1
|
Zhang CL, Ma JJ, Li X, Yan HQ, Gui YK, Yan ZX, You MF, Zhang P. The role of transcytosis in the blood-retina barrier: from pathophysiological functions to drug delivery. Front Pharmacol 2025; 16:1565382. [PMID: 40308764 PMCID: PMC12040858 DOI: 10.3389/fphar.2025.1565382] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2025] [Accepted: 03/31/2025] [Indexed: 05/02/2025] Open
Abstract
The blood-retina barrier (BRB) serves as a critical interface that separates the retina from the circulatory system, playing an essential role in preserving the homeostasis of the microenvironment within the retina. Specialized tight junctions and limited vesicle trafficking restrict paracellular and transcellular transport, respectively, thereby maintaining BRB barrier properties. Additionally, transcytosis of macromolecules through retinal vascular endothelial cells constitutes a primary mechanism for transporting substances from the vascular compartment into the surrounding tissue. This review summarizes the fundamental aspects of transcytosis including its function in the healthy retina, the biochemical properties of transcytosis, and the methodologies used to study this process. Furthermore, we discuss the current understanding of transcytosis in the context of pathological BRB breakdown and present recent findings that highlight significant advances in drug delivery to the retina based on transcytosis.
Collapse
Affiliation(s)
- Chun-Lin Zhang
- Department of Neurology, The First Affiliated Hospital of Xinxiang Medical University, Xinxiang, China
| | - Jing-Jie Ma
- Department of Audit, The First Affiliated Hospital of Xinxiang Medical University, Xinxiang, China
| | - Xiang Li
- Department of Neurology, The First Affiliated Hospital of Xinxiang Medical University, Xinxiang, China
| | - Hai-Qing Yan
- Department of Neurology, The First Affiliated Hospital of Xinxiang Medical University, Xinxiang, China
| | - Yong-Kun Gui
- Department of Neurology, The First Affiliated Hospital of Xinxiang Medical University, Xinxiang, China
| | - Zhi-Xin Yan
- Department of Neurology, The First Affiliated Hospital of Xinxiang Medical University, Xinxiang, China
| | - Ming-Feng You
- Department of Neurology, The Affiliated Hospital of Guizhou Medical University, Guiyang, China
| | - Ping Zhang
- Department of Neurology, The First Affiliated Hospital of Xinxiang Medical University, Xinxiang, China
| |
Collapse
|
2
|
Benmebarek MR, Oguz C, Seifert M, Ruf B, Myojin Y, Bauer KC, Huang P, Ma C, Villamor-Payà M, Rodriguez-Matos F, Soliman M, Trehan R, Monge C, Xie C, Kleiner DE, Wood BJ, Levy EB, Budhu A, Kedei N, Mayer CT, Wang XW, Lack J, Telford W, Korangy F, Greten TF. Anti-vascular endothelial growth factor treatment potentiates immune checkpoint blockade through a BAFF- and IL-12-dependent reprogramming of the TME. Immunity 2025; 58:926-945.e10. [PMID: 40088889 PMCID: PMC11981852 DOI: 10.1016/j.immuni.2025.02.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Revised: 10/31/2024] [Accepted: 02/12/2025] [Indexed: 03/17/2025]
Abstract
Anti-vascular endothelial growth factor (VEGF) treatment has shown clinical activity together with immune checkpoint blockade (ICB), but the exact mechanism is not known. We show that VEGF blockade in combination with anti-cytotoxic T-lymphocyte associated protein 4 (CTLA4) + anti-programmed death-ligand 1 (PD-L1) in cholangiocarcinoma (CCA) potentiated a multimodal mechanism dependent on B cell activating factor (BAFF), leading to a proinflammatory B cell response. It led to a BAFF- and interleukin (IL)-12-dependent expansion and rewiring of T regulatory cells (Tregs) toward an anti-tumor T helper-1 (Th-1)-like fragile state. We translated this approach to the clinic and observed immunological changes characterized by Treg cell expansion and rewiring toward fragile and unstable states. We explored the effect of VEGF receptor 2 (VEGFR2) signaling on Treg cell transcriptional programming and established a mouse model ablating VEGFR2 expression on Treg cells. This study reveals the immunological interplay resulting from targeting VEGF together with CTLA-4 and PD-L1 blockade.
Collapse
Affiliation(s)
- Mohamed-Reda Benmebarek
- Gastrointestinal Malignancy Section, Thoracic and Gastrointestinal Malignancies Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Cihan Oguz
- Integrated Data Sciences Section, Research Technologies Branch, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Matthias Seifert
- Gastrointestinal Malignancy Section, Thoracic and Gastrointestinal Malignancies Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Benjamin Ruf
- Gastrointestinal Malignancy Section, Thoracic and Gastrointestinal Malignancies Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Yuta Myojin
- Gastrointestinal Malignancy Section, Thoracic and Gastrointestinal Malignancies Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Kylynda C Bauer
- Gastrointestinal Malignancy Section, Thoracic and Gastrointestinal Malignancies Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Patrick Huang
- Gastrointestinal Malignancy Section, Thoracic and Gastrointestinal Malignancies Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Chi Ma
- Gastrointestinal Malignancy Section, Thoracic and Gastrointestinal Malignancies Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Marina Villamor-Payà
- Radiation Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Francisco Rodriguez-Matos
- Gastrointestinal Malignancy Section, Thoracic and Gastrointestinal Malignancies Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Marlaine Soliman
- Gastrointestinal Malignancy Section, Thoracic and Gastrointestinal Malignancies Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Rajiv Trehan
- Gastrointestinal Malignancy Section, Thoracic and Gastrointestinal Malignancies Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Cecilia Monge
- Gastrointestinal Malignancy Section, Thoracic and Gastrointestinal Malignancies Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Changqing Xie
- Gastrointestinal Malignancy Section, Thoracic and Gastrointestinal Malignancies Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - David E Kleiner
- Laboratory of Pathology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Bradford J Wood
- Center for Interventional Oncology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Elliot B Levy
- Center for Interventional Oncology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Anuradha Budhu
- Liver Cancer Program, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Noemi Kedei
- CCR Collaborative Bioinformatics Resource, Office of Science and Technology Resources, Center for Cancer Research, National Cancer Institute, Bethesda, MD, USA
| | - Christian T Mayer
- Experimental Immunology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Xin Wei Wang
- Liver Cancer Program, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA; Laboratory of Human Carcinogenesis, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Justin Lack
- Integrated Data Sciences Section, Research Technologies Branch, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - William Telford
- Laboratory of Pathology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Firouzeh Korangy
- Gastrointestinal Malignancy Section, Thoracic and Gastrointestinal Malignancies Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Tim F Greten
- Gastrointestinal Malignancy Section, Thoracic and Gastrointestinal Malignancies Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA; Liver Cancer Program, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA.
| |
Collapse
|
3
|
Liao J, Zhao L, Chen H, Zhao C, Chen S, Guo X, Wang F, Liu X, Zhang X. A Bifunctional Peptide with Penetration Ability for Treating Retinal Angiogenesis via Eye Drops. Mol Pharm 2025; 22:708-720. [PMID: 39807649 DOI: 10.1021/acs.molpharmaceut.4c00683] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2025]
Abstract
Numerous diseases, such as diabetic retinopathy and age-related macular degeneration, can lead to retinal neovascularization, which can seriously impair the visual function and potentially result in blindness. The presence of the blood-retina barrier makes it challenging for ocularly administered drugs to penetrate physiological barriers and reach the ocular posterior segments, including the retina and choroid. Herein, we developed an innovative bifunctional peptide, Tat-C-RP7, which exhibits excellent penetration capabilities and antiangiogenic properties aimed at treating retinal neovascularization diseases. RP7 is an NRP-1 targeting peptide that blocks vascular endothelial growth factor receptor-2 (VEGFR-2) signaling and inhibits angiogenesis, while Tat facilitates the delivery of various cargoes across biological barriers, such as the blood-retina barrier. By combining these attributes, Tat-C-RP7 is anticipated to traverse ocular barriers via ocular topical administration and exert its antiangiogenic effects in the ocular posterior segment. Experimental results demonstrated that Tat-C-RP7 significantly inhibited the proliferation and migration of rat retinal microvascular endothelial cells and effectively reduced tubule formation in vitro. Its antiangiogenic activity was confirmed in zebrafish. The outstanding penetrative capabilities of FITC-labeled Tat-C-RP7 have been validated through cell uptake assays, in vitro cell barrier models, ex-vivo ocular tissues, and in vivo studies. Besides, the half-life of Tat-C-RP7 was longer than that of RP7. In an oxygen-induced retinopathy model, Tat-C-RP7 was shown to reduce the area of angiogenesis following ocular administration. Additionally, it produced no irritating effects on the eyes of rabbits. Overall, Tat-C-RP7 demonstrates excellent ocular penetrability and antiangiogenic effects and represents a promising therapeutic option for treating retinal neovascularization diseases.
Collapse
Affiliation(s)
- Jing Liao
- Key Laboratory of Chemical Biology (Ministry of Education), NMPA Key Laboratory for Quality Research and Evaluation of Carbohydrate-based Medicine, Department of Pharmacology, School of Pharmaceutical Sciences, Shandong University, 44 Wenhua West Road, Jinan 250012, China
| | - Lin Zhao
- Key Laboratory of Chemical Biology (Ministry of Education), NMPA Key Laboratory for Quality Research and Evaluation of Carbohydrate-based Medicine, Department of Pharmacology, School of Pharmaceutical Sciences, Shandong University, 44 Wenhua West Road, Jinan 250012, China
- Institute of Chinese Medical Sciences, University of Macau, Xurishengyin Road, Taipa, Macau 999074, China
| | - Hongyuan Chen
- Key Laboratory of Biopharmaceuticals, Postdoctoral Scientific Research Workstation, Shandong Academy of Pharmaceutical Science, 1263 Shunhua Road, Jinan 250098, China
- Department of General Surgery, Shandong Provincial Hospital Affiliated Shandong First Medical University, 324 Jing Wu Road, Jinan 250021, China
| | - Chunqian Zhao
- Key Laboratory of Chemical Biology (Ministry of Education), NMPA Key Laboratory for Quality Research and Evaluation of Carbohydrate-based Medicine, Institute of Biochemical and Biotechnological Drug, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, 44 Wenhua West Road, Jinan 250012, China
| | - Shang Chen
- Key Laboratory of Chemical Biology (Ministry of Education), NMPA Key Laboratory for Quality Research and Evaluation of Carbohydrate-based Medicine, Institute of Biochemical and Biotechnological Drug, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, 44 Wenhua West Road, Jinan 250012, China
| | - Xiuli Guo
- Key Laboratory of Chemical Biology (Ministry of Education), NMPA Key Laboratory for Quality Research and Evaluation of Carbohydrate-based Medicine, Department of Pharmacology, School of Pharmaceutical Sciences, Shandong University, 44 Wenhua West Road, Jinan 250012, China
| | - Fengshan Wang
- Key Laboratory of Chemical Biology (Ministry of Education), NMPA Key Laboratory for Quality Research and Evaluation of Carbohydrate-based Medicine, Institute of Biochemical and Biotechnological Drug, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, 44 Wenhua West Road, Jinan 250012, China
| | - Xiaoxue Liu
- State Key Laboratory Cultivation Base, Shandong Provincial Key Laboratory of Ophthalmology, Eye Institute of Shandong First Medical University, Eye Hospital of Shandong First Medical University, 5 Yanerdao Road, Qingdao 266000, China
| | - Xinke Zhang
- Key Laboratory of Chemical Biology (Ministry of Education), NMPA Key Laboratory for Quality Research and Evaluation of Carbohydrate-based Medicine, Department of Pharmacology, School of Pharmaceutical Sciences, Shandong University, 44 Wenhua West Road, Jinan 250012, China
| |
Collapse
|
4
|
Clayton SW, Sebastian A, Wilson SP, Hum NR, Walk RE, Easson GWD, Vaidya R, Broz KS, Loots GG, Tang SY. Single cell RNA sequencing reveals shifts in cell maturity and function of endogenous and infiltrating cell types in response to acute intervertebral disc injury. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2024.08.10.607363. [PMID: 39149307 PMCID: PMC11326235 DOI: 10.1101/2024.08.10.607363] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 08/17/2024]
Abstract
Intervertebral disc (IVD) degeneration contributes to disabling back pain. Degeneration can be initiated by injury, and progressively leads to irreversible cell loss and loss of IVD function. Attempts to restore IVD function through cell replacement therapies have had limited success due to knowledge gaps in the critical cell populations and molecular crosstalk after injury. Here, we used single cell RNA sequencing to identify the transcriptional changes of endogenous cells of the IVD and infiltrating cell populations following IVD injury. Control and Injured coccygeal IVDs were extracted from 12 week old female C57BL/6J mice 7 days post injury and subjected to single-cell resolution transcriptomic sequencing. Clustering, gene ontology, and pseudotime trajectory analyses determined transcriptomic divergences in the cells of the Injured IVD, flow cytometry identified they types of infiltrating immune cells, and immunofluorescence was utilized to define mesenchymal stem cell (MSC) localization. Clustering analysis revealed 11 distinct cell populations that included IVD, immune, vascular cells, and MSCs. Differential gene expression analysis determined that Outer Annulus Fibrosus, Neutrophils, Saa2-High MSCs, Macrophages, and Krt18+ Nucleus Pulposus (NP) cells were the major drivers of transcriptomic differences between Control and Injured cells. Gene ontology revealed that the most upregulated biological pathways were angiogenesis and T cell-related while wound healing and ECM regulation categories were downregulated. Pseudotime trajectory analyses revealed that IVD injury directed cells towards increased differentiation in all clusters, except for Krt18+ NP cells which remained in a less mature cell state. Saa2-High and Grem1-High MSCs populations drifted towards more differentiated IVD cells profiles with injury and localized distinctly within the IVD. This study revealed novel MSC populations in a heterogeneous landscape of IVD cell populations during injury, and these cells may be leveraged for future IVD repair studies.
Collapse
Affiliation(s)
| | - Aimy Sebastian
- Physical and Life Sciences Directorate, Lawrence Livermore National Laboratory, Livermore CA
| | - Stephen P Wilson
- Physical and Life Sciences Directorate, Lawrence Livermore National Laboratory, Livermore CA
| | - Nicholas R Hum
- Physical and Life Sciences Directorate, Lawrence Livermore National Laboratory, Livermore CA
| | - Remy E Walk
- Washington University in St. Louis, St. Louis MO
| | | | | | | | - Gabriela G Loots
- Physical and Life Sciences Directorate, Lawrence Livermore National Laboratory, Livermore CA
- Department of Orthopaedic Surgery, University of California Davis Health, Sacramento, CA, United States
| | - Simon Y Tang
- Washington University in St. Louis, St. Louis MO
| |
Collapse
|
5
|
Mierke CT. Mechanosensory entities and functionality of endothelial cells. Front Cell Dev Biol 2024; 12:1446452. [PMID: 39507419 PMCID: PMC11538060 DOI: 10.3389/fcell.2024.1446452] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2024] [Accepted: 10/04/2024] [Indexed: 11/08/2024] Open
Abstract
The endothelial cells of the blood circulation are exposed to hemodynamic forces, such as cyclic strain, hydrostatic forces, and shear stress caused by the blood fluid's frictional force. Endothelial cells perceive mechanical forces via mechanosensors and thus elicit physiological reactions such as alterations in vessel width. The mechanosensors considered comprise ion channels, structures linked to the plasma membrane, cytoskeletal spectrin scaffold, mechanoreceptors, and junctional proteins. This review focuses on endothelial mechanosensors and how they alter the vascular functions of endothelial cells. The current state of knowledge on the dysregulation of endothelial mechanosensitivity in disease is briefly presented. The interplay in mechanical perception between endothelial cells and vascular smooth muscle cells is briefly outlined. Finally, future research avenues are highlighted, which are necessary to overcome existing limitations.
Collapse
|
6
|
Liu T, Zhang J, Chang F, Sun M, He J, Ai D. Role of endothelial Raptor in abnormal arteriogenesis after lower limb ischaemia in type 2 diabetes. Cardiovasc Res 2024; 120:1218-1234. [PMID: 38722901 DOI: 10.1093/cvr/cvae105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 03/08/2024] [Accepted: 03/17/2024] [Indexed: 09/03/2024] Open
Abstract
AIMS Proper arteriogenesis after tissue ischaemia is necessary to rebuild stable blood circulation; nevertheless, this process is impaired in type 2 diabetes mellitus (T2DM). Raptor is a scaffold protein and a component of mammalian target of rapamycin complex 1 (mTORC1). However, the role of the endothelial Raptor in arteriogenesis under the conditions of T2DM remains unknown. This study investigated the role of endothelial Raptor in ischaemia-induced arteriogenesis during T2DM. METHODS AND RESULTS Although endothelial mTORC1 is hyperactive in T2DM, we observed a marked reduction in the expression of endothelial Raptor in two mouse models and in human vessels. Inducible endothelial-specific Raptor knockout severely exacerbated impaired hindlimb perfusion and arteriogenesis after hindlimb ischaemic injury in 12-week high-fat diet fed mice. Additionally, we found that Raptor deficiency dampened vascular endothelial growth factor receptor 2 (VEGFR2) signalling in endothelial cells (ECs) and inhibited VEGF-induced cell migration and tube formation in a PTP1B-dependent manner. Furthermore, mass spectrometry analysis indicated that Raptor interacts with neuropilin 1 (NRP1), the co-receptor of VEGFR2, and mediates VEGFR2 trafficking by facilitating the interaction between NRP1 and Synectin. Finally, we found that EC-specific overexpression of the Raptor mutant (loss of mTOR binding) reversed impaired hindlimb perfusion and arteriogenesis induced by endothelial Raptor knockout in high-fat diet fed mice. CONCLUSION Collectively, our study demonstrated the crucial role of endothelial Raptor in promoting ischaemia-induced arteriogenesis in T2DM by mediating VEGFR2 signalling. Thus, endothelial Raptor is a novel therapeutic target for promoting arteriogenesis and ameliorating perfusion in T2DM.
