1
|
Emamiamin A, Shariati Pour SR, Serra T, Calabria D, Varone M, Di Nardo F, Guardigli M, Anfossi L, Baggiani C, Zangheri M, Mirasoli M. New Frontiers for the Early Diagnosis of Cancer: Screening miRNAs Through the Lateral Flow Assay Method. BIOSENSORS 2025; 15:238. [PMID: 40277551 DOI: 10.3390/bios15040238] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2025] [Revised: 03/31/2025] [Accepted: 04/05/2025] [Indexed: 04/26/2025]
Abstract
MicroRNAs (miRNAs), which circulate in the serum and plasma, play a role in several biological processes, and their levels in body fluids are associated with the pathogenesis of various diseases, including different types of cancer. For this reason, miRNAs are considered promising candidates as biomarkers for diagnostic purposes, enabling the early detection of pathological onset and monitoring drug responses during therapy. However, current methods for miRNA quantification, such as northern blotting, isothermal amplification, RT-PCR, microarrays, and next-generation sequencing, are limited by their reliance on centralized laboratories, high costs, and the need for specialized personnel. Consequently, the development of sensitive, simple, and one-step analytical techniques for miRNA detection is highly desirable, particularly given the importance of early diagnosis and prompt treatment in cases of cancer. Lateral flow assays (LFAs) are among the most attractive point-of-care (POC) devices for healthcare applications. These systems allow for the rapid and straightforward detection of analytes using low-cost setups that are accessible to a wide audience. This review focuses on LFA-based methods for detecting and quantifying miRNAs associated with the diagnosis of various cancers, with particular emphasis on sensitivity enhancements achieved through the application of different labels and detection systems. Early, non-invasive detection of these diseases through the quantification of tailored biomarkers can significantly reduce mortality, improve survival rates, and lower treatment costs.
Collapse
Affiliation(s)
- Afsaneh Emamiamin
- Department of Chemistry "Giacomo Ciamician", Alma Mater Studiorum, University of Bologna, Tecnopolo di Rimini, Via Dario Campana 71, I-47922 Rimini, Italy
| | - Seyedeh Rojin Shariati Pour
- Department of Chemistry "Giacomo Ciamician", Alma Mater Studiorum, University of Bologna, Tecnopolo di Rimini, Via Dario Campana 71, I-47922 Rimini, Italy
| | - Thea Serra
- Department of Chemistry, University of Turin, Via P. Giuria 5, I-10125 Turin, Italy
| | - Donato Calabria
- Department of Chemistry "Giacomo Ciamician", Alma Mater Studiorum, University of Bologna, Via Francesco Selmi 2, I-40126 Bologna, Italy
- Interdepartmental Centre for Industrial Aerospace Research (CIRI AEROSPACE), Alma Mater Studiorum-University of Bologna, Via Baldassarre Canaccini 12, I-47121 Forlì, Italy
| | - Marta Varone
- Department of Chemistry "Giacomo Ciamician", Alma Mater Studiorum, University of Bologna, Via Francesco Selmi 2, I-40126 Bologna, Italy
| | - Fabio Di Nardo
- Department of Chemistry, University of Turin, Via P. Giuria 5, I-10125 Turin, Italy
| | - Massimo Guardigli
- Department of Chemistry "Giacomo Ciamician", Alma Mater Studiorum, University of Bologna, Via Francesco Selmi 2, I-40126 Bologna, Italy
- Interdepartmental Centre for Industrial Aerospace Research (CIRI AEROSPACE), Alma Mater Studiorum-University of Bologna, Via Baldassarre Canaccini 12, I-47121 Forlì, Italy
- Interdepartmental Centre for Industrial Research in Renewable Resources, Environment, Sea, and Energy (CIRI FRAME), Alma Mater Studiorum-University of Bologna, Via St. Alberto 163, I-48123 Ravenna, Italy
| | - Laura Anfossi
- Department of Chemistry, University of Turin, Via P. Giuria 5, I-10125 Turin, Italy
| | - Claudio Baggiani
- Department of Chemistry, University of Turin, Via P. Giuria 5, I-10125 Turin, Italy
| | - Martina Zangheri
- Department of Chemistry "Giacomo Ciamician", Alma Mater Studiorum, University of Bologna, Tecnopolo di Rimini, Via Dario Campana 71, I-47922 Rimini, Italy
- Interdepartmental Centre for Industrial Agrofood Research (CIRI AGRO), Alma Mater Studiorum-University of Bologna, Via Quinto Bucci 336, I-47521 Cesena, Italy
| | - Mara Mirasoli
- Department of Chemistry "Giacomo Ciamician", Alma Mater Studiorum, University of Bologna, Tecnopolo di Rimini, Via Dario Campana 71, I-47922 Rimini, Italy
- Interdepartmental Centre for Industrial Aerospace Research (CIRI AEROSPACE), Alma Mater Studiorum-University of Bologna, Via Baldassarre Canaccini 12, I-47121 Forlì, Italy
- Interdepartmental Centre for Industrial Research in Renewable Resources, Environment, Sea, and Energy (CIRI FRAME), Alma Mater Studiorum-University of Bologna, Via St. Alberto 163, I-48123 Ravenna, Italy
| |
Collapse
|
2
|
Pal T, Liu Z, Chen J. CIMNE-CRISPR: A novel amplification-free diagnostic for rapid early detection of African Swine Fever Virus. Biosens Bioelectron 2025; 273:117154. [PMID: 39826273 PMCID: PMC11809620 DOI: 10.1016/j.bios.2025.117154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2024] [Revised: 12/30/2024] [Accepted: 01/09/2025] [Indexed: 01/22/2025]
Abstract
African Swine Fever Virus (ASFV) is a highly contagious pathogen with nearly 100% mortality in swine, causing severe global economic loss. Current detection methods rely on nucleic acid amplification, which requires specialized equipment and skilled operators, limiting accessibility in resource-constrained settings. To address these challenges, we developed the Covalently Immobilized Magnetic Nanoparticles Enhanced CRISPR (CIMNE-CRISPR) system. This amplification-free diagnostic system seamlessly combines target recognition, sequence-specific enrichment, and signal generation. This approach uses covalent immobilization of CRISPR-LbCas12a-crRNA complexes on Fe3O4@SiO2 core-shell magnetic nanoparticles, which improves enzyme specificity and robustness over traditional adsorption. The CIMNE-CRISPR assay reached a limit of detection (LOD) of 8.1 × 104 copies/μL and a limit of quantification (LOQ) of 4.2 × 105 copies/μL, with a dynamic range spanning 105 to 1010 copies/μL and a matrix factor of 100.29% in porcine plasma. It maintained great specificity and accurately detecting 105 copies/μL of ASFV DNA even with high mutant concentrations (1013 copies/μL). The method demonstrated decent reproducibility across different nanoparticle synthesis batches, with an RSD of 9.63% and recovery rates between 97% and 103%, and features rapid processing well-suited for field diagnostics. Overall, this system's cost-effectiveness, simplicity, and reliability highlight its potential to pave the way for advanced CRISPR-based diagnostics, particularly for diverse viral and bacterial targets in agricultural, environmental, and zoonotic disease contexts.
Collapse
Affiliation(s)
- Tathagata Pal
- Department of Bioengineering, University of California Riverside, Riverside, CA, 92521, USA.
| | - Zilong Liu
- Department of Bioengineering, University of California Riverside, Riverside, CA, 92521, USA
| | - Juhong Chen
- Department of Bioengineering, University of California Riverside, Riverside, CA, 92521, USA.
| |
Collapse
|
3
|
Shi L, Liu Y, Li X, Zhang H, Wang Z, He S, Fan D, Huang X, Zi Y, Han Y, Zhang D, Chen X. Advances in Functional Nucleic Acid SERS Sensing Strategies. ACS Sens 2025; 10:1579-1599. [PMID: 39749546 DOI: 10.1021/acssensors.4c02611] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
Abstract
Functional nucleic acids constitute a distinct category of nucleic acids that diverge from conventional nucleic acid amplification methodologies. They are capable of forming intricate hybrid structures through Hoogsteen and reverse Hoogsteen hydrogen bonding interactions between double-stranded and single-stranded DNA, thereby broadening the spectrum of DNA interactions. In recent years, functional DNA/RNA-based surface-enhanced Raman spectroscopy (SERS) has emerged as a potent platform capable of ultrasensitive and multiplexed detection of a variety of analytes of interest. This review aims to elucidate the operational principles of several functional nucleic acids in SERS detection, including DNAzymes, G-quadruplexes, aptamers, CRISPR, origami etc., alongside the design methodologies and practical applications of functional DNA/RNA-based SERS sensing. Initially, an overview is summarized encompassing the structural attributes and SERS sensing mechanisms inherent to diverse functional DNA/RNA. Following this, various innovative strategies for constructing functional nucleic acid-based SERS sensors are illustrated in detail, aimed at improving the present detection capabilities. A comprehensive summing up is then conducted on the applications of these sensors in crucial fields, such as disease diagnosis, environmental monitoring, and food safety detection, with a particular focus on SERS sensitivity, specificity, and analytical versatility. Finally, conclusive remarks are offered along with an exploration of the existing challenges and prospective avenues for future research in this developed field.
Collapse
Affiliation(s)
- Lin Shi
- Center for Biomedical-photonics and Molecular Imaging, Advanced Diagnostic-Therapy Technology and Equipment Key Laboratory of Higher Education Institutions in Shaanxi Province, School of Life Science and Technology, Xidian University, Xi'an, Shaanxi 710126, China
- Academy of Advanced Interdisciplinary Research, Xidian University, Xi'an, Shaanxi 710071, China
- Engineering Research Center of Molecular and Neuro Imaging, Ministry of Education & Xi'an Key Laboratory of Intelligent Sensing and Regulation of Trans-Scale Life Information, School of Life Science and Technology, Xidian University, Xi'an, Shaanxi 710126, China
| | - Yukang Liu
- Center for Biomedical-photonics and Molecular Imaging, Advanced Diagnostic-Therapy Technology and Equipment Key Laboratory of Higher Education Institutions in Shaanxi Province, School of Life Science and Technology, Xidian University, Xi'an, Shaanxi 710126, China
- Engineering Research Center of Molecular and Neuro Imaging, Ministry of Education & Xi'an Key Laboratory of Intelligent Sensing and Regulation of Trans-Scale Life Information, School of Life Science and Technology, Xidian University, Xi'an, Shaanxi 710126, China
| | - Xiaodong Li
- Center for Biomedical-photonics and Molecular Imaging, Advanced Diagnostic-Therapy Technology and Equipment Key Laboratory of Higher Education Institutions in Shaanxi Province, School of Life Science and Technology, Xidian University, Xi'an, Shaanxi 710126, China
- Engineering Research Center of Molecular and Neuro Imaging, Ministry of Education & Xi'an Key Laboratory of Intelligent Sensing and Regulation of Trans-Scale Life Information, School of Life Science and Technology, Xidian University, Xi'an, Shaanxi 710126, China
| | - Hanju Zhang
- Center for Biomedical-photonics and Molecular Imaging, Advanced Diagnostic-Therapy Technology and Equipment Key Laboratory of Higher Education Institutions in Shaanxi Province, School of Life Science and Technology, Xidian University, Xi'an, Shaanxi 710126, China
- Engineering Research Center of Molecular and Neuro Imaging, Ministry of Education & Xi'an Key Laboratory of Intelligent Sensing and Regulation of Trans-Scale Life Information, School of Life Science and Technology, Xidian University, Xi'an, Shaanxi 710126, China
| | - Zixu Wang
- Center for Biomedical-photonics and Molecular Imaging, Advanced Diagnostic-Therapy Technology and Equipment Key Laboratory of Higher Education Institutions in Shaanxi Province, School of Life Science and Technology, Xidian University, Xi'an, Shaanxi 710126, China
- Engineering Research Center of Molecular and Neuro Imaging, Ministry of Education & Xi'an Key Laboratory of Intelligent Sensing and Regulation of Trans-Scale Life Information, School of Life Science and Technology, Xidian University, Xi'an, Shaanxi 710126, China
| | - Siyuan He
- Center for Biomedical-photonics and Molecular Imaging, Advanced Diagnostic-Therapy Technology and Equipment Key Laboratory of Higher Education Institutions in Shaanxi Province, School of Life Science and Technology, Xidian University, Xi'an, Shaanxi 710126, China
- Engineering Research Center of Molecular and Neuro Imaging, Ministry of Education & Xi'an Key Laboratory of Intelligent Sensing and Regulation of Trans-Scale Life Information, School of Life Science and Technology, Xidian University, Xi'an, Shaanxi 710126, China
| | - Derong Fan
- Engineering Research Center of Molecular and Neuro Imaging, Ministry of Education & Xi'an Key Laboratory of Intelligent Sensing and Regulation of Trans-Scale Life Information, School of Life Science and Technology, Xidian University, Xi'an, Shaanxi 710126, China
| | - Xin Huang
- Engineering Research Center of Molecular and Neuro Imaging, Ministry of Education & Xi'an Key Laboratory of Intelligent Sensing and Regulation of Trans-Scale Life Information, School of Life Science and Technology, Xidian University, Xi'an, Shaanxi 710126, China
| | - Yiting Zi
- Engineering Research Center of Molecular and Neuro Imaging, Ministry of Education & Xi'an Key Laboratory of Intelligent Sensing and Regulation of Trans-Scale Life Information, School of Life Science and Technology, Xidian University, Xi'an, Shaanxi 710126, China
| | - Yuping Han
- Affiliated Provincial Hospital of Shandong First Medical University, Jinan, Shandong 250021, China
| | - Dongjie Zhang
- Center for Biomedical-photonics and Molecular Imaging, Advanced Diagnostic-Therapy Technology and Equipment Key Laboratory of Higher Education Institutions in Shaanxi Province, School of Life Science and Technology, Xidian University, Xi'an, Shaanxi 710126, China
- Engineering Research Center of Molecular and Neuro Imaging, Ministry of Education & Xi'an Key Laboratory of Intelligent Sensing and Regulation of Trans-Scale Life Information, School of Life Science and Technology, Xidian University, Xi'an, Shaanxi 710126, China
- Innovation Center for Advanced Medical Imaging and Intelligent Medicine, Guangzhou Institute of Technology, Xidian University, Guangzhou, Guangdong 510555, China
| | - Xueli Chen
- Center for Biomedical-photonics and Molecular Imaging, Advanced Diagnostic-Therapy Technology and Equipment Key Laboratory of Higher Education Institutions in Shaanxi Province, School of Life Science and Technology, Xidian University, Xi'an, Shaanxi 710126, China
- Engineering Research Center of Molecular and Neuro Imaging, Ministry of Education & Xi'an Key Laboratory of Intelligent Sensing and Regulation of Trans-Scale Life Information, School of Life Science and Technology, Xidian University, Xi'an, Shaanxi 710126, China
- Innovation Center for Advanced Medical Imaging and Intelligent Medicine, Guangzhou Institute of Technology, Xidian University, Guangzhou, Guangdong 510555, China
| |
Collapse
|
4
|
Fan R, Luo S, He Y, Xiao Y, Liang Y, Zhang L, Li W, Zhang Y, Li L. Simple and sensitive SERS platform for Staphylococcus aureus one-pot determination by photoactivated CRISPR/Cas12a cascade system and core-shell DNA tetrahedron@AuNP@Fe 3O 4 reporter. Mikrochim Acta 2025; 192:240. [PMID: 40102313 DOI: 10.1007/s00604-025-07098-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2025] [Accepted: 03/05/2025] [Indexed: 03/20/2025]
Abstract
Staphylococcus aureus (S. aureus) is a widely prevalent Gram-positive bacteria that can cause serious infections and diseases in humans and other organisms. Timely detection and treatment in clinical settings is crucial for patient safety and public health. However, current methods for S. aureus detection still face some limitations, such as time-consuming operation, false positives, and labor-intensive available methodology with low sensitivity. Therefore, it is particularly important to develop a rapid, simple, sensitive, and cost-effective method for detecting S. aureus. We developed a SERS platform based on allosteric aptamer-triggered catalytic hairpin assembly (CHA) and photoactivated CRISPR/Cas12a reactions, combined with a multifunctional core-shell structure as the SERS reporter, enabling highly sensitive one-pot determination of S. aureus. Compared with traditional two-step and one-pot analysis methods, this strategy offers superior sensitivity and can successfully identify real samples contaminated with S. aureus. The platform utilizes light-controlled CHA and CRISPR/Cas12a reactions, effectively preventing interference between different reaction systems. Therefore, the photoactivated one-pot CHA/Cas12a strategy provides a simple, rapid, highly sensitive, specific, and cost-effective method for one-pot determination of S. aureus in clinical samples.
