1
|
Liu F, Zhou T, Zhang S, Li Y, Chen Y, Miao Z, Wang X, Yang G, Li Q, Zhang L, Liu Y. Cathepsin B: The dawn of tumor therapy. Eur J Med Chem 2024; 269:116329. [PMID: 38508117 DOI: 10.1016/j.ejmech.2024.116329] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Revised: 03/10/2024] [Accepted: 03/11/2024] [Indexed: 03/22/2024]
Abstract
Cathepsin B (CTSB) is a key lysosomal protease that plays a crucial role in the development of cancer. This article elucidates the relationship between CTSB and cancer from the perspectives of its structure, function, and role in tumor growth, migration, invasion, metastasis, angiogenesis and autophagy. Further, we summarized the research progress of cancer treatment related drugs targeting CTSB, as well as the potential and advantages of Traditional Chinese medicine in treating tumors by regulating the expression of CTSB.
Collapse
Affiliation(s)
- Fuxian Liu
- Provincial-Level Key Laboratory for Molecular Medicine of Major Diseases and the Prevention and Treatment with Traditional Chinese Medicine Research in Gansu Colleges and Universities, Gansu University of Chinese Medicine, Lanzhou, China
| | - Ting Zhou
- Provincial-Level Key Laboratory for Molecular Medicine of Major Diseases and the Prevention and Treatment with Traditional Chinese Medicine Research in Gansu Colleges and Universities, Gansu University of Chinese Medicine, Lanzhou, China; Experimental & Training Teaching Centers, Gansu University of Chinese Medicine, Lanzhou, China
| | - Shangzu Zhang
- Provincial-Level Key Laboratory for Molecular Medicine of Major Diseases and the Prevention and Treatment with Traditional Chinese Medicine Research in Gansu Colleges and Universities, Gansu University of Chinese Medicine, Lanzhou, China
| | - Yangyang Li
- Provincial-Level Key Laboratory for Molecular Medicine of Major Diseases and the Prevention and Treatment with Traditional Chinese Medicine Research in Gansu Colleges and Universities, Gansu University of Chinese Medicine, Lanzhou, China
| | - Yan Chen
- Provincial-Level Key Laboratory for Molecular Medicine of Major Diseases and the Prevention and Treatment with Traditional Chinese Medicine Research in Gansu Colleges and Universities, Gansu University of Chinese Medicine, Lanzhou, China
| | - Zhiming Miao
- Provincial-Level Key Laboratory for Molecular Medicine of Major Diseases and the Prevention and Treatment with Traditional Chinese Medicine Research in Gansu Colleges and Universities, Gansu University of Chinese Medicine, Lanzhou, China
| | - Xin Wang
- Provincial-Level Key Laboratory for Molecular Medicine of Major Diseases and the Prevention and Treatment with Traditional Chinese Medicine Research in Gansu Colleges and Universities, Gansu University of Chinese Medicine, Lanzhou, China
| | - Gengqiang Yang
- Provincial-Level Key Laboratory for Molecular Medicine of Major Diseases and the Prevention and Treatment with Traditional Chinese Medicine Research in Gansu Colleges and Universities, Gansu University of Chinese Medicine, Lanzhou, China
| | - Qiyang Li
- Provincial-Level Key Laboratory for Molecular Medicine of Major Diseases and the Prevention and Treatment with Traditional Chinese Medicine Research in Gansu Colleges and Universities, Gansu University of Chinese Medicine, Lanzhou, China
| | - Liying Zhang
- Provincial-Level Key Laboratory for Molecular Medicine of Major Diseases and the Prevention and Treatment with Traditional Chinese Medicine Research in Gansu Colleges and Universities, Gansu University of Chinese Medicine, Lanzhou, China; College of Basic Medicine, Gansu University of Chinese Medicine, Lanzhou, China.
| | - Yongqi Liu
- Provincial-Level Key Laboratory for Molecular Medicine of Major Diseases and the Prevention and Treatment with Traditional Chinese Medicine Research in Gansu Colleges and Universities, Gansu University of Chinese Medicine, Lanzhou, China; College of Basic Medicine, Gansu University of Chinese Medicine, Lanzhou, China; Key Laboratory of Dunhuang Medicine and Transformation at Provincial and Ministerial Level, Gansu University of Chinese Medicine, Lanzhou, China.
| |
Collapse
|
2
|
Liu C, Liu D, Wang S, Gan L, Yang X, Ma C. Identification of the SNARE complex that mediates the fusion of multivesicular bodies with the plasma membrane in exosome secretion. J Extracell Vesicles 2023; 12:e12356. [PMID: 37700095 PMCID: PMC10497535 DOI: 10.1002/jev2.12356] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Accepted: 07/25/2023] [Indexed: 09/14/2023] Open
Abstract
Exosomes play crucial roles in local and distant cellular communication and are involved in various physiological and pathological processes. Tumour-derived exosomes are pivotal to tumorigenesis, but the precise mechanisms underlying their secretion remain elusive. In particular, the SNARE proteins that mediate the fusion of multivesicular bodies (MVBs) with the plasma membrane (PM) in tumour cells are subject to debate. In this study, we identified syntaxin-4, SNAP-23, and VAMP-7 as the SNAREs responsible for exosome secretion in MCF-7 breast cancer cells and found that a SNARE complex consisting of these SNAREs can drive membrane fusion in vitro. Deletion of any of these SNAREs in MCF-7 cells did not affect MVB biogenesis and transportation, indicating their specific involvement in MVB-PM fusion. In addition, syntaxin-4, SNAP-23, and VAMP-7 play equivalent roles in exosome secretion in both HeLa cervical cancer cells and A375 melanoma cells, suggesting their conserved function in exosome secretion. Furthermore, deletion of VAMP-7 in 4T1 mammary carcinoma cells efficiently inhibited exosome secretion and led to significant attenuation of tumour growth and lung metastasis in mouse models, implying that VAMP-7 may hold promise as a novel therapeutic target for breast cancer.
Collapse
Affiliation(s)
- Chuqi Liu
- Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and TechnologyHuazhong University of Science and TechnologyWuhanChina
| | - Dexiang Liu
- Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and TechnologyHuazhong University of Science and TechnologyWuhanChina
| | - Shen Wang
- Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and TechnologyHuazhong University of Science and TechnologyWuhanChina
| | - Lu Gan
- National Engineering Research Center for Nanomedicine, College of Life Science and TechnologyHuazhong University of Science and TechnologyWuhanChina
- Hubei Key Laboratory of Bioinorganic Chemistry and Materia MedicaHuazhong University of Science and TechnologyWuhanChina
- Hubei Key Laboratory of Bioinorganic Chemistry and Materia MedicaHuazhong University of Science and TechnologyWuhanChina
| | - Xiangliang Yang
- National Engineering Research Center for Nanomedicine, College of Life Science and TechnologyHuazhong University of Science and TechnologyWuhanChina
- Hubei Key Laboratory of Bioinorganic Chemistry and Materia MedicaHuazhong University of Science and TechnologyWuhanChina
- Hubei Key Laboratory of Bioinorganic Chemistry and Materia MedicaHuazhong University of Science and TechnologyWuhanChina
- GBA Research Innovation Institute for NanotechnologyGuangzhouGuangdongP. R. China
| | - Cong Ma
- Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and TechnologyHuazhong University of Science and TechnologyWuhanChina
| |
Collapse
|
3
|
Andi B, Kumaran D, Kreitler DF, Soares AS, Keereetaweep J, Jakoncic J, Lazo EO, Shi W, Fuchs MR, Sweet RM, Shanklin J, Adams PD, Schmidt JG, Head MS, McSweeney S. Hepatitis C virus NS3/4A inhibitors and other drug-like compounds as covalent binders of SARS-CoV-2 main protease. Sci Rep 2022; 12:12197. [PMID: 35842458 PMCID: PMC9287821 DOI: 10.1038/s41598-022-15930-z] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2021] [Accepted: 07/01/2022] [Indexed: 12/15/2022] Open
Abstract
Severe acute respiratory syndrome-coronavirus 2 (SARS-CoV-2), which causes coronavirus disease 2019 (COVID-19), threatens global public health. The world needs rapid development of new antivirals and vaccines to control the current pandemic and to control the spread of the variants. Among the proteins synthesized by the SARS-CoV-2 genome, main protease (Mpro also known as 3CLpro) is a primary drug target, due to its essential role in maturation of the viral polyproteins. In this study, we provide crystallographic evidence, along with some binding assay data, that three clinically approved anti hepatitis C virus drugs and two other drug-like compounds covalently bind to the Mpro Cys145 catalytic residue in the active site. Also, molecular docking studies can provide additional insight for the design of new antiviral inhibitors for SARS-CoV-2 using these drugs as lead compounds. One might consider derivatives of these lead compounds with higher affinity to the Mpro as potential COVID-19 therapeutics for further testing and possibly clinical trials.
Collapse
Affiliation(s)
- Babak Andi
- Center for BioMolecular Structure, NSLS-II, Brookhaven National Laboratory, Upton, NY, 11973, USA.
- National Virtual Biotechnology Laboratory (NVBL), US Department of Energy, Washington, DC, USA.
| | - Desigan Kumaran
- Biology Department, Brookhaven National Laboratory, Upton, NY, 11973, USA.
- National Virtual Biotechnology Laboratory (NVBL), US Department of Energy, Washington, DC, USA.
| | - Dale F Kreitler
- Center for BioMolecular Structure, NSLS-II, Brookhaven National Laboratory, Upton, NY, 11973, USA
| | - Alexei S Soares
- Center for BioMolecular Structure, NSLS-II, Brookhaven National Laboratory, Upton, NY, 11973, USA
| | | | - Jean Jakoncic
- Center for BioMolecular Structure, NSLS-II, Brookhaven National Laboratory, Upton, NY, 11973, USA
| | - Edwin O Lazo
- Center for BioMolecular Structure, NSLS-II, Brookhaven National Laboratory, Upton, NY, 11973, USA
| | - Wuxian Shi
- Center for BioMolecular Structure, NSLS-II, Brookhaven National Laboratory, Upton, NY, 11973, USA
| | - Martin R Fuchs
- Center for BioMolecular Structure, NSLS-II, Brookhaven National Laboratory, Upton, NY, 11973, USA
| | - Robert M Sweet
- Center for BioMolecular Structure, NSLS-II, Brookhaven National Laboratory, Upton, NY, 11973, USA
| | - John Shanklin
- Biology Department, Brookhaven National Laboratory, Upton, NY, 11973, USA
| | - Paul D Adams
- Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
- Department of Bioengineering, University of California, Berkeley, CA, 94720, USA
- National Virtual Biotechnology Laboratory (NVBL), US Department of Energy, Washington, DC, USA
| | - Jurgen G Schmidt
- Bioscience Division, Los Alamos National Laboratory, Los Alamos, NM, 87545, USA
- National Virtual Biotechnology Laboratory (NVBL), US Department of Energy, Washington, DC, USA
| | - Martha S Head
- Joint Institute for Biological Sciences, Oak Ridge National Laboratory, Oak Ridge, TN, 37831, USA
- National Virtual Biotechnology Laboratory (NVBL), US Department of Energy, Washington, DC, USA
| | - Sean McSweeney
- Center for BioMolecular Structure, NSLS-II, Brookhaven National Laboratory, Upton, NY, 11973, USA.
- Biology Department, Brookhaven National Laboratory, Upton, NY, 11973, USA.
- National Virtual Biotechnology Laboratory (NVBL), US Department of Energy, Washington, DC, USA.
| |
Collapse
|
4
|
Hotinger JA, Pendergrass HA, Peterson D, Wright HT, May AE. Phage-Related Ribosomal Protease (Prp) of Staphylococcus aureus: In Vitro Michaelis-Menten Kinetics, Screening for Inhibitors, and Crystal Structure of a Covalent Inhibition Product Complex. Biochemistry 2022; 61:1323-1336. [PMID: 35731716 DOI: 10.1021/acs.biochem.2c00010] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Phage-related ribosomal proteases (Prps) are essential for the assembly and maturation of the ribosome in Firmicutes, including the human pathogens Staphylococcus aureus, Streptococcus pneumoniae, and Clostridium difficile. These bacterial proteases cleave off an N-terminal extension of a precursor of ribosomal protein L27, a processing step that is essential for the formation of functional ribosomes. This essential role of Prp in these pathogens has identified this protease as a potential antibiotic target. In this work, we determine the X-ray crystal structure of a covalent inhibition complex at 2.35 Å resolution, giving the first complete picture of the active site of a functional Prp. We also characterize the kinetic activity and screen for potential inhibitors of Prp. This work gives the most complete characterization of the structure and specificity of this novel class of proteases to date.
