1
|
Katifelis H, Gazouli M. RNA biomarkers in cancer therapeutics: The promise of personalized oncology. Adv Clin Chem 2024; 123:179-219. [PMID: 39181622 DOI: 10.1016/bs.acc.2024.06.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/27/2024]
Abstract
Cancer therapy is a rapidly evolving and constantly expanding field. Current approaches include surgery, conventional chemotherapy and novel biologic agents as in immunotherapy, that together compose a wide armamentarium. The plethora of choices can, however, be clinically challenging in prescribing the most suitable treatment for any given patient. Fortunately, biomarkers can greatly facilitate the most appropriate selection. In recent years, RNA-based biomarkers have proven most promising. These molecules that range from small noncoding RNAs to protein coding gene transcripts can be valuable in cancer management and especially in cancer therapeutics. Compared to their DNA counterparts which are stable throughout treatment, RNA-biomarkers are dynamic. This allows prediction of success prior to treatment start and can identify alterations in expression that could reflect response. Moreover, improved nucleic acid technology allows RNA to be extracted from practically every biofluid/matrix and evaluated with exceedingly high analytic sensitivity. In addition, samples are largely obtained by minimally invasive procedures and as such can be used serially to assess treatment response real-time. This chapter provides the reader insight on currently known RNA biomarkers, the latest research employing Artificial Intelligence in the identification of such molecules and in clinical decisions driving forward the era of personalized oncology.
Collapse
Affiliation(s)
- Hector Katifelis
- Laboratory of Biology, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - Maria Gazouli
- Laboratory of Biology, Medical School, National and Kapodistrian University of Athens, Athens, Greece.
| |
Collapse
|
2
|
Poonprasartporn A, Xiao J, Chan KLA. A study of WZB117 as a competitive inhibitor of glucose transporter in high glucose treated PANC-1 cells by live-cell FTIR spectroscopy. Talanta 2024; 266:125031. [PMID: 37549570 DOI: 10.1016/j.talanta.2023.125031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Revised: 08/01/2023] [Accepted: 08/02/2023] [Indexed: 08/09/2023]
Affiliation(s)
- Anchisa Poonprasartporn
- Institute of Pharmaceutical Science, School of Cancer and Pharmaceutical Sciences, King's College London, SE1 9NH, United Kingdom.
| | - Jin Xiao
- Institute of Pharmaceutical Science, School of Cancer and Pharmaceutical Sciences, King's College London, SE1 9NH, United Kingdom
| | - K L Andrew Chan
- Institute of Pharmaceutical Science, School of Cancer and Pharmaceutical Sciences, King's College London, SE1 9NH, United Kingdom.
| |
Collapse
|
3
|
Hu J, Li A, Guo Y, Ma T, Feng S. The relationship between tumor metabolism and 5-fluorouracil resistance. Biochem Pharmacol 2023; 218:115902. [PMID: 37922975 DOI: 10.1016/j.bcp.2023.115902] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2023] [Revised: 10/24/2023] [Accepted: 10/30/2023] [Indexed: 11/07/2023]
Affiliation(s)
- Jingyi Hu
- Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education of China, School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, China
| | - Anqi Li
- Department of Pharmacology, School of Pharmacy, Fudan University, Shanghai 201203, China
| | - Yueyang Guo
- Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education of China, School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, China
| | - Ting Ma
- Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education of China, School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, China.
| | - Siqi Feng
- Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education of China, School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, China.
| |
Collapse
|
4
|
Kang H, Kim B, Park J, Youn H, Youn B. The Warburg effect on radioresistance: Survival beyond growth. Biochim Biophys Acta Rev Cancer 2023; 1878:188988. [PMID: 37726064 DOI: 10.1016/j.bbcan.2023.188988] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 09/01/2023] [Accepted: 09/13/2023] [Indexed: 09/21/2023]
Abstract
The Warburg effect is a phenomenon in which cancer cells rely primarily on glycolysis rather than oxidative phosphorylation, even in the presence of oxygen. Although evidence of its involvement in cell proliferation has been discovered, the advantages of the Warburg effect in cancer cell survival under treatment have not been fully elucidated. In recent years, the metabolic characteristics of radioresistant cancer cells have been evaluated, enabling an extension of the original concept of the Warburg effect. In this review, we focused on the role of the Warburg effect in redox homeostasis and DNA damage repair, two critical factors contributing to radioresistance. In addition, we highlighted the metabolic involvement in the radioresistance of cancer stem cells, which is the root cause of tumor recurrence. Finally, we summarized radiosensitizing drugs that target the Warburg effect. Insights into the molecular mechanisms underlying the Warburg effect and radioresistance can provide valuable information for developing strategies to enhance the efficacy of radiotherapy and provide future directions for successful cancer therapy.
Collapse
Affiliation(s)
- Hyunkoo Kang
- Department of Integrated Biological Science, Pusan National University, Busan 46241, Republic of Korea
| | - Byeongsoo Kim
- Department of Integrated Biological Science, Pusan National University, Busan 46241, Republic of Korea
| | - Junhyeong Park
- Department of Integrated Biological Science, Pusan National University, Busan 46241, Republic of Korea
| | - HyeSook Youn
- Department of Integrative Bioscience and Biotechnology, Sejong University, Seoul 05006, Republic of Korea.
| | - BuHyun Youn
- Department of Integrated Biological Science, Pusan National University, Busan 46241, Republic of Korea; Department of Biological Sciences, Pusan National University, Busan 46241, Republic of Korea.
| |
Collapse
|
5
|
Littleflower AB, Antony GR, Parambil ST, Subhadradevi L. Metabolic Phenotype Intricacies on Altered Glucose Metabolism of Breast Cancer Cells upon Glut-1 Inhibition and Mimic Hypoxia In Vitro. Appl Biochem Biotechnol 2023; 195:5838-5854. [PMID: 36708494 DOI: 10.1007/s12010-023-04373-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/10/2023] [Indexed: 01/29/2023]
Abstract
Breast cancer is the frequently diagnosed cancer and the leading cancer death among women. The growing tumour of the breast is composed of both normoxic and hypoxic cells, and the heterogeneity of tumour affects the targeted treatment strategies against breast cancer. The functional and therapeutic status of the Warburg effect is mostly recognized, and the genes involved in glycolysis have become a target for anticancer therapeutic strategies. Glut-1 is essential for basal glucose uptake among the glucose transporters and could act as a potential target for anticancer therapy. In the present study, we explored the alteration in the metabolic phenotype of SKBR-3 cells, representing HER-2 overexpressed breast cancer cell line, with Glut-1 inhibition by a synthetic small molecule inhibitor WZB117 in the presence or absence of cobalt chloride (CoCl2) induced biochemical hypoxia in vitro. We found that WZB117 and CoCl2 in combination could inhibit metabolic phenotype characteristics such as glucose uptake, cell migration, lactate and ATP production in SKBR-3 cells. Also, Glut-1 inhibition induced apoptosis and cell cycle arrest at the G0-G1 phase even under CoCl2-induced mimic hypoxia. Our findings suggest that Glut-1 inhibition by WZB117 could overcome the protective effect of CoCl2 mimic hypoxia by regulating glycolysis and altering the metabolic phenotype of breast cancer cells. The considering excellent efficacy and minimal toxicity suggest that WZB117 may be a promising anticancer drug to the current therapies.
Collapse
Affiliation(s)
- Ajeesh Babu Littleflower
- Division of Cancer Research, Regional Cancer Centre (Research Centre, University of Kerala), Thiruvananthapuram, Kerala-695011, India
| | - Gisha Rose Antony
- Division of Cancer Research, Regional Cancer Centre (Research Centre, University of Kerala), Thiruvananthapuram, Kerala-695011, India
| | - Sulfath Thottungal Parambil
- Division of Cancer Research, Regional Cancer Centre (Research Centre, University of Kerala), Thiruvananthapuram, Kerala-695011, India
| | - Lakshmi Subhadradevi
- Division of Cancer Research, Regional Cancer Centre (Research Centre, University of Kerala), Thiruvananthapuram, Kerala-695011, India.
| |
Collapse
|
6
|
Aleksandrova Y, Neganova M. Deciphering the Mysterious Relationship between the Cross-Pathogenetic Mechanisms of Neurodegenerative and Oncological Diseases. Int J Mol Sci 2023; 24:14766. [PMID: 37834214 PMCID: PMC10573395 DOI: 10.3390/ijms241914766] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Revised: 09/22/2023] [Accepted: 09/28/2023] [Indexed: 10/15/2023] Open
Abstract
The relationship between oncological pathologies and neurodegenerative disorders is extremely complex and is a topic of concern among a growing number of researchers around the world. In recent years, convincing scientific evidence has accumulated that indicates the contribution of a number of etiological factors and pathophysiological processes to the pathogenesis of these two fundamentally different diseases, thus demonstrating an intriguing relationship between oncology and neurodegeneration. In this review, we establish the general links between three intersecting aspects of oncological pathologies and neurodegenerative disorders, i.e., oxidative stress, epigenetic dysregulation, and metabolic dysfunction, examining each process in detail to establish an unusual epidemiological relationship. We also focus on reviewing the current trends in the research and the clinical application of the most promising chemical structures and therapeutic platforms that have a modulating effect on the above processes. Thus, our comprehensive analysis of the set of molecular determinants that have obvious cross-functional pathways in the pathogenesis of oncological and neurodegenerative diseases can help in the creation of advanced diagnostic tools and in the development of innovative pharmacological strategies.
Collapse
Affiliation(s)
- Yulia Aleksandrova
- Institute of Physiologically Active Compounds at Federal Research Center of Problems of Chemical Physics and Medicinal Chemistry, Russian Academy of Sciences, 142432 Chernogolovka, Russia;
| | - Margarita Neganova
- Institute of Physiologically Active Compounds at Federal Research Center of Problems of Chemical Physics and Medicinal Chemistry, Russian Academy of Sciences, 142432 Chernogolovka, Russia;
- Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center, Russian Academy of Sciences, 420088 Kazan, Russia
| |
Collapse
|
7
|
Chu YD, Chen CW, Lai MW, Lim SN, Lin WR. Bioenergetic alteration in gastrointestinal cancers: The good, the bad and the ugly. World J Gastroenterol 2023; 29:4499-4527. [PMID: 37621758 PMCID: PMC10445009 DOI: 10.3748/wjg.v29.i29.4499] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 05/23/2023] [Accepted: 07/03/2023] [Indexed: 08/02/2023] Open
Abstract
Cancer cells exhibit metabolic reprogramming and bioenergetic alteration, utilizing glucose fermentation for energy production, known as the Warburg effect. However, there are a lack of comprehensive reviews summarizing the metabolic reprogramming, bioenergetic alteration, and their oncogenetic links in gastrointestinal (GI) cancers. Furthermore, the efficacy and treatment potential of emerging anticancer drugs targeting these alterations in GI cancers require further evaluation. This review highlights the interplay between aerobic glycolysis, the tricarboxylic acid (TCA) cycle, and oxidative phosphorylation (OXPHOS) in cancer cells, as well as hypotheses on the molecular mechanisms that trigger this alteration. The role of hypoxia-inducible transcription factors, tumor suppressors, and the oncogenetic link between hypoxia-related enzymes, bioenergetic changes, and GI cancer are also discussed. This review emphasizes the potential of targeting bioenergetic regulators for anti-cancer therapy, particularly for GI cancers. Emphasizing the potential of targeting bioenergetic regulators for GI cancer therapy, the review categorizes these regulators into aerobic glycolysis/ lactate biosynthesis/transportation and TCA cycle/coupled OXPHOS. We also detail various anti-cancer drugs and strategies that have produced pre-clinical and/or clinical evidence in treating GI cancers, as well as the challenges posed by these drugs. Here we highlight that understanding dysregulated cancer cell bioenergetics is critical for effective treatments, although the diverse metabolic patterns present challenges for targeted therapies. Further research is needed to comprehend the specific mechanisms of inhibiting bioenergetic enzymes, address side effects, and leverage high-throughput multi-omics and spatial omics to gain insights into cancer cell heterogeneity for targeted bioenergetic therapies.
Collapse
Affiliation(s)
- Yu-De Chu
- Liver Research Center, Linkou Chang Gung Memorial Hospital, Taoyuan 333, Taiwan
| | - Chun-Wei Chen
- Department of Gastroenterology and Hepatology, Linkou Chang Gung Memorial Hospital, Taoyuan 333, Taiwan
| | - Ming-Wei Lai
- Department of Pediatrics, Linkou Chang Gung Memorial Hospital, Taoyuan 333, Taiwan
| | - Siew-Na Lim
- Department of Neurology, Linkou Chang Gung Memorial Hospital, Taoyuan 333, Taiwan
| | - Wey-Ran Lin
- Department of Gastroenterology and Hepatology, Linkou Chang Gung Memorial Hospital, Taoyuan 333, Taiwan
- Department of Medicine, Chang Gung University, Taoyuan 333, Taiwan
| |
Collapse
|
8
|
Bahremani M, Rashtchizadeh N, Sabzichi M, Vatankhah AM, Danaiyan S, Poursistany H, Mohammadian J, Ghorbanihaghjo A. Enhanced chemotherapeutic efficacy of docetaxel in human lung cancer cell line via GLUT1 inhibitor. J Biochem Mol Toxicol 2023; 37:e23348. [PMID: 36999407 DOI: 10.1002/jbt.23348] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Revised: 02/01/2023] [Accepted: 03/20/2023] [Indexed: 04/01/2023]
Abstract
The dose-dependent adverse effects of anticancer agents need new methods with lesser toxicity. The objective of the current research was to evaluate the efficacy of GLUT1 inhibitor, as an inhibitor of glucose consumption in cancer cells, in augmenting the efficiency of docetaxel with respect to cytotoxicity and apoptosis. Cell cytotoxicity was assessed by using methylthiazolyldiphenyl-tetrazolium bromide (MTT) assay. Annexin V/PI double staining was employed to evaluate apoptosis percentage. Quantitative real-time polymerase chain reaction (RT-PCR) analysis was accomplished to detect the expression of genes involved in the apoptosis pathway. The IC50 values for docetaxel and BAY-876 were 3.7 ± 0.81 and 34.1 ± 3.4 nM, respectively. The severity of synergistic mutual effects of these agents on each other was calculated by synergy finder application. It showed that the percentage of apoptotic cells following co-administration of docetaxel and BAY-876 increased to 48.1 ± 2.8%. In comparison without GLUT1 co-administration, the combined therapy decreased significantly the transcriptome levels of the Bcl-2 and Ki-67 and a remarkable increase in the level of the Bax as proapoptotic protein(p < 0.05). Co-treatment of BAY-876 and docetaxel depicted a synergistic effect which was calculated using the synergy finder highest single agent (HSA) method (HSA synergy score: 28.055). These findings recommend that the combination of GLUT-1 inhibitor and docetaxel can be considered as a promising therapeutic approach for the treatment of patients with lung cancer.