Collapse
Affiliation(s)
- Ting Liu
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), Tianjin Institute of Cardiology, The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, The Second Hospital of Tianjin Medical University, Tianjin Medical University, Qixiangtai Rd 22nd, Tianjin 300070, China
| | - Jiachen Zhang
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), Tianjin Institute of Cardiology, The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, The Second Hospital of Tianjin Medical University, Tianjin Medical University, Qixiangtai Rd 22nd, Tianjin 300070, China
| | - Fangyuan Chang
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), Tianjin Institute of Cardiology, The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, The Second Hospital of Tianjin Medical University, Tianjin Medical University, Qixiangtai Rd 22nd, Tianjin 300070, China
| | - Mengyu Sun
- Research Center of Basic Medical Sciences, Tianjin Medical University, Tianjin 300070, China
| | - Jinlong He
- Department of Physiology and Pathophysiology, Tianjin Medical University, Qixiangtai Rd 22nd, Tianjin 300070, China
| | - Ding Ai
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), Tianjin Institute of Cardiology, The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, The Second Hospital of Tianjin Medical University, Tianjin Medical University, Qixiangtai Rd 22nd, Tianjin 300070, China
- Department of Physiology and Pathophysiology, Tianjin Medical University, Qixiangtai Rd 22nd, Tianjin 300070, China
| |
Collapse
|
7
|
Painter C, Sankaranarayanan NV, Nagarajan B, Mandel Clausen T, West AM, Setiawan NJ, Park J, Porell RN, Bartels PL, Sandoval DR, Vasquez GJ, Chute JP, Godula K, Vander Kooi CW, Gordts PL, Corbett KD, Termini CM, Desai UR, Esko JD. Alteration of Neuropilin-1 and Heparan Sulfate Interaction Impairs Murine B16 Tumor Growth. ACS Chem Biol 2024; 19:1820-1835. [PMID: 39099090 PMCID: PMC11334110 DOI: 10.1021/acschembio.4c00389] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Revised: 07/18/2024] [Accepted: 07/22/2024] [Indexed: 08/06/2024]
Abstract
Neuropilin-1 acts as a coreceptor with vascular endothelial growth factor receptors to facilitate binding of its ligand, vascular endothelial growth factor. Neuropilin-1 also binds to heparan sulfate, but the functional significance of this interaction has not been established. A combinatorial library screening using heparin oligosaccharides followed by molecular dynamics simulations of a heparin tetradecasaccharide suggested a highly conserved binding site composed of amino acid residues extending across the b1 and b2 domains of murine neuropilin-1. Mutagenesis studies established the importance of arginine513 and lysine514 for binding of heparin to a recombinant form of Nrp1 composed of the a1, a2, b1, and b2 domains. Recombinant Nrp1 protein bearing R513A,K514A mutations showed a significant loss of heparin-binding, heparin-induced dimerization, and heparin-dependent thermal stabilization. Isothermal calorimetry experiments suggested a 1:2 complex of heparin tetradecasaccharide:Nrp1. To study the impact of altered heparin binding in vivo, a mutant allele of Nrp1 bearing the R513A,K514A mutations was created in mice (Nrp1D) and crossbred to Nrp1+/- mice to examine the impact of altered heparan sulfate binding. Analysis of tumor formation showed variable effects on tumor growth in Nrp1D/D mice, resulting in a frank reduction in tumor growth in Nrp1D/- mice. Expression of mutant Nrp1D protein was normal in tissues, suggesting that the reduction in tumor growth was due to the altered binding of heparin/heparan sulfate to neuropilin-1. These findings suggest that the interaction of neuropilin-1 with heparan sulfate modulates its stability and its role in tumor formation and growth.
Collapse
Affiliation(s)
- Chelsea
D. Painter
- Department
of Cellular and Molecular Medicine, University
of California, San Diego, La Jolla, California 92093, United States
- Glycobiology
Research and Training Center, University
of California, San Diego, La Jolla, California 92093, United States
| | - Nehru Viji Sankaranarayanan
- Department
of Medicinal Chemistry, Virginia Commonwealth
University, Richmond, Virginia 23298, United States
- Institute
for Structural Biology, Drug Discovery and Development, Virginia Commonwealth University, Richmond, Virginia 23219, United States
| | - Balaji Nagarajan
- Department
of Medicinal Chemistry, Virginia Commonwealth
University, Richmond, Virginia 23298, United States
- Institute
for Structural Biology, Drug Discovery and Development, Virginia Commonwealth University, Richmond, Virginia 23219, United States
| | - Thomas Mandel Clausen
- Department
of Cellular and Molecular Medicine, University
of California, San Diego, La Jolla, California 92093, United States
- Glycobiology
Research and Training Center, University
of California, San Diego, La Jolla, California 92093, United States
| | - Alan M.V. West
- Department
of Cellular and Molecular Medicine, University
of California, San Diego, La Jolla, California 92093, United States
| | - Nicollette J. Setiawan
- Translational
Science and Therapeutics Division, Fred
Hutchinson Cancer Center, Seattle, Washington 98109, United States
| | - Jeeyoung Park
- Department
of Cellular and Molecular Medicine, University
of California, San Diego, La Jolla, California 92093, United States
| | - Ryan N. Porell
- Glycobiology
Research and Training Center, University
of California, San Diego, La Jolla, California 92093, United States
- Department
of Chemistry and Biochemistry, University
of California, San Diego, La Jolla, California 92093, United States
| | - Phillip L. Bartels
- Glycobiology
Research and Training Center, University
of California, San Diego, La Jolla, California 92093, United States
- Department
of Chemistry and Biochemistry, University
of California, San Diego, La Jolla, California 92093, United States
| | - Daniel R. Sandoval
- Department
of Cellular and Molecular Medicine, University
of California, San Diego, La Jolla, California 92093, United States
- Glycobiology
Research and Training Center, University
of California, San Diego, La Jolla, California 92093, United States
| | - Gabriel J. Vasquez
- Department
of Cellular and Molecular Medicine, University
of California, San Diego, La Jolla, California 92093, United States
| | - John P. Chute
- Samuel
Oschin Cancer Center, Cedars Sinai Medical
Center, Los Angeles, California 90048, United States
- Division
of Hematology & Cellular Therapy, Cedars
Sinai Medical Center, Los Angeles, California 90048, United States
- Regenerative
Medicine Institute, Cedars Sinai Medical
Center, Los Angeles, California 90048, United States
| | - Kamil Godula
- Glycobiology
Research and Training Center, University
of California, San Diego, La Jolla, California 92093, United States
- Department
of Chemistry and Biochemistry, University
of California, San Diego, La Jolla, California 92093, United States
| | - Craig W. Vander Kooi
- Department
of Biochemistry and Molecular Biology, University
of Florida, Gainesville, Florida 32610, United
States
| | - Philip L.S.M. Gordts
- Glycobiology
Research and Training Center, University
of California, San Diego, La Jolla, California 92093, United States
- Department
of Medicine, University of California, San
Diego, La Jolla, California 92093, United States
| | - Kevin D. Corbett
- Department
of Cellular and Molecular Medicine, University
of California, San Diego, La Jolla, California 92093, United States
- Department
of Molecular Biology, University of California,
San Diego, La Jolla, California 92093, United States
| | - Christina M. Termini
- Translational
Science and Therapeutics Division, Fred
Hutchinson Cancer Center, Seattle, Washington 98109, United States
| | - Umesh R. Desai
- Department
of Medicinal Chemistry, Virginia Commonwealth
University, Richmond, Virginia 23298, United States
- Institute
for Structural Biology, Drug Discovery and Development, Virginia Commonwealth University, Richmond, Virginia 23219, United States
| | - Jeffrey D. Esko
- Department
of Cellular and Molecular Medicine, University
of California, San Diego, La Jolla, California 92093, United States
- Glycobiology
Research and Training Center, University
of California, San Diego, La Jolla, California 92093, United States
| |
Collapse
|
8
|
Amin N, Abbasi IN, Wu F, Shi Z, Sundus J, Badry A, Yuan X, Zhao BX, Pan J, Mi XD, Luo Y, Geng Y, Fang M. The Janus face of HIF-1α in ischemic stroke and the possible associated pathways. Neurochem Int 2024; 177:105747. [PMID: 38657682 DOI: 10.1016/j.neuint.2024.105747] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 03/01/2024] [Accepted: 04/19/2024] [Indexed: 04/26/2024]
Abstract
Stroke is the most devastating disease, causing paralysis and eventually death. Many clinical and experimental trials have been done in search of a new safe and efficient medicine; nevertheless, scientists have yet to discover successful remedies that are also free of adverse effects. This is owing to the variability in intensity, localization, medication routes, and each patient's immune system reaction. HIF-1α represents the modern tool employed to treat stroke diseases due to its functions: downstream genes such as glucose metabolism, angiogenesis, erythropoiesis, and cell survival. Its role can be achieved via two downstream EPO and VEGF strongly related to apoptosis and antioxidant processes. Recently, scientists paid more attention to drugs dealing with the HIF-1 pathway. This review focuses on medicines used for ischemia treatment and their potential HIF-1α pathways. Furthermore, we discussed the interaction between HIF-1α and other biological pathways such as oxidative stress; however, a spotlight has been focused on certain potential signalling contributed to the HIF-1α pathway. HIF-1α is an essential regulator of oxygen balance within cells which affects and controls the expression of thousands of genes related to sustaining homeostasis as oxygen levels fluctuate. HIF-1α's role in ischemic stroke strongly depends on the duration and severity of brain damage after onset. HIF-1α remains difficult to investigate, particularly in ischemic stroke, due to alterations in the acute and chronic phases of the disease, as well as discrepancies between the penumbra and ischemic core. This review emphasizes these contrasts and analyzes the future of this intriguing and demanding field.
Collapse
Affiliation(s)
- Nashwa Amin
- Center for Rehabilitation Medicine, Department of Neurology, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, Zhejiang, 310014, China; Department of Zoology, Faculty of Science, Aswan University, Egypt; Children's Hospital of Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, China
| | - Irum Naz Abbasi
- Institute of Systemic Medicine, Zhejiang University School of Medicine, Hangzhou, China
| | - Fei Wu
- Institute of Systemic Medicine, Zhejiang University School of Medicine, Hangzhou, China
| | - Zongjie Shi
- Center for Rehabilitation Medicine, Department of Neurology, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, Zhejiang, 310014, China
| | - Javaria Sundus
- Institute of Systemic Medicine, Zhejiang University School of Medicine, Hangzhou, China
| | - Azhar Badry
- Institute of Systemic Medicine, Zhejiang University School of Medicine, Hangzhou, China
| | - Xia Yuan
- Institute of Systemic Medicine, Zhejiang University School of Medicine, Hangzhou, China
| | - Bing-Xin Zhao
- Center for Rehabilitation Medicine, Department of Neurology, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, Zhejiang, 310014, China
| | - Jie Pan
- Center for Rehabilitation Medicine, Department of Neurology, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, Zhejiang, 310014, China
| | - Xiao-Dan Mi
- Center for Rehabilitation Medicine, Rehabilitation & Sports Medicine Research Institute of Zhejiang Province, Department of Rehabilitation Medicine, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, Zhejiang, China
| | - Yuhuan Luo
- Department of Pediatrics, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Yu Geng
- Center for Rehabilitation Medicine, Department of Neurology, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, Zhejiang, 310014, China
| | - Marong Fang
- Institute of Systemic Medicine, Zhejiang University School of Medicine, Hangzhou, China; Children's Hospital of Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, China.
| |
Collapse
|
9
|
Barnkob MB, Michaels YS, André V, Macklin PS, Gileadi U, Valvo S, Rei M, Kulicke C, Chen JL, Jain V, Woodcock VK, Colin-York H, Hadjinicolaou AV, Kong Y, Mayya V, Mazet JM, Mead GJ, Bull JA, Rijal P, Pugh CW, Townsend AR, Gérard A, Olsen LR, Fritzsche M, Fulga TA, Dustin ML, Jones EY, Cerundolo V. Semmaphorin 3 A causes immune suppression by inducing cytoskeletal paralysis in tumour-specific CD8 + T cells. Nat Commun 2024; 15:3173. [PMID: 38609390 PMCID: PMC11017241 DOI: 10.1038/s41467-024-47424-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Accepted: 04/02/2024] [Indexed: 04/14/2024] Open
Abstract
Semaphorin-3A (SEMA3A) functions as a chemorepulsive signal during development and can affect T cells by altering their filamentous actin (F-actin) cytoskeleton. The exact extent of these effects on tumour-specific T cells are not completely understood. Here we demonstrate that Neuropilin-1 (NRP1) and Plexin-A1 and Plexin-A4 are upregulated on stimulated CD8+ T cells, allowing tumour-derived SEMA3A to inhibit T cell migration and assembly of the immunological synapse. Deletion of NRP1 in both CD4+ and CD8+ T cells enhance CD8+ T-cell infiltration into tumours and restricted tumour growth in animal models. Conversely, over-expression of SEMA3A inhibit CD8+ T-cell infiltration. We further show that SEMA3A affects CD8+ T cell F-actin, leading to inhibition of immune synapse formation and motility. Examining a clear cell renal cell carcinoma patient cohort, we find that SEMA3A expression is associated with reduced survival, and that T-cells appear trapped in SEMA3A rich regions. Our study establishes SEMA3A as an inhibitor of effector CD8+ T cell tumour infiltration, suggesting that blocking NRP1 could improve T cell function in tumours.
Collapse
Affiliation(s)
- Mike B Barnkob
- MRC Human Immunology Unit, MRC Weatherall Institute of Molecular Medicine, University of Oxford, Headley Way, Oxford, OX3 9DS, UK.
- Centre for Cellular Immunotherapy of Haematological Cancer Odense (CITCO), Department of Clinical Immunology, Odense University Hospital, University of Southern Denmark, Odense, Denmark.
| | - Yale S Michaels
- MRC Weatherall Institute of Molecular Medicine, University of Oxford, Headley Way, Oxford, OX3 9DS, UK
- Paul Albrechtsen Research Institute, CancerCare Manitoba, 675 Mcdermot Ave, Winnipeg, MB, R3E 0V9, Canada
- Department of Biochemistry and Medical Genetics, Rady Faculty of Health Sciences, University of Manitoba, Bannatyne Ave, Winnipeg, MB, R3E 3N4, Canada
| | - Violaine André
- MRC Human Immunology Unit, MRC Weatherall Institute of Molecular Medicine, University of Oxford, Headley Way, Oxford, OX3 9DS, UK
| | - Philip S Macklin
- Nuffield Department of Medicine, University of Oxford, Nuffield Department of Medicine Research Building, Roosevelt Drive, Oxford, OX3 7FZ, UK
| | - Uzi Gileadi
- MRC Human Immunology Unit, MRC Weatherall Institute of Molecular Medicine, University of Oxford, Headley Way, Oxford, OX3 9DS, UK
| | - Salvatore Valvo
- Kennedy Institute of Rheumatology, University of Oxford, Roosevelt Dr, Oxford, OX3 7FY, UK
| | - Margarida Rei
- MRC Human Immunology Unit, MRC Weatherall Institute of Molecular Medicine, University of Oxford, Headley Way, Oxford, OX3 9DS, UK
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, Lisbon, Portugal
| | - Corinna Kulicke
- MRC Human Immunology Unit, MRC Weatherall Institute of Molecular Medicine, University of Oxford, Headley Way, Oxford, OX3 9DS, UK
- Pulmonary and Critical Care Medicine, Oregon Health and Science University, Portland, OR, US
| | - Ji-Li Chen
- MRC Human Immunology Unit, MRC Weatherall Institute of Molecular Medicine, University of Oxford, Headley Way, Oxford, OX3 9DS, UK
| | - Vitul Jain
- Division of Structural Biology, Wellcome Centre for Human Genetics, University of Oxford, Roosevelt Drive, Oxford, OX3 7BN, UK
| | - Victoria K Woodcock
- MRC Human Immunology Unit, MRC Weatherall Institute of Molecular Medicine, University of Oxford, Headley Way, Oxford, OX3 9DS, UK
| | - Huw Colin-York
- MRC Human Immunology Unit, MRC Weatherall Institute of Molecular Medicine, University of Oxford, Headley Way, Oxford, OX3 9DS, UK
| | - Andreas V Hadjinicolaou
- MRC Human Immunology Unit, MRC Weatherall Institute of Molecular Medicine, University of Oxford, Headley Way, Oxford, OX3 9DS, UK
- Division of Gastroenterology & Hepatology, Department of Medicine, Cambridge University Hospitals, University of Cambridge, Cambridge, England
- Early Cancer Institute, Department of Oncology, University of Cambridge, Cambridge, England
| | - Youxin Kong
- Division of Structural Biology, Wellcome Centre for Human Genetics, University of Oxford, Roosevelt Drive, Oxford, OX3 7BN, UK
| | - Viveka Mayya
- Kennedy Institute of Rheumatology, University of Oxford, Roosevelt Dr, Oxford, OX3 7FY, UK
| | - Julie M Mazet
- Kennedy Institute of Rheumatology, University of Oxford, Roosevelt Dr, Oxford, OX3 7FY, UK
| | - Gracie-Jennah Mead
- Kennedy Institute of Rheumatology, University of Oxford, Roosevelt Dr, Oxford, OX3 7FY, UK
| | - Joshua A Bull
- Wolfson Centre for Mathematical Biology, Mathematical Institute, University of Oxford, Radcliffe Observatory Quarter, Woodstock Road, Oxford, OX2 6GG, UK
| | - Pramila Rijal
- MRC Human Immunology Unit, MRC Weatherall Institute of Molecular Medicine, University of Oxford, Headley Way, Oxford, OX3 9DS, UK
| | - Christopher W Pugh
- Nuffield Department of Medicine, University of Oxford, Nuffield Department of Medicine Research Building, Roosevelt Drive, Oxford, OX3 7FZ, UK
| | - Alain R Townsend
- MRC Human Immunology Unit, MRC Weatherall Institute of Molecular Medicine, University of Oxford, Headley Way, Oxford, OX3 9DS, UK
| | - Audrey Gérard
- Kennedy Institute of Rheumatology, University of Oxford, Roosevelt Dr, Oxford, OX3 7FY, UK
| | - Lars R Olsen
- Department of Health Technology, Technical University of Denmark, Ørsteds Plads, Building 345C, 2800 Kgs, Lyngby, Denmark
| | - Marco Fritzsche
- MRC Human Immunology Unit, MRC Weatherall Institute of Molecular Medicine, University of Oxford, Headley Way, Oxford, OX3 9DS, UK
- Kennedy Institute of Rheumatology, University of Oxford, Roosevelt Dr, Oxford, OX3 7FY, UK
| | - Tudor A Fulga
- MRC Weatherall Institute of Molecular Medicine, University of Oxford, Headley Way, Oxford, OX3 9DS, UK
| | - Michael L Dustin
- Kennedy Institute of Rheumatology, University of Oxford, Roosevelt Dr, Oxford, OX3 7FY, UK
| | - E Yvonne Jones
- Division of Structural Biology, Wellcome Centre for Human Genetics, University of Oxford, Roosevelt Drive, Oxford, OX3 7BN, UK.
| | - Vincenzo Cerundolo
- MRC Human Immunology Unit, MRC Weatherall Institute of Molecular Medicine, University of Oxford, Headley Way, Oxford, OX3 9DS, UK
| |
Collapse
|
10
|
Ceci C, Lacal PM, Barbaccia ML, Mercuri NB, Graziani G, Ledonne A. The VEGFs/VEGFRs system in Alzheimer's and Parkinson's diseases: Pathophysiological roles and therapeutic implications. Pharmacol Res 2024; 201:107101. [PMID: 38336311 DOI: 10.1016/j.phrs.2024.107101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 01/25/2024] [Accepted: 02/05/2024] [Indexed: 02/12/2024]
Abstract
The vascular endothelial growth factors (VEGFs) and their cognate receptors (VEGFRs), besides their well-known involvement in physiological angiogenesis/lymphangiogenesis and in diseases associated to pathological vessel formation, play multifaceted functions in the central nervous system (CNS). In addition to shaping brain development, by controlling cerebral vasculogenesis and regulating neurogenesis as well as astrocyte differentiation, the VEGFs/VEGFRs axis exerts essential functions in the adult brain both in physiological and pathological contexts. In this article, after describing the physiological VEGFs/VEGFRs functions in the CNS, we focus on the VEGFs/VEGFRs involvement in neurodegenerative diseases by reviewing the current literature on the rather complex VEGFs/VEGFRs contribution to the pathogenic mechanisms of Alzheimer's (AD) and Parkinson's (PD) diseases. Thereafter, based on the outcome of VEGFs/VEGFRs targeting in animal models of AD and PD, we discuss the factual relevance of pharmacological VEGFs/VEGFRs modulation as a novel and potential disease-modifying approach for these neurodegenerative pathologies. Specific VEGFRs targeting, aimed at selective VEGFR-1 inhibition, while preserving VEGFR-2 signal transduction, appears as a promising strategy to hit the molecular mechanisms underlying AD pathology. Moreover, therapeutic VEGFs-based approaches can be proposed for PD treatment, with the aim of fine-tuning their brain levels to amplify neurotrophic/neuroprotective effects while limiting an excessive impact on vascular permeability.
