacy, Shanghai Jiao Tong University, Shanghai 200240, China.
| | - Baohong Zhang
- Engineering Research Center of Cell & Therapeutic Antibody, Ministry of Education, School of Pharmacy, Shanghai Jiao Tong University, Shanghai 200240, China.
| |
Collapse
|
7
|
Kim SM, Park N, Park HB, Lee J, Chun C, Kim KH, Choi JS, Kim HJ, Choi S, Lee JH. Exploring novel immunotherapy biomarker candidates induced by cancer deformation. PLoS One 2024; 19:e0303433. [PMID: 38743676 PMCID: PMC11093347 DOI: 10.1371/journal.pone.0303433] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Accepted: 04/24/2024] [Indexed: 05/16/2024] Open
Abstract
Triple-negative breast cancer (TNBC) demands urgent attention for the development of effective treatment strategies due to its aggressiveness and limited therapeutic options [1]. This research is primarily focused on identifying new biomarkers vital for immunotherapy, with the aim of developing tailored treatments specifically for TNBC, such as those targeting the PD-1/PD-L1 pathway. To achieve this, the study places a strong emphasis on investigating Ig genes, a characteristic of immune checkpoint inhibitors, particularly genes expressing Ig-like domains with altered expression levels induced by "cancer deformation," a condition associated with cancer malignancy. Human cells can express approximately 800 Ig family genes, yet only a few Ig genes, including PD-1 and PD-L1, have been developed into immunotherapy drugs thus far. Therefore, we investigated the Ig genes that were either upregulated or downregulated by the artificial metastatic environment in TNBC cell line. As a result, we confirmed the upregulation of approximately 13 Ig genes and validated them using qPCR. In summary, our study proposes an approach for identifying new biomarkers applicable to future immunotherapies aimed at addressing challenging cases of TNBC where conventional treatments fall short.
Collapse
Affiliation(s)
- Se Min Kim
- Life Science and Biotechnology Department (LSBT), Underwood Division (UD), Underwood International College, Yonsei University, Sinchon, Seoul, Korea
| | - Namu Park
- Department of Biomedical Informatics & Medical Education, University of Washington, Seattle, Washington, United States of America
| | - Hye Bin Park
- Digital Health Care Research Center, Gumi Electronics and Information Technology Research Institute (GERI), Gumidaero, Gumi, Gyeongbuk, South Korea
| | - JuKyung Lee
- Digital Health Care Research Center, Gumi Electronics and Information Technology Research Institute (GERI), Gumidaero, Gumi, Gyeongbuk, South Korea
| | - Changho Chun
- Department of Bioengineering, University of Washington, Seattle, Washington, United States of America
- Department of Rehabilitation Medicine, University of Washington, Seattle, Washington, United States of America
| | - Kyung Hoon Kim
- Department of Bioengineering, University of Washington, Seattle, Washington, United States of America
| | - Jong Seob Choi
- Division of Advanced Materials Engineering, Kongju National University, Chungnam, South Korea
| | - Hyung Jin Kim
- School of Electrical & Electronic Engineerin, Ulsan College, Ulsan, Korea
| | - Sekyu Choi
- Department of Life Sciences, Pohang University of Science and Technology (POSTECH), Pohang, Republic of Korea
| | - Jung Hyun Lee
- Department of Dermatology, School of Medicine, University of Washington, Seattle, Washington, United States of America
- Institute for Stem Cell and Regenerative Medicine, University of Washington, Seattle, Washington, United States of America
| |
Collapse
|
8
|
Joseph N, Shapiro A, Gillis E, Barkey S, Abu-Horowitz A, Bachelet I, Mizrahi B. Biodistribution and function of coupled polymer-DNA origami nanostructures. Sci Rep 2023; 13:19567. [PMID: 37949918 PMCID: PMC10638432 DOI: 10.1038/s41598-023-46351-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Accepted: 10/31/2023] [Indexed: 11/12/2023] Open
Abstract
Spatial control over the distribution of therapeutics is a highly desired feature, which could limit the side effects of many drugs. Here we describe a nanoscale agent, fabricated from a coupled polymer-DNA origami hybrid that exhibits stability in serum and slow diffusion through tissues, in a manner correlating with shape and aspect ratio. Coupling to fragments of polyethylene glycol (PEG) through polyamine electrostatic interactions resulted in marked stability of the agents in-vivo, with > 90% of the agents maintaining structural integrity 5 days following subcutaneous injection. An agent functionalized with aptamers specific for human tumor necrosis factor TNF-alpha, significantly abrogated the inflammatory response in a delayed-type hypersensitivity model in humanized TNF-alpha mice. These findings highlight polymer-DNA hybrid nanostructures as a programmable and pharmacologically viable update to mainstream technologies such as monoclonal antibodies, capable of exerting an additional layer of control across the spatial dimension of drug activity.
Collapse
Affiliation(s)
- Noah Joseph
- Augmanity Nano Ltd., 7670308, Rehovot, Israel
| | - Anastasia Shapiro
- Augmanity Nano Ltd., 7670308, Rehovot, Israel.
- Faculty of Biotechnology and Food Engineering, 32000, Technion, Haifa, Israel.
| | - Ella Gillis
- Augmanity Nano Ltd., 7670308, Rehovot, Israel
| | | | | | | | - Boaz Mizrahi
- Faculty of Biotechnology and Food Engineering, 32000, Technion, Haifa, Israel
| |
Collapse
|
9
|
Lee SM, Min SW, Kwon HS, Bae GD, Jung JH, Park HI, Lee SH, Lim CS, Ko BJ, Lee JC, Jung ST. Effective clearance of rituximab-resistant tumor cells by breaking the mirror-symmetry of immunoglobulin G and simultaneous binding to CD55 and CD20. Sci Rep 2023; 13:18275. [PMID: 37880350 PMCID: PMC10600224 DOI: 10.1038/s41598-023-45491-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Accepted: 10/19/2023] [Indexed: 10/27/2023] Open
Abstract
Complement-dependent cytotoxicity (CDC), which eliminates aberrant target cells through the assembly and complex formation of serum complement molecules, is one of the major effector functions of anticancer therapeutic antibodies. In this study, we discovered that breaking the symmetry of natural immunoglobulin G (IgG) antibodies significantly increased the CDC activity of anti-CD20 antibodies. In addition, the expression of CD55 (a checkpoint inhibitor in the CDC cascade) was significantly increased in a rituximab-resistant cell line generated in-house, suggesting that CD55 overexpression might be a mechanism by which cancer cells acquire rituximab resistance. Based on these findings, we developed an asymmetric bispecific antibody (SBU-CD55 × CD20) that simultaneously targets both CD55 and CD20 to effectively eliminate rituximab-resistant cancer cells. In various cancer cell lines, including rituximab-resistant lymphoma cells, the SBU-CD55 × CD20 antibody showed significantly higher CDC activity than either anti-CD20 IgG antibody alone or a combination of anti-CD20 IgG antibody and anti-CD55 IgG antibody. Furthermore, the asymmetric bispecific antibody (SBU-CD55 × CD20) exhibited significantly higher CDC activity against rituximab-resistant cancer cells compared to other bispecific antibodies with symmetric features. These results demonstrate that enhancing CDC with an asymmetric CD55-binding bispecific antibody could be a new strategy for developing therapeutics to treat patients with relapsed or refractory cancers.
