1
|
Dickinson PJ, Triesch S, Schlüter U, Weber APM, Hibberd JM. A transcription factor module mediating C 2 photosynthesis in the Brassicaceae. EMBO Rep 2025:10.1038/s44319-025-00461-1. [PMID: 40312562 DOI: 10.1038/s44319-025-00461-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2024] [Revised: 03/14/2025] [Accepted: 04/07/2025] [Indexed: 05/03/2025] Open
Abstract
C4 photosynthesis has arisen from the ancestral C3 state in over sixty lineages of angiosperms. It is widely accepted that an early step in C4 evolution is associated with the appearance of so-called C2 photosynthesis caused by loss of glycine decarboxylase activity from mesophyll cells followed by activation in the bundle sheath. Although changes in cis to a distal enhancer upstream of the P-subunit of GLYCINE DECARBOXYLASE (GLDP) from C2 Moricandia enable loss of expression from mesophyll cells, the mechanism then allowing GLDP expression in the bundle sheath is not known. Here we identify a MYC-MYB transcription factor module previously associated with the control of glucosinolate biosynthesis as the basis of this foundational event in the evolution of C2 photosynthesis. Specifically, we find that in the C3 state this MYC-MYB module already patterns GLDP expression to bundle sheath cells. As a consequence, when GLDP expression is lost from the mesophyll, the MYC-MYB dependent expression in the bundle sheath is revealed. Evolution of C2 photosynthesis is thus associated with a MYC-MYB based transcriptional network already present in the C3 state. This work identifies a molecular genetic mechanism underlying the bundle sheath accumulation of glycine decarboxylase required for C2 photosynthesis and thus a fundamental step in the evolution of C4 photosynthesis.
Collapse
Affiliation(s)
- Patrick J Dickinson
- Department of Plant Sciences, University of Cambridge, Downing Street, Cambridge, CB2 3EA, UK.
| | - Sebastian Triesch
- Institute of Biochemistry, Heinrich-Heine University, 40225, Düsseldorf, Germany
| | - Urte Schlüter
- Institute of Biochemistry, Heinrich-Heine University, 40225, Düsseldorf, Germany
| | - Andreas P M Weber
- Institute of Biochemistry, Heinrich-Heine University, 40225, Düsseldorf, Germany
| | - Julian M Hibberd
- Department of Plant Sciences, University of Cambridge, Downing Street, Cambridge, CB2 3EA, UK.
| |
Collapse
|
2
|
Munekage YN, Osawa M, Taniguchi YY, Okudono K, Sage TL. Early Initiation of Bundle Sheath Cells During Leaf Development as Visualised by SCARECROW Expression in Dicotyledonous C 4 Plants. PLANT, CELL & ENVIRONMENT 2025; 48:3660-3672. [PMID: 39806866 DOI: 10.1111/pce.15374] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Revised: 12/26/2024] [Accepted: 12/28/2024] [Indexed: 01/16/2025]
Abstract
The C4 type of dicotyledonous plants exhibit a higher density of reticulate veins than the C3 type, with a nearly 1:1 ratio of mesophyll cells (MCs) to bundle sheath cells (BSCs). To understand how this C4-type cell pattern is formed, we identified two SCARECROW (SCR) genes in C4 Flaveria bidentis, FbSCR1 and FbSCR2, that fully or partially complement the endodermal cell layer-defective phenotype of Arabidopsis scr mutant. We then created FbSCRs promoter β-glucuronidase reporter (GUS) lines of F. bidentis, which showed GUS expression in BSCs and their progenitor cells. The GUS expression pattern in F. bidentis transformants and comparison with the closely related C3-type Flaveria pringlei revealed that higher-order veins were initiated in the early leaf developmental stage. Treatment with an auxin polarity transport inhibitor decreased the MC area and led to vein formation without free ends, resulting in the formation of BSCs in positions adjacent to other BSCs. However, BSC differentiation was not affected, as evidenced by BSC specific FbSCR1 expression and RuBisCO accumulation. These results indicate that polar auxin transport is important for MC proliferation and/or differentiation, which leads to the formation of a C4-type cell pattern in which MCs and BSCs are equally adjacent.
Collapse
Affiliation(s)
- Yuri N Munekage
- Department of Biosciences, School of Biological and Environmental Sciences, Kwansei Gakuin University, Sanda, Hyogo, Japan
| | - Mei Osawa
- Department of Biosciences, School of Biological and Environmental Sciences, Kwansei Gakuin University, Sanda, Hyogo, Japan
| | - Yukimi Y Taniguchi
- Department of Biosciences, School of Biological and Environmental Sciences, Kwansei Gakuin University, Sanda, Hyogo, Japan
| | - Ken Okudono
- Department of Biosciences, School of Biological and Environmental Sciences, Kwansei Gakuin University, Sanda, Hyogo, Japan
| | - Tammy L Sage
- Department of Ecology & Evolutionary Biology, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
3
|
Alvarenga JP, Stata M, Sage RF, Patel R, das Chagas Mendonca AM, Della Torre F, Liu H, Cheng S, Weake S, Watanabe EJ, Lage Viana P, de Castro Arruda IA, Ludwig M, Delfino Barbosa JPRA, Sage TL. Evolutionary diversification of C2 photosynthesis in the grass genus Homolepis (Arthropogoninae). ANNALS OF BOTANY 2025; 135:769-788. [PMID: 39688921 PMCID: PMC11904902 DOI: 10.1093/aob/mcae214] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/12/2024] [Accepted: 12/12/2024] [Indexed: 12/18/2024]
Abstract
BACKGROUND AND AIMS To better understand C4 evolution in monocots, we characterized C3-C4 intermediate phenotypes in the grass genus Homolepis (subtribe Arthropogoninae). METHODS Carbon isotope ratio (δ13C), leaf gas exchange, mesophyll (M) and bundle sheath (BS) tissue characteristics, organelle size and numbers in M and BS tissue, and tissue distribution of the P-subunit of glycine decarboxylase (GLDP) were determined for five Homolepis species and the C4 grass Mesosetum loliiforme from a phylogenetic sister clade. We generated a transcriptome-based phylogeny for Homolepis and Mesosetum species to interpret physiological and anatomical patterns in an evolutionary context, and to test for hybridization. KEY RESULTS Homolepis contains two C3 species (H. glutinosa, H. villaricensis), one species with a weaker form of C2 termed sub-C2 (H. isocalycia), and two C2 species (H. longispicula, H. aturensis). Homolepis longispicula and H. aturensis express over 85 % of leaf glycine in centripetal mitochondria within the BS, and have increased fractions of leaf chloroplasts, mitochondria and peroxisomes within the BS relative to H. glutinosa. Analysis of leaf gas exchange, cell ultrastructure and transcript expression show M. loliiforme is a C4 plant of the NADP-malic enzyme subtype. Homolepis comprises two sister clades, one containing H. glutinosa and H. villaricensis and the second H. longispicula and H. aturensis. Homolepis isocalycia is of hybrid origin, its parents being H. aturensis and a common ancestor of the C3 Homolepis clade and H. longispicula. CONCLUSIONS Photosynthetic activation of BS tissue in the sub-C2 and C2 species of Homolepis is similar to patterns observed in C3-C4 intermediate eudicots, indicating common evolutionary pathways from C3 to C4 photosynthesis in these disparate clades. Hybridization can diversify the C3-C4 intermediate character state and should be considered in reconstructing putative ancestral states using phylogenetic analyses.
Collapse
Affiliation(s)
- Joyce Pereira Alvarenga
- Laboratory of Ecophysiology, Plant Physiology Sector, Department of Biology, Federal University of Lavras, Lavras, Minas Gerais, 37200-900, Brazil
- Department of Ecology and Evolutionary Biology, University of Toronto, Ontario, M5S 3B2, Canada
| | - Matt Stata
- Department of Ecology and Evolutionary Biology, University of Toronto, Ontario, M5S 3B2, Canada
| | - Rowan F Sage
- Department of Ecology and Evolutionary Biology, University of Toronto, Ontario, M5S 3B2, Canada
| | - Ria Patel
- Department of Ecology and Evolutionary Biology, University of Toronto, Ontario, M5S 3B2, Canada
| | - Ane Marcela das Chagas Mendonca
- Laboratory of Ecophysiology, Plant Physiology Sector, Department of Biology, Federal University of Lavras, Lavras, Minas Gerais, 37200-900, Brazil
- Department of Ecology and Evolutionary Biology, University of Toronto, Ontario, M5S 3B2, Canada
| | - Felipe Della Torre
- Department of Ecology and Evolutionary Biology, University of Toronto, Ontario, M5S 3B2, Canada
- Laboratory of Plant Physiology, Department of Botany, Institute of Science Biology, Federal University of Minas Gerais, Belo Horizonte, Minas Gerais, 31270-901, Brazil
| | - Hongbing Liu
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, 518120, China
| | - Shifeng Cheng
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, 518120, China
| | - Samantha Weake
- Department of Ecology and Evolutionary Biology, University of Toronto, Ontario, M5S 3B2, Canada
| | - Emile J Watanabe
- Department of Ecology and Evolutionary Biology, University of Toronto, Ontario, M5S 3B2, Canada
| | - Pedro Lage Viana
- Instituto Nacional da Mata Atlantica, Santa Teresa, Espirito Santo, 29650-000, Brazil
| | - Iago Augusto de Castro Arruda
- Laboratory of Ecophysiology, Plant Physiology Sector, Department of Biology, Federal University of Lavras, Lavras, Minas Gerais, 37200-900, Brazil
| | - Martha Ludwig
- School of Molecular Sciences, University of Western Australia, Crawley, WA 6009, Australia
| | | | - Tammy L Sage
- Department of Ecology and Evolutionary Biology, University of Toronto, Ontario, M5S 3B2, Canada
| |
Collapse
|
4
|
Lyu MJA, Du H, Yao H, Zhang Z, Chen G, Huang Y, Ni X, Chen F, Zhao YY, Tang Q, Miao F, Wang Y, Zhao Y, Lu H, Fang L, Gao Q, Qi Y, Zhang Q, Zhang J, Yang T, Cui X, Liang C, Lu T, Zhu XG. A dominant role of transcriptional regulation during the evolution of C 4 photosynthesis in Flaveria species. Nat Commun 2025; 16:1643. [PMID: 39952962 PMCID: PMC11828953 DOI: 10.1038/s41467-025-56901-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Accepted: 02/02/2025] [Indexed: 02/17/2025] Open
Abstract
C4 photosynthesis exemplifies convergent evolution of complex traits. Herein, we construct chromosome-scale genome assemblies and perform multi-omics analysis for five Flaveria species, which represent evolutionary stages from C3 to C4 photosynthesis. Chromosome-scale genome sequence analyses reveal a gradual increase in genome size during the evolution of C4 photosynthesis attributed to the expansion of transposable elements. Systematic annotation of genes encoding C4 enzymes and transporters identify additional copies of three C4 enzyme genes through retrotranspositions in C4 species. C4 genes exhibit elevated mRNA and protein abundances, reduced protein-to-RNA ratios, and comparable translation efficiencies in C4 species, highlighting a critical role of transcriptional regulation in C4 evolution. Furthermore, we observe an increased abundance of ethylene response factor (ERF) transcription factors and cognate cis-regulatory elements associated with C4 genes regulation. Altogether, our study provides valuable genomic resources for the Flaveria genus and sheds lights on evolutionary and regulatory mechanisms underlying C4 photosynthesis.
Collapse
Affiliation(s)
- Ming-Ju Amy Lyu
- State Key Laboratory of Plant Molecular Genetics, Center of Excellence for Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai, 200032, China.
| | - Huilong Du
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, Innovation Academy for Seed Design, Chinese Academy of Sciences, Beijing, China
- School of Life Sciences, Institute of Life Sciences and Green Development, Hebei University, Baoding, China
| | - Hongyan Yao
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Fudan University, Shanghai, 200438, China
| | - Zhiguo Zhang
- Biotechnology Research Institute/National Key Facility for Gene Resources and Gene Improvement, Chinese Academy of Agricultural Sciences, 100081, Beijing, China
| | - Genyun Chen
- State Key Laboratory of Plant Molecular Genetics, Center of Excellence for Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai, 200032, China
| | - Yuhui Huang
- State Key Laboratory of Plant Molecular Genetics, Center of Excellence for Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai, 200032, China
- University of Chinese Academy of Sciences, 100049, Beijing, China
| | - Xiaoxiang Ni
- State Key Laboratory of Plant Molecular Genetics, Center of Excellence for Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai, 200032, China
- University of Chinese Academy of Sciences, 100049, Beijing, China
| | - Faming Chen
- State Key Laboratory of Plant Molecular Genetics, Center of Excellence for Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai, 200032, China
- University of Chinese Academy of Sciences, 100049, Beijing, China
| | - Yong-Yao Zhao
- State Key Laboratory of Plant Molecular Genetics, Center of Excellence for Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai, 200032, China
- University of Chinese Academy of Sciences, 100049, Beijing, China
| | - Qiming Tang
- State Key Laboratory of Plant Molecular Genetics, Center of Excellence for Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai, 200032, China
- University of Chinese Academy of Sciences, 100049, Beijing, China
| | - Fenfen Miao
- State Key Laboratory of Plant Molecular Genetics, Center of Excellence for Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai, 200032, China
- University of Chinese Academy of Sciences, 100049, Beijing, China
| | - Yanjie Wang
- State Key Laboratory of Plant Molecular Genetics, Center of Excellence for Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai, 200032, China
- University of Chinese Academy of Sciences, 100049, Beijing, China
| | - Yuhui Zhao
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, Innovation Academy for Seed Design, Chinese Academy of Sciences, Beijing, China
| | - Hongwei Lu
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, Innovation Academy for Seed Design, Chinese Academy of Sciences, Beijing, China
| | - Lu Fang
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, Innovation Academy for Seed Design, Chinese Academy of Sciences, Beijing, China
| | - Qiang Gao
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, Innovation Academy for Seed Design, Chinese Academy of Sciences, Beijing, China
| | - Yiying Qi
- Center for Genomics and Biotechnology, Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Key Laboratory of Sugarcane Biology and Genetic Breeding, National Engineering Research Center for Sugarcane, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Qing Zhang
- Center for Genomics and Biotechnology, Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Key Laboratory of Sugarcane Biology and Genetic Breeding, National Engineering Research Center for Sugarcane, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Jisen Zhang
- Center for Genomics and Biotechnology, Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Key Laboratory of Sugarcane Biology and Genetic Breeding, National Engineering Research Center for Sugarcane, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Tao Yang
- China National GeneBank, Shenzhen, 518120, China
| | - Xuean Cui
- Biotechnology Research Institute/National Key Facility for Gene Resources and Gene Improvement, Chinese Academy of Agricultural Sciences, 100081, Beijing, China
| | - Chengzhi Liang
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, Innovation Academy for Seed Design, Chinese Academy of Sciences, Beijing, China.
| | - Tiegang Lu
- Biotechnology Research Institute/National Key Facility for Gene Resources and Gene Improvement, Chinese Academy of Agricultural Sciences, 100081, Beijing, China.
| | - Xin-Guang Zhu
- State Key Laboratory of Plant Molecular Genetics, Center of Excellence for Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai, 200032, China.
| |
Collapse
|
5
|
Lauterbach M, Bräutigam A, Clayton H, Saladié M, Rolland V, Macfarlane TD, Weber APM, Ludwig M. Leaf transcriptomes from C3, C3-C4 intermediate, and C4Neurachne species give insights into C4 photosynthesis evolution. PLANT PHYSIOLOGY 2024; 197:kiae424. [PMID: 39149860 PMCID: PMC11663609 DOI: 10.1093/plphys/kiae424] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 07/08/2024] [Accepted: 07/23/2024] [Indexed: 08/17/2024]
Abstract
The C4 photosynthetic pathway is hypothesized to have evolved from the ancestral C3 pathway through progressive changes in leaf anatomy and biochemistry with extant C3-C4 photosynthetic intermediate species representing phenotypes between species demonstrating full C3 and full C4 states. The Australian endemic genus Neurachne is the only known grass group that contains distinct, closely related species that carry out C3, C3-C4 intermediate, or C4 photosynthesis. To explore and understand the molecular mechanisms underlying C4 photosynthesis evolution in this genus, leaf transcriptomes were generated from two C3, three photosynthetic intermediate (proto-Kranz, C2-like, and C2), and two C4Neurachne species. The data were used to reconstruct phylogenetic relationships in Neurachne, which confirmed two independent C4 origins in the genus. Relative transcript abundances substantiated the photosynthetic phenotypes of individual species and highlighted transcriptional investment differences between species, including between the two C4 species. The data also revealed proteins potentially involved in C4 cycle intermediate transport and identified molecular mechanisms responsible for the evolution of C4-associated proteins in the genus.