Collapse
Affiliation(s)
- Mona Bahremani
- Department of Clinical Biochemistry and Laboratory Sciences, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
- Biotechnology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Nadereh Rashtchizadeh
- Connective Tissue Diseases Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mehdi Sabzichi
- Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | | | - Sepideh Danaiyan
- Department of Clinical Biochemistry and Laboratory Sciences, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Haniyeh Poursistany
- Department of Clinical Biochemistry and Laboratory Sciences, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Jamal Mohammadian
- Department of Clinical Biochemistry and Laboratory Sciences, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
- Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Amir Ghorbanihaghjo
- Biotechnology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
9
|
Chamarthy S, Mekala JR. Functional importance of glucose transporters and chromatin epigenetic factors in Glioblastoma Multiforme (GBM): possible therapeutics. Metab Brain Dis 2023; 38:1441-1469. [PMID: 37093461 DOI: 10.1007/s11011-023-01207-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Accepted: 03/22/2023] [Indexed: 04/25/2023]
Abstract
Glioblastoma Multiforme (GBM) is an aggressive brain cancer affecting glial cells and is chemo- and radio-resistant. Glucose is considered the most vital energy source for cancer cell proliferation. During metabolism, hexose molecules will be transported into the cells via transmembrane proteins known as glucose transporter (GLUT). Among them, GLUT-1 and GLUT-3 play pivotal roles in glucose transport in GBM. Knockdown studies have established the role of GLUT-1, and GLUT-3 mediated glucose transport in GBM cells, providing insight into GLUT-mediated cancer signaling and cancer aggressiveness. This review focussed on the vital role of GLUT-1 and GLUT-3 proteins, which regulate glucose transport. Recent studies have identified the role of GLUT inhibitors in effective cancer prevention. Several of them are in clinical trials. Understanding and functional approaches towards glucose-mediated cell metabolism and chromatin epigenetics will provide valuable insights into the mechanism of cancer aggressiveness, cancer stemness, and chemo-resistance in Glioblastoma Multiforme (GBM). This review summarizes the role of GLUT inhibitors, micro-RNAs, and long non-coding RNAs that aid in inhibiting glucose uptake by the GBM cells and other cancer cells leading to the identification of potential therapeutic, prognostic as well as diagnostic markers. Furthermore, the involvement of epigenetic factors, such as microRNAs, in regulating glycolytic genes was demonstrated.
Collapse
Affiliation(s)
- Sahiti Chamarthy
- Department of Biotechnology, Koneru Lakshmaiah Education Foundation (KLEF), Green Fields, Vaddeswaram, Guntur, Andhra Pradesh, 522302, India
| | - Janaki Ramaiah Mekala
- Department of Biotechnology, Koneru Lakshmaiah Education Foundation (KLEF), Green Fields, Vaddeswaram, Guntur, Andhra Pradesh, 522302, India.
| |
Collapse
|
10
|
Sun Y, Duan X, Wang F, Tan H, Hu J, Bai W, Wang X, Wang B, Hu J. Inhibitory effects of flavonoids on glucose transporter 1 (GLUT1): From library screening to biological evaluation to structure-activity relationship. Toxicology 2023; 488:153475. [PMID: 36870413 DOI: 10.1016/j.tox.2023.153475] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Revised: 02/21/2023] [Accepted: 03/01/2023] [Indexed: 03/06/2023]
Abstract
Glucose transporter 1 (GLUT1) is mainly responsible for glucose uptake and energy metabolism, especially in the aerobic glycolysis process of tumor cells, which is closely associated with the advancement of tumors. Numerous studies have demonstrated that the inhibition of GLUT1 can decrease the growth of tumor cells and enhance drug sensitivity, so GLUT1 is considered to be a promising therapeutic target for cancer treatment. Flavonoids are a group of phenolic secondary metabolites present in vegetables, fruits, and herbal products, some of which were reported to increase cancer cells' sensitivity to sorafenib by inhibiting GLUT1. Our objective was to screen potential inhibitors of GLUT1 from 98 flavonoids and assess the sensitizing effect of sorafenib on cancer cells. and illuminate the structure-activity relationships of flavonoids with GLUT1. Eight flavonoids, including apigenin, kaempferol, eupatilin, luteolin, hispidulin, isosinensetin, sinensetin, and nobiletin exhibited significant inhibition (>50%) on GLUT1 in GLUT1-HEK293T cells. Among them, sinensetin and nobiletin showed stronger sensitizing effects and caused a sharp downward shift of the cell viability curves in HepG2 cells, illustrating these two flavonoids might become sensitizers to enhance the efficacy of sorafenib by inhibiting GLUT1. Molecular docking analysis elucidated inhibitory effect of flavonoids on GLUT1 was related to conventional hydrogen bonds, but not Pi interactions. The pharmacophore model clarified the critical pharmacophores of flavonoids inhibitors are hydrophobic groups in 3'positions and hydrogen bond acceptors. Thus, our findings would provide useful information for optimizing flavonoid structure to design novel GLUT1 inhibitors and overcome drug resistance in cancer treatment.
Collapse
Affiliation(s)
- Yanhong Sun
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Beijing Key Laboratory of Non-Clinical Drug Metabolism and PK/PD study, Beijing Key Laboratory of Active Substances Discovery and Drug Ability Evaluation, Department of Drug Metabolism, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China
| | - Xiaoyan Duan
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Beijing Key Laboratory of Non-Clinical Drug Metabolism and PK/PD study, Beijing Key Laboratory of Active Substances Discovery and Drug Ability Evaluation, Department of Drug Metabolism, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China
| | - Fenghe Wang
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Beijing Key Laboratory of Non-Clinical Drug Metabolism and PK/PD study, Beijing Key Laboratory of Active Substances Discovery and Drug Ability Evaluation, Department of Drug Metabolism, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China
| | - Huixin Tan
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Beijing Key Laboratory of Non-Clinical Drug Metabolism and PK/PD study, Beijing Key Laboratory of Active Substances Discovery and Drug Ability Evaluation, Department of Drug Metabolism, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China
| | - Jiahuan Hu
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Beijing Key Laboratory of Non-Clinical Drug Metabolism and PK/PD study, Beijing Key Laboratory of Active Substances Discovery and Drug Ability Evaluation, Department of Drug Metabolism, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China
| | - Wanting Bai
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Beijing Key Laboratory of Non-Clinical Drug Metabolism and PK/PD study, Beijing Key Laboratory of Active Substances Discovery and Drug Ability Evaluation, Department of Drug Metabolism, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China
| | - Xinbo Wang
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Beijing Key Laboratory of Non-Clinical Drug Metabolism and PK/PD study, Beijing Key Laboratory of Active Substances Discovery and Drug Ability Evaluation, Department of Drug Metabolism, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China
| | - Baolian Wang
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Beijing Key Laboratory of Non-Clinical Drug Metabolism and PK/PD study, Beijing Key Laboratory of Active Substances Discovery and Drug Ability Evaluation, Department of Drug Metabolism, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China
| | - Jinping Hu
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Beijing Key Laboratory of Non-Clinical Drug Metabolism and PK/PD study, Beijing Key Laboratory of Active Substances Discovery and Drug Ability Evaluation, Department of Drug Metabolism, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China.
| |
Collapse
|
11
|
Tsolou A, Koparanis D, Lamprou I, Giatromanolaki A, Koukourakis MI. Increased glucose influx and glycogenesis in lung cancer cells surviving after irradiation. Int J Radiat Biol 2023; 99:692-701. [PMID: 35976051 DOI: 10.1080/09553002.2022.2113837] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
PURPOSE Lung cancer is considered as one of the most frequent malignancies worldwide. Radiotherapy is the main treatment modality applied for locally advanced disease, but remnant surviving cancer tissue results in disease progression in the majority of irradiated lung carcinomas. Metabolic reprogramming is regarded as a cancer hallmark and is associated with resistance to radiation therapy. Here, we explored metabolic alterations possibly related to cancer cell radioresistance. MATERIALS AND METHODS We compared the expression of metabolism-related enzymes in the parental A549 lung cancer cell line along with two new cell lines derived from A549 cells after recovery from three (A549-IR3) and six (A549-IR6) irradiation doses with 4 Gy. Differential GLUT1 and GYS1 expression on proliferation and radioresistance were also comparatively investigated. RESULTS A549-IR cells displayed increased extracellular glucose absorption, and enhanced mRNA and protein levels of the GLUT1 glucose transporter. GLUT1 inhibition with BAY-876, suppressed cell proliferation and the effect was significantly more profound on A549-IR3 cells. Protein levels of molecules associated with aerobic or anaerobic glycolysis, or the phosphate pentose pathway were similar in all three cell lines. However, glycogen synthase 1 (GYS1) was upregulated, especially in the A549-IR3 cell line, suggestive of glycogen accumulation in cells surviving post irradiation. GYS1-gene silencing repressed the proliferation capacity of A549, but this increased their radioresistance. The radio-protective effect of the suppression of proliferative activity induced by GYS1 silencing did not protect A549-IR3 cells against further irradiation. CONCLUSIONS These findings indicate that GYS1 activity is a critical component of the metabolism of lung cancer cells surviving after fractionated radiotherapy. Targeting the glycogen metabolic reprogramming after irradiation may be a valuable approach to pursue eradication of the post-radiotherapy remnant of disease.
Collapse
Affiliation(s)
- Avgi Tsolou
- Department of Radiotherapy/Oncology, Democritus University of Thrace and University General Hospital of Alexandroupolis, Alexandroupolis, Greece
| | - Dimitrios Koparanis
- Department of Radiotherapy/Oncology, Democritus University of Thrace and University General Hospital of Alexandroupolis, Alexandroupolis, Greece
| | - Ioannis Lamprou
- Department of Radiotherapy/Oncology, Democritus University of Thrace and University General Hospital of Alexandroupolis, Alexandroupolis, Greece
| | - Alexandra Giatromanolaki
- Department of Pathology, Democritus University of Thrace and University General Hospital of Alexandroupolis, Alexandroupolis, Greece
| | - Michael I Koukourakis
- Department of Radiotherapy/Oncology, Democritus University of Thrace and University General Hospital of Alexandroupolis, Alexandroupolis, Greece
| |
Collapse
|
12
|
Warburg effect in colorectal cancer: the emerging roles in tumor microenvironment and therapeutic implications. J Hematol Oncol 2022; 15:160. [PMID: 36319992 PMCID: PMC9628128 DOI: 10.1186/s13045-022-01358-5] [Citation(s) in RCA: 135] [Impact Index Per Article: 45.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2022] [Accepted: 09/26/2022] [Indexed: 11/07/2022] Open
Abstract
Colorectal cancer (CRC) is the third most common cancer and the second leading cause of cancer-related death worldwide. Countless CRC patients undergo disease progression. As a hallmark of cancer, Warburg effect promotes cancer metastasis and remodels the tumor microenvironment, including promoting angiogenesis, immune suppression, cancer-associated fibroblasts formation and drug resistance. Targeting Warburg metabolism would be a promising method for the treatment of CRC. In this review, we summarize information about the roles of Warburg effect in tumor microenvironment to elucidate the mechanisms governing Warburg effect in CRC and to identify novel targets for therapy.
Collapse
|
13
|
Chen L, Tian B, Liu W, Liang H, You Y, Liu W. Molecular Biomarker of Drug Resistance Developed From Patient-Derived Organoids Predicts Survival of Colorectal Cancer Patients. Front Oncol 2022; 12:855674. [PMID: 35425715 PMCID: PMC9004628 DOI: 10.3389/fonc.2022.855674] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2022] [Accepted: 02/10/2022] [Indexed: 12/24/2022] Open
Abstract
The drug 5-fluorouracil (5-Fu) is the critical composition of colorectal cancer (CRC) treatments. Prognostic and predictive molecular biomarkers for CRC patients (CRCpts) treated with 5-Fu-based chemotherapy can provide assistance for tailoring treatment approach. Here, we established a molecular biomarker of 5-Fu resistance derived from colorectal cancer organoids (CRCOs) for predicting the survival of CRCpts. Forty-one CRCO cultures were generated from 50 CRC tumor tissues after surgery (82%). The following experiments revealed a great diversity in drug sensitivity for 10 μM 5-Fu treatment tested by using organoid size change. Fourteen cases (34.1%) were 5-Fu sensitive and the other 27 (65.9%) were resistant. Then, differentially expressed genes (DEGs) associated with 5-Fu resistance were outputted by transcriptome sequencing. In particular, DEGs were generated in two comparison groups: 1) 5-Fu sensitive and resistant untreated CRCOs; 2) CRCOs before 5-Fu treatment and surviving CRCOs after 5-Fu treatment. Some molecules and most of the pathways that have been reported to be involved in 5-Fu resistance were identified in the current research. By using DEGs correlated with 5-Fu resistance and survival of CRCpts, the gene signature and drug-resistant score model (DRSM) containing five molecules were established in The Cancer Genome Atlas (TCGA)-CRC cohort by least absolute shrinkage and selection operator (LASSO) regression analysis and 5-fold cross-validation. Multivariate analysis revealed that drug-resistant score (DRS) was an independent prognostic factor for overall survival (OS) in CRCpts in TCGA-CRC cohort (P < 0.001). Further validation results from four Gene Expression Omnibus (GEO) cohorts elucidated that the DRSM based on five genes related to 5-Fu chemosensitivity and developed from patient-derived organoids can predict survival of CRCpts. Meanwhile, our model could predict the survival of CRCpts in different subgroups. Besides, the difference of molecular pathways, tumor mutational burden (TMB), immune response-related pathways, immune score, stromal score, and immune cell proportion were dissected between DRS-high and DRS-low patients in TCGA-CRC cohort.
Collapse
Affiliation(s)
- Lifeng Chen
- Department of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Bo Tian
- Department of Orthopaedic Surgery, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Wen Liu
- Department of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Haitao Liang
- Shenzhen Second People's Hospital (The First Hospital Affiliated to Shenzhen University, Health Science Center), Shenzhen, China
| | - Yong You
- Department of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Weizhen Liu
- Department of Gastrointestinal Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
14
|
Sun Q, Wu J, Zhu G, Li T, Zhu X, Ni B, Xu B, Ma X, Li J. Lactate-related metabolic reprogramming and immune regulation in colorectal cancer. Front Endocrinol (Lausanne) 2022; 13:1089918. [PMID: 36778600 PMCID: PMC9909490 DOI: 10.3389/fendo.2022.1089918] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Accepted: 12/27/2022] [Indexed: 01/27/2023] Open
Abstract
Changes in cellular metabolism involving fuel sources are well-known mechanisms of cancer cell differentiation in the context of carcinogenesis. Metabolic reprogramming is regulated by oncogenic signaling and transcriptional networks and has been identified as an essential component of malignant transformation. Hypoxic and acidified tumor microenvironment contributes mainly to the production of glycolytic products known as lactate. Mounting evidence suggests that lactate in the tumor microenvironment of colorectal cancer(CRC) contributes to cancer therapeutic resistance and metastasis. The contents related to the regulatory effects of lactate on metabolism, immune response, and intercellular communication in the tumor microenvironment of CRC are also constantly updated. Here we summarize the latest studies about the pleiotropic effects of lactate in CRC and the clinical value of targeting lactate metabolism as treatment. Different effects of lactate on various immune cell types, microenvironment characteristics, and pathophysiological processes have also emerged. Potential specific therapeutic targeting of CRC lactate metabolism is also discussed. With increased knowledge, effective druggable targets might be identified, with the aim of improving treatment outcomes by reducing chemoresistance.