Collapse
Affiliation(s)
- Claudia Ceci
- Pharmacology Section, Department of Systems Medicine, University of Rome Tor Vergata, Rome, Italy
| | | | - Maria Luisa Barbaccia
- Pharmacology Section, Department of Systems Medicine, University of Rome Tor Vergata, Rome, Italy
| | - Nicola Biagio Mercuri
- Neurology Section, Department of Systems Medicine, University of Rome Tor Vergata, Rome, Italy; IRCCS Santa Lucia Foundation, Department of Experimental Neuroscience, Rome, Italy; Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD, USA
| | - Grazia Graziani
- Pharmacology Section, Department of Systems Medicine, University of Rome Tor Vergata, Rome, Italy.
| | - Ada Ledonne
- Pharmacology Section, Department of Systems Medicine, University of Rome Tor Vergata, Rome, Italy; IRCCS Santa Lucia Foundation, Department of Experimental Neuroscience, Rome, Italy; Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD, USA
| |
Collapse
|
11
|
Tsikis ST, Hirsch TI, Klouda T, Fligor SC, Pan A, Joiner MM, Wang SZ, Quigley M, Devietro A, Mitchell PD, Kishikawa H, Yuan K, Puder M. Direct thrombin inhibitors fail to reverse the negative effects of heparin on lung growth and function after murine left pneumonectomy. Am J Physiol Lung Cell Mol Physiol 2024; 326:L213-L225. [PMID: 38113296 PMCID: PMC11280676 DOI: 10.1152/ajplung.00096.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 10/20/2023] [Accepted: 12/18/2023] [Indexed: 12/21/2023] Open
Abstract
Neonates with congenital diaphragmatic hernia (CDH) frequently require cardiopulmonary bypass and systemic anticoagulation. We previously demonstrated that even subtherapeutic heparin impairs lung growth and function in a murine model of compensatory lung growth (CLG). The direct thrombin inhibitors (DTIs) bivalirudin and argatroban preserved growth in this model. Although DTIs are increasingly used for systemic anticoagulation clinically, patients with CDH may still receive heparin. In this experiment, lung endothelial cell proliferation was assessed following treatment with heparin-alone or mixed with increasing concentrations of bivalirudin or argatroban. The effects of subtherapeutic heparin with or without DTIs in the CLG model were also investigated. C57BL/6J mice underwent left pneumonectomy and subcutaneous implantation of osmotic pumps. Pumps were preloaded with normal saline, bivalirudin, or argatroban; treated animals received daily intraperitoneal low-dose heparin. In vitro, heparin-alone decreased endothelial cell proliferation and increased apoptosis. The effect of heparin on proliferation, but not apoptosis, was reversed by the addition of bivalirudin and argatroban. In vivo, low-dose heparin decreased lung volume compared with saline-treated controls. All three groups that received heparin demonstrated decreased lung function on pulmonary function testing and impaired exercise performance on treadmill tolerance testing. These findings correlated with decreases in alveolarization, vascularization, angiogenic signaling, and gene expression in the heparin-exposed groups. Together, these data suggest that bivalirudin and argatroban fail to reverse the inhibitory effects of subtherapeutic heparin on lung growth and function. Clinical studies on the impact of low-dose heparin with DTIs on CDH outcomes are warranted.NEW & NOTEWORTHY Infants with pulmonary hypoplasia frequently require cardiopulmonary bypass and systemic anticoagulation. We investigate the effects of simultaneous exposure to heparin and direct thrombin inhibitors (DTIs) on lung growth and pulmonary function in a murine model of compensatory lung growth (CGL). Our data suggest that DTIs fail to reverse the inhibitory effects of subtherapeutic heparin on lung growth and function. Clinical studies on the impact of heparin with DTIs on clinical outcomes are thus warranted.
Collapse
Affiliation(s)
- Savas T Tsikis
- Vascular Biology Program, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts, United States
- Department of Surgery, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts, United States
| | - Thomas I Hirsch
- Vascular Biology Program, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts, United States
- Department of Surgery, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts, United States
| | - Timothy Klouda
- Division of Pulmonary Medicine, Boston Children's Hospital, Boston, Massachusetts, United States
| | - Scott C Fligor
- Vascular Biology Program, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts, United States
- Department of Surgery, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts, United States
| | - Amy Pan
- Vascular Biology Program, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts, United States
- Department of Surgery, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts, United States
| | - Malachi M Joiner
- Vascular Biology Program, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts, United States
- Department of Surgery, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts, United States
| | - Sarah Z Wang
- Vascular Biology Program, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts, United States
- Department of Surgery, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts, United States
| | - Mikayla Quigley
- Vascular Biology Program, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts, United States
- Department of Surgery, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts, United States
| | - Angela Devietro
- Vascular Biology Program, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts, United States
- Department of Surgery, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts, United States
| | - Paul D Mitchell
- Institutional Centers for Clinical and Translational Research, Boston Children's Hospital, Boston, Massachusetts, United States
| | - Hiroko Kishikawa
- Vascular Biology Program, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts, United States
| | - Ke Yuan
- Division of Pulmonary Medicine, Boston Children's Hospital, Boston, Massachusetts, United States
| | - Mark Puder
- Vascular Biology Program, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts, United States
- Department of Surgery, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts, United States
| |
Collapse
|
12
|
Chikh A, Raimondi C. Endothelial Neuropilin-1: a multifaced signal transducer with an emerging role in inflammation and atherosclerosis beyond angiogenesis. Biochem Soc Trans 2024; 52:137-150. [PMID: 38323651 PMCID: PMC10903451 DOI: 10.1042/bst20230329] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 01/08/2024] [Accepted: 01/12/2024] [Indexed: 02/08/2024]
Abstract
Neuropilin-1 (NRP1) is a transmembrane glycoprotein expressed by several cell types including, neurons, endothelial cells (ECs), smooth muscle cells, cardiomyocytes and immune cells comprising macrophages, dendritic cells and T cell subsets. Since NRP1 discovery in 1987 as an adhesion molecule in the frog nervous system, more than 2300 publications on PubMed investigated the function of NRP1 in physiological and pathological contexts. NRP1 has been characterised as a coreceptor for class 3 semaphorins and several members of the vascular endothelial growth factor (VEGF) family. Because the VEGF family is the main regulator of blood and lymphatic vessel growth in addition to promoting neurogenesis, neuronal patterning, neuroprotection and glial growth, the role of NRP1 in these biological processes has been extensively investigated. It is now established that NRP1 promotes the physiological growth of new vessels from pre-existing ones in the process of angiogenesis. Furthermore, several studies have shown that NRP1 mediates signalling pathways regulating pathological vascular growth in ocular neovascular diseases and tumour development. Less defined are the roles of NRP1 in maintaining the function of the quiescent established vasculature in an adult organism. This review will focus on the opposite roles of NRP1 in regulating transforming growth factor β signalling pathways in different cell types, and on the emerging role of endothelial NRP1 as an atheroprotective, anti-inflammatory factor involved in the response of ECs to shear stress.
Collapse
Affiliation(s)
- Anissa Chikh
- Molecular and Clinical Sciences Research Institute, St. George's, University of London, London SW17 0RE, U.K
| | - Claudio Raimondi
- William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Centre of Cardiovascular Medicine and Devices, Queen Mary University of London, Charterhouse Square, London EC1M 6BQ, U.K
| |
Collapse
|
13
|
Dalmau Gasull A, Glavan M, Samawar SKR, Kapupara K, Kelk J, Rubio M, Fumagalli S, Sorokin L, Vivien D, Prinz M. The niche matters: origin, function and fate of CNS-associated macrophages during health and disease. Acta Neuropathol 2024; 147:37. [PMID: 38347231 PMCID: PMC10861620 DOI: 10.1007/s00401-023-02676-9] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Revised: 12/13/2023] [Accepted: 12/22/2023] [Indexed: 02/15/2024]
Abstract
There are several cellular and acellular structural barriers associated with the brain interfaces, which include the dura, the leptomeninges, the perivascular space and the choroid plexus epithelium. Each structure is enriched by distinct myeloid populations, which mainly originate from erythromyeloid precursors (EMP) in the embryonic yolk sac and seed the CNS during embryogenesis. However, depending on the precise microanatomical environment, resident myeloid cells differ in their marker profile, turnover and the extent to which they can be replenished by blood-derived cells. While some EMP-derived cells seed the parenchyma to become microglia, others engraft the meninges and become CNS-associated macrophages (CAMs), also referred to as border-associated macrophages (BAMs), e.g., leptomeningeal macrophages (MnMΦ). Recent data revealed that MnMΦ migrate into perivascular spaces postnatally where they differentiate into perivascular macrophages (PvMΦ). Under homeostatic conditions in pathogen-free mice, there is virtually no contribution of bone marrow-derived cells to MnMΦ and PvMΦ, but rather to macrophages of the choroid plexus and dura. In neuropathological conditions in which the blood-brain barrier is compromised, however, an influx of bone marrow-derived cells into the CNS can occur, potentially contributing to the pool of CNS myeloid cells. Simultaneously, resident CAMs may also proliferate and undergo transcriptional and proteomic changes, thereby, contributing to the disease outcome. Thus, both resident and infiltrating myeloid cells together act within their microenvironmental niche, but both populations play crucial roles in the overall disease course. Here, we summarize the current understanding of the sources and fates of resident CAMs in health and disease, and the role of the microenvironment in influencing their maintenance and function.
Collapse
Affiliation(s)
- Adrià Dalmau Gasull
- Institute of Neuropathology, Faculty of Medicine, University of Freiburg, Freiburg, Germany.
| | - Martina Glavan
- Normandie University, UNICAEN, INSERM UMR-S U1237, Physiopathology and Imaging of Neurological Disorders (PhIND), GIP Cyceron, Institut Blood and Brain @ Caen-Normandie (BB@C), 14000, Caen, France
- Department of Neuroscience, Yale School of Medicine, Yale University, New Haven, USA
| | - Sai K Reddy Samawar
- Institute of Physiological Chemistry and Pathobiochemistry and Cells in Motion Interfaculty Centre (CIMIC), University of Münster, Münster, Germany
| | - Kishan Kapupara
- Institute of Physiological Chemistry and Pathobiochemistry and Cells in Motion Interfaculty Centre (CIMIC), University of Münster, Münster, Germany
| | - Joe Kelk
- Laboratory of Stroke and Vascular Dysfunctions, Department of Acute Brain and Cardiovascular Injury, Istituto Di Ricerche Farmacologiche Mario Negri IRCCS, 20156, Milan, Italy
| | - Marina Rubio
- Normandie University, UNICAEN, INSERM UMR-S U1237, Physiopathology and Imaging of Neurological Disorders (PhIND), GIP Cyceron, Institut Blood and Brain @ Caen-Normandie (BB@C), 14000, Caen, France
| | - Stefano Fumagalli
- Laboratory of Stroke and Vascular Dysfunctions, Department of Acute Brain and Cardiovascular Injury, Istituto Di Ricerche Farmacologiche Mario Negri IRCCS, 20156, Milan, Italy
| | - Lydia Sorokin
- Institute of Physiological Chemistry and Pathobiochemistry and Cells in Motion Interfaculty Centre (CIMIC), University of Münster, Münster, Germany
| | - Denis Vivien
- Normandie University, UNICAEN, INSERM UMR-S U1237, Physiopathology and Imaging of Neurological Disorders (PhIND), GIP Cyceron, Institut Blood and Brain @ Caen-Normandie (BB@C), 14000, Caen, France
- Department of Clinical Research, Caen-Normandie University Hospital, CHU, Avenue de La Côte de Nacre, Caen, France
| | - Marco Prinz
- Institute of Neuropathology, Faculty of Medicine, University of Freiburg, Freiburg, Germany.
- Signalling Research Centres BIOSS and CIBSS-Centre for Integrative Biological Signalling Studies, University of Freiburg, Freiburg, Germany.
| |
Collapse
|
14
|
Sharma S, Ehrlich M, Zhang M, Blobe GC, Henis YI. NRP1 interacts with endoglin and VEGFR2 to modulate VEGF signaling and endothelial cell sprouting. Commun Biol 2024; 7:112. [PMID: 38242992 PMCID: PMC10799020 DOI: 10.1038/s42003-024-05798-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Accepted: 01/09/2024] [Indexed: 01/21/2024] Open
Abstract
Endothelial cells express neuropilin 1 (NRP1), endoglin (ENG) and vascular endothelial growth factor receptor 2 (VEGFR2), which regulate VEGF-A-mediated vascular development and angiogenesis. However, the link between complex formation among these receptors with VEGF-A-induced signaling and biology is yet unclear. Here, we quantify surface receptor interactions by IgG-mediated immobilization of one receptor, and fluorescence recovery after photobleaching (FRAP) measurements of the mobility of another coexpressed receptor. We observe stable ENG/NRP1, ENG/VEGFR2, and NRP1/VEGFR2 complexes, which are enhanced by VEGF-A. ENG augments NRP1/VEGFR2 interactions, suggesting formation of tripartite complexes bridged by ENG. Effects on signaling are measured in murine embryonic endothelial cells expressing (MEEC+/+) or lacking (MEEC-/-) ENG, along with NRP1 and/or ENG overexpression or knockdown. We find that optimal VEGF-A-mediated phosphorylation of VEGFR2 and Erk1/2 requires ENG and NRP1. ENG or NRP1 increase VEGF-A-induced sprouting, becoming optimal in cells expressing all three receptors, and both processes are inhibited by a MEK1/2 inhibitor. We propose a model where the maximal potency of VEGF-A involves a tripartite complex where ENG bridges VEGFR2 and NRP1, providing an attractive therapeutic target for modulation of VEGF-A signaling and biological responses.
Collapse
Affiliation(s)
- Swati Sharma
- Department of Neurobiology, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv, 6997801, Israel
| | - Marcelo Ehrlich
- Shmunis School of Biomedicine and Cancer Research, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv, 6997801, Israel
| | - Manqi Zhang
- Department of Medicine, Duke University Medical Center, Durham, NC, 27708, USA
| | - Gerard C Blobe
- Department of Medicine, Duke University Medical Center, Durham, NC, 27708, USA
- Department of Pharmacology and Cancer Biology, Duke University Medical Center, Durham, NC, 27708, USA
| | - Yoav I Henis
- Department of Neurobiology, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv, 6997801, Israel.
| |
Collapse
|
15
|
Ye P, Gu R, Zhu H, Chen J, Han F, Nie X. SOX family transcription factors as therapeutic targets in wound healing: A comprehensive review. Int J Biol Macromol 2023; 253:127243. [PMID: 37806414 DOI: 10.1016/j.ijbiomac.2023.127243] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Revised: 10/02/2023] [Accepted: 10/02/2023] [Indexed: 10/10/2023]
Abstract
The SOX family plays a vital role in determining the fate of cells and has garnered attention in the fields of cancer research and regenerative medicine. It also shows promise in the study of wound healing, as it actively participates in the healing processes of various tissues such as skin, fractures, tendons, and the cornea. However, our understanding of the mechanisms behind the SOX family's involvement in wound healing is limited compared to its role in cancer. Gaining insight into its role, distribution, interaction with other factors, and modifications in traumatized tissues could provide valuable new knowledge about wound healing. Based on current research, SOX2, SOX7, and SOX9 are the most promising members of the SOX family for future interventions in wound healing. SOX2 and SOX9 promote the renewal of cells, while SOX7 enhances the microvascular environment. The SOX family holds significant potential for advancing wound healing research. This article provides a comprehensive review of the latest research advancements and therapeutic tools related to the SOX family in wound healing, as well as the potential benefits and challenges of targeting the SOX family for wound treatment.
Collapse
Affiliation(s)
- Penghui Ye
- Key Lab of the Basic Pharmacology of the Ministry of Education & Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi 563006, China; College of Pharmacy, Zunyi Medical University, Zunyi 563006, China
| | - Rifang Gu
- Key Lab of the Basic Pharmacology of the Ministry of Education & Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi 563006, China; School Medical Office, Zunyi Medical University, Zunyi 563006, China
| | - Huan Zhu
- Key Lab of the Basic Pharmacology of the Ministry of Education & Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi 563006, China; College of Pharmacy, Zunyi Medical University, Zunyi 563006, China
| | - Jitao Chen
- Key Lab of the Basic Pharmacology of the Ministry of Education & Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi 563006, China; College of Pharmacy, Zunyi Medical University, Zunyi 563006, China
| | - Felicity Han
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Xuqiang Nie
- Key Lab of the Basic Pharmacology of the Ministry of Education & Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi 563006, China; College of Pharmacy, Zunyi Medical University, Zunyi 563006, China; Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, QLD 4072, Australia.
| |
Collapse
|
16
|
Noah AA, El-Mezayen NS, El-Ganainy SO, Darwish IE, Afify EA. Reversal of fibrosis and portal hypertension by Empagliflozin treatment of CCl 4-induced liver fibrosis: Emphasis on gal-1/NRP-1/TGF-β and gal-1/NRP-1/VEGFR2 pathways. Eur J Pharmacol 2023; 959:176066. [PMID: 37769984 DOI: 10.1016/j.ejphar.2023.176066] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Revised: 09/06/2023] [Accepted: 09/19/2023] [Indexed: 10/03/2023]
Abstract
To date, liver fibrosis has no clinically approved treatment. Empagliflozin (EMPA), a highly selective sodium-glucose-cotransporter-2 (SGLT2) inhibitor, has shown ameliorative potential in liver diseases without revealing its full mechanisms. Neuropilin-1 (NRP-1) is a novel regulator of profibrogenic signaling pathways related to hepatic stellate cells (HSCs) and hepatic sinusoidal endothelial cells (HSECs) that modulates intrahepatic profibrogenic and angiogenic pathways. Herein, EMPA's antifibrotic potentials and effects on galactin-1 (Gal-1)/NRP-1 signaling pathways have been evaluated in an experimental liver fibrosis rat model by testing different EMPA dose regimens. EMPA treatment brought a dose-dependent decrease in Gal-1/NRP-1 hepatic expression. This was coupled with suppression of major HSCs pro-fibrotic pathways; transforming growth factor-β (TGF-β)/TGF-βRI/Smad2 and platelet-derived growth factor-beta (PDGF-β) with a diminution of hepatic Col 1A1 level. In addition, EMPA prompted a protuberant suppression of the angiogenic pathway; vascular endothelial growth factor (VEGF)/VEGF-receptor-2 (VEGFR-2)/SH2-Domain Containing Adaptor Protein-B (Shb), and reversal of altered portal hypertension (PHT) markers; endothelin-1 (ET-1) and endothelial nitric oxide synthase (eNOS). The amelioration of liver fibrosis was coupled with a remarkable improvement in liver aminotransferases and histologic hepatic fibrosis Ishak scores. The highest EMPA dose showed a good safety profile with minimal changes in renal function and glycemic control. Thus, the current study brought about novel findings for a potential liver fibrosis treatment modality via targeting NRP-1 signaling pathways by EMPA.