Collapse
Affiliation(s)
- Maximilian Lauterbach
- School of Molecular Sciences, University of Western Australia, Perth, WA 6009, Australia
| | - Andrea Bräutigam
- Faculty of Biology, Bielefeld University, Bielefeld 33501, Germany
| | - Harmony Clayton
- School of Molecular Sciences, University of Western Australia, Perth, WA 6009, Australia
| | - Montserrat Saladié
- School of Molecular Sciences, University of Western Australia, Perth, WA 6009, Australia
| | - Vivien Rolland
- Commonwealth Scientific and Industrial Research Organisation, Black Mountain Laboratories, Canberra, ACT 2601, Australia
| | - Terry D Macfarlane
- School of Molecular Sciences, University of Western Australia, Perth, WA 6009, Australia
- Department of Biodiversity, Conservation and Attractions, Biodiversity and Conservation Science Division, Western Australian Herbarium, Perth, WA 6152, Australia
| | - Andreas P M Weber
- Institute for Plant Biochemistry, Heinrich-Heine-University, Duesseldorf 40225, Germany
| | - Martha Ludwig
- School of Molecular Sciences, University of Western Australia, Perth, WA 6009, Australia
| |
Collapse
|
6
|
Hua X, Shi H, Zhuang G, Lan Y, Zhou S, Zhao D, Lyu MJA, Akbar S, Liu J, Yuan Y, Li Z, Jiang Q, Huang K, Zhang Y, Zhang Q, Wang G, Wang Y, Yu X, Li P, Zhang X, Wang J, Xiao S, Yao W, Ming R, Zhu XG, Zhang M, Tang H, Zhang J. Regulatory network of the late-recruited primary decarboxylase C4NADP-ME in sugarcane. PLANT PHYSIOLOGY 2024; 196:2685-2700. [PMID: 39276364 DOI: 10.1093/plphys/kiae455] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Revised: 07/30/2024] [Accepted: 07/30/2024] [Indexed: 09/17/2024]
Abstract
In agronomically important C4 grasses, efficient CO2 delivery to Rubisco is facilitated by NADP-malic enzyme (C4NADP-ME), which decarboxylates malate in bundle sheath cells. However, understanding the molecular regulation of the C4NADP-ME gene in sugarcane (Saccharum spp.) is hindered by its complex genetic background. Enzymatic activity assays demonstrated that decarboxylation in sugarcane Saccharum spontaneum predominantly relies on the NADP-ME pathway, similar to sorghum (Sorghum bicolor) and maize (Zea mays). Comparative genomics analysis revealed the recruitment of 8 core C4 shuttle genes, including C4NADP-ME (SsC4NADP-ME2), in the C4 pathway of sugarcane. Contrasting to sorghum and maize, the expression of SsC4NADP-ME2 in sugarcane is regulated by different transcription factors (TFs). We propose a gene regulatory network for SsC4NADP-ME2, involving candidate TFs identified through gene coexpression analysis and yeast 1-hybrid experiment. Among these, ABA INSENSITIVE5 (ABI5) was validated as the predominant regulator of SsC4NADP-ME2 expression, binding to a G-box within its promoter region. Interestingly, the core element ACGT within the regulatory G-box was conserved in sugarcane, sorghum, maize, and rice (Oryza sativa), suggesting an ancient regulatory code utilized in C4 photosynthesis. This study offers insights into SsC4NADP-ME2 regulation, crucial for optimizing sugarcane as a bioenergy crop.
Collapse
Affiliation(s)
- Xiuting Hua
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi Key Laboratory of Sugarcane Biology, Guangxi University, Nanning, Guangxi 530004, China
| | - Huihong Shi
- Center for Genomics and Biotechnology, National Sugarcane Engineering Technology Research Center, Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China
| | - Gui Zhuang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi Key Laboratory of Sugarcane Biology, Guangxi University, Nanning, Guangxi 530004, China
| | - Yuhong Lan
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi Key Laboratory of Sugarcane Biology, Guangxi University, Nanning, Guangxi 530004, China
| | - Shaoli Zhou
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi Key Laboratory of Sugarcane Biology, Guangxi University, Nanning, Guangxi 530004, China
| | - Dongxu Zhao
- Center for Genomics and Biotechnology, National Sugarcane Engineering Technology Research Center, Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China
| | - Ming-Ju Amy Lyu
- National Key Laboratory of Plant Molecular Genetics, CAS Center of Excellence for Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, CAS, Shanghai 200032, China
| | - Sehrish Akbar
- Center for Genomics and Biotechnology, National Sugarcane Engineering Technology Research Center, Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China
| | - Jia Liu
- Center for Genomics and Biotechnology, National Sugarcane Engineering Technology Research Center, Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China
| | - Yuan Yuan
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi Key Laboratory of Sugarcane Biology, Guangxi University, Nanning, Guangxi 530004, China
| | - Zhen Li
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi Key Laboratory of Sugarcane Biology, Guangxi University, Nanning, Guangxi 530004, China
| | - Qing Jiang
- Center for Genomics and Biotechnology, National Sugarcane Engineering Technology Research Center, Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China
| | - Kaixin Huang
- Center for Genomics and Biotechnology, National Sugarcane Engineering Technology Research Center, Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China
| | - Yating Zhang
- Center for Genomics and Biotechnology, National Sugarcane Engineering Technology Research Center, Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China
| | - Qing Zhang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi Key Laboratory of Sugarcane Biology, Guangxi University, Nanning, Guangxi 530004, China
| | - Gang Wang
- Center for Genomics and Biotechnology, National Sugarcane Engineering Technology Research Center, Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China
| | - Yu Wang
- Department of Plant Biology, The University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Xiaomin Yu
- FAFU-UCR Joint Center for Horticultural Biology and Metabolomics Center, Haixia Institute of Science and Technology, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China
| | - Pinghua Li
- The State Key Laboratory of Crop Biology, College of Agronomy, Shandong Agricultural University, Tai'an, Shandong 271018, China
| | - Xingtan Zhang
- Center for Genomics and Biotechnology, National Sugarcane Engineering Technology Research Center, Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China
| | - Jianping Wang
- Agronomy Department, University of Florida, Gainesville, FL 32610, USA
| | - Shenghua Xiao
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi Key Laboratory of Sugarcane Biology, Guangxi University, Nanning, Guangxi 530004, China
| | - Wei Yao
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi Key Laboratory of Sugarcane Biology, Guangxi University, Nanning, Guangxi 530004, China
| | - Ray Ming
- Department of Plant Biology, The University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Xin-Guang Zhu
- National Key Laboratory of Plant Molecular Genetics, CAS Center of Excellence for Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, CAS, Shanghai 200032, China
| | - Muqing Zhang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi Key Laboratory of Sugarcane Biology, Guangxi University, Nanning, Guangxi 530004, China
| | - Haibao Tang
- Center for Genomics and Biotechnology, National Sugarcane Engineering Technology Research Center, Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China
| | - Jisen Zhang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi Key Laboratory of Sugarcane Biology, Guangxi University, Nanning, Guangxi 530004, China
| |
Collapse
|
7
|
Raturi A, Shekhar S, Jha RK, Chauhan D, Pandey S, Kumari S, Singh A. Genome-wide comparative analysis of photosynthetic enzymatic genes provides novel insights into foxtail millet and other cereals. Front Genet 2024; 15:1449113. [PMID: 39563735 PMCID: PMC11574623 DOI: 10.3389/fgene.2024.1449113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Accepted: 10/07/2024] [Indexed: 11/21/2024] Open
Abstract
C4 crops have more efficient photosynthetic pathways that enable their higher photosynthetic capacities as well as nitrogen and water use efficiencies than C3 crops. Previous research has demonstrated that the genomes of C3 species include and express every gene needed for the C4 photosynthesis pathway. However, very little is known about the dynamics and evolutionary history of such genetic evolution in C4 plants. In this study, the genes encoding five key photosynthetic pathway enzymes in the genomes of C3 (rice), C4 (maize, sorghum, and foxtail millet), and CAM (pineapple) crops were identified and compared systematically. The numbers of genes in these photosynthetic enzymes were highest in the C4 crops like sorghum and foxtail millet, while only eight genes were identified in the CAM plant. However, 16 genes were identified in the C3 crop rice. Furthermore, we performed physical, chemical, gene structure and, cis-element analyses to obtain complete insights into these key genes. Tissue-specific expressions showed that most of the photosynthetic genes are expressed in the leaf tissues. Comparisons of the expression characteristics confirmed that the expression patterns of non-photosynthetic gene copies were relatively conserved among the species, while the C4 gene copies in the C4 species acquired new tissue expression patterns during evolution. Additionally, multiple sequence features that could affect C4 gene expressions and subcellular localization were found in the coding and promoter regions. Our research also highlights the variations in how different genes have evolved within the C4 photosynthetic pathway, and we confirmed that specific high expressions in the leaves and right distribution within the cells were crucial for the development of the C4 photosynthetic abilities. The findings of this study are expected to aid in understanding the evolutionary process of the C4 photosynthetic pathway in grasses as well as offer insights for modifying the C4 photosynthetic pathways in wheat, rice, and other significant C3 cereal crops.
Collapse
Affiliation(s)
- Arpit Raturi
- Department of Agricultural Biotechnology and Molecular Biology, CBS&H, RPCAU-Pusa, Samastipur, Bihar, India
| | - Shivam Shekhar
- Department of Agricultural Biotechnology and Molecular Biology, CBS&H, RPCAU-Pusa, Samastipur, Bihar, India
| | - Ratnesh Kumar Jha
- Centre for Advanced Studies on Climate Change, RPCAU, Samastipur, Bihar, India
| | - Divya Chauhan
- Banasthali University, Radha Kishanpura, Rajasthan, India
| | - Saurabh Pandey
- Department of Agriculture, Guru Nanak Dev University, Amritsar, Punjab, India
| | - Sarita Kumari
- Department of Agricultural Biotechnology and Molecular Biology, CBS&H, RPCAU-Pusa, Samastipur, Bihar, India
| | - Ashutosh Singh
- Centre for Advanced Studies on Climate Change, RPCAU, Samastipur, Bihar, India
| |
Collapse
|
8
|
Liu H, Zhao H, Zhang Y, Li X, Zuo Y, Wu Z, Jin K, Xian W, Wang W, Ning W, Liu Z, Zhao X, Wang L, Sage RF, Lu T, Stata M, Cheng S. The genome of Eleocharis vivipara elucidates the genetics of C 3-C 4 photosynthetic plasticity and karyotype evolution in the Cyperaceae. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2024; 66:2505-2527. [PMID: 39177373 PMCID: PMC11583847 DOI: 10.1111/jipb.13765] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 07/21/2024] [Accepted: 07/25/2024] [Indexed: 08/24/2024]
Abstract
Eleocharis vivipara, an amphibious sedge in the Cyperaceae family, has several remarkable properties, most notably its alternate use of C3 photosynthesis underwater and C4 photosynthesis on land. However, the absence of genomic data has hindered its utility for evolutionary and genetic research. Here, we present a high-quality genome for E. vivipara, representing the first chromosome-level genome for the Eleocharis genus, with an approximate size of 965.22 Mb mainly distributed across 10 chromosomes. Its Hi-C pattern, chromosome clustering results, and one-to-one genome synteny across two subgroups indicates a tetraploid structure with chromosome count 2n = 4x = 20. Phylogenetic analysis suggests that E. vivipara diverged from Cyperus esculentus approximately 32.96 million years ago (Mya), and underwent a whole-genome duplication (WGD) about 3.5 Mya. Numerous fusion and fission events were identified between the chromosomes of E. vivipara and its close relatives. We demonstrate that E. vivipara has holocentromeres, a chromosomal feature which can maintain the stability of such chromosomal rearrangements. Experimental transplantation and cross-section studies showed its terrestrial culms developed C4 Kranz anatomy with increased number of chloroplasts in the bundle sheath (BS) cells. Gene expression and weighted gene co-expression network analysis (WGCNA) showed overall elevated expression of core genes associated with the C4 pathway, and significant enrichment of genes related to modified culm anatomy and photosynthesis efficiency. We found evidence of mixed nicotinamide adenine dinucleotide - malic enzyme and phosphoenolpyruvate carboxykinase type C4 photosynthesis in E. vivipara, and hypothesize that the evolution of C4 photosynthesis predates the WGD event. The mixed type is dominated by subgenome A and supplemented by subgenome B. Collectively, our findings not only shed light on the evolution of E. vivipara and karyotype within the Cyperaceae family, but also provide valuable insights into the transition between C3 and C4 photosynthesis, offering promising avenues for crop improvement and breeding.
Collapse
Affiliation(s)
- Hongbing Liu
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, 518120, China
| | - Hang Zhao
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
- Gembloux Agro-Bio Tech, TERRA Teaching and Research Centre, University of Liège, Gembloux, 4000, Belgium
| | - Yanwen Zhang
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, 518120, China
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, Kaifeng, 475004, China
- Shenzhen Research Institute of Henan university, Shenzhen, 518000, China
| | - Xiuli Li
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, 518120, China
| | - Yi Zuo
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, China National Botanical Garden, Chinese Academy of Science, Beijing, 100093, China
| | - Zhen Wu
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, 518120, China
| | - Kaining Jin
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
- Department of Plant Sciences, Centre for Crop Systems Analysis, Wageningen University & Research, Wageningen, 6708 WB, The Netherlands
| | - Wenfei Xian
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, 518120, China
| | - Wenzheng Wang
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Weidong Ning
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, 518120, China
| | - Zijian Liu
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, 518120, China
- Gembloux Agro-Bio Tech, TERRA Teaching and Research Centre, University of Liège, Gembloux, 4000, Belgium
| | - Xiaoxiao Zhao
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, 518120, China
| | - Lei Wang
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, China National Botanical Garden, Chinese Academy of Science, Beijing, 100093, China
| | - Rowan F Sage
- Department of Ecology and Evolutionary Biology, The University of Toronto, Toronto, M5S 3B2, ON, Canada
| | - Tiegang Lu
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Matt Stata
- Plant Resilience Institute, Michigan State University, East Lansing, 48824, MI, USA
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, 48824, MI, USA
| | - Shifeng Cheng
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, 518120, China
| |
Collapse
|
9
|
Croce R, Carmo-Silva E, Cho YB, Ermakova M, Harbinson J, Lawson T, McCormick AJ, Niyogi KK, Ort DR, Patel-Tupper D, Pesaresi P, Raines C, Weber APM, Zhu XG. Perspectives on improving photosynthesis to increase crop yield. THE PLANT CELL 2024; 36:3944-3973. [PMID: 38701340 PMCID: PMC11449117 DOI: 10.1093/plcell/koae132] [Citation(s) in RCA: 36] [Impact Index Per Article: 36.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 03/11/2024] [Accepted: 03/22/2024] [Indexed: 05/05/2024]
Abstract
Improving photosynthesis, the fundamental process by which plants convert light energy into chemical energy, is a key area of research with great potential for enhancing sustainable agricultural productivity and addressing global food security challenges. This perspective delves into the latest advancements and approaches aimed at optimizing photosynthetic efficiency. Our discussion encompasses the entire process, beginning with light harvesting and its regulation and progressing through the bottleneck of electron transfer. We then delve into the carbon reactions of photosynthesis, focusing on strategies targeting the enzymes of the Calvin-Benson-Bassham (CBB) cycle. Additionally, we explore methods to increase carbon dioxide (CO2) concentration near the Rubisco, the enzyme responsible for the first step of CBB cycle, drawing inspiration from various photosynthetic organisms, and conclude this section by examining ways to enhance CO2 delivery into leaves. Moving beyond individual processes, we discuss two approaches to identifying key targets for photosynthesis improvement: systems modeling and the study of natural variation. Finally, we revisit some of the strategies mentioned above to provide a holistic view of the improvements, analyzing their impact on nitrogen use efficiency and on canopy photosynthesis.
Collapse
Affiliation(s)
- Roberta Croce
- Department of Physics and Astronomy, Faculty of Science, Vrije Universiteit Amsterdam, Amsterdam 1081 HV, theNetherlands
| | | | - Young B Cho
- Carl R. Woese Institute for Genomic Biology, Department of Plant Biology, University of Illinois, Urbana, IL 61801, USA
| | - Maria Ermakova
- School of Biological Sciences, Faculty of Science, Monash University, Melbourne, VIC 3800, Australia
| | - Jeremy Harbinson
- Laboratory of Biophysics, Wageningen University, 6708 WE Wageningen, the Netherlands
| | - Tracy Lawson
- School of Life Sciences, University of Essex, Colchester, Essex CO4 3SQ, UK
| | - Alistair J McCormick
- School of Biological Sciences, Institute of Molecular Plant Sciences, University of Edinburgh, Edinburgh EH9 3BF, UK
- Centre for Engineering Biology, School of Biological Sciences, University of Edinburgh, Edinburgh EH9 3BF, UK
| | - Krishna K Niyogi
- Department of Plant and Microbial Biology, University of California, Berkeley, CA 94720, USA
- Howard Hughes Medical Institute, University of California, Berkeley, CA 94720, USA
- Innovative Genomics Institute, University of California, Berkeley, CA 94720, USA
- Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Donald R Ort
- Carl R. Woese Institute for Genomic Biology, Department of Plant Biology, University of Illinois, Urbana, IL 61801, USA
| | - Dhruv Patel-Tupper
- Department of Plant and Microbial Biology, University of California, Berkeley, CA 94720, USA
- Howard Hughes Medical Institute, University of California, Berkeley, CA 94720, USA
| | - Paolo Pesaresi
- Department of Biosciences, University of Milan, 20133 Milan, Italy
| | - Christine Raines
- School of Life Sciences, University of Essex, Colchester, Essex CO4 3SQ, UK
| | - Andreas P M Weber
- Institute of Plant Biochemistry, Cluster of Excellence on Plant Science (CEPLAS), Heinrich Heine University, Düsseldorf 40225, Germany
| | - Xin-Guang Zhu
- Key Laboratory of Carbon Capture, Center of Excellence for Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai 200032, China
| |
Collapse
|
10
|
Leung A, Patel R, Chirachon V, Stata M, Macfarlane TD, Ludwig M, Busch FA, Sage TL, Sage RF. Tribulus (Zygophyllaceae) as a case study for the evolution of C 2 and C 4 photosynthesis. PLANT, CELL & ENVIRONMENT 2024; 47:3541-3560. [PMID: 39132738 DOI: 10.1111/pce.15069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2024] [Revised: 07/19/2024] [Accepted: 07/23/2024] [Indexed: 08/13/2024]
Abstract
C2 photosynthesis is a photosynthetic pathway in which photorespiratory CO2 release and refixation are enhanced in leaf bundle sheath (BS) tissues. The evolution of C2 photosynthesis has been hypothesized to be a major step in the origin of C4 photosynthesis, highlighting the importance of studying C2 evolution. In this study, physiological, anatomical, ultrastructural, and immunohistochemical properties of leaf photosynthetic tissues were investigated in six non-C4 Tribulus species and four C4 Tribulus species. At 42°C, T. cristatus exhibited a photosynthetic CO2 compensation point in the absence of respiration (C*) of 21 µmol mol-1, below the C3 mean C* of 73 µmol mol-1. Tribulus astrocarpus had a C* value at 42°C of 55 µmol mol-1, intermediate between the C3 species and the C2 T. cristatus. Glycine decarboxylase (GDC) allocation to BS tissues was associated with lower C*. Tribulus cristatus and T. astrocarpus allocated 86% and 30% of their GDC to the BS tissues, respectively, well above the C3 mean of 11%. Tribulus astrocarpus thus exhibits a weaker C2 (termed sub-C2) phenotype. Increased allocation of mitochondria to the BS and decreased length-to-width ratios of BS cells, were present in non-C4 species, indicating a potential role in C2 and C4 evolution.