Collapse
Affiliation(s)
- Qianhui Sun
- Oncology Department, Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Jingyuan Wu
- Oncology Department, Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
- Graduate College, Beijing University of Traditional Chinese Medicine, Beijing, China
| | - Guanghui Zhu
- Oncology Department, Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
- Graduate College, Beijing University of Traditional Chinese Medicine, Beijing, China
| | - Tingting Li
- Graduate College, Beijing University of Traditional Chinese Medicine, Beijing, China
| | - Xiaoyu Zhu
- Oncology Department, Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Baoyi Ni
- Oncology Department, Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Bowen Xu
- Oncology Department, Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
- Graduate College, Beijing University of Traditional Chinese Medicine, Beijing, China
| | - Xinyi Ma
- Oncology Department, Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Jie Li
- Oncology Department, Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
- *Correspondence: Jie Li,
| |
Collapse
|
15
|
Shima T, Taniguchi K, Tokumaru Y, Inomata Y, Arima J, Lee SW, Takabe K, Yoshida K, Uchiyama K. Glucose transporter‑1 inhibition overcomes imatinib resistance in gastrointestinal stromal tumor cells. Oncol Rep 2021; 47:7. [PMID: 34738628 PMCID: PMC8600406 DOI: 10.3892/or.2021.8218] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Accepted: 10/01/2021] [Indexed: 12/23/2022] Open
Abstract
Imatinib mesylate (imatinib) is the primary agent of choice used to treat gastrointestinal stromal tumors (GIST). However, drug resistance to imatinib poses a major obstacle to treatment efficacy. In addition, the relationship between imatinib resistance and glycolysis is poorly understood. Glucose transporter (GLUT)-1 is a key component of glycolysis. The present study aimed to assess the potential relationship between components in the glycolytic pathway and the acquisition of imatinib resistance by GIST cells, with particular focus on GLUT-1. An imatinib-resistant GIST cell line was established through the gradual and continuous imatinib treatment of the parental human GIST cell line GIST-T1. The expression of glycolysis-related molecules (GLUT-1, hexokinase 2, pyruvate kinase M2 and lactate dehydrogenase) was assessed in parental and imatinib-resistant cells by western blotting, reverse transcription-quantitative PCR and glucose and lactate measurement kits. In addition, clinical information and transcriptomic data obtained from the gene expression omnibus database (GSE15966) were used to confirm the in vitro results. The potential effects of GLUT-1 inhibition on the expression of proteins in the glycolysis (GLUT-1, hexokinase 2, pyruvate kinase M2 and lactate dehydrogenase) and apoptosis pathways (Bcl-2, cleaved PARP, caspase-3 and caspase-9) in imatinib-resistant cells were then investigated following gene silencing and treatment using the GLUT-1 inhibitor WZB117 by western blotting. For gene silencing, the mature siRNAs for SLC2A1 were used for cell transfection. Annexin V-FITC/PI double-staining followed by flow cytometry was used to measure apoptosis whereas three-dimensional culture experiments were used to create three-dimensional spheroid cells where cell viability and spheroid diameter were measured. Although imatinib treatment downregulated GLUT-1 expression and other glycolysis pathway components hexokinase 2, pyruvate kinase M2, and lactate dehydrogenase in parental GIST-T1 cells even at low concentrations. By contrast, expression of these glycolysis pathway components in imatinib-resistant cells were increased by imatinib treatment. WZB117 administration significantly downregulated AKT phosphorylation and Bcl-2 expression in imatinib-resistant cells, whereas the combined administration of imatinib and WZB117 conferred synergistic growth inhibition effects in apoptosis assay. WZB117 was found to exert additional inhibitory effects by inducing apoptosis in imatinib-resistant cells. Therefore, the present study suggests that GLUT-1 is involved in the acquisition of imatinib resistance by GIST cells, which can be overcome by combined treatment with WZB117 and imatinib.
Collapse
Affiliation(s)
- Takafumi Shima
- Department of General and Gastroenterological Surgery, Osaka Medical and Pharmaceutical University, Takatsuki, Osaka 569‑8686, Japan
| | - Kohei Taniguchi
- Department of General and Gastroenterological Surgery, Osaka Medical and Pharmaceutical University, Takatsuki, Osaka 569‑8686, Japan
| | - Yoshihisa Tokumaru
- Breast Surgery, Department of Surgical Oncology, Roswell Park Comprehensive Cancer Center, Buffalo, NY 14263, USA
| | - Yosuke Inomata
- Department of General and Gastroenterological Surgery, Osaka Medical and Pharmaceutical University, Takatsuki, Osaka 569‑8686, Japan
| | - Jun Arima
- Department of General and Gastroenterological Surgery, Osaka Medical and Pharmaceutical University, Takatsuki, Osaka 569‑8686, Japan
| | - Sang-Woong Lee
- Department of General and Gastroenterological Surgery, Osaka Medical and Pharmaceutical University, Takatsuki, Osaka 569‑8686, Japan
| | - Kazuaki Takabe
- Breast Surgery, Department of Surgical Oncology, Roswell Park Comprehensive Cancer Center, Buffalo, NY 14263, USA
| | - Kazuhiro Yoshida
- Department of Surgical Oncology, Graduate School of Medicine, Gifu University, Gifu, Gifu 501‑1194, Japan
| | - Kazuhisa Uchiyama
- Department of General and Gastroenterological Surgery, Osaka Medical and Pharmaceutical University, Takatsuki, Osaka 569‑8686, Japan
| |
Collapse
|
16
|
Kozal K, Jóźwiak P, Krześlak A. Contemporary Perspectives on the Warburg Effect Inhibition in Cancer Therapy. Cancer Control 2021; 28:10732748211041243. [PMID: 34554006 PMCID: PMC8474311 DOI: 10.1177/10732748211041243] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
In the 1920s, Otto Warburg observed the phenomenon of altered glucose metabolism
in cancer cells. Although the initial hypothesis suggested that the alteration
resulted from mitochondrial damage, multiple studies of the subject revealed a
precise, multistage process rather than a random pattern. The phenomenon of
aerobic glycolysis emerges not only from mitochondrial abnormalities common in
cancer cells, but also results from metabolic reprogramming beneficial for their
sustenance. The Warburg effect enables metabolic adaptation of cancer cells to
grow and proliferate, simultaneously enabling their survival in hypoxic
conditions. Altered glucose metabolism of cancer cells includes, inter alia,
qualitative and quantitative changes within glucose transporters, enzymes of the
glycolytic pathway, such as hexokinases and pyruvate kinase, hypoxia-inducible
factor, monocarboxylate transporters, and lactate dehydrogenase. This review
summarizes the current state of knowledge regarding inhibitors of cancer glucose
metabolism with a focus on their clinical potential. The altered metabolic
phenotype of cancer cells allows for targeting of specific mechanisms, which
might improve conventional methods in anti-cancer therapy. However, several
problems such as drug bioavailability, specificity, toxicity, the plasticity of
cancer cells, and heterogeneity of cells in tumors have to be overcome when
designing therapies based on compounds targeted in cancer cell energy
metabolism.
Collapse
Affiliation(s)
- Karolina Kozal
- Faculty of Biology and
Environmental Protection, Department of Cytobiochemistry, University of Lodz, Lodz, Poland
| | - Paweł Jóźwiak
- Faculty of Biology and
Environmental Protection, Department of Cytobiochemistry, University of Lodz, Lodz, Poland
| | - Anna Krześlak
- Faculty of Biology and
Environmental Protection, Department of Cytobiochemistry, University of Lodz, Lodz, Poland
- Anna Krzeslak Faculty of Biology and
Environmental Protection, Department of Cytobiochemistry, University of Lodz,
Pomorska 141/143, Lodz 90-131, Poland.
| |
Collapse
|
17
|
Pliszka M, Szablewski L. Glucose Transporters as a Target for Anticancer Therapy. Cancers (Basel) 2021; 13:cancers13164184. [PMID: 34439338 PMCID: PMC8394807 DOI: 10.3390/cancers13164184] [Citation(s) in RCA: 112] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2021] [Revised: 08/09/2021] [Accepted: 08/18/2021] [Indexed: 12/25/2022] Open
Abstract
Simple Summary For mammalian cells, glucose is a major source of energy. In the presence of oxygen, a complete breakdown of glucose generates 36 molecules of ATP from one molecule of glucose. Hypoxia is a hallmark of cancer; therefore, cancer cells prefer the process of glycolysis, which generates only two molecules of ATP from one molecule of glucose, and cancer cells need more molecules of glucose in comparison with normal cells. Increased uptake of glucose by cancer cells is due to increased expression of glucose transporters. However, overexpression of glucose transporters, promoting the process of carcinogenesis, and increasing aggressiveness and invasiveness of tumors, may have also a beneficial effect. For example, upregulation of glucose transporters is used in diagnostic techniques such as FDG-PET. Therapeutic inhibition of glucose transporters may be a method of treatment of cancer patients. On the other hand, upregulation of glucose transporters, which are used in radioiodine therapy, can help patients with cancers. Abstract Tumor growth causes cancer cells to become hypoxic. A hypoxic condition is a hallmark of cancer. Metabolism of cancer cells differs from metabolism of normal cells. Cancer cells prefer the process of glycolysis as a source of ATP. Process of glycolysis generates only two molecules of ATP per one molecule of glucose, whereas the complete oxidative breakdown of one molecule of glucose yields 36 molecules of ATP. Therefore, cancer cells need more molecules of glucose in comparison with normal cells. Increased uptake of glucose by these cells is due to overexpression of glucose transporters, especially GLUT1 and GLUT3, that are hypoxia responsive, as well as other glucose transport proteins. Increased expression of these carrier proteins may be used in anticancer therapy. This phenomenon is used in diagnostic techniques such as FDG-PET. It is also suggested, and there are observations, that therapeutic inhibition of glucose transporters may be a method in treatment of cancer patients. On the other hand, there are described cases, in which upregulation of glucose transporters, as, for example, NIS, which is used in radioiodine therapy, can help patients with cancer. The aim of this review is the presentation of possibilities, and how glucose transporters can be used in anticancer therapy.
Collapse
|
18
|
Tarragó-Celada J, Cascante M. Targeting the Metabolic Adaptation of Metastatic Cancer. Cancers (Basel) 2021; 13:cancers13071641. [PMID: 33915900 PMCID: PMC8036928 DOI: 10.3390/cancers13071641] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2021] [Revised: 03/16/2021] [Accepted: 03/19/2021] [Indexed: 02/07/2023] Open
Abstract
Simple Summary The search for new therapeutic opportunities to target cancer metastasis is crucial for the improvement of cancer treatment. One of the characteristics of tumoral and metastatic cells is the capacity to reorganize their metabolism, together with the ability to grow faster, migrate and form new tumours in distant sites. Therefore, the pharmaceutical inhibition of metabolic pathways represents a promising strategy to specifically target metastatic cells, especially in colorectal cancer metastasis. Abstract Metabolic adaptation is emerging as an important hallmark of cancer and metastasis. In the last decade, increasing evidence has shown the importance of metabolic alterations underlying the metastatic process, especially in breast cancer metastasis but also in colorectal cancer metastasis. Being the main cause of cancer-related deaths, it is of great importance to developing new therapeutic strategies that specifically target metastatic cells. In this regard, targeting metabolic pathways of metastatic cells is one of the more promising windows for new therapies of metastatic colorectal cancer, where still there are no approved inhibitors against metabolic targets. In this study, we review the recent advances in the field of metabolic adaptation of cancer metastasis, focusing our attention on colorectal cancer. In addition, we also review the current status of metabolic inhibitors for cancer treatment.
Collapse
Affiliation(s)
- Josep Tarragó-Celada
- Department of Biochemistry and Molecular Biomedicine, Institute of Biomedicine of Universitat de Barcelona (IBUB), Faculty of Biology, Universitat de Barcelona, 08028 Barcelona, Spain;
| | - Marta Cascante
- Department of Biochemistry and Molecular Biomedicine, Institute of Biomedicine of Universitat de Barcelona (IBUB), Faculty of Biology, Universitat de Barcelona, 08028 Barcelona, Spain;
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBEREHD), 28020 Madrid, Spain
- Metabolomics Node at Spanish National Bioinformatics Institute (INB-ISCIII-ES-ELIXIR), Institute of Health Carlos III (ISCIII), 28029 Madrid, Spain
- Correspondence: ; Tel.: +34-934-021-593
| |
Collapse
|
19
|
Shriwas P, Roberts D, Li Y, Wang L, Qian Y, Bergmeier S, Hines J, Adhicary S, Nielsen C, Chen X. A small-molecule pan-class I glucose transporter inhibitor reduces cancer cell proliferation in vitro and tumor growth in vivo by targeting glucose-based metabolism. Cancer Metab 2021; 9:14. [PMID: 33771231 PMCID: PMC8004435 DOI: 10.1186/s40170-021-00248-7] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Accepted: 03/03/2021] [Indexed: 12/29/2022] Open
Abstract
BACKGROUND Cancer cells drastically increase the uptake of glucose and glucose metabolism by overexpressing class I glucose transporters (GLUT1-4) to meet their energy and biomass synthesis needs and are very sensitive and vulnerable to glucose deprivation. Although targeting glucose uptake via GLUTs has been an attractive anticancer strategy, the relative anticancer efficacy of multi-GLUT targeting or single GLUT targeting is unclear. Here, we report DRB18, a synthetic small molecule, is a potent anticancer compound whose pan-class I GLUT inhibition is superior to single GLUT targeting. METHODS Glucose uptake and MTT/resazurin assays were used to measure DRB18's inhibitory activities of glucose transport and cell viability/proliferation in human lung cancer and other cancer cell lines. Four HEK293 cell lines expressing GLUT1-4 individually were used to determine the IC50 values of DRB18's inhibitory activity of glucose transport. Docking studies were performed to investigate the potential direct interaction of DRB18 with GLUT1-4. Metabolomics analysis was performed to identify metabolite changes in A549 lung cancer cells treated with DRB18. DRB18 was used to treat A549 tumor-bearing nude mice. The GLUT1 gene was knocked out to determine how the KO of the gene affected tumor growth. RESULTS DRB18 reduced glucose uptake mediated via each of GLUT1-4 with different IC50s, which match with the docking glidescores with a correlation coefficient of 0.858. Metabolomics analysis revealed that DRB18 altered energy-related metabolism in A549 cells by changing the abundance of metabolites in glucose-related pathways in vitro and in vivo. DRB18 eventually led to G1/S phase arrest and increased oxidative stress and necrotic cell death. IP injection of DRB18 in A549 tumor-bearing nude mice at 10 mg/kg body weight thrice a week led to a significant reduction in the tumor volume compared with mock-treated tumors. In contrast, the knockout of the GLUT1 gene did not reduce tumor volume. CONCLUSIONS DRB18 is a potent pan-class I GLUT inhibitor in vitro and in vivo in cancer cells. Mechanistically, it is likely to bind the outward open conformation of GLUT1-4, reducing tumor growth through inhibiting GLUT1-4-mediated glucose transport and metabolisms. Pan-class I GLUT inhibition is a better strategy than single GLUT targeting for inhibiting tumor growth.