Collapse
Affiliation(s)
- Ashraf A Noah
- Department of Pharmacology and Therapeutics, Faculty of Pharmacy, Pharos University in Alexandria, Alexandria, Egypt; Clinical Research Administration, Alexandria Directorate of Health Affairs, Egyptian Ministry of Health and Population, Alexandria, Egypt
| | - Nesrine S El-Mezayen
- Department of Pharmacology and Therapeutics, Faculty of Pharmacy, Pharos University in Alexandria, Alexandria, Egypt.
| | - Samar O El-Ganainy
- Department of Pharmacology and Therapeutics, Faculty of Pharmacy, Pharos University in Alexandria, Alexandria, Egypt
| | - Inas E Darwish
- Department of Pharmacology and Therapeutics, Faculty of Pharmacy, Pharos University in Alexandria, Alexandria, Egypt; Department of Clinical Pharmacology, Faculty of Medicine, Alexandria University, Alexandria, Egypt
| | - Elham A Afify
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Alexandria University, Alexandria, Egypt
| |
Collapse
|
17
|
Lauzier DC, Chiang SN, Moran CJ. Etiologies of Brain Arteriovenous Malformation Recurrence: A Focus on Pediatric Disease. Pediatr Neurol 2023; 148:94-100. [PMID: 37690270 DOI: 10.1016/j.pediatrneurol.2023.08.022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Revised: 07/18/2023] [Accepted: 08/15/2023] [Indexed: 09/12/2023]
Abstract
Pediatric brain arteriovenous malformations are a major cause of morbidity and mortality, with the harmful effects of this disease compounded by the additional disability-years experienced by children with ruptured or other symptomatic arteriovenous malformations. In addition to the risks shared with their adult counterparts, pediatric patients frequently experience recurrence following radiographic cure, which presents an additional source of morbidity and mortality. Therefore, there is a need to synthesize potential mechanisms contributing to the elevated recurrence risk in the pediatric population and discuss how these translate to practical considerations for managing these patients.
Collapse
Affiliation(s)
- David C Lauzier
- Department of Neurological Surgery, Washington University School of Medicine, St. Louis, Missouri; Mallinckrodt Institute of Radiology, Washington University School of Medicine, St. Louis, Missouri.
| | - Sarah N Chiang
- Department of Neurological Surgery, Washington University School of Medicine, St. Louis, Missouri
| | - Christopher J Moran
- Department of Neurological Surgery, Washington University School of Medicine, St. Louis, Missouri; Mallinckrodt Institute of Radiology, Washington University School of Medicine, St. Louis, Missouri
| |
Collapse
|
18
|
Feng X, Chang R, Zhu H, Yang Y, Ji Y, Liu D, Qin H, Yin J, Rong H. Engineering Proteins for Cell Entry. Mol Pharm 2023; 20:4868-4882. [PMID: 37708383 DOI: 10.1021/acs.molpharmaceut.3c00467] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/16/2023]
Abstract
Proteins are essential for life, as they participate in all vital processes in the body. In the past decade, delivery of active proteins to specific cells and organs has attracted increasing interest. However, most proteins cannot enter the cytoplasm due to the cell membrane acting as a natural barrier. To overcome this challenge, various proteins have been engineered to acquire cell-penetrating capacity by mimicking or modifying natural shuttling proteins. In this review, we provide an overview of the different types of engineered cell-penetrating proteins such as cell-penetrating peptides, supercharged proteins, receptor-binding proteins, and bacterial toxins. We also discuss some strategies for improving endosomal escape such as pore formation, the proton sponge effect, and hijacking intracellular trafficking pathways. Finally, we introduce some novel methods and technologies for designing and detecting engineered cell-penetrating proteins.
Collapse
Affiliation(s)
- Xiaoyu Feng
- Jiangsu Key Laboratory of Druggability of Biopharmaceuticals and State Key Laboratory of Natural Medicines, School of Life Science and Technology, China Pharmaceutical University, Nanjing 210009, China
| | - Ruilong Chang
- Jiangsu Key Laboratory of Druggability of Biopharmaceuticals and State Key Laboratory of Natural Medicines, School of Life Science and Technology, China Pharmaceutical University, Nanjing 210009, China
| | - Haichao Zhu
- Jiangsu Key Laboratory of Druggability of Biopharmaceuticals and State Key Laboratory of Natural Medicines, School of Life Science and Technology, China Pharmaceutical University, Nanjing 210009, China
| | - Yifan Yang
- Jiangsu Key Laboratory of Druggability of Biopharmaceuticals and State Key Laboratory of Natural Medicines, School of Life Science and Technology, China Pharmaceutical University, Nanjing 210009, China
| | - Yue Ji
- Jiangsu Key Laboratory of Druggability of Biopharmaceuticals and State Key Laboratory of Natural Medicines, School of Life Science and Technology, China Pharmaceutical University, Nanjing 210009, China
| | - Dingkang Liu
- Jiangsu Key Laboratory of Druggability of Biopharmaceuticals and State Key Laboratory of Natural Medicines, School of Life Science and Technology, China Pharmaceutical University, Nanjing 210009, China
| | - Hai Qin
- Department of Clinical Laboratory, Beijing Jishuitan Hospital Guizhou Hospital, No. 206, Sixian Street, Baiyun District, Guiyang, Guizhou 550014, China
| | - Jun Yin
- Jiangsu Key Laboratory of Druggability of Biopharmaceuticals and State Key Laboratory of Natural Medicines, School of Life Science and Technology, China Pharmaceutical University, Nanjing 210009, China
| | - Haibo Rong
- Jiangsu Cancer Hospital & Jiangsu Institute of Cancer Research, The Affiliated Cancer Hospital of Nanjing Medical University, Nanjing 210009, China
| |
Collapse
|
19
|
Alonso F, Dong Y, Li L, Jahjah T, Dupuy JW, Fremaux I, Reinhardt DP, Génot E. Fibrillin-1 regulates endothelial sprouting during angiogenesis. Proc Natl Acad Sci U S A 2023; 120:e2221742120. [PMID: 37252964 PMCID: PMC10265973 DOI: 10.1073/pnas.2221742120] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Accepted: 04/20/2023] [Indexed: 06/01/2023] Open
Abstract
Fibrillin-1 is an extracellular matrix protein that assembles into microfibrils which provide critical functions in large blood vessels and other tissues. Mutations in the fibrillin-1 gene are associated with cardiovascular, ocular, and skeletal abnormalities in Marfan syndrome. Here, we reveal that fibrillin-1 is critical for angiogenesis which is compromised by a typical Marfan mutation. In the mouse retina vascularization model, fibrillin-1 is present in the extracellular matrix at the angiogenic front where it colocalizes with microfibril-associated glycoprotein-1, MAGP1. In Fbn1C1041G/+ mice, a model of Marfan syndrome, MAGP1 deposition is reduced, endothelial sprouting is decreased, and tip cell identity is impaired. Cell culture experiments confirmed that fibrillin-1 deficiency alters vascular endothelial growth factor-A/Notch and Smad signaling which regulate the acquisition of endothelial tip cell/stalk cell phenotypes, and we showed that modulation of MAGP1 expression impacts these pathways. Supplying the growing vasculature of Fbn1C1041G/+ mice with a recombinant C-terminal fragment of fibrillin-1 corrects all defects. Mass spectrometry analyses showed that the fibrillin-1 fragment alters the expression of various proteins including ADAMTS1, a tip cell metalloprotease and matrix-modifying enzyme. Our data establish that fibrillin-1 is a dynamic signaling platform in the regulation of cell specification and matrix remodeling at the angiogenic front and that mutant fibrillin-1-induced defects can be rescued pharmacologically using a C-terminal fragment of the protein. These findings, identify fibrillin-1, MAGP1, and ADAMTS1 in the regulation of endothelial sprouting, and contribute to our understanding of how angiogenesis is regulated. This knowledge may have critical implications for people with Marfan syndrome.
Collapse
Affiliation(s)
- Florian Alonso
- Université de BordeauxF-33000Bordeaux, France
- INSERM U1026, BioTisF-33000Bordeaux, France
| | - Yuechao Dong
- Université de BordeauxF-33000Bordeaux, France
- INSERM U1026, BioTisF-33000Bordeaux, France
| | - Ling Li
- Faculty of Medicine and Health Sciences, McGill University, Montreal, QCH3A 0C7, Canada
| | - Tiya Jahjah
- Université de BordeauxF-33000Bordeaux, France
- INSERM U1026, BioTisF-33000Bordeaux, France
| | | | - Isabelle Fremaux
- Université de BordeauxF-33000Bordeaux, France
- INSERM U1026, BioTisF-33000Bordeaux, France
| | - Dieter P. Reinhardt
- Faculty of Medicine and Health Sciences, McGill University, Montreal, QCH3A 0C7, Canada
- Faculty of Dental Medicine and Oral Health Sciences, McGill University, Montreal, QCH3A 0C7, Canada
| | - Elisabeth Génot
- Université de BordeauxF-33000Bordeaux, France
- INSERM U1026, BioTisF-33000Bordeaux, France
| |
Collapse
|
20
|
Lin YC, Sahoo BK, Gau SS, Yang RB. The biology of SCUBE. J Biomed Sci 2023; 30:33. [PMID: 37237303 PMCID: PMC10214685 DOI: 10.1186/s12929-023-00925-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Accepted: 05/04/2023] [Indexed: 05/28/2023] Open
Abstract
The SCUBE [Signal peptide-Complement C1r/C1s, Uegf, Bmp1 (CUB)-Epithelial growth factor domain-containing protein] family consists of three proteins in vertebrates, SCUBE1, 2 and 3, which are highly conserved in zebrafish, mice and humans. Each SCUBE gene encodes a polypeptide of approximately 1000 amino acids that is organized into five modular domains: (1) an N-terminal signal peptide sequence, (2) nine tandem epidermal growth factor (EGF)-like repeats, (3) a large spacer region, (4) three cysteine-rich (CR) motifs, and (5) a CUB domain at the C-terminus. Murine Scube genes are expressed individually or in combination during the development of various tissues, including those in the central nervous system and the axial skeleton. The cDNAs of human SCUBE orthologs were originally cloned from vascular endothelial cells, but SCUBE expression has also been found in platelets, mammary ductal epithelium and osteoblasts. Both soluble and membrane-associated SCUBEs have been shown to play important roles in physiology and pathology. For instance, upregulation of SCUBEs has been reported in acute myeloid leukemia, breast cancer and lung cancer. In addition, soluble SCUBE1 is released from activated platelets and can be used as a clinical biomarker for acute coronary syndrome and ischemic stroke. Soluble SCUBE2 enhances distal signaling by facilitating the secretion of dual-lipidated hedgehog from nearby ligand-producing cells in a paracrine manner. Interestingly, the spacer regions and CR motifs can increase or enable SCUBE binding to cell surfaces via electrostatic or glycan-lectin interactions. As such, membrane-associated SCUBEs can function as coreceptors that enhance the signaling activity of various serine/threonine kinase or tyrosine kinase receptors. For example, membrane-associated SCUBE3 functions as a coreceptor that promotes signaling in bone morphogenesis. In humans, SCUBE3 mutations are linked to abnormalities in growth and differentiation of both bones and teeth. In addition to studies on human SCUBE function, experimental results from genetically modified mouse models have yielded important insights in the field of systems biology. In this review, we highlight novel molecular discoveries and critical directions for future research on SCUBE proteins in the context of cancer, skeletal disease and cardiovascular disease.
Collapse
Affiliation(s)
- Yuh-Charn Lin
- Department of Physiology, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Binay K Sahoo
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan
| | - Shiang-Shin Gau
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan
| | - Ruey-Bing Yang
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan.
- Biomedical Translation Research Center, Academia Sinica, Taipei, Taiwan.
- Program in Drug Discovery and Development Industry, College of Pharmacy, Taipei Medical University, Taipei, Taiwan.
| |
Collapse
|
21
|
Bosseboeuf E, Chikh A, Chaker AB, Mitchell TP, Vignaraja D, Rajendrakumar R, Khambata RS, Nightingale TD, Mason JC, Randi AM, Ahluwalia A, Raimondi C. Neuropilin-1 interacts with VE-cadherin and TGFBR2 to stabilize adherens junctions and prevent activation of endothelium under flow. Sci Signal 2023; 16:eabo4863. [PMID: 37220183 PMCID: PMC7614756 DOI: 10.1126/scisignal.abo4863] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2022] [Accepted: 05/03/2023] [Indexed: 05/25/2023]
Abstract
Linear and disturbed flow differentially regulate gene expression, with disturbed flow priming endothelial cells (ECs) for a proinflammatory, atheroprone expression profile and phenotype. Here, we investigated the role of the transmembrane protein neuropilin-1 (NRP1) in ECs exposed to flow using cultured ECs, mice with an endothelium-specific knockout of NRP1, and a mouse model of atherosclerosis. We demonstrated that NRP1 was a constituent of adherens junctions that interacted with VE-cadherin and promoted its association with p120 catenin, stabilizing adherens junctions and inducing cytoskeletal remodeling in alignment with the direction of flow. We also showed that NRP1 interacted with transforming growth factor-β (TGF-β) receptor II (TGFBR2) and reduced the plasma membrane localization of TGFBR2 and TGF-β signaling. NRP1 knockdown increased the abundance of proinflammatory cytokines and adhesion molecules, resulting in increased leukocyte rolling and atherosclerotic plaque size. These findings describe a role for NRP1 in promoting endothelial function and reveal a mechanism by which NRP1 reduction in ECs may contribute to vascular disease by modulating adherens junction signaling and promoting TGF-β signaling and inflammation.
Collapse
Affiliation(s)
- Emy Bosseboeuf
- William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Centre of Cardiovascular Medicine and Devices, Queen Mary University of London, Charterhouse Square, London EC1M 6BQ, UK
| | - Anissa Chikh
- Molecular and Clinical Sciences Research Institute, St. George’s, University of London, London SW17 0RE, UK
| | - Ahmed Bey Chaker
- William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Centre of Cardiovascular Medicine and Devices, Queen Mary University of London, Charterhouse Square, London EC1M 6BQ, UK
| | - Tom P. Mitchell
- William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Centre for Microvascular Research, Queen Mary University of London, Charterhouse Square, London EC1M 6BQ, UK
| | - Dhilakshani Vignaraja
- Imperial Centre for Translational and Experimental Medicine, National Heart and Lung Institute, Imperial College London, London, W12 0NN, UK
| | - Ridhi Rajendrakumar
- William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Centre of Cardiovascular Medicine and Devices, Queen Mary University of London, Charterhouse Square, London EC1M 6BQ, UK
| | - Rayomand S. Khambata
- William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Centre of Cardiovascular Medicine and Devices, Queen Mary University of London, Charterhouse Square, London EC1M 6BQ, UK
| | - Thomas D. Nightingale
- William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Centre for Microvascular Research, Queen Mary University of London, Charterhouse Square, London EC1M 6BQ, UK
| | - Justin C. Mason
- Vascular Sciences, National Heart & Lung Institute, Faculty of Medicine, Imperial College London, Hammersmith Campus, Du Cane Road, London, W12 0HS, UK
| | - Anna M. Randi
- Vascular Sciences, National Heart & Lung Institute, Faculty of Medicine, Imperial College London, Hammersmith Campus, Du Cane Road, London, W12 0HS, UK
| | - Amrita Ahluwalia
- William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Centre of Cardiovascular Medicine and Devices, Queen Mary University of London, Charterhouse Square, London EC1M 6BQ, UK
| | - Claudio Raimondi
- William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Centre of Cardiovascular Medicine and Devices, Queen Mary University of London, Charterhouse Square, London EC1M 6BQ, UK
| |
Collapse
|
22
|
Denzer L, Muranyi W, Schroten H, Schwerk C. The role of PLVAP in endothelial cells. Cell Tissue Res 2023; 392:393-412. [PMID: 36781482 PMCID: PMC10172233 DOI: 10.1007/s00441-023-03741-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Accepted: 01/18/2023] [Indexed: 02/15/2023]
Abstract
Endothelial cells play a major part in the regulation of vascular permeability and angiogenesis. According to their duty to fit the needs of the underlying tissue, endothelial cells developed different subtypes with specific endothelial microdomains as caveolae, fenestrae and transendothelial channels which regulate nutrient exchange, leukocyte migration, and permeability. These microdomains can exhibit diaphragms that are formed by the endothelial cell-specific protein plasmalemma vesicle-associated protein (PLVAP), the only known protein component of these diaphragms. Several studies displayed an involvement of PLVAP in diseases as cancer, traumatic spinal cord injury, acute ischemic brain disease, transplant glomerulopathy, Norrie disease and diabetic retinopathy. Besides an upregulation of PLVAP expression within these diseases, pro-angiogenic or pro-inflammatory responses were observed. On the other hand, loss of PLVAP in knockout mice leads to premature mortality due to disrupted homeostasis. Generally, PLVAP is considered as a major factor influencing the permeability of endothelial cells and, finally, to be involved in the regulation of vascular permeability. Following these observations, PLVAP is debated as a novel therapeutic target with respect to the different vascular beds and tissues. In this review, we highlight the structure and functions of PLVAP in different endothelial types in health and disease.
Collapse
Affiliation(s)
- Lea Denzer
- Department of Pediatrics, Pediatric Infectious Diseases, Medical Faculty Mannheim, Heidelberg University, 68167 Mannheim, Germany
| | - Walter Muranyi
- Department of Pediatrics, Pediatric Infectious Diseases, Medical Faculty Mannheim, Heidelberg University, 68167 Mannheim, Germany
| | - Horst Schroten
- Department of Pediatrics, Pediatric Infectious Diseases, Medical Faculty Mannheim, Heidelberg University, 68167 Mannheim, Germany
| | - Christian Schwerk
- Department of Pediatrics, Pediatric Infectious Diseases, Medical Faculty Mannheim, Heidelberg University, 68167 Mannheim, Germany
| |
Collapse
|
23
|
Exploring RAB11A Pathway to Hinder Chronic Myeloid Leukemia-Induced Angiogenesis In Vivo. Pharmaceutics 2023; 15:pharmaceutics15030742. [PMID: 36986603 PMCID: PMC10056245 DOI: 10.3390/pharmaceutics15030742] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Revised: 02/17/2023] [Accepted: 02/21/2023] [Indexed: 02/25/2023] Open
Abstract
Neoangiogenesis is generally correlated with poor prognosis, due to the promotion of cancer cell growth, invasion and metastasis. The progression of chronic myeloid leukemia (CML) is frequently associated with an increased vascular density in bone marrow. From a molecular point of view, the small GTP-binding protein Rab11a, involved in the endosomal slow recycling pathway, has been shown to play a crucial role for the neoangiogenic process at the bone marrow of CML patients, by controlling the secretion of exosomes by CML cells, and by regulating the recycling of vascular endothelial factor receptors. The angiogenic potential of exosomes secreted by the CML cell line K562 has been previously observed using the chorioallantoic membrane (CAM) model. Herein, gold nanoparticles (AuNPs) were functionalized with an anti-RAB11A oligonucleotide (AuNP@RAB11A) to downregulate RAB11A mRNA in K562 cell line which showed a 40% silencing of the mRNA after 6 h and 14% silencing of the protein after 12 h. Then, using the in vivo CAM model, these exosomes secreted by AuNP@RAB11A incubated K562 did not present the angiogenic potential of those secreted from untreated K562 cells. These results demonstrate the relevance of Rab11 for the neoangiogenesis mediated by tumor exosomes, whose deleterious effect may be counteracted via targeted silencing of these crucial genes; thus, decreasing the number of pro-tumoral exosomes at the tumor microenvironment.