Collapse
Affiliation(s)
- Arthur Leung
- Department of Ecology & Evolutionary Biology, University of Toronto, Toronto, Ontario, Canada
| | - Ria Patel
- Department of Ecology & Evolutionary Biology, University of Toronto, Toronto, Ontario, Canada
| | - Varosak Chirachon
- Department of Ecology & Evolutionary Biology, University of Toronto, Toronto, Ontario, Canada
| | - Matt Stata
- Department of Ecology & Evolutionary Biology, University of Toronto, Toronto, Ontario, Canada
- Departments of Biochemistry and Molecular Biology, Plant Biology, and Plant, Soil, and Microbial Sciences, Plant Resilience Institute, Michigan State University, East Lansing, Michigan, USA
| | - Terry D Macfarlane
- School of Molecular Sciences, University of Western Australia, Crawley, Western Australia, Australia
- Department of Biodiversity, Conservation and Attractions, Western Australian Herbarium, Perth, Western Australia, Australia
| | - Martha Ludwig
- School of Molecular Sciences, University of Western Australia, Crawley, Western Australia, Australia
| | - Florian A Busch
- Department of Ecology & Evolutionary Biology, University of Toronto, Toronto, Ontario, Canada
- School of Biosciences and Birmingham Institute of Forest Research, University of Birmingham, Edgbaston, Birmingham, UK
| | - Tammy L Sage
- Department of Ecology & Evolutionary Biology, University of Toronto, Toronto, Ontario, Canada
| | - Rowan F Sage
- Department of Ecology & Evolutionary Biology, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
11
|
Tang Q, Huang Y, Ni X, Lyu MJA, Chen G, Sage R, Zhu XG. Increased α-ketoglutarate links the C3-C4 intermediate state to C4 photosynthesis in the genus Flaveria. PLANT PHYSIOLOGY 2024; 195:291-305. [PMID: 38377473 DOI: 10.1093/plphys/kiae077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Revised: 12/15/2023] [Accepted: 12/17/2023] [Indexed: 02/22/2024]
Abstract
As a complex trait, C4 photosynthesis has multiple independent origins in evolution. Phylogenetic evidence and theoretical analysis suggest that C2 photosynthesis, which is driven by glycine decarboxylation in the bundle sheath cell, may function as a bridge from C3 to C4 photosynthesis. However, the exact molecular mechanism underlying the transition between C2 photosynthesis to C4 photosynthesis remains elusive. Here, we provide evidence suggesting a role of higher α-ketoglutarate (AKG) concentration during this transition. Metabolomic data of 12 Flaveria species, including multiple photosynthetic types, show that AKG concentration initially increased in the C3-C4 intermediate with a further increase in C4 species. Petiole feeding of AKG increases the concentrations of C4-related metabolites in C3-C4 and C4 species but not the activity of C4-related enzymes. Sequence analysis shows that glutamate synthase (Fd-GOGAT), which catalyzes the generation of glutamate using AKG, was under strong positive selection during the evolution of C4 photosynthesis. Simulations with a constraint-based model for C3-C4 intermediate further show that decreasing the activity of Fd-GOGAT facilitated the transition from a C2-dominant to a C4-dominant CO2 concentrating mechanism. All these results provide insight into the mechanistic switch from C3-C4 intermediate to C4 photosynthesis.
Collapse
Affiliation(s)
- Qiming Tang
- University of Chinese Academy of Sciences (UCAS), Beijing 100049, China
- CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology (SIPPE), Chinese Academy of Sciences (CAS), Shanghai 200032, China
| | - Yuhui Huang
- University of Chinese Academy of Sciences (UCAS), Beijing 100049, China
- CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology (SIPPE), Chinese Academy of Sciences (CAS), Shanghai 200032, China
| | - Xiaoxiang Ni
- University of Chinese Academy of Sciences (UCAS), Beijing 100049, China
- CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology (SIPPE), Chinese Academy of Sciences (CAS), Shanghai 200032, China
| | - Ming-Ju Amy Lyu
- CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology (SIPPE), Chinese Academy of Sciences (CAS), Shanghai 200032, China
| | - Genyun Chen
- CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology (SIPPE), Chinese Academy of Sciences (CAS), Shanghai 200032, China
| | - Rowan Sage
- Department of Ecology and Evolution, The University of Toronto, Toronto, Ontario M5S3B2, Canada
| | - Xin-Guang Zhu
- University of Chinese Academy of Sciences (UCAS), Beijing 100049, China
- CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology (SIPPE), Chinese Academy of Sciences (CAS), Shanghai 200032, China
| |
Collapse
|
12
|
Liu Z, Cheng J. C 4 rice engineering, beyond installing a C 4 cycle. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2024; 206:108256. [PMID: 38091938 DOI: 10.1016/j.plaphy.2023.108256] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Revised: 11/28/2023] [Accepted: 11/30/2023] [Indexed: 02/15/2024]
Abstract
C4 photosynthesis in higher plants is carried out by two distinct cell types: mesophyll cells and bundle sheath cells, as a result highly concentrated carbon dioxide is released surrounding RuBisCo in chloroplasts of bundle sheath cells and the photosynthetic efficiency is significantly higher than that of C3 plants. The evolution of the dual-cell C4 cycle involved complex modifications to leaf anatomy and cell ultra-structures. These include an increase in leaf venation, the formation of Kranz anatomy, changes in chloroplast morphology in bundle sheath cells, and increases in the density of plasmodesmata at interfaces between the bundle sheath and mesophyll cells. It is predicted that cereals will be in severe worldwide shortage at the mid-term of this century. Rice is a staple food that feeds more than half of the world's population. If rice can be engineered to perform C4 photosynthesis, it is estimated that rice yield will be increased by at least 50% due to enhanced photosynthesis. Thus, the Second Green Revolution has been launched on this principle by genetically installing C4 photosynthesis into C3 crops. The studies on molecular mechanisms underlying the changes in leaf morphoanatomy involved in C4 photosynthesis have made great progress in recent years. As there are plenty of reviews discussing the installment of the C4 cycle, we focus on the current progress and challenges posed to the research regarding leaf anatomy and cell ultra-structure modifications made towards the development of C4 rice.
Collapse
Affiliation(s)
- Zheng Liu
- State Key Laboratory of North China Crop Improvement and Regulation, College of Agronomy, Hebei Agricultural University, Baoding, 071001, China.
| | - Jinjin Cheng
- College of Agronomy, Shanxi Agricultural University, Jinzhong, 030801, China
| |
Collapse
|
13
|
Huang CF, Liu WY, Yu CP, Wu SH, Ku MSB, Li WH. C 4 leaf development and evolution. CURRENT OPINION IN PLANT BIOLOGY 2023; 76:102454. [PMID: 37743123 DOI: 10.1016/j.pbi.2023.102454] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/03/2023] [Revised: 07/30/2023] [Accepted: 08/25/2023] [Indexed: 09/26/2023]
Abstract
C4 photosynthesis is more efficient than C3 photosynthesis for two reasons. First, C4 plants have evolved efficient C4 enzymes to suppress wasteful photorespiration and enhance CO2 fixation. Second, C4 leaves have Kranz anatomy in which the veins are surrounded by one layer of bundle sheath (BS) cells and one layer of mesophyll (M) cells. The BS and M cells are functionally well differentiated and also well coordinated for rapid assimilation of atmospheric CO2 and transport of photo-assimilates between the two types of cells. Recent comparative transcriptomics of developing M and BS cells in young maize embryonic leaves revealed not only potential regulators of BS and M cell differentiation but also rapid early BS cell differentiation whereas slower, more prolonged M cell differentiation, contrary to the traditional view of a far simpler process of M cell development. Moreover, new upstream regulators of Kranz anatomy development have been identified and a number of gene co-expression modules for early vascular development have been inferred. Also, a candidate gene regulatory network associated with Kranz anatomy and vascular development has been constructed. Additionally, how whole genome duplication (WGD) may facilitate C4 evolution has been studied and the reasons for why the same WGD event led to successful C4 evolution in Gynandropsis gynandra but not in the sister species Tarenaya hassleriana have been proposed. Finally, new future research directions are suggested.
Collapse
Affiliation(s)
- Chi-Fa Huang
- Biodiversity Research Center, Academia Sinica, 115 Taipei, Taiwan
| | - Wen-Yu Liu
- Biodiversity Research Center, Academia Sinica, 115 Taipei, Taiwan
| | - Chun-Ping Yu
- Biodiversity Research Center, Academia Sinica, 115 Taipei, Taiwan
| | - Shu-Hsing Wu
- Institute of Plant and Microbial Biology, Academia Sinica, 115 Taipei, Taiwan
| | - Maurice S B Ku
- Institute of Bioagricultural Science, National Chiayi University, 600 Chiayi, Taiwan.
| | - Wen-Hsiung Li
- Biodiversity Research Center, Academia Sinica, 115 Taipei, Taiwan; Department of Ecology and Evolution, University of Chicago, Chicago 60637, USA.
| |
Collapse
|
14
|
Sage RF, Gilman IS, Smith JAC, Silvera K, Edwards EJ. Atmospheric CO2 decline and the timing of CAM plant evolution. ANNALS OF BOTANY 2023; 132:753-770. [PMID: 37642245 PMCID: PMC10799994 DOI: 10.1093/aob/mcad122] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Revised: 08/19/2023] [Accepted: 08/28/2023] [Indexed: 08/31/2023]
Abstract
BACKGROUND AND AIMS CAM photosynthesis is hypothesized to have evolved in atmospheres of low CO2 concentration in recent geological time because of its ability to concentrate CO2 around Rubisco and boost water use efficiency relative to C3 photosynthesis. We assess this hypothesis by compiling estimates of when CAM clades arose using phylogenetic chronograms for 73 CAM clades. We further consider evidence of how atmospheric CO2 affects CAM relative to C3 photosynthesis. RESULTS Where CAM origins can be inferred, strong CAM is estimated to have appeared in the past 30 million years in 46 of 48 examined clades, after atmospheric CO2 had declined from high (near 800 ppm) to lower (<450 ppm) values. In turn, 21 of 25 clades containing CAM species (but where CAM origins are less certain) also arose in the past 30 million years. In these clades, CAM is probably younger than the clade origin. We found evidence for repeated weak CAM evolution during the higher CO2 conditions before 30 million years ago, and possible strong CAM origins in the Crassulaceae during the Cretaceous period prior to atmospheric CO2 decline. Most CAM-specific clades arose in the past 15 million years, in a similar pattern observed for origins of C4 clades. CONCLUSIONS The evidence indicates strong CAM repeatedly evolved in reduced CO2 conditions of the past 30 million years. Weaker CAM can pre-date low CO2 and, in the Crassulaceae, strong CAM may also have arisen in water-limited microsites under relatively high CO2. Experimental evidence from extant CAM species demonstrates that elevated CO2 reduces the importance of nocturnal CO2 fixation by increasing the contribution of C3 photosynthesis to daily carbon gain. Thus, the advantage of strong CAM would be reduced in high CO2, such that its evolution appears less likely and restricted to more extreme environments than possible in low CO2.
Collapse
Affiliation(s)
- Rowan F Sage
- Department of Ecology and Evolutionary Biology, University of Toronto, 25 Willcocks Street, Toronto, ON, M5S 3B2, Canada
| | - Ian S Gilman
- Department of Ecology and Evolutionary Biology, Yale University, New Haven, CT 06511, USA
| | - J Andrew C Smith
- Department of Biology, University of Oxford, South Parks Road, Oxford, OX1 3RB, UK
| | - Katia Silvera
- Department of Botany and Plant Sciences, University of California, Riverside, CA 92521, USA
| | - Erika J Edwards
- Department of Ecology and Evolutionary Biology, Yale University, New Haven, CT 06511, USA
| |
Collapse
|
15
|
Edwards EJ. Reconciling continuous and discrete models of C4 and CAM evolution. ANNALS OF BOTANY 2023; 132:717-725. [PMID: 37675944 PMCID: PMC10799980 DOI: 10.1093/aob/mcad125] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2023] [Revised: 08/11/2023] [Accepted: 09/06/2023] [Indexed: 09/08/2023]
Abstract
BACKGROUND A current argument in the CAM biology literature has focused on the nature of the CAM evolutionary trajectory: whether there is a smooth continuum of phenotypes between plants with C3 and CAM photosynthesis or whether there are discrete steps of phenotypic evolutionary change such as has been modelled for the evolution of C4 photosynthesis. A further implication is that a smooth continuum would increase the evolvability of CAM, whereas discrete changes would make the evolutionary transition from C3 to CAM more difficult. SCOPE In this essay, I attempt to reconcile these two viewpoints, because I think in many ways this is a false dichotomy that is constraining progress in understanding how both CAM and C4 evolved. In reality, the phenotypic space connecting C3 species and strong CAM/C4 species is both a continuum of variably expressed quantitative traits and yet also contains certain combinations of traits that we are able to identify as discrete, recognizable phenotypes. In this sense, the evolutionary mechanics of CAM origination are no different from those of C4 photosynthesis, nor from the evolution of any other complex trait assemblage. CONCLUSIONS To make progress, we must embrace the concept of discrete phenotypic phases of CAM evolution, because their delineation will force us to articulate what aspects of phenotypic variation we think are significant. There are some current phenotypic gaps that are limiting our ability to build a complete CAM evolutionary model: the first is how a rudimentary CAM biochemical cycle becomes established, and the second is how the 'accessory' CAM cycle in C3+CAM plants is recruited into a primary metabolism. The connections to the C3 phenotype we are looking for are potentially found in the behaviour of C3 plants when undergoing physiological stress - behaviour that, strangely enough, remains essentially unexplored in this context.
Collapse
Affiliation(s)
- Erika J Edwards
- Department of Ecology and Evolutionary Biology, Yale University, 165 Prospect Street, New Haven, CT 06520, USA
| |
Collapse
|
16
|
Schlüter U, Bouvier JW, Guerreiro R, Malisic M, Kontny C, Westhoff P, Stich B, Weber APM. Brassicaceae display variation in efficiency of photorespiratory carbon-recapturing mechanisms. JOURNAL OF EXPERIMENTAL BOTANY 2023; 74:6631-6649. [PMID: 37392176 PMCID: PMC10662225 DOI: 10.1093/jxb/erad250] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Accepted: 06/30/2023] [Indexed: 07/03/2023]
Abstract
Carbon-concentrating mechanisms enhance the carboxylase efficiency of Rubisco by providing supra-atmospheric concentrations of CO2 in its surroundings. Beside the C4 photosynthesis pathway, carbon concentration can also be achieved by the photorespiratory glycine shuttle which requires fewer and less complex modifications. Plants displaying CO2 compensation points between 10 ppm and 40 ppm are often considered to utilize such a photorespiratory shuttle and are termed 'C3-C4 intermediates'. In the present study, we perform a physiological, biochemical, and anatomical survey of a large number of Brassicaceae species to better understand the C3-C4 intermediate phenotype, including its basic components and its plasticity. Our phylogenetic analysis suggested that C3-C4 metabolism evolved up to five times independently in the Brassicaceae. The efficiency of the pathway showed considerable variation. Centripetal accumulation of organelles in the bundle sheath was consistently observed in all C3-C4-classified taxa, indicating a crucial role for anatomical features in CO2-concentrating pathways. Leaf metabolite patterns were strongly influenced by the individual species, but accumulation of photorespiratory shuttle metabolites glycine and serine was generally observed. Analysis of phosphoenolpyruvate carboxylase activities suggested that C4-like shuttles have not evolved in the investigated Brassicaceae. Convergent evolution of the photorespiratory shuttle indicates that it represents a distinct photosynthesis type that is beneficial in some environments.
