1
|
Alami M, Morvaridzadeh M, El Khayari A, Boumezough K, El Fatimy R, Khalil A, Fulop T, Berrougui H. Reducing Alzheimer's disease risk with SGLT2 inhibitors: From glycemic control to neuroprotection. Ageing Res Rev 2025; 108:102751. [PMID: 40204129 DOI: 10.1016/j.arr.2025.102751] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2025] [Revised: 03/28/2025] [Accepted: 04/04/2025] [Indexed: 04/11/2025]
Abstract
Recent research has established a strong link between metabolic abnormalities and an increased risk of dementia. In parallel, there is growing epidemiological evidence supporting the neuroprotective effects of antidiabetic medications against cognitive impairments. Among these, sodium-glucose co-transporter (SGLT2) inhibitors have emerged as pharmacological candidates with promising potential in alleviating the burden of age-related diseases, particularly neurodegenerative diseases (NDD). SGLT2 inhibitor therapies are FDA-approved medications routinely prescribed to manage diabetes. This novel class was initially developed to address cardiovascular disorders and to reduce the risk of hypoglycemia associated with insulin-secretagogue agents. It subsequently attracted growing interest for its beneficial effects on central nervous system (CNS) disorders. However, the molecular mechanisms through which these glucose-lowering therapies mitigate cognitive decline and limit the progression of certain brain degenerative diseases remain largely unexplored. Consequently, the neuroscientific community needs further studies that gather, analyze, and critically discuss the available mechanistic evidence regarding the neuroprotective effects of SGLT2 inhibitors. This review aims to critically examine the most relevant published findings, both in vitro and in vivo, as well as human studies evaluating the impact of SGLT2 inhibitors exposure on Alzheimer's disease (AD). It seeks to integrate the current understanding of their beneficial effects at the molecular level and their role in addressing the pathophysiology and neuropathology of AD. These insights will help extend our knowledge of how SGLT2 inhibitor therapies are associated with reduced risk of dementia and thus shed light on the link between diabetes and AD.
Collapse
Affiliation(s)
- Mehdi Alami
- Sultan Moulay Sliman University, Polydisciplinary Faculty, Department of Biology, Beni Mellal, Morocco; University of Sherbrooke, Faculty of Medicine and Health Sciences, Department of Medicine, Geriatrics Service, Sherbrooke, QC, Canada
| | - Mojgan Morvaridzadeh
- University of Sherbrooke, Faculty of Medicine and Health Sciences, Department of Medicine, Geriatrics Service, Sherbrooke, QC, Canada
| | - Abdellatif El Khayari
- Faculty of Medical Sciences, UM6P Hospitals, Mohammed VI Polytechnic University, Ben-Guerir 43150, Morocco; Department of Neurology, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02115, USA
| | - Kaoutar Boumezough
- Sultan Moulay Sliman University, Polydisciplinary Faculty, Department of Biology, Beni Mellal, Morocco; University of Sherbrooke, Faculty of Medicine and Health Sciences, Department of Medicine, Geriatrics Service, Sherbrooke, QC, Canada
| | - Rachid El Fatimy
- Faculty of Medical Sciences, UM6P Hospitals, Mohammed VI Polytechnic University, Ben-Guerir 43150, Morocco
| | - Abdelouahed Khalil
- University of Sherbrooke, Faculty of Medicine and Health Sciences, Department of Medicine, Geriatrics Service, Sherbrooke, QC, Canada
| | - Tamas Fulop
- University of Sherbrooke, Faculty of Medicine and Health Sciences, Department of Medicine, Geriatrics Service, Sherbrooke, QC, Canada
| | - Hicham Berrougui
- Sultan Moulay Sliman University, Polydisciplinary Faculty, Department of Biology, Beni Mellal, Morocco; University of Sherbrooke, Faculty of Medicine and Health Sciences, Department of Medicine, Geriatrics Service, Sherbrooke, QC, Canada.
| |
Collapse
|
2
|
Gaggini M, Sabatino L, Suman AF, Chatzianagnostou K, Vassalle C. Insights into the Roles of GLP-1, DPP-4, and SGLT2 at the Crossroads of Cardiovascular, Renal, and Metabolic Pathophysiology. Cells 2025; 14:387. [PMID: 40072115 PMCID: PMC11898734 DOI: 10.3390/cells14050387] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2025] [Revised: 02/24/2025] [Accepted: 02/28/2025] [Indexed: 03/15/2025] Open
Abstract
In recent years, new drugs for the treatment of type 2 diabetes (T2D) have been proposed, including glucagon-like peptide 1 (GLP-1) agonists or sodium-glucose cotransporter 2 (SGLT2) inhibitors and dipeptidyl peptidase-4 (DPP-4) inhibitors. Over time, some of these agents (in particular, GLP-1 agonists and SGLT2 inhibitors), which were initially developed for their glucose-lowering actions, have demonstrated significant beneficial pleiotropic effects, thus expanding their potential therapeutic applications. This review aims to discuss the mechanisms, pleiotropic effects, and therapeutic potential of GLP-1, DPP-4, and SGLT2, with a particular focus on their cardiorenal benefits beyond glycemic control.
Collapse
Affiliation(s)
- Melania Gaggini
- Institute of Clinical Physiology, National Research Council, Via G. Moruzzi 1, 56124 Pisa, Italy; (M.G.); (L.S.)
| | - Laura Sabatino
- Institute of Clinical Physiology, National Research Council, Via G. Moruzzi 1, 56124 Pisa, Italy; (M.G.); (L.S.)
| | - Adrian Florentin Suman
- Institute of Clinical Physiology, National Research Council, Via G. Moruzzi 1, 56124 Pisa, Italy; (M.G.); (L.S.)
| | | | - Cristina Vassalle
- Fondazione CNR-Regione Toscana G Monasterio, Via G. Moruzzi 1, 56124 Pisa, Italy;
| |
Collapse
|
3
|
Su H, Wang X, Wang L, Yuan N. Therapeutic Targeting of Pattern Recognition Receptors to Modulate Inflammation in Atherosclerosis. Cell Biochem Biophys 2025; 83:73-86. [PMID: 39145823 DOI: 10.1007/s12013-024-01481-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/02/2024] [Indexed: 08/16/2024]
Abstract
Atherosclerosis (AS), a potentially fatal cardiovascular disease (CVD), is a chronic inflammatory condition. The disease's onset and progression are influenced by inflammatory and immunological mechanisms. The innate immune pathways are essential in the progression of AS, as they are responsible for detecting first danger signals and causing long-term changes in immune cells. The innate immune system possesses distinct receptors known as pattern recognition receptors (PRRs) which can identify both pathogen-associated molecular patterns and danger-associated molecular signals. Activation of PRRs initiates the inflammatory response in various physiological systems, such as the cardiovascular system. This review specifically examines the contribution of the innate immune response and PRRs to the formation and advancement of AS. Studying the role of these particular receptors in AS would enhance our understanding of the development of AS and offer novel approaches for directly improving the inflammatory response associated with it.
Collapse
Affiliation(s)
- Hongyan Su
- Cardiology Department, The Third Affiliated Hospital of Changchun University of Chinese Medicine, Changchun, 130000, China
| | - Xiancheng Wang
- Cardiology Department, The Third Affiliated Hospital of Changchun University of Chinese Medicine, Changchun, 130000, China
| | - Lu Wang
- Cardiology Department, The Third Affiliated Hospital of Changchun University of Chinese Medicine, Changchun, 130000, China
| | - Na Yuan
- Rheumatology Department, The Affiliated Hospital to Changchun University of Chinese Medicine, Changchun, 30000, China.
| |
Collapse
|
4
|
Ridha-Salman H, Al-Zubaidy AA, Abbas AH, Hassan DM, Malik SA. The alleviative effects of canagliflozin on imiquimod-induced mouse model of psoriasis-like inflammation. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2025; 398:2695-2715. [PMID: 39254877 DOI: 10.1007/s00210-024-03406-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Accepted: 08/20/2024] [Indexed: 09/11/2024]
Abstract
Psoriasis is a life-long immune-mediated dermatosis with thickened, reddish, and flaky skin patches. Canagliflozin is a gliflozin antidiabetic with non-classical remarkable antioxidative, anti-inflammatory, anti-proliferative, and immune-modulating effects. The aim of this study is to examine the probable effects of topical canagliflozin on a mouse model of imiquimod-provoked psoriasis-like dermatitis. The study evaluated 20 Swiss white mice, sorted haphazardly into 4 groups of 5 animals each. Every mouse, with the exception of the control group, had imiquimod applied topically to their shaved backs for 7 days. The control group included healthy mice that were not given any treatment. Mice in the other three groups underwent topical treatment with vehicle (induction group), 0.05% clobetasol propionate ointment (clobetasol group), or 4% canagliflozin emulgel (canagliflozin 4% group) on exactly the same day as imiquimod cream was administered. Topical canagliflozin markedly lowered the intensity of imiquimod-provoked psoriasis eruptions, featuring redness, glossy-white scales, and acanthosis, while also correcting histopathological aberrations. Canagliflozin administration to imiquimod-exposed animals resulted in significantly decreased cutaneous concentrations of inflammatory mediators such as IL-8, IL-17, IL-23, and TNF-α, with raised levels of IL-10. Canagliflozin further lowered proliferative factors involving Ki-67 and PCNA, diminished oxidative indicators such as MDA and MPO, and augmented the activity of antioxidant markers, notably SOD and CAT. Canagliflozin might alleviate the imiquimod-induced animal model of psoriasis, probably thanks to its profound anti-inflammatory, antioxidant, antiangiogenic, and antiproliferative activities.
Collapse
Affiliation(s)
| | - Adeeb Ahmed Al-Zubaidy
- Department of Pharmacology, College of Medicine, University of Warith Al-Anbiyaa, Karbala, Iraq
| | - Alaa Hamza Abbas
- College of Pharmacy, Al-Mustaqbal University, Babylon, Hillah, 51001, Iraq
| | - Dhuha M Hassan
- Pedodontic, Orthodontic and Preventive Department, College of Dentistry, Babylon University, Babylon, Iraq
| | - Samir A Malik
- College of Pharmacy, Al-Mustaqbal University, Babylon, Hillah, 51001, Iraq
| |
Collapse
|
5
|
Pan J, Yang H, Lu J, Chen L, Wen T, Zhao S, Shi L. The Impact of SGLT2 Inhibitors on Dementia Onset in Patients with Type 2 Diabetes: A Meta-Analysis of Cohort Studies. Neuroendocrinology 2025; 115:351-359. [PMID: 39799939 DOI: 10.1159/000543533] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/27/2024] [Accepted: 01/03/2025] [Indexed: 01/15/2025]
Abstract
INTRODUCTION Sodium-glucose cotransporter 2 (SGLT2) inhibitors have demonstrated neuroprotective effects and hold potential advantages in enhancing cognitive function. This study aimed to clarify the association between SGLT2 inhibitors and the risk of dementia among individuals diagnosed with type 2 diabetes (T2D). METHODS All cohort studies concerning the impact of SGLT2 inhibitors on dementia onset in patients with T2D were identified. The literature search encompassed PubMed, Embase, Cochrane Library, and Web of Science from establishment to March 2024, with no language restriction. The quality of the literature was evaluated using the Newcastle-Ottawa Scale (NOS). Meta-analysis was conducted using RevMan 5.4 software, calculating pooled risk ratio (RR) with 95% confidence intervals (CIs) for dichotomous outcomes. RESULTS Five cohort studies encompassing a total of 331,908 patients were included in the analysis. The findings showed that individuals receiving SGLT2 inhibitors had a lower risk of dementia (I2 = 42%, p = 0.14; RR: 0.77; 95% CI: 0.71-0.84) compared to the control group. Subgroup analyses confirmed the consistent beneficial effects of SGLT2 inhibitors across different study regions (I2 = 0%, p = 0.60) and genders (I2 = 0%, p = 0.50). CONCLUSIONS SGLT2 inhibitors may reduce the dementia risk in T2D patients. Given the limitations of the study, further investigations were warranted to confirm the benefits.
Collapse
Affiliation(s)
- Jiani Pan
- Department of Geriatric Cardiology, First Hospital of China Medical University, Shenyang, China,
| | - Huiping Yang
- Department of Geriatric Cardiology, First Hospital of China Medical University, Shenyang, China
| | - Jiatong Lu
- Department of Geriatric Cardiology, First Hospital of China Medical University, Shenyang, China
| | - Ling Chen
- Department of Geriatric Cardiology, First Hospital of China Medical University, Shenyang, China
| | - Tian Wen
- Department of Geriatric Cardiology, First Hospital of China Medical University, Shenyang, China
| | - Shijie Zhao
- Department of Geriatric Cardiology, First Hospital of China Medical University, Shenyang, China
| | - Liye Shi
- Department of Geriatric Cardiology, First Hospital of China Medical University, Shenyang, China
| |
Collapse
|
6
|
Liu M, Yao Y, Tan F, Wang J, Hu R, Du J, Jiang Y, Yuan X. Sodium-glucose co-transporter 2 (SGLT-2) inhibitors ameliorate renal ischemia-reperfusion injury (IRI) by modulating autophagic processes. Transl Res 2025; 277:27-38. [PMID: 39761911 DOI: 10.1016/j.trsl.2024.12.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Revised: 12/24/2024] [Accepted: 12/30/2024] [Indexed: 01/16/2025]
Abstract
Renal ischemia-reperfusion injury (IRI) is a common clinical condition that currently lacks effective treatment options. Inhibitors targeting the sodium-glucose co-transporter-2 (SGLT-2), recognized for their role in managing hyperglycemia, have demonstrated efficacy in enhancing the health outcomes for diabetic patients grappling with chronic kidney disease. Nevertheless, the precise impact of SGLT-2 inhibitors on renal ischemia-reperfusion injury (IRI) and the corresponding transcriptomic alterations remain to be elucidated. In our research, we developed a model of IRI using male C57BL/6 mice by clamping the unilateral renal artery and administering empagliflozin Transcriptomic alterations were analyzed using RNA sequencing (RNA-Seq), complemented by proteomic analysis to investigate the effects of empagliflozin. Histological assessments revealed increased renal inflammatory cell infiltration, widespread renal tubular injury, and elevated autophagosomes formation in the IRI group compared to controls. These pathological changes were significantly attenuated following empagliflozin treatment. Besides, renal function impairment can be alleviated in empagliflozin-treated group. RNA-Seq analysis identified lysosomal autophagy as a key biological process in IRI mice. Empagliflozin exerted a renoprotective effect by downregulating lysosome-associated membrane proteins, primarily LAMP1, LAMP2, and LAMP4 (CD68), through the PI3K-Akt, MAPK, and mTOR signaling pathways, thereby inhibiting autophagic processes. In conclusion, this study highlights enhanced inflammation and disrupted metabolism as hallmark transcriptomic signatures of renal. Furthermore, it demonstrates the renoprotective effects of empagliflozin in alleviating renal IRI by modulating autophagic processes.
Collapse
Affiliation(s)
- Mengmeng Liu
- Department of Cardiology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, PR China
| | - Yuanqing Yao
- Department of Cardiology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, PR China
| | - Fangyan Tan
- Department of Nephrology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, PR China
| | - Jing Wang
- Department of Cardiology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, PR China
| | - Rong Hu
- Department of Cardiology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, PR China
| | - Jianlin Du
- Department of Cardiology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, PR China
| | - Yonghong Jiang
- Department of Cardiology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, PR China.
| | - Xin Yuan
- Department of Nephrology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, PR China.
| |
Collapse
|
7
|
Zhang S, Huang Y, Han C, Wang F, Chen M, Yang Z, Yang S, Wang C. Central SGLT2 mediate sympathoexcitation in hypertensive heart failure via attenuating subfornical organ endothelial cGAS ubiquitination to amplify neuroinflammation: Molecular mechanism behind sympatholytic effect of Empagliflozin. Int Immunopharmacol 2025; 145:113711. [PMID: 39647283 DOI: 10.1016/j.intimp.2024.113711] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2024] [Revised: 11/22/2024] [Accepted: 11/22/2024] [Indexed: 12/10/2024]
Abstract
BACKGROUND Sodium/glucose co-transporter 2 (SGLT2) inhibitors have transformed heart failure (HF) treatment, offering sympatholytic effects whose mechanisms are not fully understood. Our previous studies identified Cyclic GMP-AMP synthase (cGAS)-derived neuroinflammation in the Subfornical organ (SFO) as a promoter of sympathoexcitation, worsening myocardial remodeling in HF. This research explored the role of central SGLT2 in inducing endothelial cGAS-driven neuroinflammation in the SFO during HF and assessed the impact of SGLT2 inhibitors on this process. METHODS Hypertensive HF was induced in mice via Angiotensin II infusion for four weeks. SGLT2 expression and localization in the SFO were determined through immunoblotting and double-immunofluorescence staining. AAV9-TIE-shRNA (SGLT2) facilitated targeted SGLT2 knockdown in SFO endothelial cells (ECs), with subsequent analyses via immunoblotting, staining, and co-immunoprecipitation to investigate interactions with cGAS, mitochondrial alterations, and pro-inflammatory pathway activation. Renal sympathetic nerve activity and heart rate variability were measured to assess sympathetic output, alongside evaluations of cardiac function in HF mice. RESULTS In HF model mice, SGLT2 levels are markedly raised in SFO ECs, disrupting mitochondrial function and elevating oxidative stress. SGLT2 knockdown preserved mitochondrial integrity and function, reduced inflammation, and highlighted the influence of SGLT2 on mitochondrial health. SGLT2's interaction with cGAS prevented its ubiquitination and degradation, amplifying neuroinflammation and HF progression. Conversely, Empagliflozin counteracted these effects, suggesting that targeting the SGLT2-cGAS interaction as a novel HF treatment avenue. CONCLUSION This study revealed that SGLT2 directly reduced cGAS degradation in brain ECs, enhancing neuroinflammation in the SFO, and promoting sympathoexcitation and myocardial remodeling. The significance of the central SGLT2-cGAS interaction in cardiovascular disease mechanisms is emphasized.
Collapse
Affiliation(s)
- Shutian Zhang
- Department of Cardiac Surgery, Zhongshan Hospital, Fudan University, Shanghai 200032, China; Shanghai Institute of Cardiovascular Diseases, Shanghai 200032, China.
| | - Yijun Huang
- Department of Cardiac Surgery, Zhongshan Hospital, Fudan University, Shanghai 200032, China; Shanghai Institute of Cardiovascular Diseases, Shanghai 200032, China
| | - Chengzhi Han
- Department of Cardiac Surgery, Zhongshan Hospital, Fudan University, Shanghai 200032, China; Shanghai Institute of Cardiovascular Diseases, Shanghai 200032, China
| | - Fanshun Wang
- Department of Cardiac Surgery, Zhongshan Hospital, Fudan University, Shanghai 200032, China; Shanghai Institute of Cardiovascular Diseases, Shanghai 200032, China
| | - Maoxiang Chen
- Department of Cardiac Surgery, Zhongshan Hospital, Fudan University, Shanghai 200032, China; Shanghai Institute of Cardiovascular Diseases, Shanghai 200032, China
| | - Zhaohua Yang
- Department of Cardiac Surgery, Zhongshan Hospital, Fudan University, Shanghai 200032, China; Shanghai Institute of Cardiovascular Diseases, Shanghai 200032, China
| | - Shouguo Yang
- Department of Cardiac Surgery, Zhongshan Hospital, Fudan University, Shanghai 200032, China; Shanghai Institute of Cardiovascular Diseases, Shanghai 200032, China.
| | - Chunsheng Wang
- Department of Cardiac Surgery, Zhongshan Hospital, Fudan University, Shanghai 200032, China; Shanghai Institute of Cardiovascular Diseases, Shanghai 200032, China.
| |
Collapse
|
8
|
Chen Z, Meng H, Guo Y, Sun H, Zhang W, Guo Y, Hou S. Sodium-glucose cotransporter protein 2 inhibition, plasma proteins, and ischemic stroke: A mediation Mendelian randomization and colocalization study. J Stroke Cerebrovasc Dis 2025; 34:108136. [PMID: 39542148 DOI: 10.1016/j.jstrokecerebrovasdis.2024.108136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 10/19/2024] [Accepted: 11/11/2024] [Indexed: 11/17/2024] Open
Abstract
PURPOSE To determine the effect of the sodium-glucose cotransporter protein 2 (SGLT2) inhibition on ischemic stroke (IS) and investigate the circulating proteins that mediate the effects of SGLT2 inhibition on IS. METHODS The effects of SGLT2 inhibition on IS were evaluated using two-sample Mendelian randomization (MR) analyses. The 4,907 circulating proteins from the plasma proteome were assessed to identify potential mediators. Sensitivity, colocalization, and external validation analyses were conducted to validate critical findings. MR analyses were also used to evaluate the associations of SGLT2 inhibition with magnetic resonance imaging (MRI)-based biomarkers and functional prognoses post-IS. RESULTS SGLT2 inhibition was significantly associated with decreased risks of IS (odds ratio (OR): 0.39, 95 % confidence interval (CI): 0.25-0.61, p = 3.53 × 10-5) and cardioembolic stroke (OR: 0.16, 95 % CI: 0.07-0.37, p = 1.82 × 10-5); the effect of SGLT2 inhibition on IS was indirectly mediated through pathways involving tryptophanyl-transfer RNA synthetase (WARS) (β:0.08, 95 % CI:0.15 - -0.01, p = 0.034) and matrix metalloproteinase 12 (MMP12) (β:0.06, 95 % CI:0.12 - -0.01, p = 0.016), with mediation proportions of 8.2 % and 6.8 %, respectively. The external validation confirmed the WARS mediating effect. In addition, the sensitivity and colocalization analyses and MR analyses of MRI biomarker-based and functional prognostic outcomes supported these results. CONCLUSION In this study, we demonstrated from a genetic perspective that SGLT2 inhibitors prevent the development of IS and improve functional prognostic outcomes and brain microstructural integrity. WARS and MMP12 may act as potential mediators, presenting a novel approach for IS intervention.