Collapse
Affiliation(s)
- Julia A Hotinger
- Department of Medicinal Chemistry and Institute for Structural Biology, Drug Discovery and Development, Virginia Commonwealth University, Richmond, Virginia 23298, United States
| | - Heather A Pendergrass
- Department of Medicinal Chemistry and Institute for Structural Biology, Drug Discovery and Development, Virginia Commonwealth University, Richmond, Virginia 23298, United States
| | - Darrell Peterson
- Department of Medicinal Chemistry and Institute for Structural Biology, Drug Discovery and Development, Virginia Commonwealth University, Richmond, Virginia 23298, United States
| | - H Tonie Wright
- Department of Medicinal Chemistry and Institute for Structural Biology, Drug Discovery and Development, Virginia Commonwealth University, Richmond, Virginia 23298, United States
| | - Aaron E May
- Department of Medicinal Chemistry and Institute for Structural Biology, Drug Discovery and Development, Virginia Commonwealth University, Richmond, Virginia 23298, United States
| |
Collapse
|
5
|
Mechanism of Microbial Metabolite Leupeptin in the Treatment of COVID-19 by Traditional Chinese Medicine Herbs. mBio 2021; 12:e0222021. [PMID: 34579576 PMCID: PMC8546846 DOI: 10.1128/mbio.02220-21] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Coronavirus disease 2019 (COVID-19) has caused huge deaths and economic losses worldwide in the current pandemic. The main protease (Mpro) of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is thought to be an ideal drug target for treating COVID-19. Leupeptin, a broad-spectrum covalent inhibitor of serine, cysteine, and threonine proteases, showed inhibitory activity against Mpro, with a 50% inhibitory concentration (IC50) value of 127.2 μM in vitro in our study here. In addition, leupeptin can also inhibit SARS-CoV-2 in Vero cells, with 50% effective concentration (EC50) values of 42.34 μM. More importantly, various strains of streptomyces that have a broad symbiotic relationship with medicinal plants can produce leupeptin and leupeptin analogs to regulate autogenous proteases. Fingerprinting and structure elucidation using high-performance liquid chromatography (HPLC) and high-resolution mass spectrometry (HRMS), respectively, further proved that the Qing-Fei-Pai-Du (QFPD) decoction, a traditional Chinese medicine (TCM) formula for the effective treatment of COVID-19 during the period of the Wuhan outbreak, contains leupeptin. All these results indicate that leupeptin at least contributes to the antiviral activity of the QFPD decoction against SARS-CoV-2. This also reminds us to pay attention to the microbiomes in TCM herbs as streptomyces in the soil might produce leupeptin that will later infiltrate the medicinal plant. We propose that plants, microbiome, and microbial metabolites form an ecosystem for the effective components of TCM herbs.
Collapse
|
6
|
Kawai Y, Idegami K, Sueyoshi K, Endo T, Hisamoto H. Single-step Trypsin Inhibitor Assay on a Microchannel Array Device Immobilizing Enzymes and Fluorescent Substrates by Inkjet Printing. ANAL SCI 2021; 37:1473-1476. [PMID: 33952864 DOI: 10.2116/analsci.21n011] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
In this paper, we report a single-step trypsin inhibitor assay on a microchannel array device immobilizing enzymes and substrates by inkjet printing. The microdevice is composed of a poly(dimethylsiloxane) (PDMS) microchannel array that immobilizes trypsin and fluorescent substrates as reactive reagents at the two bottom corners of a microchannel. Inkjet printers allow simple, accurate, and position-selective immobilization of reagents as nanoliter spots. Therefore, plural reactive reagents, such as enzymes and substrates, can be separately immobilized at different positions in the same microchannel without mixing, and thus allowing for single-step operation by simply introducing a sample solution through capillary action. Furthermore, reproducible fabrication and mass production of the device could be expected. In this study, the efficiency of an acidic solution as a spotting agent for protease immobilization to prevent decrease in the fluorescence intensity was confirmed. Additionally, single-step trypsin inhibitor screening was performed using three inhibitors. Finally, we investigated the storage stability of the device and confirmed that it remained stable for at least 10 days.
Collapse
Affiliation(s)
- Yuko Kawai
- Department of Applied Chemistry, Graduate School of Engineering, Osaka Prefecture University
| | | | - Kenji Sueyoshi
- Department of Applied Chemistry, Graduate School of Engineering, Osaka Prefecture University.,Japan Science and Technology Agency (JST), Precursory Research for Embryonic Science and Technology (PRESTO)
| | - Tatsuro Endo
- Department of Applied Chemistry, Graduate School of Engineering, Osaka Prefecture University
| | - Hideaki Hisamoto
- Department of Applied Chemistry, Graduate School of Engineering, Osaka Prefecture University
| |
Collapse
|
7
|
Günther S, Reinke PYA, Fernández-García Y, Lieske J, Lane TJ, Ginn HM, Koua FHM, Ehrt C, Ewert W, Oberthuer D, Yefanov O, Meier S, Lorenzen K, Krichel B, Kopicki JD, Gelisio L, Brehm W, Dunkel I, Seychell B, Gieseler H, Norton-Baker B, Escudero-Pérez B, Domaracky M, Saouane S, Tolstikova A, White TA, Hänle A, Groessler M, Fleckenstein H, Trost F, Galchenkova M, Gevorkov Y, Li C, Awel S, Peck A, Barthelmess M, Schlünzen F, Lourdu Xavier P, Werner N, Andaleeb H, Ullah N, Falke S, Srinivasan V, França BA, Schwinzer M, Brognaro H, Rogers C, Melo D, Zaitseva-Kinneberg JI, Knoska J, Peña-Murillo GE, Mashhour AR, Hennicke V, Fischer P, Hakanpää J, Meyer J, Gribbon P, Ellinger B, Kuzikov M, Wolf M, Beccari AR, Bourenkov G, von Stetten D, Pompidor G, Bento I, Panneerselvam S, Karpics I, Schneider TR, Garcia-Alai MM, Niebling S, Günther C, Schmidt C, Schubert R, Han H, Boger J, Monteiro DCF, Zhang L, Sun X, Pletzer-Zelgert J, Wollenhaupt J, Feiler CG, Weiss MS, Schulz EC, Mehrabi P, Karničar K, Usenik A, Loboda J, Tidow H, Chari A, Hilgenfeld R, Uetrecht C, Cox R, Zaliani A, Beck T, Rarey M, Günther S, Turk D, Hinrichs W, Chapman HN, Pearson AR, et alGünther S, Reinke PYA, Fernández-García Y, Lieske J, Lane TJ, Ginn HM, Koua FHM, Ehrt C, Ewert W, Oberthuer D, Yefanov O, Meier S, Lorenzen K, Krichel B, Kopicki JD, Gelisio L, Brehm W, Dunkel I, Seychell B, Gieseler H, Norton-Baker B, Escudero-Pérez B, Domaracky M, Saouane S, Tolstikova A, White TA, Hänle A, Groessler M, Fleckenstein H, Trost F, Galchenkova M, Gevorkov Y, Li C, Awel S, Peck A, Barthelmess M, Schlünzen F, Lourdu Xavier P, Werner N, Andaleeb H, Ullah N, Falke S, Srinivasan V, França BA, Schwinzer M, Brognaro H, Rogers C, Melo D, Zaitseva-Kinneberg JI, Knoska J, Peña-Murillo GE, Mashhour AR, Hennicke V, Fischer P, Hakanpää J, Meyer J, Gribbon P, Ellinger B, Kuzikov M, Wolf M, Beccari AR, Bourenkov G, von Stetten D, Pompidor G, Bento I, Panneerselvam S, Karpics I, Schneider TR, Garcia-Alai MM, Niebling S, Günther C, Schmidt C, Schubert R, Han H, Boger J, Monteiro DCF, Zhang L, Sun X, Pletzer-Zelgert J, Wollenhaupt J, Feiler CG, Weiss MS, Schulz EC, Mehrabi P, Karničar K, Usenik A, Loboda J, Tidow H, Chari A, Hilgenfeld R, Uetrecht C, Cox R, Zaliani A, Beck T, Rarey M, Günther S, Turk D, Hinrichs W, Chapman HN, Pearson AR, Betzel C, Meents A. X-ray screening identifies active site and allosteric inhibitors of SARS-CoV-2 main protease. Science 2021; 372:642-646. [PMID: 33811162 PMCID: PMC8224385 DOI: 10.1126/science.abf7945] [Show More Authors] [Citation(s) in RCA: 264] [Impact Index Per Article: 66.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2020] [Accepted: 03/29/2021] [Indexed: 12/17/2022]
Abstract
The coronavirus disease (COVID-19) caused by SARS-CoV-2 is creating tremendous human suffering. To date, no effective drug is available to directly treat the disease. In a search for a drug against COVID-19, we have performed a high-throughput x-ray crystallographic screen of two repurposing drug libraries against the SARS-CoV-2 main protease (Mpro), which is essential for viral replication. In contrast to commonly applied x-ray fragment screening experiments with molecules of low complexity, our screen tested already-approved drugs and drugs in clinical trials. From the three-dimensional protein structures, we identified 37 compounds that bind to Mpro In subsequent cell-based viral reduction assays, one peptidomimetic and six nonpeptidic compounds showed antiviral activity at nontoxic concentrations. We identified two allosteric binding sites representing attractive targets for drug development against SARS-CoV-2.
Collapse
Affiliation(s)
- Sebastian Günther
- Center for Free-Electron Laser Science, Deutsches Elektronen-Synchrotron DESY, Notkestr. 85, 22607 Hamburg, Germany.