Collapse
Affiliation(s)
- Rui Fan
- School of Medical Technology, Guangdong Medical University, Dongguan, 523808, China
- Department of Laboratory Medicine, Guangdong Provincial Key Laboratory of Precision Medical Diagnostics, Guangdong Provincial Key Laboratory of Single-Cell and Extracellular Vesicles, Guangdong Engineering and Technology Research Center for Rapid Diagnostic Biosensors, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, P. R. China
| | - Shihua Luo
- Center for Clinical Laboratory Diagnosis and Research, Affiliated Hospital of Youjiang Medical University for Nationalities, Baise, Guangxi, 533000, China
- Key Laboratory of Research on Clinical Molecular Diagnosis for High Incidence Diseases in Western Guangxi of Guangxi Higher Education Institutions, Affiliated Hospital of Youjiang Medical University for Nationalities, Baise, Guangxi, 533000, China
| | - Yangfen He
- School of Medical Technology, Guangdong Medical University, Dongguan, 523808, China
- The Affiliated Traditional Chinese Medicine Hospital, Guangzhou Medical University, Guangzhou, 510515, China
| | - Yunju Xiao
- Laboratory Medicine, Guangdong Provincial People'S Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, 510080, People's Republic of China
| | - Yuxin Liang
- Department of Laboratory Medicine, Guangdong Provincial Key Laboratory of Precision Medical Diagnostics, Guangdong Provincial Key Laboratory of Single-Cell and Extracellular Vesicles, Guangdong Engineering and Technology Research Center for Rapid Diagnostic Biosensors, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, P. R. China
| | - Lifeng Zhang
- School of Medical Technology, Guangdong Medical University, Dongguan, 523808, China
- Department of Laboratory Medicine, Guangdong Provincial Key Laboratory of Precision Medical Diagnostics, Guangdong Provincial Key Laboratory of Single-Cell and Extracellular Vesicles, Guangdong Engineering and Technology Research Center for Rapid Diagnostic Biosensors, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, P. R. China
| | - Wenbin Li
- Department of Laboratory Medicine, Guangdong Provincial Key Laboratory of Precision Medical Diagnostics, Guangdong Provincial Key Laboratory of Single-Cell and Extracellular Vesicles, Guangdong Engineering and Technology Research Center for Rapid Diagnostic Biosensors, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, P. R. China
| | - Ye Zhang
- Department of Laboratory Medicine, Guangdong Provincial Key Laboratory of Precision Medical Diagnostics, Guangdong Provincial Key Laboratory of Single-Cell and Extracellular Vesicles, Guangdong Engineering and Technology Research Center for Rapid Diagnostic Biosensors, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, P. R. China.
| | - Ling Li
- School of Medical Technology, Guangdong Medical University, Dongguan, 523808, China.
- School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, China.
| |
Collapse
|
5
|
Xin X, Su J, Cui H, Wang L, Song S. Recent Advances in Clustered Regularly Interspaced Short Palindromic Repeats/CRISPR-Associated Proteins System-Based Biosensors. BIOSENSORS 2025; 15:155. [PMID: 40136952 PMCID: PMC11939850 DOI: 10.3390/bios15030155] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2024] [Revised: 02/24/2025] [Accepted: 02/25/2025] [Indexed: 03/27/2025]
Abstract
High-sensitivity and high-specificity biodetection is critical for advancing applications in life sciences, biosafety, food safety, and environmental monitoring. CRISPR/Cas systems have emerged as transformative tools in biosensing due to their unparalleled specificity, programmability, and unique enzymatic activities. They exhibit two key cleavage behaviors: precise ON-target cleavage guided by specific protospacers, which ensures accurate target recognition, and bystander cleavage activity triggered upon target binding, which enables robust signal amplification. These properties make CRISPR/Cas systems highly versatile for designing biosensors for ultra-sensitive detection. This review comprehensively explores recent advancements in CRISPR/Cas system-based biosensors, highlighting their impact on improving biosensing performance. We discuss the integration of CRISPR/Cas systems with diverse signal readout mechanisms, including electrochemical, fluorescent, colorimetric, surface-enhanced Raman scattering (SERS), and so on. Additionally, we examine the development of integrated biosensing systems, such as microfluidic devices and portable biosensors, which leverage CRISPR/Cas technology for point-of-care testing (POCT) and high-throughput analysis. Furthermore, we identify unresolved challenges, aiming to inspire innovative solutions and accelerate the translation of these technologies into practical applications for diagnostics, food, and environment safety.
Collapse
Affiliation(s)
- Xianglin Xin
- Institute of Materiobiology, College of Sciences, Shanghai University, Shanghai 200444, China; (X.X.); (H.C.); (L.W.)
| | - Jing Su
- School of Perfume and Aroma Technology, Shanghai Institute of Technology, No. 100 Haiquan Road, Shanghai 201418, China
| | - Haoran Cui
- Institute of Materiobiology, College of Sciences, Shanghai University, Shanghai 200444, China; (X.X.); (H.C.); (L.W.)
| | - Lihua Wang
- Institute of Materiobiology, College of Sciences, Shanghai University, Shanghai 200444, China; (X.X.); (H.C.); (L.W.)
| | - Shiping Song
- Institute of Materiobiology, College of Sciences, Shanghai University, Shanghai 200444, China; (X.X.); (H.C.); (L.W.)
| |
Collapse
|
6
|
Liu G. Advancing CRISPR/Cas Biosensing with Integrated Devices. ACS Sens 2025; 10:575-576. [PMID: 40017406 DOI: 10.1021/acssensors.5c00330] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/01/2025]
Affiliation(s)
- Guozhen Liu
- Integrated Devices and Intelligent Diagnosis (ID2) Laboratory, School of Medicine, The Chinese University of Hong Kong, Shenzhen 518172, China
| |
Collapse
|
7
|
Yan J, Yin B, Zhang Q, Li C, Chen J, Huang Y, Hao J, Yi C, Zhang Y, Wong SHD, Yang M. A CRISPR-Cas12a-mediated dual-mode luminescence and colorimetric nucleic acid biosensing platform based on upconversion nanozyme. Biosens Bioelectron 2025; 270:116963. [PMID: 39603211 DOI: 10.1016/j.bios.2024.116963] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2024] [Accepted: 11/17/2024] [Indexed: 11/29/2024]
Abstract
In this study, a CRISPR-Cas12a-mediated dual-mode upconversion luminescence/colorimetric nucleic acid biosensing platform is developed based on UCNP@SiO2/CeO2 (UNSC) nanozyme. Here, UNSC is conjugated with single-stranded DNA (ssDNA) probes used as both peroxidase-like nanozyme and upconversion luminescence donors. When no target nucleic acid is present, ssDNA-conjugated UNSC attaches on magnetic graphene oxide (MGO) via pi-pi stacking force, resulting in upconversion luminescence quenching (OFF) and no color change after magnetic removal of nanozymes attached on the MGO. In the presence of target nucleic acid, Cas12a is specifically activated by targeted nucleic acid and indiscriminately cleaves the ssDNA probes on UNSCs. UNSCs then detach from the MGO surface due to the weakening of binding force, leading to upconversion luminescence recovery (ON) and colorimetric change due to the existence of free nanozyme in the 3,3',5,5'-tetramethyl-benzidine assay. As a proof-of-concept, this biosensing platform shows a limit of detection of around 320 fM in the upconversion luminescence mode and ∼28.4 pM in the colorimetric mode for nucleic acid detection, respectively. This UNSC nanozyme-based CRISPR-Cas12a dual-mode biosensing system also demonstrates high selectivity, good repeatability, and facile operation, which allows easy adaption to other nucleic acid-based detection only by redesigning the sequence of CRISPR RNA.
Collapse
Affiliation(s)
- Jiaxiang Yan
- Department of Biomedical Engineering, The Hong Kong Polytechnic University, Hong Kong, 999077, China
| | - Bohan Yin
- Laboratory for Marine Drugs and Bioproducts, Qingdao Marine Science and Technology Center, Qingdao, 266237, China; School of Medicine and Pharmacy, Ocean University of China, Qingdao, 266003, China
| | - Qin Zhang
- Department of Biomedical Engineering, The Hong Kong Polytechnic University, Hong Kong, 999077, China
| | - Chuanqi Li
- Department of Biomedical Engineering, The Hong Kong Polytechnic University, Hong Kong, 999077, China
| | - Jiareng Chen
- Department of Biomedical Engineering, The Hong Kong Polytechnic University, Hong Kong, 999077, China
| | - Yingying Huang
- Department of Biomedical Engineering, The Hong Kong Polytechnic University, Hong Kong, 999077, China
| | - Jianhua Hao
- Department of Applied Physics, The Hong Kong Polytechnic University, Hong Kong, 999077, China
| | - Changqing Yi
- Key Laboratory of Sensing Technology and Biomedical Instruments Guangdong, School of Biomedical Engineering, Sun Yat-Sen University, Guangzhou, 510006, China
| | - Yu Zhang
- Department of Mechanical and Automotive Engineering, Royal Melbourne Institute of Technology, Melbourne, VIC, 3000, Australia
| | - Siu Hong Dexter Wong
- Laboratory for Marine Drugs and Bioproducts, Qingdao Marine Science and Technology Center, Qingdao, 266237, China; School of Medicine and Pharmacy, Ocean University of China, Qingdao, 266003, China.
| | - Mo Yang
- Department of Biomedical Engineering, The Hong Kong Polytechnic University, Hong Kong, 999077, China; Joint Research Center of Biosensing and Precision Theranostics, The Hong Kong Polytechnic University, Kowloon, Hong Kong, 999077, China.
| |
Collapse
|
8
|
Zhao Z, Xiong Q, Zhu Y, Zhang C, Li Z, Chen Z, Zhang Y, Deng X, Tao Y, Xu S. CRISPR/Cas12a-Enabled Amplification-Free Colorimetric Visual Sensing Strategy for Point-of-Care Diagnostics of Biomarkers. Anal Chem 2025; 97:1019-1027. [PMID: 39701943 DOI: 10.1021/acs.analchem.4c06196] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2024]
Abstract
CRISPR/Cas12a-based biosensors have garnered significant attention in the field of point-of-care testing (POCT), yet the majority of the CRISPR-based POCT methods employ fluorescent systems as report probes. Herein, we report a new CRISPR/Cas12a-enabled multicolor visual biosensing strategy for the rapid detection of disease biomarkers. The proposed assay provided vivid color responses to enhance the accuracy of visual detection. In the existence of the target, the trans-cleavage activity of CRISPR-Cas12a was activated. The report probe modified with magnetic beads (MBs) and horseradish peroxidase (HRP) was cleaved, and HRP was released in the supernatant. As a result, HRP mediated the etching of gold nanobipyramids (AuNBPs) under hydrogen peroxide and 3,3',5,5'-tetramethylbenzidine and generated a vivid color response. The proposed method has been verified by the detection of the breast cancer 1 gene (BRCA1) as a proof-of-principle target. According to the different colors of AuNBPs, our experimental results have demonstrated that as low as 30 pM BRCA1 can be detected with no more than 60 min. Additionally, the proposed sensor has been successfully applied in the analysis of BRCA1 in human serum samples with satisfactory results, which indicates great potential for the sensitive determination of biomarkers and the POCT area.
Collapse
Affiliation(s)
- Zhe Zhao
- Cancer Research Center & Jiangxi Engineering Research Center for Translational Cancer Technology, Jiangxi University of Chinese Medicine & Jiangxi Province Key Laboratory for Diagnosis, Treatment and Rehabilitation of Cancer in Chinese Medicine, Nanchang, Jiangxi 330004, China
- College of Acupuncture and Tuina Nanjing, Nanjing University of Chinese Medicine, Nanjing, Jiangsu 210023, China
| | - Qing Xiong
- Cancer Research Center & Jiangxi Engineering Research Center for Translational Cancer Technology, Jiangxi University of Chinese Medicine & Jiangxi Province Key Laboratory for Diagnosis, Treatment and Rehabilitation of Cancer in Chinese Medicine, Nanchang, Jiangxi 330004, China
| | - Yan Zhu
- Cancer Research Center & Jiangxi Engineering Research Center for Translational Cancer Technology, Jiangxi University of Chinese Medicine & Jiangxi Province Key Laboratory for Diagnosis, Treatment and Rehabilitation of Cancer in Chinese Medicine, Nanchang, Jiangxi 330004, China
| | - Cong Zhang
- Cancer Research Center & Jiangxi Engineering Research Center for Translational Cancer Technology, Jiangxi University of Chinese Medicine & Jiangxi Province Key Laboratory for Diagnosis, Treatment and Rehabilitation of Cancer in Chinese Medicine, Nanchang, Jiangxi 330004, China
| | - Zhixin Li
- Institute for Advanced Study, Research Center for Differentiation and Development of TCM Basic Theory, Jiangxi University of Chinese Medicine, Nanchang, Jiangxi 330004, China
| | - Zhonghui Chen
- Central Laboratory, Affiliated Hospital of Putian University, Putian University, Putian 351100, China
| | - Ying Zhang
- Central Laboratory, Fujian Key Laboratory of Precision Medicine for Cancer, The First Affiliated Hospital, Fujian Medical University, Fuzhou, Fujian 350005, China
| | - Xiaoyu Deng
- Ministry of Education Key Laboratory of Modern Preparation of Traditional Chinese Medicine, Jiangxi University of Chinese Medicine, Nanchang, Jiangxi 330004, China
| | - Yingzhou Tao
- Cancer Research Center & Jiangxi Engineering Research Center for Translational Cancer Technology, Jiangxi University of Chinese Medicine & Jiangxi Province Key Laboratory for Diagnosis, Treatment and Rehabilitation of Cancer in Chinese Medicine, Nanchang, Jiangxi 330004, China
| | - Shaohua Xu
- Cancer Research Center & Jiangxi Engineering Research Center for Translational Cancer Technology, Jiangxi University of Chinese Medicine & Jiangxi Province Key Laboratory for Diagnosis, Treatment and Rehabilitation of Cancer in Chinese Medicine, Nanchang, Jiangxi 330004, China
| |
Collapse
|
9
|
Deng R, Sheng J, Xie Z, Yang H, Yang S, Xie S, Tang X, Zhao S, Dong H, Chen M, Chang K. miR-Cabiner: A Universal microRNA Sensing Platform Based on Self-Stacking Cascaded Bicyclic DNA Circuit-Mediated CRISPR/Cas12a. Anal Chem 2025; 97:799-810. [PMID: 39704707 DOI: 10.1021/acs.analchem.4c05370] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2024]
Abstract
CRISPR/Cas12a-based diagnostics have great potential for sensing nucleic acids, but their application is limited by the sequence-dependent property. A platform termed miR-Cabiner (a universal miRNA sensing platform based on self-stacking cascaded bicyclic DNA circuit-mediated CRISPR/Cas12a) is demonstrated herein that is sensitive and universal for analyzing miRNAs. This platform combines catalytic hairpin assembly (CHA) and hybrid chain reaction (HCR) into a unified circuit and finally cascades to CRISPR/Cas12a. Compared with the CHA-Cas12a and HCR-Cas12a systems, miR-Cabiner exhibits a significantly higher reaction rate. Panels of miRNAs (miR-130a, miR-10b, miR-21, and miR-1285), which are associated with diagnosis, staging, and prognosis of breast cancer, are designed to demonstrate the universality of miR-Cabiner. Four miRNAs can be detected to the fM-level by simply tuning the sequence in CHA components. Additionally, miRNA panel analysis also shows high accuracy in practical samples. This universally applicable platform for detecting miRNA may serve as an excellent tool for clinical diagnosis.