Collapse
Affiliation(s)
- Urte Schlüter
- Institute of Plant Biochemistry, Cluster of Excellence for Plant Sciences (CEPLAS), Heinrich Heine University, Universitätsstr. 1, D-40225 Düsseldorf, Germany
| | - Jacques W Bouvier
- Institute of Plant Biochemistry, Cluster of Excellence for Plant Sciences (CEPLAS), Heinrich Heine University, Universitätsstr. 1, D-40225 Düsseldorf, Germany
| | - Ricardo Guerreiro
- Institute for Quantitative Genetics and Genomics of Plants, Cluster of Excellence for Plant Sciences (CEPLAS), Heinrich Heine University, Universitätsstr. 1, D-40225 Düsseldorf, Germany
| | - Milena Malisic
- Institute of Plant Biochemistry, Cluster of Excellence for Plant Sciences (CEPLAS), Heinrich Heine University, Universitätsstr. 1, D-40225 Düsseldorf, Germany
| | - Carina Kontny
- Institute of Plant Biochemistry, Cluster of Excellence for Plant Sciences (CEPLAS), Heinrich Heine University, Universitätsstr. 1, D-40225 Düsseldorf, Germany
| | - Philipp Westhoff
- Metabolomics and Metabolism Laboratory, Cluster of Excellence for Plant Sciences (CEPLAS), Heinrich Heine University, Universitätsstr. 1, D-40225 Düsseldorf, Germany
| | - Benjamin Stich
- Institute for Quantitative Genetics and Genomics of Plants, Cluster of Excellence for Plant Sciences (CEPLAS), Heinrich Heine University, Universitätsstr. 1, D-40225 Düsseldorf, Germany
| | - Andreas P M Weber
- Institute of Plant Biochemistry, Cluster of Excellence for Plant Sciences (CEPLAS), Heinrich Heine University, Universitätsstr. 1, D-40225 Düsseldorf, Germany
| |
Collapse
|
17
|
Guerreiro R, Bonthala VS, Schlüter U, Hoang NV, Triesch S, Schranz ME, Weber APM, Stich B. A genomic panel for studying C3-C4 intermediate photosynthesis in the Brassiceae tribe. PLANT, CELL & ENVIRONMENT 2023; 46:3611-3627. [PMID: 37431820 DOI: 10.1111/pce.14662] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Revised: 05/18/2023] [Accepted: 06/23/2023] [Indexed: 07/12/2023]
Abstract
Research on C4 and C3-C4 photosynthesis has attracted significant attention because the understanding of the genetic underpinnings of these traits will support the introduction of its characteristics into commercially relevant crop species. We used a panel of 19 taxa of 18 Brassiceae species with different photosynthesis characteristics (C3 and C3-C4) with the following objectives: (i) create draft genome assemblies and annotations, (ii) quantify orthology levels using synteny maps between all pairs of taxa, (iii) describe the phylogenetic relatedness across all the species, and (iv) track the evolution of C3-C4 intermediate photosynthesis in the Brassiceae tribe. Our results indicate that the draft de novo genome assemblies are of high quality and cover at least 90% of the gene space. Therewith we more than doubled the sampling depth of genomes of the Brassiceae tribe that comprises commercially important as well as biologically interesting species. The gene annotation generated high-quality gene models, and for most genes extensive upstream sequences are available for all taxa, yielding potential to explore variants in regulatory sequences. The genome-based phylogenetic tree of the Brassiceae contained two main clades and indicated that the C3-C4 intermediate photosynthesis has evolved five times independently. Furthermore, our study provides the first genomic support of the hypothesis that Diplotaxis muralis is a natural hybrid of D. tenuifolia and D. viminea. Altogether, the de novo genome assemblies and the annotations reported in this study are a valuable resource for research on the evolution of C3-C4 intermediate photosynthesis.
Collapse
Affiliation(s)
- Ricardo Guerreiro
- Institute of Quantitative Genetics and Genomics of Plants, Faculty of Mathematics and Natural Sciences, Heinrich Heine University, Düsseldorf, Germany
| | - Venkata Suresh Bonthala
- Institute of Quantitative Genetics and Genomics of Plants, Faculty of Mathematics and Natural Sciences, Heinrich Heine University, Düsseldorf, Germany
| | - Urte Schlüter
- Institute of Plant Biochemistry, Faculty of Mathematics and Natural Sciences, Heinrich Heine University, Düsseldorf, Germany
- Cluster of Excellence on Plant Sciences (CEPLAS), Düsseldorf, Germany
| | - Nam V Hoang
- Biosystematics Group, Department of Plant Sciences, Wageningen University, Wageningen, The Netherlands
| | - Sebastian Triesch
- Institute of Plant Biochemistry, Faculty of Mathematics and Natural Sciences, Heinrich Heine University, Düsseldorf, Germany
- Cluster of Excellence on Plant Sciences (CEPLAS), Düsseldorf, Germany
| | - M Eric Schranz
- Biosystematics Group, Department of Plant Sciences, Wageningen University, Wageningen, The Netherlands
| | - Andreas P M Weber
- Institute of Plant Biochemistry, Faculty of Mathematics and Natural Sciences, Heinrich Heine University, Düsseldorf, Germany
- Cluster of Excellence on Plant Sciences (CEPLAS), Düsseldorf, Germany
| | - Benjamin Stich
- Institute of Quantitative Genetics and Genomics of Plants, Faculty of Mathematics and Natural Sciences, Heinrich Heine University, Düsseldorf, Germany
- Cluster of Excellence on Plant Sciences (CEPLAS), Düsseldorf, Germany
- Max Planck Institute for Plant Breeding Research, Köln, Germany
| |
Collapse
|
18
|
Kitashova A, Brodsky V, Chaturvedi P, Pierides I, Ghatak A, Weckwerth W, Nägele T. Quantifying the impact of dynamic plant-environment interactions on metabolic regulation. JOURNAL OF PLANT PHYSIOLOGY 2023; 290:154116. [PMID: 37839392 DOI: 10.1016/j.jplph.2023.154116] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Revised: 10/03/2023] [Accepted: 10/06/2023] [Indexed: 10/17/2023]
Abstract
A plant's genome encodes enzymes, transporters and many other proteins which constitute metabolism. Interactions of plants with their environment shape their growth, development and resilience towards adverse conditions. Although genome sequencing technologies and applications have experienced triumphantly rapid development during the last decades, enabling nowadays a fast and cheap sequencing of full genomes, prediction of metabolic phenotypes from genotype × environment interactions remains, at best, very incomplete. The main reasons are a lack of understanding of how different levels of molecular organisation depend on each other, and how they are constituted and expressed within a setup of growth conditions. Phenotypic plasticity, e.g., of the genetic model plant Arabidopsis thaliana, has provided important insights into plant-environment interactions and the resulting genotype x phenotype relationships. Here, we summarize previous and current findings about plant development in a changing environment and how this might be shaped and reflected in metabolism and its regulation. We identify current challenges in the study of plant development and metabolic regulation and provide an outlook of how methodological workflows might support the application of findings made in model systems to crops and their cultivation.
Collapse
Affiliation(s)
- Anastasia Kitashova
- LMU Munich, Faculty of Biology, Plant Evolutionary Cell Biology, 82152, Planegg, Germany.
| | - Vladimir Brodsky
- LMU Munich, Faculty of Biology, Plant Evolutionary Cell Biology, 82152, Planegg, Germany.
| | - Palak Chaturvedi
- University of Vienna, Molecular Systems Biology Lab (MOSYS), Department of Functional and Evolutionary Ecology, Faculty of Life Sciences, Djerassiplatz 1, 1030, Vienna, Austria.
| | - Iro Pierides
- University of Vienna, Molecular Systems Biology Lab (MOSYS), Department of Functional and Evolutionary Ecology, Faculty of Life Sciences, Djerassiplatz 1, 1030, Vienna, Austria.
| | - Arindam Ghatak
- University of Vienna, Molecular Systems Biology Lab (MOSYS), Department of Functional and Evolutionary Ecology, Faculty of Life Sciences, Djerassiplatz 1, 1030, Vienna, Austria; Vienna Metabolomics Center, University of Vienna, Djerassiplatz 1, 1030, Vienna, Austria.
| | - Wolfram Weckwerth
- University of Vienna, Molecular Systems Biology Lab (MOSYS), Department of Functional and Evolutionary Ecology, Faculty of Life Sciences, Djerassiplatz 1, 1030, Vienna, Austria; Vienna Metabolomics Center, University of Vienna, Djerassiplatz 1, 1030, Vienna, Austria.
| | - Thomas Nägele
- LMU Munich, Faculty of Biology, Plant Evolutionary Cell Biology, 82152, Planegg, Germany.
| |
Collapse
|
19
|
Zhao W, Li J, Sun X, Zheng Q, Liu J, Hua W, Liu J. Integrated global analysis in spider flowers illuminates features underlying the evolution and maintenance of C 4 photosynthesis. HORTICULTURE RESEARCH 2023; 10:uhad129. [PMID: 37560018 PMCID: PMC10407600 DOI: 10.1093/hr/uhad129] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/12/2023] [Accepted: 06/11/2023] [Indexed: 08/11/2023]
Abstract
The carbon concentrating mechanism-C4 photosynthesis-represents a classic example of convergent evolution, but how this important trait originated and evolved remains largely enigmatic. The spider flower Gynandropsis gynandra is a valuable leafy vegetable crop and medicinal plant that has also been recognized as a C4 model species. Here we present a high-quality chromosome-scale annotated genome assembly of G. gynandra through a combination of Oxford Nanopore Technology (ONT), HiFi and Hi-C technology. The 17 super-scaffolds cover 98.66% of the estimated genome (997.61 Mb), with a contig N50 of 11.43 Mb and a scaffold N50 of 51.02 Mb. Repetitive elements occupy up to 71.91% of its genome, and over half are long terminal repeat retrotransposons (LTR-RTs) derived from recent bursts, contributing to genome size expansion. Strikingly, LTR-RT explosion also played a critical role in C4 evolution by altering expression features of photosynthesis-associated genes via preferential insertion in promoters. Integrated multiomics analyses of G. gynandra and the ornamental horticulture C3 relative Tarenaya hassleriana reveal that species-specific whole-genome duplication, gene family expansion, recent LTR-RT amplification, and more recent tandem duplication events have all facilitated the evolution of C4 photosynthesis, revealing uniqueness of C4 evolution in the Cleome genus. Moreover, high leaf vein density and heat stress resilience are associated with shifted gene expression patterns. The mode of C3-to-C4 transition found here yields new insights into evolutionary convergence of a complex plant trait. The availability of this reference-grade genomic resource makes G. gynandra an ideal model system facilitating efforts toward C4-aimed crop engineering.
Collapse
Affiliation(s)
- Wei Zhao
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture and Rural Affairs, Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Wuhan 430062, China
| | - Jun Li
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture and Rural Affairs, Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Wuhan 430062, China
| | - Xingchao Sun
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture and Rural Affairs, Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Wuhan 430062, China
| | - Qiwei Zheng
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture and Rural Affairs, Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Wuhan 430062, China
| | - Jing Liu
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture and Rural Affairs, Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Wuhan 430062, China
- Hubei Hongshan Laboratory, Wuhan 430070, China
| | - Wei Hua
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture and Rural Affairs, Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Wuhan 430062, China
- Hubei Hongshan Laboratory, Wuhan 430070, China
| | - Jun Liu
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture and Rural Affairs, Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Wuhan 430062, China
| |
Collapse
|
20
|
Clavijo-Buriticá DC, Arévalo-Ferro C, González Barrios AF. A Holistic Approach from Systems Biology Reveals the Direct Influence of the Quorum-Sensing Phenomenon on Pseudomonas aeruginosa Metabolism to Pyoverdine Biosynthesis. Metabolites 2023; 13:metabo13050659. [PMID: 37233700 DOI: 10.3390/metabo13050659] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Revised: 04/26/2023] [Accepted: 05/06/2023] [Indexed: 05/27/2023] Open
Abstract
Computational modeling and simulation of biological systems have become valuable tools for understanding and predicting cellular performance and phenotype generation. This work aimed to construct, model, and dynamically simulate the virulence factor pyoverdine (PVD) biosynthesis in Pseudomonas aeruginosa through a systemic approach, considering that the metabolic pathway of PVD synthesis is regulated by the quorum-sensing (QS) phenomenon. The methodology comprised three main stages: (i) Construction, modeling, and validation of the QS gene regulatory network that controls PVD synthesis in P. aeruginosa strain PAO1; (ii) construction, curating, and modeling of the metabolic network of P. aeruginosa using the flux balance analysis (FBA) approach; (iii) integration and modeling of these two networks into an integrative model using the dynamic flux balance analysis (DFBA) approximation, followed, finally, by an in vitro validation of the integrated model for PVD synthesis in P. aeruginosa as a function of QS signaling. The QS gene network, constructed using the standard System Biology Markup Language, comprised 114 chemical species and 103 reactions and was modeled as a deterministic system following the kinetic based on mass action law. This model showed that the higher the bacterial growth, the higher the extracellular concentration of QS signal molecules, thus emulating the natural behavior of P. aeruginosa PAO1. The P. aeruginosa metabolic network model was constructed based on the iMO1056 model, the P. aeruginosa PAO1 strain genomic annotation, and the metabolic pathway of PVD synthesis. The metabolic network model included the PVD synthesis, transport, exchange reactions, and the QS signal molecules. This metabolic network model was curated and then modeled under the FBA approximation, using biomass maximization as the objective function (optimization problem, a term borrowed from the engineering field). Next, chemical reactions shared by both network models were chosen to combine them into an integrative model. To this end, the fluxes of these reactions, obtained from the QS network model, were fixed in the metabolic network model as constraints of the optimization problem using the DFBA approximation. Finally, simulations of the integrative model (CCBM1146, comprising 1123 reactions and 880 metabolites) were run using the DFBA approximation to get (i) the flux profile for each reaction, (ii) the bacterial growth profile, (iii) the biomass profile, and (iv) the concentration profiles of metabolites of interest such as glucose, PVD, and QS signal molecules. The CCBM1146 model showed that the QS phenomenon directly influences the P. aeruginosa metabolism to PVD biosynthesis as a function of the change in QS signal intensity. The CCBM1146 model made it possible to characterize and explain the complex and emergent behavior generated by the interactions between the two networks, which would have been impossible to do by studying each system's individual components or scales separately. This work is the first in silico report of an integrative model comprising the QS gene regulatory network and the metabolic network of P. aeruginosa.
Collapse
Affiliation(s)
- Diana Carolina Clavijo-Buriticá
- Grupo de Comunicación y Comunidades Bacterianas, Departamento de Biología, Universidad Nacional de Colombia, Carrera 45 No. 26-85, Bogotá 111321, Colombia
| | - Catalina Arévalo-Ferro
- Grupo de Comunicación y Comunidades Bacterianas, Departamento de Biología, Universidad Nacional de Colombia, Carrera 45 No. 26-85, Bogotá 111321, Colombia
| | - Andrés Fernando González Barrios
- Grupo de Diseño de Productos y Procesos (GDPP), Departamento de Ingeniería Química y de Alimentos, Universidad de los Andes, Edificio Mario Laserna, Carrera 1 Este No. 19ª-40, Bogotá 111711, Colombia
| |
Collapse
|
21
|
Le XH, Millar AH. The diversity of substrates for plant respiration and how to optimize their use. PLANT PHYSIOLOGY 2023; 191:2133-2149. [PMID: 36573332 PMCID: PMC10069909 DOI: 10.1093/plphys/kiac599] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Accepted: 12/09/2022] [Indexed: 06/18/2023]
Abstract
Plant respiration is a foundational biological process with the potential to be optimized to improve crop yield. To understand and manipulate the outputs of respiration, the inputs of respiration-respiratory substrates-need to be probed in detail. Mitochondria house substrate catabolic pathways and respiratory machinery, so transport into and out of these organelles plays an important role in committing substrates to respiration. The large number of mitochondrial carriers and catabolic pathways that remain unidentified hinder this process and lead to confusion about the identity of direct and indirect respiratory substrates in plants. The sources and usage of respiratory substrates vary and are increasing found to be highly regulated based on cellular processes and environmental factors. This review covers the use of direct respiratory substrates following transport through mitochondrial carriers and catabolism under normal and stressed conditions. We suggest the introduction of enzymes not currently found in plant mitochondria to enable serine and acetate to be direct respiratory substrates in plants. We also compare respiratory substrates by assessing energetic yields, availability in cells, and their full or partial oxidation during cell catabolism. This information can assist in decisions to use synthetic biology approaches to alter the range of respiratory substrates in plants. As a result, respiration could be optimized by introducing, improving, or controlling specific mitochondrial transporters and mitochondrial catabolic pathways.