Collapse
Affiliation(s)
- Sang Min Lee
- Department of Biomedical Sciences, Graduate School of Medicine, Korea University, 73 Goryeodae-ro, Seongbuk-gu, Seoul, 02841, Republic of Korea
- Department of Applied Chemistry, Kookmin University, 77, Jeongneung-ro, Seongbuk-gu, Seoul, 02707, Republic of Korea
| | - Sung-Won Min
- SG Medical, 3-11, Ogeum-ro 13-gil, Songpa-gu, Seoul, 05548, Republic of Korea
| | - Hyeong Sun Kwon
- SG Medical, 3-11, Ogeum-ro 13-gil, Songpa-gu, Seoul, 05548, Republic of Korea
| | - Gong-Deuk Bae
- SG Medical, 3-11, Ogeum-ro 13-gil, Songpa-gu, Seoul, 05548, Republic of Korea
| | - Ji Hae Jung
- SG Medical, 3-11, Ogeum-ro 13-gil, Songpa-gu, Seoul, 05548, Republic of Korea
| | - Hye In Park
- SG Medical, 3-11, Ogeum-ro 13-gil, Songpa-gu, Seoul, 05548, Republic of Korea
| | - Seung Hyeon Lee
- Department of Biomedical Sciences, Graduate School of Medicine, Korea University, 73 Goryeodae-ro, Seongbuk-gu, Seoul, 02841, Republic of Korea
| | - Chung Su Lim
- New Drug Development Center, Osong Medical Innovation Foundation 123, Cheongju, Chungcheongbuk-do, 28160, Republic of Korea
| | - Byoung Joon Ko
- School of Biopharmaceutical and Medical Science, Sungshin Women's University, 55, Dobonng-Ro 76ga-gil, Gangbuk, Seoul, 01133, Republic of Korea
| | - Ji Chul Lee
- SG Medical, 3-11, Ogeum-ro 13-gil, Songpa-gu, Seoul, 05548, Republic of Korea.
| | - Sang Taek Jung
- Department of Biomedical Sciences, Graduate School of Medicine, Korea University, 73 Goryeodae-ro, Seongbuk-gu, Seoul, 02841, Republic of Korea.
- BK21 Graduate Program, Department of Biomedical Sciences, Korea University College of Medicine, Seoul, Republic of Korea.
- Institute of Human Genetics, Korea University College of Medicine, Seoul, 02841, Republic of Korea.
- Biomedical Research Center, Korea University Anam Hospital, Seoul, 02841, Republic of Korea.
| |
Collapse
|
10
|
Porębska N, Ciura K, Chorążewska A, Zakrzewska M, Otlewski J, Opaliński Ł. Multivalent protein-drug conjugates - An emerging strategy for the upgraded precision and efficiency of drug delivery to cancer cells. Biotechnol Adv 2023; 67:108213. [PMID: 37453463 DOI: 10.1016/j.biotechadv.2023.108213] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Revised: 04/20/2023] [Accepted: 07/09/2023] [Indexed: 07/18/2023]
Abstract
With almost 20 million new cases per year, cancer constitutes one of the most important challenges for public health systems. Unlike traditional chemotherapy, targeted anti-cancer strategies employ sophisticated therapeutics to precisely identify and attack cancer cells, limiting the impact of drugs on healthy cells and thereby minimizing the unwanted side effects of therapy. Protein drug conjugates (PDCs) are a rapidly growing group of targeted therapeutics, composed of a cancer-recognition factor covalently coupled to a cytotoxic drug. Several PDCs, mainly in the form of antibody-drug conjugates (ADCs) that employ monoclonal antibodies as cancer-recognition molecules, are used in the clinic and many PDCs are currently in clinical trials. Highly selective, strong and stable interaction of the PDC with the tumor marker, combined with efficient, rapid endocytosis of the receptor/PDC complex and its subsequent effective delivery to lysosomes, is critical for the efficacy of targeted cancer therapy with PDCs. However, the bivalent architecture of contemporary clinical PDCs is not optimal for tumor receptor recognition or PDCs internalization. In this review, we focus on multivalent PDCs, which represent a rapidly evolving and highly promising therapeutics that overcome most of the limitations of current bivalent PDCs, enhancing the precision and efficiency of drug delivery to cancer cells. We present an expanding set of protein scaffolds used to generate multivalent PDCs that, in addition to folding into well-defined multivalent molecular structures, enable site-specific conjugation of the cytotoxic drug to ensure PDC homogeneity. We provide an overview of the architectures of multivalent PDCs developed to date, emphasizing their efficacy in the targeted treatment of various cancers.
Collapse
Affiliation(s)
- Natalia Porębska
- Faculty of Biotechnology, Department of Protein Engineering, University of Wroclaw, Joliot-Curie 14a, Wroclaw 50-383, Poland
| | - Krzysztof Ciura
- Faculty of Biotechnology, Department of Protein Engineering, University of Wroclaw, Joliot-Curie 14a, Wroclaw 50-383, Poland
| | - Aleksandra Chorążewska
- Faculty of Biotechnology, Department of Protein Engineering, University of Wroclaw, Joliot-Curie 14a, Wroclaw 50-383, Poland
| | - Małgorzata Zakrzewska
- Faculty of Biotechnology, Department of Protein Engineering, University of Wroclaw, Joliot-Curie 14a, Wroclaw 50-383, Poland
| | - Jacek Otlewski
- Faculty of Biotechnology, Department of Protein Engineering, University of Wroclaw, Joliot-Curie 14a, Wroclaw 50-383, Poland
| | - Łukasz Opaliński
- Faculty of Biotechnology, Department of Protein Engineering, University of Wroclaw, Joliot-Curie 14a, Wroclaw 50-383, Poland.
| |
Collapse
|
11
|
Sluka KA, Wager TD, Sutherland SP, Labosky PA, Balach T, Bayman EO, Berardi G, Brummett CM, Burns J, Buvanendran A, Caffo B, Calhoun VD, Clauw D, Chang A, Coffey CS, Dailey DL, Ecklund D, Fiehn O, Fisch KM, Frey Law LA, Harris RE, Harte SE, Howard TD, Jacobs J, Jacobs JM, Jepsen K, Johnston N, Langefeld CD, Laurent LC, Lenzi R, Lindquist MA, Lokshin A, Kahn A, McCarthy RJ, Olivier M, Porter L, Qian WJ, Sankar CA, Satterlee J, Swensen AC, Vance CG, Waljee J, Wandner LD, Williams DA, Wixson RL, Zhou XJ. Predicting chronic postsurgical pain: current evidence and a novel program to develop predictive biomarker signatures. Pain 2023; 164:1912-1926. [PMID: 37326643 PMCID: PMC10436361 DOI: 10.1097/j.pain.0000000000002938] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Revised: 03/02/2023] [Accepted: 03/02/2023] [Indexed: 06/17/2023]
Abstract
ABSTRACT Chronic pain affects more than 50 million Americans. Treatments remain inadequate, in large part, because the pathophysiological mechanisms underlying the development of chronic pain remain poorly understood. Pain biomarkers could potentially identify and measure biological pathways and phenotypical expressions that are altered by pain, provide insight into biological treatment targets, and help identify at-risk patients who might benefit from early intervention. Biomarkers are used to diagnose, track, and treat other diseases, but no validated clinical biomarkers exist yet for chronic pain. To address this problem, the National Institutes of Health Common Fund launched the Acute to Chronic Pain Signatures (A2CPS) program to evaluate candidate biomarkers, develop them into biosignatures, and discover novel biomarkers for chronification of pain after surgery. This article discusses candidate biomarkers identified by A2CPS for evaluation, including genomic, proteomic, metabolomic, lipidomic, neuroimaging, psychophysical, psychological, and behavioral measures. Acute to Chronic Pain Signatures will provide the most comprehensive investigation of biomarkers for the transition to chronic postsurgical pain undertaken to date. Data and analytic resources generatedby A2CPS will be shared with the scientific community in hopes that other investigators will extract valuable insights beyond A2CPS's initial findings. This article will review the identified biomarkers and rationale for including them, the current state of the science on biomarkers of the transition from acute to chronic pain, gaps in the literature, and how A2CPS will address these gaps.