Collapse
|
24
|
Che H, Zheng Q, Liao Z, Zhang L. HNF4G accelerates glioma progression by facilitating NRP1 transcription. Oncol Lett 2023; 25:102. [PMID: 36817051 PMCID: PMC9932018 DOI: 10.3892/ol.2023.13688] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Accepted: 12/02/2022] [Indexed: 02/04/2023] Open
Abstract
Hepatocyte nuclear factor 4γ (HNF4G) is considered to be a transcription factor and functions as an oncogene in certain types of human cancer. However, the precise functions and the potential molecular mechanisms of HNF4G in glioma remain unclear. Therefore, the present study aimed to elucidate the role of HNF4G in glioma and the underlying mechanism. Western blotting and reverse transcription-quantitative PCR (RT-qPCR) demonstrated that HNF4G was highly expressed in glioma tissues and cell lines. The overexpression of HNF4G in LN229 and U251 glioma cells promoted cell proliferation and cell cycle progression, and inhibited apoptosis, while the knockdown of HNF4G suppressed cell proliferation, cell cycle progression and tumor growth, and induced apoptosis. A significant positive association was detected between HNF4G and neuropilin-1 (NRP1) mRNA expression in glioma tissues. Bioinformatics analysis, chromatin immunoprecipitation-RT-qPCR and promoter reporter assays confirmed that HNF4G promoted NRP1 transcription in glioma by binding to its promoter. NRP1 overexpression facilitated glioma cell proliferation and cell cycle progression, and suppressed apoptosis in vitro, while the knockdown of NRP1 inhibited cell proliferation and cell cycle progression, and facilitated apoptosis. NRP1 overexpression reversed the effects induced by HNF4G knockdown on glioma cell proliferation, cell cycle progression and apoptosis. In summary, the present study demonstrated that HNF4G promotes glioma cell proliferation and suppresses apoptosis by activating NRP1 transcription. These findings indicate that HNF4G acts as an oncogene in glioma and may thus be an effective therapeutic target for glioma.
Collapse
Affiliation(s)
- Hongmin Che
- Department of Neurosurgery, Xi'an Gaoxin Hospital, Xi'an, Shaanxi 710075, P.R. China,Correspondence to: Professor Hongmin Che, Department of Neurosurgery, Xi'an Gaoxin Hospital, 16 Tuanjie South Road, Xi'an, Shaanxi 710075, P.R. China, E-mail:
| | - Qi Zheng
- Department of Medical Oncology, Affiliated Shaanxi Provincial Cancer Hospital, College of Medicine, Xi'an Jiaotong University, Xi'an, Shaanxi 710061, P.R. China
| | - Zijun Liao
- Department of Medical Oncology, Affiliated Shaanxi Provincial Cancer Hospital, College of Medicine, Xi'an Jiaotong University, Xi'an, Shaanxi 710061, P.R. China
| | - Lu Zhang
- Department of Foreign Languages, Xi'an Mingde Institute of Technology, Xi'an, Shaanxi 710124, P.R. China,Professor Lu Zhang, Department of Foreign Languages, Xi'an Mingde Institute of Technology, 11 Fengye Road, Xi'an, Shaanxi 710124, P.R. China, E-mail:
| |
Collapse
|
25
|
Induced pluripotent stem cell-derived astrocytes from patients with schizophrenia exhibit an inflammatory phenotype that affects vascularization. Mol Psychiatry 2023; 28:871-882. [PMID: 36280751 DOI: 10.1038/s41380-022-01830-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Revised: 09/21/2022] [Accepted: 10/03/2022] [Indexed: 11/09/2022]
Abstract
Molecular and functional abnormalities of astrocytes have been implicated in the etiology and pathogenesis of schizophrenia (SCZ). In this study, we examined the proteome, inflammatory responses, and secretome effects on vascularization of human induced pluripotent stem cell (hiPSC)-derived astrocytes from patients with SCZ. Proteomic analysis revealed alterations in proteins related to immune function and vascularization. Reduced expression of the nuclear factor kappa B (NF-κB) p65 subunit was observed in these astrocytes, with no incremental secretion of cytokines after tumor necrosis factor alpha (TNF-α) stimulation. Among inflammatory cytokines, secretion of interleukin (IL)-8 was particularly elevated in SCZ-patient-derived-astrocyte-conditioned medium (ASCZCM). In a chicken chorioallantoic membrane (CAM) assay, ASCZCM reduced the diameter of newly grown vessels. This effect could be mimicked with exogenous addition of IL-8. Taken together, our results suggest that SCZ astrocytes are immunologically dysfunctional and may consequently affect vascularization through secreted factors.
Collapse
|
26
|
Direct thrombin inhibitors as alternatives to heparin to preserve lung growth and function in a murine model of compensatory lung growth. Sci Rep 2022; 12:21117. [PMID: 36477689 PMCID: PMC9729628 DOI: 10.1038/s41598-022-25773-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Accepted: 12/05/2022] [Indexed: 12/13/2022] Open
Abstract
Infants with congenital diaphragmatic hernia (CDH) may require cardiopulmonary bypass and systemic anticoagulation. Expeditious lung growth while on bypass is essential for survival. Previously, we demonstrated that heparin impairs lung growth and function in a murine model of compensatory lung growth (CLG). We investigated the effects of the direct thrombin inhibitors (DTIs) bivalirudin and argatroban. In vitro assays of lung endothelial cell proliferation and apoptosis were performed. C57BL/6 J mice underwent left pneumonectomy and subcutaneous implantation of osmotic pumps. Pumps were pre-loaded with normal saline (control), bivalirudin, argatroban, or heparin and outcomes were assessed on postoperative day 8. Heparin administration inhibited endothelial cell proliferation in vitro and significantly decreased lung volume in vivo, while bivalirudin and argatroban preserved lung growth. These findings correlated with changes in alveolarization on morphometric analysis. Treadmill exercise tolerance testing demonstrated impaired exercise performance in heparinized mice; bivalirudin/argatroban did not affect exercise tolerance. On lung protein analysis, heparin decreased angiogenic signaling which was not impacted by bivalirudin or argatroban. Together, this data supports the use of DTIs as alternatives to heparin for systemic anticoagulation in CDH patients on bypass. Based on this work, clinical studies on the impact of heparin and DTIs on CDH outcomes are warranted.
Collapse
|
27
|
Zhuang Q, Yang H, Mao Y. The Oncogenesis of Glial Cells in Diffuse Gliomas and Clinical Opportunities. Neurosci Bull 2022; 39:393-408. [PMID: 36229714 PMCID: PMC10043159 DOI: 10.1007/s12264-022-00953-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Accepted: 06/06/2022] [Indexed: 11/25/2022] Open
Abstract
Glioma is the most common and lethal intrinsic primary tumor of the brain. Its controversial origins may contribute to its heterogeneity, creating challenges and difficulties in the development of therapies. Among the components constituting tumors, glioma stem cells are highly plastic subpopulations that are thought to be the site of tumor initiation. Neural stem cells/progenitor cells and oligodendrocyte progenitor cells are possible lineage groups populating the bulk of the tumor, in which gene mutations related to cell-cycle or metabolic enzymes dramatically affect this transformation. Novel approaches have revealed the tumor-promoting properties of distinct tumor cell states, glial, neural, and immune cell populations in the tumor microenvironment. Communication between tumor cells and other normal cells manipulate tumor progression and influence sensitivity to therapy. Here, we discuss the heterogeneity and relevant functions of tumor cell state, microglia, monocyte-derived macrophages, and neurons in glioma, highlighting their bilateral effects on tumors. Finally, we describe potential therapeutic approaches and targets beyond standard treatments.
Collapse
Affiliation(s)
- Qiyuan Zhuang
- Department of Neurosurgery, Huashan Hospital, Fudan University, Shanghai, 200040, China
| | - Hui Yang
- Department of Neurosurgery, Huashan Hospital, Fudan University, Shanghai, 200040, China.
- National Center for Neurological Disorders, Huashan Hospital, Fudan University, Shanghai, 200040, China.
- Shanghai Key Laboratory of Brain Function Restoration and Neural Regeneration, Huashan Hospital, Fudan University, Shanghai, 200040, China.
- Institute for Translational Brain Research, Fudan University, Shanghai, 200032, China.
- State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institute for Translational Brain Research, Institutes of Brain Science, Fudan University, Shanghai, 200032, China.
| | - Ying Mao
- Department of Neurosurgery, Huashan Hospital, Fudan University, Shanghai, 200040, China.
- National Center for Neurological Disorders, Huashan Hospital, Fudan University, Shanghai, 200040, China.
- Shanghai Key Laboratory of Brain Function Restoration and Neural Regeneration, Huashan Hospital, Fudan University, Shanghai, 200040, China.
- State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institute for Translational Brain Research, Institutes of Brain Science, Fudan University, Shanghai, 200032, China.
- Neurosurgical Institute of Fudan University, Shanghai, 200032, China.
| |
Collapse
|
28
|
Zhou T, Li Y, Zhang H, Pan L, Pang J, Yuan Q, Li G, Jie L, Wang Y, Zhang Y. 4-(2-Butyl-6,7-dichloro-2-cyclopentyl-indan-1-on-5-yl) oxobutyric acid inhibits angiogenesis via modulation of vascular endothelial growth factor receptor 2 signaling pathway. Front Cardiovasc Med 2022; 9:969616. [PMID: 36211567 PMCID: PMC9537693 DOI: 10.3389/fcvm.2022.969616] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Accepted: 08/15/2022] [Indexed: 11/17/2022] Open
Abstract
4-(2-Butyl-6,7-dichloro-2-cyclopentyl-indan-1-on-5-yl) oxobutyric acid (DCPIB), was discovered to be a potent and specific antagonist of volume-regulated anion channel that is closely linked to angiogenesis. However, the effect of DCPIB on angiogenesis remains unclear. Here, we found that DCPIB inhibited angiogenesis in the corneal suture and myocardial infarction in vivo model. In addition, DCPIB inhibited human umbilical vein endothelial cell migration, tube formation and proliferation in vitro. Moreover, DCPIB repressed the activation and expression of vascular endothelial growth factor receptor 2 (VEGFR2) and its downstream signaling pathway. Computer modeling further confirmed that DCPIB binds with high affinity to VEGFR2. Collectively, we present evidence supporting an antiangiogenic role of DCPIB by targeting VEGFR2 signaling pathway, which suggests that DCPIB is a valuable lead compound for the treatment of angiogenesis-related diseases.
Collapse
Affiliation(s)
- Tianli Zhou
- Institute of Cardiovascular Diseases, Xiamen Cardiovascular Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, China
| | - Yunda Li
- Institute of Cardiovascular Diseases, Xiamen Cardiovascular Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, China
| | - Heqiang Zhang
- Institute of Cardiovascular Diseases, Xiamen Cardiovascular Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, China
| | - Lei Pan
- Institute of Cardiovascular Diseases, Xiamen Cardiovascular Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, China
| | - Jinglong Pang
- Institute of Cardiovascular Diseases, Xiamen Cardiovascular Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, China
| | - Qian Yuan
- Institute of Cardiovascular Diseases, Xiamen Cardiovascular Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, China
| | - Guiyang Li
- Department of Cardiology, Xiamen Cardiovascular Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, China
| | - Lingjun Jie
- Institute of Cardiovascular Diseases, Xiamen Cardiovascular Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, China
- Department of Cardiology, Xiamen Cardiovascular Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, China
- *Correspondence: Lingjun Jie
| | - Yan Wang
- Department of Cardiology, Xiamen Cardiovascular Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, China
- Yan Wang
| | - Yanhui Zhang
- Institute of Cardiovascular Diseases, Xiamen Cardiovascular Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, China
- Yanhui Zhang
| |
Collapse
|
29
|
Gioelli N, Neilson LJ, Wei N, Villari G, Chen W, Kuhle B, Ehling M, Maione F, Willox S, Brundu S, Avanzato D, Koulouras G, Mazzone M, Giraudo E, Yang XL, Valdembri D, Zanivan S, Serini G. Neuropilin 1 and its inhibitory ligand mini-tryptophanyl-tRNA synthetase inversely regulate VE-cadherin turnover and vascular permeability. Nat Commun 2022; 13:4188. [PMID: 35858913 PMCID: PMC9300702 DOI: 10.1038/s41467-022-31904-1] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2020] [Accepted: 07/08/2022] [Indexed: 11/09/2022] Open
Abstract
The formation of a functional blood vessel network relies on the ability of endothelial cells (ECs) to dynamically rearrange their adhesive contacts in response to blood flow and guidance cues, such as vascular endothelial growth factor-A (VEGF-A) and class 3 semaphorins (SEMA3s). Neuropilin 1 (NRP1) is essential for blood vessel development, independently of its ligands VEGF-A and SEMA3, through poorly understood mechanisms. Grounding on unbiased proteomic analysis, we report here that NRP1 acts as an endocytic chaperone primarily for adhesion receptors on the surface of unstimulated ECs. NRP1 localizes at adherens junctions (AJs) where, interacting with VE-cadherin, promotes its basal internalization-dependent turnover and favors vascular permeability initiated by histamine in both cultured ECs and mice. We identify a splice variant of tryptophanyl-tRNA synthetase (mini-WARS) as an unconventionally secreted extracellular inhibitory ligand of NRP1 that, by stabilizing it at the AJs, slows down both VE-cadherin turnover and histamine-elicited endothelial leakage. Thus, our work shows a role for NRP1 as a major regulator of AJs plasticity and reveals how mini-WARS acts as a physiological NRP1 inhibitory ligand in the control of VE-cadherin endocytic turnover and vascular permeability.
Collapse
Affiliation(s)
- Noemi Gioelli
- Department of Oncology, University of Torino School of Medicine, Candiolo (TO), Italy
- Candiolo Cancer Institute - Fondazione del Piemonte per l'Oncologia (FPO) Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Candiolo (TO), Italy
| | | | - Na Wei
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA, 92037, USA
| | - Giulia Villari
- Department of Oncology, University of Torino School of Medicine, Candiolo (TO), Italy
- Candiolo Cancer Institute - Fondazione del Piemonte per l'Oncologia (FPO) Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Candiolo (TO), Italy
| | - Wenqian Chen
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA, 92037, USA
| | - Bernhard Kuhle
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA, 92037, USA
| | - Manuel Ehling
- Center for Cancer Biology, Department of Oncology, University of Leuven, Leuven, 3000, Belgium
- Center for Cancer Biology, VIB, Leuven, 3000, Belgium
| | - Federica Maione
- Department of Oncology, University of Torino School of Medicine, Candiolo (TO), Italy
- Candiolo Cancer Institute - Fondazione del Piemonte per l'Oncologia (FPO) Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Candiolo (TO), Italy
| | - Sander Willox
- Center for Cancer Biology, Department of Oncology, University of Leuven, Leuven, 3000, Belgium
- Center for Cancer Biology, VIB, Leuven, 3000, Belgium
| | - Serena Brundu
- Candiolo Cancer Institute - Fondazione del Piemonte per l'Oncologia (FPO) Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Candiolo (TO), Italy
- Department of Science and Drug Technology, University of Torino, Torino, Italy
| | - Daniele Avanzato
- Department of Oncology, University of Torino School of Medicine, Candiolo (TO), Italy
- Candiolo Cancer Institute - Fondazione del Piemonte per l'Oncologia (FPO) Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Candiolo (TO), Italy
| | | | - Massimiliano Mazzone
- Center for Cancer Biology, Department of Oncology, University of Leuven, Leuven, 3000, Belgium
- Center for Cancer Biology, VIB, Leuven, 3000, Belgium
- Department of Science and Drug Technology, University of Torino, Torino, Italy
- Molecular Biotechnology Center (MBC), University of Torino, Torino, Italy
- Department of Molecular Biotechnology and Health Sciences, University of Torino, Torino, Italy
| | - Enrico Giraudo
- Candiolo Cancer Institute - Fondazione del Piemonte per l'Oncologia (FPO) Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Candiolo (TO), Italy
- Department of Science and Drug Technology, University of Torino, Torino, Italy
| | - Xiang-Lei Yang
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA, 92037, USA
| | - Donatella Valdembri
- Department of Oncology, University of Torino School of Medicine, Candiolo (TO), Italy
- Candiolo Cancer Institute - Fondazione del Piemonte per l'Oncologia (FPO) Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Candiolo (TO), Italy
| | - Sara Zanivan
- Cancer Research UK Beatson Institute, Glasgow, UK.
- Institute of Cancer Sciences, University of Glasgow, Glasgow, UK.
| | - Guido Serini
- Department of Oncology, University of Torino School of Medicine, Candiolo (TO), Italy.
- Candiolo Cancer Institute - Fondazione del Piemonte per l'Oncologia (FPO) Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Candiolo (TO), Italy.
| |
Collapse
|
30
|
Zhang C, He H, Dai J, Li Y, He J, Yang W, Dai J, Han F, Kong W, Wang X, Zheng X, Zhou J, Pan W, Chen Z, Singhal M, Zhang Y, Guo F, Hu J. KANK4 Promotes Arteriogenesis by Potentiating VEGFR2 Signaling in a TALIN-1-Dependent Manner. Arterioscler Thromb Vasc Biol 2022; 42:772-788. [PMID: 35477278 DOI: 10.1161/atvbaha.122.317711] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
BACKGROUND Arteriogenesis plays a critical role in maintaining adequate tissue blood supply and is related to a favorable prognosis in arterial occlusive diseases. Strategies aimed at promoting arteriogenesis have thus far not been successful because the factors involved in arteriogenesis remain incompletely understood. Previous studies suggest that evolutionarily conserved KANK4 (KN motif and ankyrin repeat domain-containing proteins 4) might involve in vertebrate vessel development. However, how the KANK4 regulates vessel function remains unknown. We aim to determine the role of endothelial cell-specifically expressed KANK4 in arteriogenesis. METHODS The role of KANK4 in regulating arteriogenesis was evaluated using Kank4-/- and KANK4iECOE mice. Molecular mechanisms underlying KANK4-potentiated arteriogenesis were investigated by employing RNA transcriptomic profiling and mass spectrometry analysis. RESULTS By analyzing Kank4-EGFP reporter mice, we showed that KANK4 was specifically expressed in endothelial cells. In particular, KANK4 displayed a dynamic expression pattern from being ubiquitously expressed in all endothelial cells of the developing vasculature to being explicitly expressed in the endothelial cells of arterioles and arteries in matured vessels. In vitro microfluidic chip-based vascular morphology analysis and in vivo hindlimb ischemia assays using Kank4-/- and KANK4iECOE mice demonstrated that deletion of KANK4 impaired collateral artery growth and the recovery of blood perfusion, whereas KANK4 overexpression leads to increased vessel caliber and blood perfusion. Bulk RNA sequencing and Co-immunoprecipitation/mass spectrometry (Co-IP/MS) analysis identified that KANK4 promoted EC proliferation and collateral artery remodeling through coupling VEGFR2 (vascular endothelial growth factor receptor 2) to TALIN-1, which augmented the activation of the VEGFR2 signaling cascade. CONCLUSIONS This study reveals a novel role for KANK4 in arteriogenesis in response to ischemia. KANK4 links VEGFR2 to TALIN-1, resulting in enhanced VEGFR2 activation and increased EC proliferation, highlighting that KANK4 is a potential therapeutic target for promoting arteriogenesis for arterial occlusive diseases.