Collapse
Affiliation(s)
- Xuyen H Le
- School of Molecular Sciences, The University of Western Australia, 35 Stirling Highway, Crawley, Perth 6009, Australia
- The ARC Centre of Excellence in Plant Energy Biology, The University of Western Australia, 35 Stirling Highway, Crawley, Perth 6009, Australia
| | - A Harvey Millar
- School of Molecular Sciences, The University of Western Australia, 35 Stirling Highway, Crawley, Perth 6009, Australia
- The ARC Centre of Excellence in Plant Energy Biology, The University of Western Australia, 35 Stirling Highway, Crawley, Perth 6009, Australia
| |
Collapse
|
22
|
Zhou H, Akçay E, Helliker B. Optimal coordination and reorganization of photosynthetic properties in C 4 grasses. PLANT, CELL & ENVIRONMENT 2023; 46:796-811. [PMID: 36478594 DOI: 10.1111/pce.14506] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Revised: 11/29/2022] [Accepted: 12/03/2022] [Indexed: 06/17/2023]
Abstract
Each of >20 independent evolutions of C4 photosynthesis in grasses required reorganization of the Calvin-Benson-cycle (CB-cycle) within the leaf, along with coordination of C4 -cycle enzymes with the CB-cycle to maximize CO2 assimilation. Considering the vast amount of time over which C4 evolved, we hypothesized (i) trait divergences exist within and across lineages with both C4 and closely related C3 grasses, (ii) trends in traits after C4 evolution yield the optimization of C4 through time, and (iii) the presence/absence of trends in coordination between the CB-cycle and C4 -cycle provides information on the strength of selection. To address these hypotheses, we used a combination of optimality modelling, physiological measurements and phylogenetic-comparative-analysis. Photosynthesis was optimized after the evolution of C4 causing diversification in maximal assimilation, electron transport, Rubisco carboxylation, phosphoenolpyruvate carboxylase and chlorophyll within C4 lineages. Both theory and measurements indicated a higher light-reaction to CB-cycle ratio (Jatpmax /Vcmax ) in C4 than C3 . There were no evolutionary trends with photosynthetic coordination between the CB-cycle, light reactions and the C4 -cycle, suggesting strong initial selection for coordination. The coordination of CB-C4 -cycles (Vpmax /Vcmax ) was optimal for CO2 of 200 ppm, not to current conditions. Our model indicated that a higher than optimal Vpmax /Vcmax affects assimilation minimally, thus lessening recent selection to decrease Vpmax /Vcmax .
Collapse
Affiliation(s)
- Haoran Zhou
- School of Earth System Science, Institute of Surface-Earth System Science, Tianjin University, Tianjin, China
- School of the Environment, Yale University, New Haven, Connecticut, USA
| | - Erol Akçay
- Department of Biology, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Brent Helliker
- Department of Biology, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| |
Collapse
|
23
|
Segura Broncano L, Pukacz KR, Reichel-Deland V, Schlüter U, Triesch S, Weber APM. Photorespiration is the solution, not the problem. JOURNAL OF PLANT PHYSIOLOGY 2023; 282:153928. [PMID: 36780758 DOI: 10.1016/j.jplph.2023.153928] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Accepted: 01/22/2023] [Indexed: 06/18/2023]
Abstract
The entry of carbon dioxide from the atmosphere into the biosphere is mediated by the enzyme Rubisco, which catalyzes the carboxylation of ribulose 1,5-bisphosphate (RuBP) as the entry reaction of the Calvin Benson Bassham cycle (CBBC), leading to the formation of 2 molecules of 3-phosphoglyceric acid (3PGA) per CO2 fixed. 3PGA is reduced to triose phosphates at the expense of NADPH + H+ and ATP that are provided by the photosynthetic light reactions. Triose phosphates are the principal products of the CBBC and the precursors for almost any compound in the biosphere.
Collapse
Affiliation(s)
- Laia Segura Broncano
- Institute of Plant Biochemistry, Cluster of Excellence on Plant Science (CEPLAS), Universitätsstraße 1, 40225 Düsseldorf, Germany
| | - Krzysztof Robin Pukacz
- Institute of Plant Biochemistry, Cluster of Excellence on Plant Science (CEPLAS), Universitätsstraße 1, 40225 Düsseldorf, Germany
| | - Vanessa Reichel-Deland
- Institute of Plant Biochemistry, Cluster of Excellence on Plant Science (CEPLAS), Universitätsstraße 1, 40225 Düsseldorf, Germany
| | - Urte Schlüter
- Institute of Plant Biochemistry, Cluster of Excellence on Plant Science (CEPLAS), Universitätsstraße 1, 40225 Düsseldorf, Germany
| | - Sebastian Triesch
- Institute of Plant Biochemistry, Cluster of Excellence on Plant Science (CEPLAS), Universitätsstraße 1, 40225 Düsseldorf, Germany
| | - Andreas P M Weber
- Institute of Plant Biochemistry, Cluster of Excellence on Plant Science (CEPLAS), Universitätsstraße 1, 40225 Düsseldorf, Germany.
| |
Collapse
|
24
|
Metabolic Background, Not Photosynthetic Physiology, Determines Drought and Drought Recovery Responses in C3 and C2 Moricandias. Int J Mol Sci 2023; 24:ijms24044094. [PMID: 36835502 PMCID: PMC9959282 DOI: 10.3390/ijms24044094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 02/14/2023] [Accepted: 02/15/2023] [Indexed: 02/22/2023] Open
Abstract
Distinct photosynthetic physiologies are found within the Moricandia genus, both C3-type and C2-type representatives being known. As C2-physiology is an adaptation to drier environments, a study of physiology, biochemistry and transcriptomics was conducted to investigate whether plants with C2-physiology are more tolerant of low water availability and recover better from drought. Our data on Moricandia moricandioides (Mmo, C3), M. arvensis (Mav, C2) and M. suffruticosa (Msu, C2) show that C3 and C2-type Moricandias are metabolically distinct under all conditions tested (well-watered, severe drought, early drought recovery). Photosynthetic activity was found to be largely dependent upon the stomatal opening. The C2-type M. arvensis was able to secure 25-50% of photosynthesis under severe drought as compared to the C3-type M. moricandioides. Nevertheless, the C2-physiology does not seem to play a central role in M. arvensis drought responses and drought recovery. Instead, our biochemical data indicated metabolic differences in carbon and redox-related metabolism under the examined conditions. The cell wall dynamics and glucosinolate metabolism regulations were found to be major discriminators between M. arvensis and M. moricandioides at the transcription level.
Collapse
|
25
|
Prochetto S, Studer AJ, Reinheimer R. De novo transcriptome assemblies of C 3 and C 4 non-model grass species reveal key differences in leaf development. BMC Genomics 2023; 24:64. [PMID: 36747121 PMCID: PMC9901097 DOI: 10.1186/s12864-022-08995-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Accepted: 11/06/2022] [Indexed: 02/08/2023] Open
Abstract
BACKGROUND C4 photosynthesis is a mechanism that plants have evolved to reduce the rate of photorespiration during the carbon fixation process. The C4 pathway allows plants to adapt to high temperatures and light while more efficiently using resources, such as water and nitrogen. Despite decades of studies, the evolution of the C4 pathway from a C3 ancestor remains a biological enigma. Interestingly, species with C3-C4 intermediates photosynthesis are usually found closely related to the C4 lineages. Indeed, current models indicate that the assembly of C4 photosynthesis was a gradual process that included the relocalization of photorespiratory enzymes, and the establishment of intermediate photosynthesis subtypes. More than a third of the C4 origins occurred within the grass family (Poaceae). In particular, the Otachyriinae subtribe (Paspaleae tribe) includes 35 American species from C3, C4, and intermediates taxa making it an interesting lineage to answer questions about the evolution of photosynthesis. RESULTS To explore the molecular mechanisms that underpin the evolution of C4 photosynthesis, the transcriptomic dynamics along four different leaf segments, that capture different stages of development, were compared among Otachyriinae non-model species. For this, leaf transcriptomes were sequenced, de novo assembled, and annotated. Gene expression patterns of key pathways along the leaf segments showed distinct differences between photosynthetic subtypes. In addition, genes associated with photorespiration and the C4 cycle were differentially expressed between C4 and C3 species, but their expression patterns were well preserved throughout leaf development. CONCLUSIONS New, high-confidence, protein-coding leaf transcriptomes were generated using high-throughput short-read sequencing. These transcriptomes expand what is currently known about gene expression in leaves of non-model grass species. We found conserved expression patterns of C4 cycle and photorespiratory genes among C3, intermediate, and C4 species, suggesting a prerequisite for the evolution of C4 photosynthesis. This dataset represents a valuable contribution to the existing genomic resources and provides new tools for future investigation of photosynthesis evolution.
Collapse
Affiliation(s)
- Santiago Prochetto
- grid.10798.370000 0001 2172 9456Instituto de Agrobiotecnología del Litoral, Universidad Nacional del Litoral, CONICET, CCT-Santa Fe, Ruta Nacional N° 168 Km 0, s/n, Paraje el Pozo, Santa Fe, Argentina
| | - Anthony J. Studer
- grid.35403.310000 0004 1936 9991Department of Crop Sciences, University of Illinois, 1201 West Gregory Drive, Edward R. Madigan Laboratory #289, Urbana, IL 61801 USA
| | - Renata Reinheimer
- Instituto de Agrobiotecnología del Litoral, Universidad Nacional del Litoral, FCA, CONICET, CCT-Santa Fe, Ruta Nacional N° 168 Km 0, s/n, Paraje el Pozo, Santa Fe, Argentina.
| |
Collapse
|
26
|
Walsh CA, Bräutigam A, Roberts MR, Lundgren MR. Evolutionary implications of C2 photosynthesis: how complex biochemical trade-offs may limit C4 evolution. JOURNAL OF EXPERIMENTAL BOTANY 2023; 74:707-722. [PMID: 36437625 PMCID: PMC9899418 DOI: 10.1093/jxb/erac465] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/16/2022] [Accepted: 11/22/2022] [Indexed: 06/16/2023]
Abstract
The C2 carbon-concentrating mechanism increases net CO2 assimilation by shuttling photorespiratory CO2 in the form of glycine from mesophyll to bundle sheath cells, where CO2 concentrates and can be re-assimilated. This glycine shuttle also releases NH3 and serine into the bundle sheath, and modelling studies suggest that this influx of NH3 may cause a nitrogen imbalance between the two cell types that selects for the C4 carbon-concentrating mechanism. Here we provide an alternative hypothesis outlining mechanisms by which bundle sheath NH3 and serine play vital roles to not only influence the status of C2 plants along the C3 to C4 evolutionary trajectory, but to also convey stress tolerance to these unique plants. Our hypothesis explains how an optimized bundle sheath nitrogen hub interacts with sulfur and carbon metabolism to mitigate the effects of high photorespiratory conditions. While C2 photosynthesis is typically cited for its intermediary role in C4 photosynthesis evolution, our alternative hypothesis provides a mechanism to explain why some C2 lineages have not made this transition. We propose that stress resilience, coupled with open flux tricarboxylic acid and photorespiration pathways, conveys an advantage to C2 plants in fluctuating environments.
Collapse
Affiliation(s)
- Catherine A Walsh
- Lancaster Environment Centre, Lancaster University, Lancaster LA1 4YQ, UK
| | - Andrea Bräutigam
- Faculty of Biology, Bielefeld University, Universität str. 27, D-33615 Bielefeld, Germany
| | - Michael R Roberts
- Lancaster Environment Centre, Lancaster University, Lancaster LA1 4YQ, UK
| | | |
Collapse
|
27
|
Amy Lyu MJ, Tang Q, Wang Y, Essemine J, Chen F, Ni X, Chen G, Zhu XG. Evolution of gene regulatory network of C 4 photosynthesis in the genus Flaveria reveals the evolutionary status of C 3-C 4 intermediate species. PLANT COMMUNICATIONS 2023; 4:100426. [PMID: 35986514 PMCID: PMC9860191 DOI: 10.1016/j.xplc.2022.100426] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Revised: 06/16/2022] [Accepted: 08/11/2022] [Indexed: 06/15/2023]
Abstract
C4 photosynthesis evolved from ancestral C3 photosynthesis by recruiting pre-existing genes to fulfill new functions. The enzymes and transporters required for the C4 metabolic pathway have been intensively studied and well documented; however, the transcription factors (TFs) that regulate these C4 metabolic genes are not yet well understood. In particular, how the TF regulatory network of C4 metabolic genes was rewired during the evolutionary process is unclear. Here, we constructed gene regulatory networks (GRNs) for four closely evolutionarily related species from the genus Flaveria, which represent four different evolutionary stages of C4 photosynthesis: C3 (F. robusta), type I C3-C4 (F. sonorensis), type II C3-C4 (F. ramosissima), and C4 (F. trinervia). Our results show that more than half of the co-regulatory relationships between TFs and core C4 metabolic genes are species specific. The counterparts of the C4 genes in C3 species were already co-regulated with photosynthesis-related genes, whereas the required TFs for C4 photosynthesis were recruited later. The TFs involved in C4 photosynthesis were widely recruited in the type I C3-C4 species; nevertheless, type II C3-C4 species showed a divergent GRN from C4 species. In line with these findings, a 13CO2 pulse-labeling experiment showed that the CO2 initially fixed into C4 acid was not directly released to the Calvin-Benson-Bassham cycle in the type II C3-C4 species. Therefore, our study uncovered dynamic changes in C4 genes and TF co-regulation during the evolutionary process; furthermore, we showed that the metabolic pathway of the type II C3-C4 species F. ramosissima represents an alternative evolutionary solution to the ammonia imbalance in C3-C4 intermediate species.
Collapse
Affiliation(s)
- Ming-Ju Amy Lyu
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, China
| | - Qiming Tang
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, China; University of Chinese Academy of Sciences
| | - Yanjie Wang
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, China; University of Chinese Academy of Sciences
| | - Jemaa Essemine
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, China
| | - Faming Chen
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, China
| | - Xiaoxiang Ni
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, China; University of Chinese Academy of Sciences
| | - Genyun Chen
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, China
| | - Xin-Guang Zhu
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, China.
| |
Collapse
|
28
|
Adachi S, Stata M, Martin DG, Cheng S, Liu H, Zhu XG, Sage RF. The Evolution of C4 Photosynthesis in Flaveria (Asteraceae): Insights from the Flaveria linearis Complex. PLANT PHYSIOLOGY 2023; 191:233-251. [PMID: 36200882 PMCID: PMC9806627 DOI: 10.1093/plphys/kiac467] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Accepted: 09/01/2022] [Indexed: 06/16/2023]
Abstract
Flaveria is a leading model for C4 plant evolution due to the presence of a dozen C3-C4 intermediate species, many of which are associated with a phylogenetic complex centered around Flaveria linearis. To investigate C4 evolution in Flaveria, we updated the Flaveria phylogeny and evaluated gas exchange, starch δ13C, and activity of C4 cycle enzymes in 19 Flaveria species and 28 populations within the F. linearis complex. A principal component analysis identified six functional clusters: (1) C3, (2) sub-C2, (3) full C2, (4) enriched C2, (5) sub-C4, and (6) fully C4 species. The sub-C2 species lacked a functional C4 cycle, while a gradient was present in the C2 clusters from little to modest C4 cycle activity as indicated by δ13C and enzyme activities. Three Yucatan populations of F. linearis had photosynthetic CO2 compensation points equivalent to C4 plants but showed little evidence for an enhanced C4 cycle, indicating they have an optimized C2 pathway that recaptures all photorespired CO2 in the bundle sheath (BS) tissue. All C2 species had enhanced aspartate aminotransferase activity relative to C3 species and most had enhanced alanine aminotransferase activity. These aminotransferases form aspartate and alanine from glutamate and in doing so could help return photorespiratory nitrogen (N) from BS to mesophyll cells, preventing glutamate feedback onto photorespiratory N assimilation. Their use requires upregulation of parts of the C4 metabolic cycle to generate carbon skeletons to sustain N return to the mesophyll, and thus could facilitate the evolution of the full C4 photosynthetic pathway.
Collapse
Affiliation(s)
- Shunsuke Adachi
- Graduate School of Agriculture, Tokyo University of Agriculture and Technology, Fuchu, Tokyo 183-8509, Japan
| | - Matt Stata
- Department of Ecology and Evolution, The University of Toronto, Toronto, Ontario M5S3B2, Canada
| | - Duncan G Martin
- Department of Plant Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA
| | - Shifeng Cheng
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518120, China
| | - Hongbing Liu
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518120, China
| | - Xin-Guang Zhu
- Center of Excellence for Molecular Plant Sciences, Institute for Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai 200032 China
| | - Rowan F Sage
- Department of Ecology and Evolution, The University of Toronto, Toronto, Ontario M5S3B2, Canada
| |
Collapse
|
29
|
Bauwe H. Photorespiration - Rubisco's repair crew. JOURNAL OF PLANT PHYSIOLOGY 2023; 280:153899. [PMID: 36566670 DOI: 10.1016/j.jplph.2022.153899] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 12/11/2022] [Accepted: 12/11/2022] [Indexed: 06/17/2023]
Abstract
The photorespiratory repair pathway (photorespiration in short) was set up from ancient metabolic modules about three billion years ago in cyanobacteria, the later ancestors of chloroplasts. These prokaryotes developed the capacity for oxygenic photosynthesis, i.e. the use of water as a source of electrons and protons (with O2 as a by-product) for the sunlight-driven synthesis of ATP and NADPH for CO2 fixation in the Calvin cycle. However, the CO2-binding enzyme, ribulose 1,5-bisphosphate carboxylase (known under the acronym Rubisco), is not absolutely selective for CO2 and can also use O2 in a side reaction. It then produces 2-phosphoglycolate (2PG), the accumulation of which would inhibit and potentially stop the Calvin cycle and subsequently photosynthetic electron transport. Photorespiration removes the 2-PG and in this way prevents oxygenic photosynthesis from poisoning itself. In plants, the core of photorespiration consists of ten enzymes distributed over three different types of organelles, requiring interorganellar transport and interaction with several auxiliary enzymes. It goes together with the release and to some extent loss of freshly fixed CO2. This disadvantageous feature can be suppressed by CO2-concentrating mechanisms, such as those that evolved in C4 plants thirty million years ago, which enhance CO2 fixation and reduce 2PG synthesis. Photorespiration itself provided a pioneer variant of such mechanisms in the predecessors of C4 plants, C3-C4 intermediate plants. This article is a review and update particularly on the enzyme components of plant photorespiration and their catalytic mechanisms, on the interaction of photorespiration with other metabolism and on its impact on the evolution of photosynthesis. This focus was chosen because a better knowledge of the enzymes involved and how they are embedded in overall plant metabolism can facilitate the targeted use of the now highly advanced methods of metabolic network modelling and flux analysis. Understanding photorespiration more than before as a process that enables, rather than reduces, plant photosynthesis, will help develop rational strategies for crop improvement.