Collapse
Affiliation(s)
- Zhiqing Chen
- Department of Neurology and Neuroscience Center, The First Hospital of Jilin University, Changchun, China
| | - Hongmei Meng
- Department of Neurology and Neuroscience Center, The First Hospital of Jilin University, Changchun, China
| | - Yujin Guo
- Department of Ophthalmology, The Second Hospital of Jilin University, Changchun, China
| | - Huaiyu Sun
- Department of Neurology and Neuroscience Center, The First Hospital of Jilin University, Changchun, China
| | - Wuqiong Zhang
- Department of Neurology and Neuroscience Center, The First Hospital of Jilin University, Changchun, China
| | - Yu Guo
- Department of Neurology, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Shuai Hou
- Department of Neurology and Neuroscience Center, The First Hospital of Jilin University, Changchun, China.
| |
Collapse
|
9
|
Shao R, Chen R, Zheng Q, Yao M, Li K, Cao Y, Jiang L. Oxidative stress disrupts vascular microenvironmental homeostasis affecting the development of atherosclerosis. Cell Biol Int 2024; 48:1781-1801. [PMID: 39370593 DOI: 10.1002/cbin.12239] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2024] [Revised: 05/20/2024] [Accepted: 06/10/2024] [Indexed: 10/08/2024]
Abstract
Atherosclerosis is primarily an inflammatory reaction of the cardiovascular system caused by endothelial damage, leading to progressive thickening and hardening of the vessel walls, as well as extensive necrosis and fibrosis of the surrounding tissues, the most necessary pathological process causing cardiovascular disease. When the body responds to harmful internal and external stimuli, excess oxygen free radicals are produced causing oxidative stress to occur in cells and tissues. Simultaneously, the activation of inflammatory immunological processes is followed by an elevation in oxygen free radicals, which directly initiates the release of cytokines and chemokines, resulting in a detrimental cycle of vascular homeostasis abnormalities. Oxidative stress contributes to the harm inflicted upon vascular endothelial cells and the decrease in nitric oxide levels. Nitric oxide is crucial for maintaining vascular homeostasis and is implicated in the development of atherosclerosis. This study examines the influence of oxidative stress on the formation of atherosclerosis, which is facilitated by the vascular milieu. It also provides an overview of the pertinent targets and pharmaceutical approaches for treating this condition.
Collapse
Affiliation(s)
- Ruifei Shao
- Medical School, Center for Translational Research in Clinical Medicine, Kunming University of Science and Technology, Kunming, China
| | - Rui Chen
- Yan'an Hospital Affiliated to Kunming Medical University, Kunming, China
| | - Qiang Zheng
- Medical School, Center for Translational Research in Clinical Medicine, Kunming University of Science and Technology, Kunming, China
| | - Mengyu Yao
- Medical School, Center for Translational Research in Clinical Medicine, Kunming University of Science and Technology, Kunming, China
| | - Kunlin Li
- Department of General Surgery II, The First People's Hospital of Yunnan Province, Kunming, China
| | - Yu Cao
- Yunnan Key Laboratory of Innovative Application of Traditional Chinese Medicine, Department of Cardiovascular Surgery, The First People's Hospital of Yunnan Province, The Affiliated Hospital of Kunming University of Science and Technology, Kunming, China
| | - Lihong Jiang
- Medical School, Center for Translational Research in Clinical Medicine, Kunming University of Science and Technology, Kunming, China
- Yunnan Key Laboratory of Innovative Application of Traditional Chinese Medicine, Department of Cardiovascular Surgery, The First People's Hospital of Yunnan Province, The Affiliated Hospital of Kunming University of Science and Technology, Kunming, China
| |
Collapse
|
10
|
Zhang W, Wang L, Wang Y, Fang Y, Cao R, Fang Z, Han D, Huang X, Gu Z, Zhang Y, Zhu Y, Ma Y, Cao F. Inhibition of the RXRA-PPARα-FABP4 signaling pathway alleviates vascular cellular aging by an SGLT2 inhibitor in an atherosclerotic mice model. SCIENCE CHINA. LIFE SCIENCES 2024; 67:2678-2691. [PMID: 39225895 DOI: 10.1007/s11427-024-2602-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Accepted: 04/19/2024] [Indexed: 09/04/2024]
Abstract
Atherosclerosis is the pathological cause of atherosclerotic cardiovascular disease (ASCVD), which rapidly progresses during the cellular senescence. Sodium-glucose cotransporter 2 inhibitors (SGLT2is) reduce major cardiovascular events in patients with ASCVD and have potential antisenescence effects. Here, we investigate the effects of the SGLT2 inhibitor dapagliflozin on cellular senescence in atherosclerotic mice. Compared with ApoE-/- control mice treated with normal saline, those in the ApoE-/- dapagliflozin group, receiving intragastric dapagliflozin (0.1 mg kg-1 d-1) for 14 weeks, exhibited the reduction in the total aortic plaque area (48.8%±6.6% vs. 74.6%±8.0%, P<0.05), the decrease in the lipid core area ((0.019±0.0037) mm2vs. (0.032±0.0062) mm2, P<0.05) and in the percentage of senescent cells within the plaques (16.4%±3.7% vs. 30.7%±2.0%, P<0.01), while the increase in the thickness of the fibrous cap ((21.6±2.1) µm vs. (14.6±1.5) µm, P<0.01). Transcriptome sequencing of the aortic arch in the mice revealed the involvement of the PPARα and the fatty acid metabolic signaling pathways in dapagliflozin's mechanism of ameliorating cellular aging and plaque progression. In vitro, dapagliflozin inhibited the expression of PPARα and its downstream signal FABP4, by which the accumulation of senescent cells in human aortic smooth muscle cells (HASMCs) was reduced under high-fat conditions. This effect was accompanied by a reduction in the intracellular lipid content and alleviation of oxidative stress. However, these beneficial effects of dapagliflozin could be reversed by the PPARα overexpression. Bioinformatics analysis and molecular docking simulations revealed that dapagliflozin might exert its effects by directly interacting with the RXRA protein, thereby influencing the expression of the PPARα signaling pathway. In conclusion, the cellular senescence of aortic smooth muscle cells is potentially altered by dapagliflozin through the suppression of the RXRA-PPARα-FABP4 signaling pathway, resulting in a deceleration of atherosclerotic progression.
Collapse
Affiliation(s)
- Weiwei Zhang
- Department of Cardiology, The Second Medical Centre, Chinese PLA General Hospital, National Clinical Research Center for Geriatric Diseases, Beijing, 100853, China
| | - Linghuan Wang
- Department of Cardiology, The Second Medical Centre, Chinese PLA General Hospital, National Clinical Research Center for Geriatric Diseases, Beijing, 100853, China
- School of Medicine, Nankai University, Tianjin, 300071, China
| | - Yujia Wang
- Department of Cardiology, The Second Medical Centre, Chinese PLA General Hospital, National Clinical Research Center for Geriatric Diseases, Beijing, 100853, China
| | - Yan Fang
- Department of Cardiology, The Second Medical Centre, Chinese PLA General Hospital, National Clinical Research Center for Geriatric Diseases, Beijing, 100853, China
| | - Ruihua Cao
- Department of Cardiology, The Second Medical Centre, Chinese PLA General Hospital, National Clinical Research Center for Geriatric Diseases, Beijing, 100853, China
| | - Zhiyi Fang
- Department of Cardiology, The Second Medical Centre, Chinese PLA General Hospital, National Clinical Research Center for Geriatric Diseases, Beijing, 100853, China
- School of Medicine, Nankai University, Tianjin, 300071, China
| | - Dong Han
- Department of Cardiology, The Second Medical Centre, Chinese PLA General Hospital, National Clinical Research Center for Geriatric Diseases, Beijing, 100853, China
| | - Xu Huang
- Department of Cardiology, Beijing Friendship Hospital, Capital Medical University, Beijing, 100050, China
| | - Zhenghui Gu
- Department of Cardiology, The Second Medical Centre, Chinese PLA General Hospital, National Clinical Research Center for Geriatric Diseases, Beijing, 100853, China
| | - Yingjie Zhang
- Department of Cardiology, The Second Medical Centre, Chinese PLA General Hospital, National Clinical Research Center for Geriatric Diseases, Beijing, 100853, China
| | - Yan Zhu
- Department of Cardiology, The Second Medical Centre, Chinese PLA General Hospital, National Clinical Research Center for Geriatric Diseases, Beijing, 100853, China
- School of Medicine, Nankai University, Tianjin, 300071, China
| | - Yan Ma
- Department of Cardiology, The Second Medical Centre, Chinese PLA General Hospital, National Clinical Research Center for Geriatric Diseases, Beijing, 100853, China
| | - Feng Cao
- Department of Cardiology, The Second Medical Centre, Chinese PLA General Hospital, National Clinical Research Center for Geriatric Diseases, Beijing, 100853, China.
| |
Collapse
|
11
|
Mghaieth Zghal F, Abbassi M, Silini A, Ben Halima M, Jebberi Z, Daly F, Ouali S, Farhati A, Ben Mansour N, Boudiche S, Mourali MS. Impact of sodium-glucose cotransporter inhibitors in acute coronary syndrome patients on endothelial function and atherosclerosis related-biomarkers: ATH-SGLT2i pilot study. Medicine (Baltimore) 2024; 103:e40536. [PMID: 39813066 PMCID: PMC11596703 DOI: 10.1097/md.0000000000040536] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Accepted: 10/25/2024] [Indexed: 01/16/2025] Open
Abstract
Little is known about the effects of sodium-glucose co-transporter 2 inhibitors (SGLT2i) on atherosclerosis. We aimed to determine if a 90-day intake of Dapagliflozin could improve atherosclerosis biomarkers (namely endothelial function assessed by flow-mediated dilatation [FMD] and carotid intima-media thickness [CIMT]) in diabetic and non-diabetic acute coronary syndrome (ACS) patients when initiated in the early in-hospital phase. ATH-SGLT2i was a prospective, single-center, observational trial that included 113 SGLT2i naive patients who were admitted for ACS and who were prescribed Dapagliflozin at a fixed dose of 10 mg during their hospital stay for either type 2 diabetes or for heart failure. After 90 days of follow-up, subjects who had a continuous intake of Dapagliflozin formed the SGLT2i group, while patients who did not take Dapagliflozin formed the non-SGLT2i group. In each of these main study groups, we considered diabetic and non-diabetic subgroups. The primary endpoint was the difference in between baseline and 90 days in FMD (∆FMD) and in FMD rate (∆FMD%). The secondary outcome was change in CIMT (∆CIMT). We enrolled 54 patients in the SGLT2i group aged 59 ± 9 years (70.4% males) which 30 were diabetics, and 59 in the non-SGLT2i group aged 63 ± 11 years (78% males) which 34 were diabetics. After 90 days, ∆FMD and ∆ FMD% were higher in the SGLT2i group in comparison with the non-SGLT2i group (0.05 ± 0.15 vs -0.05 ± 0.11, P < .001 and 1.78 ± 3.63 vs -0.88 ± 4, P < .001). Within the SGLT2i group, the improvement of FMD% was higher in non-diabetic patients (2.85 ± 3.46 vs 0.9 ± 3.59, P = .05). Multivariate analysis showed that Dapagliflozin intake was independently associated with FMD% improvement (HR = 2.24). After 90 days, CIMT showed no significant difference between the SGLT2i and the non-SGLT2i groups. In this pilot study, a 90-day intake of Dapagliflozin at the fixed dose of 10 mg started in the acute phase of an ACS, was associated with endothelial function improvement in diabetic and non-diabetic patients.
Collapse
Affiliation(s)
- Fathia Mghaieth Zghal
- Department of Cardiology, Rabta Teaching Hospital, University of Medicine Tunis, Tunis, Tunisia
- Faculty of Medicine of Tunis, Tunis El Manar University, Tunis, Tunisia
| | - Manel Abbassi
- Department of Cardiology, Rabta Teaching Hospital, University of Medicine Tunis, Tunis, Tunisia
- Faculty of Medicine of Tunis, Tunis El Manar University, Tunis, Tunisia
| | - Ahlem Silini
- Faculty of Medicine of Tunis, Tunis El Manar University, Tunis, Tunisia
- National Institute of Public Health, Tunis, Tunisia
| | - Manel Ben Halima
- Department of Cardiology, Rabta Teaching Hospital, University of Medicine Tunis, Tunis, Tunisia
- Faculty of Medicine of Tunis, Tunis El Manar University, Tunis, Tunisia
| | - Zeynab Jebberi
- Department of Cardiology, Rabta Teaching Hospital, University of Medicine Tunis, Tunis, Tunisia
- Faculty of Medicine of Tunis, Tunis El Manar University, Tunis, Tunisia
| | - Foued Daly
- Department of Cardiology, Rabta Teaching Hospital, University of Medicine Tunis, Tunis, Tunisia
- Faculty of Medicine of Tunis, Tunis El Manar University, Tunis, Tunisia
| | - Sana Ouali
- Department of Cardiology, Rabta Teaching Hospital, University of Medicine Tunis, Tunis, Tunisia
- Faculty of Medicine of Tunis, Tunis El Manar University, Tunis, Tunisia
| | - Abdeljelil Farhati
- Department of Cardiology, Rabta Teaching Hospital, University of Medicine Tunis, Tunis, Tunisia
- Faculty of Medicine of Tunis, Tunis El Manar University, Tunis, Tunisia
| | - Nadia Ben Mansour
- Faculty of Medicine of Tunis, Tunis El Manar University, Tunis, Tunisia
- National Institute of Public Health, Tunis, Tunisia
| | - Selim Boudiche
- Department of Cardiology, Rabta Teaching Hospital, University of Medicine Tunis, Tunis, Tunisia
- Faculty of Medicine of Tunis, Tunis El Manar University, Tunis, Tunisia
| | - Mohamed Sami Mourali
- Department of Cardiology, Rabta Teaching Hospital, University of Medicine Tunis, Tunis, Tunisia
- Faculty of Medicine of Tunis, Tunis El Manar University, Tunis, Tunisia
| |
Collapse
|
12
|
Chang GJ, Chen WJ, Hsu YJ, Chen YH. Empagliflozin Attenuates Neointima Formation After Arterial Injury and Inhibits Smooth Muscle Cell Proliferation and Migration by Suppressing Platelet-Derived Growth Factor-Related Signaling. J Am Heart Assoc 2024; 13:e035044. [PMID: 39508166 DOI: 10.1161/jaha.124.035044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/17/2024] [Accepted: 07/23/2024] [Indexed: 11/08/2024]
Abstract
BACKGROUND Sodium-glucose cotransporter 2 (SGLT2) inhibitors reduce cardiovascular events. However, the precise mechanisms beyond glycemic control are not fully understood. The objective of this study was to determine the role of PDGF (platelet-derived growth factor)-related signaling in empagliflozin-mediated inhibition of neointima formation. METHODS AND RESULTS Adult male nondiabetic Wistar rats were subjected to carotid artery balloon injury. Empagliflozin (30 mg/kg per day) was administered by oral gavage for 18 days beginning 4 days before surgery. The in vitro effects of empagliflozin on rat aortic vascular smooth muscle cell (VSMC) proliferation and migration were also determined. Empagliflozin attenuated balloon injury-induced neointima formation in carotid arteries. In VSMCs, empagliflozin attenuated PDGF-BB-induced proliferation and migration. Moreover, empagliflozin-treated VSMCs did not undergo apoptosis or cytotoxic death. Empagliflozin suppressed PDGF-related signaling, including phosphorylation of PDGF receptor β, Akt, and STAT3 (signal transducer and activator of transcription 3). Overactivation of PDGF signaling attenuated empagliflozin-mediated inhibition of VSMC function. SGLT2 mRNA levels in rat VSMCs were undetectable, and SGLT2 silencing did not alter the empagliflozin-mediated effects, supporting the SGLT2-independent effects of empagliflozin on VSMC. CONCLUSIONS This study highlights the crucial role of suppressing PDGF-related signaling in mediating the beneficial effects of empagliflozin on neointima formation and VSMC function, which are independent of SGLT2 and glycemic control. Our study provides a novel mechanistic aspect of empagliflozin for the prevention of vascular stenosis disorders.
Collapse
MESH Headings
- Animals
- Glucosides/pharmacology
- Male
- Neointima
- Benzhydryl Compounds/pharmacology
- Cell Proliferation/drug effects
- Cell Movement/drug effects
- Signal Transduction/drug effects
- Carotid Artery Injuries/pathology
- Carotid Artery Injuries/drug therapy
- Carotid Artery Injuries/metabolism
- Rats, Wistar
- Muscle, Smooth, Vascular/drug effects
- Muscle, Smooth, Vascular/metabolism
- Muscle, Smooth, Vascular/pathology
- Myocytes, Smooth Muscle/drug effects
- Myocytes, Smooth Muscle/metabolism
- Myocytes, Smooth Muscle/pathology
- Sodium-Glucose Transporter 2 Inhibitors/pharmacology
- Cells, Cultured
- Disease Models, Animal
- Phosphorylation
- STAT3 Transcription Factor/metabolism
- Rats
- Proto-Oncogene Proteins c-akt/metabolism
- Becaplermin/pharmacology
- Becaplermin/metabolism
- Receptor, Platelet-Derived Growth Factor beta/metabolism
- Receptor, Platelet-Derived Growth Factor beta/genetics
- Platelet-Derived Growth Factor/metabolism
- Platelet-Derived Growth Factor/pharmacology
Collapse
Affiliation(s)
- Gwo-Jyh Chang
- Graduate Institute of Clinical Medicinal Sciences Chang-Gung University College of Medicine Tao-Yuan Taiwan
- Cardiovascular Division, Chang-Gung Memorial Hospital Chang-Gung University College of Medicine Tao-yuan Taiwan
| | - Wei-Jan Chen
- Cardiovascular Division, Chang-Gung Memorial Hospital Chang-Gung University College of Medicine Tao-yuan Taiwan
| | - Yu-Juei Hsu
- Division of Nephrology, Department of Internal Medicine, Tri-Service General Hospital National Defense Medical Center Taipei Taiwan
| | - Ying-Hwa Chen
- Division of Cardiology, Department of Internal Medicine, Taipei Veterans General Hospital National Yang Ming Chiao Tung University College of Medicine Taipei Taiwan
| |
Collapse
|
13
|
Aristizábal-Colorado D, Ocampo-Posada M, Rivera-Martínez WA, Corredor-Rengifo D, Rico-Fontalvo J, Gómez-Mesa JE, Duque-Ossman JJ, Abreu-Lomba A. SGLT2 Inhibitors and How They Work Beyond the Glucosuric Effect. State of the Art. Am J Cardiovasc Drugs 2024; 24:707-718. [PMID: 39179723 DOI: 10.1007/s40256-024-00673-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 08/06/2024] [Indexed: 08/26/2024]
Abstract
Type 2 diabetes mellitus (T2DM) is associated with a heightened risk of cardiovascular and renal complications. While glycemic control remains essential, newer therapeutic options, such as SGLT2 inhibitors, offer additional benefits beyond glucose reduction. This review delves into the mechanisms underlying the cardio-renal protective effects of SGLT2 inhibitors. By inducing relative hypoglycemia, these agents promote ketogenesis, optimize myocardial energy metabolism, and reduce lipotoxicity. Additionally, SGLT2 inhibitors exert renoprotective actions by enhancing renal perfusion, attenuating inflammation, and improving iron metabolism. These pleiotropic effects, including modulation of blood pressure, reduction of uric acid, and improved endothelial function, collectively contribute to the cardiovascular and renal benefits observed with SGLT2 inhibitor therapy. This review will provide clinicians with essential knowledge, understanding, and a clear recollection of this pharmacological group's mechanism of action.