Collapse
Affiliation(s)
- Chonghe Zhang
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai, China (C.Z., H.H., J.D., J. He, W.Y., J.D., F.H., W.K., Z.C., Y.Z., J. Hu).,University of Chinese Academy of Sciences, Beijing, China (C.Z., H.H., J.H., W.Y., J.D., Z.C., Y.Z., J. Hu)
| | - Hao He
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai, China (C.Z., H.H., J.D., J. He, W.Y., J.D., F.H., W.K., Z.C., Y.Z., J. Hu).,University of Chinese Academy of Sciences, Beijing, China (C.Z., H.H., J.H., W.Y., J.D., Z.C., Y.Z., J. Hu)
| | - Jianing Dai
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai, China (C.Z., H.H., J.D., J. He, W.Y., J.D., F.H., W.K., Z.C., Y.Z., J. Hu)
| | | | - Jing He
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai, China (C.Z., H.H., J.D., J. He, W.Y., J.D., F.H., W.K., Z.C., Y.Z., J. Hu).,University of Chinese Academy of Sciences, Beijing, China (C.Z., H.H., J.H., W.Y., J.D., Z.C., Y.Z., J. Hu)
| | - Wu Yang
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai, China (C.Z., H.H., J.D., J. He, W.Y., J.D., F.H., W.K., Z.C., Y.Z., J. Hu).,University of Chinese Academy of Sciences, Beijing, China (C.Z., H.H., J.H., W.Y., J.D., Z.C., Y.Z., J. Hu)
| | - Jialin Dai
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai, China (C.Z., H.H., J.D., J. He, W.Y., J.D., F.H., W.K., Z.C., Y.Z., J. Hu).,University of Chinese Academy of Sciences, Beijing, China (C.Z., H.H., J.H., W.Y., J.D., Z.C., Y.Z., J. Hu)
| | - Feng Han
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai, China (C.Z., H.H., J.D., J. He, W.Y., J.D., F.H., W.K., Z.C., Y.Z., J. Hu)
| | - Wenyan Kong
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai, China (C.Z., H.H., J.D., J. He, W.Y., J.D., F.H., W.K., Z.C., Y.Z., J. Hu)
| | - Xiaohong Wang
- Department of Pharmacology and Tianjin Key Laboratory of Inflammation Biology, School of Basic Medical Sciences, Tianjin Medical University, China (X.W., X.Z.)
| | - Xiangjian Zheng
- Department of Pharmacology and Tianjin Key Laboratory of Inflammation Biology, School of Basic Medical Sciences, Tianjin Medical University, China (X.W., X.Z.)
| | - Jing Zhou
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Peking University, Key Laboratory of Molecular Cardiovascular Sciences, Ministry of Education, Beijing (J.Z.)
| | - Weijun Pan
- Shanghai Institute of Nutrition and Health, Chinese Academy of Sciences, Shanghai, China (W.P.)
| | - Zhongwen Chen
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai, China (C.Z., H.H., J.D., J. He, W.Y., J.D., F.H., W.K., Z.C., Y.Z., J. Hu).,University of Chinese Academy of Sciences, Beijing, China (C.Z., H.H., J.H., W.Y., J.D., Z.C., Y.Z., J. Hu)
| | - Mahak Singhal
- Division of Vascular Oncology and Metastasis, German Cancer Research Center (DKFZ-ZMBH Alliance), Heidelberg, Germany (M.S.).,Department of Vascular Biology and Tumor Angiogenesis, European Center for Angioscience (ECAS), Medical Faculty Mannheim, Heidelberg University, Germany (M.S.)
| | - Yaoyang Zhang
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai, China (C.Z., H.H., J.D., J. He, W.Y., J.D., F.H., W.K., Z.C., Y.Z., J. Hu).,University of Chinese Academy of Sciences, Beijing, China (C.Z., H.H., J.H., W.Y., J.D., Z.C., Y.Z., J. Hu)
| | - Feng Guo
- Department of Plastic Surgery, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, China (F.G.)
| | - Junhao Hu
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai, China (C.Z., H.H., J.D., J. He, W.Y., J.D., F.H., W.K., Z.C., Y.Z., J. Hu).,University of Chinese Academy of Sciences, Beijing, China (C.Z., H.H., J.H., W.Y., J.D., Z.C., Y.Z., J. Hu)
| |
Collapse
|
31
|
Gao J, Mei H, Sun J, Li H, Huang Y, Tang Y, Duan L, Liu D, Pang Y, Wang Q, Gao Y, Song K, Zhao J, Zhang C, Liu J. Neuropilin-1-Mediated SARS-CoV-2 Infection in Bone Marrow-Derived Macrophages Inhibits Osteoclast Differentiation. Adv Biol (Weinh) 2022; 6:e2200007. [PMID: 35195371 PMCID: PMC9073998 DOI: 10.1002/adbi.202200007] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Revised: 01/25/2022] [Indexed: 01/27/2023]
Abstract
In humans, severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection can cause medical complications across various tissues and organs. Despite the advances to understanding the pathogenesis of SARS-CoV-2, its tissue tropism and interactions with host cells have not been fully understood. Existing clinical data have revealed disordered calcium and phosphorus metabolism in Coronavirus Disease 2019 (COVID-19) patients, suggesting possible infection or damage in the human skeleton system by SARS-CoV-2. Herein, SARS-CoV-2 infection in mouse models with wild-type and beta strain (B.1.351) viruses is investigated, and it is found that bone marrow-derived macrophages (BMMs) can be efficiently infected in vivo. Single-cell RNA sequencing (scRNA-Seq) analyses of infected BMMs identify distinct clusters of susceptible macrophages, including those related to osteoblast differentiation. Interestingly, SARS-CoV-2 entry on BMMs is dependent on the expression of neuropilin-1 (NRP1) rather than the widely recognized receptor angiotensin-converting enzyme 2 (ACE2). The loss of NRP1 expression during BMM-to-osteoclast differentiation or NRP1 neutralization and knockdown can significantly inhibit SARS-CoV-2 infection in BMMs. Importantly, it is found that authentic SARS-CoV-2 infection impedes BMM-to-osteoclast differentiation. Collectively, this study provides evidence for NRP1-mediated SARS-CoV-2 infection in BMMs and establishes a potential link between disturbed osteoclast differentiation and disordered skeleton metabolism in COVID-19 patients.
Collapse
Affiliation(s)
- Junjie Gao
- Department of OrthopaedicsShanghai Jiao Tong University Affiliated Shanghai Sixth People's HospitalShanghai200233China
| | - Hong Mei
- Shanghai Institute for Advanced Immunochemical Studies and School of Life Science and TechnologyShanghaiTech UniversityShanghai201210China
| | - Jing Sun
- State Key Laboratory of Respiratory DiseaseNational Clinical Research Center for Respiratory DiseaseGuangzhou Institute of Respiratory Health, the First Affiliated Hospital of Guangzhou Medical UniversityGuangzhouGuangdong510182China
| | - Hao Li
- Department of OrthopaedicsShanghai Jiao Tong University Affiliated Shanghai Sixth People's HospitalShanghai200233China
| | - Yuege Huang
- Shanghai Institute for Advanced Immunochemical Studies and School of Life Science and TechnologyShanghaiTech UniversityShanghai201210China,Shanghai Clinical Research and Trial CenterShanghai201210China,Gene Editing CenterSchool of Life Science and TechnologyShanghaiTech UniversityShanghai201210China,University of Chinese Academy of SciencesBeijing100049China
| | - Yanhong Tang
- State Key Laboratory of Respiratory DiseaseNational Clinical Research Center for Respiratory DiseaseGuangzhou Institute of Respiratory Health, the First Affiliated Hospital of Guangzhou Medical UniversityGuangzhouGuangdong510182China
| | - Linwei Duan
- State Key Laboratory of Respiratory DiseaseNational Clinical Research Center for Respiratory DiseaseGuangzhou Institute of Respiratory Health, the First Affiliated Hospital of Guangzhou Medical UniversityGuangzhouGuangdong510182China
| | - Delin Liu
- Centre for Orthopaedic ResearchSchool of SurgeryThe University of Western AustraliaNedlandsWestern Australia6009Australia
| | - Yidan Pang
- Department of OrthopaedicsShanghai Jiao Tong University Affiliated Shanghai Sixth People's HospitalShanghai200233China
| | - Qiyang Wang
- Department of OrthopaedicsShanghai Jiao Tong University Affiliated Shanghai Sixth People's HospitalShanghai200233China
| | - Youshui Gao
- Department of OrthopaedicsShanghai Jiao Tong University Affiliated Shanghai Sixth People's HospitalShanghai200233China
| | - Ke Song
- Shanghai Institute for Advanced Immunochemical Studies and School of Life Science and TechnologyShanghaiTech UniversityShanghai201210China
| | - Jincun Zhao
- State Key Laboratory of Respiratory DiseaseNational Clinical Research Center for Respiratory DiseaseGuangzhou Institute of Respiratory Health, the First Affiliated Hospital of Guangzhou Medical UniversityGuangzhouGuangdong510182China
| | - Changqing Zhang
- Department of OrthopaedicsShanghai Jiao Tong University Affiliated Shanghai Sixth People's HospitalShanghai200233China
| | - Jia Liu
- Shanghai Institute for Advanced Immunochemical Studies and School of Life Science and TechnologyShanghaiTech UniversityShanghai201210China,Shanghai Clinical Research and Trial CenterShanghai201210China,Gene Editing CenterSchool of Life Science and TechnologyShanghaiTech UniversityShanghai201210China
| |
Collapse
|
32
|
Kilari S, Wang Y, Singh A, Graham RP, Iyer V, Thompson SM, Torbenson MS, Mukhopadhyay D, Misra S. Neuropilin-1 deficiency in vascular smooth muscle cells is associated with hereditary hemorrhagic telangiectasia arteriovenous malformations. JCI Insight 2022; 7:155565. [PMID: 35380991 PMCID: PMC9090252 DOI: 10.1172/jci.insight.155565] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Accepted: 03/30/2022] [Indexed: 11/25/2022] Open
Abstract
Patients with hereditary hemorrhagic telangiectasia (HHT) have arteriovenous malformations (AVMs) with genetic mutations involving the activin-A receptor like type 1 (ACVRL1 or ALK1) and endoglin (ENG). Recent studies have shown that Neuropilin-1 (NRP-1) inhibits ALK1. We investigated the expression of NRP-1 in livers of patients with HHT and found that there was a significant reduction in NRP-1 in perivascular smooth muscle cells (SMCs). We used Nrp1SM22KO mice (Nrp1 was ablated in SMCs) and found hemorrhage, increased immune cell infiltration with a decrease in SMCs, and pericyte lining in lungs and liver in adult mice. Histologic examination revealed lung arteriovenous fistulas (AVFs) with enlarged liver vessels. Evaluation of the retina vessels at P5 from Nrp1SM22KO mice demonstrated dilated capillaries with a reduction of pericytes. In inflow artery of surgical AVFs from the Nrp1SM22KO versus WT mice, there was a significant decrease in Tgfb1, Eng, and Alk1 expression and phosphorylated SMAD1/5/8 (pSMAD1/5/8), with an increase in apoptosis. TGF-β1–stimulated aortic SMCs from Nrp1SM22KO versus WT mice have decreased pSMAD1/5/8 and increased apoptosis. Coimmunoprecipitation experiments revealed that NRP-1 interacts with ALK1 and ENG in SMCs. In summary, NRP-1 deletion in SMCs leads to reduced ALK1, ENG, and pSMAD1/5/8 signaling and reduced cell death associated with AVM formation.
Collapse
Affiliation(s)
| | - Ying Wang
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, United States of America
| | - Avishek Singh
- Department of Radiology, Mayo Clinic, Rochester, United States of America
| | - Rondell P Graham
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, United States of America
| | - Vivek Iyer
- Pulmonary and Critical Care Medicine, Mayo Clinic, Rochester, United States of America
| | - Scott M Thompson
- Department of Radiology, Mayo Clinic, Rochester, United States of America
| | - Michael S Torbenson
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, United States of America
| | - Debabrata Mukhopadhyay
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, United States of America
| | - Sanjay Misra
- Department of Radiology, Mayo Clinic, Rochester, United States of America
| |
Collapse
|
33
|
Miller B, Sewell-Loftin MK. Mechanoregulation of Vascular Endothelial Growth Factor Receptor 2 in Angiogenesis. Front Cardiovasc Med 2022; 8:804934. [PMID: 35087885 PMCID: PMC8787114 DOI: 10.3389/fcvm.2021.804934] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Accepted: 12/10/2021] [Indexed: 12/17/2022] Open
Abstract
The endothelial cells that compose the vascular system in the body display a wide range of mechanotransductive behaviors and responses to biomechanical stimuli, which act in concert to control overall blood vessel structure and function. Such mechanosensitive activities allow blood vessels to constrict, dilate, grow, or remodel as needed during development as well as normal physiological functions, and the same processes can be dysregulated in various disease states. Mechanotransduction represents cellular responses to mechanical forces, translating such factors into chemical or electrical signals which alter the activation of various cell signaling pathways. Understanding how biomechanical forces drive vascular growth in healthy and diseased tissues could create new therapeutic strategies that would either enhance or halt these processes to assist with treatments of different diseases. In the cardiovascular system, new blood vessel formation from preexisting vasculature, in a process known as angiogenesis, is driven by vascular endothelial growth factor (VEGF) binding to VEGF receptor 2 (VEGFR-2) which promotes blood vessel development. However, physical forces such as shear stress, matrix stiffness, and interstitial flow are also major drivers and effectors of angiogenesis, and new research suggests that mechanical forces may regulate VEGFR-2 phosphorylation. In fact, VEGFR-2 activation has been linked to known mechanobiological agents including ERK/MAPK, c-Src, Rho/ROCK, and YAP/TAZ. In vascular disease states, endothelial cells can be subjected to altered mechanical stimuli which affect the pathways that control angiogenesis. Both normalizing and arresting angiogenesis associated with tumor growth have been strategies for anti-cancer treatments. In the field of regenerative medicine, harnessing biomechanical regulation of angiogenesis could enhance vascularization strategies for treating a variety of cardiovascular diseases, including ischemia or permit development of novel tissue engineering scaffolds. This review will focus on the impact of VEGFR-2 mechanosignaling in endothelial cells (ECs) and its interaction with other mechanotransductive pathways, as well as presenting a discussion on the relationship between VEGFR-2 activation and biomechanical forces in the extracellular matrix (ECM) that can help treat diseases with dysfunctional vascular growth.
Collapse
Affiliation(s)
- Bronte Miller
- Department of Biomedical Engineering, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Mary Kathryn Sewell-Loftin
- Department of Biomedical Engineering, University of Alabama at Birmingham, Birmingham, AL, United States.,O'Neal Comprehensive Cancer Center, University of Alabama at Birmingham, Birmingham, AL, United States
| |
Collapse
|
34
|
Andersen BM, Faust Akl C, Wheeler MA, Chiocca EA, Reardon DA, Quintana FJ. Glial and myeloid heterogeneity in the brain tumour microenvironment. Nat Rev Cancer 2021; 21:786-802. [PMID: 34584243 PMCID: PMC8616823 DOI: 10.1038/s41568-021-00397-3] [Citation(s) in RCA: 110] [Impact Index Per Article: 27.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 08/03/2021] [Indexed: 02/08/2023]
Abstract
Brain cancers carry bleak prognoses, with therapeutic advances helping only a minority of patients over the past decade. The brain tumour microenvironment (TME) is highly immunosuppressive and differs from that of other malignancies as a result of the glial, neural and immune cell populations that constitute it. Until recently, the study of the brain TME was limited by the lack of methods to de-convolute this complex system at the single-cell level. However, novel technical approaches have begun to reveal the immunosuppressive and tumour-promoting properties of distinct glial and myeloid cell populations in the TME, identifying new therapeutic opportunities. Here, we discuss the immune modulatory functions of microglia, monocyte-derived macrophages and astrocytes in brain metastases and glioma, highlighting their disease-associated heterogeneity and drawing from the insights gained by studying these malignancies and other neurological disorders. Lastly, we consider potential approaches for the therapeutic modulation of the brain TME.
Collapse
Affiliation(s)
- Brian M Andersen
- Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
- Center for Neuro-Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
| | - Camilo Faust Akl
- Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Michael A Wheeler
- Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - E Antonio Chiocca
- Department of Neurosurgery, Brigham and Women's Hospital, Boston, MA, USA
| | - David A Reardon
- Center for Neuro-Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
| | - Francisco J Quintana
- Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA.
- Broad Institute of MIT and Harvard, Cambridge, MA, USA.
| |
Collapse
|
35
|
Termini CM, Pang A, Fang T, Roos M, Chang VY, Zhang Y, Setiawan NJ, Signaevskaia L, Li M, Kim MM, Tabibi O, Lin PK, Sasine JP, Chatterjee A, Murali R, Himburg HA, Chute JP. Neuropilin 1 regulates bone marrow vascular regeneration and hematopoietic reconstitution. Nat Commun 2021; 12:6990. [PMID: 34848712 PMCID: PMC8635308 DOI: 10.1038/s41467-021-27263-y] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Accepted: 11/07/2021] [Indexed: 12/27/2022] Open
Abstract
Ionizing radiation and chemotherapy deplete hematopoietic stem cells and damage the vascular niche wherein hematopoietic stem cells reside. Hematopoietic stem cell regeneration requires signaling from an intact bone marrow (BM) vascular niche, but the mechanisms that control BM vascular niche regeneration are poorly understood. We report that BM vascular endothelial cells secrete semaphorin 3 A (SEMA3A) in response to myeloablation and SEMA3A induces p53 - mediated apoptosis in BM endothelial cells via signaling through its receptor, Neuropilin 1 (NRP1), and activation of cyclin dependent kinase 5. Endothelial cell - specific deletion of Nrp1 or Sema3a or administration of anti-NRP1 antibody suppresses BM endothelial cell apoptosis, accelerates BM vascular regeneration and concordantly drives hematopoietic reconstitution in irradiated mice. In response to NRP1 inhibition, BM endothelial cells increase expression and secretion of the Wnt signal amplifying protein, R spondin 2. Systemic administration of anti - R spondin 2 blocks HSC regeneration and hematopoietic reconstitution which otherwise occurrs in response to NRP1 inhibition. SEMA3A - NRP1 signaling promotes BM vascular regression following myelosuppression and therapeutic blockade of SEMA3A - NRP1 signaling in BM endothelial cells accelerates vascular and hematopoietic regeneration in vivo.