Collapse
Affiliation(s)
- Pratik Shriwas
- Department of Biological Sciences, Ohio University, Athens, OH, 45701, USA.,Edison Biotechnology Institute, Ohio University, Athens, OH, 45701, USA.,Molecular and Cellular Biology Program, Ohio University, Athens, OH, 45701, USA.,Department of Biomedical Sciences, Ohio University, Athens, OH, 45701, USA
| | - Dennis Roberts
- Department of Chemistry and Biochemistry, Ohio University, Athens, OH, 45701, USA
| | - Yunsheng Li
- Edison Biotechnology Institute, Ohio University, Athens, OH, 45701, USA
| | - Liyi Wang
- Department of Chemistry and Biochemistry, Ohio University, Athens, OH, 45701, USA
| | - Yanrong Qian
- Edison Biotechnology Institute, Ohio University, Athens, OH, 45701, USA
| | - Stephen Bergmeier
- Molecular and Cellular Biology Program, Ohio University, Athens, OH, 45701, USA.,Department of Chemistry and Biochemistry, Ohio University, Athens, OH, 45701, USA.,Translational Biomedical Sciences Program, Ohio University, Athens, OH, 45701, USA
| | - Jennifer Hines
- Molecular and Cellular Biology Program, Ohio University, Athens, OH, 45701, USA.,Department of Chemistry and Biochemistry, Ohio University, Athens, OH, 45701, USA
| | - Subhodip Adhicary
- Department of Biological Sciences, Ohio University, Athens, OH, 45701, USA.,Translational Biomedical Sciences Program, Ohio University, Athens, OH, 45701, USA
| | - Corinne Nielsen
- Department of Biological Sciences, Ohio University, Athens, OH, 45701, USA.,Molecular and Cellular Biology Program, Ohio University, Athens, OH, 45701, USA.,Translational Biomedical Sciences Program, Ohio University, Athens, OH, 45701, USA
| | - Xiaozhuo Chen
- Department of Biological Sciences, Ohio University, Athens, OH, 45701, USA. .,Edison Biotechnology Institute, Ohio University, Athens, OH, 45701, USA. .,Molecular and Cellular Biology Program, Ohio University, Athens, OH, 45701, USA. .,Department of Biomedical Sciences, Ohio University, Athens, OH, 45701, USA. .,Department of Chemistry and Biochemistry, Ohio University, Athens, OH, 45701, USA. .,Edison Biotechnology Institute, Ohio University, 172 Water Tower Drive, Athens, OH, 43701, USA.
| |
Collapse
|
20
|
Li G, Li Y, Wang DY. Overexpression of miR-329-3p sensitizes osteosarcoma cells to cisplatin through suppression of glucose metabolism by targeting LDHA. Cell Biol Int 2021; 45:766-774. [PMID: 33058436 DOI: 10.1002/cbin.11476] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2020] [Revised: 09/08/2020] [Accepted: 10/10/2020] [Indexed: 11/07/2022]
Abstract
Osteosarcoma (OS) is one of the most frequent malignant bone tumor types. Traditional treatments of OS involve standard chemotherapy or combination with radiation before and after surgery. Cisplatin is one of the most effective chemotherapeutic drugs used for treating osteosarcoma. However, patients with advanced tumor stages develop cisplatin resistance, leading to a major clinical challenge. In this study, we investigated the roles of miR-329-3p in cisplatin sensitivity of osteosarcoma cells. We found miR-329-3p was significantly downregulated in osteosarcoma tissues compared with normal bone tissues. Overexpression of miR-329-3p suppressed osteosarcoma cell proliferation. Moreover, we observed low-toxic cisplatin treatments suppressed miR-329-3p but higher concentrations of cisplatin-induced miR-329-3p expression. In addition, miR-329-3p was significantly downregulated in cisplatin-resistant Saos-2 cells which displayed elevated glucose metabolism. Overexpression of miR-329-3p significantly impaired glucose metabolism of Saos-2 cells. Bioinformatics analysis and luciferase assay consistently demonstrated the glycolysis enzyme, lactate dehydrogenase-A (LDHA) was a direct target of miR-329-3p in osteosarcoma cells. Rescue experiments revealed restoration of LDHA in miR-329-3p-overexpressed cisplatin-resistant cells effectively recovered glucose metabolism, resulting in increased cisplatin resistance. This study demonstrates a miR-329-3p-LDHA-glucose metabolism-cisplatin resistance axis in osteosarcoma cells, providing a miRNA-based therapeutic strategy against chemoresistant osteosarcoma.
Collapse
Affiliation(s)
- Gang Li
- Department of Orthopedics, Daqing Oilfield General Hospital, Daqing, China
| | - Ye Li
- Department of Orthopedics, China-Japan Union Hospital of Jilin University, Changchun, China
| | - Da-Yong Wang
- Department of Orthopedics, Daqing Oilfield General Hospital, Daqing, China
| |
Collapse
|
21
|
Tilekar K, Upadhyay N, Iancu CV, Pokrovsky V, Choe JY, Ramaa CS. Power of two: combination of therapeutic approaches involving glucose transporter (GLUT) inhibitors to combat cancer. Biochim Biophys Acta Rev Cancer 2020; 1874:188457. [PMID: 33096154 PMCID: PMC7704680 DOI: 10.1016/j.bbcan.2020.188457] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Revised: 10/16/2020] [Accepted: 10/16/2020] [Indexed: 12/20/2022]
Abstract
Cancer research of the Warburg effect, a hallmark metabolic alteration in tumors, focused attention on glucose metabolism whose targeting uncovered several agents with promising anticancer effects at the preclinical level. These agents' monotherapy points to their potential as adjuvant combination therapy to existing standard chemotherapy in human trials. Accordingly, several studies on combining glucose transporter (GLUT) inhibitors with chemotherapeutic agents, such as doxorubicin, paclitaxel, and cytarabine, showed synergistic or additive anticancer effects, reduced chemo-, radio-, and immuno-resistance, and reduced toxicity due to lowering the therapeutic doses required for desired chemotherapeutic effects, as compared with monotherapy. The combinations have been specifically effective in treating cancer glycolytic phenotypes, such as pancreatic and breast cancers. Even combining GLUT inhibitors with other glycolytic inhibitors and energy restriction mimetics seems worthwhile. Though combination clinical trials are in the early phase, initial results are intriguing. The various types of GLUTs, their role in cancer progression, GLUT inhibitors, and their anticancer mechanism of action have been reviewed several times. However, utilizing GLUT inhibitors as combination therapeutics has received little attention. We consider GLUT inhibitors agents that directly affect glucose transporters by binding to them or indirectly alter glucose transport by changing the transporters' expression level. This review mainly focuses on summarizing the effects of various combinations of GLUT inhibitors with other anticancer agents and providing a perspective on the current status.
Collapse
Affiliation(s)
- Kalpana Tilekar
- Department of Pharmaceutical Chemistry, Bharati Vidyapeeth’s College of Pharmacy, Navi Mumbai, Maharashtra, India
| | - Neha Upadhyay
- Department of Pharmaceutical Chemistry, Bharati Vidyapeeth’s College of Pharmacy, Navi Mumbai, Maharashtra, India
| | - Cristina V. Iancu
- East Carolina Diabetes and Obesity Institute, Department of Chemistry, East Carolina University, Greenville, North Carolina, USA
| | - Vadim Pokrovsky
- Laboratory of Combined Therapy, N.N. Blokhin Cancer Research Center, Moscow, Russia
- Department of Biochemistry, People’s Friendship University, Moscow, Russia
| | - Jun-yong Choe
- East Carolina Diabetes and Obesity Institute, Department of Chemistry, East Carolina University, Greenville, North Carolina, USA
| | - C. S. Ramaa
- Department of Pharmaceutical Chemistry, Bharati Vidyapeeth’s College of Pharmacy, Navi Mumbai, Maharashtra, India
| |
Collapse
|
22
|
Song H, Liu D, Dong S, Zeng L, Wu Z, Zhao P, Zhang L, Chen ZS, Zou C. Epitranscriptomics and epiproteomics in cancer drug resistance: therapeutic implications. Signal Transduct Target Ther 2020; 5:193. [PMID: 32900991 PMCID: PMC7479143 DOI: 10.1038/s41392-020-00300-w] [Citation(s) in RCA: 76] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Revised: 07/18/2020] [Accepted: 07/28/2020] [Indexed: 12/24/2022] Open
Abstract
Drug resistance is a major hurdle in cancer treatment and a key cause of poor prognosis. Epitranscriptomics and epiproteomics are crucial in cell proliferation, migration, invasion, and epithelial–mesenchymal transition. In recent years, epitranscriptomic and epiproteomic modification has been investigated on their roles in overcoming drug resistance. In this review article, we summarized the recent progress in overcoming cancer drug resistance in three novel aspects: (i) mRNA modification, which includes alternative splicing, A-to-I modification and mRNA methylation; (ii) noncoding RNAs modification, which involves miRNAs, lncRNAs, and circRNAs; and (iii) posttranslational modification on molecules encompasses drug inactivation/efflux, drug target modifications, DNA damage repair, cell death resistance, EMT, and metastasis. In addition, we discussed the therapeutic implications of targeting some classical chemotherapeutic drugs such as cisplatin, 5-fluorouridine, and gefitinib via these modifications. Taken together, this review highlights the importance of epitranscriptomic and epiproteomic modification in cancer drug resistance and provides new insights on potential therapeutic targets to reverse cancer drug resistance.
Collapse
Affiliation(s)
- Huibin Song
- Shenzhen People's Hospital (The Second Clinical Medical College, Jinan University; The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen, 518001, Guangdong, China
| | - Dongcheng Liu
- Shenzhen People's Hospital (The Second Clinical Medical College, Jinan University; The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen, 518001, Guangdong, China
| | - Shaowei Dong
- Shenzhen People's Hospital (The Second Clinical Medical College, Jinan University; The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen, 518001, Guangdong, China
| | - Leli Zeng
- College of Pharmacy and Health Sciences, St. John's University, Queens, 11439 New York, USA.,Tomas Lindahl Nobel Laureate Laboratory, Research Centre, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, 518107, Guangdong, China
| | - Zhuoxun Wu
- College of Pharmacy and Health Sciences, St. John's University, Queens, 11439 New York, USA
| | - Pan Zhao
- Shenzhen People's Hospital (The Second Clinical Medical College, Jinan University; The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen, 518001, Guangdong, China
| | - Litu Zhang
- Department of Research, Affiliated Tumor Hospital of Guangxi Medical University, Nanning, 530021, Guangxi, China
| | - Zhe-Sheng Chen
- College of Pharmacy and Health Sciences, St. John's University, Queens, 11439 New York, USA.
| | - Chang Zou
- Shenzhen People's Hospital (The Second Clinical Medical College, Jinan University; The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen, 518001, Guangdong, China. .,Shenzhen Public Service Platform on Tumor Precision Medicine and Molecular Diagnosis, Shenzhen, 518001, Guangdong, China.
| |
Collapse
|
23
|
Xu G, Zhu H, Xu J, Wang Y, Zhang Y, Zhang M, Zhu D. Long non-coding RNA POU6F2-AS2 promotes cell proliferation and drug resistance in colon cancer by regulating miR-377/BRD4. J Cell Mol Med 2020; 24:4136-4149. [PMID: 32100443 PMCID: PMC7171422 DOI: 10.1111/jcmm.15070] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2018] [Revised: 12/17/2019] [Accepted: 01/19/2020] [Indexed: 12/14/2022] Open
Abstract
The aim of this study was to explore the molecular mechanism of lncRNA POU6F2‐AS2 in proliferation and drug resistance of colon cancer. Total paired 70 colon cancer and adjacent normal tissues were collected from colon cancer patients. Colon cancer and normal colonic epithelial cells were purchased. POU6F2‐AS2 was up‐ or down‐expressed by vectors. LC50 of all cell lines before and after transfection with these plasmids was detected. qRT‐PCR was used to detect the expression of POU6F2‐AS2, miR‐377 and BRD4 before or after transfection. In situ hybridization was also undertaken to detect the level of POU6F2‐AS2. Different concentrations of 5‐Fu (0, 1, 2.5, 5, 10, 20, 40 and 80 μg/mL) were used for 5‐FU insensitivity assay. CCK‐8 and crystal violet staining assay were used for detecting cell proliferation, and flow cytometry was used for identifying cell cycle distribution and apoptosis. In order to detect the fragmented DNA in apoptotic cells, TUNEL assay was used. RNA pull‐down assay and luciferase reporter assay were used to verify the binding site. Rescue assay confirmed the subtractive effect of miR‐377 inhibitors. POU6F2‐AS2 was highly expressed in colon cancer, which was associated with clinical pathology. Up‐regulated POU6F2‐AS2 promoted cell proliferation and cell cycle of colon cancer cells. Overexpression of POU6F2‐AS2 inhibited the expression of miR‐377 and then up‐regulated the expression of BRD4. Up‐regulated BRD4 ultimately promoted cell proliferation and cell survival Down‐regulated POU6F2‐AS2 showed enhanced sensitivity of 5‐FU. POU6F2‐AS2 promoted cell proliferation and drug resistance in colon cancer by regulating miR‐377/BRD4 gene.
Collapse
Affiliation(s)
- Guangru Xu
- Department of Oncology, People's Hospital of Pudong, Shanghai, China
| | - Hongxing Zhu
- Shanghai University of Medicine&Health Sciences, Shanghai, China
| | - Jinhua Xu
- Department of Oncology, People's Hospital of Pudong, Shanghai, China
| | - Yan Wang
- Department of Oncology, People's Hospital of Pudong, Shanghai, China
| | - Yang Zhang
- Department of Oncology, People's Hospital of Pudong, Shanghai, China
| | - Minghui Zhang
- Department of Oncology, People's Hospital of Pudong, Shanghai, China
| | - Dichao Zhu
- Department of Oncology, People's Hospital of Pudong, Shanghai, China
| |
Collapse
|
24
|
Abstract
Glucose addiction is observed in cancer and other diseases that are associated with hyperproliferation. The development of compounds that restrict glucose supply and decrease glycolysis has great potential for the development of new therapeutic approaches. Addressing facilitative glucose transporters (GLUTs), which are often upregulated in glucose-dependent cells, is therefore of particular interest. This article reviews a selection of potent, isoform-selective GLUT inhibitors and their biological characterization. Potential therapeutic applications of GLUT inhibitors in oncology and other diseases that are linked to glucose addiction are discussed.