Collapse
Affiliation(s)
- Kathleen A. Sluka
- Department of Physical Therapy and Rehabilitation Science, Carver College of Medicine, University of Iowa, Iowa City, IA
| | - Tor D. Wager
- Department of Psychological and Brain Sciences, Dartmouth College, Hanover, NH
| | - Stephani P. Sutherland
- Department of Biostatistics, Johns Hopkins Bloomberg Schools of Public Health, Baltimore, MD
| | - Patricia A. Labosky
- Office of Strategic Coordination, Division of Program Coordination, Planning and Strategic Initiatives, Office of the Director, National Institutes of Health, Bethesda, MD
| | - Tessa Balach
- Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago, Chicago, IL
| | - Emine O. Bayman
- Clinical Trials and Data Management Center, Department of Biostatistics, University of Iowa, Iowa City, IA
| | - Giovanni Berardi
- Department of Physical Therapy and Rehabilitation Science, Carver College of Medicine, University of Iowa, Iowa City, IA
| | - Chad M. Brummett
- Department of Anesthesiology, University of Michigan Medical School, Ann Arbor, MI
| | - John Burns
- Division of Behavioral Sciences, Rush Medical College, Chicago, IL
| | | | - Brian Caffo
- Department of Biostatistics, Johns Hopkins Bloomberg Schools of Public Health, Baltimore, MD
| | - Vince D. Calhoun
- Tri-Institutional Center for Translational Research in Neuroimaging and Data Science (TReNDS), Georgia State, Georgia Tech, and Emory University, Atlanta, GA
| | - Daniel Clauw
- Department of Anesthesiology, University of Michigan Medical School, Ann Arbor, MI
| | - Andrew Chang
- Department of Surgery, University of Michigan Medical School, Ann Arbor, MI
| | - Christopher S. Coffey
- Clinical Trials and Data Management Center, Department of Biostatistics, University of Iowa, Iowa City, IA
| | - Dana L. Dailey
- Department of Physical Therapy and Rehabilitation Science, Carver College of Medicine, University of Iowa, Iowa City, IA
| | - Dixie Ecklund
- Clinical Trials and Data Management Center, Department of Biostatistics, University of Iowa, Iowa City, IA
| | - Oliver Fiehn
- University of California, Davis, Davis, CA, United States
| | - Kathleen M. Fisch
- Department of Obstetrics, Gynecology and Reproductive Sciences, University of California San Diego, San Diego, CA, United States
- Center for Computational Biology and Bioinformatics, University of California San Diego, San Diego, CA, United States
| | - Laura A. Frey Law
- Department of Physical Therapy and Rehabilitation Science, Carver College of Medicine, University of Iowa, Iowa City, IA
| | - Richard E. Harris
- Department of Anesthesiology, University of Michigan Medical School, Ann Arbor, MI
| | - Steven E. Harte
- Department of Anesthesiology, University of Michigan Medical School, Ann Arbor, MI
| | - Timothy D. Howard
- Department of Biochemistry, Center for Precision Medicine, Wake Forest School of Medicine, Winstom-Salem, NC
- Center for Precision Medicine, Wake Forest School of Medicine, Winstom-Salem, NC
| | - Joshua Jacobs
- Department of Orthopedic Surgery, Rush Medical College, CHicago, IL
| | - Jon M. Jacobs
- Environmental and Molecular Sciences Laboratory, Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA
| | | | | | - Carl D. Langefeld
- Center for Precision Medicine, Wake Forest School of Medicine, Winstom-Salem, NC
- Department of Biostatistics and Data Science, Center for Precision Medicine, Wake Forest School of Medicine, Winstom-Salem, NC
| | - Louise C. Laurent
- Department of Obstetrics, Gynecology and Reproductive Sciences, University of California San Diego, San Diego, CA, United States
| | - Rebecca Lenzi
- Office of Strategic Coordination, Division of Program Coordination, Planning and Strategic Initiatives, Office of the Director, National Institutes of Health, Bethesda, MD
| | - Martin A. Lindquist
- Department of Biostatistics, Johns Hopkins Bloomberg Schools of Public Health, Baltimore, MD
| | | | - Ari Kahn
- Texas Advanced Computing Center, University of Texas, AUstin, TX
| | | | - Michael Olivier
- Center for Precision Medicine, Wake Forest School of Medicine, Winstom-Salem, NC
- Department of Internal Medicine, Center for Precision Medicine, Wake Forest School of Medicine, Winstom-Salem, NC
| | - Linda Porter
- National Institute of Neurological Disorders and Stroke, Bethesda, MD
- Office of Pain Policy and Planning National Institutes of Health, Bethesda, MD
| | - Wei-Jun Qian
- Environmental and Molecular Sciences Laboratory, Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA
| | - Cheryse A. Sankar
- National Institute of Neurological Disorders and Stroke, Bethesda, MD
| | | | - Adam C. Swensen
- Environmental and Molecular Sciences Laboratory, Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA
| | - Carol G.T. Vance
- Department of Physical Therapy and Rehabilitation Science, Carver College of Medicine, University of Iowa, Iowa City, IA
| | - Jennifer Waljee
- Department of Surgery, University of Michigan Medical School, Ann Arbor, MI
| | - Laura D. Wandner
- National Institute of Neurological Disorders and Stroke, Bethesda, MD
| | - David A. Williams
- Department of Anesthesiology, University of Michigan Medical School, Ann Arbor, MI
| | | | - Xiaohong Joe Zhou
- Center for MR Research and Departments of Radiology, Neurosurgery, and Bioengineering, University of Illinois College of Medicine at Chicago, Chicago, IL, United States
| |
Collapse
|
12
|
Vilhelmsson Timmermand O, Safi M, Holmqvist B, Strand J. Evaluation of enhanced permeability effect and different linear energy transfer of radionuclides in a prostate cancer xenograft model. AMERICAN JOURNAL OF NUCLEAR MEDICINE AND MOLECULAR IMAGING 2023; 13:147-155. [PMID: 37736493 PMCID: PMC10509292] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Accepted: 07/30/2023] [Indexed: 09/23/2023]
Abstract
We have previously investigated the biodistribution and therapy effect of a humanized monoclonal antibody targeting free prostate-specific antigen (fPSA) intended for theranostics of hormone-refractory prostate cancer. In the present study, we evaluated the off-target effect and different linear energy transfer (LET) radionuclides without the effect of PSA targeting by using an antibody with the same scaffold as previously used immunoconjugates but with random, non-specific, antigen binding region. This allows us to identify alterations generated by specific targeting and those related to passive bystander effects, such as enhanced permeability and retention (EPR). A control humanized IgG monoclonal antibody (hIgG1) and an isotype control IgG monoclonal antibody were conjugated with the chelator CHX-A"-DTPA. The immunoconjugate was radiolabeled with either Lutetium-177 ([177Lu]Lu) or Indium-111 ([111In]In). A biodistribution study in mice carrying LNCaP xenografts, was performed to evaluate the non-specific uptake of [177Lu]Lu-hIgG1 in tumors and normal organs. Further, therapy studies of [177Lu]Lu and [111In]In labeled IgG were performed in BALB/c mice carrying LNCaP xenografts. Tumor tissues of treated xenografts and control were sectioned and immunohistochemically stained for Ki67 and PSA. The highest tumor uptake for the [177Lu]Lu-hIgG1 was seen at 72 hours (7.2±2 %IA/g), when comparing the tumor uptake of the fPSA targeting antibody to the non-specific antibody, the non-specific antibody contributes to half of the tumor uptake at 72 h. The liver uptake was 3.1±0.5 %IA/g at 24 h, 2.8±0.5 %IA/g at 72 h and 1.3±0.6 %IA/g at 120 h in LNCaP xenografts, which was approximately three times lower at 24 h and two times lower at 72 h than for the antibody with preserved targeting. Immunohistochemical labeling showed a reduction of PSA expression and a reduction of Ki67 labeled cells in the [111In]In treated LNCaP tumors, compared to vehicle and [177Lu]Lu treated mice. In conclusion, we found that specific targeting might negatively influence normal organ uptake when targeting secreted antigens. Furthermore, different energy deposition i.e. linear energy transfer of a radionuclide might have diverse effects on receptor expression and cell proliferation in tumors.