| | - Patrick Y A Reinke
- Center for Free-Electron Laser Science, Deutsches Elektronen-Synchrotron DESY, Notkestr. 85, 22607 Hamburg, Germany
| | - Yaiza Fernández-García
- Bernhard Nocht Institute for Tropical Medicine, Bernhard-Nocht-Str. 74, 20359 Hamburg, Germany
| | - Julia Lieske
- Center for Free-Electron Laser Science, Deutsches Elektronen-Synchrotron DESY, Notkestr. 85, 22607 Hamburg, Germany
| | - Thomas J Lane
- Center for Free-Electron Laser Science, Deutsches Elektronen-Synchrotron DESY, Notkestr. 85, 22607 Hamburg, Germany
| | - Helen M Ginn
- Diamond Light Source Ltd., Diamond House, Harwell Science and Innovation Campus, Didcot, OX11 0DE, UK
| | - Faisal H M Koua
- Center for Free-Electron Laser Science, Deutsches Elektronen-Synchrotron DESY, Notkestr. 85, 22607 Hamburg, Germany
| | - Christiane Ehrt
- Universität Hamburg, Center for Bioinformatics, Bundesstr. 43, 20146 Hamburg, Germany
| | - Wiebke Ewert
- Center for Free-Electron Laser Science, Deutsches Elektronen-Synchrotron DESY, Notkestr. 85, 22607 Hamburg, Germany
| | - Dominik Oberthuer
- Center for Free-Electron Laser Science, Deutsches Elektronen-Synchrotron DESY, Notkestr. 85, 22607 Hamburg, Germany
| | - Oleksandr Yefanov
- Center for Free-Electron Laser Science, Deutsches Elektronen-Synchrotron DESY, Notkestr. 85, 22607 Hamburg, Germany
| | - Susanne Meier
- Hamburg Centre for Ultrafast Imaging, Universität Hamburg, Luruper Chaussee 149, 22761 Hamburg, Germany
- Universität Hamburg, Institut für Nanostruktur- und Festkörperphysik, Luruper Chaussee 149, 22761 Hamburg, Germany
| | | | - Boris Krichel
- Heinrich Pette Institute, Leibniz Institute for Experimental Virology, Martinistr. 52, 20251 Hamburg, Germany
| | - Janine-Denise Kopicki
- Heinrich Pette Institute, Leibniz Institute for Experimental Virology, Martinistr. 52, 20251 Hamburg, Germany
| | - Luca Gelisio
- Center for Free-Electron Laser Science, Deutsches Elektronen-Synchrotron DESY, Notkestr. 85, 22607 Hamburg, Germany
| | - Wolfgang Brehm
- Center for Free-Electron Laser Science, Deutsches Elektronen-Synchrotron DESY, Notkestr. 85, 22607 Hamburg, Germany
| | - Ilona Dunkel
- Max Planck Institute for Molecular Genetics, Ihnestr. 63-73, 14195 Berlin, Germany
| | - Brandon Seychell
- Universität Hamburg, Department of Chemistry, Institute of Physical Chemistry, Grindelallee 117, 20146 Hamburg, Germany
| | - Henry Gieseler
- Hamburg Centre for Ultrafast Imaging, Universität Hamburg, Luruper Chaussee 149, 22761 Hamburg, Germany
- Universität Hamburg, Institut für Nanostruktur- und Festkörperphysik, Luruper Chaussee 149, 22761 Hamburg, Germany
| | - Brenna Norton-Baker
- Max Planck Institute for the Structure and Dynamics of Matter, Luruper Chaussee 149, 22761 Hamburg, Germany
- Department of Chemistry, UC Irvine, Irvine, CA 92697-2025, USA
| | - Beatriz Escudero-Pérez
- Bernhard Nocht Institute for Tropical Medicine, Bernhard-Nocht-Str. 74, 20359 Hamburg, Germany
| | - Martin Domaracky
- Center for Free-Electron Laser Science, Deutsches Elektronen-Synchrotron DESY, Notkestr. 85, 22607 Hamburg, Germany
| | - Sofiane Saouane
- Deutsches Elektronen-Synchrotron DESY, Notkestr. 85, 22607, Hamburg, Germany
| | - Alexandra Tolstikova
- Center for Free-Electron Laser Science, Deutsches Elektronen-Synchrotron DESY, Notkestr. 85, 22607 Hamburg, Germany
| | - Thomas A White
- Center for Free-Electron Laser Science, Deutsches Elektronen-Synchrotron DESY, Notkestr. 85, 22607 Hamburg, Germany
| | - Anna Hänle
- Center for Free-Electron Laser Science, Deutsches Elektronen-Synchrotron DESY, Notkestr. 85, 22607 Hamburg, Germany
| | - Michael Groessler
- Center for Free-Electron Laser Science, Deutsches Elektronen-Synchrotron DESY, Notkestr. 85, 22607 Hamburg, Germany
| | - Holger Fleckenstein
- Center for Free-Electron Laser Science, Deutsches Elektronen-Synchrotron DESY, Notkestr. 85, 22607 Hamburg, Germany
| | - Fabian Trost
- Center for Free-Electron Laser Science, Deutsches Elektronen-Synchrotron DESY, Notkestr. 85, 22607 Hamburg, Germany
| | - Marina Galchenkova
- Center for Free-Electron Laser Science, Deutsches Elektronen-Synchrotron DESY, Notkestr. 85, 22607 Hamburg, Germany
| | - Yaroslav Gevorkov
- Center for Free-Electron Laser Science, Deutsches Elektronen-Synchrotron DESY, Notkestr. 85, 22607 Hamburg, Germany
- Vision Systems, Hamburg University of Technology, 21071 Hamburg, Germany
| | - Chufeng Li
- Center for Free-Electron Laser Science, Deutsches Elektronen-Synchrotron DESY, Notkestr. 85, 22607 Hamburg, Germany
| | - Salah Awel
- Center for Free-Electron Laser Science, Deutsches Elektronen-Synchrotron DESY, Notkestr. 85, 22607 Hamburg, Germany
| | - Ariana Peck
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | - Miriam Barthelmess
- Center for Free-Electron Laser Science, Deutsches Elektronen-Synchrotron DESY, Notkestr. 85, 22607 Hamburg, Germany
| | - Frank Schlünzen
- Center for Free-Electron Laser Science, Deutsches Elektronen-Synchrotron DESY, Notkestr. 85, 22607 Hamburg, Germany
| | - P Lourdu Xavier
- Center for Free-Electron Laser Science, Deutsches Elektronen-Synchrotron DESY, Notkestr. 85, 22607 Hamburg, Germany
- Max Planck Institute for the Structure and Dynamics of Matter, Luruper Chaussee 149, 22761 Hamburg, Germany
| | - Nadine Werner
- Universität Hamburg, Department of Chemistry, Institute of Biochemistry and Molecular Biology and Laboratory for Structural Biology of Infection and Inflammation, c/o DESY, 22607 Hamburg, Germany
| | - Hina Andaleeb
- Universität Hamburg, Department of Chemistry, Institute of Biochemistry and Molecular Biology and Laboratory for Structural Biology of Infection and Inflammation, c/o DESY, 22607 Hamburg, Germany
| | - Najeeb Ullah
- Universität Hamburg, Department of Chemistry, Institute of Biochemistry and Molecular Biology and Laboratory for Structural Biology of Infection and Inflammation, c/o DESY, 22607 Hamburg, Germany
| | - Sven Falke
- Universität Hamburg, Department of Chemistry, Institute of Biochemistry and Molecular Biology and Laboratory for Structural Biology of Infection and Inflammation, c/o DESY, 22607 Hamburg, Germany
| | - Vasundara Srinivasan
- Universität Hamburg, Department of Chemistry, Institute of Biochemistry and Molecular Biology and Laboratory for Structural Biology of Infection and Inflammation, c/o DESY, 22607 Hamburg, Germany
| | - Bruno Alves França
- Universität Hamburg, Department of Chemistry, Institute of Biochemistry and Molecular Biology and Laboratory for Structural Biology of Infection and Inflammation, c/o DESY, 22607 Hamburg, Germany
| | - Martin Schwinzer
- Universität Hamburg, Department of Chemistry, Institute of Biochemistry and Molecular Biology and Laboratory for Structural Biology of Infection and Inflammation, c/o DESY, 22607 Hamburg, Germany
| | - Hévila Brognaro
- Universität Hamburg, Department of Chemistry, Institute of Biochemistry and Molecular Biology and Laboratory for Structural Biology of Infection and Inflammation, c/o DESY, 22607 Hamburg, Germany
| | - Cromarte Rogers
- Hamburg Centre for Ultrafast Imaging, Universität Hamburg, Luruper Chaussee 149, 22761 Hamburg, Germany
- Universität Hamburg, Institut für Nanostruktur- und Festkörperphysik, Luruper Chaussee 149, 22761 Hamburg, Germany
| | - Diogo Melo
- Hamburg Centre for Ultrafast Imaging, Universität Hamburg, Luruper Chaussee 149, 22761 Hamburg, Germany
- Universität Hamburg, Institut für Nanostruktur- und Festkörperphysik, Luruper Chaussee 149, 22761 Hamburg, Germany
| | - Joanna Irina Zaitseva-Kinneberg
- Hamburg Centre for Ultrafast Imaging, Universität Hamburg, Luruper Chaussee 149, 22761 Hamburg, Germany
- Universität Hamburg, Institut für Nanostruktur- und Festkörperphysik, Luruper Chaussee 149, 22761 Hamburg, Germany
| | - Juraj Knoska
- Center for Free-Electron Laser Science, Deutsches Elektronen-Synchrotron DESY, Notkestr. 85, 22607 Hamburg, Germany
| | - Gisel E Peña-Murillo
- Center for Free-Electron Laser Science, Deutsches Elektronen-Synchrotron DESY, Notkestr. 85, 22607 Hamburg, Germany
| | - Aida Rahmani Mashhour
- Center for Free-Electron Laser Science, Deutsches Elektronen-Synchrotron DESY, Notkestr. 85, 22607 Hamburg, Germany
| | - Vincent Hennicke
- Center for Free-Electron Laser Science, Deutsches Elektronen-Synchrotron DESY, Notkestr. 85, 22607 Hamburg, Germany
| | - Pontus Fischer
- Center for Free-Electron Laser Science, Deutsches Elektronen-Synchrotron DESY, Notkestr. 85, 22607 Hamburg, Germany
| | - Johanna Hakanpää
- Deutsches Elektronen-Synchrotron DESY, Notkestr. 85, 22607, Hamburg, Germany
| | - Jan Meyer
- Deutsches Elektronen-Synchrotron DESY, Notkestr. 85, 22607, Hamburg, Germany
| | - Philip Gribbon
- Fraunhofer Institute for Translational Medicine and Pharmacology and Fraunhofer Cluster of Excellence for Immune Mediated Diseases, Schnackenburgallee 114, 22525 Hamburg, Germany
| | - Bernhard Ellinger
- Fraunhofer Institute for Translational Medicine and Pharmacology and Fraunhofer Cluster of Excellence for Immune Mediated Diseases, Schnackenburgallee 114, 22525 Hamburg, Germany
| | - Maria Kuzikov
- Fraunhofer Institute for Translational Medicine and Pharmacology and Fraunhofer Cluster of Excellence for Immune Mediated Diseases, Schnackenburgallee 114, 22525 Hamburg, Germany
| | - Markus Wolf
- Fraunhofer Institute for Translational Medicine and Pharmacology and Fraunhofer Cluster of Excellence for Immune Mediated Diseases, Schnackenburgallee 114, 22525 Hamburg, Germany
| | | | - Gleb Bourenkov
- EMBL Outstation Hamburg, c/o DESY, Notkestr. 85, 22607 Hamburg, Germany
| | - David von Stetten
- EMBL Outstation Hamburg, c/o DESY, Notkestr. 85, 22607 Hamburg, Germany
| | | | - Isabel Bento
- EMBL Outstation Hamburg, c/o DESY, Notkestr. 85, 22607 Hamburg, Germany
| | | | - Ivars Karpics
- EMBL Outstation Hamburg, c/o DESY, Notkestr. 85, 22607 Hamburg, Germany
| | | | | | - Stephan Niebling
- EMBL Outstation Hamburg, c/o DESY, Notkestr. 85, 22607 Hamburg, Germany
| | - Christian Günther
- EMBL Outstation Hamburg, c/o DESY, Notkestr. 85, 22607 Hamburg, Germany
| | | | - Robin Schubert
- European XFEL GmbH, Holzkoppel 4, 22869 Schenefeld, Germany
| | - Huijong Han
- European XFEL GmbH, Holzkoppel 4, 22869 Schenefeld, Germany
| | - Juliane Boger
- Institute of Molecular Medicine, University of Lübeck, 23562 Lübeck, Germany
| | - Diana C F Monteiro
- Hauptmann Woodward Medical Research Institute, 700 Ellicott Street, Buffalo, NY 14203, USA
| | - Linlin Zhang
- Institute of Molecular Medicine, University of Lübeck, 23562 Lübeck, Germany
- German Center for Infection Research, Hamburg-Lübeck-Borstel-Riems Site, University of Lübeck, 23562 Lübeck, Germany
| | - Xinyuanyuan Sun
- Institute of Molecular Medicine, University of Lübeck, 23562 Lübeck, Germany
- German Center for Infection Research, Hamburg-Lübeck-Borstel-Riems Site, University of Lübeck, 23562 Lübeck, Germany
| | | | - Jan Wollenhaupt
- Helmholtz Zentrum Berlin, Macromolecular Crystallography, Albert-Einstein-Str. 15, 12489 Berlin, Germany
| | - Christian G Feiler
- Helmholtz Zentrum Berlin, Macromolecular Crystallography, Albert-Einstein-Str. 15, 12489 Berlin, Germany
| | - Manfred S Weiss
- Helmholtz Zentrum Berlin, Macromolecular Crystallography, Albert-Einstein-Str. 15, 12489 Berlin, Germany
| | - Eike-Christian Schulz
- Max Planck Institute for the Structure and Dynamics of Matter, Luruper Chaussee 149, 22761 Hamburg, Germany
| | - Pedram Mehrabi
- Max Planck Institute for the Structure and Dynamics of Matter, Luruper Chaussee 149, 22761 Hamburg, Germany
| | - Katarina Karničar
- Department of Biochemistry and Molecular and Structural Biology, Jozef Stefan Institute, Jamova 39, 1000 Ljubljana, Slovenia
- Centre of Excellence for Integrated Approaches in Chemistry and Biology of Proteins, Jamova 39, 1000 Ljubljana, Slovenia
| | - Aleksandra Usenik
- Department of Biochemistry and Molecular and Structural Biology, Jozef Stefan Institute, Jamova 39, 1000 Ljubljana, Slovenia
- Centre of Excellence for Integrated Approaches in Chemistry and Biology of Proteins, Jamova 39, 1000 Ljubljana, Slovenia
| | - Jure Loboda
- Department of Biochemistry and Molecular and Structural Biology, Jozef Stefan Institute, Jamova 39, 1000 Ljubljana, Slovenia
| | - Henning Tidow
- Hamburg Centre for Ultrafast Imaging, Universität Hamburg, Luruper Chaussee 149, 22761 Hamburg, Germany
- Universität Hamburg, Department of Chemistry, Institute of Biochemistry and Molecular Biology, Martin-Luther-King-Platz 6, 20146 Hamburg, Germany
| | - Ashwin Chari
- Research Group for Structural Biochemistry and Mechanisms, Department of Structural Dynamics, Max Planck Institute for Biophysical Chemistry, Am Fassberg 11, 37077 Göttingen, Germany
| | - Rolf Hilgenfeld
- Institute of Molecular Medicine, University of Lübeck, 23562 Lübeck, Germany
- German Center for Infection Research, Hamburg-Lübeck-Borstel-Riems Site, University of Lübeck, 23562 Lübeck, Germany
| | - Charlotte Uetrecht
- Heinrich Pette Institute, Leibniz Institute for Experimental Virology, Martinistr. 52, 20251 Hamburg, Germany
| | - Russell Cox
- Institute for Organic Chemistry and BMWZ, Leibniz University of Hannover, Schneiderberg 38, 30167 Hannover, Germany
| | - Andrea Zaliani
- Fraunhofer Institute for Translational Medicine and Pharmacology and Fraunhofer Cluster of Excellence for Immune Mediated Diseases, Schnackenburgallee 114, 22525 Hamburg, Germany
| | - Tobias Beck
- Hamburg Centre for Ultrafast Imaging, Universität Hamburg, Luruper Chaussee 149, 22761 Hamburg, Germany
- Universität Hamburg, Department of Chemistry, Institute of Physical Chemistry, Grindelallee 117, 20146 Hamburg, Germany
| | - Matthias Rarey
- Universität Hamburg, Center for Bioinformatics, Bundesstr. 43, 20146 Hamburg, Germany
| | - Stephan Günther
- Bernhard Nocht Institute for Tropical Medicine, Bernhard-Nocht-Str. 74, 20359 Hamburg, Germany
| | - Dusan Turk
- Department of Biochemistry and Molecular and Structural Biology, Jozef Stefan Institute, Jamova 39, 1000 Ljubljana, Slovenia
- Centre of Excellence for Integrated Approaches in Chemistry and Biology of Proteins, Jamova 39, 1000 Ljubljana, Slovenia
| | - Winfried Hinrichs
- Universität Hamburg, Department of Chemistry, Institute of Biochemistry and Molecular Biology and Laboratory for Structural Biology of Infection and Inflammation, c/o DESY, 22607 Hamburg, Germany
- Universität Greifswald, Institute of Biochemistry, Felix-Hausdorff-Str. 4, 17489 Greifswald, Germany
| | - Henry N Chapman
- Center for Free-Electron Laser Science, Deutsches Elektronen-Synchrotron DESY, Notkestr. 85, 22607 Hamburg, Germany
- Hamburg Centre for Ultrafast Imaging, Universität Hamburg, Luruper Chaussee 149, 22761 Hamburg, Germany
- Universität Hamburg, Department of Physics, Luruper Chaussee 149, 22761 Hamburg, Germany
| | - Arwen R Pearson
- Hamburg Centre for Ultrafast Imaging, Universität Hamburg, Luruper Chaussee 149, 22761 Hamburg, Germany
- Universität Hamburg, Institut für Nanostruktur- und Festkörperphysik, Luruper Chaussee 149, 22761 Hamburg, Germany
| | - Christian Betzel
- Hamburg Centre for Ultrafast Imaging, Universität Hamburg, Luruper Chaussee 149, 22761 Hamburg, Germany
- Universität Hamburg, Department of Chemistry, Institute of Biochemistry and Molecular Biology and Laboratory for Structural Biology of Infection and Inflammation, c/o DESY, 22607 Hamburg, Germany
| | - Alke Meents
- Center for Free-Electron Laser Science, Deutsches Elektronen-Synchrotron DESY, Notkestr. 85, 22607 Hamburg, Germany.