Collapse
Affiliation(s)
- Elena S. Reckzeh
- Department Chemical BiologyMax Planck Institute of Molecular PhysiologyOtto-Hahn-Strasse 1144227DortmundGermany
- Department Chemistry and Chemical BiologyTU Dortmund UniversityOtto-Hahn-Strasse 4a44227DortmundGermany
| | - Herbert Waldmann
- Department Chemical BiologyMax Planck Institute of Molecular PhysiologyOtto-Hahn-Strasse 1144227DortmundGermany
- Department Chemistry and Chemical BiologyTU Dortmund UniversityOtto-Hahn-Strasse 4a44227DortmundGermany
| |
Collapse
|
25
|
Li YL, Weng HC, Hsu JL, Lin SW, Guh JH, Hsu LC. The Combination of MK-2206 and WZB117 Exerts a Synergistic Cytotoxic Effect Against Breast Cancer Cells. Front Pharmacol 2019; 10:1311. [PMID: 31780937 PMCID: PMC6856645 DOI: 10.3389/fphar.2019.01311] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Accepted: 10/15/2019] [Indexed: 12/12/2022] Open
Abstract
Breast cancer is the most commonly diagnosed cancer and the second leading cause of cancer death in women. Hormone receptor-positive breast cancer is usually subjected to hormone therapy, while triple-negative breast cancer is more formidable and poses a therapeutic challenge. Glucose transporters are potential targets for the development of anticancer drugs. In search of anticancer agents whose effect could be enhanced by a GLUT1 inhibitor WZB117, we found that MK-2206, a potent allosteric Akt inhibitor, when combined with WZB117, showed a synergistic effect on growth inhibition and apoptosis induction in breast cancer cells, including ER(+) MCF-7 cells and triple-negative MDA-MB-231 cells. The combination index values at 50% growth inhibition were 0.45 and 0.21, respectively. Mechanism studies revealed that MK-2206 and WZB117 exert a synergistic cytotoxic effect in both MCF-7 and MDA-MB-231 breast cancer cells by inhibiting Akt phosphorylation and inducing DNA damage. The combination may also compromise DNA damage repair and ultimately lead to apoptosis. Our findings suggest that the combination of Akt inhibitors and GLUT1 inhibitors could be a novel strategy to combat breast cancer.
Collapse
Affiliation(s)
- Yu-Liang Li
- School of Pharmacy, National Taiwan University, Taipei, Taiwan
| | - Hao-Cheng Weng
- School of Pharmacy, National Taiwan University, Taipei, Taiwan
| | - Jui-Ling Hsu
- School of Pharmacy, National Taiwan University, Taipei, Taiwan
| | - Shu-Wha Lin
- Department of Clinical Laboratory Sciences and Medical Biotechnology, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Jih-Hwa Guh
- School of Pharmacy, National Taiwan University, Taipei, Taiwan
| | - Lih-Ching Hsu
- School of Pharmacy, National Taiwan University, Taipei, Taiwan
| |
Collapse
|
26
|
Ishikawa K, Kawano Y, Arihara Y, Kubo T, Takada K, Murase K, Miyanishi K, Kobune M, Kato J. BH3 profiling discriminates the anti‑apoptotic status of 5‑fluorouracil‑resistant colon cancer cells. Oncol Rep 2019; 42:2416-2425. [PMID: 31638265 PMCID: PMC6826312 DOI: 10.3892/or.2019.7373] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2019] [Accepted: 09/26/2019] [Indexed: 12/11/2022] Open
Abstract
5-Fluorouracil (5-FU) is a cytotoxic anticancer drug commonly used for patients with advanced colon cancer. This drug effectively reduces the size of tumors to a certain degree; however, cancer cells can gradually acquire resistance, resulting in disease progression. To identify the mechanism of 5-FU resistance, we established three 5-FU-resistant colon cancer cell lines and analyzed both apoptosis-related protein expression levels and BH3 profiling. These 5-FU-resistant colon cancer cell lines acquired apoptotic resistance to 5-FU. Although apoptosis-related protein expression levels were altered in each 5-FU-resistant colon cancer cell line variably, BH3 profiling indicated BCLXL dependence in 5-FU-resistant HT-29 cells only. Functional BCLXL inhibition in 5-FU-resistant HT-29 cells not only sensitized the cells to apoptosis but also overcame 5-FU resistance. The apoptotic BIM protein was preferentially sequestered, thereby resulting in acquired dependence on BCLXL for survival. Additionally, in vivo models showed that BCLXL inhibition controlled tumor progression. These results indicate that BH3 profiling facilitates the identification of the functional role of anti-apoptotic proteins during drug resistance and has clinical implications for colon cancer in targeting specific proteins such as BCLXL.
Collapse
Affiliation(s)
- Kazuma Ishikawa
- Department of Medical Oncology, Sapporo Medical University School of Medicine, Sapporo, Hokkaido 060‑8543, Japan
| | - Yutaka Kawano
- Department of Medical Oncology, Sapporo Medical University School of Medicine, Sapporo, Hokkaido 060‑8543, Japan
| | - Yohei Arihara
- Department of Medical Oncology, Sapporo Medical University School of Medicine, Sapporo, Hokkaido 060‑8543, Japan
| | - Tomohiro Kubo
- Department of Medical Oncology, Sapporo Medical University School of Medicine, Sapporo, Hokkaido 060‑8543, Japan
| | - Kohichi Takada
- Department of Medical Oncology, Sapporo Medical University School of Medicine, Sapporo, Hokkaido 060‑8543, Japan
| | - Kazuyuki Murase
- Department of Medical Oncology, Sapporo Medical University School of Medicine, Sapporo, Hokkaido 060‑8543, Japan
| | - Koji Miyanishi
- Department of Medical Oncology, Sapporo Medical University School of Medicine, Sapporo, Hokkaido 060‑8543, Japan
| | - Masayoshi Kobune
- Department of Hematology, Sapporo Medical University School of Medicine, Sapporo, Hokkaido 060‑8543, Japan
| | - Junji Kato
- Department of Medical Oncology, Sapporo Medical University School of Medicine, Sapporo, Hokkaido 060‑8543, Japan
| |
Collapse
|
27
|
Bokil A, Sancho P. Mitochondrial determinants of chemoresistance. CANCER DRUG RESISTANCE (ALHAMBRA, CALIF.) 2019; 2:634-646. [PMID: 35582564 PMCID: PMC8992520 DOI: 10.20517/cdr.2019.46] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/31/2019] [Revised: 07/10/2019] [Accepted: 07/17/2019] [Indexed: 12/17/2022]
Abstract
Chemoresistance constitute nowadays the major contributor to therapy failure in most cancers. There are main factors that mitigate cell response to therapy, such as target organ, inherent sensitivity to the administered compound, its metabolism, drug efflux and influx or alterations on specific cellular targets, among others. We now know that intrinsic properties of cancer cells, including metabolic features, substantially contribute to chemoresistance. In fact, during the last years, numerous reports indicate that cancer cells resistant to chemotherapy demonstrate significant alterations in mitochondrial metabolism, membrane polarization and mass. Metabolic activity and expression of several mitochondrial proteins are modulated under treatment to cope with stress, making these organelles central players in the development of resistance to therapies. Here, we review the role of mitochondria in chemoresistant cells in terms of metabolic rewiring and function of key mitochondria-related proteins.
Collapse
Affiliation(s)
- Ansooya Bokil
- IIS Aragon, Hospital Universitario Miguel Servet, Zaragoza 50009, Spain
| | - Patricia Sancho
- IIS Aragon, Hospital Universitario Miguel Servet, Zaragoza 50009, Spain
| |
Collapse
|
28
|
Li S, Liu XY, Pan Q, Wu J, Liu ZH, Wang Y, Liu M, Zhang XL. Hepatitis C Virus-Induced FUT8 Causes 5-FU Drug Resistance in Human Hepatoma Huh7.5.1 Cells. Viruses 2019; 11:v11040378. [PMID: 31022917 PMCID: PMC6521249 DOI: 10.3390/v11040378] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2019] [Revised: 04/11/2019] [Accepted: 04/21/2019] [Indexed: 01/29/2023] Open
Abstract
Hepatitis C virus (HCV) is a major cause of human chronic liver disease and hepatocellular carcinoma. Our recent studies showed that α1,6-fucosyltransferase (FUT8), a key glycosyltransferase, was the most up-regulated glycosyltransferase after the HCV infection of human hepatocellular carcinoma Huh7.5.1 cells. Here, we further studied the effects and possible mechanism of FUT8 on the proliferation of HCV and chemotherapy-resistance of HCV-infected Huh7.5.1 cells. The effects of FUT8 on the proliferation and drug resistance of HCV-infected Huh7.5.1 cells were analyzed by flow cytometry analysis (FCM), quantitative real-time polymerase chain reaction (qRT-PCR), Western blot analysis and lactate dehydrogenase (LDH) release assay. Results: We found that FUT8 not only promoted Huh7.5.1 proliferation by activating PI3K-AKT-NF-κB signaling, but also stimulated the expression of the drug-resistant proteins P-glycoprotein (P-gp) and multidrug resistance related protein 1 (MRP1) and enhanced the 5-fluorouracil (5-FU) chemo-resistance of Huh7.5.1 cells. Silencing of FUT8 reduced the cell proliferation and increased the 5-FU sensitivity of HCV-infected Huh7.5.1 cells. Inhibition of P-gp and MRP1 increased the 5-FU drug sensitivity in HCV infected Huh7.5.1 cells. HCV-induced FUT8 promotes proliferation and 5-FU resistance of Huh7.5.1 cells. FUT8 may serve as a therapeutic target to reverse chemotherapy resistance in HCV-infected Huh7.5.1 cells.
Collapse
Affiliation(s)
- Shu Li
- State Key Laboratory of Virology, Department of Immunology, Hubei Province Key Laboratory of Allergy and Immunology and Medical Research Institute, Wuhan University School of Basic Medical Sciences, Wuhan 430071, China.
| | - Xiao-Yu Liu
- State Key Laboratory of Virology, Department of Immunology, Hubei Province Key Laboratory of Allergy and Immunology and Medical Research Institute, Wuhan University School of Basic Medical Sciences, Wuhan 430071, China.
| | - Qiu Pan
- State Key Laboratory of Virology, Department of Immunology, Hubei Province Key Laboratory of Allergy and Immunology and Medical Research Institute, Wuhan University School of Basic Medical Sciences, Wuhan 430071, China.
| | - Jian Wu
- State Key Laboratory of Virology, Department of Immunology, Hubei Province Key Laboratory of Allergy and Immunology and Medical Research Institute, Wuhan University School of Basic Medical Sciences, Wuhan 430071, China.
| | - Zhi-Hao Liu
- State Key Laboratory of Virology, Department of Immunology, Hubei Province Key Laboratory of Allergy and Immunology and Medical Research Institute, Wuhan University School of Basic Medical Sciences, Wuhan 430071, China.
| | - Yong Wang
- State Key Laboratory of Virology, Department of Immunology, Hubei Province Key Laboratory of Allergy and Immunology and Medical Research Institute, Wuhan University School of Basic Medical Sciences, Wuhan 430071, China.
| | - Min Liu
- State Key Laboratory of Virology, Department of Immunology, Hubei Province Key Laboratory of Allergy and Immunology and Medical Research Institute, Wuhan University School of Basic Medical Sciences, Wuhan 430071, China.
| | - Xiao-Lian Zhang
- State Key Laboratory of Virology, Department of Immunology, Hubei Province Key Laboratory of Allergy and Immunology and Medical Research Institute, Wuhan University School of Basic Medical Sciences, Wuhan 430071, China.
| |
Collapse
|
29
|
Peng Y, Xing SN, Tang HY, Wang CD, Yi FP, Liu GL, Wu XM. Influence of glucose transporter 1 activity inhibition on neuroblastoma in vitro. Gene 2018; 689:11-17. [PMID: 30553996 DOI: 10.1016/j.gene.2018.12.010] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2018] [Revised: 10/29/2018] [Accepted: 12/01/2018] [Indexed: 12/22/2022]
Abstract
Most cancer cells predominantly produce their energy through a high rate of glycolysis in the presence of abundant oxygen. Glycolysis has become a target of anticancer strategies. Previous researches showed that glucose transporter 1 (GLUT1) inhibitor is effective as anticancer agents. This study assessed the effects of the selective GLUT1 inhibitor WZB117 on regulation of neuroblastoma (NB) cell line SH-SY5Y viability, cell cycle and glycolysis in vitro. SH-SY5Y cells were grown and treated with WZB117 for up to 72 h and then subjected to cell viability, qRT-PCR, Western blot and flow cytometry analysis. Level of ATP and LDH was also analyzed. The result showed that WZB117 treatment reduced tumor cells viability, downregulated level of GLUT1 protein. Moreover, WZB117 treatment arrested tumor cells at the G0-G1 phase of the cell cycle, induced tumor cells to undergo necrosis instead of apoptosis. In addition, WZB117 treatment downregulated the levels of intracellular ATP, LDH and glycolytic enzymes. Thus, WZB117-induced GLUT1 inhibition suppressed tumor cell growth, induced cell cycle arrest and reduced glycolysis metabolites in NB cells in vitro. This study suggested that GLUT1 can be used as a potential therapeutic target for NB.
Collapse
Affiliation(s)
- Yan Peng
- Department of Physiology, Chongqing Medical University, Chongqing 400016, China; Department of Molecular Medicine and Cancer Research Center, Chongqing Medical University, Chongqing 400016, China
| | - Si-Ning Xing
- Department of Physiology, Chongqing Medical University, Chongqing 400016, China; Department of Molecular Medicine and Cancer Research Center, Chongqing Medical University, Chongqing 400016, China
| | - Hu-Ying Tang
- Department of Physiology, Chongqing Medical University, Chongqing 400016, China; Department of Molecular Medicine and Cancer Research Center, Chongqing Medical University, Chongqing 400016, China
| | - Chang-Dong Wang
- Department of Biochemistry and Molecular Biology, Chongqing Medical University, Chongqing 400016, China; Department of Molecular Medicine and Cancer Research Center, Chongqing Medical University, Chongqing 400016, China
| | - Fa-Ping Yi
- Department of Biochemistry and Molecular Biology, Chongqing Medical University, Chongqing 400016, China; Department of Molecular Medicine and Cancer Research Center, Chongqing Medical University, Chongqing 400016, China
| | - Ge-Li Liu
- Department of Biochemistry and Molecular Biology, Chongqing Medical University, Chongqing 400016, China; Department of Molecular Medicine and Cancer Research Center, Chongqing Medical University, Chongqing 400016, China
| | - Xiang-Mei Wu
- Department of Physiology, Chongqing Medical University, Chongqing 400016, China; Department of Molecular Medicine and Cancer Research Center, Chongqing Medical University, Chongqing 400016, China.
| |
Collapse
|
30
|
Suzuki S, Okada M, Takeda H, Kuramoto K, Sanomachi T, Togashi K, Seino S, Yamamoto M, Yoshioka T, Kitanaka C. Involvement of GLUT1-mediated glucose transport and metabolism in gefitinib resistance of non-small-cell lung cancer cells. Oncotarget 2018; 9:32667-32679. [PMID: 30220973 PMCID: PMC6135698 DOI: 10.18632/oncotarget.25994] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2018] [Accepted: 07/29/2018] [Indexed: 01/20/2023] Open
Abstract
Use of epidermal growth factor receptor (EGFR) inhibitors represented by gefitinib and erlotinib has become the standard of treatment for non-small-cell lung cancers (NSCLCs) with activating EGFR mutations. However, the majority of NSCLCs, which overexpress EGFR without such mutations, are resistant to EGFR inhibitors, and the mechanism(s) behind such primary resistance of NSCLCs without activating EGFR mutations to EGFR inhibitors still remains poorly understood. Here in this study, we show that glucose metabolism mediated by GLUT1, a facilitative glucose transporter, is involved in gefitinib resistance of NSCLC cells. We found that GLUT1 expression and glucose uptake were increased in resistant NSCLC cells after gefitinib treatment and that genetic as well as pharmacological inhibition of GLUT1 sensitized not only NSCLC cells with primary resistance but also those with acquired resistance to gefitinib. In vivo, the combination of systemic gefitinib and a GLUT1 inhibitor, both of which failed to inhibit tumor growth when administered alone, significantly inhibited the growth of xenograft tumors formed by the implantation of NSCLC cells with wild-type EGFR (wt-EGFR). Since our data indicated that GLUT1 was similarly involved in erlotinib resistance, our findings suggest that the activity of GLUT1-mediated glucose metabolism could be a critical determinant for the sensitivity of NSCLC cells to EGFR inhibitors and that concurrent GLUT1 inhibition may therefore be a mechanism-based approach to treating NSCLCs resistant to EGFR inhibitors, including those with wt-EGFR.