Collapse
Affiliation(s)
- Ruijia Deng
- Department of Clinical Laboratory Medicine, Southwest Hospital, Third Military Medical University (Army Medical University), 30 Gaotanyan, Shapingba DistrictChongqing 400038, China
| | - Jing Sheng
- Department of Clinical Laboratory Medicine, Southwest Hospital, Third Military Medical University (Army Medical University), 30 Gaotanyan, Shapingba DistrictChongqing 400038, China
| | - Zuowei Xie
- Department of Clinical Laboratory Medicine, Southwest Hospital, Third Military Medical University (Army Medical University), 30 Gaotanyan, Shapingba DistrictChongqing 400038, China
| | - Hongzhao Yang
- Department of Clinical Laboratory Medicine, Southwest Hospital, Third Military Medical University (Army Medical University), 30 Gaotanyan, Shapingba DistrictChongqing 400038, China
| | - Sha Yang
- 953rd Army Hospital (Shigatse Branch, Xinqiao Hospital), Third Military Medical University, Shigatse 857000, China
| | - Shuang Xie
- Department of Clinical Laboratory Medicine, Southwest Hospital, Third Military Medical University (Army Medical University), 30 Gaotanyan, Shapingba DistrictChongqing 400038, China
| | - Xiaoqi Tang
- Department of Clinical Laboratory Medicine, Southwest Hospital, Third Military Medical University (Army Medical University), 30 Gaotanyan, Shapingba DistrictChongqing 400038, China
| | - Shuang Zhao
- Department of Clinical Laboratory Medicine, Southwest Hospital, Third Military Medical University (Army Medical University), 30 Gaotanyan, Shapingba DistrictChongqing 400038, China
| | - Haohao Dong
- Department of Laboratory Medicine, State Key Laboratory of Biotherapy, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, No.17, Section 3, Renmin South Road, Chengdu 610041, China
| | - Ming Chen
- Department of Clinical Laboratory Medicine, Southwest Hospital, Third Military Medical University (Army Medical University), 30 Gaotanyan, Shapingba DistrictChongqing 400038, China
- College of Pharmacy and Laboratory Medicine, Third Military Medical University (Army Medical University), 30 Gaotanyan, Shapingba District, Chongqing 400038, China
| | - Kai Chang
- Department of Clinical Laboratory Medicine, Southwest Hospital, Third Military Medical University (Army Medical University), 30 Gaotanyan, Shapingba DistrictChongqing 400038, China
| |
Collapse
|
10
|
Fu Y, Zhang P, Chen F, Xie Z, Xiao S, Huang Z, Lau CH, Zhu H, Luo J. CRISPR detection of cardiac tumor-associated microRNAs. Mol Biol Rep 2025; 52:114. [PMID: 39797940 DOI: 10.1007/s11033-024-10205-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2024] [Accepted: 12/28/2024] [Indexed: 01/13/2025]
Abstract
As multiple imaging modalities cannot reliably diagnose cardiac tumors, the molecular approach offers alternative ways to detect rare ones. One such molecular approach is CRISPR-based diagnostics (CRISPR-Dx). CRISPR-Dx enables visual readout, portable diagnostics, and rapid and multiplex detection of nucleic acids such as microRNA (miRNA). Dysregulation of miRNA expressions has been associated with cardiac tumors such as atrial myxoma and angiosarcoma. Diverse CRISPR-Dx systems have been developed to detect miRNA in recent years. These CRISPR-Dx systems are generally classified into four classes, depending on the Cas proteins used (Cas9, Cas12, Cas13, or Cas12f). CRISPR/Cas systems are integrated with various isothermal amplifications to detect low-abundance miRNAs. Amplification-free CRISPR-Dx systems have also been recently developed to detect miRNA directly. Herein, we critically discuss the advances, pitfalls, and future perspectives for these CRISPR-Dx systems in detecting miRNA, focusing on the diagnosis and prognosis of cardiac tumors.
Collapse
Affiliation(s)
- Youlin Fu
- Department of Cardiology, Ganzhou People's Hospital, Ganzhou, Jiangxi, China
| | - Peng Zhang
- Department of Cardiology, Ganzhou People's Hospital, Ganzhou, Jiangxi, China
| | - Feng Chen
- Department of Cardiology, Ganzhou People's Hospital, Ganzhou, Jiangxi, China
| | - Ziqiang Xie
- Department of Cardiology, Ganzhou People's Hospital, Ganzhou, Jiangxi, China
| | - Shihui Xiao
- Department of Cardiology, Ganzhou People's Hospital, Ganzhou, Jiangxi, China
| | - Zhihao Huang
- Department of Biology, College of Science, Shantou University, Shantou, 515063, Guangdong, China
| | - Cia-Hin Lau
- Department of Biology, College of Science, Shantou University, Shantou, 515063, Guangdong, China
| | - Haibao Zhu
- Department of Biology, College of Science, Shantou University, Shantou, 515063, Guangdong, China
- Guangdong Provincial Key Laboratory of Marine Biotechnology, Shantou University, Shantou, 515063, Guangdong, China
- Shantou Key Laboratory of Marine Microbial Resources and Interactions with Environment, Shantou University, Shantou, 515063, Guangdong, China
| | - Jun Luo
- Department of Cardiology, Ganzhou People's Hospital, Ganzhou, Jiangxi, China.
| |
Collapse
|
11
|
Kant K, Beeram R, Cao Y, Dos Santos PSS, González-Cabaleiro L, García-Lojo D, Guo H, Joung Y, Kothadiya S, Lafuente M, Leong YX, Liu Y, Liu Y, Moram SSB, Mahasivam S, Maniappan S, Quesada-González D, Raj D, Weerathunge P, Xia X, Yu Q, Abalde-Cela S, Alvarez-Puebla RA, Bardhan R, Bansal V, Choo J, Coelho LCC, de Almeida JMMM, Gómez-Graña S, Grzelczak M, Herves P, Kumar J, Lohmueller T, Merkoçi A, Montaño-Priede JL, Ling XY, Mallada R, Pérez-Juste J, Pina MP, Singamaneni S, Soma VR, Sun M, Tian L, Wang J, Polavarapu L, Santos IP. Plasmonic nanoparticle sensors: current progress, challenges, and future prospects. NANOSCALE HORIZONS 2024; 9:2085-2166. [PMID: 39240539 PMCID: PMC11378978 DOI: 10.1039/d4nh00226a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Accepted: 08/19/2024] [Indexed: 09/07/2024]
Abstract
Plasmonic nanoparticles (NPs) have played a significant role in the evolution of modern nanoscience and nanotechnology in terms of colloidal synthesis, general understanding of nanocrystal growth mechanisms, and their impact in a wide range of applications. They exhibit strong visible colors due to localized surface plasmon resonance (LSPR) that depends on their size, shape, composition, and the surrounding dielectric environment. Under resonant excitation, the LSPR of plasmonic NPs leads to a strong field enhancement near their surfaces and thus enhances various light-matter interactions. These unique optical properties of plasmonic NPs have been used to design chemical and biological sensors. Over the last few decades, colloidal plasmonic NPs have been greatly exploited in sensing applications through LSPR shifts (colorimetry), surface-enhanced Raman scattering, surface-enhanced fluorescence, and chiroptical activity. Although colloidal plasmonic NPs have emerged at the forefront of nanobiosensors, there are still several important challenges to be addressed for the realization of plasmonic NP-based sensor kits for routine use in daily life. In this comprehensive review, researchers of different disciplines (colloidal and analytical chemistry, biology, physics, and medicine) have joined together to summarize the past, present, and future of plasmonic NP-based sensors in terms of different sensing platforms, understanding of the sensing mechanisms, different chemical and biological analytes, and the expected future technologies. This review is expected to guide the researchers currently working in this field and inspire future generations of scientists to join this compelling research field and its branches.
Collapse
Affiliation(s)
- Krishna Kant
- CINBIO, Department of Physical Chemistry, Universidade de Vigo, 36310 Vigo, Spain.
- Department of Biotechnology, School of Engineering and Applied Sciences, Bennett University, Greater Noida, UP, India
| | - Reshma Beeram
- Advanced Centre of Research in High Energy Materials (ACRHEM), DRDO Industry Academia - Centre of Excellence (DIA-COE), University of Hyderabad, Hyderabad 500046, Telangana, India
| | - Yi Cao
- School of Mathematics and Physics, University of Science and Technology Beijing, Beijing 100083, P. R. China
| | - Paulo S S Dos Santos
- INESC TEC-Institute for Systems and Computer Engineering, Technology and Science, Rua Dr Alberto Frias, 4200-465 Porto, Portugal
| | | | - Daniel García-Lojo
- CINBIO, Department of Physical Chemistry, Universidade de Vigo, 36310 Vigo, Spain.
| | - Heng Guo
- Department of Biomedical Engineering, and Center for Remote Health Technologies and Systems, Texas A&M University, College Station, TX 77843, USA
| | - Younju Joung
- Department of Chemistry, Chung-Ang University, Seoul 06974, South Korea
| | - Siddhant Kothadiya
- Department of Chemical and Biological Engineering, Iowa State University, Ames, IA 50011, USA
- Nanovaccine Institute, Iowa State University, Ames, IA 50012, USA
| | - Marta Lafuente
- Department of Chemical & Environmental Engineering, Campus Rio Ebro, C/Maria de Luna s/n, 50018 Zaragoza, Spain
- Instituto de Nanociencia y Materiales de Aragón (INMA), CSIC-Universidad de Zaragoza, 50009 Zaragoza, Spain
| | - Yong Xiang Leong
- Division of Chemistry and Biological Chemistry, School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, Singapore 637371, Singapore
| | - Yiyi Liu
- Department of Mechanical Engineering and Materials Science, Washington University in St. Louis, St. Louis, MO, 63130, USA
| | - Yuxiong Liu
- Department of Mechanical Engineering and Materials Science, Washington University in St. Louis, St. Louis, MO, 63130, USA
| | - Sree Satya Bharati Moram
- Advanced Centre of Research in High Energy Materials (ACRHEM), DRDO Industry Academia - Centre of Excellence (DIA-COE), University of Hyderabad, Hyderabad 500046, Telangana, India
| | - Sanje Mahasivam
- Sir Ian Potter NanoBioSensing Facility, NanoBiotechnology Research Laboratory, School of Science, RMIT University, Melbourne, VIC 3000, Australia
| | - Sonia Maniappan
- Department of Chemistry, Indian Institute of Science Education and Research (IISER) Tirupati, Tirupati 517 507, India
| | - Daniel Quesada-González
- Catalan Institute of Nanoscience and Nanotechnology (ICN2), CSIC and BIST, Campus UAB, Bellaterra, 08193, Barcelona, Spain
| | - Divakar Raj
- Department of Allied Sciences, School of Health Sciences and Technology, UPES, Dehradun, 248007, India
| | - Pabudi Weerathunge
- Sir Ian Potter NanoBioSensing Facility, NanoBiotechnology Research Laboratory, School of Science, RMIT University, Melbourne, VIC 3000, Australia
| | - Xinyue Xia
- Department of Physics, The Chinese University of Hong Kong, Shatin, Hong Kong SAR 999077, China
| | - Qian Yu
- Department of Chemistry, Chung-Ang University, Seoul 06974, South Korea
| | - Sara Abalde-Cela
- International Iberian Nanotechnology Laboratory (INL), 4715-330 Braga, Portugal
| | - Ramon A Alvarez-Puebla
- Department of Physical and Inorganic Chemistry, Universitat Rovira i Virgili, Tarragona, Spain
- ICREA-Institució Catalana de Recerca i Estudis Avançats, 08010, Barcelona, Spain
| | - Rizia Bardhan
- Department of Chemical and Biological Engineering, Iowa State University, Ames, IA 50011, USA
- Nanovaccine Institute, Iowa State University, Ames, IA 50012, USA
| | - Vipul Bansal
- Sir Ian Potter NanoBioSensing Facility, NanoBiotechnology Research Laboratory, School of Science, RMIT University, Melbourne, VIC 3000, Australia
| | - Jaebum Choo
- Department of Chemistry, Chung-Ang University, Seoul 06974, South Korea
| | - Luis C C Coelho
- INESC TEC-Institute for Systems and Computer Engineering, Technology and Science, Rua Dr Alberto Frias, 4200-465 Porto, Portugal
- FCUP, University of Porto, Rua do Campo Alegre, 4169-007 Porto, Portugal
| | - José M M M de Almeida
- INESC TEC-Institute for Systems and Computer Engineering, Technology and Science, Rua Dr Alberto Frias, 4200-465 Porto, Portugal
- Department of Physics, University of Trás-os-Montes e Alto Douro, 5001-801 Vila Real, Portugal
| | - Sergio Gómez-Graña
- CINBIO, Department of Physical Chemistry, Universidade de Vigo, 36310 Vigo, Spain.
| | - Marek Grzelczak
- Centro de Física de Materiales (CSIC-UPV/EHU) and Donostia International Physics Center (DIPC), Paseo Manuel de Lardizabal 5, 20018 Donostia San-Sebastián, Spain
| | - Pablo Herves
- CINBIO, Department of Physical Chemistry, Universidade de Vigo, 36310 Vigo, Spain.