| |
Collapse
|
8
|
Guiney SJ, Adlard PA, Lei P, Mawal CH, Bush AI, Finkelstein DI, Ayton S. Fibrillar α-synuclein toxicity depends on functional lysosomes. J Biol Chem 2021; 295:17497-17513. [PMID: 33453994 DOI: 10.1074/jbc.ra120.013428] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2020] [Revised: 10/01/2020] [Indexed: 02/05/2023] Open
Abstract
Neurodegeneration in Parkinson's disease (PD) can be recapitulated in animals by administration of α-synuclein preformed fibrils (PFFs) into the brain. However, the mechanism by which these PFFs induce toxicity is unknown. Iron is implicated in PD pathophysiology, so we investigated whether α-synuclein PFFs induce ferroptosis, an iron-dependent cell death pathway. A range of ferroptosis inhibitors were added to a striatal neuron-derived cell line (STHdhQ7/7 cells), a dopaminergic neuron-derived cell line (SN4741 cells), and WT primary cortical neurons, all of which had been intoxicated with α-synuclein PFFs. Viability was not recovered by these inhibitors except for liproxstatin-1, a best-in-class ferroptosis inhibitor, when used at high doses. High-dose liproxstatin-1 visibly enlarged the area of a cell that contained acidic vesicles and elevated the expression of several proteins associated with the autophagy-lysosomal pathway similarly to the known lysosomal inhibitors, chloroquine and bafilomycin A1. Consistent with high-dose liproxstatin-1 protecting via a lysosomal mechanism, we further de-monstrated that loss of viability induced by α-synuclein PFFs was attenuated by chloroquine and bafilomycin A1 as well as the lysosomal cysteine protease inhibitors, leupeptin, E-64D, and Ca-074-Me, but not other autophagy or lysosomal enzyme inhibitors. We confirmed using immunofluorescence microscopy that heparin prevented uptake of α-synuclein PFFs into cells but that chloroquine did not stop α-synuclein uptake into lysosomes despite impairing lysosomal function and inhibiting α-synuclein toxicity. Together, these data suggested that α-synuclein PFFs are toxic in functional lysosomes in vitro. Therapeutic strategies that prevent α-synuclein fibril uptake into lysosomes may be of benefit in PD.
Collapse
Affiliation(s)
- Stephanie J Guiney
- Melbourne Dementia Research Centre, Parkville, Victoria, Australia; Florey Institute of Neuroscience and Mental Health, Parkville, Victoria, Australia; University of Melbourne, Parkville, Victoria Australia
| | - Paul A Adlard
- Melbourne Dementia Research Centre, Parkville, Victoria, Australia; Florey Institute of Neuroscience and Mental Health, Parkville, Victoria, Australia; University of Melbourne, Parkville, Victoria Australia
| | - Peng Lei
- Melbourne Dementia Research Centre, Parkville, Victoria, Australia; Florey Institute of Neuroscience and Mental Health, Parkville, Victoria, Australia; University of Melbourne, Parkville, Victoria Australia; Department of Neurology and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University/Collaborative Center for Biotherapy, Chengdu, China
| | - Celeste H Mawal
- Melbourne Dementia Research Centre, Parkville, Victoria, Australia; Florey Institute of Neuroscience and Mental Health, Parkville, Victoria, Australia
| | - Ashley I Bush
- Melbourne Dementia Research Centre, Parkville, Victoria, Australia; Florey Institute of Neuroscience and Mental Health, Parkville, Victoria, Australia; University of Melbourne, Parkville, Victoria Australia
| | - David I Finkelstein
- Melbourne Dementia Research Centre, Parkville, Victoria, Australia; Florey Institute of Neuroscience and Mental Health, Parkville, Victoria, Australia; University of Melbourne, Parkville, Victoria Australia
| | - Scott Ayton
- Melbourne Dementia Research Centre, Parkville, Victoria, Australia; Florey Institute of Neuroscience and Mental Health, Parkville, Victoria, Australia; University of Melbourne, Parkville, Victoria Australia.
| |
Collapse
|
9
|
Billinger E, Viljanen J, Lind SB, Johansson G. Inhibition properties of free and conjugated leupeptin analogues. FEBS Open Bio 2020; 10:2605-2615. [PMID: 33016476 PMCID: PMC7714073 DOI: 10.1002/2211-5463.12994] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2020] [Revised: 05/25/2020] [Accepted: 09/30/2020] [Indexed: 11/06/2022] Open
Abstract
Leupeptin is a naturally occurring inhibitor of various proteases, in particular serine proteases. Following its discovery, the inhibitory properties of several other peptidyl argininals have been studied. The specificity of leupeptin is most likely due to the Leu–Leu–Argininal sequence, and its C‐terminal aldehyde group has been suggested to enhance the binding efficiency and to be essential for function. The terminal aldehyde group makes the structure less vulnerable to carboxypeptidases. Here, we investigated whether the inhibitory function of leupeptin toward serine proteases is retained after oxidation or reduction of the aldehyde group. The oxidized form, which corresponds to the natural precursor, was shown to be superior to the reduced form in terms of inhibitory properties. However, the original leupeptin possessed enhanced inhibitory properties as compared with the oxidized form. Based on these results, new synthetic leupeptin analogues, 6‐aminohexanoic acid (Ahx)–Phe–Leu–Arg–COOH and Ahx–Leu–Leu–Arg–COOH, were prepared by solid‐phase peptide synthesis using the Fmoc strategy. In these analogues, the N‐terminal capping acetyl group was replaced with a 6‐aminohexanoyl group to allow conjugation. The structures of the modified leupeptin and the synthetic peptides were confirmed by mass spectrometry. Determination of the inhibitory properties against trypsin (IEC 3.4.21.4, Chymotrypsin IEC 3.4.21.1) revealed that these further modified tripeptides were tight binding inhibitors to their target enzyme, similar to the naturally occurring leupeptin, with Ki values generally in the micromolar range. The Ahx–Phe–Leu–Arg–COOH analogue was selected for conjugation to inorganic oxide nanoparticles and agarose gel beads. All conjugates exhibited inhibitory activity in the same range as for the free peptides.
Collapse
Affiliation(s)
- Erika Billinger
- Department of Chemistry-BMC, Biochemistry, Uppsala University, Uppsala, Sweden.,Bjerking AB Uppsala, Uppsala, Sweden
| | - Johan Viljanen
- Department of Chemistry-BMC, Organic Chemistry, Uppsala University, Uppsala, Sweden
| | - Sara Bergström Lind
- Department of Chemistry-BMC, Analytical Chemistry, Uppsala University, Uppsala, Sweden.,Office for Science and Technology, Uppsala University, Uppsala, Sweden
| | - Gunnar Johansson
- Department of Chemistry-BMC, Biochemistry, Uppsala University, Uppsala, Sweden
| |
Collapse
|
10
|
Li J, Oh J, Kienesberger S, Kim NY, Clarke DJ, Zechner EL, Crawford JM. Making and Breaking Leupeptin Protease Inhibitors in Pathogenic Gammaproteobacteria. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202005506] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Jhe‐Hao Li
- Department of Chemistry Yale University New Haven CT 06520 USA
- Chemical Biology Institute Yale University West Haven CT 06516 USA
| | - Joonseok Oh
- Department of Chemistry Yale University New Haven CT 06520 USA
- Chemical Biology Institute Yale University West Haven CT 06516 USA
| | | | - Nam Yoon Kim
- Department of Chemistry Yale University New Haven CT 06520 USA
- Chemical Biology Institute Yale University West Haven CT 06516 USA
| | - David J. Clarke
- School of Microbiology and APC Microbiome Ireland University College Cork Cork Ireland
| | - Ellen L. Zechner
- Institute of Molecular Biosciences University of Graz 8010 Graz Austria
- BioTechMed-Graz 8010 Graz Austria
| | - Jason M. Crawford
- Department of Chemistry Yale University New Haven CT 06520 USA
- Chemical Biology Institute Yale University West Haven CT 06516 USA
- Department of Microbial Pathogenesis Yale University School of Medicine New Haven CT 06536 USA
| |
Collapse
|
11
|
Gampe C, Verma VA. Curse or Cure? A Perspective on the Developability of Aldehydes as Active Pharmaceutical Ingredients. J Med Chem 2020; 63:14357-14381. [DOI: 10.1021/acs.jmedchem.0c01177] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Christian Gampe
- Genentech, 1 DNA Way, South San Francisco, 94080 California, United States
| | - Vishal A. Verma
- Genentech, 1 DNA Way, South San Francisco, 94080 California, United States
| |
Collapse
|
12
|
Li JH, Oh J, Kienesberger S, Kim NY, Clarke DJ, Zechner EL, Crawford JM. Making and Breaking Leupeptin Protease Inhibitors in Pathogenic Gammaproteobacteria. Angew Chem Int Ed Engl 2020; 59:17872-17880. [PMID: 32609431 DOI: 10.1002/anie.202005506] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Revised: 06/29/2020] [Indexed: 12/12/2022]
Abstract
Leupeptin is a bacterial small molecule that is used worldwide as a protease inhibitor. However, its biosynthesis and genetic distribution remain unknown. We identified a family of leupeptins in gammaproteobacterial pathogens, including Photorhabdus, Xenorhabdus, and Klebsiella species, amongst others. Through genetic, metabolomic, and heterologous expression analyses, we established their construction by discretely expressed ligases and accessory enzymes. In Photorhabdus species, a hypothetical protein required for colonizing nematode hosts was established as a new class of proteases. This enzyme cleaved the tripeptide aldehyde protease inhibitors, leading to the formation of "pro-pyrazinones" featuring a hetero-tricyclic architecture. In Klebsiella oxytoca, the pathway was enriched in clinical isolates associated with respiratory tract infections. Thus, the bacterial production and proteolytic degradation of leupeptins can be associated with animal colonization phenotypes.