Collapse
Affiliation(s)
- David Aristizábal-Colorado
- Department of Internal Medicine, Universidad Libre, Cali, Colombia
- Internal Medicine Research Group, Universidad Libre, Cali, Colombia
- Interamerican Society of Cardiology (SIAC), Mexico City, Mexico
| | - Martín Ocampo-Posada
- Department of Internal Medicine, Universidad Libre, Cali, Colombia
- Internal Medicine Research Group, Universidad Libre, Cali, Colombia
- Faculty of Health, Pontificia Universidad Javeriana, Cali, Colombia
- Grupo de Investigación en Ciencias Básicas y Clínicas de la Salud, Universidad Javeriana, Cali, Colombia
| | - Wilfredo Antonio Rivera-Martínez
- Internal Medicine Research Group, Universidad Libre, Cali, Colombia
- Department of Endocrinology, Faculty of Medicine, Universidad de Antioquia, Medellin, Colombia
| | - David Corredor-Rengifo
- Department of Internal Medicine, Universidad Libre, Cali, Colombia
- Internal Medicine Research Group, Universidad Libre, Cali, Colombia
| | - Jorge Rico-Fontalvo
- Department of Nephrology. Faculty of Medicine, Universidad Simón Bolívar, Barranquilla, Colombia
- Latin American Society of Nephrology and Arterial Hypertension (SLANH), Panama City, Panamá
| | - Juan Esteban Gómez-Mesa
- Interamerican Society of Cardiology (SIAC), Mexico City, Mexico.
- Cardiology Department, Fundación Valle del Lili, Cali, Colombia.
- Department of Health Sciences, Universidad Icesi, Cali, Colombia.
| | - John Jairo Duque-Ossman
- Universidad Del Quindío, Armenia, Colombia
- Latin American Federation of Endocrinology (FELAEN), Armenia, Colombia
| | - Alin Abreu-Lomba
- Internal Medicine Research Group, Universidad Libre, Cali, Colombia
- Endocrinology Department, Clínica Imbanaco, Cali, Colombia
| |
Collapse
|
14
|
Soares RR, Viggiani LF, Reis Filho JM, Joviano-Santos JV. Cardioprotection of Canagliflozin, Dapagliflozin, and Empagliflozin: Lessons from preclinical studies. Chem Biol Interact 2024; 403:111229. [PMID: 39244185 DOI: 10.1016/j.cbi.2024.111229] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Revised: 08/12/2024] [Accepted: 09/04/2024] [Indexed: 09/09/2024]
Abstract
Clinical and preclinical studies have elucidated the favorable effects of Inhibitors of Sodium-Glucose Cotransporter-2 (iSGLT2) in patients and animal models with type 2 diabetes. Notably, these inhibitors have shown significant benefits in reducing hospitalizations and mortality among patients with heart failure. However, despite their incorporation into clinical practice for indications beyond diabetes, the decision-making process regarding their use often lacks a systematic approach. The selection of iSGLT2 remains arbitrary, with only a limited number of studies simultaneously exploring the different classes of them. Currently, no unique guideline establishes their application in both clinical and basic research. This review delves into the prevalent use of iSGLT2 in animal models previously subjected to induced cardiac stress. We have compiled key findings related to cardioprotection across various animal models, encompassing diverse dosages and routes of administration. Beyond their established role in diabetes management, iSGLT2 has demonstrated utility as agents for safeguarding heart health and cardioprotection can be class-dependent among the iSGLT2. These findings may serve as valuable references for other researchers. Preclinical studies play a pivotal role in ensuring the safety of novel compounds or treatments for potential human use. By assessing side effects, toxicity, and optimal dosages, these studies offer a robust foundation for informed decisions, identifying interventions with the highest likelihood of success and minimal risk to patients. The insights gleaned from preclinical studies, which play a crucial role in highlighting areas of knowledge deficiency, can guide the exploration of novel mechanisms and strategies involving iSGLT2.
Collapse
Affiliation(s)
- Rayla Rodrigues Soares
- Faculdade Ciências Médicas de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil; Laboratório de Investigações NeuroCardíacas, Ciências Médicas de Minas Gerais (LINC CMMG), Belo Horizonte, Minas Gerais, Brazil
| | - Larissa Freitas Viggiani
- Faculdade Ciências Médicas de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil; Laboratório de Investigações NeuroCardíacas, Ciências Médicas de Minas Gerais (LINC CMMG), Belo Horizonte, Minas Gerais, Brazil
| | - Juliano Moreira Reis Filho
- Post-Graduate Program in Health Sciences, Faculdade Ciências Médicas de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Julliane V Joviano-Santos
- Post-Graduate Program in Health Sciences, Faculdade Ciências Médicas de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil; Laboratório de Investigações NeuroCardíacas, Ciências Médicas de Minas Gerais (LINC CMMG), Belo Horizonte, Minas Gerais, Brazil.
| |
Collapse
|
15
|
Miceli G, Basso MG, Pennacchio AR, Cocciola E, Pintus C, Cuffaro M, Profita M, Rizzo G, Sferruzza M, Tuttolomondo A. The Potential Impact of SGLT2-I in Diabetic Foot Prevention: Promising Pathophysiologic Implications, State of the Art, and Future Perspectives-A Narrative Review. MEDICINA (KAUNAS, LITHUANIA) 2024; 60:1796. [PMID: 39596981 PMCID: PMC11596194 DOI: 10.3390/medicina60111796] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2024] [Revised: 10/24/2024] [Accepted: 10/30/2024] [Indexed: 11/29/2024]
Abstract
The impact of diabetic foot (DF) on the healthcare system represents a major public health problem, leading to a considerable clinical and economic burden. The factors contributing to DF's development and progression are strongly interconnected, including metabolic causes, neuropathy, arteriopathy, and inflammatory changes. Sodium-glucose cotransporter 2 inhibitors (SGLT2-i), novel oral hypoglycemic drugs used as an adjunct to standard treatment, have recently changed the pharmacological management of diabetes. Nevertheless, data about the risk of limb amputation, discordant and limited to canagliflozin, which is currently avoided in the case of peripheral artery disease, have potentially discouraged the design of specific studies targeting DF. There is good evidence for the single immunomodulatory, neuroprotective, and beneficial vascular effects of SGLT2-i. Still, there is no clinical evidence about the early use of SGLT2-i in diabetic foot due to the lack of longitudinal and prospective studies proving the effect of these drugs without confounders. This narrative review aims to discuss the main evidence about the impact of SGLT2-i on the three complications of diabetes implicated in the development of DF, the state of the art, and the potential future implications.
Collapse
Affiliation(s)
- Giuseppe Miceli
- Department of Health Promotion, Mother and Child Care, Internal Medicine and Medical Specialties (ProMISE), Università degli Studi di Palermo, Piazza delle Cliniche 2, 90127 Palermo, Italy; (M.G.B.); (A.R.P.); (E.C.); (C.P.); (M.C.); (M.P.); (G.R.); (M.S.); (A.T.)
- Internal Medicine and Stroke Care Ward, University Hospital, Policlinico “P. Giaccone”, 90127 Palermo, Italy
| | - Maria Grazia Basso
- Department of Health Promotion, Mother and Child Care, Internal Medicine and Medical Specialties (ProMISE), Università degli Studi di Palermo, Piazza delle Cliniche 2, 90127 Palermo, Italy; (M.G.B.); (A.R.P.); (E.C.); (C.P.); (M.C.); (M.P.); (G.R.); (M.S.); (A.T.)
- Internal Medicine and Stroke Care Ward, University Hospital, Policlinico “P. Giaccone”, 90127 Palermo, Italy
| | - Andrea Roberta Pennacchio
- Department of Health Promotion, Mother and Child Care, Internal Medicine and Medical Specialties (ProMISE), Università degli Studi di Palermo, Piazza delle Cliniche 2, 90127 Palermo, Italy; (M.G.B.); (A.R.P.); (E.C.); (C.P.); (M.C.); (M.P.); (G.R.); (M.S.); (A.T.)
- Internal Medicine and Stroke Care Ward, University Hospital, Policlinico “P. Giaccone”, 90127 Palermo, Italy
| | - Elena Cocciola
- Department of Health Promotion, Mother and Child Care, Internal Medicine and Medical Specialties (ProMISE), Università degli Studi di Palermo, Piazza delle Cliniche 2, 90127 Palermo, Italy; (M.G.B.); (A.R.P.); (E.C.); (C.P.); (M.C.); (M.P.); (G.R.); (M.S.); (A.T.)
- Internal Medicine and Stroke Care Ward, University Hospital, Policlinico “P. Giaccone”, 90127 Palermo, Italy
| | - Chiara Pintus
- Department of Health Promotion, Mother and Child Care, Internal Medicine and Medical Specialties (ProMISE), Università degli Studi di Palermo, Piazza delle Cliniche 2, 90127 Palermo, Italy; (M.G.B.); (A.R.P.); (E.C.); (C.P.); (M.C.); (M.P.); (G.R.); (M.S.); (A.T.)
- Internal Medicine and Stroke Care Ward, University Hospital, Policlinico “P. Giaccone”, 90127 Palermo, Italy
| | - Mariagiovanna Cuffaro
- Department of Health Promotion, Mother and Child Care, Internal Medicine and Medical Specialties (ProMISE), Università degli Studi di Palermo, Piazza delle Cliniche 2, 90127 Palermo, Italy; (M.G.B.); (A.R.P.); (E.C.); (C.P.); (M.C.); (M.P.); (G.R.); (M.S.); (A.T.)
- Internal Medicine and Stroke Care Ward, University Hospital, Policlinico “P. Giaccone”, 90127 Palermo, Italy
| | - Martina Profita
- Department of Health Promotion, Mother and Child Care, Internal Medicine and Medical Specialties (ProMISE), Università degli Studi di Palermo, Piazza delle Cliniche 2, 90127 Palermo, Italy; (M.G.B.); (A.R.P.); (E.C.); (C.P.); (M.C.); (M.P.); (G.R.); (M.S.); (A.T.)
- Internal Medicine and Stroke Care Ward, University Hospital, Policlinico “P. Giaccone”, 90127 Palermo, Italy
| | - Giuliana Rizzo
- Department of Health Promotion, Mother and Child Care, Internal Medicine and Medical Specialties (ProMISE), Università degli Studi di Palermo, Piazza delle Cliniche 2, 90127 Palermo, Italy; (M.G.B.); (A.R.P.); (E.C.); (C.P.); (M.C.); (M.P.); (G.R.); (M.S.); (A.T.)
- Internal Medicine and Stroke Care Ward, University Hospital, Policlinico “P. Giaccone”, 90127 Palermo, Italy
| | - Mariachiara Sferruzza
- Department of Health Promotion, Mother and Child Care, Internal Medicine and Medical Specialties (ProMISE), Università degli Studi di Palermo, Piazza delle Cliniche 2, 90127 Palermo, Italy; (M.G.B.); (A.R.P.); (E.C.); (C.P.); (M.C.); (M.P.); (G.R.); (M.S.); (A.T.)
- Internal Medicine and Stroke Care Ward, University Hospital, Policlinico “P. Giaccone”, 90127 Palermo, Italy
| | - Antonino Tuttolomondo
- Department of Health Promotion, Mother and Child Care, Internal Medicine and Medical Specialties (ProMISE), Università degli Studi di Palermo, Piazza delle Cliniche 2, 90127 Palermo, Italy; (M.G.B.); (A.R.P.); (E.C.); (C.P.); (M.C.); (M.P.); (G.R.); (M.S.); (A.T.)
- Internal Medicine and Stroke Care Ward, University Hospital, Policlinico “P. Giaccone”, 90127 Palermo, Italy
| |
Collapse
|
16
|
Forouzanmehr B, Hedayati AH, Gholami E, Hemmati MA, Maleki M, Butler AE, Jamialahmadi T, Kesharwani P, Yaribeygi H, Sahebkar A. Sodium-glucose cotransporter 2 inhibitors and renin-angiotensin-aldosterone system, possible cellular interactions and benefits. Cell Signal 2024; 122:111335. [PMID: 39117253 DOI: 10.1016/j.cellsig.2024.111335] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2024] [Revised: 07/30/2024] [Accepted: 08/04/2024] [Indexed: 08/10/2024]
Abstract
Sodium glucose cotransporter 2 inhibitors (SGLT2is) are a newly developed class of anti-diabetics which exert potent hypoglycemic effects in the diabetic milieu. However, the evidence suggests that they also have extra-glycemic effects. The renin-angiotensin-aldosterone system (RAAS) is a hormonal system widely distributed in the body that is important for water and electrolyte homeostasis as well as renal and cardiovascular function. Therefore, modulating RAAS activity is a main goal in patients, notably diabetic patients, which are at higher risk of complications involving these organ systems. Some studies have suggested that SGLT2is have modulatory effects on RAAS activity in addition to their hypoglycemic effects and, thus, these drugs can be considered as promising therapeutic agents for renal and cardiovascular disorders. However, the exact molecular interactions between SGLT2 inhibition and RAAS activity are not clearly understood. Therefore, in the current study we surveyed the literature for possible molecular mechanisms by which SGLT2is modulate RAAS activity.
Collapse
Affiliation(s)
- Behina Forouzanmehr
- Student Research Committee, Semnan University of Medical Sciences, Semnan, Iran
| | | | - Emad Gholami
- Student Research Committee, Semnan University of Medical Sciences, Semnan, Iran
| | | | - Mina Maleki
- Urology and Nephrology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Alexandra E Butler
- Research Department, Royal College of Surgeons in Ireland Bahrain, Adliya 15503, Bahrain
| | - Tannaz Jamialahmadi
- Pharmaceutical Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran; Medical Toxicology Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Prashant Kesharwani
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi 110062, India.
| | - Habib Yaribeygi
- Research Center of Physiology, Semnan University of Medical Sciences, Semnan, Iran.
| | - Amirhossein Sahebkar
- Center for Global Health Research, Saveetha Medical College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, India; Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran; Applied Biomedical Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
17
|
Ostrowska-Czyżewska A, Zgliczyński W, Bednarek-Papierska L, Mrozikiewicz-Rakowska B. Is It Time for a New Algorithm for the Pharmacotherapy of Steroid-Induced Diabetes? J Clin Med 2024; 13:5801. [PMID: 39407860 PMCID: PMC11605232 DOI: 10.3390/jcm13195801] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Revised: 09/16/2024] [Accepted: 09/18/2024] [Indexed: 12/01/2024] Open
Abstract
Glucocorticoids (GS) are widely used in multiple medical indications due to their anti-inflammatory, immunosuppressive, and antiproliferative effects. Despite their effectiveness in treating respiratory, skin, joint, renal, and neoplastic diseases, they dysregulate glucose metabolism, leading to steroid-induced diabetes (SID) or a significant increase of glycemia in people with previously diagnosed diabetes. The risk of adverse event development depends on the prior therapy, the duration of the treatment, the form of the drug, and individual factors, i.e., BMI, genetics, and age. Unfortunately, SID and steroid-induced hyperglycemia (SIH) are often overlooked, because the fasting blood glucose level, which is the most commonly used diagnostic test, is insufficient for excluding both conditions. The appropriate control of post-steroid hyperglycemia remains a major challenge in everyday clinical practice. Recently, the most frequently used antidiabetic strategies have been insulin therapy with isophane insulin or multiple injections in the basal-bolus regimen. Alternatively, in patients with lower glycemia, sulphonylureas or glinides were used. Taking into account the pathogenesis of post-steroid-induced hyperglycemia, the initiation of therapy with glucagon-like peptide 1 (GLP-1) analogs and dipeptidyl peptidase 4 (DPP-4) inhibitors should be considered. In this article, we present a universal practical diagnostic algorithm of SID/SIH in patients requiring steroids, in both acute and chronic conditions, and we present a new pharmacotherapy algorithm taking into account the use of all currently available antidiabetic drugs.
Collapse
Affiliation(s)
| | | | | | - Beata Mrozikiewicz-Rakowska
- Department of Endocrinology, Centre of Postgraduate Medical Education, Marymoncka St. 99/103, 01-813 Warsaw, Poland
| |
Collapse
|
18
|
Li XC, Zhu XY, Wang YY, Tong SL, Chen ZL, Lu ZY, Zhang JH, Song LL, Wang XH, Zhang C, Sun YH, Zhong CY, Su LH, Wang LX, Huang XY. Canagliflozin alleviates pulmonary hypertension by activating PPARγ and inhibiting its S225 phosphorylation. Acta Pharmacol Sin 2024; 45:1861-1878. [PMID: 38719955 PMCID: PMC11335861 DOI: 10.1038/s41401-024-01286-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Accepted: 04/07/2024] [Indexed: 08/22/2024]
Abstract
Pulmonary hypertension (PH) is a progressive fatal disease with no cure. Canagliflozin (CANA), a novel medication for diabetes, has been found to have remarkable cardiovascular benefits. However, few studies have addressed the effect and pharmacological mechanism of CANA in the treatment of PH. Therefore, our study aimed to investigate the effect and pharmacological mechanism of CANA in treating PH. First, CANA suppressed increased pulmonary artery pressure, right ventricular hypertrophy, and vascular remodeling in both mouse and rat PH models. Network pharmacology, transcriptomics, and biological results suggested that CANA could ameliorate PH by suppressing excessive oxidative stress and pulmonary artery smooth muscle cell proliferation partially through the activation of PPARγ. Further studies demonstrated that CANA inhibited phosphorylation of PPARγ at Ser225 (a novel serine phosphorylation site in PPARγ), thereby promoting the nuclear translocation of PPARγ and increasing its ability to resist oxidative stress and proliferation. Taken together, our study not only highlighted the potential pharmacological effect of CANA on PH but also revealed that CANA-induced inhibition of PPARγ Ser225 phosphorylation increases its capacity to counteract oxidative stress and inhibits proliferation. These findings may stimulate further research and encourage future clinical trials exploring the therapeutic potential of CANA in PH treatment.
