1
|
Mo J, Sikandar A, Zhao H, Bashiri G, Huo L, Empting M, Müller R, Fu C. Tandem ketone reduction in pepstatin biosynthesis reveals an F 420H 2-dependent statine pathway. Nat Commun 2025; 16:4531. [PMID: 40374670 DOI: 10.1038/s41467-025-59785-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2024] [Accepted: 05/06/2025] [Indexed: 05/17/2025] Open
Abstract
Pepstatins are potent inhibitors of aspartic proteases, featuring two statine residues crucial for target binding. However, the biosynthesis of pepstatins, especially their statine substructure, remains elusive. Here, we discover and characterize an unconventional gene cluster responsible for pepstatin biosynthesis, comprising discrete nonribosomal peptide synthetase and polyketide synthase genes, highlighting its trans-acting and iterative nature. Central to this pathway is PepI, an F420H2-dependent oxidoreductase. The biochemical characterization of PepI reveals its role in the tandem reduction of β-keto pepstatin intermediates. PepI first catalyzes the formation of the central statine, then produces the C-terminal statine moiety. The post-assembly-line formation of statine by PepI contrasts with the previously hypothesized biosynthesis involving polyketide synthase ketoreductase domains. Structural studies, site-directed mutagenesis, and deuterium-labeled enzyme assays probe the mechanism of F420H2-dependent oxidoreductases and identify critical residues. Our findings uncover a unique statine biosynthetic pathway employing the only known iterative F420H2-dependent oxidoreductase to date.
Collapse
Affiliation(s)
- Jingjun Mo
- Helmholtz Institute for Pharmaceutical Research Saarland (HIPS), Helmholtz Centre for Infection Research (HZI), Saarbrücken, Germany
- Helmholtz International Lab for Anti-Infectives, Helmholtz Center for Infection Research, Braunschweig, Germany
| | - Asfandyar Sikandar
- Helmholtz Institute for Pharmaceutical Research Saarland (HIPS), Helmholtz Centre for Infection Research (HZI), Saarbrücken, Germany
| | - Haowen Zhao
- Helmholtz Institute for Pharmaceutical Research Saarland (HIPS), Helmholtz Centre for Infection Research (HZI), Saarbrücken, Germany
- Helmholtz International Lab for Anti-Infectives, Helmholtz Center for Infection Research, Braunschweig, Germany
| | - Ghader Bashiri
- Laboratory of Microbial Biochemistry and Biotechnology, School of Biological Sciences, University of Auckland, Private Bag, Auckland, New Zealand
| | - Liujie Huo
- State Key Laboratory of Microbial Technology, Helmholtz International Lab for Anti-Infectives, Shandong University, Qingdao, China
| | - Martin Empting
- Helmholtz Institute for Pharmaceutical Research Saarland (HIPS), Helmholtz Centre for Infection Research (HZI), Saarbrücken, Germany
- German Centre for Infection Research (DZIF), Braunschweig, Germany
- Department of Pharmacy, Saarland University, Saarbrücken, Germany
| | - Rolf Müller
- Helmholtz Institute for Pharmaceutical Research Saarland (HIPS), Helmholtz Centre for Infection Research (HZI), Saarbrücken, Germany
- Helmholtz International Lab for Anti-Infectives, Helmholtz Center for Infection Research, Braunschweig, Germany
- German Centre for Infection Research (DZIF), Braunschweig, Germany
- Department of Pharmacy, Saarland University, Saarbrücken, Germany
| | - Chengzhang Fu
- Helmholtz Institute for Pharmaceutical Research Saarland (HIPS), Helmholtz Centre for Infection Research (HZI), Saarbrücken, Germany.
- Helmholtz International Lab for Anti-Infectives, Helmholtz Center for Infection Research, Braunschweig, Germany.
| |
Collapse
|
2
|
Harith-Fadzilah N, Nihad M, AlSaleh MA, Bazeyad AY, Pandurangan SB, Munawar K, Vidyawan A, Alharbi HA, Jakše J, Pain A, Antony B. Genome-Wide Identification and Expression Profiling of Glycosidases, Lipases, and Proteases from Invasive Asian Palm Weevil, Rhynchophorus ferrugineus. INSECTS 2025; 16:421. [PMID: 40332944 PMCID: PMC12027728 DOI: 10.3390/insects16040421] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/30/2025] [Revised: 04/02/2025] [Accepted: 04/04/2025] [Indexed: 05/08/2025]
Abstract
The red palm weevil, Rhynchophorus ferrugineus, is a destructive, invasive pest to a diverse range of palm plantations globally. Commonly used broad-range chemical insecticides for insect control pose high risks to non-target organisms, humans, and the environment. A bio-rational approach of screening natural small-molecule inhibitors that specifically target R. ferrugineus proteins critical to its life processes can pave the way for developing novel bioinsecticides. Digestive enzymes (DEs), which impair feeding on plants (herbivory), are promising targets. We generated de novo transcriptomes, annotated DE-related genes from the R. ferrugineus gut and abdomen, manually annotated the DE gene family from the recently available genome and our transcriptome data, and reported 34 glycosidases, 85 lipases, and 201 proteases. We identified several tandem duplicates and allelic variants from the lipase and protease families, notably, 10 RferLip and 21 RferPro alleles, which emerged primarily through indels and single-site substitution. These alleles may confer enhanced digestive lipolysis and proteolysis. Phylogenetic analyses identified and classified different subfamilies of DEs and revealed close evolutionary relationships with other coleopterans. We assessed select candidate DEs' activity and the potential for inhibition in silico to better understand the herbivory arsenal. In silico analysis revealed that the selected enzymes exhibited similar ligand-binding affinity to their corresponding substrate, except for protease aminopeptidase N, RferPro40, which exhibited poorer affinity to the inhibitor bestatin. Overall, our study serves as a foundation for further functional analysis and offers a novel target for the development of a novel bio-rational insecticide for R. ferrugineus.
Collapse
Affiliation(s)
- Nazmi Harith-Fadzilah
- School of Agriculture Sciences and Biotechnology, Faculty of Bioresources and Food Industry, Universiti Sultan Zainal Abidin, Besut 22200, Malaysia
| | - Mohammad Nihad
- Department of Plant Protection, Center for Chemical Ecology and Functional Genomics, College of Food and Agricultural Sciences, King Saud University, Riyadh 11451, Saudi Arabia
| | - Mohammed Ali AlSaleh
- Department of Plant Protection, Center for Chemical Ecology and Functional Genomics, College of Food and Agricultural Sciences, King Saud University, Riyadh 11451, Saudi Arabia
| | - Abdulqader Yaslam Bazeyad
- Department of Plant Protection, Center for Chemical Ecology and Functional Genomics, College of Food and Agricultural Sciences, King Saud University, Riyadh 11451, Saudi Arabia
| | - Subash-Babu Pandurangan
- Department of Food Science and Nutrition, College of Food and Agricultural Sciences, King Saud University, Riyadh 11451, Saudi Arabia
| | - Kashif Munawar
- Department of Plant Protection, Center for Chemical Ecology and Functional Genomics, College of Food and Agricultural Sciences, King Saud University, Riyadh 11451, Saudi Arabia
| | - Arya Vidyawan
- Department of Plant Protection, Center for Chemical Ecology and Functional Genomics, College of Food and Agricultural Sciences, King Saud University, Riyadh 11451, Saudi Arabia
| | - Hattan A. Alharbi
- Department of Plant Protection, Center for Chemical Ecology and Functional Genomics, College of Food and Agricultural Sciences, King Saud University, Riyadh 11451, Saudi Arabia
| | - Jernej Jakše
- Agronomy Department, Biotechnical Faculty, University of Ljubljana, SI-1000 Ljubljana, Slovenia
| | - Arnab Pain
- Pathogen Genomics Group, Bioscience Program, Biological and Environmental Science and Engineering (BESE) Division, King Abdullah University of Science and Technology (KAUST), Thuwal, Jeddah 23955, Saudi Arabia;
| | - Binu Antony
- Department of Plant Protection, Center for Chemical Ecology and Functional Genomics, College of Food and Agricultural Sciences, King Saud University, Riyadh 11451, Saudi Arabia
| |
Collapse
|
3
|
de Souza TC, Schwarz MGA, da Silva DM, Maia CR, de Araújo CPM, Balieiro AADS, de Oliveira LA, Degrave WMS, Fernandes OCC, Mendonça-Lima L. Penicillium citrinum CFAM 521 Isolated From the Amazon Region: A Novel Source of a Fibrinolytic Enzyme. Int J Microbiol 2024; 2024:5306083. [PMID: 39502513 PMCID: PMC11537737 DOI: 10.1155/2024/5306083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Revised: 08/29/2024] [Accepted: 10/07/2024] [Indexed: 11/08/2024] Open
Abstract
Fibrinolytic agents are essential in treating thrombosis, playing a critical role in improving survival rates in cardiovascular diseases. Microbial fibrinolytic proteases have emerged as promising alternatives due to their affordability, specificity, lower toxicity, and reduced side effects. Consequently, the search for microorganisms capable of producing these enzymes has gained significant economic importance in the pharmaceutical industry. This study reports and characterizes a novel fibrinolytic enzyme produced by Penicillium citrinum CFAM 521, a strain isolated from the Amazon region. The enzyme was purified using a polyethylene glycol (PEG)-phosphate salt aqueous two-phase system (ATPS). The effects of PEG molecular weight, PEG concentration, and phosphate concentration on the protease partition coefficient (K) were evaluated through a 22 full factorial design. The enzyme exhibited both fibrinolytic and fibrinogenolytic activities. After partitioning in a two-phase system with 10% (w/w) PEG and 15% (w/w) sodium phosphate, the fibrinolytic proteases were predominantly retained in the salt-rich bottom phase (K = 0.33). The enzyme has a molecular weight of 34 kDa, with optimal pH and temperature at 9°C and 37°C, respectively. Inhibitory analysis confirmed that it is a serine protease, and its activity was enhanced by the addition of Mn2+. Notably, the enzyme exhibited no hemolytic activity. Therefore, P. citrinum CFAM 521 represents a novel source of fibrinolytic enzymes, highlighting its potential as an alternative for the development of thrombolytic agents.
Collapse
Affiliation(s)
- Thayana Cruz de Souza
- Leônidas and Maria Deane Institute, ILMD/Fiocruz, Rua Teresina, 476, Adrianópolis, Manaus, Amazonas 69057-070, Brazil
| | - Marcos Gustavo Araujo Schwarz
- Oswaldo Cruz Institute, Fiocruz, Av. Brasil, 4365, Manguinhos, Rio de Janeiro, State of Rio de Janeiro 21040-360, Brazil
| | - Daniela Marinho da Silva
- Leônidas and Maria Deane Institute, ILMD/Fiocruz, Rua Teresina, 476, Adrianópolis, Manaus, Amazonas 69057-070, Brazil
| | - Carolina Rabelo Maia
- Leônidas and Maria Deane Institute, ILMD/Fiocruz, Rua Teresina, 476, Adrianópolis, Manaus, Amazonas 69057-070, Brazil
| | | | | | - Luiz Antonio de Oliveira
- National Institute for Amazon Research, INPA, Av. André Araújo, 2.936, Petrópolis, Manaus, Amazonas 69080-971, Brazil
| | - Wim Maurits Sylvain Degrave
- Oswaldo Cruz Institute, Fiocruz, Av. Brasil, 4365, Manguinhos, Rio de Janeiro, State of Rio de Janeiro 21040-360, Brazil
| | | | - Leila Mendonça-Lima
- Oswaldo Cruz Institute, Fiocruz, Av. Brasil, 4365, Manguinhos, Rio de Janeiro, State of Rio de Janeiro 21040-360, Brazil
| |
Collapse
|
4
|
Paul DC, Bhattacharjee M. Revisiting the significance of natural protease inhibitors: A comprehensive review. Int J Biol Macromol 2024; 280:135899. [PMID: 39317291 DOI: 10.1016/j.ijbiomac.2024.135899] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 08/09/2024] [Accepted: 09/20/2024] [Indexed: 09/26/2024]
Abstract
Protease inhibitors (PIs) function as a natural adversary to proteolytic enzymes. They can diminish or inhibit the catalytic properties of proteases, which are crucial for various tasks in the physiology and metabolism of cellular forms. Protease Inhibitors are low molecular weight (5-25 kDa) stable proteins. Plants are a fair source of PIs, so foods containing PIs remarkably influence human health. PIs are usually present in storage tissues of the plant, although they are present in other aerial parts as well. In plants, protease inhibitors participate in vital functions such as maintaining physiological homeostasis, mobilization of storage proteins, defense systems, apoptosis, and other processes. In recent years, plant-derived PIs have shown promising results in treating various diseases including inflammatory conditions, osteoporosis, cardiovascular issues, and brain disorders. The primary goal of this review is to provide a comprehensive understanding of the characteristics, applications, and challenges associated with natural protease inhibitors in plants, which draws insights from an extensive examination of 80+ research papers with a focus on their potential in agriculture and medicine. By synthesizing findings from an extensive literature review, this work aims to guide future research directions and innovations in leveraging plant-based PIs for sustainable agricultural practices and advanced therapeutic interventions.
Collapse
Affiliation(s)
- Dhiman Chandra Paul
- Programme of Biotechnology, Assam down town University, Panikhaiti, Gandhinagar, Guwahati, Assam 26, India
| | - Minakshi Bhattacharjee
- Programme of Biotechnology, Assam down town University, Panikhaiti, Gandhinagar, Guwahati, Assam 26, India.
| |
Collapse
|
5
|
Miura T, Lee KJ, Katoh T, Suga H. In Vitro Selection of Macrocyclic l-α/d-α/β/γ-Hybrid Peptides Targeting IFN-γ/IFNGR1 Protein-Protein Interaction. J Am Chem Soc 2024; 146:17691-17699. [PMID: 38888290 PMCID: PMC11229689 DOI: 10.1021/jacs.4c01979] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Revised: 05/30/2024] [Accepted: 05/31/2024] [Indexed: 06/20/2024]
Abstract
Nonproteinogenic amino acids, including d-α-, β-, and γ-amino acids, present in bioactive peptides play pivotal roles in their biochemical activities and proteolytic stabilities. d-α-Amino acids (dαAA) are widely used building blocks that can enhance the proteolytic stability. Cyclic β2,3-amino acids (cβAA), for instance, can fold peptides into rigid secondary structures, improving the binding affinity and proteolytic stability. Cyclic γ2,4-amino acids (cγAA) are recently highlighted as rigid residues capable of preventing the proteolysis of flanking residues. Simultaneous incorporation of all dαAA, cβAA, and cγAA into a peptide is expected to yield l-α/d-α/β/γ-hybrid peptides with improved stability and potency. Despite challenges in the ribosomal incorporation of multiple nonproteinogenic amino acids, our engineered tRNAPro1E2 successfully reaches such a difficulty. Here, we report the ribosomal synthesis of macrocyclic l-α/d-α/β/γ-hybrid peptide libraries and their application to in vitro selection against interferon gamma receptor 1 (IFNGR1). One of the resulting l-α/d-α/β/γ-hybrid peptides, IB1, exhibited remarkable inhibitory activity against the IFN-γ/IFNGR1 protein-protein interaction (PPI) (IC50 = 12 nM), primarily attributed to the presence of a cβAA in the sequence. Additionally, cγAAs and dαAAs in the resulting peptides contributed to their serum stability. Furthermore, our peptides effectively inhibit IFN-γ/IFNGR1 PPI at the cellular level (best IC50 = 0.75 μM). Altogether, our platform expands the chemical space available for exploring peptides with high activity and stability, thereby enhancing their potential for drug discovery.