Collapse
Affiliation(s)
- Shuhei Suzuki
- Department of Molecular Cancer Science, Yamagata University School of Medicine, Yamagata 990-9585, Japan.,Department of Clinical Oncology, Yamagata University School of Medicine, Yamagata 990-9585, Japan
| | - Masashi Okada
- Department of Molecular Cancer Science, Yamagata University School of Medicine, Yamagata 990-9585, Japan
| | - Hiroyuki Takeda
- Department of Molecular Cancer Science, Yamagata University School of Medicine, Yamagata 990-9585, Japan.,Department of Clinical Oncology, Yamagata University School of Medicine, Yamagata 990-9585, Japan
| | - Kenta Kuramoto
- Department of Molecular Cancer Science, Yamagata University School of Medicine, Yamagata 990-9585, Japan
| | - Tomomi Sanomachi
- Department of Molecular Cancer Science, Yamagata University School of Medicine, Yamagata 990-9585, Japan.,Department of Clinical Oncology, Yamagata University School of Medicine, Yamagata 990-9585, Japan
| | - Keita Togashi
- Department of Molecular Cancer Science, Yamagata University School of Medicine, Yamagata 990-9585, Japan.,Department of Ophthalmology, Yamagata University School of Medicine, Yamagata 990-9585, Japan
| | - Shizuka Seino
- Department of Molecular Cancer Science, Yamagata University School of Medicine, Yamagata 990-9585, Japan.,Research Institute for Promotion of Medical Sciences, Yamagata University Faculty of Medicine, Yamagata 990-9585, Japan
| | - Masahiro Yamamoto
- Department of Molecular Cancer Science, Yamagata University School of Medicine, Yamagata 990-9585, Japan
| | - Takashi Yoshioka
- Department of Clinical Oncology, Yamagata University School of Medicine, Yamagata 990-9585, Japan
| | - Chifumi Kitanaka
- Department of Molecular Cancer Science, Yamagata University School of Medicine, Yamagata 990-9585, Japan.,Research Institute for Promotion of Medical Sciences, Yamagata University Faculty of Medicine, Yamagata 990-9585, Japan
| |
Collapse
|
31
|
Kong D, Zhang D, Chu X, Wang J. Schizandrin A enhances chemosensitivity of colon carcinoma cells to 5-fluorouracil through up-regulation of miR-195. Biomed Pharmacother 2018; 99:176-183. [PMID: 29331856 DOI: 10.1016/j.biopha.2018.01.035] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2017] [Revised: 01/03/2018] [Accepted: 01/03/2018] [Indexed: 12/18/2022] Open
Abstract
Nowadays 5-fluorouracil (5-FU)-based adjuvant chemotherapy is widely used for treating colon carcinoma. However, 5-FU resistance in the treatment of colon carcinoma has become more common and thereby new therapeutic strategies and new adjuvant drugs still need to be explored. Two 5-FU-resistant colon cancer cell lines, HCT116 and SW480, were used to investigate the effects of Schizandrin A (SchA), 5-FU, or their combination on cell viability and apoptosis. Besides, the role of miR-195 was studied to further clarify the specific function of SchA. CCK-8 assay and flow cytometry analysis were conducted to determine cell viability and apoptosis, respectively. miR-195 expression was determined by quantitative real-time PCR. Cell apoptosis-related proteins and factors of PI3K/AKT and NF-κB pathways were analyzed by Western blot. Cell viability assay showed that SchA treatment at non-toxic dosages caused a marked enhancement of 5-FU-induced cytotoxicity. Moreover, we explored that miR-195 was up-regulated by SchA; and overexpression of miR-195 reduced cell viability and sensitized 5-FU-resistant HCT116 and SW480 cells to 5-FU. The promoting effect of SchA on 5-FU susceptibility can be partly abolished by miR-195 knockdown. Thus it was speculated that SchA might enhance cell chemosensitivity to 5-FU by up-regulating miR-195. Finally, we found that PI3K/AKT and NF-κB pathways were inhibited by high expression of miR-195 reduced by SchA. Our results suggested that SchA sensitized 5-FU-resistant colon carcinoma cells to 5-FU by up-regulating miR-195. SchA combined with 5-FU could be a promising strategy for the adjuvant chemotherapy of colon cancer.
Collapse
Affiliation(s)
- Dongfang Kong
- Department of Gastrointestinal Surgery, Jining No. 1 People'S Hospital, Jining, 272000, China
| | - Deyong Zhang
- Department of Gastrointestinal Surgery, Jining No. 1 People'S Hospital, Jining, 272000, China
| | - Xianqun Chu
- Department of Gastrointestinal Surgery, Jining No. 1 People'S Hospital, Jining, 272000, China
| | - Jing Wang
- Department of Gastrointestinal Surgery, Jining No. 1 People'S Hospital, Jining, 272000, China.
| |
Collapse
|
32
|
Wang G, Wang JJ, Yin PH, Xu K, Wang YZ, Shi F, Gao J, Fu XL. New strategies for targeting glucose metabolism-mediated acidosis for colorectal cancer therapy. J Cell Physiol 2018; 234:348-368. [PMID: 30069931 DOI: 10.1002/jcp.26917] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2018] [Accepted: 06/13/2018] [Indexed: 12/15/2022]
Abstract
Colorectal cancer (CRC) is a heterogeneous group of diseases that are the result of abnormal glucose metabolism alterations with high lactate production by pyruvate to lactate conversion, which remodels acidosis and offers an evolutional advantage for tumor cells, even enhancing their aggressive phenotype. This review summarizes recent findings that involve multiple genes, molecules, and downstream signaling in the dysregulated glycolytic pathway, which can allow a tumor to initiate acid byproducts and to progress, thereby resulting in acidosis commonly found in the tumor microenvironment of CRC. Moreover, the relationship between CRC cells and the tumor acidic microenvironment, especially for regulating lactate production and lactate dehydrogenase A levels, is also discussed, as well as comprehensively defining different aspects of glycolytic pathways that affect cancer cell proliferation, invasion, and migration. Furthermore, this review concentrates on glucose metabolism-mediated transduction factors in CRC, which include acid-sensing ion channels, triosephosphate isomerase and key glycolysis-related enzymes that regulate glycolytic metabolites, coupled with the effect on tumor cell glycolysis as well as signaling pathways. In conclusion, glucose metabolism mediated by glycolytic pathways that are integral to tumor acidosis in CRC is demonstrated. Therefore, selective metabolic inhibitors or agents against these targets in glucose metabolism through glycolytic pathways may be clinically useful to regulate the tumor's acidic microenvironment for CRC treatment and to identify specific targets that regulate tumor acidosis through a cancer patient-personalized approach. Furthermore, strategies for modifying the metabolic processes that effectively inhibit cancer cell growth and tumor progression and activate potent anticancer effects may provide more effective antitumor prospects for CRC therapy.
Collapse
Affiliation(s)
- Gang Wang
- Department of Pharmaceutics, Shanghai Eighth People's Hospital, Jiangsu University, Shanghai, China
| | - Jun-Jie Wang
- Department of Pharmaceutics, Shanghai Eighth People's Hospital, Jiangsu University, Shanghai, China
| | - Pei-Hao Yin
- Department of Cancer, Institute of Chinese Integrative Medicine, Putuo Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Ke Xu
- Department of Cancer, Institute of Chinese Integrative Medicine, Putuo Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yu-Zhu Wang
- Department of Medicine, Jiangsu University, Zhenjiang, China
| | - Feng Shi
- Department of Medicine, Jiangsu University, Zhenjiang, China
| | - Jing Gao
- Department of Medicine, Jiangsu University, Zhenjiang, China
| | - Xing-Li Fu
- Department of Medicine, Jiangsu University, Zhenjiang, China
| |
Collapse
|
33
|
Tang L, Wei F, Wu Y, He Y, Shi L, Xiong F, Gong Z, Guo C, Li X, Deng H, Cao K, Zhou M, Xiang B, Li X, Li Y, Li G, Xiong W, Zeng Z. Role of metabolism in cancer cell radioresistance and radiosensitization methods. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2018; 37:87. [PMID: 29688867 PMCID: PMC5914062 DOI: 10.1186/s13046-018-0758-7] [Citation(s) in RCA: 294] [Impact Index Per Article: 42.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/18/2017] [Accepted: 04/10/2018] [Indexed: 02/07/2023]
Abstract
BACKGROUND Radioresistance is a major factor leading to the failure of radiotherapy and poor prognosis in tumor patients. Following the application of radiotherapy, the activity of various metabolic pathways considerably changes, which may result in the development of resistance to radiation. MAIN BODY Here, we discussed the relationships between radioresistance and mitochondrial and glucose metabolic pathways, aiming to elucidate the interplay between the tumor cell metabolism and radiotherapy resistance. In this review, we additionally summarized the potential therapeutic targets in the metabolic pathways. SHORT CONCLUSION The aim of this review was to provide a theoretical basis and relevant references, which may lead to the improvement of the sensitivity of radiotherapy and prolong the survival of cancer patients.
Collapse
Affiliation(s)
- Le Tang
- The Key Laboratory of Carcinogenesis of the Chinese Ministry of Health, Xiangya Hospital, Central South University, Changsha, Hunan, China.,The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, Hunan, China.,Hunan Key Laboratory of Nonresolving Inflammation and Cancer, Disease Genome Research Center, The Third Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Fang Wei
- The Key Laboratory of Carcinogenesis of the Chinese Ministry of Health, Xiangya Hospital, Central South University, Changsha, Hunan, China.,The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, Hunan, China
| | - Yingfen Wu
- The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, Hunan, China
| | - Yi He
- The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, Hunan, China.,Hunan Key Laboratory of Translational Radiation Oncology, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan, China
| | - Lei Shi
- The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, Hunan, China
| | - Fang Xiong
- The Key Laboratory of Carcinogenesis of the Chinese Ministry of Health, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Zhaojian Gong
- The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, Hunan, China
| | - Can Guo
- The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, Hunan, China
| | - Xiayu Li
- The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, Hunan, China.,Hunan Key Laboratory of Nonresolving Inflammation and Cancer, Disease Genome Research Center, The Third Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Hao Deng
- Hunan Key Laboratory of Nonresolving Inflammation and Cancer, Disease Genome Research Center, The Third Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Ke Cao
- Hunan Key Laboratory of Nonresolving Inflammation and Cancer, Disease Genome Research Center, The Third Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Ming Zhou
- The Key Laboratory of Carcinogenesis of the Chinese Ministry of Health, Xiangya Hospital, Central South University, Changsha, Hunan, China.,The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, Hunan, China.,Hunan Key Laboratory of Nonresolving Inflammation and Cancer, Disease Genome Research Center, The Third Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Bo Xiang
- The Key Laboratory of Carcinogenesis of the Chinese Ministry of Health, Xiangya Hospital, Central South University, Changsha, Hunan, China.,The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, Hunan, China.,Hunan Key Laboratory of Nonresolving Inflammation and Cancer, Disease Genome Research Center, The Third Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Xiaoling Li
- The Key Laboratory of Carcinogenesis of the Chinese Ministry of Health, Xiangya Hospital, Central South University, Changsha, Hunan, China.,The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, Hunan, China.,Hunan Key Laboratory of Nonresolving Inflammation and Cancer, Disease Genome Research Center, The Third Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Yong Li
- The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, Hunan, China.,Department of Cancer Biology, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio, USA
| | - Guiyuan Li
- The Key Laboratory of Carcinogenesis of the Chinese Ministry of Health, Xiangya Hospital, Central South University, Changsha, Hunan, China.,The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, Hunan, China.,Hunan Key Laboratory of Nonresolving Inflammation and Cancer, Disease Genome Research Center, The Third Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Wei Xiong
- The Key Laboratory of Carcinogenesis of the Chinese Ministry of Health, Xiangya Hospital, Central South University, Changsha, Hunan, China. .,The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, Hunan, China. .,Hunan Key Laboratory of Nonresolving Inflammation and Cancer, Disease Genome Research Center, The Third Xiangya Hospital, Central South University, Changsha, Hunan, China.
| | - Zhaoyang Zeng
- The Key Laboratory of Carcinogenesis of the Chinese Ministry of Health, Xiangya Hospital, Central South University, Changsha, Hunan, China. .,The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, Hunan, China. .,Hunan Key Laboratory of Nonresolving Inflammation and Cancer, Disease Genome Research Center, The Third Xiangya Hospital, Central South University, Changsha, Hunan, China.
| |
Collapse
|
34
|
Kurimoto K, Hayashi M, Guerrero-Preston R, Koike M, Kanda M, Hirabayashi S, Tanabe H, Takano N, Iwata N, Niwa Y, Takami H, Kobayashi D, Tanaka C, Yamada S, Nakayama G, Sugimoto H, Fujii T, Fujiwara M, Kodera Y. PAX5 gene as a novel methylation marker that predicts both clinical outcome and cisplatin sensitivity in esophageal squamous cell carcinoma. Epigenetics 2017; 12:865-874. [PMID: 29099287 DOI: 10.1080/15592294.2017.1365207] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Therapeutic strategies for esophageal cancer largely depend on histopathological assessment. To select appropriate treatments of individual patients, we examined the background molecular characteristics of tumor malignancy and sensitivity to multidisciplinary therapy. Seventy-eight surgically-resected esophageal squamous cell carcinoma (ESCC) cases during 2001-2013 were examined. PAX5, a novel gene methylation marker in ESCC, was evaluated in the specimens, as methylation of this gene was identified as an extremely tumor-specific event in squamous cell carcinogenesis of head and neck. PAX5 methylation status was evaluated by quantitative MSP (QMSP) assays. Mean QMSP value was 15.7 (0-136.3) in ESCCs and 0.3 (0-8.6) in adjacent normal tissues (P < 0.001). The 78 cases were divided into high QMSP value (high QMSP, n = 26) and low QMSP value (low QMSP, n = 52). High QMSP cases were significantly associated with downregulated PAX5 expression (P = 0.040), and showed significantly poor recurrence-free survival [Hazard Ratio (HR) = 2.84; P = 0.005; 95% Confidence Interval (CI): 1.39-5.81] and overall survival (HR = 3.23; P = 0.002; 95%CI: 1.52-7.01) in multivariable analyses with histopathological factors. PAX5-knockdown cells exhibited significantly increased cell proliferation and cisplatin resistance. PAX5 gene methylation can predict poor survival outcomes and cisplatin sensitivity in ESCCs and could be a useful diagnostic tool for cancer therapy selection.