Collapse
Affiliation(s)
- Jhe-Hao Li
- Department of Chemistry, Yale University, New Haven, CT, 06520, USA.,Chemical Biology Institute, Yale University, West Haven, CT, 06516, USA
| | - Joonseok Oh
- Department of Chemistry, Yale University, New Haven, CT, 06520, USA.,Chemical Biology Institute, Yale University, West Haven, CT, 06516, USA
| | | | - Nam Yoon Kim
- Department of Chemistry, Yale University, New Haven, CT, 06520, USA.,Chemical Biology Institute, Yale University, West Haven, CT, 06516, USA
| | - David J Clarke
- School of Microbiology and APC Microbiome Ireland, University College Cork, Cork, Ireland
| | - Ellen L Zechner
- Institute of Molecular Biosciences, University of Graz, 8010, Graz, Austria.,BioTechMed-Graz, 8010, Graz, Austria
| | - Jason M Crawford
- Department of Chemistry, Yale University, New Haven, CT, 06520, USA.,Chemical Biology Institute, Yale University, West Haven, CT, 06516, USA.,Department of Microbial Pathogenesis, Yale University School of Medicine, New Haven, CT, 06536, USA
| |
Collapse
|
13
|
Plakke MS, Walker JL, Lombardo JB, Goetz BJ, Pacella GN, Durrant JD, Clark NL, Morehouse NI. Characterization of Female Reproductive Proteases in a Butterfly from Functional and Evolutionary Perspectives. Physiol Biochem Zool 2019; 92:579-590. [DOI: 10.1086/705722] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
14
|
Küster E, Kalkhof S, Aulhorn S, von Bergen M, Gündel U. Effects of Five Substances with Different Modes of Action on Cathepsin H, C and L Activities in Zebrafish Embryos. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2019; 16:E3956. [PMID: 31627361 PMCID: PMC6843663 DOI: 10.3390/ijerph16203956] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/02/2019] [Revised: 09/29/2019] [Accepted: 10/10/2019] [Indexed: 11/24/2022]
Abstract
Cathepsins have been proposed as biomarkers of chemical exposure in the zebrafish embryo model but it is unclear whether they can also be used to detect sublethal stress. The present study evaluates three cathepsin types as candidate biomarkers in zebrafish embryos. In addition to other functions, cathepsins are also involved in yolk lysosomal processes for the internal nutrition of embryos of oviparous animals until external feeding starts. The baseline enzyme activity of cathepsin types H, C and L during the embryonic development of zebrafish in the first 96 h post fertilisation was studied. Secondly, the effect of leupeptin, a known cathepsin inhibitor, and four embryotoxic xenobiotic compounds with different modes of action (phenanthrene-baseline toxicity; rotenone-an inhibitor of electron transport chain in mitochondria; DNOC (Dinitro-ortho-cresol)-an inhibitor of ATP synthesis; and tebuconazole-a sterol biosynthesis inhibitor) on in vivo cathepsin H, C and L total activities have been tested. The positive control leupeptin showed effects on cathepsin L at a 20-fold lower concentration compared to the respective LC50 (0.4 mM) of the zebrafish embryo assay (FET). The observed effects on the enzyme activity of the four other xenobiotics were not or just slightly more sensitive (factor of 1.5 to 3), but the differences did not reach statistical significance. Results of this study indicate that the analysed cathepsins are not susceptible to toxins other than the known peptide-like inhibitors. However, specific cathepsin inhibitors might be identified using the zebrafish embryo.
Collapse
Affiliation(s)
- Eberhard Küster
- Department Bioanalytical Ecotoxicology, UFZ- Helmholtz -Centre for Environmental Research-UFZ, 04318 Leipzig, Germany.
| | - Stefan Kalkhof
- Department of Molecular Systems Biology, UFZ- Helmholtz -Centre for Environmental Research-UFZ, 04318 Leipzig, Germany
- Institute of Bioanalysis, University of Applied Sciences Coburg, 96450 Coburg, Germany
- IZI, Fraunhofer Institute for Cell Therapy and Immunology, Department of Therapy Validation, 04103 Leipzig, Germany
| | - Silke Aulhorn
- Department Bioanalytical Ecotoxicology, UFZ- Helmholtz -Centre for Environmental Research-UFZ, 04318 Leipzig, Germany
| | - Martin von Bergen
- Department of Molecular Systems Biology, UFZ- Helmholtz -Centre for Environmental Research-UFZ, 04318 Leipzig, Germany
- Faculty of Life Sciences, Institute of Biochemistry, University of Leipzig, 04103 Leipzig, Germany
| | - Ulrike Gündel
- Department Bioanalytical Ecotoxicology, UFZ- Helmholtz -Centre for Environmental Research-UFZ, 04318 Leipzig, Germany
- Department Chemicals and Product Safety, Federal Institute for Risk Assessment (BfR), 10589 Berlin, Germany
| |
Collapse
|
15
|
Kruglyak N, Williams DE, Chen H, Law S, Kaleta J, Villanueva I, Davies JE, Andersen RJ, Brömme D. Leupeptazin, a highly modified tripeptide isolated from cultures of a Streptomyces sp. inhibits cathepsin K. Bioorg Med Chem Lett 2017; 27:1397-1400. [DOI: 10.1016/j.bmcl.2017.02.007] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2016] [Revised: 01/31/2017] [Accepted: 02/02/2017] [Indexed: 11/30/2022]
|
16
|
Total Synthesis and Stereochemical Assignment of Nostosin B. Mar Drugs 2017; 15:md15030058. [PMID: 28264450 PMCID: PMC5367015 DOI: 10.3390/md15030058] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2017] [Accepted: 02/22/2017] [Indexed: 02/04/2023] Open
Abstract
Nostosins A and B were isolated from a hydrophilic extract of Nostoc sp. strain from Iran, which exhibits excellent tryps inhibitory activity. Nostosin A was the most potent natural tripeptide aldehyde as trypsin inhibitor up to now. Both R- and S-2-hydroxy-4-(4-hydroxy-phenyl) butanoic acid (Hhpba) were prepared and incorporated into the total synthesis of nostosin B, respectively. Careful comparison of the NMR spectra and optical rotation data of synthetic nostosin B (1a and 1b) with the natural product led to the unambiguous identification of the R-configuration of the Hhpba fragment, which was further confirmed by co-injection with the authentic sample on HPLC using both reversed phase column and the chiral AD-RH column.
Collapse
|
17
|
Guo CJ, Chang FY, Wyche TP, Backus KM, Acker TM, Funabashi M, Taketani M, Donia MS, Nayfach S, Pollard KS, Craik CS, Cravatt BF, Clardy J, Voigt CA, Fischbach MA. Discovery of Reactive Microbiota-Derived Metabolites that Inhibit Host Proteases. Cell 2017; 168:517-526.e18. [PMID: 28111075 DOI: 10.1016/j.cell.2016.12.021] [Citation(s) in RCA: 176] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2016] [Revised: 10/28/2016] [Accepted: 12/14/2016] [Indexed: 11/19/2022]
Abstract
The gut microbiota modulate host biology in numerous ways, but little is known about the molecular mediators of these interactions. Previously, we found a widely distributed family of nonribosomal peptide synthetase gene clusters in gut bacteria. Here, by expressing a subset of these clusters in Escherichia coli or Bacillus subtilis, we show that they encode pyrazinones and dihydropyrazinones. At least one of the 47 clusters is present in 88% of the National Institutes of Health Human Microbiome Project (NIH HMP) stool samples, and they are transcribed under conditions of host colonization. We present evidence that the active form of these molecules is the initially released peptide aldehyde, which bears potent protease inhibitory activity and selectively targets a subset of cathepsins in human cell proteomes. Our findings show that an approach combining bioinformatics, synthetic biology, and heterologous gene cluster expression can rapidly expand our knowledge of the metabolic potential of the microbiota while avoiding the challenges of cultivating fastidious commensals.
Collapse
Affiliation(s)
- Chun-Jun Guo
- Department of Bioengineering and Therapeutic Sciences and California Institute for Quantitative Biosciences, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Fang-Yuan Chang
- Department of Biological Engineering and Synthetic Biology Center, Massachusetts Institute of Technology, Cambridge, MA 02115, USA
| | - Thomas P Wyche
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02115, USA
| | - Keriann M Backus
- Department of Chemical Physiology, The Scripps Research Institute, La Jolla, CA 92307, USA
| | - Timothy M Acker
- Department of Pharmaceutical Chemistry, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Masanori Funabashi
- Department of Bioengineering and Therapeutic Sciences and California Institute for Quantitative Biosciences, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Mao Taketani
- Department of Bioengineering and Therapeutic Sciences and California Institute for Quantitative Biosciences, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Mohamed S Donia
- Department of Molecular Biology, Princeton University, Princeton, NJ 08544, USA
| | - Stephen Nayfach
- Integrative Program in Quantitative Biology, Gladstone Institutes, and Division of Biostatistics, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Katherine S Pollard
- Integrative Program in Quantitative Biology, Gladstone Institutes, and Division of Biostatistics, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Charles S Craik
- Department of Pharmaceutical Chemistry, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Benjamin F Cravatt
- Department of Chemical Physiology, The Scripps Research Institute, La Jolla, CA 92307, USA
| | - Jon Clardy
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02115, USA
| | - Christopher A Voigt
- Department of Biological Engineering and Synthetic Biology Center, Massachusetts Institute of Technology, Cambridge, MA 02115, USA
| | - Michael A Fischbach
- Department of Bioengineering and Therapeutic Sciences and California Institute for Quantitative Biosciences, University of California, San Francisco, San Francisco, CA 94158, USA.
| |
Collapse
|
18
|
Zhu Y, Pan WH, Wang XR, Liu Y, Chen M, Xu XG, Liao WQ, Hu JH. Tryptase and protease-activated receptor-2 stimulate scratching behavior in a murine model of ovalbumin-induced atopic-like dermatitis. Int Immunopharmacol 2015; 28:507-12. [PMID: 26049029 DOI: 10.1016/j.intimp.2015.04.047] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2015] [Revised: 04/08/2015] [Accepted: 04/22/2015] [Indexed: 11/16/2022]
Abstract
The aim of the current study was to investigate the involvement of tryptase and protease-activated receptor-2 (PAR2) in the pathogenesis of itch using a recently developed murine model of atopic dermatitis (AD) elicited by epicutaneous sensitization with ovalbumin (OVA). We also examined whether tacrolimus exerts an antipruritic effect. Epicutaneous sensitization of BALB/c mice with OVA led to a significant increase in the number of scratches. Notably, PAR2 mRNA and protein levels as well as cutaneous levels of tryptase were significantly enhanced in epicutaneously sensitized mice. Pretreatment with the protease inhibitor, leupeptin, PAR2 antibody, and tacrolimus significantly reduced the number of degranulated mast cells and tryptase content, and consequently alleviated scratching behavior. Cetirizine (10mg/kg) exerted a significant inhibitory effect on the scratching behavior of mice, but did not affect the number of degranulated mast cells and induction of tryptase. Our results collectively suggest that tryptase and PAR2 are involved in OVA allergy-induced scratching behavior.
Collapse
Affiliation(s)
- Yu Zhu
- Department of Dermatology, Changzheng Hospital, Second Military Medical University, Shanghai, PR China; Institute of Medical Mycology, Shanghai, PR China
| | - Wei Hua Pan
- Department of Dermatology, Changzheng Hospital, Second Military Medical University, Shanghai, PR China; Institute of Medical Mycology, Shanghai, PR China
| | - Xiao Rong Wang
- Department of Obstetrics and Gynecology, Heilongjiang Provincial Corps Hospital, Chinese People's Armed Police Forces, Harbin, PR China
| | - Ying Liu
- Zhejiang Tongji Vocational College of Science and Technology, Hangzhou, PR China
| | - Min Chen
- Department of Dermatology, Changzheng Hospital, Second Military Medical University, Shanghai, PR China; Institute of Medical Mycology, Shanghai, PR China; Shanghai Key Laboratory of Molecular Medical Mycology, PR China; PLA Key Laboratory of Mycosis, PR China
| | - Xiao Guang Xu
- Institute of Medical Mycology, Shanghai, PR China; Shanghai Key Laboratory of Molecular Medical Mycology, PR China; PLA Key Laboratory of Mycosis, PR China
| | - Wan Qing Liao
- Institute of Medical Mycology, Shanghai, PR China; Shanghai Key Laboratory of Molecular Medical Mycology, PR China; PLA Key Laboratory of Mycosis, PR China.
| | - Jin Hong Hu
- Department of Pharmacy, Changhai Hospital, Second Military Medical University, Shanghai, PR China.