Collapse
Affiliation(s)
| | | | | | - Joanna Strand
- Department of Oncology, Lund UniversityLund, Sweden
- Department of Hematology, Oncology, Radiation Physics, Skåne University Hospital, Lund UniversityLund, Sweden
| |
Collapse
|
13
|
Shah A, Chaudhary S, Lakshmanan I, Aithal A, Kisling SG, Sorrell C, Marimuthu S, Gautam SK, Rauth S, Kshirsagar P, Cox JL, Natarajan G, Bhatia R, Mallya K, Rachagani S, Nasser MW, Ganti AK, Salgia R, Kumar S, Jain M, Ponnusamy MP, Batra SK. Chimeric antibody targeting unique epitope on onco-mucin16 reduces tumor burden in pancreatic and lung malignancies. NPJ Precis Oncol 2023; 7:74. [PMID: 37567918 PMCID: PMC10421872 DOI: 10.1038/s41698-023-00423-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Accepted: 07/06/2023] [Indexed: 08/13/2023] Open
Abstract
Aberrantly expressed onco-mucin 16 (MUC16) and its post-cleavage generated surface tethered carboxy-terminal (MUC16-Cter) domain are strongly associated with poor prognosis and lethality of pancreatic (PC) and non-small cell lung cancer (NSCLC). To date, most anti-MUC16 antibodies are directed towards the extracellular domain of MUC16 (CA125), which is usually cleaved and shed in the circulation hence obscuring antibody accessibility to the cancer cells. Herein, we establish the utility of targeting a post-cleavage generated, surface-tethered oncogenic MUC16 carboxy-terminal (MUC16-Cter) domain by using a novel chimeric antibody in human IgG1 format, ch5E6, whose epitope expression directly correlates with disease severity in both cancers. ch5E6 binds and interferes with MUC16-associated oncogenesis, suppresses the downstream signaling pFAK(Y397)/p-p70S6K(T389)/N-cadherin axis and exert antiproliferative effects in cancer cells, 3D organoids, and tumor xenografts of both PC and NSCLC. The robust clinical correlations observed between MUC16 and N-cadherin in patient tumors and metastatic samples imply ch5E6 potential in targeting a complex and significantly occurring phenomenon of epithelial to mesenchymal transition (EMT) associated with disease aggressiveness. Our study supports evaluating ch5E6 with standard-of-care drugs, to potentially augment treatment outcomes in malignancies inflicted with MUC16-associated poor prognosis.
Collapse
Affiliation(s)
- Ashu Shah
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE, 68198-5870, USA
| | - Sanjib Chaudhary
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE, 68198-5870, USA
| | - Imayavaramban Lakshmanan
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE, 68198-5870, USA
| | - Abhijit Aithal
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE, 68198-5870, USA
| | - Sophia G Kisling
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE, 68198-5870, USA
| | - Claire Sorrell
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE, 68198-5870, USA
| | - Saravanakumar Marimuthu
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE, 68198-5870, USA
| | - Shailendra K Gautam
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE, 68198-5870, USA
| | - Sanchita Rauth
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE, 68198-5870, USA
| | - Prakash Kshirsagar
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE, 68198-5870, USA
| | - Jesse L Cox
- Department of Pathology and Microbiology, University of Nebraska Medical Center, Omaha, NE, USA
| | - Gopalakrishnan Natarajan
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE, 68198-5870, USA
| | - Rakesh Bhatia
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE, 68198-5870, USA
| | - Kavita Mallya
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE, 68198-5870, USA
| | - Satyanarayana Rachagani
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE, 68198-5870, USA
| | - Mohd Wasim Nasser
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE, 68198-5870, USA
| | - Apar Kishor Ganti
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE, 68198-5870, USA
- Department of Internal Medicine, VA Nebraska Western Iowa Health Care System and University of Nebraska Medical Center, Omaha, NE, USA
- Fred and Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE, 68198-5870, USA
| | - Ravi Salgia
- Department of Medical Oncology and Therapeutics, City of Hope, Duarte, CA, 91010, USA
| | - Sushil Kumar
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE, 68198-5870, USA
| | - Maneesh Jain
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE, 68198-5870, USA
- Fred and Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE, 68198-5870, USA
- Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, NE, 68198-5870, USA
| | - Moorthy P Ponnusamy
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE, 68198-5870, USA.
- Fred and Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE, 68198-5870, USA.
- Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, NE, 68198-5870, USA.
| | - Surinder K Batra
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE, 68198-5870, USA.
- Fred and Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE, 68198-5870, USA.
- Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, NE, 68198-5870, USA.
| |
Collapse
|
14
|
Qian L, Lin X, Gao X, Khan RU, Liao JY, Du S, Ge J, Zeng S, Yao SQ. The Dawn of a New Era: Targeting the "Undruggables" with Antibody-Based Therapeutics. Chem Rev 2023. [PMID: 37186942 DOI: 10.1021/acs.chemrev.2c00915] [Citation(s) in RCA: 38] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
The high selectivity and affinity of antibodies toward their antigens have made them a highly valuable tool in disease therapy, diagnosis, and basic research. A plethora of chemical and genetic approaches have been devised to make antibodies accessible to more "undruggable" targets and equipped with new functions of illustrating or regulating biological processes more precisely. In this Review, in addition to introducing how naked antibodies and various antibody conjugates (such as antibody-drug conjugates, antibody-oligonucleotide conjugates, antibody-enzyme conjugates, etc.) work in therapeutic applications, special attention has been paid to how chemistry tools have helped to optimize the therapeutic outcome (i.e., with enhanced efficacy and reduced side effects) or facilitate the multifunctionalization of antibodies, with a focus on emerging fields such as targeted protein degradation, real-time live-cell imaging, catalytic labeling or decaging with spatiotemporal control as well as the engagement of antibodies inside cells. With advances in modern chemistry and biotechnology, well-designed antibodies and their derivatives via size miniaturization or multifunctionalization together with efficient delivery systems have emerged, which have gradually improved our understanding of important biological processes and paved the way to pursue novel targets for potential treatments of various diseases.