Collapse
Affiliation(s)
- Keisuke Kurimoto
- a Department of Gastroenterological Surgery , Nagoya University Graduate School of Medicine , Nagoya , Japan
| | - Masamichi Hayashi
- a Department of Gastroenterological Surgery , Nagoya University Graduate School of Medicine , Nagoya , Japan
| | - Rafael Guerrero-Preston
- b Departments of Otolaryngology-Head and Neck Surgery , Johns Hopkins University School of Medicine , Baltimore , Maryland , USA
| | - Masahiko Koike
- a Department of Gastroenterological Surgery , Nagoya University Graduate School of Medicine , Nagoya , Japan
| | - Mitsuro Kanda
- a Department of Gastroenterological Surgery , Nagoya University Graduate School of Medicine , Nagoya , Japan
| | - Sho Hirabayashi
- a Department of Gastroenterological Surgery , Nagoya University Graduate School of Medicine , Nagoya , Japan
| | - Hiroshi Tanabe
- a Department of Gastroenterological Surgery , Nagoya University Graduate School of Medicine , Nagoya , Japan
| | - Nao Takano
- a Department of Gastroenterological Surgery , Nagoya University Graduate School of Medicine , Nagoya , Japan
| | - Naoki Iwata
- a Department of Gastroenterological Surgery , Nagoya University Graduate School of Medicine , Nagoya , Japan
| | - Yukiko Niwa
- a Department of Gastroenterological Surgery , Nagoya University Graduate School of Medicine , Nagoya , Japan
| | - Hideki Takami
- a Department of Gastroenterological Surgery , Nagoya University Graduate School of Medicine , Nagoya , Japan
| | - Daisuke Kobayashi
- a Department of Gastroenterological Surgery , Nagoya University Graduate School of Medicine , Nagoya , Japan
| | - Chie Tanaka
- a Department of Gastroenterological Surgery , Nagoya University Graduate School of Medicine , Nagoya , Japan
| | - Suguru Yamada
- a Department of Gastroenterological Surgery , Nagoya University Graduate School of Medicine , Nagoya , Japan
| | - Goro Nakayama
- a Department of Gastroenterological Surgery , Nagoya University Graduate School of Medicine , Nagoya , Japan
| | - Hiroyuki Sugimoto
- a Department of Gastroenterological Surgery , Nagoya University Graduate School of Medicine , Nagoya , Japan
| | - Tsutomu Fujii
- a Department of Gastroenterological Surgery , Nagoya University Graduate School of Medicine , Nagoya , Japan
| | - Michitaka Fujiwara
- a Department of Gastroenterological Surgery , Nagoya University Graduate School of Medicine , Nagoya , Japan
| | - Yasuhiro Kodera
- a Department of Gastroenterological Surgery , Nagoya University Graduate School of Medicine , Nagoya , Japan
| |
Collapse
|
35
|
Pinheiro C, Granja S, Longatto-Filho A, Faria AM, Fragoso MCBV, Lovisolo SM, Bonatelli M, Costa RFA, Lerário AM, Almeida MQ, Baltazar F, Zerbini MCN. GLUT1 expression in pediatric adrenocortical tumors: a promising candidate to predict clinical behavior. Oncotarget 2017; 8:63835-63845. [PMID: 28969033 PMCID: PMC5609965 DOI: 10.18632/oncotarget.19135] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2016] [Accepted: 06/12/2017] [Indexed: 12/20/2022] Open
Abstract
Background Discrimination between benign and malignant tumors is a challenging process in pediatric adrenocortical tumors. New insights in the metabolic profile of pediatric adrenocortical tumors may contribute to this distinction, predict prognosis, as well as identify new molecular targets for therapy. The aim of this work is to characterize the expression of the metabolism-related proteins MCT1, MCT2, MCT4, CD147, CD44, GLUT1 and CAIX in a series of pediatric adrenocortical tumors. Methods A total of 50 pediatric patients presenting adrenocortical tumors, including 41 clinically benign and 9 clinically malignant tumors, were included. Protein expression was evaluated using immunohistochemistry in samples arranged in tissue microarrays. Results The immunohistochemical analysis showed a significant increase in plasma membrane expression of GLUT1 in malignant lesions, when compared to benign lesions (p=0.004), being the expression of this protein associated with shorter overall and disease-free survival (p=0.004 and p=0.001, respectively). Although significant differences were not observed for proteins other than GLUT1, MCT1, MCT4 and CD147 were highly expressed in pediatric adrenocortical neoplasias (around 90%). Conclusion GLUT1 expression was differentially expressed in pediatric adrenocortical tumors, with higher expression in clinically malignant tumors, and associated with shorter survival, suggesting a metabolic remodeling towards a hyperglycolytic phenotype in this malignancy.
Collapse
Affiliation(s)
- Céline Pinheiro
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal.,ICVS/3B's-PT Government Associate Laboratory, Braga/Guimarães, Portugal.,Barretos School of Health Sciences Dr. Paulo Prata - FACISB, São Paulo, Brazil.,Molecular Oncology Research Center, Barretos Cancer Hospital, São Paulo, Brazil
| | - Sara Granja
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal.,ICVS/3B's-PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Adhemar Longatto-Filho
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal.,ICVS/3B's-PT Government Associate Laboratory, Braga/Guimarães, Portugal.,Molecular Oncology Research Center, Barretos Cancer Hospital, São Paulo, Brazil.,Laboratory of Medical Investigation (LIM-14), School of Medicina, University of São Paulo, São Paulo, Brazil
| | - André M Faria
- Unidade de Suprarrenal, Disciplina de Endocrinologia e Metabologia, Laboratório de Hormônios e Genética Molecular LIM42, Hospital das Clínicas, Faculdade de Medicina da Universidade de São Paulo, São Paulo, Brazil
| | - Maria C B V Fragoso
- Unidade de Suprarrenal, Disciplina de Endocrinologia e Metabologia, Laboratório de Hormônios e Genética Molecular LIM42, Hospital das Clínicas, Faculdade de Medicina da Universidade de São Paulo, São Paulo, Brazil.,Instituto do Câncer do Estado de São Paulo - ICESP, Hospital das Clínicas, Faculdade de Medicina da Universidade de São Paulo, São Paulo, Brazil
| | - Silvana M Lovisolo
- Hospital Universitário, Faculdade de Medicina da Universidade de São Paulo, São Paulo, Brazil
| | - Murilo Bonatelli
- Molecular Oncology Research Center, Barretos Cancer Hospital, São Paulo, Brazil
| | - Ricardo F A Costa
- Barretos School of Health Sciences Dr. Paulo Prata - FACISB, São Paulo, Brazil
| | - Antonio M Lerário
- Department of Internal Medicine, Division of Metabolism, Endocrinology and Diabetes, University of Michigan, Ann Arbor, MI, USA
| | - Madson Q Almeida
- Unidade de Suprarrenal, Disciplina de Endocrinologia e Metabologia, Laboratório de Hormônios e Genética Molecular LIM42, Hospital das Clínicas, Faculdade de Medicina da Universidade de São Paulo, São Paulo, Brazil.,Instituto do Câncer do Estado de São Paulo - ICESP, Hospital das Clínicas, Faculdade de Medicina da Universidade de São Paulo, São Paulo, Brazil
| | - Fátima Baltazar
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal.,ICVS/3B's-PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Maria C N Zerbini
- Departamento de Patologia, Faculdade de Medicina da Universidade de São Paulo, São Paulo, Brazil
| |
Collapse
|
36
|
Fan G, Liang X, He Y, Ren H, Zhao J, Liang T, Wei J, Wang T, Zhang F. Brucine Sensitizes HepG2 Human Liver Cancer Cells to 5-fluorouracil via Fas/FasL Apoptotic Pathway. INT J PHARMACOL 2017. [DOI: 10.3923/ijp.2017.323.331] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
37
|
Yao Z, Xie F, Li M, Liang Z, Xu W, Yang J, Liu C, Li H, Zhou H, Qu LH. Oridonin induces autophagy via inhibition of glucose metabolism in p53-mutated colorectal cancer cells. Cell Death Dis 2017; 8:e2633. [PMID: 28230866 PMCID: PMC5386482 DOI: 10.1038/cddis.2017.35] [Citation(s) in RCA: 87] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2016] [Revised: 12/21/2016] [Accepted: 01/10/2017] [Indexed: 12/26/2022]
Abstract
The Warburg effect is an important characteristic of tumor cells, making it an attractive therapeutic target. Current anticancer drug development strategies predominantly focus on inhibitors of the specific molecular effectors involved in tumor cell proliferation. These drugs or natural compounds, many of which target the Warburg effect and the underlying mechanisms, still need to be characterized. To elucidate the anticancer effects of a natural diterpenoid, oridonin, we first demonstrated the anticancer activity of oridonin both in vitro and in vivo in colorectal cancer (CRC) cells. Then miRNA profiling of SW480 cells revealed those intracellular signaling related to energy supply was affected by oridonin, suggesting that glucose metabolism is a potential target for CRC therapy. Moreover, our results indicated that oridonin induced metabolic imbalances by significantly inhibiting glucose uptake and reducing lactate export through significantly downregulating the protein levels of GLUT1 and MCT1 in vitro and vivo. However, the ATP level in oridonin-treated CRC cells was not decreased when oridonin blocked the glucose supply, indicating that oridonin induced autophagy process, an important ATP source in cancer cells. The observation was then supported by the results of LC3-II detection and transmission electron microscopy analysis, which confirmed the presence of autophagy. Furthermore, p-AMPK was rapidly deactivated following oridonin treatment, resulting in downregulation of GLUT1 and induction of autophagy in the cancer cells. Thus our finding helped to clarify the anticancer mechanisms of oridonin and suggested it could be applied as a glucose metabolism-targeting agent for cancer treatment.
Collapse
Affiliation(s)
- Zhuo Yao
- Key Laboratory of Gene Engineering of the Ministry of Education, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-Sen University, Guangzhou 510275, China
| | - Fuhua Xie
- Key Laboratory of Gene Engineering of the Ministry of Education, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-Sen University, Guangzhou 510275, China
| | - Min Li
- Key Laboratory of Gene Engineering of the Ministry of Education, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-Sen University, Guangzhou 510275, China
| | - Zirui Liang
- Key Laboratory of Gene Engineering of the Ministry of Education, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-Sen University, Guangzhou 510275, China
| | - Wenli Xu
- Key Laboratory of Gene Engineering of the Ministry of Education, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-Sen University, Guangzhou 510275, China
| | - Jianhua Yang
- Key Laboratory of Gene Engineering of the Ministry of Education, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-Sen University, Guangzhou 510275, China
| | - Chang Liu
- Key Laboratory of Gene Engineering of the Ministry of Education, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-Sen University, Guangzhou 510275, China
| | - Hongwangwang Li
- Key Laboratory of Gene Engineering of the Ministry of Education, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-Sen University, Guangzhou 510275, China
| | - Hui Zhou
- Key Laboratory of Gene Engineering of the Ministry of Education, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-Sen University, Guangzhou 510275, China
| | - Liang-Hu Qu
- Key Laboratory of Gene Engineering of the Ministry of Education, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-Sen University, Guangzhou 510275, China
| |
Collapse
|
38
|
Wang W, Guo W, Li L, Fu Z, Liu W, Gao J, Shu Y, Xu Q, Sun Y, Gu Y. Andrographolide reversed 5-FU resistance in human colorectal cancer by elevating BAX expression. Biochem Pharmacol 2016; 121:8-17. [PMID: 27693317 DOI: 10.1016/j.bcp.2016.09.024] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2016] [Accepted: 09/22/2016] [Indexed: 12/15/2022]
Abstract
5-FU is the first line therapy for colorectal cancer, however, treatment effect is often hampered by the development of drug resistance or toxicity at high doses. Andrographolide is a natural diterpenoid from Andrographis paniculata which has anti-bacterial, anti-antiviral and anti-inflammation activities. In the current study, we test the hypothesis that Andrographolide reverses 5-FU resistance in colorectal cancer and examine the underlying mechanism. In vitro and vivo studies indicated that Andrographolide treatment significantly re-sensitizes HCT116/5-FUR cells (HCT116 cells which are 5-FU resistant) to cytotoxicity of 5-FU. Mechanism analysis showed that Andrographolide/5-FU co-treatment elevated apoptosis level of HCT116/5-FUR cells with highly increased level of BAX. By using biotin-Andrographolide pull down and cellular thermal shift assay, we found out that Andrographolide can directly target to BAX. Andrographolide-BAX interaction prevented BAX degradation, enhancing mitochondria-mediated apoptosis thus reversed 5-FU resistance while BAX silence diminished this effect. Further, by analyzing patient samples who received 5-FU involved chemotherapy, we found that expression level of BAX is correlated with PFS. Our results here provide a novel combination treatment strategy, especially for patients with 5-FU-resistant tumors expressing low level of BAX. Meanwhile, we also proposed that BAX expression may be a predicted and prognosis marker of 5-FU involved chemotherapy.
Collapse
Affiliation(s)
- Weicheng Wang
- Department of Oncology, The First Affiliated Hospital with Nanjing Medical University, Nanjing, China
| | - Wenjie Guo
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, China
| | - Lele Li
- Department of Oncology, The First Affiliated Hospital with Nanjing Medical University, Nanjing, China
| | - Zan Fu
- Department of Oncology, The First Affiliated Hospital with Nanjing Medical University, Nanjing, China
| | - Wen Liu
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, China
| | - Jian Gao
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, China
| | - Yongqian Shu
- Department of Oncology, The First Affiliated Hospital with Nanjing Medical University, Nanjing, China
| | - Qiang Xu
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, China.
| | - Yang Sun
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, China.
| | - Yanhong Gu
- Department of Oncology, The First Affiliated Hospital with Nanjing Medical University, Nanjing, China.
| |
Collapse
|
39
|
Kim JK, Kang KA, Piao MJ, Ryu YS, Han X, Fernando PMDJ, Oh MC, Park JE, Shilnikova K, Boo SJ, Na SY, Jeong YJ, Jeong SU, Hyun JW. Endoplasmic reticulum stress induces 5-fluorouracil resistance in human colon cancer cells. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2016; 44:128-133. [PMID: 27163731 DOI: 10.1016/j.etap.2016.05.005] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2016] [Revised: 04/27/2016] [Accepted: 05/01/2016] [Indexed: 06/05/2023]
Abstract
Colon cancer can be treated with 5-fluorouracil (5-FU), but 5-FU resistance frequently occurs. We determined whether 5-FU resistance arises as a result of endoplasmic reticulum (ER) stress. 5-FU-resistant SNUC5 colon cancer cells (SNUC5/FUR cells) expressed higher levels of ER stress-related proteins than drug-sensitive SNUC5 cells. SNUC5/FUR cells also exhibited more intense ER staining and higher level of mitochondrial Ca(2+) overload. SNUC5/FUR cells transfected with siRNA against GRP78, ATF6, ERK, or AKT were more sensitive to 5-FU than siControl RNA-transfected cells. These results suggested that 5-FU resistance was associated with ER stress in colon cancer.