Collapse
Affiliation(s)
- Xiu-Chun Li
- Division of Pulmonary Medicine, the First Affiliated Hospital, Wenzhou Medical University, Wenzhou Key Laboratory of Interdiscipline and Translational Medicine, Wenzhou Key Laboratory of Heart and Lung, Wenzhou, 325000, China
| | - Xia-Yan Zhu
- Division of Pulmonary Medicine, the First Affiliated Hospital, Wenzhou Medical University, Wenzhou Key Laboratory of Interdiscipline and Translational Medicine, Wenzhou Key Laboratory of Heart and Lung, Wenzhou, 325000, China
| | - Yang-Yue Wang
- Division of Pulmonary Medicine, the First Affiliated Hospital, Wenzhou Medical University, Wenzhou Key Laboratory of Interdiscipline and Translational Medicine, Wenzhou Key Laboratory of Heart and Lung, Wenzhou, 325000, China
| | | | - Zhi-Li Chen
- Division of Pulmonary Medicine, the First Affiliated Hospital, Wenzhou Medical University, Wenzhou Key Laboratory of Interdiscipline and Translational Medicine, Wenzhou Key Laboratory of Heart and Lung, Wenzhou, 325000, China
| | - Zi-Yi Lu
- Division of Pulmonary Medicine, the First Affiliated Hospital, Wenzhou Medical University, Wenzhou Key Laboratory of Interdiscipline and Translational Medicine, Wenzhou Key Laboratory of Heart and Lung, Wenzhou, 325000, China
| | | | - Lan-Lan Song
- Division of Pulmonary Medicine, the First Affiliated Hospital, Wenzhou Medical University, Wenzhou Key Laboratory of Interdiscipline and Translational Medicine, Wenzhou Key Laboratory of Heart and Lung, Wenzhou, 325000, China
| | - Xing-Hong Wang
- Division of Pulmonary Medicine, the First Affiliated Hospital, Wenzhou Medical University, Wenzhou Key Laboratory of Interdiscipline and Translational Medicine, Wenzhou Key Laboratory of Heart and Lung, Wenzhou, 325000, China
| | - Chi Zhang
- Wenzhou Medical University, Wenzhou, 325000, China
| | - Yi-Han Sun
- Wenzhou Medical University, Wenzhou, 325000, China
| | | | - Li-Huang Su
- Division of Pulmonary Medicine, the First Affiliated Hospital, Wenzhou Medical University, Wenzhou Key Laboratory of Interdiscipline and Translational Medicine, Wenzhou Key Laboratory of Heart and Lung, Wenzhou, 325000, China
| | - Liang-Xing Wang
- Division of Pulmonary Medicine, the First Affiliated Hospital, Wenzhou Medical University, Wenzhou Key Laboratory of Interdiscipline and Translational Medicine, Wenzhou Key Laboratory of Heart and Lung, Wenzhou, 325000, China
| | - Xiao-Ying Huang
- Division of Pulmonary Medicine, the First Affiliated Hospital, Wenzhou Medical University, Wenzhou Key Laboratory of Interdiscipline and Translational Medicine, Wenzhou Key Laboratory of Heart and Lung, Wenzhou, 325000, China.
| |
Collapse
|
19
|
Sazonova MA, Kirichenko TV, Ryzhkova AI, Sazonova MD, Doroschuk NA, Omelchenko AV, Nikiforov NG, Ragino YI, Postnov AY. Variability of Mitochondrial DNA Heteroplasmy: Association with Asymptomatic Carotid Atherosclerosis. Biomedicines 2024; 12:1868. [PMID: 39200332 PMCID: PMC11351276 DOI: 10.3390/biomedicines12081868] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Revised: 08/05/2024] [Accepted: 08/12/2024] [Indexed: 09/02/2024] Open
Abstract
Background and Objectives: Atherosclerosis is one of the main reasons for cardiovascular disease development. This study aimed to analyze the association of mtDNA mutations and atherosclerotic plaques in carotid arteries of patients with atherosclerosis and conditionally healthy study participants from the Novosibirsk region. Methods: PCR fragments of DNA containing the regions of 10 investigated mtDNA mutations were pyrosequenced. The heteroplasmy levels of mtDNA mutations were analyzed using a quantitative method based on pyrosequencing technology developed by M. A. Sazonova and colleagues. Results: In the analysis of samples of patients with atherosclerotic plaques of the carotid arteries and conditionally healthy study participants from the Novosibirsk region, four proatherogenic mutations in the mitochondrial genome (m.5178C>A, m.652delG, m.12315G>A and m.3256C>T) and three antiatherogenic mutations in mtDNA (m.13513G>A, m.652insG, and m.14846G>A) were detected. A west-east gradient was found in the distribution of the mtDNA mutations m.5178C>A, m.3256C>T, m.652insG, and m.13513G>A. Conclusions: Therefore, four proatherogenic mutations in the mitochondrial genome (m.5178C>A, m.652delG, m.12315G>A, and m.3256C>T) and three antiatherogenic mutations in mtDNA (m.13513G>A, m.652insG, and m.14846G>A) were detected in patients with atherosclerotic plaques in their carotid arteries from the Novosibirsk region.
Collapse
Affiliation(s)
- Margarita A. Sazonova
- Laboratory of Angiopathology, Institute of General Pathology and Pathophysiology, 8 Baltiiskaya Street, Moscow 125315, Russia; (A.I.R.); (M.D.S.); (N.A.D.); (A.V.O.)
- Laboratory of Medical Genetics, Institute of Experimental Cardiology, Chazov National Medical Research Center of Cardiology, 15a, 3rd Cherepkovskaya Str., Moscow 121552, Russia;
| | - Tatiana V. Kirichenko
- Laboratory of Cellular and Molecular Pathology of Cardiovascular System, Federal State Budgetary Scientific Institution, Petrovsky National Research Centre of Surgery (FSBSI “Petrovsky NRCS”), Moscow 117418, Russia; (T.V.K.); (N.G.N.)
| | - Anastasia I. Ryzhkova
- Laboratory of Angiopathology, Institute of General Pathology and Pathophysiology, 8 Baltiiskaya Street, Moscow 125315, Russia; (A.I.R.); (M.D.S.); (N.A.D.); (A.V.O.)
| | - Marina D. Sazonova
- Laboratory of Angiopathology, Institute of General Pathology and Pathophysiology, 8 Baltiiskaya Street, Moscow 125315, Russia; (A.I.R.); (M.D.S.); (N.A.D.); (A.V.O.)
| | - Natalya A. Doroschuk
- Laboratory of Angiopathology, Institute of General Pathology and Pathophysiology, 8 Baltiiskaya Street, Moscow 125315, Russia; (A.I.R.); (M.D.S.); (N.A.D.); (A.V.O.)
| | - Andrey V. Omelchenko
- Laboratory of Angiopathology, Institute of General Pathology and Pathophysiology, 8 Baltiiskaya Street, Moscow 125315, Russia; (A.I.R.); (M.D.S.); (N.A.D.); (A.V.O.)
| | - Nikita G. Nikiforov
- Laboratory of Cellular and Molecular Pathology of Cardiovascular System, Federal State Budgetary Scientific Institution, Petrovsky National Research Centre of Surgery (FSBSI “Petrovsky NRCS”), Moscow 117418, Russia; (T.V.K.); (N.G.N.)
| | - Yulia I. Ragino
- Research Institute of Internal and Preventive Medicine—Branch of the Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences, Novosibirsk 630089, Russia;
| | - Anton Yu. Postnov
- Laboratory of Medical Genetics, Institute of Experimental Cardiology, Chazov National Medical Research Center of Cardiology, 15a, 3rd Cherepkovskaya Str., Moscow 121552, Russia;
- Laboratory of Cellular and Molecular Pathology of Cardiovascular System, Federal State Budgetary Scientific Institution, Petrovsky National Research Centre of Surgery (FSBSI “Petrovsky NRCS”), Moscow 117418, Russia; (T.V.K.); (N.G.N.)
| |
Collapse
|
20
|
Song J, Liu Y, Xu Y, Hao P. Efficacy of Sodium-Glucose Cotransporter 2 Inhibitors in Patients with Acute Coronary Syndrome. ACS Pharmacol Transl Sci 2024; 7:1847-1855. [PMID: 38898953 PMCID: PMC11184598 DOI: 10.1021/acsptsci.4c00076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Revised: 03/26/2024] [Accepted: 04/11/2024] [Indexed: 06/21/2024]
Abstract
The evidence for sodium-glucose cotransporter 2 inhibitors (SGLT2i) in the treatment of type 2 diabetes or chronic heart failure was sufficient but lacking in acute coronary syndrome (ACS). Our aim was to investigate the effects of SGLT2i on cardiovascular outcomes in ACS patients. Studies of SGLT2i selection in ACS patients were searched and pooled. Outcomes included all-cause death, adverse cardiovascular events, cardiac remodeling as measured by the left ventricular end-diastolic dimension (LVEDD) and left ventricular end-systolic dimension (LVESD), cardiac function as assessed by the left ventricular ejection fraction (LVEF) and NT-proBNP, and glycemic control. Twenty-four studies with 12,413 patients were identified. Compared to the group without SGLT2i, SGLT2i showed benefits in reducing all-cause death (OR 0.72, 95% CI [0.61, 0.85]), major adverse cardiovascular events (MACE) (OR 0.44, 95% CI [0.30, 0.64]), cardiovascular death (OR 0.66, 95% CI [0.54, 0.81]), heart failure (OR 0.52, 95% CI [0.44, 0.62]), myocardial infarction (OR 0.68, 95% CI [0.56, 0.83]), angina pectoris (OR 0.37, 95% CI [0.17, 0.78]), and stroke (OR 0.48, 95% CI [0.24, 0.96]). Results favored SGLT2i for LVEDD (MD -2.03, 95% CI [-3.29, -0.77]), LVEF (MD 3.22, 95% CI [1.71, 4.72]), and NT-proBNP (MD -171.53, 95% CI [-260.98, -82.08]). Thus, SGLT2i treatment reduces the risk of all-cause death and MACE and improves cardiac remodeling and function in ACS patients.
Collapse
Affiliation(s)
- Jiawei Song
- State
Key Laboratory for Innovation and Transformation of Luobing Theory,
The Key Laboratory of Cardiovascular Remodeling and Function Research,
Chinese Ministry of Education, Chinese National Health Commission
and Chinese Academy of Medical Sciences, Department of Cardiology, Qilu Hospital of Shandong University, Jinan, Shandong 250012, China
- Department
of Cardiology, Wuzhong People’s Hospital
Affiliated to Ningxia Medical University, Wuzhong, Ningxia 751100, China
- School
of Basic Medical Science, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, China
| | - Yanping Liu
- Department
of Radiology, Qilu Hospital of Shandong
University, Jinan, Shandong 250012, China
| | - Yani Xu
- State
Key Laboratory for Innovation and Transformation of Luobing Theory,
The Key Laboratory of Cardiovascular Remodeling and Function Research,
Chinese Ministry of Education, Chinese National Health Commission
and Chinese Academy of Medical Sciences, Department of Cardiology, Qilu Hospital of Shandong University, Jinan, Shandong 250012, China
| | - Panpan Hao
- State
Key Laboratory for Innovation and Transformation of Luobing Theory,
The Key Laboratory of Cardiovascular Remodeling and Function Research,
Chinese Ministry of Education, Chinese National Health Commission
and Chinese Academy of Medical Sciences, Department of Cardiology, Qilu Hospital of Shandong University, Jinan, Shandong 250012, China
- Department
of Cardiology, Wuzhong People’s Hospital
Affiliated to Ningxia Medical University, Wuzhong, Ningxia 751100, China
| |
Collapse
|
21
|
Luo T, Wu H, Zhu W, Zhang L, Huang Y, Yang X. Emerging therapies: Potential roles of SGLT2 inhibitors in the management of pulmonary hypertension. Respir Med 2024; 227:107631. [PMID: 38631526 DOI: 10.1016/j.rmed.2024.107631] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/27/2024] [Revised: 04/01/2024] [Accepted: 04/07/2024] [Indexed: 04/19/2024]
Abstract
Pulmonary hypertension (PH) is a pathophysiological disorder that may involve multiple clinical conditions and may be associated with a variety of cardiovascular and respiratory diseases. Pulmonary hypertension due to left heart disease (PH-LHD) currently lacks targeted therapies, while Pulmonary arterial hypertension (PAH), despite approved treatments, carries considerable residual risk. Metabolic dysfunction has been linked to the pathogenesis and prognosis of PH through various studies, with emerging metabolic agents offering a potential avenue for improving patient outcomes. Sodium-glucose cotransporter 2 inhibitor (SGLT-2i), a novel hypoglycemic agent, could ameliorate metabolic dysfunction and exert cardioprotective effects. Recent small-scale studies suggest SGLT-2i treatment may improve pulmonary artery pressure in patients with PH-LHD, and the PAH animal model shows that SGLT-2i can reduce pulmonary vascular remodeling and prevent progression in PAH, suggesting potential benefits for patients with PH-LHD and perhaps PAH. This review aims to succinctly review PH's pathophysiology, and the connection between metabolic dysfunction and PH, and investigate the prospective mechanisms of action of SGLT-2i in PH-LHD and PAH management.
Collapse
Affiliation(s)
- Taimin Luo
- Department of Pharmacy, Chengdu Seventh People's Hospital (Affiliated Cancer Hospital of Chengdu Medical College), Chengdu, 610000, China
| | - Hui Wu
- Department of Pharmacy, The Affiliated Hospital, Southwest Medical University, Luzhou, 646000, China; School of Pharmacy, Southwest Medical University, Luzhou, 646000, China
| | - Wanlong Zhu
- Department of Pharmacy, The Affiliated Hospital, Southwest Medical University, Luzhou, 646000, China; Department of Pharmacy, Panzhihua Second People's Hospital, Panzhihua, 617000, China
| | - Liaoyun Zhang
- Department of Pharmacy, Sichuan Provincial Maternity and Child Health Care Hospital & Women's and Children's Hospital, Chengdu, 610000, China
| | - Yilan Huang
- Department of Pharmacy, The Affiliated Hospital, Southwest Medical University, Luzhou, 646000, China; School of Pharmacy, Southwest Medical University, Luzhou, 646000, China.
| | - Xuping Yang
- Department of Pharmacy, The Affiliated Hospital, Southwest Medical University, Luzhou, 646000, China; School of Pharmacy, Southwest Medical University, Luzhou, 646000, China.
| |
Collapse
|
22
|
Feng L, Wei R, Zhai Z. High Urine Albumin-to-Creatinine Ratio is Associated with Increased Arterial Stiffness in Diabetes: A Chinese Cross-Sectional Study [Letter]. Diabetes Metab Syndr Obes 2024; 17:2199-2200. [PMID: 38835730 PMCID: PMC11149703 DOI: 10.2147/dmso.s480044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Accepted: 05/29/2024] [Indexed: 06/06/2024] Open
Affiliation(s)
- Ling Feng
- Department of Endocrinology and Metabolism, Guangxi Academy of Medical Sciences and the People's Hospital of Guangxi Zhuang Autonomous Region, Nanning, Guangxi, 530021, People's Republic of China
| | - Rongyan Wei
- Department of Endocrinology and Metabolism, Guangxi Academy of Medical Sciences and the People's Hospital of Guangxi Zhuang Autonomous Region, Nanning, Guangxi, 530021, People's Republic of China
| | - Zhenwei Zhai
- Department of Endocrinology and Metabolism, Guangxi Academy of Medical Sciences and the People's Hospital of Guangxi Zhuang Autonomous Region, Nanning, Guangxi, 530021, People's Republic of China
| |
Collapse
|
23
|
Chen R, Zhang H, Tang B, Luo Y, Yang Y, Zhong X, Chen S, Xu X, Huang S, Liu C. Macrophages in cardiovascular diseases: molecular mechanisms and therapeutic targets. Signal Transduct Target Ther 2024; 9:130. [PMID: 38816371 PMCID: PMC11139930 DOI: 10.1038/s41392-024-01840-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2023] [Revised: 04/02/2024] [Accepted: 04/21/2024] [Indexed: 06/01/2024] Open
Abstract
The immune response holds a pivotal role in cardiovascular disease development. As multifunctional cells of the innate immune system, macrophages play an essential role in initial inflammatory response that occurs following cardiovascular injury, thereby inducing subsequent damage while also facilitating recovery. Meanwhile, the diverse phenotypes and phenotypic alterations of macrophages strongly associate with distinct types and severity of cardiovascular diseases, including coronary heart disease, valvular disease, myocarditis, cardiomyopathy, heart failure, atherosclerosis and aneurysm, which underscores the importance of investigating macrophage regulatory mechanisms within the context of specific diseases. Besides, recent strides in single-cell sequencing technologies have revealed macrophage heterogeneity, cell-cell interactions, and downstream mechanisms of therapeutic targets at a higher resolution, which brings new perspectives into macrophage-mediated mechanisms and potential therapeutic targets in cardiovascular diseases. Remarkably, myocardial fibrosis, a prevalent characteristic in most cardiac diseases, remains a formidable clinical challenge, necessitating a profound investigation into the impact of macrophages on myocardial fibrosis within the context of cardiac diseases. In this review, we systematically summarize the diverse phenotypic and functional plasticity of macrophages in regulatory mechanisms of cardiovascular diseases and unprecedented insights introduced by single-cell sequencing technologies, with a focus on different causes and characteristics of diseases, especially the relationship between inflammation and fibrosis in cardiac diseases (myocardial infarction, pressure overload, myocarditis, dilated cardiomyopathy, diabetic cardiomyopathy and cardiac aging) and the relationship between inflammation and vascular injury in vascular diseases (atherosclerosis and aneurysm). Finally, we also highlight the preclinical/clinical macrophage targeting strategies and translational implications.
Collapse
Affiliation(s)
- Runkai Chen
- Department of Cardiology, Laboratory of Heart Center, Heart Center, Translational Medicine Research Center, Zhujiang Hospital, Southern Medical University, 253 Industrial Avenue, Guangzhou, 510280, China
| | - Hongrui Zhang
- Department of Cardiology, Laboratory of Heart Center, Heart Center, Translational Medicine Research Center, Zhujiang Hospital, Southern Medical University, 253 Industrial Avenue, Guangzhou, 510280, China
| | - Botao Tang
- Department of Cardiology, Laboratory of Heart Center, Heart Center, Translational Medicine Research Center, Zhujiang Hospital, Southern Medical University, 253 Industrial Avenue, Guangzhou, 510280, China
| | - Yukun Luo
- Department of Cardiology, Laboratory of Heart Center, Heart Center, Translational Medicine Research Center, Zhujiang Hospital, Southern Medical University, 253 Industrial Avenue, Guangzhou, 510280, China
| | - Yufei Yang
- Department of Cardiology, Laboratory of Heart Center, Heart Center, Translational Medicine Research Center, Zhujiang Hospital, Southern Medical University, 253 Industrial Avenue, Guangzhou, 510280, China
| | - Xin Zhong
- Department of Cardiology, Laboratory of Heart Center, Heart Center, Translational Medicine Research Center, Zhujiang Hospital, Southern Medical University, 253 Industrial Avenue, Guangzhou, 510280, China
| | - Sifei Chen
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100037, China
| | - Xinjie Xu
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100037, China.
| | - Shengkang Huang
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100037, China.
| | - Canzhao Liu
- Department of Cardiology, Laboratory of Heart Center, Heart Center, Translational Medicine Research Center, Zhujiang Hospital, Southern Medical University, 253 Industrial Avenue, Guangzhou, 510280, China.
| |
Collapse
|
24
|
Anlar GG, Anwardeen N, Al Ashmar S, Pedersen S, Elrayess MA, Zeidan A. Metabolomics Profiling of Stages of Coronary Artery Disease Progression. Metabolites 2024; 14:292. [PMID: 38921428 PMCID: PMC11205943 DOI: 10.3390/metabo14060292] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 01/02/2024] [Accepted: 01/06/2024] [Indexed: 06/27/2024] Open
Abstract
Coronary artery disease (CAD) and atherosclerosis pose significant global health challenges, with intricate molecular changes influencing disease progression. Hypercholesterolemia (HC), hypertension (HT), and diabetes are key contributors to CAD development. Metabolomics, with its comprehensive analysis of metabolites, offers a unique perspective on cardiovascular diseases. This study leveraged metabolomics profiling to investigate the progression of CAD, focusing on the interplay of hypercholesterolemia, hypertension, and diabetes. We performed a metabolomic analysis on 221 participants from four different groups: (I) healthy individuals, (II) individuals with hypercholesterolemia (HC), (III) individuals with both HC and hypertension (HT) or diabetes, and (IV) patients with self-reported coronary artery disease (CAD). Utilizing data from the Qatar Biobank, we combined clinical information, metabolomic profiling, and statistical analyses to identify key metabolites associated with CAD risk. Our data identified distinct metabolite profiles across the study groups, indicating changes in carbohydrate and lipid metabolism linked to CAD risk. Specifically, levels of mannitol/sorbitol, mannose, glucose, and ribitol increased, while pregnenediol sulfate, oleoylcarnitine, and quinolinate decreased with higher CAD risk. These findings suggest a significant role of sugar, steroid, and fatty acid metabolism in CAD progression and point to the need for further research on the correlation between quinolinate levels and CAD risk, potentially guiding targeted treatments for atherosclerosis. This study provides novel insights into the metabolomic changes associated with CAD progression, emphasizing the potential of metabolites as predictive biomarkers.