Collapse
Affiliation(s)
- Takashi Miura
- Department of Chemistry,
Graduate School of Science, The University
of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Kang Ju Lee
- Department of Chemistry,
Graduate School of Science, The University
of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Takayuki Katoh
- Department of Chemistry,
Graduate School of Science, The University
of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Hiroaki Suga
- Department of Chemistry,
Graduate School of Science, The University
of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| |
Collapse
|
6
|
Oppenheimer KG, Hager NA, McAtee CK, Filiztekin E, Shang C, Warnick JA, Bruchez MP, Brodsky JL, Prosser DC, Kwiatkowski AV, O’Donnell AF. Optimization of the fluorogen-activating protein tag for quantitative protein trafficking and colocalization studies in S. cerevisiae. Mol Biol Cell 2024; 35:mr5. [PMID: 38809589 PMCID: PMC11244157 DOI: 10.1091/mbc.e24-04-0174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Revised: 05/17/2024] [Accepted: 05/20/2024] [Indexed: 05/30/2024] Open
Abstract
Spatial and temporal tracking of fluorescent proteins (FPs) in live cells permits visualization of proteome remodeling in response to extracellular cues. Historically, protein dynamics during trafficking have been visualized using constitutively active FPs fused to proteins of interest. While powerful, such FPs label all cellular pools of a protein, potentially masking the dynamics of select subpopulations. To help study protein subpopulations, bioconjugate tags, including the fluorogen activation proteins (FAPs), were developed. FAPs are comprised of two components: a single-chain antibody (SCA) fused to the protein of interest and a malachite-green (MG) derivative, which fluoresces only when bound to the SCA. Importantly, the MG derivatives can be either cell-permeant or -impermeant, thus permitting isolated detection of SCA-tagged proteins at the cell surface and facilitating quantitative endocytic measures. To expand FAP use in yeast, we optimized the SCA for yeast expression, created FAP-tagging plasmids, and generated FAP-tagged organelle markers. To demonstrate FAP efficacy, we coupled the SCA to the yeast G-protein coupled receptor Ste3. We measured Ste3 endocytic dynamics in response to pheromone and characterized cis- and trans-acting regulators of Ste3. Our work significantly expands FAP technology for varied applications in S. cerevisiae.
Collapse
Affiliation(s)
| | - Natalie A. Hager
- Department of Biological Sciences, University of Pittsburgh, PA 15260
| | - Ceara K. McAtee
- Department of Biological Sciences, University of Pittsburgh, PA 15260
| | - Elif Filiztekin
- Department of Biological Sciences, University of Pittsburgh, PA 15260
| | - Chaowei Shang
- Department of Biological Sciences, University of Pittsburgh, PA 15260
| | | | - Marcel P. Bruchez
- Molecular Biosensor and Imaging Center, Carnegie Mellon University, Pittsburgh, PA 15213
| | | | - Derek C. Prosser
- Department of Biology, Virginia Commonwealth University, Richmond, VA 23284
| | - Adam V. Kwiatkowski
- Department of Cell Biology, School of Medicine, University of Pittsburgh, Pittsburgh, PA 15261
| | | |
Collapse
|
7
|
Maimone NM, Apaza-Castillo GA, Quecine MC, de Lira SP. Accessing the specialized metabolome of actinobacteria from the bulk soil of Paullinia cupana Mart. on the Brazilian Amazon: a promising source of bioactive compounds against soybean phytopathogens. Braz J Microbiol 2024; 55:1863-1882. [PMID: 38421597 PMCID: PMC11153476 DOI: 10.1007/s42770-024-01286-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Accepted: 02/10/2024] [Indexed: 03/02/2024] Open
Abstract
The Amazon rainforest, an incredibly biodiverse ecosystem, has been increasingly vulnerable to deforestation. Despite its undeniable importance and potential, the Amazonian microbiome has historically received limited study, particularly in relation to its unique arsenal of specialized metabolites. Therefore, in this study our aim was to assess the metabolic diversity and the antifungal activity of actinobacterial strains isolated from the bulk soil of Paullinia cupana, a native crop, in the Brazilian Amazon Rainforest. Extracts from 24 strains were subjected to UPLC-MS/MS analysis using an integrative approach that relied on the Chemical Structural and Compositional Similarity (CSCS) metric, GNPS molecular networking, and in silico dereplication tools. This procedure allowed the comprehensive understanding of the chemical space encompassed by these actinobacteria, which consists of features belonging to known bioactive metabolite classes and several unannotated molecular families. Among the evaluated strains, five isolates exhibited bioactivity against a panel of soybean fungal phytopathogens (Rhizoctonia solani, Macrophomina phaseolina, and Sclerotinia sclerotiorum). A focused inspection led to the annotation of pepstatins, oligomycins, hydroxamate siderophores and dorrigocins as metabolites produced by these bioactive strains, with potentially unknown compounds also comprising their metabolomes. This study introduces a pragmatic protocol grounded in established and readily available tools for the annotation of metabolites and the prioritization of strains to optimize further isolation of specialized metabolites. Conclusively, we demonstrate the relevance of the Amazonian actinobacteria as sources for bioactive metabolites useful for agriculture. We also emphasize the importance of preserving this biome and conducting more in-depth studies on its microbiota.
Collapse
Affiliation(s)
- Naydja Moralles Maimone
- College of Agriculture "Luiz de Queiroz", Department of Exact Sciences, University of São Paulo, Piracicaba, SP, 13418-900, Brazil
| | - Gladys Angélica Apaza-Castillo
- College of Agriculture "Luiz de Queiroz", Department of Genetics, University of São Paulo, Piracicaba, SP, 13418-900, Brazil
| | - Maria Carolina Quecine
- College of Agriculture "Luiz de Queiroz", Department of Genetics, University of São Paulo, Piracicaba, SP, 13418-900, Brazil
| | - Simone Possedente de Lira
- College of Agriculture "Luiz de Queiroz", Department of Exact Sciences, University of São Paulo, Piracicaba, SP, 13418-900, Brazil.
| |
Collapse
|
8
|
Terron HM, Parikh SJ, Abdul-Hay SO, Sahara T, Kang D, Dickson DW, Saftig P, LaFerla FM, Lane S, Leissring MA. Prominent tauopathy and intracellular β-amyloid accumulation triggered by genetic deletion of cathepsin D: implications for Alzheimer disease pathogenesis. Alzheimers Res Ther 2024; 16:70. [PMID: 38575959 PMCID: PMC10996108 DOI: 10.1186/s13195-024-01443-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Accepted: 03/31/2024] [Indexed: 04/06/2024]
Abstract
BACKGROUND Cathepsin D (CatD) is a lysosomal protease that degrades both the amyloid-β protein (Aβ) and the microtubule-associated protein, tau, which accumulate pathognomonically in Alzheimer disease (AD), but few studies have examined the role of CatD in the development of Aβ pathology and tauopathy in vivo. METHODS CatD knockout (KO) mice were crossed to human amyloid precursor protein (hAPP) transgenic mice, and amyloid burden was quantified by ELISA and immunohistochemistry (IHC). Tauopathy in CatD-KO mice, as initially suggested by Gallyas silver staining, was further characterized by extensive IHC and biochemical analyses. Controls included human tau transgenic mice (JNPL3) and another mouse model of a disease (Krabbe A) characterized by pronounced lysosomal dysfunction. Additional experiments examined the effects of CatD inhibition on tau catabolism in vitro and in cultured neuroblastoma cells with inducible expression of human tau. RESULTS Deletion of CatD in hAPP transgenic mice triggers large increases in cerebral Aβ, manifesting as intense, exclusively intracellular aggregates; extracellular Aβ deposition, by contrast, is neither triggered by CatD deletion, nor affected in older, haploinsufficient mice. Unexpectedly, CatD-KO mice were found to develop prominent tauopathy by just ∼ 3 weeks of age, accumulating sarkosyl-insoluble, hyperphosphorylated tau exceeding the pathology present in aged JNPL3 mice. CatD-KO mice exhibit pronounced perinuclear Gallyas silver staining reminiscent of mature neurofibrillary tangles in human AD, together with widespread phospho-tau immunoreactivity. Striking increases in sarkosyl-insoluble phospho-tau (∼ 1250%) are present in CatD-KO mice but notably absent from Krabbe A mice collected at an identical antemortem interval. In vitro and in cultured cells, we show that tau catabolism is slowed by blockade of CatD proteolytic activity, including via competitive inhibition by Aβ42. CONCLUSIONS Our findings support a major role for CatD in the proteostasis of both Aβ and tau in vivo. To our knowledge, the CatD-KO mouse line is the only model to develop detectable Aβ accumulation and profound tauopathy in the absence of overexpression of hAPP or human tau with disease-associated mutations. Given that tauopathy emerges from disruption of CatD, which can itself be potently inhibited by Aβ42, our findings suggest that impaired CatD activity may represent a key mechanism linking amyloid accumulation and tauopathy in AD.
Collapse
Affiliation(s)
- Heather M Terron
- Institute for Memory Impairments and Neurological Disorders, University of California, Irvine (UCI MIND), Irvine, CA, 92697, USA
| | - Sagar J Parikh
- Institute for Memory Impairments and Neurological Disorders, University of California, Irvine (UCI MIND), Irvine, CA, 92697, USA
| | - Samer O Abdul-Hay
- Department of Neuroscience, Mayo Clinic Florida, Jacksonville, FL, 32224, USA
| | - Tomoko Sahara
- Department of Neuroscience, Mayo Clinic Florida, Jacksonville, FL, 32224, USA
| | - Dongcheul Kang
- Department of Neuroscience, Mayo Clinic Florida, Jacksonville, FL, 32224, USA
| | - Dennis W Dickson
- Department of Neuroscience, Mayo Clinic Florida, Jacksonville, FL, 32224, USA
| | - Paul Saftig
- Institut für Biochemie, Christian-Albrechts-Universität zu Kiel, D-24098, Kiel, Germany
| | - Frank M LaFerla
- Institute for Memory Impairments and Neurological Disorders, University of California, Irvine (UCI MIND), Irvine, CA, 92697, USA
- Department of Neurobiology and Behavior, University of California, Irvine, Irvine, CA, 92697, USA
| | - Shelley Lane
- Institute for Memory Impairments and Neurological Disorders, University of California, Irvine (UCI MIND), Irvine, CA, 92697, USA
| | - Malcolm A Leissring
- Institute for Memory Impairments and Neurological Disorders, University of California, Irvine (UCI MIND), Irvine, CA, 92697, USA.
- Department of Neuroscience, Mayo Clinic Florida, Jacksonville, FL, 32224, USA.
| |
Collapse
|
9
|
Swords SB, Jia N, Norris A, Modi J, Cai Q, Grant BD. A conserved requirement for RME-8/DNAJC13 in neuronal autophagic lysosome reformation. Autophagy 2024; 20:792-808. [PMID: 37942902 PMCID: PMC11062384 DOI: 10.1080/15548627.2023.2269028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Revised: 09/16/2023] [Accepted: 10/02/2023] [Indexed: 11/10/2023] Open
Abstract
Autophagosomes fuse with lysosomes, forming autolysosomes that degrade engulfed cargo. To maintain lysosomal capacity, autophagic lysosome reformation (ALR) must regenerate lysosomes from autolysosomes using a membrane tubule-based process. Maintaining lysosomal capacity is required to maintain cellular health, especially in neurons where lysosomal dysfunction has been repeatedly implicated in neurodegenerative disease. The DNA-J domain HSC70 co-chaperone RME-8/DNAJC13 has been linked to endosomal coat protein regulation and to neurological disease. We report new analysis of the requirements for the RME-8/DNAJC13 protein in neurons, focusing on intact C. elegans mechanosensory neurons, and primary mouse cortical neurons in culture. Loss of RME-8/DNAJC13 in both systems results in accumulation of grossly elongated autolysosomal tubules. Further C. elegans analysis revealed a similar autolysosome tubule accumulation defect in mutants known to be required for ALR in mammals, including mutants lacking bec-1/BECN1/Beclin1 and vps-15/PIK3R4/p150 that regulate the class III phosphatidylinositol 3-kinase (PtdIns3K) VPS-34, and dyn-1/dynamin that severs ALR tubules. Clathrin is also an important ALR regulator implicated in autolysosome tubule formation and release. In C. elegans we found that loss of RME-8 causes severe depletion of clathrin from neuronal autolysosomes, a phenotype shared with bec-1 and vps-15 mutants. We conclude that RME-8/DNAJC13 plays a previously unrecognized role in ALR, likely affecting autolysosome tubule severing. Additionally, in both systems, loss of RME-8/DNAJC13 reduced macroautophagic/autophagic flux, suggesting feedback regulation from ALR to autophagy. Our results connecting RME-8/DNAJC13 to ALR and autophagy provide a potential mechanism by which RME-8/DNAJC13 could influence neuronal health and the progression of neurodegenerative disease.Abbreviation: ALR, autophagic lysosome reformation; ATG-13/EPG-1, AuTophaGy (yeast Atg homolog)-13; ATG-18, AuTophaGy (yeast Atg homolog)-18; AV, autophagic vacuole; CLIC-1, Clathrin Light Chain-1; EPG-3, Ectopic P Granules-3; EPG-6, Ectopic P Granules-6; LGG-1, LC3, GABARAP and GATE-16 family-1; MAP1LC3/LC3, microtubule-associated protein 1 light chain 3; PD, Parkinson disease; PtdIns3P, phosphatidylinositol-3-phosphate; PtdIns(4,5)P2, phosphatidylinositol-4,5-bisphosphate; RME-8, Receptor Mediated Endocytosis-8; SNX-1, Sorting NeXin-1; VPS-34, related to yeast Vacuolar Protein Sorting factor-34.