Collapse
Affiliation(s)
- Linghui Qian
- Institute of Drug Metabolism and Pharmaceutical Analysis, Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Cancer Center, & Hangzhou Institute of Innovative Medicine, Zhejiang University, Hangzhou 310058, China
| | - Xuefen Lin
- Institute of Drug Metabolism and Pharmaceutical Analysis, Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Cancer Center, & Hangzhou Institute of Innovative Medicine, Zhejiang University, Hangzhou 310058, China
| | - Xue Gao
- Institute of Drug Metabolism and Pharmaceutical Analysis, Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Cancer Center, & Hangzhou Institute of Innovative Medicine, Zhejiang University, Hangzhou 310058, China
| | - Rizwan Ullah Khan
- Institute of Drug Metabolism and Pharmaceutical Analysis, Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Cancer Center, & Hangzhou Institute of Innovative Medicine, Zhejiang University, Hangzhou 310058, China
| | - Jia-Yu Liao
- Institute of Drug Metabolism and Pharmaceutical Analysis, Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Cancer Center, & Hangzhou Institute of Innovative Medicine, Zhejiang University, Hangzhou 310058, China
| | - Shubo Du
- School of Bioengineering, Dalian University of Technology, Dalian 116024, China
| | - Jingyan Ge
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310014, China
| | - Su Zeng
- Institute of Drug Metabolism and Pharmaceutical Analysis, Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Cancer Center, & Hangzhou Institute of Innovative Medicine, Zhejiang University, Hangzhou 310058, China
| | - Shao Q Yao
- Department of Chemistry, National University of Singapore, 4 Science Drive 2, Singapore, 117544
| |
Collapse
|
15
|
Huffman BM, Basu Mallick A, Horick NK, Wang-Gillam A, Hosein PJ, Morse MA, Beg MS, Murphy JE, Mavroukakis S, Zaki A, Schlechter BL, Sanoff H, Manz C, Wolpin BM, Arlen P, Lacy J, Cleary JM. Effect of a MUC5AC Antibody (NPC-1C) Administered With Second-Line Gemcitabine and Nab-Paclitaxel on the Survival of Patients With Advanced Pancreatic Ductal Adenocarcinoma: A Randomized Clinical Trial. JAMA Netw Open 2023; 6:e2249720. [PMID: 36602796 PMCID: PMC9856813 DOI: 10.1001/jamanetworkopen.2022.49720] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
IMPORTANCE Treatment options are limited for patients with advanced pancreatic ductal adenocarcinoma (PDAC) beyond first-line 5-fluorouracil, leucovorin, irinotecan, and oxaliplatin (FOLFIRINOX), with such individuals commonly being treated with gemcitabine and nab-paclitaxel. OBJECTIVE To determine whether NPC-1C, an antibody directed against MUC5AC, might increase the efficacy of second-line gemcitabine and nab-paclitaxel in patients with advanced PDAC. DESIGN, SETTING, AND PARTICIPANTS This multicenter, randomized phase II clinical trial enrolled patients with advanced PDAC between April 2014 and March 2017 whose disease had progressed on first-line FOLFIRINOX. Eligible patients had tumors with at least 20 MUC5AC staining by centralized immunohistochemistry review. Statistical analysis was performed from April to May 2022. INTERVENTIONS Patients were randomly assigned to receive gemcitabine (1000 mg/m2) and nab-paclitaxel (125 mg/m2) administered intravenously on days 1, 8, and 15 of every 4-week cycle, with or without intravenous NPC-1C 1.5 mg/kg every 2 weeks. MAIN OUTCOMES AND MEASURES The primary end point was overall survival (OS). Secondary end points were progression-free survival (PFS), objective response rate (ORR), and safety. Pretreatment clinical variables were explored with Cox proportional hazards analysis. RESULTS A total of 78 patients (median [range] age, 62 [36-78] years; 32 [41%] women; 9 [12%] Black; 66 [85%] White) received second-line treatment with gemcitabine plus nab-paclitaxel (n = 40) or gemcitabine plus nab-paclitaxel and NPC-1C (n = 38). Median OS was 6.6 months (95% CI, 4.7-8.4 months) with gemcitabine plus nab-paclitaxel vs 5.0 months (95% CI, 3.3-6.5 months; P = .22) with gemcitabine plus nab-paclitaxel and NPC-1C. Median PFS was 2.7 months (95% CI, 1.9-4.1 months) with gemcitabine plus nab-paclitaxel vs 3.4 months (95% CI, 1.9-5.3 months; P = .80) with gemcitabine plus nab-paclitaxel and NPC-1C. The ORR was 3.1% (95% CI, 0.4%-19.7%) in the gemcitabine plus nab-paclitaxel and NPC-1C group and 2.9% (95% CI, 0.4%-18.7%) in the gemcitabine plus nab-paclitaxel group. No differences in toxicity were observed between groups, except that grade 3 or greater anemia occurred more frequently in patients treated with gemcitabine plus nab-paclitaxel and NPC-1C than gemcitabine plus nab-paclitaxel (39% [15 of 38] vs 10% [4 of 40]; P = .003). The frequency of chemotherapy dose reductions was similar in both groups (65% vs 74%; P = .47). Lower performance status, hypoalbuminemia, PDAC diagnosis less than or equal to 18 months before trial enrollment, lymphocyte-to-monocyte ratio less than 2.8, and CA19-9 greater than 2000 IU/mL were independently associated with poorer survival. CONCLUSIONS AND RELEVANCE In this randomized clinical trial of advanced PDAC, NPC-1C did not enhance the efficacy of gemcitabine/nab-paclitaxel. These data provide a benchmark for future trials investigating second-line treatment of PDAC. TRIAL REGISTRATION ClinicalTrials.gov Identifier: NCT01834235.
Collapse
Affiliation(s)
- Brandon M. Huffman
- Division of Gastrointestinal Oncology, Department of Medical Oncology, Dana-Farber Cancer Institute/Harvard Medical School, Boston, Massachusetts
| | - Atrayee Basu Mallick
- Thomas Jefferson University/Sidney Kimmel Cancer Center, Philadelphia, Pennsylvania
| | - Nora K. Horick
- Biostatistics Center, Massachusetts General Hospital, Boston
| | - Andrea Wang-Gillam
- Washington University in St. Louis, School of Medicine, St. Louis, Missouri
| | | | | | - Muhammad Shaalan Beg
- UT Southwestern Medical Center, Dallas, Texas
- Science 37 Inc, Durham, North Carolina
| | - Janet E. Murphy
- Division of Hematology/Oncology, Massachusetts General Hospital, Boston
| | | | | | | | | | - Christopher Manz
- Division of Population Sciences, Department of Medical Oncology, Dana-Farber Cancer Institute/Harvard Medical School, Boston, Massachusetts
| | - Brian M. Wolpin
- Division of Gastrointestinal Oncology, Department of Medical Oncology, Dana-Farber Cancer Institute/Harvard Medical School, Boston, Massachusetts
| | | | - Jill Lacy
- Yale Cancer Center, Yale School of Medicine, New Haven, Connecticut
| | - James M. Cleary
- Division of Gastrointestinal Oncology, Department of Medical Oncology, Dana-Farber Cancer Institute/Harvard Medical School, Boston, Massachusetts
| |
Collapse
|
16
|
Koch KC, Tew GN. Functional antibody delivery: Advances in cellular manipulation. Adv Drug Deliv Rev 2023; 192:114586. [PMID: 36280179 DOI: 10.1016/j.addr.2022.114586] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Revised: 10/10/2022] [Accepted: 10/18/2022] [Indexed: 02/03/2023]
Abstract
The current therapeutic antibody market in the U.S. consists of 100 antibody-based products and their market value is expected to explode beyond $300 billion by 2025. These therapies are presently limited to extracellular targets due to the innate inability of antibodies to transverse membranes. To expand the number of accessible therapeutic targets, intracellular antibody delivery is necessary. Many delivery vehicles for antibodies have been used with some promising results, such as nanoparticles and cell penetrating polymers. Despite the success of these delivery platforms using model antibody cargo, there is a surprisingly small number of studies that focus on functional antibody delivery into the cytosol that also measures a cellular response. Antibodies can be designed for essentially unlimited targets, including proteins and DNA, that will ultimately control cell function once delivered inside cells. Advancement in cellular manipulation depends on the application of intracellularly delivering functional antibodies to achieve a desired result. This review focuses on the emerging field of functional antibody delivery which enables various cellular responses and cell manipulation.