Collapse
Affiliation(s)
- Gulsen Guliz Anlar
- Department of Basic Medical Sciences, College of Medicine, QU Health, Qatar University, Doha P.O. Box 2713, Qatar; (G.G.A.); (S.A.A.); (S.P.)
| | - Najeha Anwardeen
- Biomedical Research Center (BRC), QU Health, Qatar University, Doha P.O. Box 2713, Qatar; (N.A.); (M.A.E.)
| | - Sarah Al Ashmar
- Department of Basic Medical Sciences, College of Medicine, QU Health, Qatar University, Doha P.O. Box 2713, Qatar; (G.G.A.); (S.A.A.); (S.P.)
| | - Shona Pedersen
- Department of Basic Medical Sciences, College of Medicine, QU Health, Qatar University, Doha P.O. Box 2713, Qatar; (G.G.A.); (S.A.A.); (S.P.)
| | - Mohamed A. Elrayess
- Biomedical Research Center (BRC), QU Health, Qatar University, Doha P.O. Box 2713, Qatar; (N.A.); (M.A.E.)
| | - Asad Zeidan
- Department of Basic Medical Sciences, College of Medicine, QU Health, Qatar University, Doha P.O. Box 2713, Qatar; (G.G.A.); (S.A.A.); (S.P.)
| |
Collapse
|
25
|
Fularski P, Czarnik W, Dąbek B, Lisińska W, Radzioch E, Witkowska A, Młynarska E, Rysz J, Franczyk B. Broader Perspective on Atherosclerosis-Selected Risk Factors, Biomarkers, and Therapeutic Approach. Int J Mol Sci 2024; 25:5212. [PMID: 38791250 PMCID: PMC11121693 DOI: 10.3390/ijms25105212] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2024] [Revised: 05/01/2024] [Accepted: 05/07/2024] [Indexed: 05/26/2024] Open
Abstract
Atherosclerotic cardiovascular disease (ASCVD) stands as the leading cause of mortality worldwide. At its core lies a progressive process of atherosclerosis, influenced by multiple factors. Among them, lifestyle-related factors are highlighted, with inadequate diet being one of the foremost, alongside factors such as cigarette smoking, low physical activity, and sleep deprivation. Another substantial group of risk factors comprises comorbidities. Amongst others, conditions such as hypertension, diabetes mellitus (DM), chronic kidney disease (CKD), or familial hypercholesterolemia (FH) are included here. Extremely significant in the context of halting progression is counteracting the mentioned risk factors, including through treatment of the underlying disease. What is more, in recent years, there has been increasing attention paid to perceiving atherosclerosis as an inflammation-related disease. Consequently, efforts are directed towards exploring new anti-inflammatory medications to limit ASCVD progression. Simultaneously, research is underway to identify biomarkers capable of providing insights into the ongoing process of atherosclerotic plaque formation. The aim of this study is to provide a broader perspective on ASCVD, particularly focusing on its characteristics, traditional and novel treatment methods, and biomarkers that can facilitate its early detection.
Collapse
Affiliation(s)
- Piotr Fularski
- Department of Nephrocardiology, Medical University of Lodz, ul. Zeromskiego 113, 90-549 Lodz, Poland
| | - Witold Czarnik
- Department of Nephrocardiology, Medical University of Lodz, ul. Zeromskiego 113, 90-549 Lodz, Poland
| | - Bartłomiej Dąbek
- Department of Nephrocardiology, Medical University of Lodz, ul. Zeromskiego 113, 90-549 Lodz, Poland
| | - Wiktoria Lisińska
- Department of Nephrocardiology, Medical University of Lodz, ul. Zeromskiego 113, 90-549 Lodz, Poland
| | - Ewa Radzioch
- Department of Nephrocardiology, Medical University of Lodz, ul. Zeromskiego 113, 90-549 Lodz, Poland
| | - Alicja Witkowska
- Department of Nephrocardiology, Medical University of Lodz, ul. Zeromskiego 113, 90-549 Lodz, Poland
| | - Ewelina Młynarska
- Department of Nephrocardiology, Medical University of Lodz, ul. Zeromskiego 113, 90-549 Lodz, Poland
| | - Jacek Rysz
- Department of Nephrology, Hypertension and Family Medicine, Medical University of Lodz, ul. Zeromskiego 113, 90-549 Lodz, Poland
| | - Beata Franczyk
- Department of Nephrocardiology, Medical University of Lodz, ul. Zeromskiego 113, 90-549 Lodz, Poland
| |
Collapse
|
26
|
Liu Y, Tang X, Yuan H, Gao R. Naringin Inhibits Macrophage Foam Cell Formation by Regulating Lipid Homeostasis and Metabolic Phenotype. Nutrients 2024; 16:1321. [PMID: 38732567 PMCID: PMC11085135 DOI: 10.3390/nu16091321] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Revised: 04/18/2024] [Accepted: 04/23/2024] [Indexed: 05/13/2024] Open
Abstract
Imbalances in lipid uptake and efflux and inflammation are major contributors to foam cell formation, which is considered a therapeutic target to protect against atherosclerosis. Naringin, a citrus flavonoid abundant in citrus fruits, has been reported to exert an antiatherogenic function, but its pharmacological mechanism is unclear. Naringin treatment effectively inhibits foam cell formation in THP-1 and RAW264.7 macrophages. In this study, mechanically, naringin maintained lipid homeostasis within macrophages through downregulation of the key genes for lipid uptake (MSR1 and CD36) and the upregulation of ABCA1, ABCG1 and SR-B1, which are responsible for cholesterol efflux. Meanwhile, naringin significantly decreased the cholesterol synthesis-related genes and increased the genes involved in cholesterol metabolism. Subsequently, the results showed that ox-LDL-induced macrophage inflammatory responses were inhibited by naringin by reducing the proinflammatory cytokines IL-1β, IL-6 and TNF-α, and increasing the anti- inflammatory cytokine IL-10, which was further verified by the downregulation of pro-inflammatory and chemokine-related genes. Additionally, we found that naringin reprogrammed the metabolic phenotypes of macrophages by suppressing glycolysis and promoting lipid oxidation metabolism to restore macrophage phenotypes and functions. These results suggest that naringin is a potential drug for the treatment of AS as it inhibits macrophage foam cell formation by regulating metabolic phenotypes and inflammation.
Collapse
Affiliation(s)
- Yan Liu
- Department of Pharmacy, Air Force Medical Center, PLA, Beijing 100142, China; (Y.L.); (X.T.); (H.Y.)
- School of Pharmacy, Anhui Medical University, Hefei 230032, China
| | - Xiaohan Tang
- Department of Pharmacy, Air Force Medical Center, PLA, Beijing 100142, China; (Y.L.); (X.T.); (H.Y.)
| | - Hailong Yuan
- Department of Pharmacy, Air Force Medical Center, PLA, Beijing 100142, China; (Y.L.); (X.T.); (H.Y.)
| | - Rong Gao
- Department of Pharmacy, Air Force Medical Center, PLA, Beijing 100142, China; (Y.L.); (X.T.); (H.Y.)
| |
Collapse
|
27
|
Akbari A, Hadizadeh S, Heidary L. Effects of Glucagon-Like Peptide-1 Receptor Agonists and Sodium-Glucose Cotransporter 2 Inhibitors on Intima-Media Thickness: Systematic Review and Meta-Analysis. J Diabetes Res 2024; 2024:3212795. [PMID: 38529046 PMCID: PMC10963118 DOI: 10.1155/2024/3212795] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/16/2023] [Revised: 02/08/2024] [Accepted: 02/23/2024] [Indexed: 03/27/2024] Open
Abstract
Background Beyond glycemic control, glucagon-like peptide-1 receptor agonists (GLP-1 RAs) and sodium-glucose cotransporter 2 inhibitors (SGLT2is) have been proposed to reduce the risk of cardiovascular events. The aim of the present systematic review and meta-analysis is to demonstrate the effects of GLP-1 RA and SGLT2is on intima-media thickness (IMT). Methods PubMed, EMBASE, Web of Science, SCOPUS, and Google Scholar databases were searched from inception to September 9, 2023. All interventional and observational studies that provided data on the effects of GLP-1 RAs or SGLT2is on IMT were included. Critical appraisal was performed using the Joanna Briggs Institute checklists. IMT changes (preintervention and postintervention) were pooled and meta-analyzed using a random-effects model. Subgroup analyses were based on type of medication (GLP-1 RA: liraglutide and exenatide; SGLT2i: empagliflozin, ipragliflozin, tofogliflozin, and dapagliflozin), randomized clinical trials (RCTs), and diabetic patients. Results The literature search yielded 708 related articles after duplicates were removed. Eighteen studies examined the effects of GLP-1 RA, and eleven examined the effects of SGLT2i. GLP-1 RA and SGLT2i significantly decreased IMT (MD = -0.123, 95% CI (-0.170, -0.076), P < 0.0001, I2 = 98% and MD = -0.048, 95% CI (-0.092, -0.004), P = 0.031, I2 = 95%, respectively). Metaregression showed that IMT change correlated with baseline IMT, whereas it did not correlate with gender, duration of diabetes, and duration of treatment. Conclusions Treatment with GLP-1 RA and SGLT2i can lower IMT in diabetic patients, and GLP-1 RA may be more effective than SGLT2i.
Collapse
Affiliation(s)
- Abolfazl Akbari
- Student Research Committee, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
- Research Center for Advanced Technologies in Cardiovascular Medicine, Cardiovascular Research Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Shiva Hadizadeh
- Research Center for Advanced Technologies in Cardiovascular Medicine, Cardiovascular Research Institute, Tehran University of Medical Sciences, Tehran, Iran
- Women Reproductive Health Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Leida Heidary
- Laboratory of Medical Genetics, ART and Stem Cell Research Centre (ACECR), Tabriz, Iran
- Nahal Infertility Center, Tabriz, Iran
| |
Collapse
|
28
|
Gunawan PY, Gunawan PA, Hariyanto TI. Risk of Dementia in Patients with Diabetes Using Sodium-Glucose Transporter 2 Inhibitors (SGLT2i): A Systematic Review, Meta-Analysis, and Meta-Regression. Diabetes Ther 2024; 15:663-675. [PMID: 38340279 PMCID: PMC10942948 DOI: 10.1007/s13300-024-01538-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Accepted: 01/22/2024] [Indexed: 02/12/2024] Open
Abstract
INTRODUCTION Dementia is quite prevalent and among the leading causes of death worldwide. According to earlier research, diabetes may increase the possibility of developing dementia. However, the association between antidiabetic agents and dementia is not yet clear. This investigation examines the association between the use of sodium-glucose transporter 2 inhibitors (SGLT2i) and the risk of dementia in patients with diabetes. METHODS Up to April 18, 2023, four databases-Europe PMC, Medline, Scopus, and Cochrane Library-were searched for relevant literature. We included all studies that examine dementia risk in adults with diabetes who use SGLT2i. Random-effect models were used to compute the outcomes in this investigation, producing pooled odds ratios (OR) with 95% confidence intervals (CI). RESULTS Pooled data from seven observational studies revealed that SGLT2i use was linked to a lower risk of dementia in people with diabetes (OR 0.45, 95% CI 0.34-0.61; p < 0.00001, I2 = 97%). The reduction in the risk of dementia due to SGLT2i's neuroprotective effect was only significantly affected by dyslipidemia (p = 0.0004), but not by sample size (p = 0.2954), study duration (p = 0.0908), age (p = 0.0805), sex (p = 0.5058), hypertension (p = 0.0609), cardiovascular disease (p = 0.1619), or stroke (p = 0.2734). CONCLUSIONS According to this research, taking SGLT2i reduces the incidence of dementia in people with diabetes by having a beneficial neuroprotective impact. Randomized controlled trials (RCTs) are still required in order to verify the findings of our research.
Collapse
Affiliation(s)
- Pricilla Yani Gunawan
- Department of Neurology, Faculty of Medicine, Pelita Harapan University, Boulevard Jendral Sudirman Street, Karawaci, Tangerang, 15811, Indonesia.
| | - Paskalis Andrew Gunawan
- Division of Geriatric Medicine, Department of Internal Medicine, Faculty of Medicine, Tarumanegara University, Jakarta, 11440, Indonesia
| | | |
Collapse
|
29
|
Sun Y, Zhang Y, Zhang J, Chen YE, Jin JP, Zhang K, Mou H, Liang X, Xu J. XBP1-mediated transcriptional regulation of SLC5A1 in human epithelial cells in disease conditions. Cell Biosci 2024; 14:27. [PMID: 38388523 PMCID: PMC10885492 DOI: 10.1186/s13578-024-01203-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Accepted: 02/01/2024] [Indexed: 02/24/2024] Open
Abstract
BACKGROUND Sodium-Glucose cotransporter 1 and 2 (SGLT1/2) belong to the family of glucose transporters, encoded by SLC5A1 and SLC5A2, respectively. SGLT2 is almost exclusively expressed in the renal proximal convoluted tubule cells. SGLT1 is expressed in the kidneys but also in other organs throughout the body. Many SGLT inhibitor drugs have been developed based on the mechanism of blocking glucose (re)absorption mediated by SGLT1/2, and several have gained major regulatory agencies' approval for treating diabetes. Intriguingly these drugs are also effective in treating diseases beyond diabetes, for example heart failure and chronic kidney disease. We recently discovered that SGLT1 is upregulated in the airway epithelial cells derived from patients of cystic fibrosis (CF), a devastating genetic disease affecting greater than 70,000 worldwide. RESULTS In the present work, we show that the SGLT1 upregulation is coupled with elevated endoplasmic reticulum (ER) stress response, indicated by activation of the primary ER stress senor inositol-requiring protein 1α (IRE1α) and the ER stress-induced transcription factor X-box binding protein 1 (XBP1), in CF epithelial cells, and in epithelial cells of other stress conditions. Through biochemistry experiments, we demonstrated that the spliced form of XBP1 (XBP1s) acts as a transcription factor for SLC5A1 by directly binding to its promoter region. Targeting this ER stress → SLC5A1 axis by either the ER stress inhibitor Rapamycin or the SGLT1 inhibitor Sotagliflozin was effective in attenuating the ER stress response and reducing the SGLT1 level in these cellular model systems. CONCLUSIONS The present work establishes a causal relationship between ER stress and SGLT1 upregulation and provides a mechanistic explanation why SGLT inhibitor drugs benefit diseases beyond diabetes.
Collapse
Affiliation(s)
- Yifei Sun
- Center for Advanced Models for Translational Sciences and Therapeutics, University of Michigan Medical Center, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Yihan Zhang
- The Mucosal Immunology & Biology Research Center, Massachusetts General Hospital, 55 Fruit Street, Jackson, 1402, Boston, MA, 02114, USA
| | - Jifeng Zhang
- Center for Advanced Models for Translational Sciences and Therapeutics, University of Michigan Medical Center, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Y Eugene Chen
- Center for Advanced Models for Translational Sciences and Therapeutics, University of Michigan Medical Center, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Jian-Ping Jin
- Department of Physiology and Biophysics, University of Illinois at Chicago, Chicago, IL, 60612, USA
| | - Kezhong Zhang
- Center for Molecular Medicine and Genetics, Wayne State University School of Medicine, Detroit, MI, 48201, USA
| | - Hongmei Mou
- The Mucosal Immunology & Biology Research Center, Massachusetts General Hospital, 55 Fruit Street, Jackson, 1402, Boston, MA, 02114, USA.
| | - Xiubin Liang
- Center for Advanced Models for Translational Sciences and Therapeutics, University of Michigan Medical Center, University of Michigan Medical School, Ann Arbor, MI, USA.
| | - Jie Xu
- Center for Advanced Models for Translational Sciences and Therapeutics, University of Michigan Medical Center, University of Michigan Medical School, Ann Arbor, MI, USA.
| |
Collapse
|
30
|
Liang X, Hou X, Bouhamdan M, Sun Y, Song Z, Rajagopalan C, Jiang H, Wei HG, Song J, Yang D, Guo Y, Zhang Y, Mou H, Zhang J, Chen YE, Sun F, Jin JP, Zhang K, Xu J. Sotagliflozin attenuates liver-associated disorders in cystic fibrosis rabbits. JCI Insight 2024; 9:e165826. [PMID: 38358827 PMCID: PMC10972622 DOI: 10.1172/jci.insight.165826] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Accepted: 02/09/2024] [Indexed: 02/17/2024] Open
Abstract
Mutations in the cystic fibrosis (CF) transmembrane conductance regulator (CFTR) gene lead to CF, a life-threating autosomal recessive genetic disease. While recently approved Trikafta dramatically ameliorates CF lung diseases, there is still a lack of effective medicine to treat CF-associated liver disease (CFLD). To address this medical need, we used a recently established CF rabbit model to test whether sotagliflozin, a sodium-glucose cotransporter 1 and 2 (SGLT1/2) inhibitor drug that is approved to treat diabetes, can be repurposed to treat CFLD. Sotagliflozin treatment led to systemic benefits to CF rabbits, evidenced by increased appetite and weight gain as well as prolonged lifespan. For CF liver-related phenotypes, the animals benefited from normalized blood chemistry and bile acid parameters. Furthermore, sotagliflozin alleviated nonalcoholic steatohepatitis-like phenotypes, including liver fibrosis. Intriguingly, sotagliflozin treatment markedly reduced the otherwise elevated endoplasmic reticulum stress responses in the liver and other affected organs of CF rabbits. In summary, our work demonstrates that sotagliflozin attenuates liver disorders in CF rabbits and suggests sotagliflozin as a potential drug to treat CFLD.
Collapse
Affiliation(s)
- Xiubin Liang
- Center for Advanced Models for Translational Sciences and Therapeutics, University of Michigan Medical Center, Ann Arbor, Michigan, USA
| | - Xia Hou
- Department of Physiology, and
| | | | - Yifei Sun
- Center for Advanced Models for Translational Sciences and Therapeutics, University of Michigan Medical Center, Ann Arbor, Michigan, USA
| | - Zhenfeng Song
- Center for Molecular Medicine and Genetics, Wayne State University School of Medicine, Detroit, Michigan, USA
| | | | | | | | - Jun Song
- Center for Advanced Models for Translational Sciences and Therapeutics, University of Michigan Medical Center, Ann Arbor, Michigan, USA
| | - Dongshan Yang
- Center for Advanced Models for Translational Sciences and Therapeutics, University of Michigan Medical Center, Ann Arbor, Michigan, USA
| | - Yanhong Guo
- Center for Advanced Models for Translational Sciences and Therapeutics, University of Michigan Medical Center, Ann Arbor, Michigan, USA
| | - Yihan Zhang
- The Mucosal Immunology and Biology Research Center, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Hongmei Mou
- The Mucosal Immunology and Biology Research Center, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Jifeng Zhang
- Center for Advanced Models for Translational Sciences and Therapeutics, University of Michigan Medical Center, Ann Arbor, Michigan, USA
| | - Y. Eugene Chen
- Center for Advanced Models for Translational Sciences and Therapeutics, University of Michigan Medical Center, Ann Arbor, Michigan, USA
| | - Fei Sun
- Department of Physiology, and
| | | | - Kezhong Zhang
- Center for Molecular Medicine and Genetics, Wayne State University School of Medicine, Detroit, Michigan, USA
| | - Jie Xu
- Center for Advanced Models for Translational Sciences and Therapeutics, University of Michigan Medical Center, Ann Arbor, Michigan, USA
| |
Collapse
|
31
|
Zhao N, Yu X, Zhu X, Song Y, Gao F, Yu B, Qu A. Diabetes Mellitus to Accelerated Atherosclerosis: Shared Cellular and Molecular Mechanisms in Glucose and Lipid Metabolism. J Cardiovasc Transl Res 2024; 17:133-152. [PMID: 38091232 DOI: 10.1007/s12265-023-10470-x] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Accepted: 11/23/2023] [Indexed: 02/28/2024]
Abstract
Diabetes is one of the critical independent risk factors for the progression of cardiovascular disease, and the underlying mechanism regarding this association remains poorly understood. Hence, it is urgent to decipher the fundamental pathophysiology and consequently provide new insights into the identification of innovative therapeutic targets for diabetic atherosclerosis. It is now appreciated that different cell types are heavily involved in the progress of diabetic atherosclerosis, including endothelial cells, macrophages, vascular smooth muscle cells, dependence on altered metabolic pathways, intracellular lipids, and high glucose. Additionally, extensive studies have elucidated that diabetes accelerates the odds of atherosclerosis with the explanation that these two chronic disorders share some common mechanisms, such as endothelial dysfunction and inflammation. In this review, we initially summarize the current research and proposed mechanisms and then highlight the role of these three cell types in diabetes-accelerated atherosclerosis and finally establish the mechanism pinpointing the relationship between diabetes and atherosclerosis.
Collapse
Affiliation(s)
- Nan Zhao
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Capital Medical University, 10 You'anmen Outer West 1st Street, Beijing, 100069, China
| | - Xiaoting Yu
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Capital Medical University, 10 You'anmen Outer West 1st Street, Beijing, 100069, China
| | - Xinxin Zhu
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Capital Medical University, 10 You'anmen Outer West 1st Street, Beijing, 100069, China
| | - Yanting Song
- Department of Pathology, Beijing Anzhen Hospital Affiliated to Capital Medical University, Beijing, 100029, China
| | - Fei Gao
- Department of Cardiology, Beijing Anzhen Hospital Affiliated to Capital Medical University, Beijing, 100029, China
| | - Baoqi Yu
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Capital Medical University, 10 You'anmen Outer West 1st Street, Beijing, 100069, China.
- Key Laboratory of Remodeling-Related Cardiovascular Diseases, Ministry of Education, Beijing, 100069, China.
| | - Aijuan Qu
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Capital Medical University, 10 You'anmen Outer West 1st Street, Beijing, 100069, China.