Collapse
Affiliation(s)
- Sierra B. Swords
- Department of Molecular Biology and Biochemistry, Rutgers University, Piscataway, NJ, USA
| | - Nuo Jia
- Department of Cell Biology and Neuroscience, Rutgers University, Piscataway, NJ, USA
| | - Anne Norris
- Department of Molecular Biology and Biochemistry, Rutgers University, Piscataway, NJ, USA
| | - Jil Modi
- Department of Molecular Biology and Biochemistry, Rutgers University, Piscataway, NJ, USA
| | - Qian Cai
- Department of Cell Biology and Neuroscience, Rutgers University, Piscataway, NJ, USA
| | - Barth D. Grant
- Department of Molecular Biology and Biochemistry, Rutgers University, Piscataway, NJ, USA
- Center for Lipid Research, New Brunswick, NJ, USA
| |
Collapse
|
10
|
Terron HM, Parikh SJ, Abdul-Hay SO, Sahara T, Kang D, Dickson DW, Saftig P, LaFerla FM, Lane S, Leissring MA. Prominent tauopathy and intracellular β-amyloid accumulation triggered by genetic deletion of cathepsin D: Implications for Alzheimer disease pathogenesis. RESEARCH SQUARE 2023:rs.3.rs-3464352. [PMID: 37961253 PMCID: PMC10635349 DOI: 10.21203/rs.3.rs-3464352/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2023]
Abstract
Background Cathepsin D (CatD) is a lysosomal protease that degrades both the amyloid-β protein (Aβ) and the microtubule-associated protein, tau, which accumulate pathognomonically in Alzheimer disease (AD), but few studies have examined the role of CatD in the development of Aβ pathology and tauopathy in vivo. Methods CatD knockout (KO) mice were crossed to human amyloid precursor protein (hAPP) transgenic mice, and amyloid burden was quantified by ELISA and immunohistochemistry (IHC). Tauopathy in CatD-KO mice, as initially suggested by Gallyas silver staining, was further characterized by extensive IHC and biochemical analyses. Controls included human tau transgenic mice (JNPL3) and another mouse model characterized by pronounced lysosomal dysfunction (Krabbe A). Additional experiments examined the effects of CatD inhibition on tau catabolism in vitro and in cultured neuroblastoma cells with inducible expression of human tau. Results Deletion of CatD in hAPP transgenic mice triggers large increases in cerebral Aβ, manifesting as intense, exclusively intracellular aggregates; extracellular Aβ deposition, by contrast, is neither triggered by CatD deletion, nor affected in older, haploinsufficient mice. Unexpectedly, CatDKO mice were found to develop prominent tauopathy by just ~ 3 weeks of age, accumulating sarkosyl-insoluble, hyperphosphorylated tau exceeding the pathology in aged JNPL3 mice. CatDKO mice exhibit pronounced perinuclear Gallyas silver staining reminiscent of mature neurofibrillary tangles in human AD, together with widespread phospho-tau immunoreactivity. Striking increases in sarkosyl-insoluble phospho-tau (~ 1250%) are present in CatD-KO mice, but notably absent from Krabbe A mice collected at an identical antemortem interval. In vitro and in cultured cells, we show that tau catabolism is slowed by blockade of CatD proteolytic activity, including via competitive inhibition by Aβ42. Conclusions Our findings support a major role for CatD in the proteostasis of both Aβ and tau in vivo. To our knowledge, CatD-KO mice are the only model to develop detectable Aβ acumulation and profound tauopathy in the absence of overexpression of hAPP or human tau with disease-associated mutations. Given that tauopathy emerges from disruption of CatD, which can itself be potently inhibited by Aβ42, our findings suggest that impaired CatD activity may represent a key mechanism linking amyloid accumulation and tauopathy in AD.
Collapse
|
11
|
Kozak A, Mikhaylov G, Khodakivskyi P, Goun E, Turk B, Vasiljeva O. A New Cathepsin D Targeting Drug Delivery System Based on Immunoliposomes Functionalized with Lipidated Pepstatin A. Pharmaceutics 2023; 15:2464. [PMID: 37896224 PMCID: PMC10609775 DOI: 10.3390/pharmaceutics15102464] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Revised: 10/08/2023] [Accepted: 10/10/2023] [Indexed: 10/29/2023] Open
Abstract
Cathepsin D is an aspartic protease and one of the most abundant proteases. It is overexpressed in many cancers and plays an important role in tumor development, progression, and metastasis. While it is a physiologically intracellular protein, cathepsin D is secreted into the extracellular matrix under pathological conditions, making it an appealing target for drug delivery systems. Here, we present the development and evaluation of a new delivery system for tumor targeting based on immunoliposomes functionalized with pepstatin A-a natural peptide inhibitor of cathepsin D. A lipid tail was added to pepstatin A, enabling its incorporation into the liposomal lipid bilayer. The successful targeting of cathepsin D was confirmed using recombinant cathepsin D and in tumor cell lines, showing the feasibility of this targeting approach and its potential for in vivo use in theragnostic applications.
Collapse
Affiliation(s)
- Andreja Kozak
- Department of Biochemistry and Molecular and Structural Biology, Jozef Stefan Institute, 1000 Ljubljana, Slovenia
| | - Georgy Mikhaylov
- Department of Biochemistry and Molecular and Structural Biology, Jozef Stefan Institute, 1000 Ljubljana, Slovenia
- SwissLumix SARL, 1015 Lausanne, Switzerland
| | - Pavlo Khodakivskyi
- Department of Chemistry, University of Missouri-Columbia, Columbia, MO 65211, USA
| | - Elena Goun
- SwissLumix SARL, 1015 Lausanne, Switzerland
- Department of Chemistry, University of Missouri-Columbia, Columbia, MO 65211, USA
| | - Boris Turk
- Department of Biochemistry and Molecular and Structural Biology, Jozef Stefan Institute, 1000 Ljubljana, Slovenia
- Faculty of Chemistry and Chemical Technology, University of Ljubljana, 1000 Ljubljana, Slovenia
| | - Olga Vasiljeva
- Department of Biochemistry and Molecular and Structural Biology, Jozef Stefan Institute, 1000 Ljubljana, Slovenia
| |
Collapse
|
12
|
Koy C, Glocker UM, Danquah BD, Glocker MO. Native and compactly folded in-solution conformers of pepsin are revealed and distinguished by mass spectrometric ITEM-TWO analyses of gas-phase pepstatin A - pepsin complex binding strength differences. EUROPEAN JOURNAL OF MASS SPECTROMETRY (CHICHESTER, ENGLAND) 2023; 29:303-312. [PMID: 37259551 DOI: 10.1177/14690667231178999] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
Pepsin, because of its optimal activity at low acidic pH, has gained importance in mass spectrometric proteome research as a readily available and easy-to-handle protease. Pepsin has also been study object of protein higher-order structure analyses, but questions about how to best investigate pepsin in-solution conformers still remain. We first determined dependencies of pepsin ion charge structures on solvent pH which indicated the in-solution existence of (a) natively folded pepsin (N) which by nanoESI-MS analysis gave rise to a narrow charge state distribution with an 11-fold protonated most intense ion signal, (b) unfolded pepsin (U) with a rather broad ion charge state distribution whose highest ion signal carried 25 protons, and (c) a compactly folded pepsin conformer (C) with a narrow charge structure and a 12-fold protonated ion signal in the center of its charge state envelope. Because pepsin is a protease, unfolded pepsin became its own substrate in solution at pH 6.6 since at this pH some portion of pepsin maintained a compact/native fold which displayed enzymatic activity. Subsequent mass spectrometric ITEM-TWO analyses of pepstatin A - pepsin complex dissociation reactions in the gas phase confirmed a very strong binding of pepstatin A by natively folded pepsin (N). ITEM-TWO further revealed the existence of two compactly folded in-solution pepsin conformers (Ca and Cb) which also were able to bind pepstatin A. Binding strengths of the respective compactly folded pepsin conformer-containing complexes could be determined and apparent gas phase complex dissociation constants and reaction enthalpies differentiated these from each other and from the pepstatin A - pepsin complex which had been formed from natively folded pepsin. Thus, ITEM-TWO turned out to be well suited to pinpoint in-solution pepsin conformers by interrogating quantitative traits of pepstatin A - pepsin complexes in the gas phase.
Collapse
Affiliation(s)
- Cornelia Koy
- Proteome Center Rostock, Medical Faculty and Natural Science Faculty, University of Rostock, Rostock, Germany
| | - Ursula M Glocker
- Proteome Center Rostock, Medical Faculty and Natural Science Faculty, University of Rostock, Rostock, Germany
| | - Bright D Danquah
- Proteome Center Rostock, Medical Faculty and Natural Science Faculty, University of Rostock, Rostock, Germany
| | - Michael O Glocker
- Proteome Center Rostock, Medical Faculty and Natural Science Faculty, University of Rostock, Rostock, Germany
| |
Collapse
|
13
|
Miura T, Malla TR, Owen CD, Tumber A, Brewitz L, McDonough MA, Salah E, Terasaka N, Katoh T, Lukacik P, Strain-Damerell C, Mikolajek H, Walsh MA, Kawamura A, Schofield CJ, Suga H. In vitro selection of macrocyclic peptide inhibitors containing cyclic γ 2,4-amino acids targeting the SARS-CoV-2 main protease. Nat Chem 2023; 15:998-1005. [PMID: 37217786 PMCID: PMC10322702 DOI: 10.1038/s41557-023-01205-1] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Accepted: 04/14/2023] [Indexed: 05/24/2023]
Abstract
γ-Amino acids can play important roles in the biological activities of natural products; however, the ribosomal incorporation of γ-amino acids into peptides is challenging. Here we report how a selection campaign employing a non-canonical peptide library containing cyclic γ2,4-amino acids resulted in the discovery of very potent inhibitors of the SARS-CoV-2 main protease (Mpro). Two kinds of cyclic γ2,4-amino acids, cis-3-aminocyclobutane carboxylic acid (γ1) and (1R,3S)-3-aminocyclopentane carboxylic acid (γ2), were ribosomally introduced into a library of thioether-macrocyclic peptides. One resultant potent Mpro inhibitor (half-maximal inhibitory concentration = 50 nM), GM4, comprising 13 residues with γ1 at the fourth position, manifests a 5.2 nM dissociation constant. An Mpro:GM4 complex crystal structure reveals the intact inhibitor spans the substrate binding cleft. The γ1 interacts with the S1' catalytic subsite and contributes to a 12-fold increase in proteolytic stability compared to its alanine-substituted variant. Knowledge of interactions between GM4 and Mpro enabled production of a variant with a 5-fold increase in potency.
Collapse
Affiliation(s)
- Takashi Miura
- Department of Chemistry, Graduate School of Science, The University of Tokyo, Tokyo, Japan
| | - Tika R Malla
- Department of Chemistry and the Ineos Oxford Institute for Antimicrobial Research, Chemistry Research Laboratory, University of Oxford, Oxford, UK
| | - C David Owen
- Diamond Light Source, Harwell Science & Innovation Campus, Didcot, UK
- Research Complex at Harwell, Harwell Science & Innovation Campus, Didcot, UK
| | - Anthony Tumber
- Department of Chemistry and the Ineos Oxford Institute for Antimicrobial Research, Chemistry Research Laboratory, University of Oxford, Oxford, UK
| | - Lennart Brewitz
- Department of Chemistry and the Ineos Oxford Institute for Antimicrobial Research, Chemistry Research Laboratory, University of Oxford, Oxford, UK
| | - Michael A McDonough
- Department of Chemistry and the Ineos Oxford Institute for Antimicrobial Research, Chemistry Research Laboratory, University of Oxford, Oxford, UK
| | - Eidarus Salah
- Department of Chemistry and the Ineos Oxford Institute for Antimicrobial Research, Chemistry Research Laboratory, University of Oxford, Oxford, UK
| | - Naohiro Terasaka
- Department of Chemistry, Graduate School of Science, The University of Tokyo, Tokyo, Japan
| | - Takayuki Katoh
- Department of Chemistry, Graduate School of Science, The University of Tokyo, Tokyo, Japan
| | - Petra Lukacik
- Diamond Light Source, Harwell Science & Innovation Campus, Didcot, UK
- Research Complex at Harwell, Harwell Science & Innovation Campus, Didcot, UK
| | - Claire Strain-Damerell
- Diamond Light Source, Harwell Science & Innovation Campus, Didcot, UK
- Research Complex at Harwell, Harwell Science & Innovation Campus, Didcot, UK
| | - Halina Mikolajek
- Diamond Light Source, Harwell Science & Innovation Campus, Didcot, UK
- Research Complex at Harwell, Harwell Science & Innovation Campus, Didcot, UK
| | - Martin A Walsh
- Diamond Light Source, Harwell Science & Innovation Campus, Didcot, UK
- Research Complex at Harwell, Harwell Science & Innovation Campus, Didcot, UK
| | - Akane Kawamura
- Department of Chemistry and the Ineos Oxford Institute for Antimicrobial Research, Chemistry Research Laboratory, University of Oxford, Oxford, UK
- Chemistry - School of Natural and Environmental Sciences, Newcastle University, Newcastle upon Tyne, UK
| | - Christopher J Schofield
- Department of Chemistry and the Ineos Oxford Institute for Antimicrobial Research, Chemistry Research Laboratory, University of Oxford, Oxford, UK
| | - Hiroaki Suga
- Department of Chemistry, Graduate School of Science, The University of Tokyo, Tokyo, Japan.
| |
Collapse
|
14
|
Kim HS, Kong H, Kim T, Lim C, Lee S, Kim SH, Suh YG. Structural Congeners of Izenamides Responsible for Cathepsin D Inhibition: Insights from Synthesis-Derived Elucidation. Mar Drugs 2023; 21:md21050281. [PMID: 37233475 DOI: 10.3390/md21050281] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Revised: 04/25/2023] [Accepted: 04/26/2023] [Indexed: 05/27/2023] Open
Abstract
This study aimed to elucidate the structural congeners of natural izenamides A, B, and C (1-3) responsible for cathepsin D (CTSD) inhibition. Structurally modified izenamides were synthesized and biologically evaluated, and their biologically important core structures were identified. We confirmed that the natural statine (Sta) unit (3S,4S)-γ-amino-β-hydroxy acid is a requisite core structure of izenamides for inhibition of CTSD, which is closely related to the pathophysiological roles in numerous human diseases. Interestingly, the statine-incorporated izenamide C variant (7) and 18-epi-izenamide B variant (8) exhibited more potent CTSD-inhibitory activities than natural izenamides.