| |
Collapse
|
19
|
Plum S, Steinbach S, Abel L, Marcus K, Helling S, May C. Proteomics in neurodegenerative diseases: Methods for obtaining a closer look at the neuronal proteome. Proteomics Clin Appl 2014; 9:848-71. [DOI: 10.1002/prca.201400030] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2014] [Revised: 06/25/2014] [Accepted: 09/03/2014] [Indexed: 12/12/2022]
Affiliation(s)
- Sarah Plum
- Medizinisches Proteom-Center; Funktionelle Proteomik; Ruhr-Universität Bochum; Bochum Germany
| | - Simone Steinbach
- Medizinisches Proteom-Center; Medical Proteomics/Bioanalytics; Ruhr-Universität Bochum; Bochum Germany
| | - Laura Abel
- Medizinisches Proteom-Center; Medical Proteomics/Bioanalytics; Ruhr-Universität Bochum; Bochum Germany
| | - Katrin Marcus
- Medizinisches Proteom-Center; Funktionelle Proteomik; Ruhr-Universität Bochum; Bochum Germany
| | - Stefan Helling
- Medizinisches Proteom-Center; Funktionelle Proteomik; Ruhr-Universität Bochum; Bochum Germany
| | - Caroline May
- Medizinisches Proteom-Center; Medical Proteomics/Bioanalytics; Ruhr-Universität Bochum; Bochum Germany
| |
Collapse
|
20
|
Yan SE, Lemmin T, Salvi S, Lausch E, Superti-Furga A, Rokicki D, Dal Peraro M, van der Goot FG. In-depth analysis of hyaline fibromatosis syndrome frameshift mutations at the same site reveal the necessity of personalized therapy. Hum Mutat 2013; 34:1005-17. [PMID: 23554269 DOI: 10.1002/humu.22324] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2012] [Accepted: 03/20/2013] [Indexed: 11/07/2022]
Abstract
Hyaline fibromatosis syndrome is an autosomal recessive disease caused by mutations in ANTXR2, a gene involved in extracellular matrix homeostasis. Sixty percent of patients carry frameshift mutations at a mutational hotspot in exon 13. We show in patient cells that these mutations lead to low ANTXR2 mRNA and undetectable protein levels. Ectopic expression of the proteins encoded by the mutated genes reveals that a two base insertion leads to the synthesis of a protein that is rapidly targeted to the ER-associated degradation pathway due to the modified structure of the cytosolic tail, which instead of being hydrophilic and highly disordered as in wild type ANTXR2, is folded and exposes hydrophobic patches. In contrast, one base insertion leads to a truncated protein that properly localizes to the plasma membrane and retains partial function. We next show that targeting the nonsense mediated mRNA decay pathway in patient cells leads to a rescue of ANTXR2 protein in patients carrying one base insertion but not in those carrying two base insertions. This study highlights the importance of in-depth analysis of the molecular consequences of specific patient mutations, which even when they occur at the same site can have drastically different consequences.
Collapse
Affiliation(s)
- Shixu E Yan
- Global Health Institute, Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | | | | | | | | | | | | | | |
Collapse
|
21
|
Synthesis and Biological Activity of N-Sulfonyltripeptides with C-Terminal Arginine as Potential Serine Proteases Inhibitors. Int J Pept Res Ther 2012; 19:191-198. [PMID: 23926446 PMCID: PMC3726930 DOI: 10.1007/s10989-012-9338-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/23/2012] [Indexed: 11/12/2022]
Abstract
Tripeptides of the general X-SO2-d-Ser-AA-Arg-CO-Y formula, where X = α-tolyl, p-tolyl, 2,4,6-triisopropylphenyl; AA = alanine, glycine, norvaline and Y = OH, NH-(CH2)5NH2 were obtained and tested for their effect on the amidolytic activities of urokinase, thrombin, trypsin, plasmin, t-PA and kallikrein. The most active compound towards urokinase was PhCH2SO2-d-Ser-Gly-Arg-OH with Ki value 5.4 μM and the most active compound toward thrombin was PhCH2SO2-d-Ser-NVa-Arg-OH with Ki value 0.82 μM. The peptides were nontoxic against porcine erythrocytes in vitro. PhCH2SO2-d-Ser-Gly-Arg-OH showed cytotoxic effect against DLD cell lines with IC50 values of 5 μM. For the highly selective determination of the interaction of some of the synthesised acids of tripeptides with urokinase and plasmin the Surface Plasmon Resonance Imaging sensor has been applied. These compounds bind to urokinase and plasmin in 0.05 mM concentration.
Collapse
|
22
|
Markowska A, Bruzgo M, Surażyński A, Midura-Nowaczek K. Tripeptides with non-code amino acids as potential serine proteases inhibitors. J Enzyme Inhib Med Chem 2012; 28:639-43. [PMID: 22299583 DOI: 10.3109/14756366.2011.651463] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Eight peptides of the general H-D-Ser-AA-Arg-OH formula, where AA = phenylglycine, phenylalanine, homophenylalanine, cyclohexylglycine, cyclohexylalanine, homocyclohexylalanine, α-methylphenylalanine and 1-aminocyclohexyl carboxylic acid were obtained and tested for their effect on the amidolytic activities of urokinase, thrombin, trypsin, plasmin, t-PA and kallikrein. We tested the hemolytic activity of the peptides against porcine erythrocytes and the antitumor activity against the human breast cancer cells, standard MCF-7 and estrogen-independent MDA-MB-231. The most active compounds were H-D-Ser-Chg-Arg-OH towards thrombin and H-D-Ser-Phg-Arg-OH towards plasmin with K(i) value 5.02 μM and 5.7 μM, respectively.
Collapse
|
23
|
Chalatsa I, Fragoulis EG, Vassilacopoulou D. Release of membrane-associated L-dopa decarboxylase from human cells. Neurochem Res 2011; 36:1426-34. [PMID: 21479916 DOI: 10.1007/s11064-011-0468-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/30/2011] [Indexed: 02/06/2023]
Abstract
L-Dopa Decarboxylase is a pyridoxal 5-phosphate (PLP)-dependent enzyme that catalyses the decarboxylation of L-Dopa to dopamine. In this study, we investigated the cellular topology of the active human enzyme. Fractionation of membranes from human cell lines, of neural and non-neural origin, by temperature-induced phase separation in Triton X-114 resulted in the detection of DDC molecules in all separation phases. Solubilization of membrane-associated DDC was observed in a pH and time-dependent manner and was affected by divalent cations and protease inhibitors, suggesting the involvement of a possible release mechanism. The study of the biological properties and function of the solubilization phenomenon described here, as well as, the study of the membrane-associated enzyme could provide us with new information about the participation of the human L-Dopa decarboxylase in physiological and aberrant processes.
Collapse
Affiliation(s)
- Ioanna Chalatsa
- Department of Biochemistry and Molecular Biology, University of Athens, Panepistimiopolis, Zografou, 15701, Athens, Greece
| | | | | |
Collapse
|
24
|
Usuki H, Yamamoto Y, Arima J, Iwabuchi M, Miyoshi S, Nitoda T, Hatanaka T. Peptide bond formation by aminolysin-A catalysis: a simple approach to enzymatic synthesis of diverse short oligopeptides and biologically active puromycins. Org Biomol Chem 2011; 9:2327-35. [PMID: 21321761 DOI: 10.1039/c0ob00403k] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
A new S9 family aminopeptidase derived from the actinobacterial thermophile Acidothermus cellulolyticus was cloned and engineered into a transaminopeptidase by site-directed mutagenesis of catalytic Ser(491) into Cys. The engineered biocatalyst, designated aminolysin-A, can catalyze the formation of peptide bonds to give linear homo-oligopeptides, hetero-dipeptides, and cyclic dipeptides using cost-effective substrates in a one-pot reaction. Aminolysin-A can recognize several C-terminal-modified amino acids, including the l- and d-forms, as acyl donors as well as free amines, including amino acids and puromycin aminonucleoside, as acyl acceptors. The absence of amino acid esters prevents the formation of peptides; therefore, the reaction mechanism involves aminolysis and not a reverse reaction of hydrolysis. The aminolysin system will be a beneficial tool for the preparation of structurally diverse peptide mimetics by a simple approach.
Collapse
Affiliation(s)
- Hirokazu Usuki
- Okayama Prefectural Technology Center for Agriculture, Forestry and Fisheries, Research Institute for Biological Sciences (RIBS), 7549-1 Kibichuo-cho, Kaga-gun, Okayama 716-1241, Japan
| | | | | | | | | | | | | |
Collapse
|
25
|
Gulder TAM, Moore BS. Salinosporamide natural products: Potent 20 S proteasome inhibitors as promising cancer chemotherapeutics. Angew Chem Int Ed Engl 2010; 49:9346-67. [PMID: 20927786 PMCID: PMC3103133 DOI: 10.1002/anie.201000728] [Citation(s) in RCA: 182] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Proteasome inhibitors are rapidly evolving as potent treatment options in cancer therapy. One of the most promising drug candidates of this type is salinosporamide A from the bacterium Salinispora tropica. This marine natural product possesses a complex, densely functionalized γ-lactam-β-lactone pharmacophore, which is responsible for its irreversible binding to its target, the β subunit of the 20S proteasome. Salinosporamide A entered phase I clinical trials for the treatment of multiple myeloma only three years after its discovery. The strong biological activity and the challenging structure of this compound have fueled intense academic and industrial research in recent years, which has led to the development of more than ten syntheses, the elucidation of its biosynthetic pathway, and the generation of promising structure-activity relationships and oncological data. Salinosporamide A thus serves as an intriguing example of the successful interplay of modern drug discovery and biomedical research, medicinal chemistry and pharmacology, natural product synthesis and analysis, as well as biosynthesis and bioengineering.
Collapse
Affiliation(s)
- Tobias A. M. Gulder
- Scripps Institution of Oceanography and Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California at San Diego, 9500 Gilman Drive, La Jolla, CA 92093-0204 (USA), Fax: (+1)858-534-1305, , Homepage: http://moorelab.ucsd.edu
| | - Bradley S. Moore
- Scripps Institution of Oceanography and Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California at San Diego, 9500 Gilman Drive, La Jolla, CA 92093-0204 (USA), Fax: (+1)858-534-1305, , Homepage: http://moorelab.ucsd.edu
| |
Collapse
|
26
|
Gulder TAM, Moore BS. Salinosporamid-Naturstoffe: potente Inhibitoren des 20S-Proteasoms als vielversprechende Krebs-Chemotherapeutika. Angew Chem Int Ed Engl 2010. [DOI: 10.1002/ange.201000728] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
27
|
Glushakova S, Mazar J, Hohmann-Marriott MF, Hama E, Zimmerberg J. Irreversible effect of cysteine protease inhibitors on the release of malaria parasites from infected erythrocytes. Cell Microbiol 2009; 11:95-105. [PMID: 19016793 PMCID: PMC2883916 DOI: 10.1111/j.1462-5822.2008.01242.x] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
By studying the inactivation of malaria parasite culture by cysteine protease inhibition using confocal microscopy of living cells and electron microscopy of high-pressure frozen and freeze-substituted cells, we report the precise step in the release of malaria parasites from erythrocytes that is likely regulated by cysteine proteases: the opening of the erythrocyte membrane, liberating parasites for the next round of infection. Inhibition of cysteine proteases within the last few minutes of cycle does not affect rupture of the parasitophorus vacuole but irreversibly blocks the subsequent rupture of the host cell membrane, locking in resident parasites, which die within a few hours of captivity. This irreversible inactivation of mature parasites inside host cells makes plasmodial cysteine proteases attractive targets for antimalarials, as parasite-specific cysteine protease inhibitors may significantly augment multi-target drug cocktails.
Collapse
Affiliation(s)
- Svetlana Glushakova
- Laboratory of Cellular and Molecular Biophysics, National Institute of Child Health and Human Development, Bethesda, MD 20892, USA
| | - Julia Mazar
- Laboratory of Cellular and Molecular Biophysics, National Institute of Child Health and Human Development, Bethesda, MD 20892, USA
| | - Martin F. Hohmann-Marriott
- National Institute of Biomedical Imaging and Bioengineering, National Institutes of Health, Bethesda, MD 20892, USA
| | - Erinn Hama
- Laboratory of Cellular and Molecular Biophysics, National Institute of Child Health and Human Development, Bethesda, MD 20892, USA
| | - Joshua Zimmerberg
- Laboratory of Cellular and Molecular Biophysics, National Institute of Child Health and Human Development, Bethesda, MD 20892, USA
| |
Collapse
|
28
|
Briguet A, Erb M, Courdier-Fruh I, Barzaghi P, Santos G, Herzner H, Lescop C, Siendt H, Henneboehle M, Weyermann P, Magyar JP, Dubach-Powell J, Metz G, Meier T. Effect of calpain and proteasome inhibition on Ca2+-dependent proteolysis and muscle histopathology in the mdx mouse. FASEB J 2008; 22:4190-200. [PMID: 18728218 DOI: 10.1096/fj.07-099036] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Dystrophin deficiency is the underlying molecular cause of progressive muscle weakness observed in Duchenne muscular dystrophy (DMD). Loss of functional dystrophin leads to elevated levels of intracellular Ca(2+), a key step in the cellular pathology of DMD. The cysteine protease calpain is activated in dystrophin-deficient muscle, and its inhibition is regarded as a potential therapeutic approach. In addition, previous work has shown that the ubiquitin-proteasome system also contributes to muscle protein breakdown in dystrophic muscle and, therefore, also qualifies as a potential target for therapeutic intervention in DMD. The relative contribution of calpain- and proteasome-mediated proteolysis induced by increased Ca(2+) levels was characterized in cultured muscle cells and revealed initial Ca(2+) influx-dependent calpain activity and subsequent Ca(2+)-independent activity of the ubiquitin-proteasome system. We then set out to optimize novel small-molecule inhibitors that inhibit both calpain as well as the 20S proteasome in a cellular system with impaired Ca(2+) homeostasis. On administration of such inhibitors to mdx mice, quantitative histological parameters improved significantly, in particular with compounds strongly inhibiting the 20S proteasome. To investigate the role of calpain inhibition without interfering with the ubiquitin-proteasome system, we crossed mdx mice with transgenic mice, overexpressing the endogenous calpain inhibitor calpastatin. Although our data show that proteolysis by calpain is strongly inhibited in the transgenic mdx mouse, this calpain inhibition did not ameliorate muscle histology. Our results indicate that inhibition of the proteasome rather than calpain is required for histological improvement of dystrophin-deficient muscle. In conclusion, we have identified novel proteasome inhibitors that qualify as potential candidates for pharmacological intervention in muscular dystrophy.