- Key Laboratory of Remodeling-Related Cardiovascular Diseases, Ministry of Education, Beijing, 100069, China.
| |
Collapse
|
32
|
Luo Y, Bai R, Zhang W, Qin G. Selective sodium-glucose cotransporter-2 inhibitors in the improvement of hemoglobin and hematocrit in patients with type 2 diabetes mellitus: a network meta-analysis. Front Endocrinol (Lausanne) 2024; 15:1333624. [PMID: 38362282 PMCID: PMC10867125 DOI: 10.3389/fendo.2024.1333624] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/05/2023] [Accepted: 01/16/2024] [Indexed: 02/17/2024] Open
Abstract
Objective To compare the effects of different selective sodium-glucose cotransporter-2 inhibitors (SGLT2i) on hemoglobin and hematocrit in patients with type 2 diabetes mellitus (T2DM) with a network meta-analysis (NMA). Methods Randomized controlled trials (RCTs) on SGLT2i for patients with T2DM were searched in PubMed, Embase, Cochrane Library, and Web of Science from inception of these databases to July 1, 2023. The risk of bias (RoB) tool was used to evaluate the quality of the included studies, and R software was adopted for data analysis. Results Twenty-two articles were included, involving a total of 14,001 T2DM patients. SGLT2i included empagliflozin, dapagliflozin, and canagliflozin. The NMA results showed that compared with placebo, canagliflozin 100mg, canagliflozin 300mg, dapagliflozin 10mg, dapagliflozin 2mg, dapagliflozin 50mg, dapagliflozin 5mg, empagliflozin 25mg, and dapagliflozin 20mg increased hematocrit in patients with T2DM, while canagliflozin 100mg, canagliflozin 200mg, canagliflozin 300mg increased hemoglobin in patients with T2DM. In addition, the NMA results indicated that canagliflozin 100mg had the best effect on the improvement of hematocrit, and canagliflozin 200mg had the best effect on the improvement of hemoglobin. Conclusion Based on the existing studies, we concluded that SGLT2i could increase hematocrit and hemoglobin levels in patients with T2DM, and canagliflozin 100mg had the best effect on the improvement of hematocrit, while canagliflozin 200mg had the best effect on the improvement of hemoglobin. Systematic review registration https://www.crd.york.ac.uk/PROSPERO/#loginpage, identifier PROSPERO (CRD42023477103).
Collapse
Affiliation(s)
- Yuanyuan Luo
- Department of Endocrinology and Metabolism, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, Henan, China
| | - Ruojing Bai
- Department of Geriatric Medicine, Beijing Tsinghua Changgung Hospital, School of Clinical Medicine, Tsinghua University, Beijing, China
| | - Wei Zhang
- Department of Endocrinology and Metabolism, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, Henan, China
| | - Guijun Qin
- Department of Endocrinology and Metabolism, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, Henan, China
| |
Collapse
|
33
|
Zhang J, Li H, Sun R, Cao Z, Huang J, Jiang Y, Mo M, Luo L, Guo Q, Chen Q, Zhang Y. The mediation effect of HDL-C: Non-HDL-C on the association between inflammatory score and recurrent coronary events. Heliyon 2024; 10:e23731. [PMID: 38187341 PMCID: PMC10770612 DOI: 10.1016/j.heliyon.2023.e23731] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Revised: 12/12/2023] [Accepted: 12/12/2023] [Indexed: 01/09/2024] Open
Abstract
Background Inflammation and lipids are both involved in the pathogenesis of coronary heart disease (CHD). However, the mediation effect of lipoproteins on the association between inflammation and recurrent coronary events in CHD patients remains unclear. Methods This was a retrospective study including CHD patients hospitalized in the Department of Cardiovascular Medicine in Sun Yat-sen Memorial Hospital between January 2011 and December 2012 with the endpoint of recurrent coronary events. The study calculated inflammatory score based on six serum inflammatory markers, including complement C3, complement C4, hyper-sensitive CRP, fibrinogen, D-dimer, and white blood cell count. Logistic regression analysis, subgroup analysis and mediation analysis were performed to assess the associations between inflammatory score and recurrent coronary events in different subpopulations and the identification of mediators. Inflammatory cytokine expression, cholesterol efflux capacity, and hepatic cholesterol influx were performed in additional CHD patients and healthy controls. Results There were 191 CHD patients included in the analysis with a median inflammatory score of -0.78 (-2.17, 1.35) and 63 cases of recurrent coronary events. Subgroup logistic regression analysis demonstrated that inflammatory score was positively associated with recurrent coronary events only in the diabetic subgroup [OR: 1.241 (1.004, 1.534), P < 0.046]. HDL-cholesterol (HDL-C): non-HDL-C performed 46.74 % of negative mediation effect on this association. CHD patients had lower cholesterol efflux capacity than healthy controls, which was mediated by HDL: non-HDL ratio of 0.4. No difference was found in hepatic cholesterol influx between the two groups. Conclusion Inflammatory score was associated with recurrent coronary events mediated by HDL-C: non-HDL-C ratio in diabetic CHD patients, indicating that lipoproteins might aggravate the inflammatory effect on atherosclerosis under hyperglycemia. Our findings suggested that anti-inflammatory and lipid-lowering therapies might be beneficial for this population.
Collapse
Affiliation(s)
- Jie Zhang
- Department of Cardiovascular Medicine, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, No. 107 Yanjiang West Road, Guangzhou, 510120, China
- Guangdong Provincial Key Laboratory of Arrhythmia and Electrophysiology, Guangzhou, 510120, China
- Guangzhou Key Laboratory of Molecular Mechanism and Translation in Major Cardiovascular Disease, Guangzhou, 510120, China
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Medical Research Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, China
| | - Hongwei Li
- Department of Cardiovascular Medicine, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, No. 107 Yanjiang West Road, Guangzhou, 510120, China
- Guangdong Provincial Key Laboratory of Arrhythmia and Electrophysiology, Guangzhou, 510120, China
- Guangzhou Key Laboratory of Molecular Mechanism and Translation in Major Cardiovascular Disease, Guangzhou, 510120, China
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Medical Research Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, China
| | - Runlu Sun
- Department of Cardiovascular Medicine, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, No. 107 Yanjiang West Road, Guangzhou, 510120, China
- Guangdong Provincial Key Laboratory of Arrhythmia and Electrophysiology, Guangzhou, 510120, China
- Guangzhou Key Laboratory of Molecular Mechanism and Translation in Major Cardiovascular Disease, Guangzhou, 510120, China
| | - Zhengyu Cao
- Department of Cardiovascular Medicine, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, No. 107 Yanjiang West Road, Guangzhou, 510120, China
- Guangdong Provincial Key Laboratory of Arrhythmia and Electrophysiology, Guangzhou, 510120, China
- Guangzhou Key Laboratory of Molecular Mechanism and Translation in Major Cardiovascular Disease, Guangzhou, 510120, China
| | - Jingjing Huang
- Department of Cardiovascular Medicine, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, No. 107 Yanjiang West Road, Guangzhou, 510120, China
- Guangdong Provincial Key Laboratory of Arrhythmia and Electrophysiology, Guangzhou, 510120, China
- Guangzhou Key Laboratory of Molecular Mechanism and Translation in Major Cardiovascular Disease, Guangzhou, 510120, China
| | - Yuan Jiang
- Department of Cardiovascular Medicine, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, No. 107 Yanjiang West Road, Guangzhou, 510120, China
- Guangdong Provincial Key Laboratory of Arrhythmia and Electrophysiology, Guangzhou, 510120, China
- Guangzhou Key Laboratory of Molecular Mechanism and Translation in Major Cardiovascular Disease, Guangzhou, 510120, China
| | - Mingxing Mo
- The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510150, China
| | - Lingyu Luo
- Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, 528478, China
| | - Qi Guo
- Department of Cardiovascular Medicine, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, No. 107 Yanjiang West Road, Guangzhou, 510120, China
- Guangdong Provincial Key Laboratory of Arrhythmia and Electrophysiology, Guangzhou, 510120, China
- Guangzhou Key Laboratory of Molecular Mechanism and Translation in Major Cardiovascular Disease, Guangzhou, 510120, China
| | - Qian Chen
- Department of Cardiovascular Medicine, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, No. 107 Yanjiang West Road, Guangzhou, 510120, China
- Guangdong Provincial Key Laboratory of Arrhythmia and Electrophysiology, Guangzhou, 510120, China
- Guangzhou Key Laboratory of Molecular Mechanism and Translation in Major Cardiovascular Disease, Guangzhou, 510120, China
| | - Yuling Zhang
- Department of Cardiovascular Medicine, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, No. 107 Yanjiang West Road, Guangzhou, 510120, China
- Guangdong Provincial Key Laboratory of Arrhythmia and Electrophysiology, Guangzhou, 510120, China
- Guangzhou Key Laboratory of Molecular Mechanism and Translation in Major Cardiovascular Disease, Guangzhou, 510120, China
| |
Collapse
|
34
|
Yaribeygi H, Maleki M, Sathyapalan T, Rizzo M, Sahebkar A. Cognitive Benefits of Sodium-Glucose Co-Transporters-2 Inhibitors in the Diabetic Milieu. Curr Med Chem 2024; 31:138-151. [PMID: 36733247 DOI: 10.2174/0929867330666230202163513] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Revised: 11/19/2022] [Accepted: 11/30/2022] [Indexed: 02/04/2023]
Abstract
Patients with diabetes are at higher risk of cognitive impairment and memory loss than the normal population. Thus, using hypoglycemic agents to improve brain function is important for diabetic patients. Sodium-glucose cotransporters-2 inhibitors (SGLT2i) are a class of therapeutic agents used in the management of diabetes that has some pharmacologic effects enabling them to fight against the onset and progress of memory deficits. Although the exact mediating pathways are not well understood, emerging evidence suggests that SGLT2 inhibition is associated with improved brain function. This study reviewed the possible mechanisms and provided evidence suggesting SGLT2 inhibitors could ameliorate cognitive deficits.
Collapse
Affiliation(s)
- Habib Yaribeygi
- Research Center of Physiology, Semnan University of Medical Sciences, Semnan, Iran
| | - Mina Maleki
- Urology and Nephrology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Thozhukat Sathyapalan
- Department of Academic Diabetes, Endocrinology and Metabolism, Hull York Medical School, University of Hull, Hull, UK
| | - Manfredi Rizzo
- Department of Health Promotion, Mother and Child Care, Internal Medicine and Medical Specialties, School of Medicine, University of Palermo, 90133, Palermo, Italy
| | - Amirhossein Sahebkar
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
- Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
- School of Medicine, The University of Western Australia, Perth, Australia
- Department of Biotechnology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
35
|
Myasoedova VA, Bozzi M, Valerio V, Moschetta D, Massaiu I, Rusconi V, Di Napoli D, Ciccarelli M, Parisi V, Agostoni P, Genovese S, Poggio P. Anti-Inflammation and Anti-Oxidation: The Key to Unlocking the Cardiovascular Potential of SGLT2 Inhibitors and GLP1 Receptor Agonists. Antioxidants (Basel) 2023; 13:16. [PMID: 38275636 PMCID: PMC10812629 DOI: 10.3390/antiox13010016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Revised: 12/12/2023] [Accepted: 12/14/2023] [Indexed: 01/27/2024] Open
Abstract
Type 2 diabetes mellitus (T2DM) is a prevalent and complex metabolic disorder associated with various complications, including cardiovascular diseases. Sodium-glucose co-transporter 2 inhibitors (SGLT2i) and glucagon-like peptide 1 receptor agonists (GLP1-RA) have emerged as novel therapeutic agents for T2DM, primarily aiming to reduce blood glucose levels. However, recent investigations have unveiled their multifaceted effects, extending beyond their glucose-lowering effect. SGLT2i operate by inhibiting the SGLT2 receptor in the kidneys, facilitating the excretion of glucose through urine, leading to reduced blood glucose levels, while GLP1-RA mimic the action of the GLP1 hormone, stimulating glucose-dependent insulin secretion from pancreatic islets. Both SGLT2i and GLP1-RA have shown remarkable benefits in reducing major cardiovascular events in patients with and without T2DM. This comprehensive review explores the expanding horizons of SGLT2i and GLP1-RA in improving cardiovascular health. It delves into the latest research, highlighting the effects of these drugs on heart physiology and metabolism. By elucidating their diverse mechanisms of action and emerging evidence, this review aims to recapitulate the potential of SGLT2i and GLP1-RA as therapeutic options for cardiovascular health beyond their traditional role in managing T2DM.
Collapse
Affiliation(s)
- Veronika A. Myasoedova
- Centro Cardiologico Monzino IRCCS, 20138 Milan, Italy; (V.A.M.); (M.B.); (V.V.); (D.M.); (I.M.); (V.R.); (P.A.); (S.G.)
| | - Michele Bozzi
- Centro Cardiologico Monzino IRCCS, 20138 Milan, Italy; (V.A.M.); (M.B.); (V.V.); (D.M.); (I.M.); (V.R.); (P.A.); (S.G.)
| | - Vincenza Valerio
- Centro Cardiologico Monzino IRCCS, 20138 Milan, Italy; (V.A.M.); (M.B.); (V.V.); (D.M.); (I.M.); (V.R.); (P.A.); (S.G.)
| | - Donato Moschetta
- Centro Cardiologico Monzino IRCCS, 20138 Milan, Italy; (V.A.M.); (M.B.); (V.V.); (D.M.); (I.M.); (V.R.); (P.A.); (S.G.)
| | - Ilaria Massaiu
- Centro Cardiologico Monzino IRCCS, 20138 Milan, Italy; (V.A.M.); (M.B.); (V.V.); (D.M.); (I.M.); (V.R.); (P.A.); (S.G.)
| | - Valentina Rusconi
- Centro Cardiologico Monzino IRCCS, 20138 Milan, Italy; (V.A.M.); (M.B.); (V.V.); (D.M.); (I.M.); (V.R.); (P.A.); (S.G.)
| | - Daniele Di Napoli
- Department of Medicine, Surgery and Dentistry, University of Salerno, 84084 Fisciano, Italy; (D.D.N.); (M.C.)
| | - Michele Ciccarelli
- Department of Medicine, Surgery and Dentistry, University of Salerno, 84084 Fisciano, Italy; (D.D.N.); (M.C.)
| | - Valentina Parisi
- Department of Translational Medical Sciences, Federico II University, 80138 Naples, Italy;
| | - Piergiuseppe Agostoni
- Centro Cardiologico Monzino IRCCS, 20138 Milan, Italy; (V.A.M.); (M.B.); (V.V.); (D.M.); (I.M.); (V.R.); (P.A.); (S.G.)
| | - Stefano Genovese
- Centro Cardiologico Monzino IRCCS, 20138 Milan, Italy; (V.A.M.); (M.B.); (V.V.); (D.M.); (I.M.); (V.R.); (P.A.); (S.G.)
| | - Paolo Poggio
- Centro Cardiologico Monzino IRCCS, 20138 Milan, Italy; (V.A.M.); (M.B.); (V.V.); (D.M.); (I.M.); (V.R.); (P.A.); (S.G.)
| |
Collapse
|
36
|
Donoiu I, Târtea G, Sfredel V, Raicea V, Țucă AM, Preda AN, Cozma D, Vătășescu R. Dapagliflozin Ameliorates Neural Damage in the Heart and Kidney of Diabetic Mice. Biomedicines 2023; 11:3324. [PMID: 38137545 PMCID: PMC10741899 DOI: 10.3390/biomedicines11123324] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2023] [Revised: 12/12/2023] [Accepted: 12/14/2023] [Indexed: 12/24/2023] Open
Abstract
(1) Background: Measures for the control of diabetes mellitus (DM) and, especially, for the control of its complications represent a main objective of the research carried out on this disease, since both mortality and morbidity relating to DM represent real problems for the health system worldwide. The aim of our study was to evaluate nervous tissue from the heart and kidneys of mice with diabetes induced by streptozotocin (STZ) in the presence or absence of dapagliflozin (DAPA) treatment. (2) Methods: For this purpose, we used 24 C 57Bl/6 male mice, aged between 8 and 10 weeks. The mice were divided into three groups: sham (DM-), control (DM+), and treated (DM+). Diabetes mellitus was induced by injecting a single intraperitoneal dose of STZ. The duration of diabetes in the mice included in our study was 12 weeks after STZ administration; then, the heart and kidneys were sampled, and nervous tissue (using the primary antibody PGP 9.5) from the whole heart, from the atrioventricular node, and from the kidneys was analyzed. (3) Results: The density of nerve tissue registered a significant decrease in animals from the control group (DM+), to a value of 0.0122 ± 0.005 mm2 nerve tissue/mm2 cardiac tissue, compared with the sham group (DM-), wherein the value was 0.022 ± 0.006 mm2 nervous tissue/mm2 cardiac tissue (p = 0.004). Treatment with dapagliflozin reduced the nerve tissue damage in the treated (DM+DAPA) group of animals, resulting in a nerve tissue density of 0.019 ± 0.004 mm2 nerve tissue/mm2 cardiac tissue; a statistically significant difference was noted between the control (DM+) and treated (DM+DAPA) groups (p = 0.046). The same trends of improvement in nerve fiber damage in DM after treatment with DAPA were observed both in the atrioventricular node and in the kidneys. (4) Conclusions. These data suggest that dapagliflozin, when used in streptozotocin-induced diabetes in mice, reduces the alteration of the nervous system in the kidneys and in the heart, thus highlighting better preservation of cardiac and renal homeostasis, independent of any reduction in the effects of hyperglycemia produced in this disease.
Collapse
Affiliation(s)
- Ionuț Donoiu
- Department of Cardiology, University of Medicine and Pharmacy of Craiova, 200349 Craiova, Romania; (I.D.); (V.R.)
| | - Georgică Târtea
- Department of Physiology, University of Medicine and Pharmacy of Craiova, 200349 Craiova, Romania; (V.S.); (A.M.Ț.)
| | - Veronica Sfredel
- Department of Physiology, University of Medicine and Pharmacy of Craiova, 200349 Craiova, Romania; (V.S.); (A.M.Ț.)
| | - Victor Raicea
- Department of Cardiology, University of Medicine and Pharmacy of Craiova, 200349 Craiova, Romania; (I.D.); (V.R.)
| | - Anca Maria Țucă
- Department of Physiology, University of Medicine and Pharmacy of Craiova, 200349 Craiova, Romania; (V.S.); (A.M.Ț.)
| | - Alexandra Nicoleta Preda
- Department of Physiology, University of Medicine and Pharmacy of Craiova, 200349 Craiova, Romania; (V.S.); (A.M.Ț.)
| | - Dragoş Cozma
- Department of Cardiology, “Victor Babes” University of Medicine and Pharmacy, 2 Eftimie Murgu Sq., 300041 Timisoara, Romania;
| | - Radu Vătășescu
- Cardio-Thoracic Pathology Department, “Carol Davila” University of Medicine and Pharmacy, 050474 Bucharest, Romania;
| |
Collapse
|
37
|
Zhang Y, He Y, Liu S, Deng L, Zuo Y, Huang K, Liao B, Li G, Feng J. SGLT2 Inhibitors in Aging-Related Cardiovascular Disease: A Review of Potential Mechanisms. Am J Cardiovasc Drugs 2023; 23:641-662. [PMID: 37620652 DOI: 10.1007/s40256-023-00602-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 07/31/2023] [Indexed: 08/26/2023]
Abstract
Population aging combined with higher susceptibility to cardiovascular diseases in older adults is increasing the incidence of conditions such as atherosclerosis, myocardial infarction, heart failure, myocardial hypertrophy, myocardial fibrosis, arrhythmia, and hypertension. sodium-glucose cotransporter 2 inhibitors (SGLT2i) were originally developed as a novel oral drug for patients with type 2 diabetes mellitus. Unexpectedly, recent studies have shown that, beyond their effect on hyperglycemia, SGLT2i also have a variety of beneficial effects on cardiovascular disease. Experimental models of cardiovascular disease have shown that SGLT2i ameliorate the process of aging-related cardiovascular disease by inhibiting inflammation, reducing oxidative stress, and reversing endothelial dysfunction. In this review, we discuss the role of SGLT2i in aging-related cardiovascular disease and propose the use of SGLT2i to prevent and treat these conditions in older adults.