Collapse
Affiliation(s)
- Hyun Su Kim
- College of Pharmacy and Institute of Pharmaceutical Sciences, CHA University, 120 Haeryong-ro, Pocheon 11160, Republic of Korea
| | - Hyejin Kong
- College of Pharmacy and Institute of Pharmaceutical Sciences, CHA University, 120 Haeryong-ro, Pocheon 11160, Republic of Korea
| | - Taewoo Kim
- College of Pharmacy and Institute of Pharmaceutical Sciences, CHA University, 120 Haeryong-ro, Pocheon 11160, Republic of Korea
| | - Changjin Lim
- School of Pharmacy, Jeonbuk National University, Jeonju 54896, Republic of Korea
| | - Seungbeom Lee
- College of Pharmacy and Institute of Pharmaceutical Sciences, CHA University, 120 Haeryong-ro, Pocheon 11160, Republic of Korea
| | - Seok-Ho Kim
- College of Pharmacy, Kangwon National University, Chuncheon 24341, Republic of Korea
| | - Young-Ger Suh
- College of Pharmacy and Institute of Pharmaceutical Sciences, CHA University, 120 Haeryong-ro, Pocheon 11160, Republic of Korea
| |
Collapse
|
15
|
Gan J, Chan YK, Segaran DC, Kovalik JP, Eng A, Lee PC, Tan J, Lim CH. Pepsin in saliva for the diagnosis of erosive esophagitis post-sleeve gastrectomy: a prospective observational study. Surg Endosc 2023:10.1007/s00464-023-10050-9. [PMID: 37055666 DOI: 10.1007/s00464-023-10050-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Accepted: 03/26/2023] [Indexed: 04/15/2023]
Abstract
BACKGROUND Laparoscopic sleeve gastrectomy (LSG) has become the preferred bariatric procedure in many countries. However, new onset erosive esophagitis (EE) is a major shortcoming. Current recommendation is esophago-gastro-duodenoscopy (EGD) should be performed routinely at 1 year and subsequently every 2-3 years to enable the early detection of Barrett's or esophageal adenocarcinoma. This would put significant strains on resources and costs of bariatric program. Our study assesses the association between and diagnostic value of salivary pepsin concentration and endoscopically proven EE in post-LSG patients as a surrogate for EGD. METHODS Twenty patients on routine post-LSG endoscopy between June and September 2022 were recruited for this correlational pilot study. Under supervision, fasting and post-prandial saliva sample was collected and analyzed by Peptest lateral flow device. EGD examinations were performed, and patients completed a validated 25-item QoLRAD questionnaire. RESULTS We found a significant correlation between positive endoscopy findings of EE and salivary pepsin concentrations. The normal group had a lower mean fasting pepsin level (13.13 ng/mL ± 18.97) versus the EE-group (90.55 ng/mL ± 81.28, p = 0.009) and lower mean post-prandial pepsin level (30.50 ng/mL ± 57.72) versus the EE-group (135.09 ng/mL ± 130.17, p = 0.02). The predictive probabilities from the binary regression of fasting and post-prandial pepsin concentrations yield AUC of 0.955 ± 0.044 (95% CI 0.868 to 1.000, p < 0.001). CONCLUSION Our study distinctively identified salivary pepsin to have excellent sensitivity and negative predictive value in EE, potentially useful to preclude the need for post-LSG EGD in asymptomatic patients with low salivary pepsin.
Collapse
Affiliation(s)
- Jinyuan Gan
- Duke-NUS Medical School, SingHealth, Singapore, Singapore
| | - Yarn Kit Chan
- Duke-NUS Medical School, SingHealth, Singapore, Singapore
| | - Deepa Chandra Segaran
- Division of Surgery, Department of Upper Gastrointestinal & Bariatric Surgery, Singapore General Hospital, Singapore, Singapore
| | - Jean-Paul Kovalik
- Division of Medicine, Department of Endocrinology, Singapore General Hospital, Singapore, Singapore
| | - Alvin Eng
- Division of Surgery, Department of Upper Gastrointestinal & Bariatric Surgery, Singapore General Hospital, Singapore, Singapore
| | - Phong Ching Lee
- Division of Medicine, Department of Endocrinology, Singapore General Hospital, Singapore, Singapore
| | - Jeremy Tan
- Division of Surgery, Department of Upper Gastrointestinal & Bariatric Surgery, Singapore General Hospital, Singapore, Singapore
| | - Chin Hong Lim
- Division of Surgery, Department of Upper Gastrointestinal & Bariatric Surgery, Singapore General Hospital, Singapore, Singapore.
- Department of Upper Gastrointestinal & Bariatric Surgery, Singapore General Hospital, Academia, 20 College Road, Singapore, 169856, Singapore.
| |
Collapse
|
16
|
Chen S, Liang C, Li H, Yu W, Prothiwa M, Kopczynski D, Loroch S, Fransen M, Verhelst SHL. Pepstatin-Based Probes for Photoaffinity Labeling of Aspartic Proteases and Application to Target Identification. ACS Chem Biol 2023; 18:686-692. [PMID: 36920024 DOI: 10.1021/acschembio.2c00946] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/16/2023]
Abstract
Aspartic proteases are a small class of proteases implicated in a wide variety of human diseases. Covalent chemical probes for photoaffinity labeling (PAL) of these proteases are underdeveloped. We here report a full on-resin synthesis of clickable PAL probes based on the natural product inhibitor pepstatin incorporating a minimal diazirine reactive group. The position of this group in the inhibitor determines the labeling efficiency. The most effective probes sensitively detect cathepsin D, a biomarker for breast cancer, in cell lysates. Moreover, through chemical proteomics experiments and deep learning algorithms, we identified sequestosome-1, an important player in autophagy, as a direct interaction partner and substrate of cathepsin D.
Collapse
Affiliation(s)
- Suyuan Chen
- Leibniz Institut für Analytische Wissenschaften - ISAS, e.V., Otto-Hahn-Strasse 6b, 44227 Dortmund, Germany
| | - Chunguang Liang
- Bioinformatik, Biozentrum, Universität Würzburg, 97074 Würzburg, Germany.,Medical Informatics, Friedrich-Alexander University of Erlangen-Nürnberg, 91058 Erlangen, Germany
| | - Hongli Li
- KU Leuven, Department of Cellular and Molecular Medicine, Laboratory of Peroxisome Biology and Intracellular Communication, Herestraat 49 box 901b, 3000 Leuven, Belgium
| | - Weimeng Yu
- Bioinformatik, Biozentrum, Universität Würzburg, 97074 Würzburg, Germany
| | - Michaela Prothiwa
- KU Leuven, Department of Cellular and Molecular Medicine, Laboratory of Chemical Biology, Herestraat 49 box 901b, 3000 Leuven, Belgium
| | - Dominik Kopczynski
- Department of Analytical Chemistry, University of Vienna, 1090 Vienna, Austria
| | - Stefan Loroch
- Leibniz Institut für Analytische Wissenschaften - ISAS, e.V., Otto-Hahn-Strasse 6b, 44227 Dortmund, Germany.,Ruhr-Universität Bochum, Medizinisches Proteom-Center, Building ProDi E2.240, Gesundheitscampus 4, D-44801 Bochum, Germany.,ProtiFi LLC, 1000 Turk Hill Road, Suite 180, 2nd Floor, Fairport, New York 14450, United States
| | - Marc Fransen
- KU Leuven, Department of Cellular and Molecular Medicine, Laboratory of Peroxisome Biology and Intracellular Communication, Herestraat 49 box 901b, 3000 Leuven, Belgium
| | - Steven H L Verhelst
- Leibniz Institut für Analytische Wissenschaften - ISAS, e.V., Otto-Hahn-Strasse 6b, 44227 Dortmund, Germany.,KU Leuven, Department of Cellular and Molecular Medicine, Laboratory of Chemical Biology, Herestraat 49 box 901b, 3000 Leuven, Belgium
| |
Collapse
|
17
|
Oda K, Wlodawer A. Overview of the Properties of Glutamic Peptidases That Are Present in Plant and Bacterial Pathogens and Play a Role in Celiac Disease and Cancer. Biochemistry 2023; 62:672-694. [PMID: 36705990 DOI: 10.1021/acs.biochem.2c00622] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Seven peptidase (proteinase) families─aspartic, cysteine, metallo, serine, glutamic, threonine, and asparagine─are in the peptidase database MEROPS, version 12.4 (https://www.ebi.ac.uk/merops/). The glutamic peptidase family is assigned two clans, GA and GB, and comprises six subfamilies. This perspective summarizes the unique features of their representatives. (1) G1, scytalidoglutamic peptidase, has a β-sandwich structure containing catalytic residues glutamic acid (E) and glutamine (Q), thus the name eqolisin. Most family members are pepstatin-insensitive and act as plant pathogens. (2) G2, preneck appendage protein, originates in phages, is a transmembrane protein, and its catalytic residues consist of glutamic and aspartic acids. (3) G3, strawberry mottle virus glutamic peptidase, originates in viruses and has a β-sandwich structure with catalytic residues E and Q. Neprosin has propyl endopeptidase activity, is associated with celiac disease, has a β-sandwich structure, and contains catalytic residues E-E and Q-tryptophan. (4) G4, Tiki peptidase, of the erythromycin esterase family, is a transmembrane protein, and its catalytic residues are E-histidine pairs. (5) G5, RCE1 peptidase, is associated with cancer, is a transmembrane protein, and its catalytic residues are E-histidine and asparagine-histidine. Microcystinase, a bacterial toxin, is a transmembrane protein with catalytic residues E-histidine and asparagine-histidine. (6) G6, Ras/Rap1-specific peptidase, is a bacterial pathogen, a transmembrane protein, and its catalytic residues are E-histidine pairs. This family's common features are that their catalytic residues consist of a glutamic acid and another (variable) amino acid and that they exhibit a diversity of biological functions─plant and bacterial pathogens and involvement in celiac disease and cancer─that suggests they are viable drug targets.
Collapse
Affiliation(s)
- Kohei Oda
- Department of Applied Biology, Kyoto Institute of Technology, Matsugasaki, Sakyo-Ku, Kyoto 606-8585, Japan
| | - Alexander Wlodawer
- Center for Structural Biology, National Cancer Institute, Frederick, Maryland 21702, United States
| |
Collapse
|
18
|
Jiang T, Edwards N, Sukumar N, Mayers M, Higgins J, Kosanam H. Development and validation of LC-MS/MS method for quantification of protease inhibitor Pepstatin A to monitor its robust clearance in vaccine downstream process. J Chromatogr B Analyt Technol Biomed Life Sci 2023; 1215:123589. [PMID: 36592589 DOI: 10.1016/j.jchromb.2022.123589] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Revised: 12/22/2022] [Accepted: 12/26/2022] [Indexed: 12/29/2022]
Abstract
Pepstatin A reversibly inhibits aspartic acid proteases and minimizes the impact of protease-induced degradation in recombinant protein manufacturing process. Pepstatin A is considered as a process-related impurity and must be characterized and controlled during manufacturing. Herein we describe the development and validation of an LC-MS/MS method for the quantitation of pepstatin A to monitor its robust clearance in vaccine purification process. Analyte extraction from process intermediates was carried out using 10% acetonitrile/water extraction method. Acetyl-pepstatin was used as internal standard (IS). Pepstatin A and IS were resolved on a C18 column using 10 mM ammonium acetate in water and methanol/acetonitrile mobile phase system. A triple quadrupole mass spectrometer operating in the positive electrospray ionization mode with multiple reaction monitoring was used to detect Pepstatin A and IS transitions of m/z 686.5 to 229.3 and 644.5 to 229.3, respectively. The method was validated for specificity, linearity, accuracy, repeatability (precision), intermediate precision, and assay robustness. The assay was linear over the range of calibration standards 0.5-100 ng/mL. The Lower-limit-of-quantification (LLOQ) of the method was 0.50 ng/mL.
Collapse
Affiliation(s)
- Tingting Jiang
- Global Vaccines and Biologics Commercialization, Merck, 770 Sumneytown Pike, West Point, PA, USA
| | - Nathan Edwards
- Global Vaccines and Biologics Commercialization, Merck, 770 Sumneytown Pike, West Point, PA, USA
| | - Neelima Sukumar
- Biologics and Vaccine Analytics, Merck, 770 Sumneytown Pike, West Point, PA, USA
| | - Michael Mayers
- Biologics and Vaccine Analytics, Merck, 770 Sumneytown Pike, West Point, PA, USA
| | - John Higgins
- Global Vaccines and Biologics Commercialization, Merck, 770 Sumneytown Pike, West Point, PA, USA
| | - Hari Kosanam
- Global Vaccines and Biologics Commercialization, Merck, 770 Sumneytown Pike, West Point, PA, USA.
| |
Collapse
|
19
|
Sreedharan V, Rao KB. Protease inhibitors as a potential agent against visceral Leishmaniasis: A review to inspire future study. Braz J Infect Dis 2023; 27:102739. [PMID: 36603827 PMCID: PMC9871078 DOI: 10.1016/j.bjid.2022.102739] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2022] [Revised: 11/21/2022] [Accepted: 12/16/2022] [Indexed: 01/04/2023] Open
Abstract
Leishmaniasis is transmitted by sandfly which carries the intracellular protozoa in their midgut. Among visceral, cutaneous and mucocutaneous leishmaniasis, visceral type that is caused by Leishmania donovani is the most lethal one. Findings of leishmanial structure and species took place in 19th century and was initiated by Donovan. Leishmaniasis is still a major concern of health issues in many endemic countries in Asia, Africa, the Americas, and the Mediterranean region. Worldwide1.5-2 million new cases of cutaneous leishmaniasis and 500,000 cases of visceral leishmaniasis are reported each year. Leishmaniasis is endemic in nearly 90 countries worldwide and close to 12 million new cases of leishmaniasis are reported worldwide annually. Studies on antileishmanial drug development is of major concern as leishmaniasis are the second largest parasitic killer in the world and the available drugs are either toxic or costly. The major surface GP63 protease, also known as Zinc- metalloproteases present on the surface of leishmanial promastigotes, can be targeted for drug development. Protease inhibitors targeting such surface proteases show promising results. Different protease inhibitors have been isolated from marine actinobacteria against many infectious diseases. Metabolites produced by these actinobacteria may have greater importance for the discovery and development of new antileishmanial drugs. Hence, this review discusses the background, current situation, treatment, and protease inhibitors from marine actinobacteria for drug development against GP63 molecules.