Collapse
Affiliation(s)
- Christina M Termini
- Division of Hematology/Oncology, Department of Medicine, University of California, Los Angeles, CA, USA
- Division of Hematology & Cellular Therapy, Cedars Sinai Medical Center, Los Angeles, CA, USA
- Department of Orthopedic Surgery, UCLA, Los Angeles, CA, USA
| | - Amara Pang
- Division of Hematology & Cellular Therapy, Cedars Sinai Medical Center, Los Angeles, CA, USA
| | - Tiancheng Fang
- Division of Hematology/Oncology, Department of Medicine, University of California, Los Angeles, CA, USA
- Department of Molecular and Medical Pharmacology, UCLA, Los Angeles, CA, USA
| | - Martina Roos
- Division of Hematology/Oncology, Department of Medicine, University of California, Los Angeles, CA, USA
- Eli and Edythe Broad Stem Cell Research Center, UCLA, Los Angeles, CA, USA
- Jonsson Comprehensive Cancer Center, UCLA, Los Angeles, CA, USA
| | - Vivian Y Chang
- Jonsson Comprehensive Cancer Center, UCLA, Los Angeles, CA, USA
- Pediatric Hematology/Oncology, UCLA, Los Angeles, CA, USA
| | - Yurun Zhang
- Division of Hematology/Oncology, Department of Medicine, University of California, Los Angeles, CA, USA
- Molecular Biology Institute, UCLA, Los Angeles, CA, USA
| | - Nicollette J Setiawan
- Division of Hematology & Cellular Therapy, Cedars Sinai Medical Center, Los Angeles, CA, USA
| | - Lia Signaevskaia
- Division of Hematology/Oncology, Department of Medicine, University of California, Los Angeles, CA, USA
| | - Michelle Li
- Division of Hematology/Oncology, Department of Medicine, University of California, Los Angeles, CA, USA
| | - Mindy M Kim
- Division of Hematology/Oncology, Department of Medicine, University of California, Los Angeles, CA, USA
| | - Orel Tabibi
- Division of Hematology/Oncology, Department of Medicine, University of California, Los Angeles, CA, USA
| | - Paulina K Lin
- Division of Hematology/Oncology, Department of Medicine, University of California, Los Angeles, CA, USA
| | - Joshua P Sasine
- Division of Hematology/Oncology, Department of Medicine, University of California, Los Angeles, CA, USA
- Division of Hematology & Cellular Therapy, Cedars Sinai Medical Center, Los Angeles, CA, USA
| | - Avradip Chatterjee
- Department of Biomedical Sciences, Research Division of Immunology, Los Angeles, USA
| | - Ramachandran Murali
- Department of Biomedical Sciences, Research Division of Immunology, Los Angeles, USA
| | - Heather A Himburg
- Department of Radiation Oncology, Medical College of Wisconsin, Milwaukee, WI, USA
| | - John P Chute
- Division of Hematology & Cellular Therapy, Cedars Sinai Medical Center, Los Angeles, CA, USA.
- Regenerative Medicine Institute, Cedars Sinai Medical Center, Los Angeles, CA, USA.
- Samuel Oschin Cancer Center, Cedars Sinai Medical Center, Los Angeles, CA, USA.
| |
Collapse
|
36
|
Emerging Role of Neuropilin-1 and Angiotensin-Converting Enzyme-2 in Renal Carcinoma-Associated COVID-19 Pathogenesis. Infect Dis Rep 2021; 13:902-909. [PMID: 34698182 PMCID: PMC8544489 DOI: 10.3390/idr13040081] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Revised: 10/14/2021] [Accepted: 10/15/2021] [Indexed: 12/13/2022] Open
Abstract
Neuropilin-1 (NRP1) is a recently identified glycoprotein that is an important host factor for SARS-CoV-2 infection. On the other hand, angiotensin-converting enzyme-2 (ACE2) acts as a receptor for SARS-CoV-2. Additionally, both NRP1 and ACE2 express in the kidney and are associated with various renal diseases, including renal carcinoma. Therefore, the expression profiles of NRP1 and ACE2 in kidney renal clear cell carcinoma (KIRC) and kidney renal papillary cell carcinoma (KIRP) patients from the various cancer databases were investigated along with their impact on patients’ survivability. In addition, coexpression analysis of genes involved in COVID-19, KIRC, and KIRP concerning NRP1 and ACE2 was performed. The results demonstrated that both t NRP1 and ACE2 expressions are upregulated in KIRC and KIRP compared to healthy conditions and are significantly correlated with the survivability rate of KIRC patients. A total of 128 COVID-19-associated genes are coexpressed, which are positively associated with NRP1 and ACE2 both in KIRC and KIRP. Therefore, it might be suggested that, along with the ACE2, high expression of the newly identified host factor NRP1 in renal carcinomas may play a vital role in the increased risk of SARS-CoV-2 infection and survivability of COVID-19 patients suffering from kidney cancers. The findings of this investigation will be helpful for further molecular studies and prevention and/or treatment strategies for COVID-19 patients associated with renal carcinomas.
Collapse
|
37
|
da Rocha-Azevedo B, Lee S, Dasgupta A, Vega AR, de Oliveira LR, Kim T, Kittisopikul M, Malik ZA, Jaqaman K. Heterogeneity in VEGF Receptor-2 Mobility and Organization on the Endothelial Cell Surface Leads to Diverse Models of Activation by VEGF. Cell Rep 2021; 32:108187. [PMID: 32997988 PMCID: PMC7541195 DOI: 10.1016/j.celrep.2020.108187] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2020] [Revised: 07/17/2020] [Accepted: 09/02/2020] [Indexed: 12/11/2022] Open
Abstract
The dynamic nanoscale organization of cell surface receptors plays an important role in signaling. We determine this organization and its relation to activation of VEGF receptor-2 (VEGFR-2), a critical receptor tyrosine kinase in endothelial cells (ECs), by combining single-molecule imaging of endogenous VEGFR-2 in live ECs with multiscale computational analysis. We find that surface VEGFR-2 can be mobile or exhibit restricted mobility and be monomeric or non-monomeric, with a complex interplay between the two. This basal heterogeneity results in heterogeneity in the sequence of steps leading to VEGFR-2 activation by VEGF. Specifically, we find that VEGF can bind to monomeric and non-monomeric VEGFR-2 and that, when binding to monomeric VEGFR-2, its effect on dimerization depends on the mobility of VEGFR-2. Our study highlights the dynamic and heterogeneous nature of cell surface receptor organization and the need for multiscale, single-molecule-based analysis to determine its relationship to receptor activation and signaling. da Rocha-Azevedo et al. show that VEGFR-2 exhibits mobility and interaction heterogeneity on the endothelial cell surface. The sequence of steps leading to VEGFR-2 activation by VEGF depends on the basal state of VEGFR-2. Thus, there is not one model but multiple co-existing models of VEGFR-2 activation by VEGF.
Collapse
Affiliation(s)
| | - Sungsoo Lee
- Department of Biophysics, UT Southwestern Medical Center, Dallas, TX 75390, USA
| | - Aparajita Dasgupta
- Department of Biophysics, UT Southwestern Medical Center, Dallas, TX 75390, USA
| | - Anthony R Vega
- Department of Biophysics, UT Southwestern Medical Center, Dallas, TX 75390, USA; Lyda Hill Department of Bioinformatics, UT Southwestern Medical Center, Dallas, TX 75390, USA
| | | | - Tae Kim
- Department of Biophysics, UT Southwestern Medical Center, Dallas, TX 75390, USA
| | - Mark Kittisopikul
- Department of Biophysics, UT Southwestern Medical Center, Dallas, TX 75390, USA
| | - Zachariah A Malik
- Department of Biophysics, UT Southwestern Medical Center, Dallas, TX 75390, USA
| | - Khuloud Jaqaman
- Department of Biophysics, UT Southwestern Medical Center, Dallas, TX 75390, USA; Lyda Hill Department of Bioinformatics, UT Southwestern Medical Center, Dallas, TX 75390, USA.
| |
Collapse
|
38
|
Uemura A, Fruttiger M, D'Amore PA, De Falco S, Joussen AM, Sennlaub F, Brunck LR, Johnson KT, Lambrou GN, Rittenhouse KD, Langmann T. VEGFR1 signaling in retinal angiogenesis and microinflammation. Prog Retin Eye Res 2021; 84:100954. [PMID: 33640465 PMCID: PMC8385046 DOI: 10.1016/j.preteyeres.2021.100954] [Citation(s) in RCA: 187] [Impact Index Per Article: 46.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Revised: 02/12/2021] [Accepted: 02/19/2021] [Indexed: 12/13/2022]
Abstract
Five vascular endothelial growth factor receptor (VEGFR) ligands (VEGF-A, -B, -C, -D, and placental growth factor [PlGF]) constitute the VEGF family. VEGF-A binds VEGF receptors 1 and 2 (VEGFR1/2), whereas VEGF-B and PlGF only bind VEGFR1. Although much research has been conducted on VEGFR2 to elucidate its key role in retinal diseases, recent efforts have shown the importance and involvement of VEGFR1 and its family of ligands in angiogenesis, vascular permeability, and microinflammatory cascades within the retina. Expression of VEGFR1 depends on the microenvironment, is differentially regulated under hypoxic and inflammatory conditions, and it has been detected in retinal and choroidal endothelial cells, pericytes, retinal and choroidal mononuclear phagocytes (including microglia), Müller cells, photoreceptor cells, and the retinal pigment epithelium. Whilst the VEGF-A decoy function of VEGFR1 is well established, consequences of its direct signaling are less clear. VEGFR1 activation can affect vascular permeability and induce macrophage and microglia production of proinflammatory and proangiogenic mediators. However the ability of the VEGFR1 ligands (VEGF-A, PlGF, and VEGF-B) to compete against each other for receptor binding and to heterodimerize complicates our understanding of the relative contribution of VEGFR1 signaling alone toward the pathologic processes seen in diabetic retinopathy, retinal vascular occlusions, retinopathy of prematurity, and age-related macular degeneration. Clinically, anti-VEGF drugs have proven transformational in these pathologies and their impact on modulation of VEGFR1 signaling is still an opportunity-rich field for further research.
Collapse
Affiliation(s)
- Akiyoshi Uemura
- Department of Retinal Vascular Biology, Nagoya City University Graduate School of Medical Sciences, 1 Kawasumi Mizuho-cho, Mizuho-ku, Nagoya, 467-8601, Japan.
| | - Marcus Fruttiger
- UCL Institute of Ophthalmology, University College London, 11-43 Bath Street, London, EC1V 9EL, UK.
| | - Patricia A D'Amore
- Schepens Eye Research Institute of Massachusetts Eye and Ear, 20 Staniford Street, Boston, MA, 02114, USA.
| | - Sandro De Falco
- Angiogenesis Laboratory, Institute of Genetics and Biophysics "Adriano Buzzati-Traverso", Via Pietro Castellino 111, 80131 Naples, Italy; ANBITION S.r.l., Via Manzoni 1, 80123, Naples, Italy.
| | - Antonia M Joussen
- Department of Ophthalmology, Charité-Universitätsmedizin Berlin, Hindenburgdamm 30, 12200 Berlin, and Augustenburger Platz 1, 13353, Berlin, Germany.
| | - Florian Sennlaub
- Sorbonne Université, INSERM, CNRS, Institut de la Vision, 17 rue Moreau, F-75012, Paris, France.
| | - Lynne R Brunck
- Bayer Consumer Care AG, Pharmaceuticals, Peter-Merian-Strasse 84, CH-4052 Basel, Switzerland.
| | - Kristian T Johnson
- Bayer Consumer Care AG, Pharmaceuticals, Peter-Merian-Strasse 84, CH-4052 Basel, Switzerland.
| | - George N Lambrou
- Bayer Consumer Care AG, Pharmaceuticals, Peter-Merian-Strasse 84, CH-4052 Basel, Switzerland.
| | - Kay D Rittenhouse
- Bayer Consumer Care AG, Pharmaceuticals, Peter-Merian-Strasse 84, CH-4052 Basel, Switzerland.
| | - Thomas Langmann
- Laboratory for Experimental Immunology of the Eye, Department of Ophthalmology, Faculty of Medicine and University Hospital Cologne, University of Cologne, Joseph-Stelzmann-Str. 9, 50931, Cologne, Germany.
| |
Collapse
|
39
|
Hu Z, Cano I, D’Amore PA. Update on the Role of the Endothelial Glycocalyx in Angiogenesis and Vascular Inflammation. Front Cell Dev Biol 2021; 9:734276. [PMID: 34532323 PMCID: PMC8438194 DOI: 10.3389/fcell.2021.734276] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Accepted: 08/12/2021] [Indexed: 12/21/2022] Open
Abstract
The endothelial glycocalyx is a negatively charged, carbohydrate-rich structure that arises from the luminal surface of the vascular endothelium and is comprised of proteoglycans, glycoproteins, and glycolipids. The glycocalyx, which sits at the interface between the endothelium and the blood, is involved in a wide array of physiological and pathophysiological processes, including as a mechanotransducer and as a regulator of inflammation. Most recently, components of the glycocalyx have been shown to play a key role in controlling angiogenesis. In this review, we briefly summarize the structure and function of the endothelial glycocalyx. We focus on its role and functions in vascular inflammation and angiogenesis and discuss the important unanswered questions in this field.
Collapse
Affiliation(s)
- Zhengping Hu
- Schepens Eye Research Institute of Massachusetts Eye and Ear, Boston, MA, United States
- Department of Ophthalmology, Harvard Medical School, Boston, MA, United States
| | - Issahy Cano
- Schepens Eye Research Institute of Massachusetts Eye and Ear, Boston, MA, United States
- Department of Ophthalmology, Harvard Medical School, Boston, MA, United States
| | - Patricia A. D’Amore
- Schepens Eye Research Institute of Massachusetts Eye and Ear, Boston, MA, United States
- Department of Ophthalmology, Harvard Medical School, Boston, MA, United States
- Department of Pathology, Harvard Medical School, Boston, MA, United States
| |
Collapse
|
40
|
Thacker VV, Sharma K, Dhar N, Mancini G, Sordet‐Dessimoz J, McKinney JD. Rapid endotheliitis and vascular damage characterize SARS-CoV-2 infection in a human lung-on-chip model. EMBO Rep 2021; 22:e52744. [PMID: 33908688 PMCID: PMC8183417 DOI: 10.15252/embr.202152744] [Citation(s) in RCA: 81] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Revised: 04/22/2021] [Accepted: 04/26/2021] [Indexed: 12/20/2022] Open
Abstract
Severe cases of SARS-CoV-2 infection are characterized by hypercoagulopathies and systemic endotheliitis of the lung microvasculature. The dynamics of vascular damage, and whether it is a direct consequence of endothelial infection or an indirect consequence of an immune cell-mediated cytokine storm remain unknown. Using a vascularized lung-on-chip model, we find that infection of alveolar epithelial cells leads to limited apical release of virions, consistent with reports of monoculture infection. However, viral RNA and proteins are rapidly detected in underlying endothelial cells, which are themselves refractory to apical infection in monocultures. Although endothelial infection is unproductive, it leads to the formation of cell clusters with low CD31 expression, a progressive loss of barrier integrity and a pro-coagulatory microenvironment. Viral RNA persists in individual cells generating an inflammatory response, which is transient in epithelial cells but persistent in endothelial cells and typified by IL-6 secretion even in the absence of immune cells. Inhibition of IL-6 signalling with tocilizumab reduces but does not prevent loss of barrier integrity. SARS-CoV-2-mediated endothelial cell damage thus occurs independently of cytokine storm.
Collapse
Affiliation(s)
- Vivek V Thacker
- Global Health InstituteEcole Polytechnique Fédérale de LausanneLausanneSwitzerland
| | - Kunal Sharma
- Global Health InstituteEcole Polytechnique Fédérale de LausanneLausanneSwitzerland
| | - Neeraj Dhar
- Global Health InstituteEcole Polytechnique Fédérale de LausanneLausanneSwitzerland
| | - Gian‐Filippo Mancini
- Histology Core FacilityEcole Polytechnique Fédérale de LausanneLausanneSwitzerland
| | | | - John D McKinney
- Global Health InstituteEcole Polytechnique Fédérale de LausanneLausanneSwitzerland
| |
Collapse
|
41
|
Molecular targets for the management of gastrointestinal cancer using melatonin, a natural endogenous body hormone. Biomed Pharmacother 2021; 140:111782. [PMID: 34087693 DOI: 10.1016/j.biopha.2021.111782] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Revised: 05/08/2021] [Accepted: 05/25/2021] [Indexed: 12/15/2022] Open
Abstract
Gastrointestinal cancer is one of the most common cancers globally. Melatonin, a natural endogenous body hormone, has been of interest for years, due to its anti-cancer characteristics, such as antiproliferative, antimetastatic, and cytotoxic as well as apoptotic induction. Through regulating several proteins such as melatonin upregulated mRNAs and proteins of downregulated Bcl-2-associated X protein (Bax), and B-cell lymphoma 2 (Bcl-2), as well as cytoplasmic protein such as calcium-binding proteins calmodulin or tubulin, and nuclear receptors, including RORα/RZR, and acts by non-receptor-regulated mechanisms, melatonin can exert anti-cancer efficacy. Moreover, melatonin modulates angiogenesis by targeting mRNA and protein expression of endothelin-converting enzyme (ECE-1) protein. In the present review, we address in vivo, in vitro and clinical reports on its anti-cancer efficacies, and the molecular mechanisms of action responsible for these effects. We advance the possibility of therapeutic melatonin administration for cancer therapy.
Collapse
|
42
|
Peach CJ, Kilpatrick LE, Woolard J, Hill SJ. Use of NanoBiT and NanoBRET to monitor fluorescent VEGF-A binding kinetics to VEGFR2/NRP1 heteromeric complexes in living cells. Br J Pharmacol 2021; 178:2393-2411. [PMID: 33655497 DOI: 10.1111/bph.15426] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Revised: 02/06/2021] [Accepted: 02/23/2021] [Indexed: 01/13/2023] Open
Abstract
BACKGROUND AND PURPOSE VEGF-A is a key mediator of angiogenesis, primarily signalling via VEGF receptor 2 (VEGFR2). Endothelial cells also express the co-receptor neuropilin-1 (NRP1) that potentiates VEGF-A/VEGFR2 signalling. VEGFR2 and NRP1 had distinct real-time ligand binding kinetics when monitored using BRET. We previously characterised fluorescent VEGF-A isoforms tagged at a single site with tetramethylrhodamine (TMR). Here, we explored differences between VEGF-A isoforms in living cells that co-expressed both receptors. EXPERIMENTAL APPROACH Receptor localisation was monitored in HEK293T cells expressing both VEGFR2 and NRP1 using membrane-impermeant HaloTag and SnapTag technologies. To isolate ligand binding pharmacology at a defined VEGFR2/NRP1 complex, we developed an assay using NanoBiT complementation technology whereby heteromerisation is required for luminescence emissions. Binding affinities and kinetics of VEGFR2-selective VEGF165 b-TMR and non-selective VEGF165 a-TMR were monitored using BRET from this defined complex. KEY RESULTS Cell surface VEGFR2 and NRP1 were co-localised and formed a constitutive heteromeric complex. Despite being selective for VEGFR2, VEGF165 b-TMR had a distinct kinetic ligand binding profile at the complex that largely remained elevated in cells over 90 min. VEGF165 a-TMR bound to the VEGFR2/NRP1 complex with kinetics comparable to those of VEGFR2 alone. Using a binding-dead mutant of NRP1 did not affect the binding kinetics or affinity of VEGF165 a-TMR. CONCLUSION AND IMPLICATIONS This NanoBiT approach enabled real-time ligand binding to be quantified in living cells at 37°C from a specified complex between a receptor TK and its co-receptor for the first time.