Collapse
Affiliation(s)
- Yali Zhang
- Department of Cardiology, The Affiliated Hospital of Southwest Medical University, Key Laboratory of Medical Electrophysiology, Ministry of Education and Medical Electrophysiological Key Laboratory of Sichuan Province, Institute of Cardiovascular Research, Southwest Medical University, Luzhou, China
| | - Yufeng He
- Department of Cardiology, The Affiliated Hospital of Southwest Medical University, Key Laboratory of Medical Electrophysiology, Ministry of Education and Medical Electrophysiological Key Laboratory of Sichuan Province, Institute of Cardiovascular Research, Southwest Medical University, Luzhou, China
| | - Siqi Liu
- Department of Cardiology, The Affiliated Hospital of Southwest Medical University, Key Laboratory of Medical Electrophysiology, Ministry of Education and Medical Electrophysiological Key Laboratory of Sichuan Province, Institute of Cardiovascular Research, Southwest Medical University, Luzhou, China
| | - Li Deng
- Department of Rheumatology, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, China
| | - Yumei Zuo
- Department of Cardiology, The Affiliated Hospital of Southwest Medical University, Key Laboratory of Medical Electrophysiology, Ministry of Education and Medical Electrophysiological Key Laboratory of Sichuan Province, Institute of Cardiovascular Research, Southwest Medical University, Luzhou, China
| | - Keming Huang
- Department of Cardiology, The Affiliated Hospital of Southwest Medical University, Key Laboratory of Medical Electrophysiology, Ministry of Education and Medical Electrophysiological Key Laboratory of Sichuan Province, Institute of Cardiovascular Research, Southwest Medical University, Luzhou, China
| | - Bin Liao
- Department of Cardiac Surgery, The Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Guang Li
- Department of Cardiology, The Affiliated Hospital of Southwest Medical University, Key Laboratory of Medical Electrophysiology, Ministry of Education and Medical Electrophysiological Key Laboratory of Sichuan Province, Institute of Cardiovascular Research, Southwest Medical University, Luzhou, China.
| | - Jian Feng
- Department of Cardiology, The Affiliated Hospital of Southwest Medical University, Key Laboratory of Medical Electrophysiology, Ministry of Education and Medical Electrophysiological Key Laboratory of Sichuan Province, Institute of Cardiovascular Research, Southwest Medical University, Luzhou, China.
| |
Collapse
|
38
|
Khaznadar F, Petrovic A, Khaznadar O, Roguljic H, Bojanic K, Kuna Roguljic L, Siber S, Smolic R, Bilic-Curcic I, Wu GY, Smolic M. Biomarkers for Assessing Non-Alcoholic Fatty Liver Disease in Patients with Type 2 Diabetes Mellitus on Sodium-Glucose Cotransporter 2 Inhibitor Therapy. J Clin Med 2023; 12:6561. [PMID: 37892698 PMCID: PMC10607797 DOI: 10.3390/jcm12206561] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Revised: 10/11/2023] [Accepted: 10/13/2023] [Indexed: 10/29/2023] Open
Abstract
In the current modern era of unhealthy lifestyles, non-alcoholic fatty liver disease (NAFLD) is the most prevalent liver disease and has become a serious global health problem. To date, there is no approved pharmacotherapy for the treatment of NAFLD, and necessary lifestyle changes such as weight loss, diet, and exercise are usually not sufficient to manage this disease. Patients with type 2 diabetes mellitus (T2DM) have a significantly higher risk of developing NAFLD and vice versa. Sodium-glucose cotransporter 2 (SGLT2) inhibitors are antidiabetic agents that have recently been approved for two other indications: chronic kidney disease and heart failure in diabetics and non-diabetics. They are also emerging as promising new agents for NAFLD treatment, as they have shown beneficial effects on hepatic inflammation, steatosis, and fibrosis. Studies in animals have reported favorable effects of SGLT2 inhibitors, and studies in patients also found positive effects on body mass index (BMI), insulin resistance, glucose levels, liver enzymes, apoptosis, and transcription factors. There are some theories regarding how SGLT2 inhibitors affect the liver, but the exact mechanism is not yet fully understood. Therefore, biomarkers to evaluate underlying mechanisms of action of SGLT2 inhibitors on the liver have now been scrutinized to assess their potential as a future in-label therapy for NAFLD. In addition, finding suitable non-invasive biomarkers could be helpful in clinical practice for the early detection of NAFLD in patients. This is crucial for a positive disease outcome. The aim of this review is to provide an overview of the most recent findings on the effects of SGLT2 inhibitors on NAFLD biomarkers and the potential of SGLT2 inhibitors to successfully treat NAFLD.
Collapse
Affiliation(s)
- Farah Khaznadar
- Faculty of Dental Medicine and Health Osijek, Josip Juraj Strossmayer University of Osijek, 31000 Osijek, Croatia; (F.K.); (A.P.); (H.R.); (K.B.); (L.K.R.); (S.S.); (R.S.)
- Faculty of Medicine Osijek, Josip Juraj Strossmayer University of Osijek, 31000 Osijek, Croatia;
| | - Ana Petrovic
- Faculty of Dental Medicine and Health Osijek, Josip Juraj Strossmayer University of Osijek, 31000 Osijek, Croatia; (F.K.); (A.P.); (H.R.); (K.B.); (L.K.R.); (S.S.); (R.S.)
| | - Omar Khaznadar
- Department of Radiology, “Dr. Juraj Njavro” National Memorial Hospital Vukovar, 32000 Vukovar, Croatia;
| | - Hrvoje Roguljic
- Faculty of Dental Medicine and Health Osijek, Josip Juraj Strossmayer University of Osijek, 31000 Osijek, Croatia; (F.K.); (A.P.); (H.R.); (K.B.); (L.K.R.); (S.S.); (R.S.)
- Faculty of Medicine Osijek, Josip Juraj Strossmayer University of Osijek, 31000 Osijek, Croatia;
- Clinical Hospital Center, 31000 Osijek, Croatia
| | - Kristina Bojanic
- Faculty of Dental Medicine and Health Osijek, Josip Juraj Strossmayer University of Osijek, 31000 Osijek, Croatia; (F.K.); (A.P.); (H.R.); (K.B.); (L.K.R.); (S.S.); (R.S.)
- Faculty of Medicine Osijek, Josip Juraj Strossmayer University of Osijek, 31000 Osijek, Croatia;
- Health Center Osijek-Baranja County, 31000 Osijek, Croatia
| | - Lucija Kuna Roguljic
- Faculty of Dental Medicine and Health Osijek, Josip Juraj Strossmayer University of Osijek, 31000 Osijek, Croatia; (F.K.); (A.P.); (H.R.); (K.B.); (L.K.R.); (S.S.); (R.S.)
| | - Stjepan Siber
- Faculty of Dental Medicine and Health Osijek, Josip Juraj Strossmayer University of Osijek, 31000 Osijek, Croatia; (F.K.); (A.P.); (H.R.); (K.B.); (L.K.R.); (S.S.); (R.S.)
| | - Robert Smolic
- Faculty of Dental Medicine and Health Osijek, Josip Juraj Strossmayer University of Osijek, 31000 Osijek, Croatia; (F.K.); (A.P.); (H.R.); (K.B.); (L.K.R.); (S.S.); (R.S.)
| | - Ines Bilic-Curcic
- Faculty of Medicine Osijek, Josip Juraj Strossmayer University of Osijek, 31000 Osijek, Croatia;
- Clinical Hospital Center, 31000 Osijek, Croatia
| | - George Y. Wu
- Department of Medicine, Division of Gastrenterology/Hepatology, University of Connecticut Health Center, Farmington, CT 06030, USA;
| | - Martina Smolic
- Faculty of Dental Medicine and Health Osijek, Josip Juraj Strossmayer University of Osijek, 31000 Osijek, Croatia; (F.K.); (A.P.); (H.R.); (K.B.); (L.K.R.); (S.S.); (R.S.)
| |
Collapse
|
39
|
Pathak M, Parveen R, Khan P, Saha N, Agarwal N. Impact of tofogliflozin on hepatic outcomes: a systematic review. Eur J Clin Pharmacol 2023; 79:1281-1290. [PMID: 37462748 DOI: 10.1007/s00228-023-03537-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Accepted: 07/05/2023] [Indexed: 09/16/2023]
Abstract
PURPOSE Studies have demonstrated a high prevalence of non-alcoholic fatty liver disease (NAFLD) in type 2 diabetes mellitus (T2DM) patients. The aim was to review the effect of tofogliflozin on hepatic outcomes in T2DM patients. METHODS A literature search in PubMed, Science Direct and Cochrane Central Register of Controlled Trials was conducted for randomised clinical trials of tofogliflozin by applying predetermined inclusion and exclusion criteria. RESULTS A total number of four randomised clinical trials, including 226 subjects, were included in the review. There was a significant decrease in aspartate aminotransferase (AST) and alanine transaminase (ALT) levels in the tofogliflozin group as compared to the control or active comparator groups. Additionally, gamma-glutamyl transferase (GGT), alkaline phosphatase (ALP) and magnetic resonance imaging proton density fat fraction (MRI-PDFF) levels were also significantly decreased in the tofogliflozin group. However, no significant difference was observed in levels of adiponectin. CONCLUSION Overall, an improvement in levels of hepatic parameters was observed in T2DM patients with concurrent liver disorders. However, a large number of clinical trials are needed to prove the efficacy of tofogliflozin on hepatic outcomes in patients with T2DM.
Collapse
Affiliation(s)
- Mani Pathak
- Centre for Translational and Clinical Research, School of Chemical and Life Sciences, Jamia Hamdard, New Delhi, 110062, India
| | - Rizwana Parveen
- Centre for Translational and Clinical Research, School of Chemical and Life Sciences, Jamia Hamdard, New Delhi, 110062, India
| | - Parvej Khan
- Centre for Translational and Clinical Research, School of Chemical and Life Sciences, Jamia Hamdard, New Delhi, 110062, India
| | - Nilanjan Saha
- Centre for Translational and Clinical Research, School of Chemical and Life Sciences, Jamia Hamdard, New Delhi, 110062, India
| | - Nidhi Agarwal
- Centre for Translational and Clinical Research, School of Chemical and Life Sciences, Jamia Hamdard, New Delhi, 110062, India.
| |
Collapse
|
40
|
Gindri dos Santos B, Goedeke L. Macrophage immunometabolism in diabetes-associated atherosclerosis. IMMUNOMETABOLISM (COBHAM, SURREY) 2023; 5:e00032. [PMID: 37849988 PMCID: PMC10578522 DOI: 10.1097/in9.0000000000000032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Accepted: 09/15/2023] [Indexed: 10/19/2023]
Abstract
Macrophages play fundamental roles in atherosclerotic plaque formation, growth, and regression. These cells are extremely plastic and perform different immune functions depending on the stimuli they receive. Initial in vitro studies have identified specific metabolic pathways that are crucial for the proper function of pro-inflammatory and pro-resolving macrophages. However, the plaque microenvironment, especially in the context of insulin resistance and type 2 diabetes, constantly challenges macrophages with several simultaneous inflammatory and metabolic stimuli, which may explain why atherosclerosis is accelerated in diabetic patients. In this mini review, we discuss how macrophage mitochondrial function and metabolism of carbohydrates, lipids, and amino acids may be affected by this complex plaque microenvironment and how risk factors associated with type 2 diabetes alter the metabolic rewiring of macrophages and disease progression. We also briefly discuss current challenges in assessing macrophage metabolism and identify future tools and possible strategies to alter macrophage metabolism to improve treatment options for diabetes-associated atherosclerosis.
Collapse
Affiliation(s)
- Bernardo Gindri dos Santos
- Department of Medicine (Cardiology), The Cardiovascular Research Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Leigh Goedeke
- Department of Medicine (Cardiology), The Cardiovascular Research Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Medicine (Endocrinology), The Diabetes, Obesity and Metabolism Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| |
Collapse
|
41
|
Poledniczek M, Neumayer C, Kopp CW, Schlager O, Gremmel T, Jozkowicz A, Gschwandtner ME, Koppensteiner R, Wadowski PP. Micro- and Macrovascular Effects of Inflammation in Peripheral Artery Disease-Pathophysiology and Translational Therapeutic Approaches. Biomedicines 2023; 11:2284. [PMID: 37626780 PMCID: PMC10452462 DOI: 10.3390/biomedicines11082284] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2023] [Revised: 08/10/2023] [Accepted: 08/15/2023] [Indexed: 08/27/2023] Open
Abstract
Inflammation has a critical role in the development and progression of atherosclerosis. On the molecular level, inflammatory pathways negatively impact endothelial barrier properties and thus, tissue homeostasis. Conformational changes and destruction of the glycocalyx further promote pro-inflammatory pathways also contributing to pro-coagulability and a prothrombotic state. In addition, changes in the extracellular matrix composition lead to (peri-)vascular remodelling and alterations of the vessel wall, e.g., aneurysm formation. Moreover, progressive fibrosis leads to reduced tissue perfusion due to loss of functional capillaries. The present review aims at discussing the molecular and clinical effects of inflammatory processes on the micro- and macrovasculature with a focus on peripheral artery disease.
Collapse
Affiliation(s)
- Michael Poledniczek
- Division of Angiology, Department of Internal Medicine II, Medical University of Vienna, 1090 Vienna, Austria; (M.P.); (C.W.K.); (O.S.); (M.E.G.); (R.K.)
- Division of Cardiology, Department of Internal Medicine II, Medical University of Vienna, 1090 Vienna, Austria
| | - Christoph Neumayer
- Division of Vascular Surgery, Department of General Surgery, Medical University of Vienna, 1090 Vienna, Austria;
| | - Christoph W. Kopp
- Division of Angiology, Department of Internal Medicine II, Medical University of Vienna, 1090 Vienna, Austria; (M.P.); (C.W.K.); (O.S.); (M.E.G.); (R.K.)
| | - Oliver Schlager
- Division of Angiology, Department of Internal Medicine II, Medical University of Vienna, 1090 Vienna, Austria; (M.P.); (C.W.K.); (O.S.); (M.E.G.); (R.K.)
| | - Thomas Gremmel
- Department of Internal Medicine I, Cardiology and Intensive Care Medicine, Landesklinikum Mistelbach-Gänserndorf, 2130 Mistelbach, Austria;
- Institute of Cardiovascular Pharmacotherapy and Interventional Cardiology, Karl Landsteiner Society, 3100 St. Pölten, Austria
| | - Alicja Jozkowicz
- Department of Medical Biotechnology, Faculty of Biophysics, Biochemistry and Biotechnology, Jagiellonian University, 31-007 Krakow, Poland;
| | - Michael E. Gschwandtner
- Division of Angiology, Department of Internal Medicine II, Medical University of Vienna, 1090 Vienna, Austria; (M.P.); (C.W.K.); (O.S.); (M.E.G.); (R.K.)
| | - Renate Koppensteiner
- Division of Angiology, Department of Internal Medicine II, Medical University of Vienna, 1090 Vienna, Austria; (M.P.); (C.W.K.); (O.S.); (M.E.G.); (R.K.)
| | - Patricia P. Wadowski
- Division of Angiology, Department of Internal Medicine II, Medical University of Vienna, 1090 Vienna, Austria; (M.P.); (C.W.K.); (O.S.); (M.E.G.); (R.K.)
| |
Collapse
|
42
|
Ceriello A, Lucisano G, Prattichizzo F, La Grotta R, Frigé C, De Cosmo S, Di Bartolo P, Di Cianni G, Fioretto P, Giorda CB, Pontremoli R, Russo G, Viazzi F, Nicolucci A. The legacy effect of hyperglycemia and early use of SGLT-2 inhibitors: a cohort study with newly-diagnosed people with type 2 diabetes. THE LANCET REGIONAL HEALTH. EUROPE 2023; 31:100666. [PMID: 37547276 PMCID: PMC10398589 DOI: 10.1016/j.lanepe.2023.100666] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Revised: 05/16/2023] [Accepted: 05/24/2023] [Indexed: 08/08/2023]
Abstract
Background A delay in reaching HbA1c targets in patients with newly-diagnosed type 2 diabetes (T2D) is associated with an increased long-term risk of developing cardiovascular diseases (CVD), a phenomenon referred to as legacy effect. Whether an early introduction of glucose-lowering drugs with proven benefit on CVD can attenuate this phenomenon is unknown. Methods Using data derived from a large Italian clinical registry, i.e. the AMD Annals, we identified 251,339 subjects with newly-diagnosed T2D and without CVD at baseline. Through Cox regressions adjusted for multiple risk factors, we examined the association between having a mean HbA1c between 7.1 and 8% or >8%, compared with ≤7%, for various periods of early exposure (0-1, 0-2, 0-3 years) and the development of later (mean subsequent follow-up 4.6 ± 2.9 years) CVD, evaluated as a composite of myocardial infarction, stroke, coronary or peripheral revascularization, and coronary or peripheral bypass. We performed this analysis in the overall cohort and then splitting the population in two groups of patients: those that introduced sodium-glucose transport protein 2 inhibitors (SGLT-2i) during the exposure phase and those not treated with these drugs. Findings Considering the whole cohort, subjects with both a mean HbA1c between 7.1 and 8% and >8%, compared with patients attaining a mean HbA1c ≤ 7%, showed an increased risk of developing the outcome in all the three early exposure periods assessed, with the highest risk observed in patients with mean HbA1c > 8% in the 3 years exposure period (hazard ratio [HR]1.33; 95% confidence interval [CI] 1.063-1.365). The introduction of SGLT-2i during the exposure periods of 0-1 and 0-2 years eliminated the association between poor glycemic control and the outcome (p for interaction 0.006 and 0.003, respectively, vs. patients with the same degree of glycemic control but not treated with these drugs). Interpretation Among patients with newly diagnosed T2D and free of CVD at baseline, a poor glycemic control in the first three years after diagnosis is associated with an increased subsequent risk of CVD. This association is no longer evident when SGLT-2i are introduced in the first two years, suggesting that these drugs attenuate the phenomenon of legacy effect. An early treatment with these drugs might thus promote a long-lasting benefit in patients not attaining proper glycemic control after T2D diagnosis. Funding This work was supported, in part, by the Italian Ministry of Health (Ricerca Corrente) to IRCCS MultiMedica.
Collapse
Affiliation(s)
| | - Giuseppe Lucisano
- CORESEARCH - Center for Outcomes Research and Clinical Epidemiology, Pescara, Italy
| | | | | | | | - Salvatore De Cosmo
- Department of Medical Sciences, Scientific Institute “Casa Sollievo della Sofferenza”, San Giovanni Rotondo, FG, Italy
| | - Paolo Di Bartolo
- Ravenna Diabetes Center, Department of Specialist Medicine, Romagna Local Health Authority, Italy
| | | | - Paola Fioretto
- Department of Medicine, University of Padua, Unit of Medical Clinic 3, Hospital of Padua, Padua, Italy
| | | | - Roberto Pontremoli
- IRCCS Ospedale Policlinico San Martino; Dipartimento di Medicina Interna, Università degli studi di Genova, Genoa, Italy
| | - Giuseppina Russo
- Department of Clinical and Experimental Medicine, University of Messina, Messina, Italy
| | - Francesca Viazzi
- IRCCS Ospedale Policlinico San Martino; Dipartimento di Medicina Interna, Università degli studi di Genova, Genoa, Italy
| | - Antonio Nicolucci
- CORESEARCH - Center for Outcomes Research and Clinical Epidemiology, Pescara, Italy
| | | |
Collapse
|
43
|
Sun Y, Zhang Y, Zhang J, Chen YE, Jin JP, Zhang K, Mou H, Liang X, Xu J. XBP1-mediated transcriptional regulation of SLC5A1 in human epithelial cells in disease conditions. RESEARCH SQUARE 2023:rs.3.rs-3112506. [PMID: 37502997 PMCID: PMC10371076 DOI: 10.21203/rs.3.rs-3112506/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/29/2023]
Abstract
Background sodium-dependent glucose cotransporter 1 and 2 (SGLT1/2) belong to the family of glucose transporters, encoded by SLC5A1 and SLC5A2, respectively. SGLT-2 is almost exclusively expressed in the renal proximal convoluted tubule cells. SGLT-1 is expressed in the kidneys but also in other organs throughout the body. Many SGLT inhibitor drugs have been developed based on the mechanism of blocking glucose (re)absorption mediated by SGLT1/2, and several have gained major regulatory agencies' approval for treating diabetes. Intriguingly these drugs are also effective in treating diseases beyond diabetes, for example heart failure and chronic kidney disease. We recently discovered that SGLT-1 is upregulated in the airway epithelial cells derived from patients of cystic fibrosis (CF), a devastating genetic disease affecting greater than 70,000 worldwide. Results in the present work, we show that the SGLT-1 upregulation is coupled with elevated endoplasmic reticulum (ER) stress response, indicated by activation of the primary ER stress senor inositol-requiring protein 1a (IRE1a) and the ER stress-induced transcription factor X-box binding protein 1 (XBP1), in CF epithelial cells, and in epithelial cells of other stress conditions. Through biochemistry experiments, we demonstrated that XBP1 acts as a transcription factor for SLC5A1 by directly binding to its promoter region. Targeting this ER stress → SLC5A1 axis by either the ER stress inhibitor Rapamycin or the SGLT-1 inhibitor Sotagliflozin was effective in attenuating the ER stress response and reducing the SGLT-1 levels in these cellular model systems. Conclusions the present work establishes a causal relationship between ER stress and SGLT-1 upregulation and provides a mechanistic explanation why SGLT inhibitor drugs benefit diseases beyond diabetes.