Collapse
Affiliation(s)
| | - K.V. Bhaskara Rao
- Corresponding author at: Department of Biomedical Sciences, School of BioSciences and Technology, VIT University, Vellore, Tamil Nadu, 632 014, India.
| |
Collapse
|
20
|
Goto Y, Suga H. Ribosomal Synthesis of Peptides Bearing Noncanonical Backbone Structures via Chemical Posttranslational Modifications. Methods Mol Biol 2023; 2670:255-266. [PMID: 37184709 DOI: 10.1007/978-1-0716-3214-7_13] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/16/2023]
Abstract
Noncanonical peptide backbone structures, such as heterocycles and non-α-amino acids, are characteristic building blocks present in peptidic natural products. To achieve ribosomal synthesis of designer peptides bearing such noncanonical backbone structures, we have devised translation-compatible precursor residues and their chemical posttranslational modification processes. In this chapter, we describe the detailed procedures for the in vitro translation of peptides containing the precursor residues by means of genetic code reprogramming technology and posttranslational generation of objective noncanonical backbone structures.
Collapse
Affiliation(s)
- Yuki Goto
- Department of Chemistry, Graduate School of Science, The University of Tokyo, Tokyo, Japan.
| | - Hiroaki Suga
- Department of Chemistry, Graduate School of Science, The University of Tokyo, Tokyo, Japan.
| |
Collapse
|
21
|
Kuroda T, Huang Y, Nishio S, Goto Y, Suga H. Post-translational backbone-acyl shift yields natural product-like peptides bearing hydroxyhydrocarbon units. Nat Chem 2022; 14:1413-1420. [PMID: 36329180 DOI: 10.1038/s41557-022-01065-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Accepted: 08/09/2022] [Indexed: 11/06/2022]
Abstract
Hydroxyhydrocarbon (Hhc) moieties in the backbone of peptidic natural products can exert a substantial influence on the bioactivities of the products, making Hhc units an attractive class of building blocks for de novo peptides. However, despite advances in in vitro genetic code reprogramming, the ribosomal incorporation of Hhc units remains challenging. Here we report a method for in vitro ribosomal synthesis of natural-product-like peptides bearing Hhc units. A series of azide/hydroxy acids were designed as chemical precursors of Hhc units and incorporated into the nascent peptide chain by means of genetic code reprogramming. Post-translational reduction of the azide induced an O-to-N acyl shift to rearrange the peptide backbone. This method allows for one-pot ribosomal synthesis of designer macrocycles bearing various β-, γ- and δ-type Hhc units. We also report the synthesis of a statine-containing peptidomimetic inhibitor of β-secretase 1 as a showcase example.
Collapse
Affiliation(s)
- Tomohiro Kuroda
- Department of Chemistry, Graduate School of Science, The University of Tokyo, Bunkyo, Tokyo, Japan
| | - Yichao Huang
- Department of Chemistry, Graduate School of Science, The University of Tokyo, Bunkyo, Tokyo, Japan
| | - Soichiro Nishio
- Department of Chemistry, Graduate School of Science, The University of Tokyo, Bunkyo, Tokyo, Japan
| | - Yuki Goto
- Department of Chemistry, Graduate School of Science, The University of Tokyo, Bunkyo, Tokyo, Japan.
| | - Hiroaki Suga
- Department of Chemistry, Graduate School of Science, The University of Tokyo, Bunkyo, Tokyo, Japan.
| |
Collapse
|
22
|
Homology Modeling and Analysis of Vacuolar Aspartyl Protease from a Novel Yeast Expression Host Meyerozyma guilliermondii Strain SO. ARABIAN JOURNAL FOR SCIENCE AND ENGINEERING 2022. [DOI: 10.1007/s13369-022-07153-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
|
23
|
Molecular and in vivo studies of a glutamate-class prolyl-endopeptidase for coeliac disease therapy. Nat Commun 2022; 13:4446. [PMID: 35915115 PMCID: PMC9343461 DOI: 10.1038/s41467-022-32215-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Accepted: 07/21/2022] [Indexed: 11/25/2022] Open
Abstract
The digestion of gluten generates toxic peptides, among which a highly immunogenic proline-rich 33-mer from wheat α-gliadin, that trigger coeliac disease. Neprosin from the pitcher plant is a reported prolyl endopeptidase. Here, we produce recombinant neprosin and its mutants, and find that full-length neprosin is a zymogen, which is self-activated at gastric pH by the release of an all-β pro-domain via a pH-switch mechanism featuring a lysine plug. The catalytic domain is an atypical 7+8-stranded β-sandwich with an extended active-site cleft containing an unprecedented pair of catalytic glutamates. Neprosin efficiently degrades both gliadin and the 33-mer in vitro under gastric conditions and is reversibly inactivated at pH > 5. Moreover, co-administration of gliadin and the neprosin zymogen at the ratio 500:1 reduces the abundance of the 33-mer in the small intestine of mice by up to 90%. Neprosin therefore founds a family of eukaryotic glutamate endopeptidases that fulfils requisites for a therapeutic glutenase. Celiac disease is characterized by intolerance to gluten, a cereal protein. Here, the authors show that neprosin, a glutamate peptidase from the pitcher plant, efficiently cleaves gluten components under physiological conditions in vitro and in the gut of mice.
Collapse
|
24
|
Ye W, Guo Z. Phenylacetyl pepstatin inhibitors of aspartyl proteases from Streptomyces varsoviensis. J Antibiot (Tokyo) 2022; 75:519-522. [PMID: 35882959 DOI: 10.1038/s41429-022-00542-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Revised: 06/23/2022] [Accepted: 06/27/2022] [Indexed: 11/09/2022]
Abstract
A new pepstatin with a phenylacetyl group, pepstatin Pa (1), and its methyl ester (2) were isolated from Streptomyces varsoviensis DSM 40346. Their structures were determined by high-resolution mass spectrometry and nuclear magnetic resonance techniques. The absolute configuration was determined using the Marfey's method. Both pentapeptide products are inhibitors of pepsin and cathepsin D. Interestingly, the bacterial genome contains no biosynthetic gene cluster for the new pepstatin, suggesting an extrachromosomal origin of the biosynthetic genes.
Collapse
Affiliation(s)
- Weijian Ye
- Department of Chemistry, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong SAR, China
| | - Zhihong Guo
- Department of Chemistry, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong SAR, China.
| |
Collapse
|
25
|
Oda K, Dunn BM, Wlodawer A. Serine-Carboxyl Peptidases, Sedolisins: From Discovery to Evolution. Biochemistry 2022; 61:1643-1664. [PMID: 35862020 DOI: 10.1021/acs.biochem.2c00239] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Sedolisin is a proteolytic enzyme, listed in the peptidase database MEROPS as a founding member of clan SB, family S53. This enzyme, although active at low pH, was originally shown not to be inhibited by an aspartic peptidase specific inhibitor, S-PI (pepstatin Ac). In this Perspective, the S53 family is described from the moment of original identification to evolution. The representative enzymes of the family are sedolisin, kumamolisin, and TPP-1. They exhibit the following unique features. (1) The fold of the molecule is similar to that of subtilisin, but the catalytic residues consist of a triad, Ser/Glu/Asp, that is unlike the Ser/His/Asp triad of subtilisin. (2) The molecule is expressed as a pro-form composed of the amino-terminal prosegment and the active domain. Additionally, some members of this family have an additional, carboxy-terminal prosegment. (3) Their optimum pH for activity is in the acidic region, not in the neutral to alkaline region where subtilisin is active. (4) Their distribution in nature is very broad across the three kingdoms of life. (5) Some of these enzymes from fungi and bacteria are pathogens to plants. (6) Some of them have significant potential applications for industry. (7) The lack of a TPP-1 gene in human brain is the cause of incurable juvenile neuronal ceroid lipofuscinosis (Batten's disease).
Collapse
Affiliation(s)
- Kohei Oda
- Department of Applied Biology, Kyoto Institute of Technology, Matsugasaki, Sakyo-ku, Kyoto 606-8585, Japan
| | - Ben M Dunn
- Department of Biochemistry & Molecular Biology, University of Florida College of Medicine, Gainesville, Florida 32610-0245, United States
| | - Alexander Wlodawer
- Center for Structural Biology, National Cancer Institute, Frederick, Maryland 21702, United States
| |
Collapse
|
26
|
Study of protease activity from Aspergillus awamori INCQS2B.361U2/1 extracellular fraction and modification of culture medium composition to isolate a novel aspartic protease. Braz J Microbiol 2022; 53:1599-1611. [PMID: 35411453 PMCID: PMC9433587 DOI: 10.1007/s42770-022-00750-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Accepted: 04/01/2022] [Indexed: 11/02/2022] Open
Abstract
Aspergillus awamori was cultivated in a modified Breccia medium, and the extracellular fraction was obtained, which presented 260 ± 15 µg of protein/mg and specific protease activity of 3.87 ± 0.52 mM.min-1.mg of protein-1 using Nα-p-tosyl-L-arginine methyl ester hydrochloride (L-TAME) as substrate. This fraction showed major proteins about 104 and 44 kDa and maximal protease activity at pH 5.5, 6.5, and 9.0, suggesting that A. awamori secretes acidic, neutral, and alkaline proteases with expressive thermal stability, however, aspartic protease was the most important activity. When yeast extract was supplemented to a modified Breccia medium, A. awamori protein secretion and protease activity were maximal and the affinity chromatography on pepstatin-agarose was employed to isolate the aspartic protease activity, which was called ASPA, with approximately 75 kDa. ASPA maximal activity was obtained at pH 4.5 and 6.5, and 50 °C. Pepstatin inhibited about 80% of ASPA activity, with IC50 and Ki values of 0.154 and 0.072 μM, respectively. ASPA cleaved protein and peptides substrates with the highest activity against gelatin (95 U/mg) and good peptidase activity with KM 0.0589 mM and Vmax 1.909 mM.min-1.mg protein-1, using L-TAME as substrate. A. awamori extracellular fraction is a source of proteases with important activity, and the supplementation of modified Breccia medium increased the aspartic protease production. This enzyme presented different biochemical characteristics from the previously reported A. awamori aspartic proteases. Therefore, ASPA is an excellent candidate for biotechnological application due to its important activity and thermostability.
Collapse
|
27
|
Hu X, Xiang J, Li Y, Xia Y, Xu S, Gao X, Qiao S. Inhibition of stearoyl-CoA desaturase 1 potentiates anti-tumor activity of amodiaquine in non-small cell lung cancer. Biol Pharm Bull 2022; 45:438-445. [PMID: 35110426 DOI: 10.1248/bpb.b21-00843] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Non-small cell lung cancer (NSCLC) is one of the leading causes of cancer related death with few therapeutic treatment options. Under adverse tumor microenvironment, autophagy is an important mechanism of metabolic adaptations to sustain the survival and proliferation of tumor cells. Therefore, targeting autophagic activity represents a promising opportunity for NSCLC treatment. Here, we found that amodiaquine (AQ) increased autophagosome numbers and LC3BII and p62 at protein levels in A549 lung cancer cells suggesting the blockade of autophagic flux by AQ. To identify the key metabolic vulnerability associated with autophagy inhibition by AQ treatment, we then performed transcriptomics analysis in the presence or absence of AQ in A549 lung cancer cells and found stearoyl-CoA desaturase 1 (SCD) 1 was one of the most highly upregulated with AQ exposure. The induction of SCD1 by AQ exposure at both protein and mRNA level suggests that SCD1 could represent a potential therapeutic target of AQ treatment. Treatment of AQ in combination with SCD1 inhibition by A939572 demonstrated robust synergistic anti-cancer efficacy in cell proliferation assay and a lung cancer mouse xenograft model. Taken together, our study identified SCD1 could be a new therapeutic target upon autophagy inhibition by AQ exposure. Combinational treatment of autophagy inhibition and SCD1 inhibition achieves synergistic anti-tumor effect both in vitro and in vivo. This combinational approach could be a promising strategy for NSCLC treatment.
Collapse
Affiliation(s)
- Xiaolei Hu
- Cancer Institute, Xuzhou Medical University
| | | | - Yibo Li
- Cancer Institute, Xuzhou Medical University
| | - Yan Xia
- Cancer Institute, Xuzhou Medical University
| | - Siyuan Xu
- Cancer Institute, Xuzhou Medical University
| | - Xiaoge Gao
- Cancer Institute, Xuzhou Medical University
| | - Shuxi Qiao
- Cancer Institute, Xuzhou Medical University
| |
Collapse
|
28
|
Cathepsin D inhibitors based on tasiamide B derivatives with cell membrane permeability. Bioorg Med Chem 2022; 57:116646. [DOI: 10.1016/j.bmc.2022.116646] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Revised: 01/22/2022] [Accepted: 01/26/2022] [Indexed: 11/21/2022]
|
29
|
Abou Zeid LY, Shanmugapriya S, Rumney RL, Mosser DD. Caspase-mediated cleavage of miRNA processing proteins Drosha, DGCR8, Dicer, and TRBP2 in heat-shocked cells and its inhibition by HSP70 overexpression. Cell Stress Chaperones 2022; 27:11-25. [PMID: 34719748 PMCID: PMC8821752 DOI: 10.1007/s12192-021-01242-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Revised: 09/21/2021] [Accepted: 10/01/2021] [Indexed: 10/19/2022] Open
Abstract
Cells respond to stress through adaptive mechanisms that limit cellular damage and prevent cell death. MicroRNAs act as regulators of stress responses and stress can impact the functioning of miRNA biogenesis pathways. We were interested in the effect that severe proteotoxic stress capable of inducing apoptosis may have on miRNA biogenesis and the impact of the molecular chaperone protein HSP70 under these conditions. We found that the miRNA processing enzymes Drosha and Dicer and their accessory proteins DGCR8 and TRBP2 are cleaved by caspases in apoptotic cells. Overexpression of HSP70 prevented caspase activation and the degradation of these processing proteins. Caspase cleavage of TRBP2 was mapped to amino acid 234 which separates the two dsRNA-binding domains from the C-terminal Dicer interacting domain. Overexpression of TRBP2 was found to increase miRNA maturation, while expression of either of the fragments generated by caspase cleavage impaired maturation. These results indicate that inactivation of miRNA biogenesis is a critical feature of apoptosis and that cleavage of TRBP2, rather than simply a loss of function, serves to create positive acting inhibitors of pre-miRNA maturation.