| | - Jatish Kumar
- Department of Chemistry, Indian Institute of Science Education and Research (IISER) Tirupati, Tirupati 517 507, India
| | - Theobald Lohmueller
- Chair for Photonics and Optoelectronics, Nano-Institute Munich, Department of Physics, Ludwig-Maximilians-Universität (LMU), Königinstraße 10, 80539 Munich, Germany
| | - Arben Merkoçi
- Catalan Institute of Nanoscience and Nanotechnology (ICN2), CSIC and BIST, Campus UAB, Bellaterra, 08193, Barcelona, Spain
- Catalan Institution for Research and Advanced Studies (ICREA), Passeig de Lluís Companys, 23, Barcelona, 08010, Spain
| | - José Luis Montaño-Priede
- Centro de Física de Materiales (CSIC-UPV/EHU) and Donostia International Physics Center (DIPC), Paseo Manuel de Lardizabal 5, 20018 Donostia San-Sebastián, Spain
| | - Xing Yi Ling
- Division of Chemistry and Biological Chemistry, School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, Singapore 637371, Singapore
| | - Reyes Mallada
- Department of Chemical & Environmental Engineering, Campus Rio Ebro, C/Maria de Luna s/n, 50018 Zaragoza, Spain
- Instituto de Nanociencia y Materiales de Aragón (INMA), CSIC-Universidad de Zaragoza, 50009 Zaragoza, Spain
- Networking Research Center on Bioengineering, Biomaterials and Nanomedicine, CIBER-BBN, 28029 Madrid, Spain
| | - Jorge Pérez-Juste
- CINBIO, Department of Physical Chemistry, Universidade de Vigo, 36310 Vigo, Spain.
| | - María P Pina
- Department of Chemical & Environmental Engineering, Campus Rio Ebro, C/Maria de Luna s/n, 50018 Zaragoza, Spain
- Instituto de Nanociencia y Materiales de Aragón (INMA), CSIC-Universidad de Zaragoza, 50009 Zaragoza, Spain
- Networking Research Center on Bioengineering, Biomaterials and Nanomedicine, CIBER-BBN, 28029 Madrid, Spain
| | - Srikanth Singamaneni
- Department of Mechanical Engineering and Materials Science, Washington University in St. Louis, St. Louis, MO, 63130, USA
| | - Venugopal Rao Soma
- Advanced Centre of Research in High Energy Materials (ACRHEM), DRDO Industry Academia - Centre of Excellence (DIA-COE), University of Hyderabad, Hyderabad 500046, Telangana, India
- School of Physics, University of Hyderabad, Hyderabad 500046, Telangana, India
| | - Mengtao Sun
- School of Mathematics and Physics, University of Science and Technology Beijing, Beijing 100083, P. R. China
| | - Limei Tian
- Department of Biomedical Engineering, and Center for Remote Health Technologies and Systems, Texas A&M University, College Station, TX 77843, USA
| | - Jianfang Wang
- Department of Physics, The Chinese University of Hong Kong, Shatin, Hong Kong SAR 999077, China
| | | | | |
Collapse
|
12
|
Liu B, Li X, Li Y, Zhang F, Xie J, Xu Y, Xu E, Zhang Q, Liu S, Xue Q. An advanced 3D DNA nanoplatform for spatiotemporally confined enhanced dual-mode biosensing MicroRNA in cancer cell. Biosens Bioelectron 2024; 263:116619. [PMID: 39094291 DOI: 10.1016/j.bios.2024.116619] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2024] [Revised: 06/12/2024] [Accepted: 07/30/2024] [Indexed: 08/04/2024]
Abstract
Dual-mode signal output platforms have demonstrated considerable promise due to their improved anti-interference capability and inherent signal self-correction. Nevertheless, traditional discrete-distributed signal probes often encounter significant drawbacks, including limited mass transfer efficiency, diminished signal strength, and instability in intricate biochemical environments. In response to these challenges, a scalable and hyper-compacted 3D DNA nanoplatform resembling "periodic focusing heliostat" has been developed for synergistically enhanced fluorescence (FL) and surface-enhanced Raman spectroscopy (SERS) biosensing of miRNA in cancer cells. Our approach utilized a distinctive assembly strategy integrating gold nanostars (GNS) as fundamental "heliostat units" linked by palindromic DNA sequences to facilitate each other hand-in-hand cascade alignment and condensed into large scale nanostructures. This configuration was further augmented by the incorporation of gold nanoparticles (GNP) via strong Au-S bonds, resulting in a sturdy framework for improved signal transduction. The initiation of this assembly process was mediated by the hybridization of dsDNA to miRNA-21, which served as a primer for polymerization and nicking reactions, thus generating a multifunctional T2 probe. This probe is intricately designed with three distinct parts: a 3'-palindromic end for structural integrity, a central region for capturing SERS-active probes (Cy3-P2), and a 5'-segment for attaching fluorescence reporters. Upon integration T2 into the GNS-based heliostat unit, it promotes palindromic arm-induced aggregation and plasma exciton coupling between plasma nanoparticles and signal transduction tags. This clustered arrangement creates a high-density "hot spot" array that maximizes the local electromagnetic fields necessary for enhanced SERS and FL response. This superstructure supports enhanced aggregation-induced signal amplification for both SERS and FL, offering exceptional sensitivity with LOD as low as 0.0306 pM and 0.409 pM. The efficacy of this method was demonstrated in the evaluation of miRNA-21 in various cancer cell lines.
Collapse
Affiliation(s)
- Bingxin Liu
- Shandong Provincial Key Laboratory of Chemical Energy Storage and Novel Cell Technology, School of Chemistry and Chemical Engineering, Liaocheng University, Liaocheng, 252000, China
| | - Xia Li
- Shandong Provincial Key Laboratory of Chemical Energy Storage and Novel Cell Technology, School of Chemistry and Chemical Engineering, Liaocheng University, Liaocheng, 252000, China.
| | - Yanli Li
- Shandong Provincial Key Laboratory of Chemical Energy Storage and Novel Cell Technology, School of Chemistry and Chemical Engineering, Liaocheng University, Liaocheng, 252000, China
| | - Fengqi Zhang
- Shandong Provincial Key Laboratory of Chemical Energy Storage and Novel Cell Technology, School of Chemistry and Chemical Engineering, Liaocheng University, Liaocheng, 252000, China
| | - Jiajing Xie
- Shandong Provincial Key Laboratory of Chemical Energy Storage and Novel Cell Technology, School of Chemistry and Chemical Engineering, Liaocheng University, Liaocheng, 252000, China
| | - Yihan Xu
- Shandong Provincial Key Laboratory of Chemical Energy Storage and Novel Cell Technology, School of Chemistry and Chemical Engineering, Liaocheng University, Liaocheng, 252000, China
| | - Ensheng Xu
- Shandong Provincial Key Laboratory of Chemical Energy Storage and Novel Cell Technology, School of Chemistry and Chemical Engineering, Liaocheng University, Liaocheng, 252000, China
| | - Qi Zhang
- Shandong Provincial Key Laboratory of Chemical Energy Storage and Novel Cell Technology, School of Chemistry and Chemical Engineering, Liaocheng University, Liaocheng, 252000, China
| | - Shan Liu
- Sichuan Provincial Key Laboratory for Human Disease Gene Study, Department of Medical Genetics, Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, 610072, China; Juxintang (Chengdu) Biotechnology Co., Ltd., Tianfu Jincheng Laboratory, City of Future Medicine, Chengdu, 641400, China.
| | - Qingwang Xue
- Shandong Provincial Key Laboratory of Chemical Energy Storage and Novel Cell Technology, School of Chemistry and Chemical Engineering, Liaocheng University, Liaocheng, 252000, China.
| |
Collapse
|
13
|
Guo Y, Zhou Y, Duan H, Xu D, Wei M, Wu Y, Xiong Y, Chen X, Wang S, Liu D, Huang X, Xin H, Xiong Y, Tang BZ. CRISPR/Cas-mediated "one to more" lighting-up nucleic acid detection using aggregation-induced emission luminogens. Nat Commun 2024; 15:8560. [PMID: 39362874 PMCID: PMC11450156 DOI: 10.1038/s41467-024-52931-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Accepted: 09/24/2024] [Indexed: 10/05/2024] Open
Abstract
CRISPR diagnostics are effective but suffer from low signal transduction efficiency, limited sensitivity, and poor stability due to their reliance on the trans-cleavage of single-stranded nucleic acid fluorescent reporters. Here, we present CrisprAIE, which integrates CRISPR/Cas reactions with "one to more" aggregation-induced emission luminogen (AIEgen) lighting-up fluorescence generated by the trans-cleavage of Cas proteins to AIEgen-incorporated double-stranded DNA labeled with single-stranded nucleic acid linkers and Black Hole Quencher groups at both ends (Q-dsDNA/AIEgens-Q). CrisprAIE demonstrates superior performance in the clinical nucleic acid detection of norovirus and SARS-CoV-2 regardless of amplification. Moreover, the diagnostic potential of CrisprAIE is further enhanced by integrating it with spherical nucleic acid-modified AIEgens (SNA/AIEgens) and a portable cellphone-based readout device. The improved CrisprAIE system, utilizing Q-dsDNA/AIEgen-Q and SNA/AIEgen reporters, exhibits approximately 80- and 270-fold improvements in sensitivity, respectively, compared to conventional CRISPR-based diagnostics. We believe CrisprAIE can be readily extended as a universal signal generation strategy to significantly enhance the detection efficiency of almost all existing CRISPR-based diagnostics.
Collapse
Affiliation(s)
- Yuqian Guo
- State Key Laboratory of Food Science and Resources, School of Food Science and Technology, Nanchang University, Nanchang, China
| | - Yaofeng Zhou
- State Key Laboratory of Food Science and Resources, School of Food Science and Technology, Nanchang University, Nanchang, China
| | - Hong Duan
- Beijing Engineering and Technology Research Center of Food Additives, Beijing Technology & Business University, Beijing, China
| | - Derong Xu
- The National Engineering Research Center for Bioengineering Drugs and the Technologies, Institute of Translational Medicine, Nanchang University, Nanchang, China
| | - Min Wei
- State Key Laboratory of Food Science and Resources, School of Food Science and Technology, Nanchang University, Nanchang, China
| | - Yuhao Wu
- State Key Laboratory of Food Science and Resources, School of Food Science and Technology, Nanchang University, Nanchang, China
| | - Ying Xiong
- National Engineering Research Center of Rice and Byproducts Deep Processing, College of Food Science and Engineering, Central South University of Forestry and Technology, Changsha, China
| | - Xirui Chen
- State Key Laboratory of Food Science and Resources, School of Food Science and Technology, Nanchang University, Nanchang, China
| | - Siyuan Wang
- Key Laboratory of Agricultural Information Acquisition Technology, Ministry of Agriculture and Rural Affairs, China Agricultural University, Beijing, China
| | - Daofeng Liu
- Jiangxi Provincial Center for Disease Control and Prevention, Nanchang, China
| | - Xiaolin Huang
- State Key Laboratory of Food Science and Resources, School of Food Science and Technology, Nanchang University, Nanchang, China.
| | - Hongbo Xin
- The National Engineering Research Center for Bioengineering Drugs and the Technologies, Institute of Translational Medicine, Nanchang University, Nanchang, China
| | - Yonghua Xiong
- State Key Laboratory of Food Science and Resources, School of Food Science and Technology, Nanchang University, Nanchang, China.
| | - Ben Zhong Tang
- School of Science and Engineering, Shenzhen Institute of Aggregate Science and Technology, The Chinese University of Hong Kong, Shenzhen, Guangdong, China.
| |
Collapse
|
14
|
Ho KHW, Lai H, Zhang R, Chen H, Yin W, Yan X, Xiao S, Lam CYK, Gu Y, Yan J, Hu K, Shi J, Yang M. SERS-Based Droplet Microfluidic Platform for Sensitive and High-Throughput Detection of Cancer Exosomes. ACS Sens 2024; 9:4860-4869. [PMID: 39233482 DOI: 10.1021/acssensors.4c01357] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/06/2024]
Abstract
Exosomes, nanosized extracellular vesicles containing biomolecular cargo, are increasingly recognized as promising noninvasive biomarkers for cancer diagnosis, particularly for their role in carrying tumor-specific molecular information. Traditional methods for exosome detection face challenges such as complexity, time consumption, and the need for sophisticated equipment. This study addresses these challenges by introducing a novel droplet microfluidic platform integrated with a surface-enhanced Raman spectroscopy (SERS)-based aptasensor for the rapid and sensitive detection of HER2-positive exosomes from breast cancer cells. Our approach utilized an on-chip salt-induced gold nanoparticles (GNPs) aggregation process in the presence of HER2 aptamers and HER2-positive exosomes, enhancing the hot spot-based SERS signal amplification. This platform achieved a limit of detection of 4.5 log10 particles/mL with a sample-to-result time of 5 min per sample. Moreover, this platform has been successfully applied for HER2 status testing in clinical samples to distinguish HER2-positive breast cancer patients from HER2-negative breast cancer patients. High sensitivity, specificity, and the potential for high-throughput screening of specific tumor exosomes make this SERS-based droplet system a potential liquid biopsy technology for early cancer diagnosis.
Collapse
Affiliation(s)
- Kwun Hei Willis Ho
- Department of Biomedical Engineering, The Hong Kong Polytechnic University, Kowloon, Hong Kong 999077, China
| | - Huang Lai
- Department of Biomedical Engineering, The Hong Kong Polytechnic University, Kowloon, Hong Kong 999077, China
| | - Ruolin Zhang
- Department of Biomedical Engineering, The Hong Kong Polytechnic University, Kowloon, Hong Kong 999077, China
| | - Haitian Chen
- Department of Hepatic Surgery and Liver Transplantation Center of The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou 510630, China
- Organ Transplantation Research Center of Guangdong Province, Guangdong Province Engineering Laboratory for Transplantation Medicine, Guangzhou 510630, China
| | - Wen Yin
- Department of Biomedical Engineering, The Hong Kong Polytechnic University, Kowloon, Hong Kong 999077, China
| | - Xijing Yan
- Department of Breast and Thyroid Surgery, Lingnan Hospital, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou 510630, China
| | - Shu Xiao
- Department of Biomedical Engineering, The Hong Kong Polytechnic University, Kowloon, Hong Kong 999077, China
| | - Ching Ying Katherine Lam
- Department of Biomedical Engineering, The Hong Kong Polytechnic University, Kowloon, Hong Kong 999077, China
| | - Yutian Gu
- Department of Biomedical Engineering, The Hong Kong Polytechnic University, Kowloon, Hong Kong 999077, China
| | - JiaXiang Yan
- Department of Biomedical Engineering, The Hong Kong Polytechnic University, Kowloon, Hong Kong 999077, China
| | - Kunpeng Hu
- Department of Breast and Thyroid Surgery, Lingnan Hospital, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou 510630, China
| | - Jingyu Shi
- Department of Biomedical Engineering, The Hong Kong Polytechnic University, Kowloon, Hong Kong 999077, China
| | - Mo Yang
- Department of Biomedical Engineering, The Hong Kong Polytechnic University, Kowloon, Hong Kong 999077, China
- The Hong Kong Polytechnic University Shenzhen Research Institute, Shenzhen 518000, China
- Joint Research Center of Biosensing and Precision Theranostics, The Hong Kong Polytechnic University, Kowloon, Hong Kong 999077, China
- Research Centre for Nanoscience and Nanotechnology, The Hong Kong Polytechnic University, Kowloon, Hong Kong 999077, China
| |
Collapse
|
15
|
Razavi Z, Soltani M, Souri M, Pazoki-Toroudi H. CRISPR-Driven Biosensors: A New Frontier in Rapid and Accurate Disease Detection. Crit Rev Anal Chem 2024:1-25. [PMID: 39288095 DOI: 10.1080/10408347.2024.2400267] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/19/2024]
Abstract
This comprehensive review delves into the advancements and challenges in biosensing, with a strong emphasis on the transformative potential of CRISPR technology for early and rapid detection of infectious diseases. It underscores the versatility of CRISPR/Cas systems, highlighting their ability to detect both nucleic acids and non-nucleic acid targets, and their seamless integration with isothermal amplification techniques. The review provides a thorough examination of the latest developments in CRISPR-based biosensors, detailing the unique properties of CRISPR systems, such as their high specificity and programmability, which make them particularly effective for detecting disease-associated nucleic acids. While the review focuses on nucleic acid detection due to its critical role in diagnosing infectious diseases, it also explores the broader applications of CRISPR technology in detecting non-nucleic acid targets, thereby acknowledging the technology's broader potential. Additionally, the review identifies existing challenges, such as the need for improved signal amplification and real-world applicability, and offers future perspectives aimed at overcoming these hurdles. The ultimate goal is to advance the development of highly sensitive and specific CRISPR-based biosensors that can be used widely for improving human health, particularly in point-of-care settings and resource-limited environments.