Collapse
Affiliation(s)
- Kayla C Koch
- Department of Polymer Science & Engineering, University of Massachusetts, Amherst, MA 01003, United States
| | - Gregory N Tew
- Department of Polymer Science & Engineering, University of Massachusetts, Amherst, MA 01003, United States; Molecular & Cellular Biology Program, University of Massachusetts, Amherst, MA 01003, United States; Department of Veterinary & Animal Sciences, University of Massachusetts, Amherst, MA 01003, United States.
| |
Collapse
|
17
|
Busato D, Mossenta M, Dal Bo M, Macor P, Toffoli G. The Proteoglycan Glypican-1 as a Possible Candidate for Innovative Targeted Therapeutic Strategies for Pancreatic Ductal Adenocarcinoma. Int J Mol Sci 2022; 23:ijms231810279. [PMID: 36142190 PMCID: PMC9499405 DOI: 10.3390/ijms231810279] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Revised: 09/02/2022] [Accepted: 09/04/2022] [Indexed: 11/19/2022] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) accounts for 90% of all pancreatic cancers, with a 5-year survival rate of 7% and 80% of patients diagnosed with advanced or metastatic malignancies. Despite recent advances in diagnostic testing, surgical techniques, and systemic therapies, there remain limited options for the effective treatment of PDAC. There is an urgent need to develop targeted therapies that are able to differentiate between cancerous and non-cancerous cells to reduce side effects and better inhibit tumor growth. Antibody-targeted strategies are a potentially effective option for introducing innovative therapies. Antibody-based immunotherapies and antibody-conjugated nanoparticle-based targeted therapies with antibodies targeting specific tumor-associated antigens (TAA) can be proposed. In this context, glypican-1 (GPC1), which is highly expressed in PDAC and not expressed or expressed at very low levels in non-malignant lesions and healthy pancreatic tissues, is a useful TAA that can be achieved by a specific antibody-based immunotherapy and antibody-conjugated nanoparticle-based targeted therapy. In this review, we describe the main clinical features of PDAC. We propose the proteoglycan GPC1 as a useful TAA for PDAC-targeted therapies. We also provide a digression on the main developed approaches of antibody-based immunotherapy and antibody-conjugated nanoparticle-based targeted therapy, which can be used to target GPC1.
Collapse
Affiliation(s)
- Davide Busato
- Experimental and Clinical Pharmacology Unit, Centro di Riferimento Oncologico di Aviano (CRO) IRCCS, 33081 Aviano, Italy
- Department of Life Sciences, University of Trieste, 34127 Trieste, Italy
- Correspondence: ; Tel.: +39-0434-659816
| | - Monica Mossenta
- Experimental and Clinical Pharmacology Unit, Centro di Riferimento Oncologico di Aviano (CRO) IRCCS, 33081 Aviano, Italy
- Department of Life Sciences, University of Trieste, 34127 Trieste, Italy
| | - Michele Dal Bo
- Experimental and Clinical Pharmacology Unit, Centro di Riferimento Oncologico di Aviano (CRO) IRCCS, 33081 Aviano, Italy
| | - Paolo Macor
- Department of Life Sciences, University of Trieste, 34127 Trieste, Italy
| | - Giuseppe Toffoli
- Experimental and Clinical Pharmacology Unit, Centro di Riferimento Oncologico di Aviano (CRO) IRCCS, 33081 Aviano, Italy
| |
Collapse
|
18
|
EpCAM- and EGFR-Specific Antibody Drug Conjugates for Triple-Negative Breast Cancer Treatment. Int J Mol Sci 2022; 23:ijms23116122. [PMID: 35682800 PMCID: PMC9181111 DOI: 10.3390/ijms23116122] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Revised: 05/18/2022] [Accepted: 05/27/2022] [Indexed: 12/29/2022] Open
Abstract
Triple-negative breast cancer (TNBC) is a group of heterogeneous and refractory breast cancers with the absence of estrogen receptor (ER), progesterone receptor (PgR) and epidermal growth factor receptor 2 (HER2). Over the past decade, antibody drug conjugates (ADCs) have ushered in a new era of targeting therapy. Since the epidermal growth factor receptor (EGFR) and epithelial cell adhesion molecule (EpCAM) are over expressed on triple-negative breast cancer, we developed novel ADCs by conjugating benzylguanine (BG)-modified monomethyl auristatin E (MMAE) to EpCAM- and EGFR-specific SNAP-tagged single chain antibody fragments (scFvs). Rapid and efficient conjugation was achieved by SNAP-tag technology. The binding and internalization properties of scFv-SNAP fusion proteins were confirmed by flow cytometry and fluorescence microscopy. The dose-dependent cytotoxicity was evaluated in cell lines expressing different levels of EGFR and EpCAM. Both ADCs showed specific cytotoxicity to EGFR or EpCAM positive cell lines via inducing apoptosis at a nanomolar concentration. Our study demonstrated that EGFR specific scFv-425-SNAP-BG-MMAE and EpCAM-specific scFv-EpCAM-SNAP-BG-MMAE could be promising ADCs for the treatment of TNBC.
Collapse
|
19
|
Rau A, Janssen N, Kühl L, Sell T, Kalmykova S, Mürdter TE, Dahlke MH, Sers C, Morkel M, Schwab M, Kontermann RE, Olayioye MA. Triple Targeting of HER Receptors Overcomes Heregulin-mediated Resistance to EGFR Blockade in Colorectal Cancer. Mol Cancer Ther 2022; 21:799-809. [PMID: 35247930 DOI: 10.1158/1535-7163.mct-21-0818] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Revised: 01/12/2022] [Accepted: 02/10/2022] [Indexed: 11/16/2022]
Abstract
Current treatment options for patients with advanced colorectal cancers include anti-EGFR/HER1 therapy with the blocking antibody cetuximab. Although a subset of patients with KRAS WT disease initially respond to the treatment, resistance develops in almost all cases. Relapse has been associated with the production of the ligand heregulin (HRG) and/or compensatory signaling involving the receptor tyrosine kinases HER2 and HER3. Here, we provide evidence that triple-HER receptor blockade based on a newly developed bispecific EGFR×HER3-targeting antibody (scDb-Fc) together with the HER2-blocking antibody trastuzumab effectively inhibited HRG-induced HER receptor phosphorylation, downstream signaling, proliferation, and stem cell expansion of DiFi and LIM1215 colorectal cancer cells. Comparative analyses revealed that the biological activity of scDb-Fc plus trastuzumab was sometimes even superior to that of the combination of the parental antibodies, with PI3K/Akt pathway inhibition correlating with improved therapeutic response and apoptosis induction as seen by single-cell analysis. Importantly, growth suppression by triple-HER targeting was recapitulated in primary KRAS WT patient-derived organoid cultures exposed to HRG. Collectively, our results provide strong support for a pan-HER receptor blocking approach to combat anti-EGFR therapy resistance of KRAS WT colorectal cancer tumors mediated by the upregulation of HRG and/or HER2/HER3 signaling.