Collapse
Affiliation(s)
- Lina Y Abou Zeid
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, Ontario, N1G 2W1, Canada
| | | | - Rebecca L Rumney
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, Ontario, N1G 2W1, Canada
| | - Dick D Mosser
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, Ontario, N1G 2W1, Canada.
| |
Collapse
|
30
|
Sullivan P, Krunic A, Davis LJ, Kim HS, Burdette JE, Orjala J. Phormidepistatin from the Cyanobacterium UIC 10484: Assessing the Phylogenetic Distribution of the Statine Pharmacophore. JOURNAL OF NATURAL PRODUCTS 2021; 84:2256-2264. [PMID: 34314586 PMCID: PMC8403167 DOI: 10.1021/acs.jnatprod.1c00334] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
A new linear lipopeptide, phormidepistatin (1), containing an epi-statine amino acid was isolated from cf. Phormidium sp. strain UIC 10484. The planar structure was elucidated by 1D and 2D NMR experimentation. The relative configuration was determined by J-based configurational analysis and the absolute configuration by advanced Marfey's analysis. Given that the statine moiety is an established pharmacophore known to inhibit aspartic proteases, phormidepistatin was evaluated against cathepsin D and displayed limited activity. With 1 containing a statine-like moiety, we sought to assess the distribution of this γ-amino acid within the phylum Cyanobacteria. In-depth MS/MS analysis identified the presence of phormidepistatin in cf. Phormidium sp. UIC 10045 and cf. Trichormus sp. UIC 10039. A structure database search identified 33 known cyanobacterial metabolites containing a statine or statine-like amino acid and, along with phormidepistatin, were grouped into 10 distinct compound classes. A phylogenetic tree was built comprising all cyanobacteria with established 16S rRNA sequences known to produce statine or statine-like-containing compound classes. This analysis suggests the incorporation of the γ-amino acid into secondary metabolites is taxonomically widespread within the phylum. Overall, it is our assessment that cyanobacteria are a potential source for statine or statine-like-containing compounds.
Collapse
|
31
|
Adaligil E, Song A, Cunningham CN, Fairbrother WJ. Ribosomal Synthesis of Macrocyclic Peptides with Linear γ 4- and β-Hydroxy-γ 4-amino Acids. ACS Chem Biol 2021; 16:1325-1331. [PMID: 34270222 DOI: 10.1021/acschembio.1c00292] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Herein, we report the ribosomal elongation of linear γ4- and β-hydroxy-γ4-amino acids (statines) to expand the nonproteinogenic amino acid repertoire of natural product-like combinatorial peptide libraries. First, we demonstrated the successful ribosomal incorporation of four linear γ4-amino acids (γ4Gly, (S)-γ4Ala, (S)-γ4Nva, and (R)-γ4Leu) into a 10-mer macrocyclic peptide scaffold. Given the promising effects reported for statines on the cell permeability of macrocyclic peptides, we also designed and tested the ribosomal incorporation of six statines derived from Ala and d-val. Four Ala-derived statines were successfully incorporated into peptides, and γ4SAla3R-OH (GP2) showed a similar efficiency of incorporation to that of (S)-β2hAla and l-Ala. These new building blocks might confer the important pharmacological properties of protease resistance and membrane permeability to macrocyclic peptides and expand the diversity of future combinatorial peptide libraries that can be translated by the ribosome.
Collapse
Affiliation(s)
- Emel Adaligil
- Department of Early Discovery Biochemistry, Genentech, 1 DNA Way, South San Francisco, 94080 California, United States
| | - Aimin Song
- Department of Early Discovery Biochemistry, Genentech, 1 DNA Way, South San Francisco, 94080 California, United States
| | - Christian N. Cunningham
- Department of Early Discovery Biochemistry, Genentech, 1 DNA Way, South San Francisco, 94080 California, United States
| | - Wayne J. Fairbrother
- Department of Early Discovery Biochemistry, Genentech, 1 DNA Way, South San Francisco, 94080 California, United States
| |
Collapse
|
32
|
Dostál J, Brynda J, Vaňková L, Zia SR, Pichová I, Heidingsfeld O, Lepšík M. Structural determinants for subnanomolar inhibition of the secreted aspartic protease Sapp1p from Candida parapsilosis. J Enzyme Inhib Med Chem 2021; 36:914-921. [PMID: 33843395 PMCID: PMC8043539 DOI: 10.1080/14756366.2021.1906664] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Pathogenic Candida albicans yeasts frequently cause infections in hospitals. Antifungal drugs lose effectiveness due to other Candida species and resistance. New medications are thus required. Secreted aspartic protease of C. parapsilosis (Sapp1p) is a promising target. We have thus solved the crystal structures of Sapp1p complexed to four peptidomimetic inhibitors. Three potent inhibitors (Ki: 0.1, 0.4, 6.6 nM) resembled pepstatin A (Ki: 0.3 nM), a general aspartic protease inhibitor, in terms of their interactions with Sapp1p. However, the weaker inhibitor (Ki: 14.6 nM) formed fewer nonpolar contacts with Sapp1p, similarly to the smaller HIV protease inhibitor ritonavir (Ki: 1.9 µM), which, moreover, formed fewer H-bonds. The analyses have revealed the structural determinants of the subnanomolar inhibition of C. parapsilosis aspartic protease. Because of the high similarity between Saps from different Candida species, these results can further be used for the design of potent and specific Sap inhibitor-based antimycotic drugs.
Collapse
Affiliation(s)
- Jiří Dostál
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, Prague, Czech Republic
| | - Jiří Brynda
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, Prague, Czech Republic
| | - Lucie Vaňková
- Laboratory of Ligand Engineering, Institute of Biotechnology, Czech Academy of Sciences, v.v.i., BIOCEV Research Center, Vestec, Czech Republic
| | - Syeda Rehana Zia
- Department of Chemistry, University of Karachi, Karachi, Pakistan
| | - Iva Pichová
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, Prague, Czech Republic
| | - Olga Heidingsfeld
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, Prague, Czech Republic.,Department of Biochemistry, Faculty of Science, Charles University in Prague, Prague, Czech Republic
| | - Martin Lepšík
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, Prague, Czech Republic
| |
Collapse
|
33
|
Protease Substrate-Independent Universal Assay for Monitoring Digestion of Native Unmodified Proteins. Int J Mol Sci 2021; 22:ijms22126362. [PMID: 34198602 PMCID: PMC8231992 DOI: 10.3390/ijms22126362] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Revised: 06/08/2021] [Accepted: 06/10/2021] [Indexed: 12/11/2022] Open
Abstract
Proteases are a group of enzymes with a catalytic function to hydrolyze peptide bonds of proteins. Proteases regulate the activity, signaling mechanism, fate, and localization of many proteins, and their dysregulation is associated with various pathological conditions. Proteases have been identified as biomarkers and potential therapeutic targets for multiple diseases, such as acquired immunodeficiency syndrome, cardiovascular diseases, osteoporosis, type 2 diabetes, and cancer, where they are essential to disease progression. Thus, protease inhibitors and inhibitor-like molecules are interesting drug candidates. To study proteases and their substrates and inhibitors, simple, rapid, and sensitive protease activity assays are needed. Existing fluorescence-based assays enable protease monitoring in a high-throughput compatible microtiter plate format, but the methods often rely on either molecular labeling or synthetic protease targets that only mimic the hydrolysis site of the true target proteins. Here, we present a homogenous, label-free, and time-resolved luminescence utilizing the protein-probe method to assay proteases with native and denatured substrates at nanomolar sensitivity. The developed protein-probe method is not restricted to any single protein or protein target class, enabling digestion and substrate fragmentation studies with the natural unmodified substrate proteins. The versatility of the assay for studying protease targets was shown by monitoring the digestion of a substrate panel with different proteases. These results indicate that the protein-probe method not only monitors the protease activity and inhibition, but also studies the substrate specificity of individual proteases.
Collapse
|
34
|
Guiney SJ, Adlard PA, Lei P, Mawal CH, Bush AI, Finkelstein DI, Ayton S. Fibrillar α-synuclein toxicity depends on functional lysosomes. J Biol Chem 2021; 295:17497-17513. [PMID: 33453994 DOI: 10.1074/jbc.ra120.013428] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2020] [Revised: 10/01/2020] [Indexed: 02/05/2023] Open
Abstract
Neurodegeneration in Parkinson's disease (PD) can be recapitulated in animals by administration of α-synuclein preformed fibrils (PFFs) into the brain. However, the mechanism by which these PFFs induce toxicity is unknown. Iron is implicated in PD pathophysiology, so we investigated whether α-synuclein PFFs induce ferroptosis, an iron-dependent cell death pathway. A range of ferroptosis inhibitors were added to a striatal neuron-derived cell line (STHdhQ7/7 cells), a dopaminergic neuron-derived cell line (SN4741 cells), and WT primary cortical neurons, all of which had been intoxicated with α-synuclein PFFs. Viability was not recovered by these inhibitors except for liproxstatin-1, a best-in-class ferroptosis inhibitor, when used at high doses. High-dose liproxstatin-1 visibly enlarged the area of a cell that contained acidic vesicles and elevated the expression of several proteins associated with the autophagy-lysosomal pathway similarly to the known lysosomal inhibitors, chloroquine and bafilomycin A1. Consistent with high-dose liproxstatin-1 protecting via a lysosomal mechanism, we further de-monstrated that loss of viability induced by α-synuclein PFFs was attenuated by chloroquine and bafilomycin A1 as well as the lysosomal cysteine protease inhibitors, leupeptin, E-64D, and Ca-074-Me, but not other autophagy or lysosomal enzyme inhibitors. We confirmed using immunofluorescence microscopy that heparin prevented uptake of α-synuclein PFFs into cells but that chloroquine did not stop α-synuclein uptake into lysosomes despite impairing lysosomal function and inhibiting α-synuclein toxicity. Together, these data suggested that α-synuclein PFFs are toxic in functional lysosomes in vitro. Therapeutic strategies that prevent α-synuclein fibril uptake into lysosomes may be of benefit in PD.
Collapse
Affiliation(s)
- Stephanie J Guiney
- Melbourne Dementia Research Centre, Parkville, Victoria, Australia; Florey Institute of Neuroscience and Mental Health, Parkville, Victoria, Australia; University of Melbourne, Parkville, Victoria Australia
| | - Paul A Adlard
- Melbourne Dementia Research Centre, Parkville, Victoria, Australia; Florey Institute of Neuroscience and Mental Health, Parkville, Victoria, Australia; University of Melbourne, Parkville, Victoria Australia
| | - Peng Lei
- Melbourne Dementia Research Centre, Parkville, Victoria, Australia; Florey Institute of Neuroscience and Mental Health, Parkville, Victoria, Australia; University of Melbourne, Parkville, Victoria Australia; Department of Neurology and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University/Collaborative Center for Biotherapy, Chengdu, China
| | - Celeste H Mawal
- Melbourne Dementia Research Centre, Parkville, Victoria, Australia; Florey Institute of Neuroscience and Mental Health, Parkville, Victoria, Australia
| | - Ashley I Bush
- Melbourne Dementia Research Centre, Parkville, Victoria, Australia; Florey Institute of Neuroscience and Mental Health, Parkville, Victoria, Australia; University of Melbourne, Parkville, Victoria Australia
| | - David I Finkelstein
- Melbourne Dementia Research Centre, Parkville, Victoria, Australia; Florey Institute of Neuroscience and Mental Health, Parkville, Victoria, Australia; University of Melbourne, Parkville, Victoria Australia
| | - Scott Ayton
- Melbourne Dementia Research Centre, Parkville, Victoria, Australia; Florey Institute of Neuroscience and Mental Health, Parkville, Victoria, Australia; University of Melbourne, Parkville, Victoria Australia.
| |
Collapse
|
35
|
Jang M, Hara S, Kim GH, Kim SM, Son S, Kwon M, Ryoo IJ, Seo H, Kim MJ, Kim ND, Soung NK, Kwon YT, Kim BY, Osada H, Jang JH, Ko SK, Ahn JS. Dutomycin Induces Autophagy and Apoptosis by Targeting the Serine Protease Inhibitor SERPINB6. ACS Chem Biol 2021; 16:360-370. [PMID: 33517652 DOI: 10.1021/acschembio.0c00889] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Autophagy plays an important role in maintaining tumor cell progression and survival in response to metabolic stress. Thus, the regulation of autophagy can be used as a strategy for anticancer therapy. Here, we report dutomycin (DTM) as a novel autophagy enhancer that eventually induces apoptosis due to excessive autophagy. Also, human serine protease inhibitor B6 (SERPINB6) was identified as a target protein of DTM, and its novel function which is involved in autophagy was studied for the first time. We show that DTM directly binds SERPINB6 and then activates intracellular serine proteases, resulting in autophagy induction. Inhibitory effects of DTM on the function of SERPINB6 were confirmed through enzyme- and cell-based approaches, and SERPINB6 was validated as a target protein using siRNA-mediated knockdown and an overexpression test. In a zebrafish xenograft model, DTM showed a significant decrease in tumor area. Furthermore, the present findings will be expected to contribute to the expansion of novel basic knowledge about the correlation of cancer and autophagy by promoting active further research on SERPINB6, which was not previously considered the subject of cancer biology.