Collapse
Affiliation(s)
- Alexandre Briguet
- Santhera Pharmaceuticals (Switzerland) Ltd, Hammerstrasse 47, CH-4410 Liestal, Switzerland
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Shaw E. Cysteinyl proteinases and their selective inactivation. ADVANCES IN ENZYMOLOGY AND RELATED AREAS OF MOLECULAR BIOLOGY 2006; 63:271-347. [PMID: 2407065 DOI: 10.1002/9780470123096.ch5] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
The affinity-labeling of cysteinyl proteinases may now be carried out with a number of peptide-derived reagents with selectivity, particularly for reactions carried out in vitro. These reagents have been described with emphasis on their selectivity for cysteine proteinases and lack of action on serine proteinases, the most likely source of side reactions among proteinases. Perhaps a crucial feature of this selectivity is an enzyme-promoted activation due to initial formation of a hemiketal, which may destabilize the reagent. Prominent among the reagent types that have this class selectivity are the peptidyl diazomethyl ketones, the acyloxymethyl ketones, the peptidylmethyl sulfonium salts, and peptidyl oxides analogous to E-64. The need for specific inhibitors capable of inactivating the target enzyme in intact cells and animals is inevitably pushing the biochemical application of these inhibitors into more complex molecular environments where the possibilities of competing reactions are greatly increased. In dealing with the current state and potential developments for the in vivo use of affinity-labeling reagents of cysteine proteinases, the presently known variety of cysteinyl proteinases had to be considered. Therefore this chapter has, at the same time, attempted to survey these proteinases with respect to specificity and gene family. The continual discovery of new proteinases will increase the complexity of this picture. At present the lysosomal cysteine proteinases cathepsins B and L and the cytoplasmic calcium-dependent proteinases are reasonable goals for a fairly complete metabolic clarification. The ability of investigators to inactivate individual members of this family in vivo, possibly without complications due to concurrent inactivation of serine proteinases by improvements in reagent specificity, is increasing. Among the cysteine proteinases, at least those of the papain super family, hydrophobic interactions in the S2 and S3 subsites are important and some specificity has been achieved by taking advantage of topographical differences among members of this group. Some of this has probably involved surface differences removed from the regions involved in proteolytic action. The emerging cysteine proteinases include some which, in contrast to the papain family, have a pronounced specificity in S1 for the binding of basic side chains, familiar in the trypsin family of serine proteinases. At least a potential conflict with serine proteinases can be avoided by choice of a covalent bonding mechanism. The departing group region, has not been exploited. As a sole contributor to binding, this region may be rather limited as a source of specificity.(ABSTRACT TRUNCATED AT 400 WORDS)
Collapse
Affiliation(s)
- E Shaw
- Friedrich Miescher-Institut, Basel, Switzerland
| |
Collapse
|
30
|
Srivastava S, Goswami LN, Dikshit DK. Progress in the design of low molecular weight thrombin inhibitors. Med Res Rev 2005; 25:66-92. [PMID: 15389730 DOI: 10.1002/med.20016] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Intravascular thrombosis and its complication, embolism, is a leading cause of morbidity and mortality throughout the world. Past few decades have seen a great deal of progress in the development of antithrombotic agents, though the current treatment options are limited to heparin, LMW heparins, and warfarin. Detailed understanding of the biochemical and biophysical mechanisms of activation and regulation of blood coagulation have helped in developing specific inhibitors of enzymes, especially thrombin, within the coagulation cascade. Thrombin plays a central role in the coagulation cascade and so has become the primary target for the development of antithrombotic drugs. The review covers the main pharmacological aspects of haemostasis and thrombosis and provides an update on low molecular weight thrombin inhibitors along with the limitations of the prevalent antithrombotic agents. Recent developments in small molecule inhibitors of Protease Activated Receptor-1 (PAR-1) which can be helpful for the treatment of thrombotic and vascular proliferative disorders, have also been discussed.
Collapse
Affiliation(s)
- Stuti Srivastava
- Medicinal Chemistry Division, Central Drug Research Institute, Lucknow, India
| | | | | |
Collapse
|
31
|
Ilies MA, Supuran CT, Scozzafava A. Therapeutic applications of serine protease inhibitors. Expert Opin Ther Pat 2005. [DOI: 10.1517/13543776.12.8.1181] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
32
|
Ogata T. Increase in epidermal growth factor receptor protein induced in osteoblastic cells after exposure to flow of culture media. Am J Physiol Cell Physiol 2003; 285:C425-32. [PMID: 12842834 DOI: 10.1152/ajpcell.00505.2002] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
To investigate how bone cells respond to mechanical stimuli, we subjected osteoblastic cells to fluid flow. We and others already reported that in a culture system of osteoblast-like cells, ERK1/2, Shc, and other proteins were tyrosine-phosphorylated by medium flow and the early response gene, egr-1 or c-fos mRNA, increased. These are the same as events found after stimulation by various growth factors. Moreover, because there were also reports suggesting that growth factor signaling is involved in the responses to mechanical stimuli, we examined the change in epidermal growth factor (EGF) receptor in the cells exposed to medium flow. The results demonstrated that EGF receptor protein increased after exposure to medium flow. This increase did not occur without serum in media, and the addition of EGF restored it. Furthermore, leupeptin blocked this increase. These results suggest that degradation of EGF-occupied EGF receptor by leupeptin-sensitive protease(s) in endosomes decreased with exposure to medium flow. This was presumed to participate, at least in part, in signaling of fluid flow.
Collapse
Affiliation(s)
- Toshiko Ogata
- Department of Molecular Pharmacology, Medical Research Institute, Tokyo Medical and Dental University, 3-10 Kandasurugadai 2-chome, Chiyodaku, Tokyo 101-0062, Japan.
| |
Collapse
|
33
|
Tatsumi R, Takahashi K. Structural Changes in Titin and Nebulin Filaments Specific to Calcium Ions at 0.1 mM: Factors of Meat Tenderization During Postmortem Aging. J Food Sci 2003. [DOI: 10.1111/j.1365-2621.2003.tb08237.x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
34
|
Shindo K, Suzuki H, Okuda T. Paecilopeptin, a new cathepsin S inhibitor produced by Paecilomyces carneus. Biosci Biotechnol Biochem 2002; 66:2444-8. [PMID: 12506985 DOI: 10.1271/bbb.66.2444] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Paecilopeptin, a novel cathepsin S inhibitor, was produced and isolated from the culture supernatant of the fungal strain, Paecilomyces carneus. A spectroscopic analysis revealed the planar structure of paecilopeptin to be acetyl-Leu-Val-CHO. The stereochemistry of the constituent amino acids was analysed by chiral HPLC after oxidation and 6N HCl hydrolysis of paecilopeptin. The total synthesis of paecilopeptin was completed in six steps. Paecilopeptin inhibited human cathepsin S with an IC50 value of 2.1 nM in vitro.
Collapse
Affiliation(s)
- Kazutoshi Shindo
- Department of Food and Nutrition, Japan Women's University, 2-8-1 Mejirodai, Bunkyo-ku, Tokyo 112-8681, Japan.
| | | | | |
Collapse
|
35
|
Hurtado J, Montero P, Borderias J, An H. Properties of Proteolytic Enzymes from Muscle of Octopus (Octopus vulgaris) and Effects of High Hydrostatic Pressure. J Food Sci 2002. [DOI: 10.1111/j.1365-2621.2002.tb08776.x] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
36
|
Mesner PW, Kaufmann SH. Methods utilized in the study of apoptosis. ADVANCES IN PHARMACOLOGY (SAN DIEGO, CALIF.) 2001; 41:57-87. [PMID: 9204141 DOI: 10.1016/s1054-3589(08)61054-6] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Affiliation(s)
- P W Mesner
- Division of Oncology Research, Mayo Clinic Rochester, Minnesota 55905, USA
| | | |
Collapse
|
37
|
Saijo-Hamano Y, Namba K, Oosawa K. A new purification method for overproduced proteins sensitive to endogenous proteases. J Struct Biol 2000; 132:142-6. [PMID: 11162736 DOI: 10.1006/jsbi.2000.4311] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Proteolysisis a major problem in purification of overproduced proteins for structural studies. We developed a new method to avoid proteolysis of the products even in cases where popular protease inhibitors do not work effectively. When we cloned FlgF, a flagellar rod protein, from Salmonella typhimurium and overproduced it in Escherichia coli, FlgF was highly susceptible to cleavage by endogenous proteases after cell disruption even in the presence of various protease inhibitors. However, FlgF was not digested when the cells were disrupted in the presence of urea, which allowed us to develop the following new purification procedure. After cell disruption in the presence of urea and removal of the cell debris, the supernatant was passed through tandem-connected cation- and anion-exchange columns. Proteases were trapped in the cation-exchange column, and protease-free FlgF was eluted from the disconnected anion-exchange column. This gave a stable full-length product suitable for crystallization trials. The key procedures are cell disruption in the presence of urea and linked ion-exchange chromatography to quickly remove proteases as well as urea. This fast and simple method can be applied to purification of other overproduced proteins that are very sensitive to proteolysis.
Collapse
Affiliation(s)
- Y Saijo-Hamano
- Protonic NanoMachine Project, ERATO, JST, 1-7 Hikaridai, Seika 619-0237, Japan
| | | | | |
Collapse
|
38
|
HURTADO JOSÉLUIS, BORDERÍAS JAVIER, MONTERO PILAR, AN HAEJUNG. CHARACTERIZATION OF PROTEOLYTIC ACTIVITY IN OCTOPUS (Octopus vulgaris) ARM MUSCLE. J Food Biochem 1999. [DOI: 10.1111/j.1745-4514.1999.tb00031.x] [Citation(s) in RCA: 44] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
39
|
|
40
|
Abstract
Thrombin and factor Xa (fXa) are the only serine proteases for which small, potent, selective, noncovalent inhibitors have been developed, which are ultimately intended as drug development candidates (in this case as anticoagulants). Noncovalent inhibitors may be more selective and chemically and metabolically less reactive than covalent inhibitors. In addition, noncovalent inhibitors are more likely to have fast-binding kinetics which is particularly important in the development of thrombin inhibitors. TAME derived noncovalent thrombin inhibitors argatroban, napsagatran, and UK 156,406 have entered clinical trials as anticoagulants, the latter as an orally active agent. Serine trap deletion from substrate-like peptides led to the development of inogatran and melagatran, both of which have entered clinical trials as intravenous agents. The use of 3-aminopyridinone and pyrazinone acetamide peptidomimetic templates has resulted in the development of L-375,378 which has been chosen for clinical development as an orally active anticoagulant. Recently, compounds which do not have the conventional hydrogen bonding capabilities of peptides have begun to appear in the thrombin literature. Publications on noncovalent fXa inhibitors cover this type of peptidomimetic almost exclusively.
Collapse
Affiliation(s)
- P E Sanderson
- Department of Medicinal Chemistry, Merck Research Laboratories, West Point, PA 19486, USA
| |
Collapse
|
41
|
Mukorah F, Razunguzwa B, Masola B. Stabilization of rat liver mitochondrial alanine aminotransferase with ethanol and trehalose. Cryobiology 1998; 37:300-8. [PMID: 9917346 DOI: 10.1006/cryo.1998.2125] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Rat liver mitochondrial alanine aminotransferase (mALT) is known to be a very unstable enzyme, a property that has hindered efforts to purify it. In this report we examine the possibility of stabilizing mALT with ethanol, trehalose, and protease inhibitors. The presence of ethanol was shown to slow down the inactivation of mALT, increasing its half-life from 1 to 4 h. Trehalose was found to greatly enhance the stability of mALT in a concentration-dependent manner. In the presence of 36.5% trehalose, the half-life of mALT was 85 h. Of the protease inhibitors tested only antipain and chymostatin slowed down the inactivation of mALT but only within the first 24 h following preparation of the crude enzyme. It is concluded that the inclusion of ethanol and trehalose in purification protocols could aid the purification of the enzyme. It is also concluded that the inclusion of protease inhibitors in purification protocols of mALT may not be necessary as its inactivation does not seem to be due to protease activity.