Collapse
Affiliation(s)
- Hermann Bauwe
- University of Rostock, Plant Physiology, Albert-Einstein-Straße 3, D-18051, Rostock, Germany.
| |
Collapse
|
30
|
Munekage YN, Taniguchi YY. A scheme for C 4 evolution derived from a comparative analysis of the closely related C 3, C 3-C 4 intermediate, C 4-like, and C 4 species in the genus Flaveria. PLANT MOLECULAR BIOLOGY 2022; 110:445-454. [PMID: 35119574 DOI: 10.1007/s11103-022-01246-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Accepted: 01/21/2022] [Indexed: 06/14/2023]
Abstract
A comparative analysis of the genus Flaveria showed a C4 evolutionary process in which the anatomical and metabolic features of C4 photosynthesis were gradually acquired through C3-C4 intermediate stages. C4 photosynthesis has been acquired in multiple lineages of angiosperms during evolution to suppress photorespiration. Crops that perform C4 photosynthesis exhibit high rates of CO2 assimilation and high grain production even under high-temperature in semiarid environments; therefore, engineering C4 photosynthesis in C3 plants is of great importance in the application field. The genus Flaveria contains a large number of C3, C3-C4 intermediate, C4-like, and C4 species, making it a good model genus to study the evolution of C4 photosynthesis, and these studies indicate the direction for C4 engineering. C4 photosynthesis was acquired gradually through the C3-C4 intermediate stage. First, a two-celled C2 cycle called C2 photosynthesis was acquired by localizing glycine decarboxylase activity in the mitochondria of bundle sheath cells. With the development of two-cell metabolism, anatomical features also changed. Next, the replacement of the two-celled C2 cycle by the two-celled C4 cycle was induced by the acquisition of cell-selective expression in addition to the upregulation of enzymes in the C4 cycle during the C3-C4 intermediate stage. This was supported by an increase in cyclic electron transport activity in response to an increase in the ATP/NADPH demand for metabolism. Suppression of the C3 cycle in mesophyll cells was induced after the functional establishment of the C4 cycle, and optimization of electron transport by suppressing the activity of photosystem II also occurred during the final phase of C4 evolution.
Collapse
Affiliation(s)
- Yuri N Munekage
- School of Science and Technology, Kwansei Gakuin University, 2-1 Gakuen, Sanda, Hyogo, 669-1337, Japan.
| | - Yukimi Y Taniguchi
- School of Science and Technology, Kwansei Gakuin University, 2-1 Gakuen, Sanda, Hyogo, 669-1337, Japan
| |
Collapse
|
31
|
Rangan P, Wankhede DP, Subramani R, Chinnusamy V, Malik SK, Baig MJ, Singh K, Henry R. Evolution of an intermediate C 4 photosynthesis in the non-foliar tissues of the Poaceae. PHOTOSYNTHESIS RESEARCH 2022; 153:125-134. [PMID: 35648247 DOI: 10.1007/s11120-022-00926-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Accepted: 05/13/2022] [Indexed: 06/15/2023]
Abstract
Carbon concentrating mechanisms (CCMs) in plants are abaptive features that have evolved to sustain plant growth in unfavorable environments, especially at low atmospheric carbon levels and high temperatures. Uptake of CO2 and its storage in the aerenchyma tissues of Lycopsids and diurnal acidity fluctuation in aquatic plants during the Palaeozoic era (ca. 300 Ma.) would represent the earliest evolution of a CCM. The CCM parts of the dark reactions of photosynthesis have evolved many times, while the light reactions are conserved across plant lineages. A C4 type CCM, leaf C4 photosynthesis is evolved in the PACMAD clade of the Poaceae family. The evolution of C4 photosynthesis from C3 photosynthesis was an abaptation. Photosynthesis in reproductive tissues of sorghum and maize (PACMAD clade) has been shown to be of a weaker C4 type (high CO2 compensation point, low carbon isotope discrimination, and lack of Rubisco compartmentalization, when compared to the normal C4 types) than that in the leaves (normal C4 type). However, this does not fit well with the character polarity concept from an evolutionary perspective. In a recent model proposed for CCM evolution, the development of a rudimentary CCM prior to the evolution of a more efficient CCM (features contrasting to a weaker C4 type, leading to greater biomass production rate) has been suggested. An intermediate crassulacean acid metabolism (CAM) type of CCM (rudimentary) was reported in the genera, Brassia, Coryanthes, Eriopsis, Peristeria, of the orchids (well-known group of plants that display the CAM pathway). Similarly, we propose here the evolution of a rudimentary CCM (C4-like type pathway) in the non-foliar tissues of the Poaceae, prior to the evolution of the C4 pathway as identified in the leaves of the C4 species of the PACMAD clade.
Collapse
Affiliation(s)
- Parimalan Rangan
- ICAR-National Bureau of Plant Genetic Resources, PUSA Campus, New Delhi, 110012, India.
- Queensland Alliance for Agriculture and Food Innovation, University of Queensland, Brisbane, QLD, 4072, Australia.
| | | | - Rajkumar Subramani
- ICAR-National Bureau of Plant Genetic Resources, PUSA Campus, New Delhi, 110012, India
| | | | - Surendra K Malik
- ICAR-National Bureau of Plant Genetic Resources, PUSA Campus, New Delhi, 110012, India
| | | | - Kuldeep Singh
- ICAR-National Bureau of Plant Genetic Resources, PUSA Campus, New Delhi, 110012, India
| | - Robert Henry
- Queensland Alliance for Agriculture and Food Innovation, University of Queensland, Brisbane, QLD, 4072, Australia
| |
Collapse
|
32
|
Bellasio C, Ermakova M. Reduction of bundle sheath size boosts cyclic electron flow in C 4 Setaria viridis acclimated to low light. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2022; 111:1223-1237. [PMID: 35866447 PMCID: PMC9545969 DOI: 10.1111/tpj.15915] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Revised: 06/29/2022] [Accepted: 07/07/2022] [Indexed: 05/22/2023]
Abstract
When C4 leaves are exposed to low light, the CO2 concentration in the bundle sheath (BS) cells decreases, causing an increase in photorespiration relative to assimilation, and a consequent reduction in biochemical efficiency. These effects can be mitigated by complex acclimation syndromes, which are of primary importance for crop productivity but are not well studied. We unveil an acclimation strategy involving the coordination of electron transport processes. First, we characterize the anatomy, gas exchange and electron transport of C4 Setaria viridis grown under low light. Through a purposely developed biochemical model, we resolve the photon fluxes and reaction rates to explain how the concerted acclimation strategies sustain photosynthetic efficiency. Our results show that a smaller BS in low-light-grown plants limited leakiness (the ratio of CO2 leak rate out of the BS over the rate of supply via C4 acid decarboxylation) but sacrificed light harvesting and ATP production. To counter ATP shortage and maintain high assimilation rates, plants facilitated light penetration through the mesophyll and upregulated cyclic electron flow in the BS. This shade tolerance mechanism, based on the optimization of light reactions, is possibly more efficient than the known mechanisms involving the rearrangement of carbon metabolism, and could potentially lead to innovative strategies for crop improvement.
Collapse
Affiliation(s)
- Chandra Bellasio
- Department of BiologyUniversity of the Balearic Islands07122PalmaIlles BalearsSpain
- Centre of Excellence for Translational Photosynthesis, Research School of BiologyThe Australian National UniversityActonACT2601Australia
| | - Maria Ermakova
- Centre of Excellence for Translational Photosynthesis, Research School of BiologyThe Australian National UniversityActonACT2601Australia
| |
Collapse
|
33
|
Heyduk K. Evolution of Crassulacean acid metabolism in response to the environment: past, present, and future. PLANT PHYSIOLOGY 2022; 190:19-30. [PMID: 35748752 PMCID: PMC9434201 DOI: 10.1093/plphys/kiac303] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Accepted: 06/07/2022] [Indexed: 06/15/2023]
Abstract
Crassulacean acid metabolism (CAM) is a mode of photosynthesis that evolved in response to decreasing CO2 levels in the atmosphere some 20 million years ago. An elevated ratio of O2 relative to CO2 caused many plants to face increasing stress from photorespiration, a process exacerbated for plants living under high temperatures or in water-limited environments. Today, our climate is again rapidly changing and plants' ability to cope with and adapt to these novel environments is critical for their success. This review focuses on CAM plant responses to abiotic stressors likely to dominate in our changing climate: increasing CO2 levels, increasing temperatures, and greater variability in drought. Empirical studies that have assessed CAM responses are reviewed, though notably these are concentrated in relatively few CAM lineages. Other aspects of CAM biology, including the effects of abiotic stress on the light reactions and the role of leaf succulence, are also considered in the context of climate change. Finally, more recent studies using genomic techniques are discussed to link physiological changes in CAM plants with the underlying molecular mechanism. Together, the body of work reviewed suggests that CAM plants will continue to thrive in certain environments under elevated CO2. However, how CO2 interacts with other environmental factors, how those interactions affect CAM plants, and whether all CAM plants will be equally affected remain outstanding questions regarding the evolution of CAM on a changing planet.
Collapse
|
34
|
Zhao YY, Lyu MA, Miao F, Chen G, Zhu XG. The evolution of stomatal traits along the trajectory toward C4 photosynthesis. PLANT PHYSIOLOGY 2022; 190:441-458. [PMID: 35652758 PMCID: PMC9434244 DOI: 10.1093/plphys/kiac252] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Accepted: 04/21/2022] [Indexed: 05/03/2023]
Abstract
C4 photosynthesis optimizes plant carbon and water relations, allowing high photosynthetic rates with low stomatal conductance. Stomata have long been considered a part of the C4 syndrome. However, it remains unclear how stomatal traits evolved along the path from C3 to C4. Here, we examined stomata in the Flaveria genus, a model used for C4 evolutionary study. Comparative, transgenic, and semi-in vitro experiments were performed to study the molecular basis that underlies the changes of stomatal traits in C4 evolution. The evolution from C3 to C4 species is accompanied by a gradual rather than an abrupt change in stomatal traits. The initial change appears near the Type I intermediate stage. Co-evolution of the photosynthetic pathway and stomatal traits is supported. On the road to C4, stomata tend to be fewer in number but larger in size and stomatal density dominates changes in anatomical maximum stomatal conductance (gsmax). Reduction of FSTOMAGEN expression underlies decreased gsmax in Flaveria and likely occurs in other C4 lineages. Decreased gsmax contributes to the increase in intrinsic water-use efficiency in C4 evolution. This work highlights the stomatal traits in the current C4 evolutionary model. Our study provides insights into the pattern, mechanism, and role of stomatal evolution along the road toward C4.
Collapse
Affiliation(s)
- Yong-Yao Zhao
- State Key Laboratory for Plant Molecular Genetics, Center of Excellence for Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai 200032, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Mingju Amy Lyu
- State Key Laboratory for Plant Molecular Genetics, Center of Excellence for Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai 200032, China
| | - FenFen Miao
- State Key Laboratory for Plant Molecular Genetics, Center of Excellence for Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai 200032, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Genyun Chen
- State Key Laboratory for Plant Molecular Genetics, Center of Excellence for Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai 200032, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | | |
Collapse
|
35
|
Medeiros DB, Ishihara H, Guenther M, Rosado de Souza L, Fernie AR, Stitt M, Arrivault S. 13CO2 labeling kinetics in maize reveal impaired efficiency of C4 photosynthesis under low irradiance. PLANT PHYSIOLOGY 2022; 190:280-304. [PMID: 35751609 PMCID: PMC9434203 DOI: 10.1093/plphys/kiac306] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Accepted: 06/06/2022] [Indexed: 06/01/2023]
Abstract
C4 photosynthesis allows faster photosynthetic rates and higher water and nitrogen use efficiency than C3 photosynthesis, but at the cost of lower quantum yield due to the energy requirement of its biochemical carbon concentration mechanism. It has also been suspected that its operation may be impaired in low irradiance. To investigate fluxes under moderate and low irradiance, maize (Zea mays) was grown at 550 µmol photons m-2 s-l and 13CO2 pulse-labeling was performed at growth irradiance or several hours after transfer to 160 µmol photons m-2 s-1. Analysis by liquid chromatography/tandem mass spectrometry or gas chromatography/mass spectrometry provided information about pool size and labeling kinetics for 32 metabolites and allowed estimation of flux at many steps in C4 photosynthesis. The results highlighted several sources of inefficiency in low light. These included excess flux at phosphoenolpyruvate carboxylase, restriction of decarboxylation by NADP-malic enzyme, and a shift to increased CO2 incorporation into aspartate, less effective use of metabolite pools to drive intercellular shuttles, and higher relative and absolute rates of photorespiration. The latter provides evidence for a lower bundle sheath CO2 concentration in low irradiance, implying that operation of the CO2 concentration mechanism is impaired in this condition. The analyses also revealed rapid exchange of carbon between the Calvin-Benson cycle and the CO2-concentration shuttle, which allows rapid adjustment of the balance between CO2 concentration and assimilation, and accumulation of large amounts of photorespiratory intermediates in low light that provides a major carbon reservoir to build up C4 metabolite pools when irradiance increases.
Collapse
Affiliation(s)
- David B Medeiros
- Max Planck Institute of Molecular Plant Physiology, 14476 Potsdam-Golm, Germany
| | - Hirofumi Ishihara
- Max Planck Institute of Molecular Plant Physiology, 14476 Potsdam-Golm, Germany
| | - Manuela Guenther
- Max Planck Institute of Molecular Plant Physiology, 14476 Potsdam-Golm, Germany
| | | | - Alisdair R Fernie
- Max Planck Institute of Molecular Plant Physiology, 14476 Potsdam-Golm, Germany
| | - Mark Stitt
- Max Planck Institute of Molecular Plant Physiology, 14476 Potsdam-Golm, Germany
| | - Stéphanie Arrivault
- Max Planck Institute of Molecular Plant Physiology, 14476 Potsdam-Golm, Germany
| |
Collapse
|
36
|
Moreno-Villena JJ, Zhou H, Gilman IS, Tausta SL, Cheung CYM, Edwards EJ. Spatial resolution of an integrated C 4+CAM photosynthetic metabolism. SCIENCE ADVANCES 2022; 8:eabn2349. [PMID: 35930634 PMCID: PMC9355352 DOI: 10.1126/sciadv.abn2349] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Accepted: 06/22/2022] [Indexed: 05/27/2023]
Abstract
C4 and CAM photosynthesis have repeatedly evolved in plants over the past 30 million years. Because both repurpose the same set of enzymes but differ in their spatial and temporal deployment, they have long been considered as distinct and incompatible adaptations. Portulaca contains multiple C4 species that perform CAM when droughted. Spatially explicit analyses of gene expression reveal that C4 and CAM systems are completely integrated in Portulaca oleracea, with CAM and C4 carbon fixation occurring in the same cells and CAM-generated metabolites likely incorporated directly into the C4 cycle. Flux balance analysis corroborates the gene expression findings and predicts an integrated C4+CAM system under drought. This first spatially explicit description of a C4+CAM photosynthetic metabolism presents a potential new blueprint for crop improvement.
Collapse
Affiliation(s)
- Jose J. Moreno-Villena
- Department of Ecology and Evolutionary Biology, Yale University, P.O. Box 208106, New Haven, CT 06520, USA
| | - Haoran Zhou
- Department of Ecology and Evolutionary Biology, Yale University, P.O. Box 208106, New Haven, CT 06520, USA
- School of Earth System Science, Tianjin University, Tianjin 300072, China
| | - Ian S. Gilman
- Department of Ecology and Evolutionary Biology, Yale University, P.O. Box 208106, New Haven, CT 06520, USA
| | - S. Lori Tausta
- Department of Molecular Biophysics and Biochemistry, Yale University, 600 West Campus, West Haven, CT 06516, USA
| | | | - Erika J. Edwards
- Department of Ecology and Evolutionary Biology, Yale University, P.O. Box 208106, New Haven, CT 06520, USA
| |
Collapse
|
37
|
Tang Q, Song Q, Ni X, Shi Z, Chen G, Zhu X. An integrated isotopic labeling and freeze sampling apparatus (ILSA) to support sampling leaf metabolomics at a centi-second scale. PLANT METHODS 2022; 18:97. [PMID: 35907895 PMCID: PMC9338585 DOI: 10.1186/s13007-022-00926-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Accepted: 07/14/2022] [Indexed: 06/15/2023]
Abstract
BACKGROUND Photosynthesis close interacts with respiration and nitrogen assimilation, which determine the photosynthetic efficiency of a leaf. Accurately quantifying the metabolic fluxes in photosynthesis, respiration and nitrogen assimilation benefit the design of photosynthetic efficiency improvement. To accurately estimate metabolic fluxes, time-series data including leaf metabolism and isotopic abundance changes should be collected under precisely controlled environments. But for isotopic labelled leaves under defined environments the, time cost of manually sampling usually longer than the turnover time of several intermediates in photosynthetic metabolism. In this case, the metabolic or physiological status of leaf sample would change during the sampling, and the accuracy of metabolomics data could be compromised. RESULTS Here we developed an integrated isotopic labeling and freeze sampling apparatus (ILSA), which could finish freeze sampling automatically in 0.05 s. ILSA can not only be used for sampling of photosynthetic metabolism measurement, but also suit for leaf isotopic labeling experiments under controlled environments ([CO2] and light). Combined with HPLC-MS/MS as the metabolic measurement method, we demonstrated: (1) how pool-size of photosynthetic metabolites change in dark-accumulated rice leaf, and (2) variation in photosynthetic metabolic flux between rice and Arabidopsis thaliana. CONCLUSIONS The development of ILSA supports the photosynthetic research on metabolism and metabolic flux analysis and provides a new tool for the study of leaf physiology.