Collapse
Affiliation(s)
- Mina Jang
- Anticancer Agent Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Cheongju 28116, Korea
- Department of Biomolecular Science, KRIBB School of Bioscience, University of Science and Technology (UST), Daejeon 34113, Korea
| | - Shuta Hara
- Chemical Biology Research Group, RIKEN Center for Sustainable Research Science, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
| | - Gun-Hee Kim
- Anticancer Agent Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Cheongju 28116, Korea
| | - Seung Min Kim
- Anticancer Agent Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Cheongju 28116, Korea
| | - Sangkeun Son
- Anticancer Agent Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Cheongju 28116, Korea
| | - Mincheol Kwon
- Anticancer Agent Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Cheongju 28116, Korea
- Department of Biomolecular Science, KRIBB School of Bioscience, University of Science and Technology (UST), Daejeon 34113, Korea
| | - In-Ja Ryoo
- Anticancer Agent Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Cheongju 28116, Korea
| | - Hyemin Seo
- Department of Biological Sciences, Sookmyung Women’s University, Seoul 04310, Korea
| | - Min Jung Kim
- Department of Biological Sciences, Sookmyung Women’s University, Seoul 04310, Korea
| | - Nam-Doo Kim
- VORONOIBIO Inc., 32 Songdogwahak-ro, Yeonsu-gu, Incheon 21984, Korea
| | - Nak-Kyun Soung
- Anticancer Agent Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Cheongju 28116, Korea
| | - Yong Tae Kwon
- Protein Metabolism Medical Research Center, Department of Biomedical Sciences, College of Medicine, Seoul National University, Seoul 03080, Korea
| | - Bo Yeon Kim
- Anticancer Agent Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Cheongju 28116, Korea
- Department of Biomolecular Science, KRIBB School of Bioscience, University of Science and Technology (UST), Daejeon 34113, Korea
| | - Hiroyuki Osada
- Chemical Biology Research Group, RIKEN Center for Sustainable Research Science, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
| | - Jae-Hyuk Jang
- Department of Biomolecular Science, KRIBB School of Bioscience, University of Science and Technology (UST), Daejeon 34113, Korea
- Natural Medicine Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Cheongju 28116, Korea
| | - Sung-Kyun Ko
- Natural Medicine Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Cheongju 28116, Korea
| | - Jong Seog Ahn
- Anticancer Agent Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Cheongju 28116, Korea
- Department of Biomolecular Science, KRIBB School of Bioscience, University of Science and Technology (UST), Daejeon 34113, Korea
| |
Collapse
|
36
|
Katoh T, Suga H. Development of Bioactive Foldamers Using Ribosomally Synthesized Nonstandard Peptide Libraries. BULLETIN OF THE CHEMICAL SOCIETY OF JAPAN 2021. [DOI: 10.1246/bcsj.20200326] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Affiliation(s)
- Takayuki Katoh
- Department of Chemistry, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Hiroaki Suga
- Department of Chemistry, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| |
Collapse
|
37
|
Ferrari KJ, Amato S, Noberini R, Toscani C, Fernández-Pérez D, Rossi A, Conforti P, Zanotti M, Bonaldi T, Tamburri S, Pasini D. Intestinal differentiation involves cleavage of histone H3 N-terminal tails by multiple proteases. Nucleic Acids Res 2021; 49:791-804. [PMID: 33398338 PMCID: PMC7826276 DOI: 10.1093/nar/gkaa1228] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Revised: 12/03/2020] [Accepted: 12/05/2020] [Indexed: 12/14/2022] Open
Abstract
The proteolytic cleavage of histone tails, also termed histone clipping, has been described as a mechanism for permanent removal of post-translational modifications (PTMs) from histone proteins. Such activity has been ascribed to ensure regulatory function in key cellular processes such as differentiation, senescence and transcriptional control, for which different histone-specific proteases have been described. However, all these studies were exclusively performed using cell lines cultured in vitro and no clear evidence that histone clipping is regulated in vivo has been reported. Here we show that histone H3 N-terminal tails undergo extensive cleavage in the differentiated cells of the villi in mouse intestinal epithelium. Combining biochemical methods, 3D organoid cultures and in vivo approaches, we demonstrate that intestinal H3 clipping is the result of multiple proteolytic activities. We identified Trypsins and Cathepsin L as specific H3 tail proteases active in small intestinal differentiated cells and showed that their proteolytic activity is differentially affected by the PTM pattern of histone H3 tails. Together, our findings provide in vivo evidence of H3 tail proteolysis in mammalian tissues, directly linking H3 clipping to cell differentiation.
Collapse
Affiliation(s)
- Karin Johanna Ferrari
- IEO European Institute of Oncology IRCCS, Department of Experimental Oncology, Via Adamello 16, 20139 Milan, Italy
| | - Simona Amato
- IEO European Institute of Oncology IRCCS, Department of Experimental Oncology, Via Adamello 16, 20139 Milan, Italy
| | - Roberta Noberini
- IEO European Institute of Oncology IRCCS, Department of Experimental Oncology, Via Adamello 16, 20139 Milan, Italy
| | - Cecilia Toscani
- IEO European Institute of Oncology IRCCS, Department of Experimental Oncology, Via Adamello 16, 20139 Milan, Italy.,University of Milan, Department of Health Sciences, Via A. di Rudinì, 8, 20142 Milan, Italy
| | - Daniel Fernández-Pérez
- IEO European Institute of Oncology IRCCS, Department of Experimental Oncology, Via Adamello 16, 20139 Milan, Italy
| | - Alessandra Rossi
- IEO European Institute of Oncology IRCCS, Department of Experimental Oncology, Via Adamello 16, 20139 Milan, Italy
| | - Pasquale Conforti
- IEO European Institute of Oncology IRCCS, Department of Experimental Oncology, Via Adamello 16, 20139 Milan, Italy
| | - Marika Zanotti
- IEO European Institute of Oncology IRCCS, Department of Experimental Oncology, Via Adamello 16, 20139 Milan, Italy
| | - Tiziana Bonaldi
- IEO European Institute of Oncology IRCCS, Department of Experimental Oncology, Via Adamello 16, 20139 Milan, Italy
| | - Simone Tamburri
- IEO European Institute of Oncology IRCCS, Department of Experimental Oncology, Via Adamello 16, 20139 Milan, Italy.,University of Milan, Department of Health Sciences, Via A. di Rudinì, 8, 20142 Milan, Italy
| | - Diego Pasini
- IEO European Institute of Oncology IRCCS, Department of Experimental Oncology, Via Adamello 16, 20139 Milan, Italy.,University of Milan, Department of Health Sciences, Via A. di Rudinì, 8, 20142 Milan, Italy
| |
Collapse
|
38
|
Goyal S, Patel KV, Nagare Y, Raykar DB, Raikar SS, Dolas A, Khurana P, Cyriac R, Sarak S, Gangar M, Agarwal AK, Kulkarni A. Identification and structure-activity relationship studies of small molecule inhibitors of the human cathepsin D. Bioorg Med Chem 2020; 29:115879. [PMID: 33271453 DOI: 10.1016/j.bmc.2020.115879] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Revised: 11/08/2020] [Accepted: 11/13/2020] [Indexed: 01/18/2023]
Abstract
Cathepsin D, an aspartyl protease, is an attractive therapeutic target for various diseases, primarily cancer and osteoarthritis. However, despite several small molecule cathepsin D inhibitors being developed, that are highly potent, most of them show poor microsomal stability, which in turn limits their clinical translation. Herein, we describe the design, optimization and evaluation of a series of novel non-peptidic acylguanidine based small molecule inhibitors of cathepsin D. Optimization of our hit compound 1a (IC50 = 29 nM) led to the highly potent mono sulphonamide analogue 4b (IC50 = 4 nM), however with poor microsomal stability (HLM: 177 and MLM: 177 μl/min/mg). To further improve the microsomal stability while retaining the potency, we carried out an extensive structure-activity relationship screen which led to the identification of our optimised lead 24e (IC50 = 45 nM), with an improved microsomal stability (HLM: 59.1 and MLM: 86.8 μl/min/mg). Our efforts reveal that 24e could be a good starting point or potential candidate for further preclinical studies against diseases where Cathepsin D plays an important role.
Collapse
Affiliation(s)
| | | | - Yadav Nagare
- Aten Porus Lifesciences, Bangalore 560068, India
| | | | | | - Atul Dolas
- Aten Porus Lifesciences, Bangalore 560068, India
| | | | | | - Sharad Sarak
- Aten Porus Lifesciences, Bangalore 560068, India
| | | | - Anil K Agarwal
- Department of Chemistry, CHRIST (Deemed to be University), Bengaluru, Karnataka, India
| | - Aditya Kulkarni
- Aten Porus Lifesciences, Bangalore 560068, India; Avaliv Therapeutics, Naples, FL, USA.
| |
Collapse
|
39
|
Katoh T, Suga H. Ribosomal Elongation of Cyclic γ-Amino Acids using a Reprogrammed Genetic Code. J Am Chem Soc 2020; 142:4965-4969. [PMID: 32129615 DOI: 10.1021/jacs.9b12280] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Because γ-amino acids generally undergo rapid self-cyclization upon esterification on the carboxyl group, for example, γ-aminoacyl-tRNA, there are no reports of the ribosomal elongation of γ-amino acids to the best of our knowledge. To avoid such self-cyclization, we utilized cyclic γ-amino acids and demonstrated their elongation into a peptide chain. Although the incorporation of the cyclic γ-amino acids is intrinsically slow, we here show that the combination of elongation factor P and engineered tRNAs improves cyclic γ-amino acid incorporation efficiency. Via this method, thioether-macrocyclic peptides containing not only cyclic γ-amino acids but also d-α-, N-methyl-α-, and cyclic β-amino acids were expressed under the reprogrammed genetic code. Ribosomally synthesized macrocyclic peptide libraries containing cyclic γ-amino acids should be applicable to in vitro screening methodologies such as mRNA display for discovering novel peptide drugs.
Collapse
Affiliation(s)
- Takayuki Katoh
- Department of Chemistry, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Hiroaki Suga
- Department of Chemistry, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| |
Collapse
|
40
|
Vangala G, Imhoff FM, Squires CM, Cridge AG, Baird SK. Mesenchymal stem cell homing towards cancer cells is increased by enzyme activity of cathepsin D. Exp Cell Res 2019; 383:111494. [DOI: 10.1016/j.yexcr.2019.07.007] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2019] [Revised: 07/03/2019] [Accepted: 07/08/2019] [Indexed: 12/13/2022]
|
41
|
Pontious C, Kaul S, Hong M, Hart PA, Krishna SG, Lara LF, Conwell DL, Cruz-Monserrate Z. Cathepsin E expression and activity: Role in the detection and treatment of pancreatic cancer. Pancreatology 2019; 19:951-956. [PMID: 31582345 PMCID: PMC6829043 DOI: 10.1016/j.pan.2019.09.009] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/12/2019] [Accepted: 09/19/2019] [Indexed: 12/11/2022]
Abstract
Cathepsin E (CTSE) is an intracellular, hydrolytic aspartic protease found to be expressed in cells of the immune and gastrointestinal systems, lymphoid tissues, erythrocytes, and cancer cells. The precise functions are not fully understood; however, various studies have investigated its numerous cell-type specific roles. CTSE expression has been shown to be a potential early biomarker for pancreatic ductal adenocarcinoma (PDAC). PDAC patients have low survival rates mostly due to the lack of early detection methods. CTSE-specific activity probes have been developed and tested to assist in tumor imaging and functional studies investigating the role of CTSE expression in PDAC tumors. Furthermore, a CTSE protease-specific, photodynamic therapy pro-drug was developed to explore its potential use to treat tumors that express CTSE. Since CTSE is expressed in pancreatic diseases that are risk factors for PDAC, such as pancreatic cysts and chronic pancreatitis, learning about its function in these disease types could assist in early PDAC detection and in understanding the biology of PDAC progression. Overall, CTSE expression and activity shows potential to detect PDAC and other pancreatic diseases. Further research is needed to fully understand its functions and potential translational applicability.
Collapse
Affiliation(s)
- Corbin Pontious
- Division of Gastroenterology, Hepatology, and Nutrition, The Ohio State University Wexner Medical Center, Columbus, OH, USA; The James Comprehensive Cancer Center, The Ohio State University Wexner Medical Center, Columbus, OH, USA
| | - Sabrina Kaul
- Division of Gastroenterology, Hepatology, and Nutrition, The Ohio State University Wexner Medical Center, Columbus, OH, USA; The James Comprehensive Cancer Center, The Ohio State University Wexner Medical Center, Columbus, OH, USA
| | - Marcus Hong
- The James Comprehensive Cancer Center, The Ohio State University Wexner Medical Center, Columbus, OH, USA; Kenyon College, Gambier, OH, USA
| | - Phil A Hart
- Division of Gastroenterology, Hepatology, and Nutrition, The Ohio State University Wexner Medical Center, Columbus, OH, USA
| | - Somashekar G Krishna
- Division of Gastroenterology, Hepatology, and Nutrition, The Ohio State University Wexner Medical Center, Columbus, OH, USA; The James Comprehensive Cancer Center, The Ohio State University Wexner Medical Center, Columbus, OH, USA
| | - Luis F Lara
- Division of Gastroenterology, Hepatology, and Nutrition, The Ohio State University Wexner Medical Center, Columbus, OH, USA
| | - Darwin L Conwell
- Division of Gastroenterology, Hepatology, and Nutrition, The Ohio State University Wexner Medical Center, Columbus, OH, USA; The James Comprehensive Cancer Center, The Ohio State University Wexner Medical Center, Columbus, OH, USA
| | - Zobeida Cruz-Monserrate
- Division of Gastroenterology, Hepatology, and Nutrition, The Ohio State University Wexner Medical Center, Columbus, OH, USA; The James Comprehensive Cancer Center, The Ohio State University Wexner Medical Center, Columbus, OH, USA.
| |
Collapse
|
42
|
Lim C. Total Syntheses of Cathepsin D Inhibitory Izenamides A, B, and C and Structural Confirmation of Izenamide B. Molecules 2019; 24:E3424. [PMID: 31547147 PMCID: PMC6804045 DOI: 10.3390/molecules24193424] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2019] [Revised: 09/17/2019] [Accepted: 09/19/2019] [Indexed: 11/18/2022] Open
Abstract
The first total syntheses of izenamides A, B, and C, which are depsipeptides inhibitor of cathepsin D, were accomplished. In addition, the stereochemistry of izenamide B was confirmed by our syntheses. The key features of our synthetic route involve the avoidance of critical 2,5-diketopiperazine (DKP) formation and the minimization of epimerization during the coupling of amino acids for the target peptides.
Collapse
Affiliation(s)
- Changjin Lim
- College of Pharmacy, CHA University, 120 Haeryong-ro, Pocheon 11160, Gyeonggi-do, Korea.
| |
Collapse
|
43
|
Hidaka K, Adachi M, Tsuda Y. Acquired Removability of Aspartic Protease Inhibitors by Direct Biotinylation. Bioconjug Chem 2019; 30:1979-1985. [PMID: 30990716 DOI: 10.1021/acs.bioconjchem.9b00195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Protease inhibitors are used as both research tools and therapeutics. Many of these inhibitors consist of substrate amino acid sequence-derived structure with a transition state mimic to interact with the active site of the protease, suppressing enzymatic activity. However, once they bind, macrodilution or protein denaturation is required to remove them, limiting their usage. In this study, we describe a removable protease inhibitor, which is a directly biotinylated analogue to control the activities of HIV-1 protease and human cathepsin D. In the substrate cleavage assay, we observed that the nanomolar inhibitory activities were lost upon the addition of streptavidin, while the enzymatic activities sufficiently recovered. HIV-1 protease mixed with the removable inhibitor, avoiding autolysis, was still active to be detected by adding streptavidin after one year at room temperature. We also observed that the inhibitor was an effective eluent for the simple detection of the activity of proteases purified from human serum and cells. These results demonstrate that direct biotinylation of protease inhibitors could be a novel method for controlling the enzymatic activity from OFF to ON. We proposed the phenomenon that binding equilibrium of inhibitor was shifted from protease to streptavidin with higher affinity, named "inhibitor stripping action by affinity competition", or ISAAC. We anticipate that ISAAC could be applicable for preservatives of proteases and activity-based diagnosis of protease related diseases. Furthermore, removable inhibitor to be designed for targeted proteases changing the inhibitor structure may elucidate enzymatic activity in intrinsic form with natural modifications from various biological samples.