Collapse
Affiliation(s)
- Chloe J Peach
- Division of Physiology, Pharmacology and Neuroscience, School of Life Sciences, University of Nottingham, Nottingham, UK
- Centre of Membrane Proteins and Receptors, University of Birmingham and University of Nottingham, The Midlands, UK
| | - Laura E Kilpatrick
- Centre of Membrane Proteins and Receptors, University of Birmingham and University of Nottingham, The Midlands, UK
- Division of Bimolecular Sciences and Medicinal Chemistry, Biodiscovery Institute, School of Pharmacy, University of Nottingham, Nottingham, UK
| | - Jeanette Woolard
- Division of Physiology, Pharmacology and Neuroscience, School of Life Sciences, University of Nottingham, Nottingham, UK
- Centre of Membrane Proteins and Receptors, University of Birmingham and University of Nottingham, The Midlands, UK
| | - Stephen J Hill
- Division of Physiology, Pharmacology and Neuroscience, School of Life Sciences, University of Nottingham, Nottingham, UK
- Centre of Membrane Proteins and Receptors, University of Birmingham and University of Nottingham, The Midlands, UK
| |
Collapse
|
43
|
Ash D, Sudhahar V, Youn SW, Okur MN, Das A, O'Bryan JP, McMenamin M, Hou Y, Kaplan JH, Fukai T, Ushio-Fukai M. The P-type ATPase transporter ATP7A promotes angiogenesis by limiting autophagic degradation of VEGFR2. Nat Commun 2021; 12:3091. [PMID: 34035268 PMCID: PMC8149886 DOI: 10.1038/s41467-021-23408-1] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2020] [Accepted: 04/26/2021] [Indexed: 01/05/2023] Open
Abstract
VEGFR2 (KDR/Flk1) signaling in endothelial cells (ECs) plays a central role in angiogenesis. The P-type ATPase transporter ATP7A regulates copper homeostasis, and its role in VEGFR2 signaling and angiogenesis is entirely unknown. Here, we describe the unexpected crosstalk between the Copper transporter ATP7A, autophagy, and VEGFR2 degradation. The functional significance of this Copper transporter was demonstrated by the finding that inducible EC-specific ATP7A deficient mice or ATP7A-dysfunctional ATP7Amut mice showed impaired post-ischemic neovascularization. In ECs, loss of ATP7A inhibited VEGF-induced VEGFR2 signaling and angiogenic responses, in part by promoting ligand-induced VEGFR2 protein degradation. Mechanistically, VEGF stimulated ATP7A translocation from the trans-Golgi network to the plasma membrane where it bound to VEGFR2, which prevented autophagy-mediated lysosomal VEGFR2 degradation by inhibiting autophagic cargo/adapter p62/SQSTM1 binding to ubiquitinated VEGFR2. Enhanced autophagy flux due to ATP7A dysfunction in vivo was confirmed by autophagy reporter CAG-ATP7Amut -RFP-EGFP-LC3 transgenic mice. In summary, our study uncovers a novel function of ATP7A to limit autophagy-mediated degradation of VEGFR2, thereby promoting VEGFR2 signaling and angiogenesis, which restores perfusion recovery and neovascularization. Thus, endothelial ATP7A is identified as a potential therapeutic target for treatment of ischemic cardiovascular diseases.
Collapse
Affiliation(s)
- Dipankar Ash
- Vascular Biology Center, Medical College of Georgia at Augusta University, Augusta, GA, USA
| | - Varadarajan Sudhahar
- Vascular Biology Center, Medical College of Georgia at Augusta University, Augusta, GA, USA
- Charlie Norwood Veterans Affairs Medical Center, Augusta, GA, USA
| | - Seock-Won Youn
- Vascular Biology Center, Medical College of Georgia at Augusta University, Augusta, GA, USA
- Department of Physiology and Biophysics, University of Illinois College of Medicine, Chicago, IL, USA
| | - Mustafa Nazir Okur
- Laboratory of Molecular Gerontology, National Institute on Aging, National Institutes of Health, Baltimore, MD, USA
| | - Archita Das
- Vascular Biology Center, Medical College of Georgia at Augusta University, Augusta, GA, USA
| | - John P O'Bryan
- Department of Cell and Molecular Pharmacology and Experimental Therapeutics, Hollings Cancer Center, Medical University of South Carolina, Charleston, SC, USA
- Ralph H. Johnson VA Medical Center, Charleston, SC, USA
| | - Maggie McMenamin
- Vascular Biology Center, Medical College of Georgia at Augusta University, Augusta, GA, USA
- Charlie Norwood Veterans Affairs Medical Center, Augusta, GA, USA
| | - Yali Hou
- Vascular Biology Center, Medical College of Georgia at Augusta University, Augusta, GA, USA
- Charlie Norwood Veterans Affairs Medical Center, Augusta, GA, USA
| | - Jack H Kaplan
- Department of Biochemistry and Molecular Genetics, University of Illinois College of Medicine, Chicago, IL, USA
| | - Tohru Fukai
- Vascular Biology Center, Medical College of Georgia at Augusta University, Augusta, GA, USA.
- Charlie Norwood Veterans Affairs Medical Center, Augusta, GA, USA.
- Departments of Pharmacology and Toxicology, Medical College of Georgia at Augusta University, Augusta, GA, USA.
| | - Masuko Ushio-Fukai
- Vascular Biology Center, Medical College of Georgia at Augusta University, Augusta, GA, USA.
- Department of Medicine (Cardiology), Medical College of Georgia at Augusta University, Augusta, GA, USA.
| |
Collapse
|
44
|
Chico TJA, Kugler EC. Cerebrovascular development: mechanisms and experimental approaches. Cell Mol Life Sci 2021; 78:4377-4398. [PMID: 33688979 PMCID: PMC8164590 DOI: 10.1007/s00018-021-03790-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Revised: 02/04/2021] [Accepted: 02/12/2021] [Indexed: 12/13/2022]
Abstract
The cerebral vasculature plays a central role in human health and disease and possesses several unique anatomic, functional and molecular characteristics. Despite their importance, the mechanisms that determine cerebrovascular development are less well studied than other vascular territories. This is in part due to limitations of existing models and techniques for visualisation and manipulation of the cerebral vasculature. In this review we summarise the experimental approaches used to study the cerebral vessels and the mechanisms that contribute to their development.
Collapse
Affiliation(s)
- Timothy J A Chico
- Department of Infection, Immunity and Cardiovascular Disease, Medical School, University of Sheffield, Beech Hill Road, Sheffield, S10 2RX, UK.
- The Bateson Centre, Firth Court, University of Sheffield, Western Bank, Sheffield, S10 2TN, UK.
- Insigneo Institute for in Silico Medicine, The Pam Liversidge Building, Sheffield, S1 3JD, UK.
| | - Elisabeth C Kugler
- Department of Infection, Immunity and Cardiovascular Disease, Medical School, University of Sheffield, Beech Hill Road, Sheffield, S10 2RX, UK.
- The Bateson Centre, Firth Court, University of Sheffield, Western Bank, Sheffield, S10 2TN, UK.
- Insigneo Institute for in Silico Medicine, The Pam Liversidge Building, Sheffield, S1 3JD, UK.
| |
Collapse
|
45
|
Neuropilin 1 Regulation of Vascular Permeability Signaling. Biomolecules 2021; 11:biom11050666. [PMID: 33947161 PMCID: PMC8146136 DOI: 10.3390/biom11050666] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2021] [Revised: 04/24/2021] [Accepted: 04/28/2021] [Indexed: 12/18/2022] Open
Abstract
The vascular endothelium acts as a selective barrier to regulate macromolecule exchange between the blood and tissues. However, the integrity of the endothelium barrier is compromised in an array of pathological settings, including ischemic disease and cancer, which are the leading causes of death worldwide. The resulting vascular hyperpermeability to plasma molecules as well as leukocytes then leads to tissue damaging edema formation and inflammation. The vascular endothelial growth factor A (VEGFA) is a potent permeability factor, and therefore a desirable target for impeding vascular hyperpermeability. However, VEGFA also promotes angiogenesis, the growth of new blood vessels, which is required for reperfusion of ischemic tissues. Moreover, edema increases interstitial pressure in poorly perfused tumors, thereby affecting the delivery of therapeutics, which could be counteracted by stimulating the growth of new functional blood vessels. Thus, targets must be identified to accurately modulate the barrier function of blood vessels without affecting angiogenesis, as well as to develop more effective pro- or anti-angiogenic therapies. Recent studies have shown that the VEGFA co-receptor neuropilin 1 (NRP1) could be playing a fundamental role in steering VEGFA-induced responses of vascular endothelial cells towards angiogenesis or vascular permeability. Moreover, NRP1 is involved in mediating permeability signals induced by ligands other than VEGFA. This review therefore focuses on current knowledge on the role of NRP1 in the regulation of vascular permeability signaling in the endothelium to provide an up-to-date landscape of the current knowledge in this field.
Collapse
|
46
|
Dinh HQ, Eggert T, Meyer MA, Zhu YP, Olingy CE, Llewellyn R, Wu R, Hedrick CC. Coexpression of CD71 and CD117 Identifies an Early Unipotent Neutrophil Progenitor Population in Human Bone Marrow. Immunity 2021; 53:319-334.e6. [PMID: 32814027 DOI: 10.1016/j.immuni.2020.07.017] [Citation(s) in RCA: 85] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2020] [Revised: 04/18/2020] [Accepted: 07/23/2020] [Indexed: 12/30/2022]
Abstract
Neutrophils are the most abundant peripheral immune cells and thus, are continually replenished by bone marrow-derived progenitors. Still, how newly identified neutrophil subsets fit into the bone marrow neutrophil lineage remains unclear. Here, we use mass cytometry to show that two recently defined human neutrophil progenitor populations contain a homogeneous progenitor subset we term "early neutrophil progenitors" (eNePs) (Lin-CD66b+CD117+CD71+). Surface marker- and RNA-expression analyses, together with in vitro colony formation and in vivo adoptive humanized mouse transfers, indicate that eNePs are the earliest human neutrophil progenitors. Furthermore, we identified CD71 as a marker associated with the earliest neutrophil developmental stages. Expression of CD71 marks proliferating neutrophils, which were expanded in the blood of melanoma patients and detectable in blood and tumors from lung cancer patients. In summary, we establish CD117+CD71+ eNeP as the inceptive human neutrophil progenitor and propose a refined model of the neutrophil developmental lineage in bone marrow.
Collapse
Affiliation(s)
- Huy Q Dinh
- Center for Cancer Immunotherapy & Center for Autoimmunity and Inflammation, La Jolla Institute for Immunology, La Jolla, CA 92037, USA
| | - Tobias Eggert
- Center for Cancer Immunotherapy & Center for Autoimmunity and Inflammation, La Jolla Institute for Immunology, La Jolla, CA 92037, USA
| | - Melissa A Meyer
- Center for Cancer Immunotherapy & Center for Autoimmunity and Inflammation, La Jolla Institute for Immunology, La Jolla, CA 92037, USA
| | - Yanfang Peipei Zhu
- Center for Cancer Immunotherapy & Center for Autoimmunity and Inflammation, La Jolla Institute for Immunology, La Jolla, CA 92037, USA
| | - Claire E Olingy
- Center for Cancer Immunotherapy & Center for Autoimmunity and Inflammation, La Jolla Institute for Immunology, La Jolla, CA 92037, USA
| | - Ryan Llewellyn
- Center for Cancer Immunotherapy & Center for Autoimmunity and Inflammation, La Jolla Institute for Immunology, La Jolla, CA 92037, USA
| | - Runpei Wu
- Center for Cancer Immunotherapy & Center for Autoimmunity and Inflammation, La Jolla Institute for Immunology, La Jolla, CA 92037, USA
| | - Catherine C Hedrick
- Center for Cancer Immunotherapy & Center for Autoimmunity and Inflammation, La Jolla Institute for Immunology, La Jolla, CA 92037, USA.
| |
Collapse
|
47
|
Nikolai-Yogerst A, White P, Iwashima M. IFN-β reduces NRP-1 expression on human cord blood monocytes and inhibits VEGF-induced chemotaxis. Cytokine 2021; 143:155519. [PMID: 33858750 DOI: 10.1016/j.cyto.2021.155519] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2020] [Revised: 03/23/2021] [Accepted: 03/24/2021] [Indexed: 10/21/2022]
Abstract
Type I interferons (IFNs) inhibit angiogenesis, the sprouting of new blood vessels, during tissue development, remodeling, and tumor growth. One of the major targets type I IFNs inhibit are circulating monocytes, which promote vascular development by secreting growth factors, chemokines, and proteases. This study tested the hypothesis that IFN-β directly inhibits monocyte chemotaxis towards VEGF. We were interested in looking at chemotaxis towards VEGF because VEGF is known to create a pro-angiogenesis environment by acting as a stimulator and chemotactic factor for endothelial cells and monocytes. Here, we demonstrate that IFN-β, a type I IFN, downregulates neuropilin-1 (NRP-1) expression by human monocytes and inhibits chemotaxis induced by vascular endothelial growth factor (VEGF), a NRP-1 ligand. Together, the data suggest that IFN-β directly downregulates NRP-1 expression in monocytes, thus inhibiting monocyte chemotaxis toward a VEGF enriched environment.
Collapse
Affiliation(s)
- Anya Nikolai-Yogerst
- Department of Microbiology and Immunology, Stritch School of Medicine, Loyola University Chicago, Maywood, IL 60153, United States; Van Kampen Cardiopulmonary Research Laboratory, Stritch School of Medicine, Loyola University Chicago, Maywood, IL 60153, United States
| | - Paula White
- Department of Obstetrics and Gynecology, Stritch School of Medicine, Loyola University Chicago, Maywood, IL 60153, United States
| | - Makio Iwashima
- Department of Microbiology and Immunology, Stritch School of Medicine, Loyola University Chicago, Maywood, IL 60153, United States; Van Kampen Cardiopulmonary Research Laboratory, Stritch School of Medicine, Loyola University Chicago, Maywood, IL 60153, United States.
| |
Collapse
|
48
|
Xie W, Gong XT, Cheng X, Cao J, Zhao J, Zhang HL, Zhang S. LIMPID: a versatile method for visualization of brain vascular networks. Biomater Sci 2021; 9:2658-2669. [PMID: 33595547 DOI: 10.1039/d0bm01817a] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Visualization of cerebrovascular networks is crucial for understanding the pathogenesis of many neurological diseases. Recently developed optical clearing techniques offer opportunities in deep tissue imaging, and have been successfully applied in many research studies. The development of nanotechnology enables the labeling of brain vessels with functionalized micro/nanoparticles embedded with fluorescent dyes. We herein report an efficient method, named LIMPID (Labeled and Interlinked Micro/nanoparticles for Imaging and Delipidation), specific for the precise fluorescence imaging of vascular networks in clearing-treated tissues. This robust vessel labeling technique replaces conventional fluorescence dyes with functionalized polymer micro/nanoparticles that are able to cross-link with polyacrylamide to form dense hydrogels in vessels. LIMPID shows high-robustness during the clearing process without sacrificing fluorescence signals and clearing performance. LIMPID enables three dimension (3D) visualization of elaborate vascular networks in mouse brains and is compatible with other fluorescence-labeling techniques. We have successfully applied this method to acquire cortical vasculature images simultaneously with the neurons or microglia, as well as to evaluate vascular damage in a mouse model of stroke. The LIMPID method provides a novel tool for the precise analysis of vascular dysfunction and vascular diseases.
Collapse
Affiliation(s)
- Wenguang Xie
- Gansu Key Laboratory of Biomonitoring and Bioremediation for Environmental Pollution, School of Life Sciences, Lanzhou University, Lanzhou 730000, P. R. China.
| | | | | | | | | | | | | |
Collapse
|
49
|
Neuregulins: protective and reparative growth factors in multiple forms of cardiovascular disease. Clin Sci (Lond) 2021; 134:2623-2643. [PMID: 33063822 PMCID: PMC7557502 DOI: 10.1042/cs20200230] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Revised: 09/21/2020] [Accepted: 09/22/2020] [Indexed: 02/06/2023]
Abstract
Neuregulins (NRGs) are protein ligands that act through ErbB receptor tyrosine kinases to regulate tissue morphogenesis, plasticity, and adaptive responses to physiologic needs in multiple tissues, including the heart and circulatory system. The role of NRG/ErbB signaling in cardiovascular biology, and how it responds to physiologic and pathologic stresses is a rapidly evolving field. While initial concepts focused on the role that NRG may play in regulating cardiac myocyte responses, including cell survival, growth, adaptation to stress, and proliferation, emerging data support a broader role for NRGs in the regulation of metabolism, inflammation, and fibrosis in response to injury. The constellation of effects modulated by NRGs may account for the findings that two distinct forms of recombinant NRG-1 have beneficial effects on cardiac function in humans with systolic heart failure. NRG-4 has recently emerged as an adipokine with similar potential to regulate cardiovascular responses to inflammation and injury. Beyond systolic heart failure, NRGs appear to have beneficial effects in diastolic heart failure, prevention of atherosclerosis, preventing adverse effects on diabetes on the heart and vasculature, including atherosclerosis, as well as the cardiac dysfunction associated with sepsis. Collectively, this literature supports the further examination of how this developmentally critical signaling system functions and how it might be leveraged to treat cardiovascular disease.
Collapse
|
50
|
Cai A, Chatziantoniou C, Calmont A. Vascular Permeability: Regulation Pathways and Role in Kidney Diseases. Nephron Clin Pract 2021; 145:297-310. [PMID: 33744890 DOI: 10.1159/000514314] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Accepted: 01/08/2021] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND Vascular permeability (VP) is a fundamental aspect of vascular biology. A growing number of studies have revealed that many signalling pathways govern VP in both physiological and pathophysiological conditions. Furthermore, emerging evidence identifies VP alteration as a pivotal pathogenic factor in acute kidney injury, chronic kidney disease, diabetic kidney disease, and other proteinuric diseases. Therefore, perceiving the connections between these pathways and the aetiology of kidney disease is an important task as such knowledge may trigger the development of novel therapeutic or preventive medical approaches. In this regard, the discussion summarizing VP-regulating pathways and associating them with kidney diseases is highly warranted. SUMMARY Major pathways of VP regulation comprise angiogenic factors including vascular endothelial growth factor/VEGFR, angiopoietin/Tie, and class 3 semaphorin/neuropilin and inflammatory factors including histamine, platelet-activating factor, and leukocyte extravasation. These pathways mainly act on vascular endothelial cadherin to modulate adherens junctions of endothelial cells (ECs), thereby augmenting VP via the paracellular pathway. Elevated VP in diverse kidney diseases involves EC apoptosis, imbalanced regulatory factors, and many other pathophysiological events, which in turn exacerbates renal structural and functional disorders. Measures improving VP effectively ameliorate the diseased kidney in terms of tissue injury, endothelial dysfunction, kidney function, and long-term prognosis. Key Messages: (1) Angiogenic factors, inflammatory factors, and adhesion molecules represent major pathways that regulate VP. (2) Vascular hyperpermeability links various pathophysiological processes and plays detrimental roles in multiple kidney diseases.
Collapse
Affiliation(s)
- Anxiang Cai
- Unité mixte Inserm - Sorbonne Université, UMR_S1155, Tenon Hospital, Paris, France,
| | | | - Amélie Calmont
- Unité mixte Inserm - Sorbonne Université, UMR_S1155, Tenon Hospital, Paris, France
| |
Collapse
|