Collapse
Affiliation(s)
- Alexander Rau
- Institute of Cell Biology and Immunology, University of Stuttgart, Stuttgart, Germany
| | - Nicole Janssen
- Dr. Margarete Fischer-Bosch-Institute of Clinical Pharmacology, Stuttgart, Germany.,University of Tübingen, Tübingen, Germany
| | - Lennart Kühl
- Institute of Cell Biology and Immunology, University of Stuttgart, Stuttgart, Germany
| | - Thomas Sell
- Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany.,IRI Life Sciences and Institute of Theoretical Biology, Humboldt-Universität zu Berlin, Berlin, Germany
| | - Svetlana Kalmykova
- Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany.,IRI Life Sciences and Institute of Theoretical Biology, Humboldt-Universität zu Berlin, Berlin, Germany
| | - Thomas E Mürdter
- Dr. Margarete Fischer-Bosch-Institute of Clinical Pharmacology, Stuttgart, Germany.,University of Tübingen, Tübingen, Germany
| | - Marc-H Dahlke
- Department of General and Visceral Surgery, Robert-Bosch-Hospital, Stuttgart, Germany
| | - Christine Sers
- Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany.,German Cancer Consortium (DKTK), Partner Site Berlin and German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Markus Morkel
- Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany.,German Cancer Consortium (DKTK), Partner Site Berlin and German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Matthias Schwab
- Dr. Margarete Fischer-Bosch-Institute of Clinical Pharmacology, Stuttgart, Germany.,German Cancer Consortium (DKTK), Partner Site Tübingen and German Cancer Research Center (DKFZ), Heidelberg, Germany.,Departments of Clinical Pharmacology, and of Biochemistry and Pharmacy, University of Tübingen, Tübingen, Germany.,Cluster of Excellence iFIT (EXC 2180) "Image-Guided and Functionally Instructed Tumor Therapies," University of Tübingen, Tübingen, Germany
| | - Roland E Kontermann
- Institute of Cell Biology and Immunology, University of Stuttgart, Stuttgart, Germany.,Stuttgart Research Center Systems Biology (SRCSB), University of Stuttgart, Stuttgart, Germany
| | - Monilola A Olayioye
- Institute of Cell Biology and Immunology, University of Stuttgart, Stuttgart, Germany.,Stuttgart Research Center Systems Biology (SRCSB), University of Stuttgart, Stuttgart, Germany
| |
Collapse
|
20
|
Kontermann RE, Ungerechts G, Nettelbeck DM. Viro-antibody therapy: engineering oncolytic viruses for genetic delivery of diverse antibody-based biotherapeutics. MAbs 2021; 13:1982447. [PMID: 34747345 PMCID: PMC8583164 DOI: 10.1080/19420862.2021.1982447] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Cancer therapeutics approved for clinical application include oncolytic viruses and antibodies, which evolved by nature, but were improved by molecular engineering. Both facilitate outstanding tumor selectivity and pleiotropic activities, but also face challenges, such as tumor heterogeneity and limited tumor penetration. An innovative strategy to address these challenges combines both agents in a single, multitasking therapeutic, i.e., an oncolytic virus engineered to express therapeutic antibodies. Such viro-antibody therapies genetically deliver antibodies to tumors from amplified virus genomes, thereby complementing viral oncolysis with antibody-defined therapeutic action. Here, we review the strategies of viro-antibody therapy that have been pursued exploiting diverse virus platforms, antibody formats, and antibody-mediated modes of action. We provide a comprehensive overview of reported antibody-encoding oncolytic viruses and highlight the achievements of 13 years of viro-antibody research. It has been shown that functional therapeutic antibodies of different formats can be expressed in and released from cancer cells infected with different oncolytic viruses. Virus-encoded antibodies have implemented direct tumor cell killing, anti-angiogenesis, or activation of adaptive immune responses to kill tumor cells, tumor stroma cells or inhibitory immune cells. Importantly, numerous reports have shown therapeutic activity complementary to viral oncolysis for these modalities. Also, challenges for future research have been revealed. Established engineering technologies for both oncolytic viruses and antibodies will enable researchers to address these challenges, facilitating the development of effective viro-antibody therapeutics.
Collapse
Affiliation(s)
- Roland E Kontermann
- Institute of Cell Biology and Immunology, University of Stuttgart, Stuttgart, Germany.,Stuttgart Research Center Systems Biology, University of Stuttgart, Stuttgart, Germany
| | - Guy Ungerechts
- Clinical Cooperation Unit Virotherapy, German Cancer Research Center (DKFZ), Heidelberg, Germany.,Department of Medical Oncology, National Center for Tumor Diseases (NCT) and University Hospital Heidelberg, Heidelberg, Germany.,Cancer Therapeutics Program, Ottawa Hospital Research Institute, Ottawa, ON, Canada
| | - Dirk M Nettelbeck
- Clinical Cooperation Unit Virotherapy, German Cancer Research Center (DKFZ), Heidelberg, Germany
| |
Collapse
|
21
|
Larbouret C, Gros L, Pèlegrin A, Chardès T. Improving Biologics' Effectiveness in Clinical Oncology: From the Combination of Two Monoclonal Antibodies to Oligoclonal Antibody Mixtures. Cancers (Basel) 2021; 13:cancers13184620. [PMID: 34572847 PMCID: PMC8465647 DOI: 10.3390/cancers13184620] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Revised: 09/01/2021] [Accepted: 09/09/2021] [Indexed: 01/03/2023] Open
Abstract
Simple Summary The approval of the two antibody combinations trastuzumab/pertuzumab and ipilimumab/nivolumab in oncology has paved the way for novel antibody combinations or oligoclonal antibody mixtures to improve their efficacy in cancer. The underlying biological mechanisms and challenges of these strategies will be discussed using data from clinical trials listed in databases. These therapeutic combinations also lead to questions on how to optimize their formulation and delivery to induce a therapeutic polyclonal response in patients with cancer. Abstract Monoclonal antibodies have revolutionized the treatment of many diseases, but their clinical efficacy remains limited in some other cases. Pre-clinical and clinical trials have shown that combinations of antibodies that bind to the same target (homo-combinations) or to different targets (hetero-combinations) to mimic the polyclonal humoral immune response improve their therapeutic effects in cancer. The approval of the trastuzumab/pertuzumab combination for breast cancer and then of the ipilimumab/nivolumab combination for melanoma opened the way to novel antibody combinations or oligoclonal antibody mixtures as more effective biologics for cancer management. We found more than 300 phase II/III clinical trials on antibody combinations, with/without chemotherapy, radiotherapy, small molecules or vaccines, in the ClinicalTrials.gov database. Such combinations enhance the biological responses and bypass the resistance mechanisms observed with antibody monotherapy. Usually, such antibody combinations are administered sequentially as separate formulations. Combined formulations have also been developed in which separately produced antibodies are mixed before administration or are produced simultaneously in a single cell line or a single batch of different cell lines as a polyclonal master cell bank. The regulation, toxicity and injection sequence of these oligoclonal antibody mixtures still need to be addressed in order to optimize their delivery and their therapeutic effects.
Collapse
Affiliation(s)
- Christel Larbouret
- Institut de Recherche en Cancérologie de Montpellier (IRCM), Institut Régional du Cancer de Montpellier (ICM), Inserm U1194, Université de Montpellier, 34298 Montpellier, France; (L.G.); (A.P.); (T.C.)
- Correspondence: ; Tel.: +33-411-283-110
| | - Laurent Gros
- Institut de Recherche en Cancérologie de Montpellier (IRCM), Institut Régional du Cancer de Montpellier (ICM), Inserm U1194, Université de Montpellier, 34298 Montpellier, France; (L.G.); (A.P.); (T.C.)