Collapse
Affiliation(s)
- ZahraSadat Razavi
- Physiology Research Center, Iran University Medical Sciences, Tehran, Iran
- Biochemistry Research Center, Iran University Medical Sciences, Tehran, Iran
| | - Madjid Soltani
- Department of Mechanical Engineering, K. N. Toosi University of Technology, Tehran, Iran
- Department of Electrical and Computer Engineering, University of Waterloo, Waterloo, Canada
- Centre for Biotechnology and Bioengineering (CBB), University of Waterloo, Waterloo, Canada
- Department of Integrative Oncology, BC Cancer Research Institute, Vancouver, Canada
- Centre for Sustainable Business, International Business University, Toronto, Canada
| | - Mohammad Souri
- Department of Mechanical Engineering, K. N. Toosi University of Technology, Tehran, Iran
| | | |
Collapse
|
16
|
Yao Z, Li W, He K, Wang H, Xu Y, Xu X, Wu Q, Wang L. Precise pathogen quantification by CRISPR-Cas: a sweet but tough nut to crack. Crit Rev Microbiol 2024:1-19. [PMID: 39287550 DOI: 10.1080/1040841x.2024.2404041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Revised: 09/04/2024] [Accepted: 09/09/2024] [Indexed: 09/19/2024]
Abstract
Pathogen detection is increasingly applied in medical diagnosis, food processing and safety, and environmental monitoring. Rapid, sensitive, and accurate pathogen quantification is the most critical prerequisite for assessing protocols and preventing risks. Among various methods evolved, those based on clustered regularly interspaced short palindromic repeats (CRISPR)-associated proteins (Cas) have been developed as important pathogen detection strategies due to their distinct advantages of rapid target recognition, programmability, ultra-specificity, and potential for scalability of point-of-care testing (POCT). However, arguments and concerns on the quantitative capability of CRISPR-based strategies are ongoing. Herein, we systematically overview CRISPR-based pathogen quantification strategies according to the principles, properties, and application scenarios. Notably, we review future challenges and perspectives to address the of precise pathogen quantification by CRISPR-Cas. We hope the insights presented in this review will benefit development of CRISPR-based pathogen detection methods.
Collapse
Affiliation(s)
- Zhihao Yao
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Agro-product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
- Lab of Brewing Microbiology and Applied Enzymology, The Key Laboratory of Industrial Biotechnology, Ministry of Education, State Key Laboratory of Food Science and Technology, School of Biotechnology, Jiangnan University, Wuxi, Jiangsu, China
| | - Wanglu Li
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Agro-product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Kaiyu He
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Agro-product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Hongmei Wang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Agro-product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Yan Xu
- Lab of Brewing Microbiology and Applied Enzymology, The Key Laboratory of Industrial Biotechnology, Ministry of Education, State Key Laboratory of Food Science and Technology, School of Biotechnology, Jiangnan University, Wuxi, Jiangsu, China
| | - Xiahong Xu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Agro-product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Qun Wu
- Lab of Brewing Microbiology and Applied Enzymology, The Key Laboratory of Industrial Biotechnology, Ministry of Education, State Key Laboratory of Food Science and Technology, School of Biotechnology, Jiangnan University, Wuxi, Jiangsu, China
| | - Liu Wang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Agro-product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
- Key Laboratory of Traceability for Agricultural Genetically Modified Organisms, Ministry of Agriculture and Rural Affairs, Hangzhou, China
| |
Collapse
|
17
|
Liu Y, Gou S, Qiu L, Xu Z, Yang H, Yang S, Zhao Y. A CRISPR/Cas12a-powered gold/nickel foam surface-enhanced Raman spectroscopy biosensor for nucleic acid specific detection in foods. Analyst 2024; 149:4343-4350. [PMID: 39051914 DOI: 10.1039/d4an00778f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/27/2024]
Abstract
Food is a necessary source of energy, but it also serves as a pathway for transmitting infectious pathogens, making food safety a matter of great concern. Rapid, accurate, and specific detection methods for foodborne viruses are crucial. Surface-Enhanced Raman Scattering (SERS), due to its superior sensitivity and characteristic fingerprint spectra, holds enormous potential. However, due to the limitations of SERS, it requires specific conditions to achieve specificity. In order to enhance the specificity and accuracy of nucleic acid detection based on SERS, we have developed a CRISPR-Cas12a-mediated SERS technique to identify target DNA, harnessing the targeting recognition capability of CRISPR-Cas12a and ultra-sensitive SERS tags and successfully addressing SERS' lack of specific detection capability. This system includes a gold/nickel foam substrate (Au-NFs) and a reporter (ssDNA-ROX). The phenomenon of colloidal gold/silver nano-aggregation due to magnesium ions, which is commonly encountered in CRISPR-SERS, was simultaneously solved using AuNFs. The qualitative and quantitative analysis of target DNA in drinking water was performed by monitoring the intensity change of ROX Raman reporter molecules. The results showed that the sensor detected DNA within 30 min and the limit of detection (LOD) was 8.23 fM. This is expected to become one of the alternative methods for nucleic acid detection for its rapid detection and high specificity.
Collapse
Affiliation(s)
- Yan Liu
- College of Chemistry and Materials Science, Shanghai Normal University, Shanghai, China
| | - Shirui Gou
- College of Life Sciences, Shanghai Normal University, Shanghai, China
| | - Long Qiu
- Wuxi Tolo Biotechnology Co., Ltd, Wuxi, Jiangsu, China
| | - Zhiwen Xu
- Technology Center for Animal Plant and Food Inspection and Quarantine of Shanghai Customs, Shanghai, China
| | - Haifeng Yang
- College of Chemistry and Materials Science, Shanghai Normal University, Shanghai, China
| | - Shiping Yang
- College of Chemistry and Materials Science, Shanghai Normal University, Shanghai, China
| | - Yu Zhao
- College of Life Sciences, Shanghai Normal University, Shanghai, China
| |
Collapse
|
18
|
Zhou Z, Lau CH, Wang J, Guo R, Tong S, Li J, Dong W, Huang Z, Wang T, Huang X, Yu Z, Wei C, Chen G, Xue H, Zhu H. Rapid and Amplification-free Nucleic Acid Detection with DNA Substrate-Mediated Autocatalysis of CRISPR/Cas12a. ACS OMEGA 2024; 9:28866-28878. [PMID: 38973832 PMCID: PMC11223203 DOI: 10.1021/acsomega.4c03413] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 05/24/2024] [Accepted: 05/29/2024] [Indexed: 07/09/2024]
Abstract
To enable rapid and accurate point-of-care DNA detection, we have developed a single-step, amplification-free nucleic acid detection platform, a DNA substrate-mediated autocatalysis of CRISPR/Cas12a (DSAC). DSAC makes use of the trans-cleavage activity of Cas12a and target template-activated DNA substrate for dual signal amplifications. DSAC employs two distinct DNA substrate types: one that enhances signal amplification and the other that negatively modulates fluorescent signals. The positive inducer utilizes nicked- or loop-based DNA substrates to activate CRISPR/Cas12a, initiating trans-cleavage activity in a positive feedback loop, ultimately amplifying the fluorescent signals. The negative modulator, which involves competitor-based DNA substrates, competes with the probes for trans-cleaving, resulting in a signal decline in the presence of target DNA. These DNA substrate-based DSAC systems were adapted to fluorescence-based and paper-based lateral flow strip detection platforms. Our DSAC system accurately detected African swine fever virus (ASFV) in swine's blood samples at femtomolar sensitivity within 20 min. In contrast to the existing amplification-free CRISPR/Dx platforms, DSAC offers a cost-effective and straightforward detection method, requiring only the addition of a rationally designed DNA oligonucleotide. Notably, a common ASFV sequence-encoded DNA substrate can be directly applied to detect human nucleic acids through a dual crRNA targeting system. Consequently, our single-step DSAC system presents an alternative point-of-care diagnostic tool for the sensitive, accurate, and timely diagnosis of viral infections with potential applicability to human disease detection.
Collapse
Affiliation(s)
- Zhongqi Zhou
- Pediatric
Hematology Laboratory, Division of Hematology/Oncology, Department
of Pediatrics, The Seventh Affiliated Hospital
of Sun Yat-Sen University, Shenzhen, Guangdong 518107, China
| | - Cia-Hin Lau
- Department
of Biology, College of Science, Shantou
University, Shantou, Guangdong 515063, China
| | - Jianchao Wang
- Department
of Pathology, Clinical Oncology School of
Fujian Medical University, Fujian Cancer Hospital, Fuzhou, Fujian 350014, China
| | - Rui Guo
- Animal
Husbandry and Veterinary Institute, Hubei
Academy of Agricultural Science, Wuhan, Hubei 430064, China
- Key
Laboratory of Prevention and Control Agents for Animal Bacteriosis, Ministry of Agriculture, Wuhan, Hubei 430064, China
| | - Sheng Tong
- Department
of Biomedical Engineering, University of
Kentucky, Lexington, Kentucky 40506-0503, United States
| | - Jiaqi Li
- Department
of Biology, College of Science, Shantou
University, Shantou, Guangdong 515063, China
| | - Wenjiao Dong
- Department
of Epidemiology and Health Statistics, School of Public Health, Guangdong Medical University, Dongguan, Guangdong 523808, China
| | - Zhihao Huang
- Department
of Biology, College of Science, Shantou
University, Shantou, Guangdong 515063, China
| | - Tao Wang
- Department
of Biology, College of Science, Shantou
University, Shantou, Guangdong 515063, China
| | - Xiaojun Huang
- Xiamen
Fly Gene Biomedical Technology CO., LTD, Biomedical Industrial Park, Xiamen, Fujian 361000, China
| | - Ziqing Yu
- Department
of Pathology, Clinical Oncology School of
Fujian Medical University, Fujian Cancer Hospital, Fuzhou, Fujian 350014, China
| | - Chiju Wei
- Department
of Biology, College of Science, Shantou
University, Shantou, Guangdong 515063, China
| | - Gang Chen
- Department
of Pathology, Clinical Oncology School of
Fujian Medical University, Fujian Cancer Hospital, Fuzhou, Fujian 350014, China
| | - Hongman Xue
- Pediatric
Hematology Laboratory, Division of Hematology/Oncology, Department
of Pediatrics, The Seventh Affiliated Hospital
of Sun Yat-Sen University, Shenzhen, Guangdong 518107, China
| | - Haibao Zhu
- Department
of Biology, College of Science, Shantou
University, Shantou, Guangdong 515063, China
| |
Collapse
|
19
|
Zhou S, Ran J, Man S, Zhang J, Yuan R, Yang X. Exploring the Effect of Steric Hindrance on Trans-cleavage Activity of CRISPR-cas12a for Ultrasensitive SERS Detection of P53 DNA. Anal Chem 2024; 96:10654-10661. [PMID: 38875020 DOI: 10.1021/acs.analchem.4c01347] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/16/2024]
Abstract
The trans-cleavage properties of Cas12a make it important for gene editing and disease diagnosis. In this work, the effect of spatial site resistance on the trans-cleavage activity of Cas12a was studied. First, we have explored the cutting effect of Cas12a when different-sized nanoparticles are linked with various spacings of DNA strands using the fluorescence method. The minimum spacing with different-sized nanoparticles that cas12a can cut was determined. We found that when the size of the nanoparticles increases, the minimum spacing that cas12a can cut gradually increases. Subsequently, we verified the conclusion using the surface-enhanced Raman scattering (SERS) method, and at the same time, we designed a SERS biosensor that can achieve ultrasensitive detection of P53 DNA with a linear range of 1 fM-10 nM and a limit of detection of 0.40 fM. Our work develops a deep study of the trans-cleavage activity of Cas12a and gives a guide for DNA design in cas12a-related studies, which can be applied in biomedical analysis and other fields.
Collapse
Affiliation(s)
- Shixin Zhou
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, College of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, PR China
| | - Jinzhuo Ran
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, College of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, PR China
| | - Shanyou Man
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, College of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, PR China
| | - Jiale Zhang
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, College of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, PR China
| | - Ruo Yuan
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, College of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, PR China
| | - Xia Yang
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, College of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, PR China
| |
Collapse
|
20
|
Li X, Ma Y, He M, Tan B, Wang G, Zhu G. A novel fluorescent aptasensor for sensitive and selective detection of environmental toxins fumonisin B1 based on enzyme-assisted dual recycling amplification and 2D δ-FeOOH-NH 2 nanosheets. Biosens Bioelectron 2024; 253:116183. [PMID: 38452570 DOI: 10.1016/j.bios.2024.116183] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Revised: 02/23/2024] [Accepted: 02/29/2024] [Indexed: 03/09/2024]
Abstract
Fumonisin (FB) is a pervasive hazardous substance in the environment, presenting significant threats to human health and ecological systems. Thus, the selective and sensitive detection of fumonisin B1 (FB1) is crucial due to its high toxicity and wide distribution in corn, oats, and related products. In this work, we developed a novel and versatile fluorescent aptasensor by combining enzyme-assisted dual recycling amplification with 2D δ-FeOOH-NH2 nanosheets for the determination of FB1. The established CRISPR/Cas12a system was activated by using activator DNA (aDNA), which was released via a T7 exonuclease-assisted recycling reaction. Additionally, the activated Cas12a protein was utilized for non-specifically cleavage of the FAM-labeled single-stranded DNA (ssDNA-FAM) anchored on δ-FeOOH-NH2 nanosheets. The pre-quenched fluorescence signal was restored due to the desorption of the cleaved ssDNA-FAM. Due to the utilization of this T7 exonuclease-Cas12a-δ-FeOOH-NH2 aptasensor for signal amplification, the detection range of FB1 was expanded from 1 pg/mL to 100 ng/mL, with a limit of detection (LOD) as low as 0.45 pg/mL. This study not only provides novel insights into the development of fluorescence biosensors based on 2D nanomaterials combined with CRISPR/Cas12a, but also exhibits remarkable applicability in detecting other significant targets.