Collapse
Affiliation(s)
- F Mukorah
- Department of Biochemistry, University of Zimbabwe, Mount Pleasant, Harare, Zimbabwe
| | | | | |
Collapse
|
42
|
Tatsumi R, Hattori A, Takahashi K. Deterioration of connectin/titin and nebulin filaments by an excess of protease inhibitors. Biosci Biotechnol Biochem 1998; 62:927-34. [PMID: 9648223 DOI: 10.1271/bbb.62.927] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
We studied the effect of protease inhibitors at a high concentration on connectin and nebulin filaments in myofibrils. Calpastatin domain I at 0.1 mM bound to connectin and nebulin filaments, and deteriorated their physico-chemical properties; the calcium-binding ability of connectin and nebulin filaments was suppressed, the susceptibility of both filaments to trypsin was markedly decreased, and the resting tension of mechanically skinned fibers was increased by 2.5 times that of the control at a sarcomere length of 3.6 microns. This indicates that the connectin filaments were made more rigid. The same phenomenon was observed from the treatment of skinned fibers with 1 mM leupeptin whose resting tension was increased to 2 times the control value. Microscopically, both protease inhibitors induced dense aggregation and disappearance of the regular striation of myofibrils due to their non-specific binding to many myofibrillar proteins. The use of excess calpastatin domain I and leupeptin should therefore be avoided in physiological and biochemical studies on connectin and nebulin filaments, as well as on myofibrils.
Collapse
Affiliation(s)
- R Tatsumi
- Department of Animal Science, Faculty of Agriculture, Hokkaido University, Japan
| | | | | |
Collapse
|
43
|
Kim IS, Kim YB, Lee KJ. Characterization of the leupeptin-inactivating enzyme from Streptomyces exfoliatus SMF13 which produces leupeptin. Biochem J 1998; 331 ( Pt 2):539-45. [PMID: 9531495 PMCID: PMC1219386 DOI: 10.1042/bj3310539] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Leupeptin-inactivating enzyme (LIE) was purified from Streptomyces exfoliatus SMF13 by ammonium sulphate fractionation of cell-free culture broth, ultrafiltration, anion-exchange chromatography on DEAE-Sephadex A-50 and gel filtration chromatography on Sephadex G-75. The molecular mass of the purified enzyme was measured as 34700 Da and the N-terminal amino acid sequence was APTPPDIPLANVPA. Acetyl-leucine, leucine and argininal were identified as the products of leupeptin inactivated by the LIE, indicating that leupeptin is inactivated by hydrolysis of peptide bond between leucine and leucine and between leucine and argininal of leupeptin (acetyl-leucine-leucine-argininal). Synthetic-peptide substrates specificity of LIE showed that LIE has absolute specificity for peptide bonds with leucine in the P1 position, suggesting that LIE is a leucine-specific protease. The optimum pH and temperature were pH 9.0 and 45 degrees C, respectively. LIE activity was inhibited by metalloprotease inhibitors such as EDTA, EGTA, o-phenanthroline and bestatin, but activated by Mg2+ and Ca2+, suggesting that the enzyme is a metalloprotease. Aerial-mycelium growth and aerial spore formation of S. exfoliatus SMF13 were inhibited by the addition of bestatin, an inhibitor of LIE. The inhibition of morphological differentiation was due to the inhibition of trypsin-like protease (TLP) activity, which is essential for aerial-mycelium formation and is inhibited specifically by remaining leupeptin that was not inactivated. These results show that LIEs play a role in controlling the amount of leupeptin during colony development. Therefore, it is suggested that the physiological function of LIE is to inactivate leupeptin when or where TLP activity is required for aerial-mycelium formation.
Collapse
Affiliation(s)
- I S Kim
- Department of Microbiology, College of Natural Science and Research Centre for Molecular Microbiology, Seoul National University, Seoul 151-742, Korea
| | | | | |
Collapse
|
44
|
Albeck A, Estreicher GI. Functionalized erythro N-protected α-amino epoxides. Stereocontrolled synthesis and biological activity. Tetrahedron 1997. [DOI: 10.1016/s0040-4020(97)00195-6] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
45
|
Matsuda H, Okino T, Murakami M, Yamaguchi K. Aeruginosins 102-A and B, new thrombin inhibitors from the cyanobacterium Microcystis viridis (NIES-102). Tetrahedron 1996. [DOI: 10.1016/0040-4020(96)00890-3] [Citation(s) in RCA: 60] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
46
|
Festoff BW, Nelson PG, Brenneman DE. Prevention of activity-dependent neuronal death: vasoactive intestinal polypeptide stimulates astrocytes to secrete the thrombin-inhibiting neurotrophic serpin, protease nexin I. JOURNAL OF NEUROBIOLOGY 1996; 30:255-66. [PMID: 8738754 DOI: 10.1002/(sici)1097-4695(199606)30:2<255::aid-neu7>3.0.co;2-4] [Citation(s) in RCA: 65] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Neuronal cell death occurs as a programmed, naturally occurring mechanism and is the primary regressive event in central nervous system development. Death of neurons also occurs on an injury-induced basis after trauma and in human neurodegenerative diseases. Classical neurotrophic factors can reverse this phenomenon in experimental models prompting initiation of clinical trials in conditions such as amyotrophic lateral sclerosis and Alzheimer's disease. The glial-derived protease nexin I (PNI), a known promoter of neurite outgrowth in cell culture and a potent inhibitor of serine proteases, also enhances neuronal cell survival. PNI, in nanomolar concentrations, rescues spinal cord motor neurons from both naturally-occurring programmed cell death in the chick embryo as well as following injury in the neonatal mouse. The potent neuromodulator, vasoactive intestinal polypeptide (VIP), influences neuronal survival through glial-mediated factors and also induces secretion of newly synthesized astrocyte PNI. We now report that subnanomolar amounts of PNI enhance neuronal survival in mixed spinal cord cell culture, especially when neuronal cells were made electrically silent by administration of tetrodotoxin. The mediation of this effect is by inhibition of the multifunctional serine protease, thrombin, because hirudin, a thrombin-specific inhibitor, has the same effect. In addition, spinal cord neurons are exquisitely sensitive to thrombin because picomolar and lower levels of the coagulation factor causes neuronal death. Thus, PNI is an astrocyte-derived, thrombin-inhibiting, activity-dependent neurotrophic agent, enhanced secretion of which by VIP may be one approach to treat neurological disorders.
Collapse
Affiliation(s)
- B W Festoff
- Neurobiology Research Laboratory, Veterans Affairs Medical Center, Kansas City, Missouri 64128, USA.
| | | | | |
Collapse
|
47
|
Oppert B, Kramer KJ, Johnson D, Upton SJ, Mcgaughey WH. Luminal proteinases from Plodia interpunctella and the hydrolysis of Bacillus thuringiensis CryIA(c) protoxin. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 1996; 26:571-583. [PMID: 8969468 DOI: 10.1016/s0965-1748(96)00013-6] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
The ability of proteinases in gut extracts of the Indianmeal moth, Plodia interpunctella, to hydrolyze Bacillus thuringiensis (Bt) protoxin, casein, and rho-nitroanilide substrates was investigated. A polyclonal antiserum to protoxin CryIA(c) was used in Western blots to demonstrate slower protoxin processing by gut enzymes from Bt subspecies entomocidus-resistant larvae than enzymes from susceptible or kurstaki-resistant strains. Enzymes from all three strains hydrolyzed N-alpha-benzoyl-L-arginine rho-nitroanilide, N-succinyl-ala-ala-pro-phenylalanine rho-nitroanilide, and N-succinyl-ala-ala-pro-leucine rho-nitroanilide. Zymograms and activity blots were used to estimate the apparent molecular masses, number of enzymes, and relative activities in each strain. Several serine proteinase inhibitors reduced gut enzyme activities, with two soybean trypsin inhibitors, two potato inhibitors, and chymostatin the most effective in preventing protoxin hydrolysis.
Collapse
Affiliation(s)
- B Oppert
- U.S. Grain Marketing Research Laboratory, ARS-USDA, Manhattan, KS 66502-2736, USA.
| | | | | | | | | |
Collapse
|
48
|
Lyupina YV, Sudakov SK, Yarygin VN. Inhibitors of Ca(2+)-dependent endopeptidases modulate morphine-induced effects in rats. Eur J Pharmacol 1996; 304:23-7. [PMID: 8813580 DOI: 10.1016/0014-2999(96)00092-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
The effects of inhibitors of Ca(2+)-dependent endopeptidases (antipain and leupeptin) on morphine analgesia, reinforcing properties of morphine and on the development of opiate physical dependence were studied. Male Wistar rats were used. The analgesic action of morphine in the tail-immersion test was increased significantly by combined injection of morphine with antipain or leupeptin. Antipain or leupeptin alone had no analgesic action. The combination of morphine with antipain or leupeptin led to the reduction of morphine-induced place preference and the development of physical dependence. A single injection of antipain diminished the opiate-withdrawal signs in morphine-dependent rats. These results suggest a possible inhibitory effect of antipain or leupeptin on the Ca(2+)-dependent endopeptidases of neurons that mediate analgesia, reinforcing properties of morphine, development of opiate dependence and withdrawal.
Collapse
Affiliation(s)
- Y V Lyupina
- Laboratory of Neurobiology of Cravings, State Research Center of Addictions, Moscow, Russian Federation
| | | | | |
Collapse
|
49
|
Kim IS, Lee KJ. Kinetic study on the production and degradation of leupeptin in Streptomyces exfoliatus SMF13. J Biotechnol 1995; 42:35-44. [PMID: 7662340 DOI: 10.1016/0168-1656(95)00061-t] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Medium composition and cultivation conditions were constructed for the optimum production of leupeptin by Streptomyces exfoliatus SMF13. The production of leupeptin was related to mycelial growth, being optimum in the cultivation with glucose-excess, phosphate-limited, and casamino acids medium. However, leupeptin-inactivating enzyme (LIE) was produced in the cultivation with glucose-limited, phosphate-excess, and Na-caseinate medium where mycelium degradation was accompanied. LIE was one of the most important factors in optimizing the leupeptin productivity. Kinetic parameters calculated from batch and chemostat cultivations revealed that qlpt was closely related to qs and mu, but qLIE was increased after mu declined to near zero, and followed by kd. Optimum production process of leupeptin was determined with phosphate-limited continuous cultivation, which did not permit LIE production. The maximum productivity (0.24 g l-1 h-1) and production yield (1.64 g leupeptin per g glucose) of phosphate-limited chemostat cultivation were 2.4- and 4-times larger than those of batch cultivation, respectively. This is the first cultivation kinetic analysis for leupeptin production and its inactivation by LIE in relation to mycelium differentiation.
Collapse
Affiliation(s)
- I S Kim
- Department of Microbiology, College of Natural Science, Seoul National University, South Korea
| | | |
Collapse
|
50
|
Chang MC, Huang TF. Characterization of a thrombin-like enzyme, grambin, from the venom of Trimeresurus gramineus and its in vivo antithrombotic effect. Toxicon 1995; 33:1087-98. [PMID: 8533142 DOI: 10.1016/0041-0101(95)00035-k] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
A thrombin-like enzyme, grambin, was purified to homogeneity by gel filtration, affinity and ion-exchange chromatography from the venom of Trimeresurus gramineus. Its mol. wt was estimated to be 45,400 by SDS-PAGE under reduced conditions. The mass of neutral sugars in grambin is estimated to be 20.7% of total mass. Grambin's NH2-terminal ten amino acid residues show a high homology to other venom thrombin-like enzymes. It clots human fibrinogen with a specific activity of 220-250 NIH thrombin-equivalent units/mg protein. It preferentially releases fibrinopeptide A accompanied by a slow release of trace amounts of fibrinopeptide B as monitored by HPLC following enzyme treatment of fibrinogen. EDTA, aprotinin, hirudin and heparin did not affect the fibrinogen-clotting activity of grambin in purified human fibrinogen solution. Diisopropyl fluorophosphate, phenylmethylsulfonyl fluoride and leupeptin inhibited the clotting activity of grambin whereas iodoacetamide did not affect its activity, indicating that grambin is a serine protease rather than a cysteine protease. In addition, it caused defibrinogenation and showed a marked antiplatelet effect when administered intravenously to mice. It also significantly prolonged the time lapse of platelet-rich thrombus formation in the irradiated mesenteric venules of fluorescein sodium-treated mice. Therefore, grambin may be used as a therapeutic agent not only in treatment of venous thrombosis but also in prevention of arterial thrombosis.
Collapse
Affiliation(s)
- M C Chang
- Pharmacological Institute, College of Medicine, National Taiwan University, Taipei
| | | |
Collapse
|