Collapse
Affiliation(s)
- Yifei Sun
- Center for Advanced Models for Translational Sciences and Therapeutics, University of Michigan Medical Center, University of Michigan Medical School, Ann Arbor, MI, United States
| | - Yihan Zhang
- The Mucosal Immunology & Biology Research Center, Massachusetts General Hospital, 55 Fruit Street, Jackson 1402, Boston, MA 02114, USA
| | - Jifeng Zhang
- Center for Advanced Models for Translational Sciences and Therapeutics, University of Michigan Medical Center, University of Michigan Medical School, Ann Arbor, MI, United States
| | - Y. Eugene Chen
- Center for Advanced Models for Translational Sciences and Therapeutics, University of Michigan Medical Center, University of Michigan Medical School, Ann Arbor, MI, United States
| | - Jian-Ping Jin
- Department of Physiology and Biophysics, University of Illinois at Chicago, Chicago, IL, 60612, USA
| | - Kezhong Zhang
- Center for Molecular Medicine and Genetics, Wayne State University School of Medicine, Detroit, MI, 48201, USA
| | - Hongmei Mou
- The Mucosal Immunology & Biology Research Center, Massachusetts General Hospital, 55 Fruit Street, Jackson 1402, Boston, MA 02114, USA
| | - Xiubin Liang
- Center for Advanced Models for Translational Sciences and Therapeutics, University of Michigan Medical Center, University of Michigan Medical School, Ann Arbor, MI, United States
| | - Jie Xu
- Center for Advanced Models for Translational Sciences and Therapeutics, University of Michigan Medical Center, University of Michigan Medical School, Ann Arbor, MI, United States
| |
Collapse
|
44
|
Cotton M, Hawley A. SGLT2 inhibitors; suggested mechanism of actions in supporting post-myocardial infarction patients. Future Cardiol 2023; 19:419-422. [PMID: 37702265 DOI: 10.2217/fca-2023-0066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/14/2023] Open
Affiliation(s)
- Matthew Cotton
- Torbay Hospital & South Devon Foundation Trust, Lowes Bridge, Torquay, TQ2 7AA
| | - Alasdair Hawley
- Torbay Hospital & South Devon Foundation Trust, Lowes Bridge, Torquay, TQ2 7AA
| |
Collapse
|
45
|
Chang SN, Chen JJ, Huang PS, Wu CK, Wang YC, Hwang JJ, Tsai CT. Sodium-Glucose Cotransporter-2 Inhibitor Prevents Stroke in Patients With Diabetes and Atrial Fibrillation. J Am Heart Assoc 2023; 12:e027764. [PMID: 37183872 DOI: 10.1161/jaha.122.027764] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 05/16/2023]
Abstract
Background Atrial fibrillation (AF) is associated with increasing risk of thromboembolic or ischemic stroke. The CHA2DS2-VASc score is a well-established predictor of AF stroke. Patients with AF have an increased risk of stroke if they have diabetes. Use of sodium-glucose cotransporter-2 inhibitor (SGLT2i) has been shown to be associated with favorable cardiovascular outcomes in patients with diabetes. It was unknown whether use of SGLT2i decreased stroke risk in patients with AF who have diabetes. Methods and Results A total of 9116 patients with AF and diabetes from the National Taiwan University historical cohort were longitudinally followed up for 5 years (January 2016-December 2020). The risk of stroke related to SGLT2i use was evaluated by Cox model, adjusting CHA2DS2-VASc score in the propensity score-matched population with 474 SGLT2i users and 3235 nonusers. Adverse thromboembolic end points during follow-up were defined as ischemic stroke. The mean age was 73.2±10.5 years, and 61% of patients were men. There were no significant differences of baseline characteristics between users and nonusers of SGLT2i, including CHA2DS2-VASc score in the propensity score-matched population. The stroke rate was 3.4% (95% CI, 2.8-4.2) patient-years in SGLT2i users and 4.3% (95% CI, 4.0-4.6) in nonusers (P=0.021). SGLT2i users had a 20% reduction of stroke (hazard ratio, 0.80 [95% CI, 0.64-0.99]; P=0.043) after adjustment for the CHA2DS2-VASc score. Conclusions Use of SGLT2i was associated with a lower stroke risk in patients with diabetes and AF, and it may be considered to escalate SGLT2i to the first-line treatment in patients with diabetes and AF.
Collapse
Affiliation(s)
- Sheng-Nan Chang
- Division of Cardiology, Department of Internal Medicine National Taiwan University Hospital Yun-Lin Branch Yun-Lin Taiwan
| | - Jien-Jiun Chen
- Division of Cardiology, Department of Internal Medicine National Taiwan University Hospital Yun-Lin Branch Yun-Lin Taiwan
| | - Pang-Shuo Huang
- Division of Cardiology, Department of Internal Medicine National Taiwan University Hospital Yun-Lin Branch Yun-Lin Taiwan
| | - Cho-Kai Wu
- Division of Cardiology, Department of Internal Medicine National Taiwan University Hospital Taipei Taiwan
- Cardiovascular Center National Taiwan University Hospital Taipei Taiwan
| | - Yi-Chih Wang
- Division of Cardiology, Department of Internal Medicine National Taiwan University Hospital Taipei Taiwan
- Cardiovascular Center National Taiwan University Hospital Taipei Taiwan
| | - Juey-Jen Hwang
- Division of Cardiology, Department of Internal Medicine National Taiwan University Hospital Taipei Taiwan
- Cardiovascular Center National Taiwan University Hospital Taipei Taiwan
| | - Chia-Ti Tsai
- Division of Cardiology, Department of Internal Medicine National Taiwan University Hospital Taipei Taiwan
- Cardiovascular Center National Taiwan University Hospital Taipei Taiwan
| |
Collapse
|
46
|
Tanase DM, Valasciuc E, Gosav EM, Ouatu A, Buliga-Finis ON, Floria M, Maranduca MA, Serban IL. Portrayal of NLRP3 Inflammasome in Atherosclerosis: Current Knowledge and Therapeutic Targets. Int J Mol Sci 2023; 24:ijms24098162. [PMID: 37175869 PMCID: PMC10179095 DOI: 10.3390/ijms24098162] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Revised: 04/26/2023] [Accepted: 05/01/2023] [Indexed: 05/15/2023] Open
Abstract
We are witnessing the globalization of a specific type of arteriosclerosis with rising prevalence, incidence and an overall cardiovascular disease burden. Currently, atherosclerosis increasingly affects the younger generation as compared to previous decades. While early preventive medicine has seen improvements, research advances in laboratory and clinical investigation promise to provide us with novel diagnosis tools. Given the physio-pathological complexity and epigenetic patterns of atherosclerosis and the discovery of new molecules involved, the therapeutic field of atherosclerosis has room for substantial growth. Thus, the scientific community is currently investigating the role of nucleotide-binding and oligomerization domain-like receptor family pyrin domain-containing 3 (NLRP3) inflammasome, a crucial component of the innate immune system in different inflammatory disorders. NLRP3 is activated by distinct factors and numerous cellular and molecular events which trigger NLRP3 inflammasome assembly with subsequent cleavage of pro-interleukin (IL)-1β and pro-IL-18 pathways via caspase-1 activation, eliciting endothelial dysfunction, promotion of oxidative stress and the inflammation process of atherosclerosis. In this review, we introduce the basic cellular and molecular mechanisms of NLRP3 inflammasome activation and its role in atherosclerosis. We also emphasize its promising therapeutic pharmaceutical potential.
Collapse
Affiliation(s)
- Daniela Maria Tanase
- Department of Internal Medicine, "Grigore T. Popa" University of Medicine and Pharmacy, 700115 Iasi, Romania
- Internal Medicine Clinic, "St. Spiridon" County Clinical Emergency Hospital Iasi, 700111 Iasi, Romania
| | - Emilia Valasciuc
- Department of Internal Medicine, "Grigore T. Popa" University of Medicine and Pharmacy, 700115 Iasi, Romania
- Internal Medicine Clinic, "St. Spiridon" County Clinical Emergency Hospital Iasi, 700111 Iasi, Romania
| | - Evelina Maria Gosav
- Department of Internal Medicine, "Grigore T. Popa" University of Medicine and Pharmacy, 700115 Iasi, Romania
- Internal Medicine Clinic, "St. Spiridon" County Clinical Emergency Hospital Iasi, 700111 Iasi, Romania
| | - Anca Ouatu
- Department of Internal Medicine, "Grigore T. Popa" University of Medicine and Pharmacy, 700115 Iasi, Romania
- Internal Medicine Clinic, "St. Spiridon" County Clinical Emergency Hospital Iasi, 700111 Iasi, Romania
| | - Oana Nicoleta Buliga-Finis
- Department of Internal Medicine, "Grigore T. Popa" University of Medicine and Pharmacy, 700115 Iasi, Romania
- Internal Medicine Clinic, "St. Spiridon" County Clinical Emergency Hospital Iasi, 700111 Iasi, Romania
| | - Mariana Floria
- Department of Internal Medicine, "Grigore T. Popa" University of Medicine and Pharmacy, 700115 Iasi, Romania
- Internal Medicine Clinic, "St. Spiridon" County Clinical Emergency Hospital Iasi, 700111 Iasi, Romania
| | - Minela Aida Maranduca
- Internal Medicine Clinic, "St. Spiridon" County Clinical Emergency Hospital Iasi, 700111 Iasi, Romania
- Department of Morpho-Functional Sciences II, Discipline of Physiology, "Grigore T. Popa" University of Medicine and Pharmacy, 700115 Iasi, Romania
| | - Ionela Lacramioara Serban
- Department of Morpho-Functional Sciences II, Discipline of Physiology, "Grigore T. Popa" University of Medicine and Pharmacy, 700115 Iasi, Romania
| |
Collapse
|
47
|
He G, Yang G, Huang X, Luo D, Tang C, Zhang Z. SGLT2 inhibitors for prevention of primary and secondary cardiovascular outcomes: A meta-analysis of randomized controlled trials. Heart Lung 2023; 59:109-116. [PMID: 36801545 DOI: 10.1016/j.hrtlng.2023.02.009] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2022] [Revised: 02/06/2023] [Accepted: 02/08/2023] [Indexed: 02/18/2023]
Abstract
BACKGROUND Many clinical studies have shown that sodium-glucose cotransporter 2 inhibitors (SGLT2i) reduce cardiovascular risks, such as heart failure, myocardial infarction and cardiovascular death. OBJECTIVE To investigate the use of SGLT2i for the prevention of primary and secondary cardiovascular outcomes. METHODS Pubmed, Embase and Cochrane libraries databases were searched and meta-analysis was performed using Revman 5.4. RESULTS Eleven studies with a total of 34,058 cases were analyzed. SGLT2i significantly reduced major adverse cardiovascular events (MACE) in patients with prior myocardial infarction (MI) (OR 0.83, 95% CI 0.73-0.94, p = 0.004), no prior MI (OR 0. 82, 95% CI 0.74-0.90, p<0.0001), prior coronary atherosclerotic disease (CAD) (OR 0.82, 95% CI 0.73-0.93, p = 0.001) and no prior CAD (OR 0.82, 95% CI 0.76-0.91, p = 0.0002) compared with placebo. In addition, SGLT2i significantly reduced hospitalization due to heart failure (HF) in patients with prior MI (OR 0.69, 95% CI 0.55-0.87, p = 0.001), no prior MI (OR 0.63, 95% CI 0.55-0. 72, p<0.00001), prior CAD (OR 0.65, 95% CI 0.53-0.79, p<0.0001) and no prior CAD (OR 0.65, 95% CI 0.56-0.75, p<0.00001) compared with placebo. SGLT2i reduced cardiovascular mortality and all-cause mortality events. MI (OR 0.79, 95% CI 0.70-0.88, p<0.0001), renal damage (OR 0.73, 95% CI 0.58-0.91, p = 0.004), all-cause hospitalization (OR 0.89, 95% CI 0.83-0.96, p = 0.002), systolic and diastolic blood pressure were all significantly reduced in patients receiving SGLT2i. CONCLUSION SGLT2i was effective in prevention of primary and secondary cardiovascular outcomes.
Collapse
Affiliation(s)
- Guijun He
- Chengdu Third People's Hospital, Chengdu Institute of Cardiovascular Diseases, China
| | - Guosu Yang
- Chengdu Third People's Hospital, Chengdu Institute of Cardiovascular Diseases, China
| | | | - Duan Luo
- Chengdu Third People's Hospital, Chengdu Institute of Cardiovascular Diseases, China
| | - Chao Tang
- Chengdu Third People's Hospital, Chengdu Institute of Cardiovascular Diseases, China
| | - Zhen Zhang
- Chengdu Third People's Hospital, Chengdu Institute of Cardiovascular Diseases, China.
| |
Collapse
|
48
|
Andreea MM, Surabhi S, Razvan-Ionut P, Lucia C, Camelia N, Emil T, Tiberiu NI. Sodium-Glucose Cotransporter 2 (SGLT2) Inhibitors: Harms or Unexpected Benefits? MEDICINA (KAUNAS, LITHUANIA) 2023; 59:742. [PMID: 37109700 PMCID: PMC10143699 DOI: 10.3390/medicina59040742] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Revised: 03/29/2023] [Accepted: 04/08/2023] [Indexed: 04/29/2023]
Abstract
There is a need for innovative pharmaceutical intervention in light of the increasing prevalence of metabolic disease and cardiovascular disease. The kidneys' sodium-glucose cotransporter 2 inhibitors (SGLT2) receptors are targeted to reduce glucose reabsorption by SGLT2. Patients with type 2 diabetes mellitus (T2DM) benefit the most from reduced blood glucose levels, although this is just one of the numerous physiological consequences. To establish existing understanding and possible advantages and risks for SGLT2 inhibitors in clinical practice, this article will explore the influence of SGLT2 inhibitors on six major organ systems. In addition, this literature review will discuss the benefits and potential drawbacks of SGLT2 inhibitors on various organ systems and their potential application in therapeutic settings.
Collapse
Affiliation(s)
- Munteanu Madalina Andreea
- Department of Cardiology, University of Medicine and Pharmacy “Carol Davila”, 050474 Bucharest, Romania
- “Theodor Burghele” Clinical Hospital, 050653 Bucharest, Romania
| | - Swarnkar Surabhi
- Department of Cardiovascular Science, University Medical Center Gottingen, 37075 Gottingen, Germany
| | - Popescu Razvan-Ionut
- “Theodor Burghele” Clinical Hospital, 050653 Bucharest, Romania
- Department of Urology, University of Medicine and Pharmacy “Carol Davila”, 050474 Bucharest, Romania
| | - Ciobotaru Lucia
- Department of Nephrology, University of Medicine and Pharmacy “Carol Davila”, 050474 Bucharest, Romania
| | - Nicolae Camelia
- Department of Cardiology, University of Medicine and Pharmacy “Carol Davila”, 050474 Bucharest, Romania
- “Theodor Burghele” Clinical Hospital, 050653 Bucharest, Romania
| | - Tufanoiu Emil
- Department of Neurology, University of Medicine and Pharmacy “Carol Davila”, 050474 Bucharest, Romania
- Fundeni Clinical Institute, 022328 Bucharest, Romania
| | - Nanea Ioan Tiberiu
- Department of Cardiology, University of Medicine and Pharmacy “Carol Davila”, 050474 Bucharest, Romania
- “Theodor Burghele” Clinical Hospital, 050653 Bucharest, Romania
| |
Collapse
|
49
|
Molecular and neural roles of sodium-glucose cotransporter 2 inhibitors in alleviating neurocognitive impairment in diabetic mice. Psychopharmacology (Berl) 2023; 240:983-1000. [PMID: 36869919 PMCID: PMC10006050 DOI: 10.1007/s00213-023-06341-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Accepted: 02/10/2023] [Indexed: 03/05/2023]
Abstract
Diabetes causes a variety of molecular changes in the brain, making it a real risk factor for the development of cognitive dysfunction. Complex pathogenesis and clinical heterogeneity of cognitive impairment makes the efficacy of current drugs limited. Sodium-glucose cotransporter 2 inhibitors (SGLT2i) gained our attention as drugs with potential beneficial effects on the CNS. In the present study, these drugs ameliorated the cognitive impairment associated with diabetes. Moreover, we verified whether SGLT2i can mediate the degradation of amyloid precursor protein (APP) and modulation of gene expression (Bdnf, Snca, App) involved in the control of neuronal proliferation and memory. The results of our research proved the participation of SGLT2i in the multifactorial process of neuroprotection. SGLT2i attenuate the neurocognitive impairment through the restoration of neurotrophin levels, modulation of neuroinflammatory signaling, and gene expression of Snca, Bdnf, and App in the brain of diabetic mice. The targeting of the above-mentioned genes is currently seen as one of the most promising and developed therapeutic strategies for diseases associated with cognitive dysfunction. The results of this work could form the basis of a future administration of SGLT2i in diabetics with neurocognitive impairment.
Collapse
|
50
|
Xu SW, Ilyas I, Weng JP. Endothelial dysfunction in COVID-19: an overview of evidence, biomarkers, mechanisms and potential therapies. Acta Pharmacol Sin 2023; 44:695-709. [PMID: 36253560 PMCID: PMC9574180 DOI: 10.1038/s41401-022-00998-0] [Citation(s) in RCA: 178] [Impact Index Per Article: 89.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/26/2022] [Accepted: 09/11/2022] [Indexed: 12/15/2022]
Abstract
The fight against coronavirus disease 2019 (COVID-19) caused by SARS-CoV-2 infection is still raging. However, the pathophysiology of acute and post-acute manifestations of COVID-19 (long COVID-19) is understudied. Endothelial cells are sentinels lining the innermost layer of blood vessel that gatekeep micro- and macro-vascular health by sensing pathogen/danger signals and secreting vasoactive molecules. SARS-CoV-2 infection primarily affects the pulmonary system, but accumulating evidence suggests that it also affects the pan-vasculature in the extrapulmonary systems by directly (via virus infection) or indirectly (via cytokine storm), causing endothelial dysfunction (endotheliitis, endothelialitis and endotheliopathy) and multi-organ injury. Mounting evidence suggests that SARS-CoV-2 infection leads to multiple instances of endothelial dysfunction, including reduced nitric oxide (NO) bioavailability, oxidative stress, endothelial injury, glycocalyx/barrier disruption, hyperpermeability, inflammation/leukocyte adhesion, senescence, endothelial-to-mesenchymal transition (EndoMT), hypercoagulability, thrombosis and many others. Thus, COVID-19 is deemed as a (micro)vascular and endothelial disease. Of translational relevance, several candidate drugs which are endothelial protective have been shown to improve clinical manifestations of COVID-19 patients. The purpose of this review is to provide a latest summary of biomarkers associated with endothelial cell activation in COVID-19 and offer mechanistic insights into the molecular basis of endothelial activation/dysfunction in macro- and micro-vasculature of COVID-19 patients. We envisage further development of cellular models and suitable animal models mimicking endothelial dysfunction aspect of COVID-19 being able to accelerate the discovery of new drugs targeting endothelial dysfunction in pan-vasculature from COVID-19 patients.
Collapse
Affiliation(s)
- Suo-Wen Xu
- Department of Endocrinology, Institute of Endocrine and Metabolic Diseases, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, Clinical Research Hospital of Chinese Academy of Sciences (Hefei), University of Science and Technology of China, Hefei, 230001, China.
| | - Iqra Ilyas
- Department of Endocrinology, Institute of Endocrine and Metabolic Diseases, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, Clinical Research Hospital of Chinese Academy of Sciences (Hefei), University of Science and Technology of China, Hefei, 230001, China
| | - Jian-Ping Weng
- Department of Endocrinology, Institute of Endocrine and Metabolic Diseases, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, Clinical Research Hospital of Chinese Academy of Sciences (Hefei), University of Science and Technology of China, Hefei, 230001, China.
| |
Collapse
|