Collapse
Affiliation(s)
- Xiang Li
- School of Environment, Henan Key Laboratory for Environmental Pollution Control, Key Laboratory for Yellow River and Huai River Water Environment and Pollution Control, Ministry of Education, Henan Normal University, Xinxiang, Henan, 453007, China.
| | - Yunxiao Ma
- School of Environment, Henan Key Laboratory for Environmental Pollution Control, Key Laboratory for Yellow River and Huai River Water Environment and Pollution Control, Ministry of Education, Henan Normal University, Xinxiang, Henan, 453007, China
| | - Mengyuan He
- School of Environment, Henan Key Laboratory for Environmental Pollution Control, Key Laboratory for Yellow River and Huai River Water Environment and Pollution Control, Ministry of Education, Henan Normal University, Xinxiang, Henan, 453007, China
| | - Bing Tan
- School of Environment, Henan Key Laboratory for Environmental Pollution Control, Key Laboratory for Yellow River and Huai River Water Environment and Pollution Control, Ministry of Education, Henan Normal University, Xinxiang, Henan, 453007, China
| | - Gongke Wang
- School of Materials Science and Engineering, Henan Engineering Research Center of Design and Recycle for Advanced Electrochemical Energy Storage Materials, Henan Normal University, Xinxiang, Henan, 453007, China
| | - Guifen Zhu
- School of Environment, Henan Key Laboratory for Environmental Pollution Control, Key Laboratory for Yellow River and Huai River Water Environment and Pollution Control, Ministry of Education, Henan Normal University, Xinxiang, Henan, 453007, China
| |
Collapse
|
21
|
Xia L, Huang Y, Wang Q, Wang X, Wang Y, Wu J, Li Y. Deciphering biomolecular complexities: the indispensable role of surface-enhanced Raman spectroscopy in modern bioanalytical research. Analyst 2024; 149:2526-2541. [PMID: 38623605 DOI: 10.1039/d4an00272e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/17/2024]
Abstract
Surface-enhanced Raman spectroscopy (SERS) has emerged as an indispensable analytical tool in biomolecular research, providing unmatched sensitivity critical for the elucidation of biomolecular structures. This review presents a thorough examination of SERS, outlining its fundamental principles, cataloging its varied applications within the biomolecular sphere, and contemplating its future developmental trajectories. We begin with a detailed analysis of SERS's mechanistic principles, emphasizing both the phenomena of surface enhancement and the complexities inherent in Raman scattering spectroscopy. Subsequently, we delve into the pivotal role of SERS in the structural analysis of diverse biomolecules, including proteins, nucleic acids, lipids, carbohydrates, and biochromes. The remarkable capabilities of SERS extend beyond mere detection, offering profound insights into biomolecular configurations and interactions, thereby enriching our comprehension of intricate biological processes. This review also sheds light on the application of SERS in real-time monitoring of various bio-relevant compounds, from enzymes and coenzymes to metal ion-chelate complexes and cellular organelles, thereby providing a holistic view and empowering researchers to unravel the complexities of biological systems. We also address the current challenges faced by SERS, such as enhancing sensitivity and resolution, developing stable and reproducible substrates, and conducting thorough analyses in complex biological matrices. Nonetheless, the continual advancements in nanotechnology and spectroscopy solidify the standing of SERS as a formidable force in biomolecular research. In conclusion, the versatility and robustness of SERS not only deepen our understanding of biomolecular intricacies but also pave the way for significant developments in medical research, therapeutic innovation, and diagnostic approaches.
Collapse
Affiliation(s)
- Ling Xia
- Research Center for Innovative Technology of Pharmaceutical Analysis, College of Pharmacy, Harbin Medical University, Heilongjiang 150081, PR China.
| | - Yujiang Huang
- Research Center for Innovative Technology of Pharmaceutical Analysis, College of Pharmacy, Harbin Medical University, Heilongjiang 150081, PR China.
| | - Qiuying Wang
- Research Center for Innovative Technology of Pharmaceutical Analysis, College of Pharmacy, Harbin Medical University, Heilongjiang 150081, PR China.
| | - Xiaotong Wang
- Research Center for Innovative Technology of Pharmaceutical Analysis, College of Pharmacy, Harbin Medical University, Heilongjiang 150081, PR China.
| | - Yunpeng Wang
- Research Center for Innovative Technology of Pharmaceutical Analysis, College of Pharmacy, Harbin Medical University, Heilongjiang 150081, PR China.
| | - Jing Wu
- School of Physics and Technology, Nantong University, No. 9, Seyuan Road, Nantong, Jiangsu, 226019, PR China
| | - Yang Li
- Research Center for Innovative Technology of Pharmaceutical Analysis, College of Pharmacy, Harbin Medical University, Heilongjiang 150081, PR China.
- Department of Clinical Laboratory Diagnosis, Fourth Affiliated Hospital of Harbin Medical University, Harbin, China
- Research Unit of Health Sciences and Technology (HST), Faculty of Medicine University of Oulu, Finland
| |
Collapse
|
22
|
Choi N, Schlücker S. Convergence of Surface-Enhanced Raman Scattering with Molecular Diagnostics: A Perspective on Future Directions. ACS NANO 2024; 18:5998-6007. [PMID: 38345242 DOI: 10.1021/acsnano.3c11370] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/28/2024]
Abstract
Molecular diagnostics (MD) is widely employed in multiple scientific disciplines, such as oncology, pathogen detection, forensic investigations, and the pharmaceutical industry. Techniques such as polymerase chain reaction (PCR) revolutionized the rapid and accurate identification of nucleic acids (DNA, RNA). More recently, CRISPR and its CRISPR-associated protein (Cas) have been a ground-breaking discovery that is the latest revolution in molecular biology, including MD. Surface-enhanced Raman scattering (SERS) is a very attractive alternative to fluorescence as the currently most widely used optical readout in MD. In this Perspective, milestones in the development of MD, SERS-PCR, and next-generation approaches to MD, such as Specific High-Sensitivity Enzymatic Reporter UnLOCKing (SHERLOCK) and DNA Endonuclease-Targeted CRISPR Trans Reporter (DETECTR), are briefly summarized. Our perspective on the future convergence of SERS with MD is focused on SERS-based CRISPR/Cas (SERS-CRISPR) since we anticipate many promising applications in this rapidly emerging field. We predict that major future developments will exploit the advantages of real-time monitoring with the superior brightness, photostability, and spectral multiplexing potential of SERS nanotags in an automated workflow for rapid assays under isothermal, amplification-free conditions.
Collapse
Affiliation(s)
- Namhyun Choi
- Physical Chemistry I, Department of Chemistry, and Center of Nanointegration Duisburg-Essen (CENIDE) & Center of Medical Biotechnology (ZMB), University of Duisburg-Essen (UDE), 45141 Essen, Germany
| | - Sebastian Schlücker
- Physical Chemistry I, Department of Chemistry, and Center of Nanointegration Duisburg-Essen (CENIDE) & Center of Medical Biotechnology (ZMB), University of Duisburg-Essen (UDE), 45141 Essen, Germany
| |
Collapse
|
23
|
Li B, Zhai G, Dong Y, Wang L, Ma P. Recent progress on the CRISPR/Cas system in optical biosensors. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2024; 16:798-816. [PMID: 38259224 DOI: 10.1039/d3ay02147e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/24/2024]
Abstract
Clustered regularly interspaced short palindromic repeats (CRISPR) and CRISPR-associated (Cas) protein systems are adaptive immune systems unique to archaea and bacteria, with the characteristics of targeted recognition and gene editing to resist the invasion of foreign nucleic acids. Biosensors combined with the CRISPR/Cas system and optical detection technology have attracted much attention in medical diagnoses, food safety, agricultural progress, and environmental monitoring owing to their good sensitivity, high selectivity, and fast detection efficiency. In this review, we introduce the mechanism of CRISPR/Cas systems and developments in this area, followed by summarizing recent progress on CRISPR/Cas system-based optical biosensors combined with colorimetric, fluorescence, electrochemiluminescence and surface-enhanced Raman scattering optical techniques in various fields. Finally, we discuss the challenges and future perspectives of CRISPR/Cas systems in optical biosensors.
Collapse
Affiliation(s)
- Bingqian Li
- School of Special Education and Rehabilitation, Binzhou Medical University, Yantai 264003, China.
| | - Guangyu Zhai
- School of Pharmacy, Binzhou Medical University, Yantai 264003, China
| | - Yaru Dong
- School of Pharmacy, Binzhou Medical University, Yantai 264003, China
| | - Lan Wang
- School of Special Education and Rehabilitation, Binzhou Medical University, Yantai 264003, China.
| | - Peng Ma
- School of Basic Medicine, Binzhou Medical University, Yantai 264003, China.
| |
Collapse
|
24
|
Tian B, Wang Y, Tang W, Chen J, Zhang J, Xue S, Zheng S, Cheng G, Gu B, Chen M. Tandem CRISPR nucleases-based lateral flow assay for amplification-free miRNA detection via the designed "locked RNA/DNA" as fuels. Talanta 2024; 266:124995. [PMID: 37524043 DOI: 10.1016/j.talanta.2023.124995] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Revised: 06/28/2023] [Accepted: 07/25/2023] [Indexed: 08/02/2023]
Abstract
Currently, available biosensors based on CRISPR/Cas typically depend on coupling with nucleic acid amplification technologies to enhance their sensitivity. However, this approach often involves intricate amplification processes, which could be time-consuming and susceptible to contamination. In addition, signal readouts often require sophisticated and cumbersome equipment, obstructing the applicability of CRISPR/Cas assays in resource-limited regions. Herein, a tandem CRISPR/Cas13a/Cas12a mechanism (tanCRISPR) has been developed via the designed "Locked RNA/DNA" probe as fuels for the trans-cleavage nucleic acid of Cas13a and activated nucleic acid of Cas12a. Meanwhile, a lateral flow assay (LFA) is designed to combine with this tandem CRISPR/Cas13a/Cas12a mechanism (termed tanCRISPR-LFA), realizing the portable monitoring of miRNA-21. The tanCRISPR could realize the limit of detection at pM levels (266 folds lower than Cas13a-based miRNA testing alone) without the resort to target amplification procedures. Furthermore, the miRNA-21 levels of MDA-MB-231 cell extracts are sensed by tanCRISPR-LFA, which is comparable to qRT-PCR. With the virtues of portability, rapidity, sensitivity, and low cost, tanCRISPR-LFA is amenable for CRISPR/Cas-based biosensing and potential applications in the clinical diagnosis of miRNA-associated diseases.
Collapse
Affiliation(s)
- Benshun Tian
- Medical Technology School, Xuzhou Medical University, Xuzhou, 221006, China; Department of Clinical Laboratory Medicine, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, Guangdong, 510000, China
| | - Yuxin Wang
- School of Medical Imaging, Xuzhou Medical University, Xuzhou, 221006, China
| | - Wuyue Tang
- School of Medical Imaging, Xuzhou Medical University, Xuzhou, 221006, China
| | - Jiali Chen
- School of Medical Imaging, Xuzhou Medical University, Xuzhou, 221006, China
| | - Jingwen Zhang
- School of Medical Imaging, Xuzhou Medical University, Xuzhou, 221006, China
| | - Siyi Xue
- School of Medical Imaging, Xuzhou Medical University, Xuzhou, 221006, China
| | - Shaohui Zheng
- School of Medical Imaging, Xuzhou Medical University, Xuzhou, 221006, China
| | - Guohui Cheng
- School of Pharmacy, Xuzhou Medical University, Xuzhou, 221006, China.
| | - Bing Gu
- Medical Technology School, Xuzhou Medical University, Xuzhou, 221006, China; Department of Clinical Laboratory Medicine, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, Guangdong, 510000, China.
| | - Minghui Chen
- School of Medical Imaging, Xuzhou Medical University, Xuzhou, 221006, China.
| |
Collapse
|
25
|
Li Y, Liu Y, Tang X, Qiao J, Kou J, Man S, Zhu L, Ma L. CRISPR/Cas-Powered Amplification-Free Detection of Nucleic Acids: Current State of the Art, Challenges, and Futuristic Perspectives. ACS Sens 2023; 8:4420-4441. [PMID: 37978935 DOI: 10.1021/acssensors.3c01463] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2023]
Abstract
CRISPR/Cas system is becoming an increasingly influential technology that has been repositioned in nucleic acid detection. A preamplification step is usually required to improve the sensitivity of CRISPR/Cas-based detection. The striking biological features of CRISPR/Cas, including programmability, high sensitivity and sequence specificity, and single-base resolution. More strikingly, the target-activated trans-cleavage could act as a biocatalytic signal transductor and amplifier, thereby empowering it to potentially perform nucleic acid detection without a preamplification step. The reports of such work are on the rise, which is not only scientifically significant but also promising for futuristic end-user applications. This review started with the introduction of the detection methods of nucleic acids and the CRISPR/Cas-based diagnostics (CRISPR-Dx). Next, we objectively discussed the pros and cons of preamplification steps for CRISPR-Dx. We then illustrated and highlighted the recently developed strategies for CRISPR/Cas-powered amplification-free detection that can be realized through the uses of ultralocalized reactors, cascade reactions, ultrasensitive detection systems, or others. Lastly, the challenges and futuristic perspectives were proposed. It can be expected that this work not only makes the researchers better understand the current strategies for this emerging field, but also provides insight for designing novel CRISPR-Dx without a preamplification step to win practicable use in the near future.