Collapse
Affiliation(s)
- Joon Ki Kim
- Department of Bio and Nanochemistry, Kookmin University, Seoul 02707, Republic of Korea
| | - Kyoung Ah Kang
- School of Medicine and Institute for Nuclear Science and Technology, Jeju National University, Jeju 63243, Republic of Korea
| | - Mei Jing Piao
- School of Medicine and Institute for Nuclear Science and Technology, Jeju National University, Jeju 63243, Republic of Korea
| | - Yea Seong Ryu
- School of Medicine and Institute for Nuclear Science and Technology, Jeju National University, Jeju 63243, Republic of Korea
| | - Xia Han
- School of Medicine and Institute for Nuclear Science and Technology, Jeju National University, Jeju 63243, Republic of Korea
| | | | - Min Chang Oh
- School of Medicine and Institute for Nuclear Science and Technology, Jeju National University, Jeju 63243, Republic of Korea
| | - Jeong Eon Park
- School of Medicine and Institute for Nuclear Science and Technology, Jeju National University, Jeju 63243, Republic of Korea
| | - Kristina Shilnikova
- School of Medicine and Institute for Nuclear Science and Technology, Jeju National University, Jeju 63243, Republic of Korea
| | - Sun Jin Boo
- School of Medicine, Jeju National University, Jeju 63241, Republic of Korea
| | - Soo-Young Na
- School of Medicine, Jeju National University, Jeju 63241, Republic of Korea
| | - Yong Joo Jeong
- Department of Bio and Nanochemistry, Kookmin University, Seoul 02707, Republic of Korea
| | - Seung Uk Jeong
- School of Medicine, Jeju National University, Jeju 63241, Republic of Korea.
| | - Jin Won Hyun
- School of Medicine and Institute for Nuclear Science and Technology, Jeju National University, Jeju 63243, Republic of Korea.
| |
Collapse
|
40
|
Zhao F, Ming J, Zhou Y, Fan L. Inhibition of Glut1 by WZB117 sensitizes radioresistant breast cancer cells to irradiation. Cancer Chemother Pharmacol 2016; 77:963-72. [PMID: 27011212 DOI: 10.1007/s00280-016-3007-9] [Citation(s) in RCA: 82] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2016] [Accepted: 03/07/2016] [Indexed: 01/03/2023]
Abstract
PURPOSE Breast cancer is the most common type of cancer with high incidence in women. Currently, identifying new therapies that selectively inhibit tumor growth without damaging normal tissue are a major challenge of cancer research. One of the features of cancer cells is that they do not consume more oxygen even under normal oxygen circumstances but prefer to aerobic glycolysis through the enhanced catabolism of glucose and glutamine. In this study, we investigate the mechanisms of the radioresistance in breast cancer cells. METHODS Human breast cancer cells MDA-MB-231 and MCF-7 were treated with radiation alone, Glut1 inhibitor alone or the combination of both to evaluate cell glucose metabolism and apoptosis. By the establishment of radioresistant cell line, we investigate the mechanisms of the combined treatments of radiation with Glut1 inhibitor in the radioresistant cells. RESULTS The glucose metabolism and the expression of Glut1 are significantly stimulated by radiotherapy. We report the radioresistant breast cancer cells exhibit upregulated Glut1 expression and glucose metabolism. In addition, we observed overexpression of Glut1 renders breast cancer cells resistant to radiation and knocking down of Glut1 sensitizes breast cancer cells to radiation. We treated breast cancer cells with radiation and WZB117 which inhibits Glut1 expression and glucose metabolism and found the combination of WZB117 and radiation exhibits synergistically inhibitory effects on breast cancer cells. Finally, we demonstrate the inhibition of Glut1 re-sensitizes the radioresistant cancer cells to radiation. CONCLUSIONS This study reveals the roles of Glut1 in the radiosensitivity of human breast cancer. It will provide new mechanisms and strategies for the sensitization of cancer cells to radiotherapy through regulation of glucose metabolism.
Collapse
Affiliation(s)
- Fei Zhao
- Department of Recuperation, NO. 281 Hospital of PLA, Qinhuangdao, 066100, China
| | - Jia Ming
- Breast Disease Center, Southwest Hospital, Third Military Medical University, NO. 29 Gaotanyan Street, Chongqing, 400038, China
| | - Yan Zhou
- Breast Disease Center, Southwest Hospital, Third Military Medical University, NO. 29 Gaotanyan Street, Chongqing, 400038, China
| | - Linjun Fan
- Breast Disease Center, Southwest Hospital, Third Military Medical University, NO. 29 Gaotanyan Street, Chongqing, 400038, China.
| |
Collapse
|
41
|
Koch A, Lang SA, Wild PJ, Gantner S, Mahli A, Spanier G, Berneburg M, Müller M, Bosserhoff AK, Hellerbrand C. Glucose transporter isoform 1 expression enhances metastasis of malignant melanoma cells. Oncotarget 2015; 6:32748-60. [PMID: 26293674 PMCID: PMC4741727 DOI: 10.18632/oncotarget.4977] [Citation(s) in RCA: 78] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2015] [Accepted: 07/11/2015] [Indexed: 12/29/2022] Open
Abstract
The glucose transporter isoform 1 (GLUT1; SLC2A1) is a key rate-limiting factor in the transport of glucose into cancer cells. Enhanced GLUT1 expression and accelerated glycolysis have been found to promote aggressive growth in a range of tumor entities. However, it was unknown whether GLUT1 directly impacts metastasis. Here, we aimed at analyzing the expression and function of GLUT1 in malignant melanoma. Immunohistochemical analysis of 78 primary human melanomas on a tissue micro array showed that GLUT1 expression significantly correlated with the mitotic activity and a poor survival. To determine the functional role of GLUT1 in melanoma, we stably suppressed GLUT1 in the murine melanoma cell line B16 with shRNA. GLUT1 suppressed melanoma cells revealed significantly reduced proliferation, apoptosis resistance, migratory activity and matrix metalloproteinase 2 (MMP2) expression. In a syngeneic murine model of hepatic metastasis, GLUT1-suppressed cells formed significantly less metastases and showed increased apoptosis compared to metastases formed by control cells. Treatment of four different human melanoma cell lines with a pharmacological GLUT1 inhibitor caused a dose-dependent reduction of proliferation, apoptosis resistance, migratory activity and MMP2 expression. Analysis of MAPK signal pathways showed that GLUT1 inhibition significantly decreased JNK activation, which regulates a wide range of targets in the metastatic cascade. In summary, our study provides functional evidence that enhanced GLUT1 expression in melanoma cells favors their metastatic behavior. These findings specify GLUT1 as an attractive therapeutic target and prognostic marker for this highly aggressive tumor.
Collapse
Affiliation(s)
- Andreas Koch
- Department of Internal Medicine I, University Hospital Regensburg, Germany
| | - Sven Arke Lang
- Department of Surgery, University Hospital Regensburg, Germany
| | | | - Susanne Gantner
- Department of Dermatology, University Hospital Regensburg, Germany
| | - Abdo Mahli
- Department of Internal Medicine I, University Hospital Regensburg, Germany
| | - Gerrit Spanier
- Department of Cranio-Maxillo-Facial Surgery, University Hospital Regensburg, Germany
| | - Mark Berneburg
- Department of Dermatology, University Hospital Regensburg, Germany
| | - Martina Müller
- Department of Internal Medicine I, University Hospital Regensburg, Germany
| | | | - Claus Hellerbrand
- Department of Internal Medicine I, University Hospital Regensburg, Germany
| |
Collapse
|
42
|
Chen J, Wu L, Wang Y, Yin J, Li X, Wang Z, Li H, Zou T, Qian C, Li C, Zhang W, Zhou H, Liu Z. Effect of transporter and DNA repair gene polymorphisms to lung cancer chemotherapy toxicity. Tumour Biol 2015; 37:2275-84. [PMID: 26358256 DOI: 10.1007/s13277-015-4048-0] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2015] [Accepted: 09/02/2015] [Indexed: 11/26/2022] Open
Abstract
Lung cancer is the first leading cause of cancer deaths. Chemotherapy toxicity is one of factors that limited the efficacy of platinum-based chemotherapy in lung cancer patients. Transporters and DNA repair genes play critical roles in occurrence of platinum-based chemotherapy toxicity. To investigate the relationships between transporter and DNA repair gene polymorphisms and platinum-based chemotherapy toxicity in lung cancer patients, we selected 60 polymorphisms in 14 transporters and DNA repair genes. The polymorphisms were genotyped in 317 lung cancer patients by Sequenom MassARRAY. Logistic regression was performed to estimate the association of toxicity outcome with the polymorphisms by PLINK. Our results showed that polymorphisms of SLC2A1 (rs3738514, rs4658, rs841844) were significantly related to overall toxicity. XRCC5 (rs1051685, rs6941) and AQP2 (10875989, rs3759125) polymorphisms were associated with hematologic toxicity. AQP2 polymorphisms (rs461872, rs7305534) were correlated with gastrointestinal toxicity. In conclusion, genotypes of these genes may be used to predict the platinum-based chemotherapy toxicity in lung cancer patients.
Collapse
Affiliation(s)
- Juan Chen
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha, 410008, People's Republic of China
- Institute of Clinical Pharmacology, Central South University, Hunan Key Laboratory of Pharmacogenetics, Changsha, 410078, People's Republic of China
- Hunan Province Cooperation Innovation Center for Molecular Target New Drug Study, Hengyang, 421001, People's Republic of China
| | - Lin Wu
- The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, 410014, People's Republic of China
| | - Ying Wang
- The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, 410014, People's Republic of China
| | - Jiye Yin
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha, 410008, People's Republic of China
- Institute of Clinical Pharmacology, Central South University, Hunan Key Laboratory of Pharmacogenetics, Changsha, 410078, People's Republic of China
- Hunan Province Cooperation Innovation Center for Molecular Target New Drug Study, Hengyang, 421001, People's Republic of China
| | - Xiangping Li
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha, 410008, People's Republic of China
- Institute of Clinical Pharmacology, Central South University, Hunan Key Laboratory of Pharmacogenetics, Changsha, 410078, People's Republic of China
| | - Zhan Wang
- Department of Oncology, Xiangya Hospital, Central South University, Changsha, 410008, People's Republic of China
| | - Huihua Li
- Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Medicine, University of Pittsburgh, Pittsburgh, PA, 15213, USA
| | - Ting Zou
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha, 410008, People's Republic of China
- Institute of Clinical Pharmacology, Central South University, Hunan Key Laboratory of Pharmacogenetics, Changsha, 410078, People's Republic of China
| | - Chenyue Qian
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha, 410008, People's Republic of China
- Institute of Clinical Pharmacology, Central South University, Hunan Key Laboratory of Pharmacogenetics, Changsha, 410078, People's Republic of China
| | - Chuntian Li
- Department of Radiotherapy, PLA 463 Hospital, Shenyang, 110042, People's Republic of China
| | - Wei Zhang
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha, 410008, People's Republic of China
- Institute of Clinical Pharmacology, Central South University, Hunan Key Laboratory of Pharmacogenetics, Changsha, 410078, People's Republic of China
- Hunan Province Cooperation Innovation Center for Molecular Target New Drug Study, Hengyang, 421001, People's Republic of China
| | - Honghao Zhou
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha, 410008, People's Republic of China
- Institute of Clinical Pharmacology, Central South University, Hunan Key Laboratory of Pharmacogenetics, Changsha, 410078, People's Republic of China
- Hunan Province Cooperation Innovation Center for Molecular Target New Drug Study, Hengyang, 421001, People's Republic of China
| | - Zhaoqian Liu
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha, 410008, People's Republic of China.
- Institute of Clinical Pharmacology, Central South University, Hunan Key Laboratory of Pharmacogenetics, Changsha, 410078, People's Republic of China.
- Hunan Province Cooperation Innovation Center for Molecular Target New Drug Study, Hengyang, 421001, People's Republic of China.
| |
Collapse
|
43
|
Amorim R, Pinheiro C, Miranda-Gonçalves V, Pereira H, Moyer MP, Preto A, Baltazar F. Monocarboxylate transport inhibition potentiates the cytotoxic effect of 5-fluorouracil in colorectal cancer cells. Cancer Lett 2015; 365:68-78. [PMID: 26021766 DOI: 10.1016/j.canlet.2015.05.015] [Citation(s) in RCA: 63] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2015] [Revised: 04/29/2015] [Accepted: 05/10/2015] [Indexed: 01/02/2023]
Abstract
Cancer cells rely mostly on glycolysis to meet their energetic demands, producing large amounts of lactate that are extruded to the tumour microenvironment by monocarboxylate transporters (MCTs). The role of MCTs in the survival of colorectal cancer (CRC) cells is scarce and poorly understood. In this study, we aimed to better understand this issue and exploit these transporters as novel therapeutic targets alone or in combination with the CRC classical chemotherapeutic drug 5-Fluorouracil. For that purpose, we characterized the effects of MCT activity inhibition in normal and CRC derived cell lines and assessed the effect of MCT inhibition in combination with 5-FU. Here, we demonstrated that MCT inhibition using CHC (α-cyano-4-hydroxycinnamic acid), DIDS (4,4'-diisothiocyanatostilbene-2,2'-disulphonic acid) and quercetin decreased cell viability, disrupted the glycolytic phenotype, inhibited proliferation and enhanced cell death in CRC cells. These results were confirmed by specific inhibition of MCT1/4 by RNA interference. Notably, we showed that 5-FU cytotoxicity was potentiated by lactate transport inhibition in CRC cells, either by activity inhibition or expression silencing. These findings provide novel evidence for the pivotal role of MCTs in CRC maintenance and survival, as well as for the use of these transporters as potential new therapeutic targets in combination with CRC conventional therapy.
Collapse
Affiliation(s)
- Ricardo Amorim
- Life and Health Sciences Research Institute (ICVS), School of Health Sciences, University of Minho, Braga, Portugal; ICVS/3B's - PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Céline Pinheiro
- Life and Health Sciences Research Institute (ICVS), School of Health Sciences, University of Minho, Braga, Portugal; ICVS/3B's - PT Government Associate Laboratory, Braga/Guimarães, Portugal; Molecular Oncology Research Center, Barretos Cancer Hospital, Barretos, Sao Paulo, Brazil; Barretos School of Health Sciences Dr. Paulo Prata - FACISB, Barretos, Sao Paulo, Brazil
| | - Vera Miranda-Gonçalves
- Life and Health Sciences Research Institute (ICVS), School of Health Sciences, University of Minho, Braga, Portugal; ICVS/3B's - PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Helena Pereira
- Centre of Molecular and Environmental Biology (CBMA)/Department of Biology, University of Minho, Braga, Portugal
| | | | - Ana Preto
- Centre of Molecular and Environmental Biology (CBMA)/Department of Biology, University of Minho, Braga, Portugal
| | - Fátima Baltazar
- Life and Health Sciences Research Institute (ICVS), School of Health Sciences, University of Minho, Braga, Portugal; ICVS/3B's - PT Government Associate Laboratory, Braga/Guimarães, Portugal.
| |
Collapse
|