Collapse
Affiliation(s)
- Qiming Tang
- National Key Laboratory for Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, 200032, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Qingfeng Song
- National Key Laboratory for Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, 200032, China
| | - Xiaoxiang Ni
- National Key Laboratory for Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, 200032, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Zai Shi
- National Key Laboratory for Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, 200032, China
| | - Genyun Chen
- National Key Laboratory for Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, 200032, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Xinguang Zhu
- National Key Laboratory for Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, 200032, China.
- University of Chinese Academy of Sciences, Beijing, 100049, China.
| |
Collapse
|
38
|
Gilman IS, Moreno-Villena JJ, Lewis ZR, Goolsby EW, Edwards EJ. Gene co-expression reveals the modularity and integration of C4 and CAM in Portulaca. PLANT PHYSIOLOGY 2022; 189:735-753. [PMID: 35285495 PMCID: PMC9157154 DOI: 10.1093/plphys/kiac116] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Accepted: 02/17/2022] [Indexed: 05/17/2023]
Abstract
C4 photosynthesis and Crassulacean acid metabolism (CAM) have been considered as largely independent adaptations despite sharing key biochemical modules. Portulaca is a geographically widespread clade of over 100 annual and perennial angiosperm species that primarily use C4 but facultatively exhibit CAM when drought stressed, a photosynthetic system known as C4 + CAM. It has been hypothesized that C4 + CAM is rare because of pleiotropic constraints, but these have not been deeply explored. We generated a chromosome-level genome assembly of Portulaca amilis and sampled mRNA from P. amilis and Portulaca oleracea during CAM induction. Gene co-expression network analyses identified C4 and CAM gene modules shared and unique to both Portulaca species. A conserved CAM module linked phosphoenolpyruvate carboxylase to starch turnover during the day-night transition and was enriched in circadian clock regulatory motifs in the P. amilis genome. Preservation of this co-expression module regardless of water status suggests that Portulaca constitutively operate a weak CAM cycle that is transcriptionally and posttranscriptionally upregulated during drought. C4 and CAM mostly used mutually exclusive genes for primary carbon fixation, and it is likely that nocturnal CAM malate stores are shuttled into diurnal C4 decarboxylation pathways, but we found evidence that metabolite cycling may occur at low levels. C4 likely evolved in Portulaca through co-option of redundant genes and integration of the diurnal portion of CAM. Thus, the ancestral CAM system did not strongly constrain C4 evolution because photosynthetic gene networks are not co-regulated for both daytime and nighttime functions.
Collapse
Affiliation(s)
- Ian S Gilman
- Department of Ecology and Evolutionary Biology, Yale University, New Haven, Connecticut, USA
- Author for correspondence:
| | - Jose J Moreno-Villena
- Department of Ecology and Evolutionary Biology, Yale University, New Haven, Connecticut, USA
| | - Zachary R Lewis
- Department of Ecology and Evolutionary Biology, Yale University, New Haven, Connecticut, USA
| | - Eric W Goolsby
- Department of Biology, University of Central Florida, Orlando, Florida, USA
| | - Erika J Edwards
- Department of Ecology and Evolutionary Biology, Yale University, New Haven, Connecticut, USA
| |
Collapse
|
39
|
Mercado MA, Studer AJ. Meeting in the Middle: Lessons and Opportunities from Studying C 3-C 4 Intermediates. ANNUAL REVIEW OF PLANT BIOLOGY 2022; 73:43-65. [PMID: 35231181 DOI: 10.1146/annurev-arplant-102720-114201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
The discovery of C3-C4 intermediate species nearly 50 years ago opened up a new avenue for studying the evolution of photosynthetic pathways. Intermediate species exhibit anatomical, biochemical, and physiological traits that range from C3 to C4. A key feature of C3-C4 intermediates that utilize C2 photosynthesis is the improvement in photosynthetic efficiency compared with C3 species. Although the recruitment of some core enzymes is shared across lineages, there is significant variability in gene expression patterns, consistent with models that suggest numerous evolutionary paths from C3 to C4 photosynthesis. Despite the many evolutionary trajectories, the recruitment of glycine decarboxylase for C2 photosynthesis is likely required. As technologies enable high-throughput genotyping and phenotyping, the discovery of new C3-C4 intermediates species will enrich comparisons between evolutionary lineages. The investigation of C3-C4 intermediate species will enhance our understanding of photosynthetic mechanisms and evolutionary processes and will potentially aid in crop improvement.
Collapse
Affiliation(s)
| | - Anthony J Studer
- Department of Crop Sciences, University of Illinois, Urbana, Illinois, USA; ,
| |
Collapse
|
40
|
Bianconi ME, Sotelo G, Curran EV, Milenkovic V, Samaritani E, Dunning LT, Bertolino LT, Osborne CP, Christin PA. Upregulation of C 4 characteristics does not consistently improve photosynthetic performance in intraspecific hybrids of a grass. PLANT, CELL & ENVIRONMENT 2022. [PMID: 35201618 DOI: 10.1101/2021.08.10.455822] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/07/2023]
Abstract
C4 photosynthesis is thought to have evolved via intermediate stages, with changes towards the C4 phenotype gradually enhancing photosynthetic performance. This hypothesis is widely supported by modelling studies, but experimental tests are missing. Mixing of C4 components to generate artificial intermediates can be achieved via crossing, and the grass Alloteropsis semialata represents an outstanding study system since it includes C4 and non-C4 populations. Here, we analyse F1 hybrids between C3 and C4 , and C3 +C4 and C4 genotypes to determine whether the acquisition of C4 characteristics increases photosynthetic performance. The hybrids have leaf anatomical characters and C4 gene expression profiles that are largely intermediate between those of their parents. Carbon isotope ratios are similarly intermediate, which suggests that a partial C4 cycle coexists with C3 carbon fixation in the hybrids. This partial C4 phenotype is associated with C4 -like photosynthetic efficiency in C3 +C4 × C4 , but not in C3 × C4 hybrids, which are overall less efficient than both parents. Our results support the hypothesis that the photosynthetic gains from the upregulation of C4 characteristics depend on coordinated changes in anatomy and biochemistry. The order of acquisition of C4 components is thus constrained, with C3 +C4 species providing an essential step for C4 evolution.
Collapse
Affiliation(s)
- Matheus E Bianconi
- Ecology and Evolutionary Biology, School of Biosciences, University of Sheffield, Western Bank, Sheffield, UK
| | - Graciela Sotelo
- Ecology and Evolutionary Biology, School of Biosciences, University of Sheffield, Western Bank, Sheffield, UK
| | - Emma V Curran
- Ecology and Evolutionary Biology, School of Biosciences, University of Sheffield, Western Bank, Sheffield, UK
| | - Vanja Milenkovic
- Ecology and Evolutionary Biology, School of Biosciences, University of Sheffield, Western Bank, Sheffield, UK
| | - Emanuela Samaritani
- Ecology and Evolutionary Biology, School of Biosciences, University of Sheffield, Western Bank, Sheffield, UK
| | - Luke T Dunning
- Ecology and Evolutionary Biology, School of Biosciences, University of Sheffield, Western Bank, Sheffield, UK
| | - Lígia T Bertolino
- Plants, Photosynthesis and Soil, School of Biosciences, University of Sheffield, Western Bank, Sheffield, UK
| | - Colin P Osborne
- Plants, Photosynthesis and Soil, School of Biosciences, University of Sheffield, Western Bank, Sheffield, UK
| | - Pascal-Antoine Christin
- Ecology and Evolutionary Biology, School of Biosciences, University of Sheffield, Western Bank, Sheffield, UK
| |
Collapse
|
41
|
Bianconi ME, Sotelo G, Curran EV, Milenkovic V, Samaritani E, Dunning LT, Bertolino LT, Osborne CP, Christin P. Upregulation of C 4 characteristics does not consistently improve photosynthetic performance in intraspecific hybrids of a grass. PLANT, CELL & ENVIRONMENT 2022; 45:1398-1411. [PMID: 35201618 PMCID: PMC9314825 DOI: 10.1111/pce.14301] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Revised: 11/20/2021] [Accepted: 11/21/2021] [Indexed: 06/14/2023]
Abstract
C4 photosynthesis is thought to have evolved via intermediate stages, with changes towards the C4 phenotype gradually enhancing photosynthetic performance. This hypothesis is widely supported by modelling studies, but experimental tests are missing. Mixing of C4 components to generate artificial intermediates can be achieved via crossing, and the grass Alloteropsis semialata represents an outstanding study system since it includes C4 and non-C4 populations. Here, we analyse F1 hybrids between C3 and C4 , and C3 +C4 and C4 genotypes to determine whether the acquisition of C4 characteristics increases photosynthetic performance. The hybrids have leaf anatomical characters and C4 gene expression profiles that are largely intermediate between those of their parents. Carbon isotope ratios are similarly intermediate, which suggests that a partial C4 cycle coexists with C3 carbon fixation in the hybrids. This partial C4 phenotype is associated with C4 -like photosynthetic efficiency in C3 +C4 × C4 , but not in C3 × C4 hybrids, which are overall less efficient than both parents. Our results support the hypothesis that the photosynthetic gains from the upregulation of C4 characteristics depend on coordinated changes in anatomy and biochemistry. The order of acquisition of C4 components is thus constrained, with C3 +C4 species providing an essential step for C4 evolution.
Collapse
Affiliation(s)
- Matheus E. Bianconi
- Ecology and Evolutionary Biology, School of BiosciencesUniversity of SheffieldWestern BankSheffieldUK
| | - Graciela Sotelo
- Ecology and Evolutionary Biology, School of BiosciencesUniversity of SheffieldWestern BankSheffieldUK
| | - Emma V. Curran
- Ecology and Evolutionary Biology, School of BiosciencesUniversity of SheffieldWestern BankSheffieldUK
| | - Vanja Milenkovic
- Ecology and Evolutionary Biology, School of BiosciencesUniversity of SheffieldWestern BankSheffieldUK
| | - Emanuela Samaritani
- Ecology and Evolutionary Biology, School of BiosciencesUniversity of SheffieldWestern BankSheffieldUK
| | - Luke T. Dunning
- Ecology and Evolutionary Biology, School of BiosciencesUniversity of SheffieldWestern BankSheffieldUK
| | - Lígia T. Bertolino
- Plants, Photosynthesis and Soil, School of BiosciencesUniversity of SheffieldWestern BankSheffieldUK
| | - Colin P. Osborne
- Plants, Photosynthesis and Soil, School of BiosciencesUniversity of SheffieldWestern BankSheffieldUK
| | - Pascal‐Antoine Christin
- Ecology and Evolutionary Biology, School of BiosciencesUniversity of SheffieldWestern BankSheffieldUK
| |
Collapse
|
42
|
Borghi GL, Arrivault S, Günther M, Barbosa Medeiros D, Dell’Aversana E, Fusco GM, Carillo P, Ludwig M, Fernie AR, Lunn JE, Stitt M. Metabolic profiles in C3, C3-C4 intermediate, C4-like, and C4 species in the genus Flaveria. JOURNAL OF EXPERIMENTAL BOTANY 2022; 73:1581-1601. [PMID: 34910813 PMCID: PMC8890617 DOI: 10.1093/jxb/erab540] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Accepted: 12/14/2021] [Indexed: 05/22/2023]
Abstract
C4 photosynthesis concentrates CO2 around Rubisco in the bundle sheath, favouring carboxylation over oxygenation and decreasing photorespiration. This complex trait evolved independently in >60 angiosperm lineages. Its evolution can be investigated in genera such as Flaveria (Asteraceae) that contain species representing intermediate stages between C3 and C4 photosynthesis. Previous studies have indicated that the first major change in metabolism probably involved relocation of glycine decarboxylase and photorespiratory CO2 release to the bundle sheath and establishment of intercellular shuttles to maintain nitrogen stoichiometry. This was followed by selection for a CO2-concentrating cycle between phosphoenolpyruvate carboxylase in the mesophyll and decarboxylases in the bundle sheath, and relocation of Rubisco to the latter. We have profiled 52 metabolites in nine Flaveria species and analysed 13CO2 labelling patterns for four species. Our results point to operation of multiple shuttles, including movement of aspartate in C3-C4 intermediates and a switch towards a malate/pyruvate shuttle in C4-like species. The malate/pyruvate shuttle increases from C4-like to complete C4 species, accompanied by a rise in ancillary organic acid pools. Our findings support current models and uncover further modifications of metabolism along the evolutionary path to C4 photosynthesis in the genus Flaveria.
Collapse
Affiliation(s)
- Gian Luca Borghi
- Max Planck Institute of Molecular Plant Physiology, Am Mühlenberg 1, D-14476 Potsdam-Golm, Germany
| | - Stéphanie Arrivault
- Max Planck Institute of Molecular Plant Physiology, Am Mühlenberg 1, D-14476 Potsdam-Golm, Germany
- Correspondence:
| | - Manuela Günther
- Max Planck Institute of Molecular Plant Physiology, Am Mühlenberg 1, D-14476 Potsdam-Golm, Germany
| | - David Barbosa Medeiros
- Max Planck Institute of Molecular Plant Physiology, Am Mühlenberg 1, D-14476 Potsdam-Golm, Germany
| | - Emilia Dell’Aversana
- Universitá degli Studi della Campania, Dipartimento di Scienze e Tecnologie Ambientali, Biologiche e Farmaceutiche, Via Vivaldi 43, 81100 Caserta, Italy
| | - Giovanna Marta Fusco
- Universitá degli Studi della Campania, Dipartimento di Scienze e Tecnologie Ambientali, Biologiche e Farmaceutiche, Via Vivaldi 43, 81100 Caserta, Italy
| | - Petronia Carillo
- Universitá degli Studi della Campania, Dipartimento di Scienze e Tecnologie Ambientali, Biologiche e Farmaceutiche, Via Vivaldi 43, 81100 Caserta, Italy
| | - Martha Ludwig
- The University of Western Australia, School of Molecular Sciences, 35 Stirling Highway, 6009 Perth, Australia
| | - Alisdair R Fernie
- Max Planck Institute of Molecular Plant Physiology, Am Mühlenberg 1, D-14476 Potsdam-Golm, Germany
| | - John E Lunn
- Max Planck Institute of Molecular Plant Physiology, Am Mühlenberg 1, D-14476 Potsdam-Golm, Germany
| | - Mark Stitt
- Max Planck Institute of Molecular Plant Physiology, Am Mühlenberg 1, D-14476 Potsdam-Golm, Germany
| |
Collapse
|
43
|
Yang J, Zhu Q, Chai J, Xu F, Ding Y, Zhu Q, Lu Z, Khoo KS, Bian X, Wang S, Show PL. Development of environmentally friendly biological algicide and biochemical analysis of inhibitory effect of diatom Skeletonema costatum. CHINESE CHEM LETT 2022. [DOI: 10.1016/j.cclet.2021.09.053] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
44
|
Parma DF, Vaz MGMV, Falquetto P, Silva JC, Clarindo WR, Westhoff P, van Velzen R, Schlüter U, Araújo WL, Schranz ME, Weber APM, Nunes-Nesi A. New Insights Into the Evolution of C 4 Photosynthesis Offered by the Tarenaya Cluster of Cleomaceae. FRONTIERS IN PLANT SCIENCE 2022; 12:756505. [PMID: 35116048 PMCID: PMC8803641 DOI: 10.3389/fpls.2021.756505] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Accepted: 12/16/2021] [Indexed: 05/04/2023]
Abstract
Cleomaceae is closely related to Brassicaceae and includes C3, C3-C4, and C4 species. Thus, this family represents an interesting system for studying the evolution of the carbon concentrating mechanism. However, inadequate genetic information on Cleomaceae limits their research applications. Here, we characterized 22 Cleomaceae accessions [3 genera (Cleoserrata, Gynandropsis, and Tarenaya) and 11 species] in terms of genome size; molecular phylogeny; as well as anatomical, biochemical, and photosynthetic traits. We clustered the species into seven groups based on genome size. Interestingly, despite clear differences in genome size (2C, ranging from 0.55 to 1.3 pg) in Tarenaya spp., this variation was not consistent with phylogenetic grouping based on the internal transcribed spacer (ITS) marker, suggesting the occurrence of multiple polyploidy events within this genus. Moreover, only G. gynandra, which possesses a large nuclear genome, exhibited the C4 metabolism. Among the C3-like species, we observed intra- and interspecific variation in nuclear genome size as well as in biochemical, physiological, and anatomical traits. Furthermore, the C3-like species had increased venation density and bundle sheath cell size, compared to C4 species, which likely predisposed the former lineages to C4 photosynthesis. Accordingly, our findings demonstrate the potential of Cleomaceae, mainly members of Tarenaya, in offering novel insights into the evolution of C4 photosynthesis.