- Centre National de la Recherche Scientifique (CNRS), 75016 Paris, France
| | - André Pèlegrin
- Institut de Recherche en Cancérologie de Montpellier (IRCM), Institut Régional du Cancer de Montpellier (ICM), Inserm U1194, Université de Montpellier, 34298 Montpellier, France; (L.G.); (A.P.); (T.C.)
| | - Thierry Chardès
- Institut de Recherche en Cancérologie de Montpellier (IRCM), Institut Régional du Cancer de Montpellier (ICM), Inserm U1194, Université de Montpellier, 34298 Montpellier, France; (L.G.); (A.P.); (T.C.)
- Centre National de la Recherche Scientifique (CNRS), 75016 Paris, France
| |
Collapse
|
22
|
Matsumura Y. Barriers to antibody therapy in solid tumors, and their solutions. Cancer Sci 2021; 112:2939-2947. [PMID: 34032331 PMCID: PMC8353947 DOI: 10.1111/cas.14983] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Revised: 05/08/2021] [Accepted: 05/14/2021] [Indexed: 12/24/2022] Open
Abstract
Antibody drugs have become the mainstream of cancer treatment due to advances in cancer biology and Ab engineering. However, several barriers to Ab therapy have also been identified. These include various mechanisms for Ab drug resistance, such as heterogeneity of antigen expression in tumor cells and reduction in antitumor immunity due to expression diversity, polymorphism of Fc receptors (FcR) in effector cells, and reduced function of effector cells. Countermeasures to each resistance mechanism are being investigated. This review focuses on barriers that impede the delivery of Ab drugs due to features of the solid tumor microenvironment. Unlike hematological malignancies, in which the target tumor cells are in blood vessels, clinical solid tumors contain cancer stroma, which interferes with the delivery of Ab drugs. In addition, the cancer mass itself interferes with the penetration of Ab drugs. In this article, I will consider the etiology of cancer stroma and propose a new Ab drug development strategy for solid cancer treatment centering on cancer stromal targeting (CAST) therapy using anti-insoluble fibrin Ab-drug conjugate (ADC), which can overcome the cancer stroma barrier. The recent success of ADCs, chimeric antigen receptor T cells (CAR-Ts), and Bi-specific Abs is changing the category of Ab drugs from molecular-targeted drugs based on growth signal inhibition to cancer-specific targeted therapies. Therefore, at the end of this review, I argue that it is time to reorient the concept of Ab drug development.
Collapse
Affiliation(s)
- Yasuhiro Matsumura
- Department of Immune MedicineNational Cancer Center Research InstituteTokyoJapan
- Matsumura LabInnovation Center of NanoMedicineKawasakiJapan
- Tsukiji LabRINInstitute Inc.TokyoJapan
| |
Collapse
|
23
|
Subhan MA, Yalamarty SSK, Filipczak N, Parveen F, Torchilin VP. Recent Advances in Tumor Targeting via EPR Effect for Cancer Treatment. J Pers Med 2021; 11:571. [PMID: 34207137 PMCID: PMC8234032 DOI: 10.3390/jpm11060571] [Citation(s) in RCA: 249] [Impact Index Per Article: 62.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2021] [Revised: 06/11/2021] [Accepted: 06/16/2021] [Indexed: 12/11/2022] Open
Abstract
Cancer causes the second-highest rate of death world-wide. A major shortcoming inherent in most of anticancer drugs is their lack of tumor selectivity. Nanodrugs for cancer therapy administered intravenously escape renal clearance, are unable to penetrate through tight endothelial junctions of normal blood vessels and remain at a high level in plasma. Over time, the concentration of nanodrugs builds up in tumors due to the EPR effect, reaching several times higher than that of plasma due to the lack of lymphatic drainage. This review will address in detail the progress and prospects of tumor-targeting via EPR effect for cancer therapy.
Collapse
Affiliation(s)
- Md Abdus Subhan
- Department of Chemistry, Shah Jalal University of Science and Technology, Sylhet 3114, Bangladesh
| | - Satya Siva Kishan Yalamarty
- CPBN, Department of Pharmaceutical Sciences, Northeastern University, Boston, MA 02115, USA; (S.S.K.Y.); (N.F.); (F.P.)
| | - Nina Filipczak
- CPBN, Department of Pharmaceutical Sciences, Northeastern University, Boston, MA 02115, USA; (S.S.K.Y.); (N.F.); (F.P.)
| | - Farzana Parveen
- CPBN, Department of Pharmaceutical Sciences, Northeastern University, Boston, MA 02115, USA; (S.S.K.Y.); (N.F.); (F.P.)
- Department of Pharmaceutics, Faculty of Pharmacy, The Islamia University of Bahawalpur, Punjab 63100, Pakistan
| | - Vladimir P. Torchilin
- CPBN, Department of Pharmaceutical Sciences, Northeastern University, Boston, MA 02115, USA; (S.S.K.Y.); (N.F.); (F.P.)
- Department of Oncology, Radiotherapy and Plastic Surgery, I.M. Sechenov First Moscow State Medical University (Sechenov University), 119991 Moscow, Russia
| |
Collapse
|
24
|
Golpour M, Vatanpour P, Amini M, Saeedi M, Hafezi N, Rafiei A. The Perspective of Therapeutic Antibody Marketing in Iran: Trend and Estimation by 2025. Adv Pharmacol Pharm Sci 2021; 2021:5569590. [PMID: 33860229 PMCID: PMC8026318 DOI: 10.1155/2021/5569590] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Revised: 02/11/2021] [Accepted: 03/17/2021] [Indexed: 11/17/2022] Open
Abstract
BACKGROUND Monoclonal antibodies with high efficiency and specificity are one of the best strategies to diagnose and treat a variety of diseases such as cancer, autoimmunity, and inflammatory diseases. The market for monoclonal therapeutic antibodies (MTAs) has grown dramatically in the past decade. OBJECTIVE Given the importance of these issues, developing countries spend a high cost on importing or producing MTAs annually. This study intends to examine the market of monoclonal therapeutic antibodies in Iran and predict the future growth rate of this market using the obtained data. METHODS Data on the status of MTAs in the country (from 2008 to 2018) were obtained from the Food and Drug Deputy of Mazandaran University of Medical Sciences. The market status of MTAs was studied based on the dosage forms, application, and price. Then, the market outlook was predicted up to year 2025. RESULTS The results showed that 58.8% of all MTAs were humanized, and 86% of all antibody-based drugs were used to treat cancer. Sales of MTA-based medications will reach $454 million by 2025 and are projected to grow significantly in the future. CONCLUSION Given the increasing technology of the production of MTAs and their use in targeted therapies worldwide, their consumption market in Iran is expected to grow significantly.
Collapse
Affiliation(s)
- Monireh Golpour
- Molecular and Cell Biology Research Center, Student Research Committee, Faculty of Medicine, Mazandaran University of Medical Science, Sari, Iran
| | - Pouya Vatanpour
- Molecular and Cell Biology Research Center, Student Research Committee, Faculty of Medicine, Mazandaran University of Medical Science, Sari, Iran
- Oneocean Company, Oslo, Norway
| | - Mina Amini
- Food and Drug Deputy, Mazandaran University of Medical Science, Sari, Iran
| | - Majid Saeedi
- Departments of Pharmaceutics and Medicinal Chemistry, Faculty of Pharmacy, Mazandaran University of Medical Sciences, Sari, Iran
| | - Nasim Hafezi
- Department of Immunology, School of Medicine, Mazandaran University of Medical Sciences, Sari, Iran
| | - Alireza Rafiei
- Molecular and Cell Biology Research Center, Student Research Committee, Faculty of Medicine, Mazandaran University of Medical Science, Sari, Iran
- Department of Immunology, School of Medicine, Mazandaran University of Medical Sciences, Sari, Iran
| |
Collapse
|