Collapse
Affiliation(s)
| | - Motoyasu Adachi
- Institute for Quantum Life Science , National Institutes for Quantum and Radiological Science and Technology , Tokai, Ibaraki , 319-1106 , Japan
| | | |
Collapse
|
44
|
Tan JJ, Wang L, Mo TT, Wang J, Wang MG, Li XP. Pepsin promotes IL-8 signaling-induced epithelial-mesenchymal transition in laryngeal carcinoma. Cancer Cell Int 2019; 19:64. [PMID: 30936780 PMCID: PMC6425698 DOI: 10.1186/s12935-019-0772-7] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2018] [Accepted: 03/06/2019] [Indexed: 12/15/2022] Open
Abstract
Background Laryngopharyngeal reflux (LPR), with its increasing morbidity, is attracting considerable attention. In recent years, the causal role between LPR and laryngeal carcinoma has been debated. The main harmful component of LPR is pepsin, which has been shown to induce mucosal inflammation by damaging the mucous membrane. Thus, pepsin is linked to an increased risk of laryngeal carcinoma, although the potential mechanism remains largely unknown. Methods The human laryngeal carcinoma cell lines Hep-2 and Tu212 were exposed to different pepsin concentrations and the morphology, proliferation, migration, secretion of inflammatory cytokines, and epithelial–mesenchymal transition (EMT) of the cells were assessed. To evaluate whether interleukin-8 (IL-8) had a causal relationship with pepsin and EMT, an IL-8 inhibitor was used to suppress IL-8 secretion during pepsin exposure and the expression of EMT markers, cell proliferation, and migration were analyzed. Results Pepsin promoted proliferation, colony formation, migration, and IL-8 secretion of Hep-2 and Tu212 cells in vitro. Furthermore, increased pepsin concentrations changed the morphology of Hep-2 and Tu212 cells; levels of the epithelial marker E-cadherin were reduced and those of mesenchymal markers vimentin and β-catenin and the transcription factors snail and slug were elevated. A similar effect was observed in laryngeal carcinoma tissues using immunohistochemistry. IL-8 level was reduced and EMT was restored when pepsin was inhibited by pepstatin. EMT was weakened after exposure to the IL-8 inhibitor, with significant reduction in pepsin-induced cell proliferation and migration. Conclusions Pepsin may induce EMT in laryngeal carcinoma through the IL-8 signaling pathway, which indicates that it has potential role in enhancing cell proliferation and metastasis of laryngeal carcinoma. Electronic supplementary material The online version of this article (10.1186/s12935-019-0772-7) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Jia-Jie Tan
- 1Department of Otolaryngology, Head and Neck Surgery, Nanfang Hospital, Southern Medical University, 1838 Guangzhou Avenue North, Guangzhou, 510515 China
| | - Lu Wang
- 1Department of Otolaryngology, Head and Neck Surgery, Nanfang Hospital, Southern Medical University, 1838 Guangzhou Avenue North, Guangzhou, 510515 China.,Department of Otolaryngology, Gaoyao District Traditional Chinese Medicine Hospital of Zhaoqing, No.3 of FuQian Avenue, Zhaoqing, 526100 Guangdong China
| | - Ting-Ting Mo
- 1Department of Otolaryngology, Head and Neck Surgery, Nanfang Hospital, Southern Medical University, 1838 Guangzhou Avenue North, Guangzhou, 510515 China
| | - Jie Wang
- 1Department of Otolaryngology, Head and Neck Surgery, Nanfang Hospital, Southern Medical University, 1838 Guangzhou Avenue North, Guangzhou, 510515 China
| | - Mei-Gui Wang
- 1Department of Otolaryngology, Head and Neck Surgery, Nanfang Hospital, Southern Medical University, 1838 Guangzhou Avenue North, Guangzhou, 510515 China
| | - Xiang-Ping Li
- 1Department of Otolaryngology, Head and Neck Surgery, Nanfang Hospital, Southern Medical University, 1838 Guangzhou Avenue North, Guangzhou, 510515 China
| |
Collapse
|
45
|
A linear nonribosomal octapeptide from Fusarium graminearum facilitates cell-to-cell invasion of wheat. Nat Commun 2019; 10:922. [PMID: 30804501 PMCID: PMC6389888 DOI: 10.1038/s41467-019-08726-9] [Citation(s) in RCA: 85] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2016] [Accepted: 01/17/2019] [Indexed: 01/07/2023] Open
Abstract
Fusarium graminearum is a destructive wheat pathogen. No fully resistant cultivars are available. Knowledge concerning the molecular weapons of F. graminearum to achieve infection remains limited. Here, we report that deletion of the putative secondary metabolite biosynthesis gene cluster fg3_54 compromises the pathogen’s ability to infect wheat through cell-to-cell penetration. Ectopic expression of fgm4, a pathway-specific bANK-like regulatory gene, activates the transcription of the fg3_54 cluster in vitro. We identify a linear, C- terminally reduced and d-amino acid residue-rich octapeptide, fusaoctaxin A, as the product of the two nonribosomal peptide synthetases encoded by fg3_54. Chemically-synthesized fusaoctaxin A restores cell-to-cell invasiveness in fg3_54-deleted F. graminearum, and enables colonization of wheat coleoptiles by two Fusarium strains that lack the fg3_54 homolog and are nonpathogenic to wheat. In conclusion, our results identify fusaoctaxin A as a virulence factor required for cell-to-cell invasion of wheat by F. graminearum. Fusarium graminearum is a fungal pathogen of wheat and other cereals. Here the authors identify a gene cluster in F. graminearum encoding the production of a non-ribosomal peptide that is required for infection of wheat through cell-to-cell penetration.
Collapse
|
46
|
Venkatachalam P, Nadumane VK. Purification and Characterization of a Protease Inhibitor with Anticancer Potential from Bacillus endophyticus JUPR15. CURRENT CANCER THERAPY REVIEWS 2019. [DOI: 10.2174/1573394714666180321150605] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Introduction:Introduction: Protease Inhibitors (PIs) constitute a group of proteins widely distributed among all organisms and their main function includes their ability to inhibit the proteolytic activity. PIs represent an important role in the regulation of various cellular physiological and biological processes, including cell cycle, cell death, differentiation and immune response.Material and Methods:Hence, in our search for novel anticancer compounds, we isolated microorganisms from various environmental sources and screened them for the production of protease inhibitors. Promising isolates were further checked for their protease inhibitory activity by their ability to inhibit the activity of trypsin and chymotrypsin, which were measured spectrophotometrically.Results:The isolate identified as Bacillus endophyticus JUPR15 was found to be promising with higher inhibitory activity than the other isolates. The inhibitor was purified by cold acetone precipitation and column chromatography and further subjected to characterization studies by performing 12 % SDS-PAGE to determine the molecular weight and gelatin-PAGE assay to confirm its inhibitory activity.Conclusion:The isolate exhibited promising anticancer activity on in-vitro Hela and HepG2 cancer cell lines, showing its application potentials.
Collapse
Affiliation(s)
- Prerana Venkatachalam
- Department of Biotechnology, School of Sciences, Jain University, Jayanagar, Bengaluru-560 011, India
| | | |
Collapse
|
47
|
Li Z, Bao K, Xu H, Wu P, Li W, Liu J, Zhang W. Design, synthesis, and bioactivities of tasiamide B derivatives as cathepsin D inhibitors. J Pept Sci 2019; 25:e3154. [PMID: 30734395 DOI: 10.1002/psc.3154] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2018] [Revised: 01/04/2019] [Accepted: 01/15/2019] [Indexed: 01/28/2023]
Abstract
Cathepsin D (Cath D) is overexpressed and hypersecreted by malignant tumors and involved in the progress of tumor invasion, proliferation, metastasis, and apoptosis. Cath D has been considered as a potential target to treat cancer. Our previous studies revealed that tasiamide B derivatives TB-9 and TB-11 exhibited high potent inhibition against Cath D and other aspartic proteases, but their molecular weights are still high, and the role of each residue is unknown yet. Based on this, two series of tasiamide B derivatives have been designed, synthesized, and evaluated for their inhibitory activity against Cath D/Cath E/BACE1. Enzymatic assays revealed that the target compound 1 with lower molecule weight showed good inhibitory activity against Cath D with IC50 of 3.29 nM and satisfactory selectivity over Cath E (72-fold) and BACE1 (295-fold), which could be a valuable template for the design of highly potent and selective Cath D inhibitors.
Collapse
Affiliation(s)
- Zhi Li
- School of Pharmacy, Nanjing University of Chinese Medicine, Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Nanjing, China
| | - Keting Bao
- School of Pharmacy, Fudan University, Shanghai, China
| | - Hao Xu
- School of Pharmacy, Fudan University, Shanghai, China
| | - Ping Wu
- School of Pharmacy, Fudan University, Shanghai, China
| | - Wei Li
- School of Pharmacy, Nanjing University of Chinese Medicine, Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Nanjing, China
| | - Jian Liu
- School of Pharmacy, Nanjing University of Chinese Medicine, Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Nanjing, China
| | - Wei Zhang
- School of Pharmacy, Fudan University, Shanghai, China
| |
Collapse
|
48
|
Kaya S, Gökce H, El-Azab AS, Sert Y, Alanazi MM, Öztürk N, Al-Agamy MHM, Abdel-Aziz AAM. Structural, Spectroscopic, Electronic and Molecular Docking Studies on (11 R
,12 S
)-16-Aminotetracyclo[6.6.2.0 2,7
.0 9,14
]hexadeca-2(7),3,5,9(14),10,12-hexaen-15-ol. ChemistrySelect 2019. [DOI: 10.1002/slct.201803732] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Serdal Kaya
- Department of Chemistry; Faculty of Arts and Sciences; Giresun University; 28200 Giresun Turkey
| | - Halil Gökce
- Vocational School of Health Services; Giresun University, 28200; Giresun Turkey
| | - Adel S. El-Azab
- Department of Pharmaceutical Chemistry; College of Pharmacy; King Saud University; 11451 Riyadh Saudi Arabia
- Department of Organic Chemistry; Faculty of Pharmacy; Al-Azhar University; 11884 Cairo Egypt
| | - Yusuf Sert
- Sorgun Vocational School; Bozok University; 66100 Yozgat Turkey
| | - Mohammed M. Alanazi
- Department of Pharmaceutical Chemistry; College of Pharmacy; King Saud University; 11451 Riyadh Saudi Arabia
| | - Nuri Öztürk
- Dereli Vocational School; Giresun University; 28950 Giresun Turkey
| | - Mohamed H. M. Al-Agamy
- Department of Pharmaceutics and Microbiology; College of Pharmacy; King Saud University; Riyadh 11451 Saudi Arabia
| | - Alaa A.-M. Abdel-Aziz
- Department of Pharmaceutical Chemistry; College of Pharmacy; King Saud University; 11451 Riyadh Saudi Arabia
- Department of Medicinal Chemistry; Faculty of Pharmacy; Mansoura University; 35516 Mansoura Egypt
| |
Collapse
|
49
|
Kaysser L. Built to bind: biosynthetic strategies for the formation of small-molecule protease inhibitors. Nat Prod Rep 2019; 36:1654-1686. [DOI: 10.1039/c8np00095f] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
The discovery and characterization of natural product protease inhibitors has inspired the development of numerous pharmaceutical agents.
Collapse
Affiliation(s)
- Leonard Kaysser
- Department of Pharmaceutical Biology
- University of Tübingen
- 72076 Tübingen
- Germany
- German Centre for Infection Research (DZIF)
| |
Collapse
|
50
|
Castilho VVS, Gonçalves KCS, Rebello KM, Baptista LPR, Sangenito LS, Santos HLC, Branquinha MH, Santos ALS, Menna-Barreto RFS, Guimarães AC, d'Avila-Levy CM. Docking simulation between HIV peptidase inhibitors and Trypanosoma cruzi aspartyl peptidase. BMC Res Notes 2018; 11:825. [PMID: 30463602 PMCID: PMC6249910 DOI: 10.1186/s13104-018-3927-z] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2018] [Accepted: 11/09/2018] [Indexed: 01/06/2023] Open
Abstract
Objective The low investment in research, diagnosis and treatment are factors that contribute to the continuity of Chagas’ disease as a neglected tropical diseases (NTDs). In this context, the repositioning of drugs represents a useful strategy, in the search for new chemotherapeutic approaches for NTDs. HIV aspartic peptidase inhibitors (HIV IPs) are good candidates for drug repurposing. Here, we modeled the three dimensional structure of an aspartyl peptidase of Trypanosoma cruzi, the causative agent of Chagas’ disease, aligned it to the HIV aspartyl peptidase and performed docking binding assays with the HIV PIs. Results The 3D structure confirmed the presence of acid aspartic residues, which are critical to enzyme activity. The docking experiment revealed that HIV IPs bind to the active site of the enzyme, being ritonavir and lopinavir the ones with greater affinity. Benznidazole presented the worst binding affinity, this drug is currently used in Chagas’ disease treatment and was included as negative control. These results together with previous data on the trypanocidal effect of the HIV PIs support the hypothesis that a T. cruzi aspartyl peptidase can be the intracellular target of these inhibitors. However, the direct demonstration of the inhibition of T. cruzi aspartyl peptidase activity by HIV PIs is still a goal to be persuaded. Electronic supplementary material The online version of this article (10.1186/s13104-018-3927-z) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Vanessa V S Castilho
- Laboratório de Genômica Funcional e Bioinformática, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Rio de Janeiro, Brazil
| | - Keyla C S Gonçalves
- Laboratório de Estudos Integrados em Protozoologia, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Rio de Janeiro, Brazil
| | - Karina M Rebello
- Laboratório de Estudos Integrados em Protozoologia, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Rio de Janeiro, Brazil
| | - Luiz P R Baptista
- Laboratório de Genômica Funcional e Bioinformática, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Rio de Janeiro, Brazil
| | - Leandro S Sangenito
- Laboratório de Estudos Avançados de Microrganismos Emergentes e Resistentes (LEAMER), Instituto de Microbiologia Paulo de Góes, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Helena L C Santos
- Laboratório de Estudos Integrados em Protozoologia, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Rio de Janeiro, Brazil
| | - Marta H Branquinha
- Laboratório de Estudos Avançados de Microrganismos Emergentes e Resistentes (LEAMER), Instituto de Microbiologia Paulo de Góes, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - André L S Santos
- Laboratório de Estudos Avançados de Microrganismos Emergentes e Resistentes (LEAMER), Instituto de Microbiologia Paulo de Góes, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Rubem F S Menna-Barreto
- Laboratório de Biologia Celular, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Rio de Janeiro, Brazil
| | - Ana C Guimarães
- Laboratório de Genômica Funcional e Bioinformática, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Rio de Janeiro, Brazil
| | - Claudia M d'Avila-Levy
- Laboratório de Estudos Integrados em Protozoologia, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Rio de Janeiro, Brazil. .,de Duve Institute, Université Catholique de Louvain, Brussels, Belgium.
| |
Collapse
|