Collapse
Affiliation(s)
- Daniele F. Parma
- Departamento de Biologia Vegetal, Universidade Federal de Viçosa, Viçosa, Brazil
| | - Marcelo G. M. V. Vaz
- Departamento de Biologia Vegetal, Universidade Federal de Viçosa, Viçosa, Brazil
| | - Priscilla Falquetto
- Departamento de Biologia Vegetal, Universidade Federal de Viçosa, Viçosa, Brazil
| | - Jéssica C. Silva
- Departamento de Biologia Geral, Universidade Federal de Viçosa, Viçosa, Brazil
| | | | - Philipp Westhoff
- Plant Metabolism and Metabolomics Laboratory, Cluster of Excellence on Plant Sciences, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Robin van Velzen
- Biosystematics Group, Wageningen University & Research, Wageningen, Netherlands
| | - Urte Schlüter
- Institute of Plant Biochemistry, Cluster of Excellence on Plant Science, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Wagner L. Araújo
- Departamento de Biologia Vegetal, Universidade Federal de Viçosa, Viçosa, Brazil
| | - M. Eric Schranz
- Biosystematics Group, Wageningen University & Research, Wageningen, Netherlands
| | - Andreas P. M. Weber
- Institute of Plant Biochemistry, Cluster of Excellence on Plant Science, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Adriano Nunes-Nesi
- Departamento de Biologia Vegetal, Universidade Federal de Viçosa, Viçosa, Brazil
| |
Collapse
|
45
|
Oono J, Hatakeyama Y, Yabiku T, Ueno O. Effects of growth temperature and nitrogen nutrition on expression of C 3-C 4 intermediate traits in Chenopodium album. JOURNAL OF PLANT RESEARCH 2022; 135:15-27. [PMID: 34519912 DOI: 10.1007/s10265-021-01346-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Accepted: 09/06/2021] [Indexed: 06/13/2023]
Abstract
Proto-Kranz plants represent an initial phase in the evolution from C3 to C3-C4 intermediate to C4 plants. The ecological and adaptive aspects of C3-C4 plants would provide an important clue to understand the evolution of C3-C4 plants. We investigated whether growth temperature and nitrogen (N) nutrition influence the expression of C3-C4 traits in Chenopodium album (proto-Kranz) in comparison with Chenopodium quinoa (C3). Plants were grown during 5 weeks at 20 or 30 °C under standard or low N supply levels (referred to as 20SN, 20LN, 30SN, and 30LN). Net photosynthetic rate and leaf N content were higher in 20SN and 30SN plants than in 20LN and 30LN plants of C. album but did not differ among growth conditions in C. quinoa. The CO2 compensation point (Γ) of C. album was lowest in 30LN plants (36 µmol mol-1), highest in 20SN plants (51 µmol mol-1), and intermediate in 20LN and 30SN plants, whereas Γ of C. quinoa did not differ among the growth conditions (51-52 µmol mol-1). The anatomical structure of leaves was not considerably affected by growth conditions in either species. However, ultrastructural observations in C. album showed that the number of mitochondria per mesophyll or bundle sheath (BS) cell was lower in 20LN and 30LN plants than in 20SN and 30SN plants. Immunohistochemical observations revealed that lower accumulation level of P-protein of glycine decarboxylase (GDC-P) in mesophyll mitochondria than in BS mitochondria is the major factor causing the decrease in Γ values in C. album plants grown under low N supply and high temperature. These results suggest that high growth temperature and low N supply lead to the expression of C3-C4 traits (the reduction of Γ) in the proto-Kranz plants of C. album through the regulation of GDC-P expression.
Collapse
Affiliation(s)
- Jemin Oono
- Graduate School of Bioresource and Bioenvironmental Sciences, Kyushu University, Motooka 744, Nishi-ku, Fukuoka, 819-0395, Japan
| | - Yuto Hatakeyama
- Graduate School of Bioresource and Bioenvironmental Sciences, Kyushu University, Motooka 744, Nishi-ku, Fukuoka, 819-0395, Japan
| | - Takayuki Yabiku
- Graduate School of Bioresource and Bioenvironmental Sciences, Kyushu University, Motooka 744, Nishi-ku, Fukuoka, 819-0395, Japan
| | - Osamu Ueno
- Faculty of Agriculture, Kyushu University, Motooka 744, Nishi-ku, Fukuoka, 819-0395, Japan.
| |
Collapse
|
46
|
Washburn JD, Strable J, Dickinson P, Kothapalli SS, Brose JM, Covshoff S, Conant GC, Hibberd JM, Pires JC. Distinct C 4 sub-types and C 3 bundle sheath isolation in the Paniceae grasses. PLANT DIRECT 2021; 5:e373. [PMID: 34988355 PMCID: PMC8711749 DOI: 10.1002/pld3.373] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Revised: 11/30/2021] [Accepted: 12/08/2021] [Indexed: 06/14/2023]
Abstract
In C4 plants, the enzymatic machinery underpinning photosynthesis can vary, with, for example, three distinct C4 acid decarboxylases being used to release CO2 in the vicinity of RuBisCO. For decades, these decarboxylases have been used to classify C4 species into three biochemical sub-types. However, more recently, the notion that C4 species mix and match C4 acid decarboxylases has increased in popularity, and as a consequence, the validity of specific biochemical sub-types has been questioned. Using five species from the grass tribe Paniceae, we show that, although in some species transcripts and enzymes involved in multiple C4 acid decarboxylases accumulate, in others, transcript abundance and enzyme activity is almost entirely from one decarboxylase. In addition, the development of a bundle sheath isolation procedure for a close C3 species in the Paniceae enables the preliminary exploration of C4 sub-type evolution.
Collapse
Affiliation(s)
- Jacob D. Washburn
- Plant Genetics Research Unit, USDA‐ARSUniversity of MissouriColumbiaMOUSA
- Division of Biological SciencesUniversity of MissouriColumbiaMOUSA
| | - Josh Strable
- Department of Molecular and Structural BiochemistryNorth Carolina State UniversityRaleighNCUSA
| | | | | | - Julia M. Brose
- Division of Biological SciencesUniversity of MissouriColumbiaMOUSA
| | - Sarah Covshoff
- Department of Plant SciencesUniversity of CambridgeCambridgeUK
| | - Gavin C. Conant
- Program in Genetics, Bioinformatics Research Center, Department of Biological SciencesNorth Carolina State UniversityRaleighNCUSA
| | | | | |
Collapse
|
47
|
Johnson JE, Field CB, Berry JA. The limiting factors and regulatory processes that control the environmental responses of C 3, C 3-C 4 intermediate, and C 4 photosynthesis. Oecologia 2021; 197:841-866. [PMID: 34714387 PMCID: PMC8591018 DOI: 10.1007/s00442-021-05062-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Accepted: 10/07/2021] [Indexed: 11/28/2022]
Abstract
Here, we describe a model of C3, C3-C4 intermediate, and C4 photosynthesis that is designed to facilitate quantitative analysis of physiological measurements. The model relates the factors limiting electron transport and carbon metabolism, the regulatory processes that coordinate these metabolic domains, and the responses to light, carbon dioxide, and temperature. It has three unique features. First, mechanistic expressions describe how the cytochrome b6f complex controls electron transport in mesophyll and bundle sheath chloroplasts. Second, the coupling between the mesophyll and bundle sheath expressions represents how feedback regulation of Cyt b6f coordinates electron transport and carbon metabolism. Third, the temperature sensitivity of Cyt b6f is differentiated from that of the coupling between NADPH, Fd, and ATP production. Using this model, we present simulations demonstrating that the light dependence of the carbon dioxide compensation point in C3-C4 leaves can be explained by co-occurrence of light saturation in the mesophyll and light limitation in the bundle sheath. We also present inversions demonstrating that population-level variation in the carbon dioxide compensation point in a Type I C3-C4 plant, Flaveria chloraefolia, can be explained by variable allocation of photosynthetic capacity to the bundle sheath. These results suggest that Type I C3-C4 intermediate plants adjust pigment and protein distributions to optimize the glycine shuttle under different light and temperature regimes, and that the malate and aspartate shuttles may have originally functioned to smooth out the energy supply and demand associated with the glycine shuttle. This model has a wide range of potential applications to physiological, ecological, and evolutionary questions.
Collapse
Affiliation(s)
- Jennifer E Johnson
- Department of Global Ecology, Carnegie Institution for Science, 260 Panama Street, Stanford, CA, 94305, USA.
| | - Christopher B Field
- Department of Global Ecology, Carnegie Institution for Science, 260 Panama Street, Stanford, CA, 94305, USA
- Stanford Woods Institute for the Environment, Stanford University, 473 Via Ortega, Stanford, CA, 94305, USA
| | - Joseph A Berry
- Department of Global Ecology, Carnegie Institution for Science, 260 Panama Street, Stanford, CA, 94305, USA
| |
Collapse
|
48
|
Yang X, Liu D, Lu H, Weston DJ, Chen JG, Muchero W, Martin S, Liu Y, Hassan MM, Yuan G, Kalluri UC, Tschaplinski TJ, Mitchell JC, Wullschleger SD, Tuskan GA. Biological Parts for Plant Biodesign to Enhance Land-Based Carbon Dioxide Removal. BIODESIGN RESEARCH 2021; 2021:9798714. [PMID: 37849951 PMCID: PMC10521660 DOI: 10.34133/2021/9798714] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Accepted: 11/07/2021] [Indexed: 10/19/2023] Open
Abstract
A grand challenge facing society is climate change caused mainly by rising CO2 concentration in Earth's atmosphere. Terrestrial plants are linchpins in global carbon cycling, with a unique capability of capturing CO2 via photosynthesis and translocating captured carbon to stems, roots, and soils for long-term storage. However, many researchers postulate that existing land plants cannot meet the ambitious requirement for CO2 removal to mitigate climate change in the future due to low photosynthetic efficiency, limited carbon allocation for long-term storage, and low suitability for the bioeconomy. To address these limitations, there is an urgent need for genetic improvement of existing plants or construction of novel plant systems through biosystems design (or biodesign). Here, we summarize validated biological parts (e.g., protein-encoding genes and noncoding RNAs) for biological engineering of carbon dioxide removal (CDR) traits in terrestrial plants to accelerate land-based decarbonization in bioenergy plantations and agricultural settings and promote a vibrant bioeconomy. Specifically, we first summarize the framework of plant-based CDR (e.g., CO2 capture, translocation, storage, and conversion to value-added products). Then, we highlight some representative biological parts, with experimental evidence, in this framework. Finally, we discuss challenges and strategies for the identification and curation of biological parts for CDR engineering in plants.
Collapse
Affiliation(s)
- Xiaohan Yang
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA
- The Center for Bioenergy Innovation, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA
| | - Degao Liu
- Department of Genetics, Cell Biology and Development, Center for Precision Plant Genomics, and Center for Genome Engineering, University of Minnesota, Saint Paul, MN 55108, USA
| | - Haiwei Lu
- Department of Academic Education, Central Community College-Hastings, Hastings, NE 68902USA
| | - David J. Weston
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA
- The Center for Bioenergy Innovation, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA
| | - Jin-Gui Chen
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA
- The Center for Bioenergy Innovation, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA
| | - Wellington Muchero
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA
- The Center for Bioenergy Innovation, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA
| | - Stanton Martin
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA
- The Center for Bioenergy Innovation, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA
| | - Yang Liu
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA
| | - Md Mahmudul Hassan
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA
- The Center for Bioenergy Innovation, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA
| | - Guoliang Yuan
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA
- The Center for Bioenergy Innovation, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA
| | - Udaya C. Kalluri
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA
- The Center for Bioenergy Innovation, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA
| | - Timothy J. Tschaplinski
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA
- The Center for Bioenergy Innovation, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA
| | - Julie C. Mitchell
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA
| | - Stan D. Wullschleger
- Environmental Sciences Division and Climate Change Science Institute, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA
| | - Gerald A. Tuskan
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA
- The Center for Bioenergy Innovation, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA
| |
Collapse
|
49
|
Siadjeu C, Lauterbach M, Kadereit G. Insights into Regulation of C 2 and C 4 Photosynthesis in Amaranthaceae/ Chenopodiaceae Using RNA-Seq. Int J Mol Sci 2021; 22:12120. [PMID: 34830004 PMCID: PMC8624041 DOI: 10.3390/ijms222212120] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Revised: 11/02/2021] [Accepted: 11/03/2021] [Indexed: 02/08/2023] Open
Abstract
Amaranthaceae (incl. Chenopodiaceae) shows an immense diversity of C4 syndromes. More than 15 independent origins of C4 photosynthesis, and the largest number of C4 species in eudicots signify the importance of this angiosperm lineage in C4 evolution. Here, we conduct RNA-Seq followed by comparative transcriptome analysis of three species from Camphorosmeae representing related clades with different photosynthetic types: Threlkeldia diffusa (C3), Sedobassia sedoides (C2), and Bassia prostrata (C4). Results show that B. prostrata belongs to the NADP-ME type and core genes encoding for C4 cycle are significantly upregulated when compared with Sed. sedoides and T. diffusa. Sedobassia sedoides and B. prostrata share a number of upregulated C4-related genes; however, two C4 transporters (DIT and TPT) are found significantly upregulated only in Sed. sedoides. Combined analysis of transcription factors (TFs) of the closely related lineages (Camphorosmeae and Salsoleae) revealed that no C3-specific TFs are higher in C2 species compared with C4 species; instead, the C2 species show their own set of upregulated TFs. Taken together, our study indicates that the hypothesis of the C2 photosynthesis as a proxy towards C4 photosynthesis is questionable in Sed. sedoides and more in favour of an independent evolutionary stable state.
Collapse
Affiliation(s)
- Christian Siadjeu
- Systematics, Biodiversity and Evolution of Plants, Ludwig Maximilian University Munich, 80638 Munich, Germany;
| | | | - Gudrun Kadereit
- Systematics, Biodiversity and Evolution of Plants, Ludwig Maximilian University Munich, 80638 Munich, Germany;
| |
Collapse
|
50
|
Selim S, Abuelsoud W, Alsharari SS, Alowaiesh BF, Al-Sanea MM, Al Jaouni S, Madany MMY, AbdElgawad H. Improved Mineral Acquisition, Sugars Metabolism and Redox Status after Mycorrhizal Inoculation Are the Basis for Tolerance to Vanadium Stress in C3 and C4 Grasses. J Fungi (Basel) 2021; 7:915. [PMID: 34829204 PMCID: PMC8625288 DOI: 10.3390/jof7110915] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Revised: 10/23/2021] [Accepted: 10/24/2021] [Indexed: 01/30/2023] Open
Abstract
Vanadium (V) can be beneficial or toxic to plant growth and the interaction between arbuscular mycorrhizal fungi (AMF) and V stress was rarely investigated at physiological and biochemical levels of plant groups (C3 and C4) and organs (roots and shoots). We tested the potential of AMF to alleviate the negative effects of V (350 mg V/Kg soil) on shoots and roots of rye and sorghum. Relative to sorghum (C4), rye (C3) showed higher levels of V and lower levels of key elements under V stress conditions. V inhibited growth, photosynthesis, and induced photorespiration (increased HDR & GO activities) and oxidative damage in both plants. AMF colonization reduced V stress by differently mitigating the oxidative stress in rye and sorghum. This mitigation was accompanied with increases in acid and alkaline phosphatase activities in plant roots and increased organic acids and polyphenols exudation into the soil, thus reduced V accumulation (29% and 58% in rye and sorghum shoot, respectively) and improved absorption of mineral nutrients including Ca, Mg and P. AMF colonization improved photosynthesis and increased the sugar accumulation and metabolism. Sugars also acted as a supplier of C skeletons for producing of antioxidants metabolite such as ascorbate. At the antioxidant level, rye was more responsive to the mitigating impact of AMF. Higher antioxidants and detoxification defence system (MTC, GST, phenolics, tocopherols and activities of CAT, SOD and POX) was recorded for rye, while sorghum (C4) improved its GR activity. The C3/C4-specificity was supported by principal component analysis. Together, this study provided both fundamental and applied insights into practical strategies to mitigate the phytotoxicity hazards of V in C3 and C4 grasses. Moreover, our results emphasize the importance of AMF as an environment-friendly factor to alleviate stress effects on plants and to improve growth and yield of unstressed plants.
Collapse
Affiliation(s)
- Samy Selim
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Jouf University, Sakaka 72341, Saudi Arabia
| | - Walid Abuelsoud
- Department of Botany and Microbiology, Faculty of Science, Cairo University, Giza 12613, Egypt; (W.A.); (M.M.Y.M.)
| | - Salam S. Alsharari
- Biology Department, College of Science, Jouf University, Sakaka P.O. Box 72341, Saudi Arabia; (S.S.A.); (B.F.A.)
| | - Bassam F Alowaiesh
- Biology Department, College of Science, Jouf University, Sakaka P.O. Box 72341, Saudi Arabia; (S.S.A.); (B.F.A.)
| | - Mohammad M. Al-Sanea
- Pharmaceutical Chemistry Department, College of Pharmacy, Jouf University, Sakaka 72341, Aljouf Province, Saudi Arabia;
| | - Soad Al Jaouni
- Hematology/Pediatric Oncology, Yousef Abdulatif Jameel Scientific Chair of Prophetic Medicine Application, Faculty of Medicine, King Abdulaziz University, Jeddah 21589, Saudi Arabia;
| | - Mahmoud M. Y. Madany
- Department of Botany and Microbiology, Faculty of Science, Cairo University, Giza 12613, Egypt; (W.A.); (M.M.Y.M.)
- Biology Department, College of Science, Taibah University, Al-Madinah Al-Munawwarah 41411, Saudi Arabia
| | - Hamada AbdElgawad
- Botany and Microbiology Department, Faculty of Science, Beni-Suef University, Beni-Suef 62511, Egypt
- Integrated Molecular Plant Physiology Research, Department of Biology, University of Antwerp, 2000 Antwerp, Belgium
| |
Collapse
|