Collapse
Affiliation(s)
- Yaru Li
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Industrial Microbiology, Ministry of Education, Tianjin Key Laboratory of Industry Microbiology, National and Local United Engineering Lab of Metabolic Control Fermentation Technology, China International Science and Technology Cooperation Base of Food Nutrition/Safety and Medicinal Chemistry, College of Biotechnology, Tianjin University of Science & Technology, Tianjin 300457, China
| | - Yajie Liu
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Industrial Microbiology, Ministry of Education, Tianjin Key Laboratory of Industry Microbiology, National and Local United Engineering Lab of Metabolic Control Fermentation Technology, China International Science and Technology Cooperation Base of Food Nutrition/Safety and Medicinal Chemistry, College of Biotechnology, Tianjin University of Science & Technology, Tianjin 300457, China
| | - Xiaoqin Tang
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Industrial Microbiology, Ministry of Education, Tianjin Key Laboratory of Industry Microbiology, National and Local United Engineering Lab of Metabolic Control Fermentation Technology, China International Science and Technology Cooperation Base of Food Nutrition/Safety and Medicinal Chemistry, College of Biotechnology, Tianjin University of Science & Technology, Tianjin 300457, China
| | - Jiali Qiao
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Industrial Microbiology, Ministry of Education, Tianjin Key Laboratory of Industry Microbiology, National and Local United Engineering Lab of Metabolic Control Fermentation Technology, China International Science and Technology Cooperation Base of Food Nutrition/Safety and Medicinal Chemistry, College of Biotechnology, Tianjin University of Science & Technology, Tianjin 300457, China
| | - Jun Kou
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Industrial Microbiology, Ministry of Education, Tianjin Key Laboratory of Industry Microbiology, National and Local United Engineering Lab of Metabolic Control Fermentation Technology, China International Science and Technology Cooperation Base of Food Nutrition/Safety and Medicinal Chemistry, College of Biotechnology, Tianjin University of Science & Technology, Tianjin 300457, China
| | - Shuli Man
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Industrial Microbiology, Ministry of Education, Tianjin Key Laboratory of Industry Microbiology, National and Local United Engineering Lab of Metabolic Control Fermentation Technology, China International Science and Technology Cooperation Base of Food Nutrition/Safety and Medicinal Chemistry, College of Biotechnology, Tianjin University of Science & Technology, Tianjin 300457, China
| | - Lei Zhu
- Department of Molecular Imaging and Nuclear Medicine, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin's Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin 300060, China
| | - Long Ma
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Industrial Microbiology, Ministry of Education, Tianjin Key Laboratory of Industry Microbiology, National and Local United Engineering Lab of Metabolic Control Fermentation Technology, China International Science and Technology Cooperation Base of Food Nutrition/Safety and Medicinal Chemistry, College of Biotechnology, Tianjin University of Science & Technology, Tianjin 300457, China
| |
Collapse
|
26
|
Yang AQ, Zheng W, Chen X, Wang J, Zhou S, Gao H. Au nanorod assembly for sensitive SERS detection of airway inflammatory factors in sputum. Front Bioeng Biotechnol 2023; 11:1256340. [PMID: 38149176 PMCID: PMC10750157 DOI: 10.3389/fbioe.2023.1256340] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Accepted: 11/17/2023] [Indexed: 12/28/2023] Open
Abstract
In this paper, we demonstrate a surface-enhanced Raman spectroscopy (SERS) biosensor based on the self-assembly of gold nanorods (AuNRs) for the specific detection of airway inflammatory factors in diluted sputum. The AuNR surface was modified with an antibody that was able to specifically recognize an airway inflammatory factor, interleukin-5 (IL-5), so that a end-to-end self-assembly system could be obtained, resulting in an order of magnitude amplification of the Raman signal and greatly improved sensitivity. Meanwhile, the outer layer of the biosensor was coated with silicon dioxide, which improved the stability of the system and facilitated its future applications. When the detected concentration was in the range of 0.1-50 pg/mL, the SERS signal generated by the sensor showed a good linear relationship with the IL-5 concentration. Moreover, it had satisfactory performance in diluted sputum and clinical subjects with asthma, which could achieve sensitive detection of the airway inflammatory factor IL-5. Overall, the developed biosensor based on the SERS effect exhibited the advantages of rapid and sensitive detecting performance, which is suitable for monitoring airway inflammatory factors in sputum.
Collapse
Affiliation(s)
- An-qi Yang
- Department of Basic Medicine, Quanzhou Medical College, Quanzhou, China
- Central Laboratory, Second Affiliated Hospital of Fujian Medical University, Quanzhou, China
| | | | - Xiaoyang Chen
- Department of Pulmonary and Critical Intensive Medicine, Second Affiliated Hospital of Fujian Medical University, Quanzhou, China
| | - Jiayin Wang
- Department of Neurosurgery, Second Affiliated Hospital of Fujian Medical University, Quanzhou, China
| | - Shuang Zhou
- Central Laboratory, Second Affiliated Hospital of Fujian Medical University, Quanzhou, China
| | - Hongzhi Gao
- Central Laboratory, Second Affiliated Hospital of Fujian Medical University, Quanzhou, China
- Department of Neurosurgery, Second Affiliated Hospital of Fujian Medical University, Quanzhou, China
| |
Collapse
|
27
|
Guan L, Peng J, Liu T, Huang S, Yang Y, Wang X, Hao X. Ultrasensitive miRNA Detection Based on Magnetic Upconversion Nanoparticle Enhancement and CRISPR/Cas13a-Driven Signal Amplification. Anal Chem 2023; 95:17708-17715. [PMID: 38000080 DOI: 10.1021/acs.analchem.3c03554] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2023]
Abstract
MicroRNAs (miRNAs), a class of small molecules with important regulatory functions, have been widely used in the field of biosensing as biomarkers for the early diagnosis of various diseases. Therefore, it is crucial to develop an miRNA detection platform with high sensitivity and specificity. Here, we have designed a CRISPR/Cas13-based enzymatic cyclic amplification system and regarded the magnetic upconversion nanoparticles (MUCNPs) as a biosensor of outputting the detection signal for the highly sensitive and high-fidelity detection of miRNAs. MUCNPs were composed of UCNPs (fluorescence donors) and Fe3O4@AuNPs (fluorescence acceptors) through double-stranded DNA hybrid coupling. The target miRNA acted as an activator, which could activate the trans-cleavage activity of Cas13a to the well-designed Trigger containing two uracil ribonucleotides (rU) in its loop and trigger a strand displacement reaction to generate a large amount of single-stranded DNA, resulting in the release of the UCNPs from MUCNPs. Benefiting from the high fidelity and high selectivity of CRISPR/Cas13a, the great effect of triggered enzymatic cycle amplification, and the high-intensity luminescent signal of MUCNPs, this method possessed miRNA detection capability with high sensitivity and specificity even in the complex environment with 10% fetal bovine serum (FBS) and a serum sample. Meanwhile, the detection limit could be as low as 83.2 fM. In addition, this method effectively reduced the effect of photobleaching and maintained high stability, which was expected to achieve efficient and sensitive miRNA detection.
Collapse
Affiliation(s)
- Liwen Guan
- School of Public Health, Jiangxi Provincial Key Laboratory of Preventive Medicine, Nanchang University, Nanchang, Jiangxi 330031, P.R. China
| | - Jiawei Peng
- School of Public Health, Jiangxi Provincial Key Laboratory of Preventive Medicine, Nanchang University, Nanchang, Jiangxi 330031, P.R. China
| | - Ting Liu
- School of Public Health, Jiangxi Provincial Key Laboratory of Preventive Medicine, Nanchang University, Nanchang, Jiangxi 330031, P.R. China
| | - Shuangyi Huang
- Nanchang University Queen Mary School, Nanchang, Jiangxi 330031 , P.R. China
| | - Yifei Yang
- School of Public Health, Jiangxi Provincial Key Laboratory of Preventive Medicine, Nanchang University, Nanchang, Jiangxi 330031, P.R. China
| | - Xiaolei Wang
- The National Engineering Research Center for Bioengineering Drugs and the Technologies, Institute of Translational Medicine, Nanchang University, Nanchang, Jiangxi 330031 , P.R. China
- School of Chemistry and Chemical Engineering, Nanchang University, Nanchang, Jiangxi 330031, P.R. China
| | - Xian Hao
- School of Public Health, Jiangxi Provincial Key Laboratory of Preventive Medicine, Nanchang University, Nanchang, Jiangxi 330031, P.R. China
| |
Collapse
|
28
|
Liu Q, Zou J, Chen Z, He W, Wu W. Current research trends of nanomedicines. Acta Pharm Sin B 2023; 13:4391-4416. [PMID: 37969727 PMCID: PMC10638504 DOI: 10.1016/j.apsb.2023.05.018] [Citation(s) in RCA: 61] [Impact Index Per Article: 30.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 04/25/2023] [Accepted: 05/05/2023] [Indexed: 11/17/2023] Open
Abstract
Owing to the inherent shortcomings of traditional therapeutic drugs in terms of inadequate therapeutic efficacy and toxicity in clinical treatment, nanomedicine designs have received widespread attention with significantly improved efficacy and reduced non-target side effects. Nanomedicines hold tremendous theranostic potential for treating, monitoring, diagnosing, and controlling various diseases and are attracting an unfathomable amount of input of research resources. Against the backdrop of an exponentially growing number of publications, it is imperative to help the audience get a panorama image of the research activities in the field of nanomedicines. Herein, this review elaborates on the development trends of nanomedicines, emerging nanocarriers, in vivo fate and safety of nanomedicines, and their extensive applications. Moreover, the potential challenges and the obstacles hindering the clinical translation of nanomedicines are also discussed. The elaboration on various aspects of the research trends of nanomedicines may help enlighten the readers and set the route for future endeavors.
Collapse
Affiliation(s)
- Qiuyue Liu
- Shanghai Skin Disease Hospital, Tongji University School of Medicine, Shanghai 200443, China
- Key Laboratory of Smart Drug Delivery of MOE, School of Pharmacy, Fudan University, Shanghai 201203, China
| | - Jiahui Zou
- School of Pharmacy, China Pharmaceutical University, Nanjing 211198, China
| | - Zhongjian Chen
- Shanghai Skin Disease Hospital, Tongji University School of Medicine, Shanghai 200443, China
| | - Wei He
- Shanghai Skin Disease Hospital, Tongji University School of Medicine, Shanghai 200443, China
- School of Pharmacy, China Pharmaceutical University, Nanjing 211198, China
| | - Wei Wu
- Shanghai Skin Disease Hospital, Tongji University School of Medicine, Shanghai 200443, China
- Shanghai Pudong Hospital, Fudan University Pudong Medical Center, Shanghai 201399, China
- Key Laboratory of Smart Drug Delivery of MOE, School of Pharmacy, Fudan University, Shanghai 201203, China
- Fudan Zhangjiang Institute, Shanghai 201203, China
| |
Collapse
|
29
|
Ji S, Wang X, Wang Y, Sun Y, Su Y, Lv X, Song X. Advances in Cas12a-Based Amplification-Free Nucleic Acid Detection. CRISPR J 2023; 6:405-418. [PMID: 37751223 DOI: 10.1089/crispr.2023.0023] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/27/2023] Open
Abstract
In biomedicine, rapid and sensitive nucleic acid detection technology plays an important role in the early detection of infectious diseases. However, most traditional nucleic acid detection methods require the amplification of nucleic acids, resulting in problems such as long detection time, complex operation, and false-positive results. In recent years, clustered regularly interspaced short palindromic repeats (CRISPR) systems have been widely used in nucleic acid detection, especially the CRISPR-Cas12a system, which can trans cleave single-stranded DNA and can realize the detection of DNA targets. But, amplification of nucleic acids is still required to further improve detection sensitivity, which makes Cas12a-based amplification-free nucleic acid detection methods a great challenge. This article reviews the recent progress of Cas12a-based amplification-free detection methods for nucleic acids. These detection methods apply electrochemical detection methods, fluorescence detection methods, noble metal nanomaterial detection methods, and lateral flow assay. Under various optimization strategies, unamplified nucleic acids have the same sensitivity as amplified nucleic acids. At the same time, the article discusses the advantages and disadvantages of each method and further discusses the current challenges such as off-target effects and the ability to achieve high-throughput detection. Amplification-free nucleic acid detection technology based on CRISPR-Cas12a has great potential in the biomedical field.
Collapse
Affiliation(s)
- Shixin Ji
- School of Life Sciences, Changchun Normal University, Changchun, China; and Jilin Business and Technology College, Changchun, China
| | - Xueli Wang
- School of Grain, Jilin Business and Technology College, Changchun, China
| | - Yangkun Wang
- School of Life Sciences, Changchun Normal University, Changchun, China; and Jilin Business and Technology College, Changchun, China
| | - Yingqi Sun
- School of Life Sciences, Changchun Normal University, Changchun, China; and Jilin Business and Technology College, Changchun, China
| | - Yingying Su
- School of Life Sciences, Changchun Normal University, Changchun, China; and Jilin Business and Technology College, Changchun, China
| | - Xiaosong Lv
- School of Life Sciences, Changchun Normal University, Changchun, China; and Jilin Business and Technology College, Changchun, China
| | - Xiangwei Song
- School of Life Sciences, Changchun Normal University, Changchun, China; and Jilin Business and Technology College, Changchun, China
| |
Collapse
|
30
|
Ivanov AV, Safenkova IV, Zherdev AV, Wan Y, Dzantiev BB. Comparison of Single-Stranded DNA Probes Conjugated with Magnetic Particles for Trans-Cleavage in Cas12a-Based Biosensors. BIOSENSORS 2023; 13:700. [PMID: 37504099 PMCID: PMC10376970 DOI: 10.3390/bios13070700] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Revised: 06/26/2023] [Accepted: 06/28/2023] [Indexed: 07/29/2023]
Abstract
Biosensors based on endonuclease Cas12 provide high specificity in pathogen detection. Sensitive detection using Cas12-based assays can be achieved using trans-cleaved DNA probes attached to simply separated carriers, such as magnetic particles (MPs). The aim of this work was to compare polyA, polyC, and polyT single-stranded (ss) DNA with different lengths (from 10 to 145 nt) as trans-target probes were immobilized on streptavidin-covered MPs. Each ssDNA probe was labeled using fluorescein (5') and biotin (3'). To compare the probes, we used guide RNAs that were programmed for the recognition of two bacterial pathogens: Dickeya solani (causing blackleg and soft rot) and Erwinia amylovora (causing fire blight). The Cas12 was activated by targeting double-stranded DNA fragments of D. solani or E. amylovora and cleaved the MP-ssDNA conjugates. The considered probes demonstrated basically different dependencies in terms of cleavage efficiency. PolyC was the most effective probe when compared to polyA or polyT probes of the same length. The minimal acceptable length for the cleavage follows the row: polyC < polyT < polyA. The efficiencies of polyC and polyT probes with optimal length were proven for the DNA targets' detection of D. solani and E. amylovora. The regularities found can be used in Cas12a-based detection of viruses, bacteria, and other DNA/RNA-containing analytes.
Collapse
Affiliation(s)
- Aleksandr V Ivanov
- A.N. Bach Institute of Biochemistry, Research Centre of Biotechnology of the Russian Academy of Sciences, 119071 Moscow, Russia
| | - Irina V Safenkova
- A.N. Bach Institute of Biochemistry, Research Centre of Biotechnology of the Russian Academy of Sciences, 119071 Moscow, Russia
| | - Anatoly V Zherdev
- A.N. Bach Institute of Biochemistry, Research Centre of Biotechnology of the Russian Academy of Sciences, 119071 Moscow, Russia
| | - Yi Wan
- State Key Laboratory of Marine Resource Utilization in South China Sea, Marine College, Hainan University, Haikou 570228, China
| | - Boris B Dzantiev
- A.N. Bach Institute of Biochemistry, Research Centre of Biotechnology of the Russian Academy of Sciences, 119071 Moscow, Russia
| |
Collapse
|
31
|
Huang Z, Lyon CJ, Wang J, Lu S, Hu TY. CRISPR Assays for Disease Diagnosis: Progress to and Barriers Remaining for Clinical Applications. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2301697. [PMID: 37162202 PMCID: PMC10369298 DOI: 10.1002/advs.202301697] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2023] [Revised: 04/24/2023] [Indexed: 05/11/2023]
Abstract
Numerous groups have employed the special properties of CRISPR/Cas systems to develop platforms that have broad potential applications for sensitive and specific detection of nucleic acid (NA) targets. However, few of these approaches have progressed to commercial or clinical applications. This review summarizes the properties of known CRISPR/Cas systems and their applications, challenges associated with the development of such assays, and opportunities to improve their performance or address unmet assay needs using nano-/micro-technology platforms. These include rapid and efficient sample preparation, integrated single-tube, amplification-free, quantifiable, multiplex, and non-NA assays. Finally, this review discusses the current outlook for such assays, including remaining barriers for clinical or point-of-care applications and their commercial development.
Collapse
Affiliation(s)
- Zhen Huang
- National Clinical Research Center for Infectious DiseasesShenzhen Third People's HospitalSouthern University of Science and Technology29 Bulan RoadShenzhenGuangdong518112China
- Center for Cellular and Molecular DiagnosticsTulane University School of Medicine1430 Tulane AveNew OrleansLA70112USA
- Department of Biochemistry and Molecular BiologyTulane University School of Medicine1430 Tulane AveNew OrleansLA70112USA
| | - Christopher J. Lyon
- Center for Cellular and Molecular DiagnosticsTulane University School of Medicine1430 Tulane AveNew OrleansLA70112USA
- Department of Biochemistry and Molecular BiologyTulane University School of Medicine1430 Tulane AveNew OrleansLA70112USA
| | - Jin Wang
- Tolo Biotechnology Company Limited333 Guiping RoadShanghai200233China
| | - Shuihua Lu
- National Clinical Research Center for Infectious DiseasesShenzhen Third People's HospitalSouthern University of Science and Technology29 Bulan RoadShenzhenGuangdong518112China
| | - Tony Y. Hu
- Center for Cellular and Molecular DiagnosticsTulane University School of Medicine1430 Tulane AveNew OrleansLA70112USA
- Department of Biochemistry and Molecular BiologyTulane University School of Medicine1430 Tulane AveNew OrleansLA70112USA
| |
Collapse
|
32
|
Tommasini M, Lucotti A, Stefani L, Trusso S, Ossi PM. SERS Detection of the Anti-Epileptic Drug Perampanel in Human Saliva. Molecules 2023; 28:molecules28114309. [PMID: 37298786 DOI: 10.3390/molecules28114309] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Revised: 05/15/2023] [Accepted: 05/19/2023] [Indexed: 06/12/2023] Open
Abstract
Surface-Enhanced Raman Scattering (SERS) can obtain the spectroscopic response of specific analytes. In controlled conditions, it is a powerful quantitative technique. However, often the sample and its SERS spectrum are complex. Pharmaceutical compounds in human biofluids with strong interfering signals from proteins and other biomolecules are a typical example. Among the techniques for drug dosage, SERS was reported to detect low drug concentrations, with analytical capability comparable to that of the assessed High-Performance Liquid Chromatography. Here, for the first time, we report the use of SERS for Therapeutic Drug Monitoring of the Anti-Epileptic Drug Perampanel (PER) in human saliva. We used inert substrates decorated with gold NPs deposited via Pulsed Laser Deposition as SERS sensors. We show that it is possible to detect PER in saliva via SERS after an optimized treatment of the saliva sample. Using a phase separation process, it is possible to extract all the diluted PER in saliva from the saliva phase to a chloroform phase. This allows us to detect PER in the saliva at initial concentrations of the order of 10-7 M, thus approaching those of clinical interest.
Collapse
Affiliation(s)
- Matteo Tommasini
- Dipartimento Chimica, Materiali, Ing. Chimica, Politecnico di Milano, 20133 Milano, Italy
| | - Andrea Lucotti
- Dipartimento Chimica, Materiali, Ing. Chimica, Politecnico di Milano, 20133 Milano, Italy
| | - Luca Stefani
- Dipartimento Energia, Politecnico di Milano, 20133 Milano, Italy
| | - Sebastiano Trusso
- Istituto per i Processi Chimico Fisici, Consiglio Nazionale delle Ricerche, 98158 Messina, Italy
| | - Paolo M Ossi
- Dipartimento Energia, Politecnico di Milano, 20133 Milano, Italy
- Dipartimento Scienze Chimiche, Biologiche, Farmaceutiche ed Ambientali, Università degli Studi di Messina, 98166 Messina, Italy
| |
Collapse
|
33
|
Mao X, Ye R. One-Pot Synthesis of Enzyme and Antibody/CaHPO 4 Nanoflowers for Magnetic Chemiluminescence Immunoassay of Salmonella enteritidis. SENSORS (BASEL, SWITZERLAND) 2023; 23:2779. [PMID: 36904982 PMCID: PMC10006971 DOI: 10.3390/s23052779] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Revised: 02/24/2023] [Accepted: 02/27/2023] [Indexed: 06/18/2023]
Abstract
In this study, through a bioinspired strategy, the horseradish peroxidase (HRP) and antibody (Ab) were co-embedded into CaHPO4 to prepare HRP-Ab-CaHPO4 (HAC) bifunctional hybrid nanoflowers by one-pot mild coprecipitation. The as-prepared HAC hybrid nanoflowers then were utilized as the signal tag in a magnetic chemiluminescence immunoassay for application in the detection of Salmonella enteritidis (S. enteritidis). The proposed method exhibited excellent detection performance in the linear range of 10-105 CFU/mL, with the limit of detection (LOD) of 10 CFU/mL. This study indicates great potential in the sensitive detection of foodborne pathogenic bacteria in milk with this new magnetic chemiluminescence biosensing platform.
Collapse
|
34
|
Shi J, Zhang Y, Yang M. Recent development of microfluidics-based platforms for respiratory virus detection. BIOMICROFLUIDICS 2023; 17:024104. [PMID: 37035101 PMCID: PMC10076069 DOI: 10.1063/5.0135778] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Accepted: 02/27/2023] [Indexed: 06/19/2023]
Abstract
With the global outbreak of SARS-CoV-2, the inadequacies of current detection technology for respiratory viruses have been recognized. Rapid, portable, accurate, and sensitive assays are needed to expedite diagnosis and early intervention. Conventional methods for detection of respiratory viruses include cell culture-based assays, serological tests, nucleic acid detection (e.g., RT-PCR), and direct immunoassays. However, these traditional methods are often time-consuming, labor-intensive, and require laboratory facilities, which cannot meet the testing needs, especially during pandemics of respiratory diseases, such as COVID-19. Microfluidics-based techniques can overcome these demerits and provide simple, rapid, accurate, and cost-effective analysis of intact virus, viral antigen/antibody, and viral nucleic acids. This review aims to summarize the recent development of microfluidics-based techniques for detection of respiratory viruses. Recent advances in different types of microfluidic devices for respiratory virus diagnostics are highlighted, including paper-based microfluidics, continuous-flow microfluidics, and droplet-based microfluidics. Finally, the future development of microfluidic technologies for respiratory virus diagnostics is discussed.
Collapse
Affiliation(s)
- Jingyu Shi
- Department of Biomedical Engineering, The Hong Kong Polytechnic University, Kowloon 999077, Hong Kong SAR, People's Republic of China
| | - Yu Zhang
- Department of Mechanical and Automotive Engineering, Royal Melbourne Institute of Technology, Melbourne, VIC 3000, Australia
| | - Mo Yang
- Department of Biomedical Engineering, The Hong Kong Polytechnic University, Kowloon 999077, Hong Kong SAR, People's Republic of China
| |
Collapse
|
35
|
Hybrid Wetting Surface with Plasmonic Alloy Nanocomposites for Sensitive SERS Detection. Molecules 2023; 28:molecules28052190. [PMID: 36903436 PMCID: PMC10004610 DOI: 10.3390/molecules28052190] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Revised: 02/22/2023] [Accepted: 02/23/2023] [Indexed: 03/02/2023] Open
Abstract
In this paper, a hybrid wetting surface (HWS) with Au/Ag alloy nanocomposites was proposed for rapid, cost-effective, stable and sensitive SERS application. This surface was fabricated in a large area by facile electrospinning, plasma etching and photomask-assisted sputtering processes. The high-density 'hot spots' and rough surface from plasmonic alloy nanocomposites promoted the significant enhancement of the electromagnetic field. Meanwhile, the condensation effects induced by HWS further improved the density of target analytes at the SERS active area. Thus, the SERS signals increased ~4 orders of magnitude compared to the normal SERS substrate. In addition, the reproducibility, uniformity, as well as thermal performance of HWS were also examined by comparative experiments, indicating their high reliability, portability and practicability for on-site tests. The efficient results suggested that this smart surface had great potential to evolve as a platform for advanced sensor-based applications.
Collapse
|
36
|
Yin B, Ho WKH, Xia X, Chan CKW, Zhang Q, Ng YM, Lam CYK, Cheung JCW, Wang J, Yang M, Wong SHD. A Multilayered Mesoporous Gold Nanoarchitecture for Ultraeffective Near-Infrared Light-Controlled Chemo/Photothermal Therapy for Cancer Guided by SERS Imaging. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2206762. [PMID: 36593512 DOI: 10.1002/smll.202206762] [Citation(s) in RCA: 30] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Revised: 12/10/2022] [Indexed: 06/17/2023]
Abstract
Surface-enhanced Raman scattering (SERS) imaging has emerged as a promising tool for guided cancer diagnosis and synergistic therapies, such as combined chemotherapy and photothermal therapy (chemo-PTT). Yet, existing therapeutic agents often suffer from low SERS sensitivity, insufficient photothermal conversion, or/and limited drug loading capacity. Herein, a multifunctional theragnostic nanoplatform consisting of mesoporous silica-coated gold nanostar with a cyclic Arg-Gly-Asp (RGD)-coated gold nanocluster shell (named RGD-pAS@AuNC) is reported that exhibits multiple "hot spots" for pronouncedly enhanced SERS signals and improved near-infrared (NIR)-induced photothermal conversion efficiency (85.5%), with a large capacity for high doxorubicin (DOX) loading efficiency (34.1%, named RGD/DOX-pAS@AuNC) and effective NIR-triggered DOX release. This nanoplatform shows excellent performance in xenograft tumor model of HeLa cell targeting, negligible cytotoxicity, and good stability both in vitro and in vivo. By SERS imaging, the optimal temporal distribution of injected RGD/DOX-pAS@AuNCs at the tumor site is identified for NIR-triggered local chemo-PTT toward the tumor, achieving ultraeffective therapy in tumor cells and tumor-bearing mouse model with 5 min of NIR irradiation (0.5 W cm-2 ). This work offers a promising approach to employing SERS imaging for effective noninvasive tumor treatment by on-site triggered chemo-PTT.
Collapse
Affiliation(s)
- Bohan Yin
- Department of Biomedical Engineering, The Hong Kong Polytechnic University, Kowloon, Hong Kong, 999077, China
| | - Willis Kwun Hei Ho
- Department of Biomedical Engineering, The Hong Kong Polytechnic University, Kowloon, Hong Kong, 999077, China
| | - Xinyue Xia
- Department of Physics, The Chinese University of Hong Kong, Shatin, Hong Kong, 999077, China
| | - Cecilia Ka Wing Chan
- Department of Surgery, The Chinese University of Hong Kong, Shatin, Hong Kong, 999077, China
| | - Qin Zhang
- Department of Biomedical Engineering, The Hong Kong Polytechnic University, Kowloon, Hong Kong, 999077, China
| | - Yip Ming Ng
- Department of Biomedical Engineering, The Hong Kong Polytechnic University, Kowloon, Hong Kong, 999077, China
| | - Ching Ying Katherine Lam
- Department of Biomedical Engineering, The Hong Kong Polytechnic University, Kowloon, Hong Kong, 999077, China
| | - James Chung Wai Cheung
- Department of Biomedical Engineering, The Hong Kong Polytechnic University, Kowloon, Hong Kong, 999077, China
- Research Institute for Sports Science and Technology, The Hong Kong Polytechnic University, Kowloon, Hong Kong, 999077, China
| | - Jianfang Wang
- Department of Physics, The Chinese University of Hong Kong, Shatin, Hong Kong, 999077, China
| | - Mo Yang
- Department of Biomedical Engineering, The Hong Kong Polytechnic University, Kowloon, Hong Kong, 999077, China
- Research Institute for Sports Science and Technology, The Hong Kong Polytechnic University, Kowloon, Hong Kong, 999077, China
| | - Siu Hong Dexter Wong
- Department of Biomedical Engineering, The Hong Kong Polytechnic University, Kowloon, Hong Kong, 999077, China
- Research Institute for Sports Science and Technology, The Hong Kong Polytechnic University, Kowloon, Hong Kong, 999077, China
| |
Collapse
|
37
|
Choi HK, Yoon J. Nanotechnology-Assisted Biosensors for the Detection of Viral Nucleic Acids: An Overview. BIOSENSORS 2023; 13:208. [PMID: 36831973 PMCID: PMC9953881 DOI: 10.3390/bios13020208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Revised: 01/21/2023] [Accepted: 01/28/2023] [Indexed: 06/18/2023]
Abstract
The accurate and rapid diagnosis of viral diseases has garnered increasing attention in the field of biosensors. The development of highly sensitive, selective, and accessible biosensors is crucial for early disease detection and preventing mortality. However, developing biosensors optimized for viral disease diagnosis has several limitations, including the accurate detection of mutations. For decades, nanotechnology has been applied in numerous biological fields such as biosensors, bioelectronics, and regenerative medicine. Nanotechnology offers a promising strategy to address the current limitations of conventional viral nucleic acid-based biosensors. The implementation of nanotechnologies, such as functional nanomaterials, nanoplatform-fabrication techniques, and surface nanoengineering, to biosensors has not only improved the performance of biosensors but has also expanded the range of sensing targets. Therefore, a deep understanding of the combination of nanotechnologies and biosensors is required to prepare for sanitary emergencies such as the recent COVID-19 pandemic. In this review, we provide interdisciplinary information on nanotechnology-assisted biosensors. First, representative nanotechnologies for biosensors are discussed, after which this review summarizes various nanotechnology-assisted viral nucleic acid biosensors. Therefore, we expect that this review will provide a valuable basis for the development of novel viral nucleic acid biosensors.
Collapse
Affiliation(s)
- Hye Kyu Choi
- Department of Chemistry and Chemical Biology, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA
| | - Jinho Yoon
- Department of Biomedical-Chemical Engineering, The Catholic University of Korea, Bucheon-si 14662, Gyeonggi-do, Republic of Korea
| |
Collapse
|
38
|
Development of CRISPR-Mediated Nucleic Acid Detection Technologies and Their Applications in the Livestock Industry. Genes (Basel) 2022; 13:genes13112007. [PMID: 36360244 PMCID: PMC9690124 DOI: 10.3390/genes13112007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Revised: 10/26/2022] [Accepted: 10/31/2022] [Indexed: 11/06/2022] Open
Abstract
The rapid rate of virus transmission and pathogen mutation and evolution highlight the necessity for innovative approaches to the diagnosis and prevention of infectious diseases. Traditional technologies for pathogen detection, mostly PCR-based, involve costly/advanced equipment and skilled personnel and are therefore not feasible in resource-limited areas. Over the years, many promising methods based on clustered regularly interspaced short palindromic repeats and the associated protein systems (CRISPR/Cas), i.e., orthologues of Cas9, Cas12, Cas13 and Cas14, have been reported for nucleic acid detection. CRISPR/Cas effectors can provide one-tube reaction systems, amplification-free strategies, simultaneous multiplex pathogen detection, visual colorimetric detection, and quantitative identification as alternatives to quantitative PCR (qPCR). This review summarizes the current development of CRISPR/Cas-mediated molecular diagnostics, as well as their design software and readout methods, highlighting technical improvements for integrating CRISPR/Cas technologies into on-site applications. It further highlights recent applications of CRISPR/Cas-based nucleic acid detection in livestock industry, including emerging infectious diseases, authenticity and composition of meat/milk products, as well as sex determination of early embryos.
Collapse
|