1
|
Barbieri L, Salvioni L, Banfi A, Garbujo S, Fiandra L, Baioni C, Giustra M, Morelli L, Frascotti G, Colombo M, Innocenti M, Prosperi D. Dual-Targeting Strategy to Repurpose Cetuximab with HFn Nanoconjugates for Immunotherapy of Triple-Negative Breast Cancer. ACS APPLIED MATERIALS & INTERFACES 2025. [PMID: 40327456 DOI: 10.1021/acsami.5c06626] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2025]
Abstract
Triple-negative breast cancer (TNBC) is a highly aggressive and treatment-resistant malignancy characterized by the lack of targeted therapies and poor clinical outcomes. Here, we present a dual-targeting strategy combining the anti-EGFR monoclonal antibody cetuximab (CTX) with H-ferritin (HFn), a nanoparticle targeting transferrin receptor 1 (TfR1), for potential immunotherapy in CTX-resistant tumors. The HFn-CTX nanoconjugate exhibited favorable biophysical properties and good tumor accumulation and significantly enhanced antibody-dependent cellular cytotoxicity (ADCC) in TNBC spheroids compared to CTX alone. Conversely, glioblastoma spheroids did not exhibit comparable reactivity. This effect correlated with elevated cell-surface EGFR expression and plasma-membrane lingering of the nanoconjugate in TNBC cells, facilitating robust immune activation. Biodistribution studies showed selective accumulation of the HFn-CTX nanoconjugate in TNBC tumors in vivo. These findings highlight the potential of HFn-CTX nanoconjugates to repurpose CTX for refractory cancers that express EGFR at high levels, such as TNBC, leveraging dual-receptor targeting to amplify immune-mediated cytotoxicity and overcome resistance.
Collapse
Affiliation(s)
- Linda Barbieri
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, Piazza Della Scienza 2, 20126 Milan, Italy
| | - Lucia Salvioni
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, Piazza Della Scienza 2, 20126 Milan, Italy
| | - Andrea Banfi
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, Piazza Della Scienza 2, 20126 Milan, Italy
| | - Stefania Garbujo
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, Piazza Della Scienza 2, 20126 Milan, Italy
| | - Luisa Fiandra
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, Piazza Della Scienza 2, 20126 Milan, Italy
| | - Chiara Baioni
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, Piazza Della Scienza 2, 20126 Milan, Italy
| | - Marco Giustra
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, Piazza Della Scienza 2, 20126 Milan, Italy
| | - Lucia Morelli
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, Piazza Della Scienza 2, 20126 Milan, Italy
| | - Gianni Frascotti
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, Piazza Della Scienza 2, 20126 Milan, Italy
| | - Miriam Colombo
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, Piazza Della Scienza 2, 20126 Milan, Italy
| | - Metello Innocenti
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, Piazza Della Scienza 2, 20126 Milan, Italy
| | - Davide Prosperi
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, Piazza Della Scienza 2, 20126 Milan, Italy
| |
Collapse
|
2
|
Pemmari T, Prince S, Wiss N, Kõiv K, May U, Mölder T, Sudakov A, Munoz Caro F, Lehtonen S, Uusitalo-Järvinen H, Teesalu T, Järvinen TA. Screening of homing and tissue-penetrating peptides by microdialysis and in vivo phage display. Life Sci Alliance 2025; 8:e202201490. [PMID: 39933917 PMCID: PMC11814485 DOI: 10.26508/lsa.202201490] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Revised: 01/31/2025] [Accepted: 02/03/2025] [Indexed: 02/13/2025] Open
Abstract
In vivo phage display is a method used for identification of organ- or disease-specific vascular homing peptides for targeted delivery of pharmaceutics. It is agnostic as to the nature and identity of the target molecules. The current in vivo biopanning lacks inbuilt mechanisms to select for peptides capable of vascular homing that would also be capable of tissue penetration to reach therapeutically relevant cells in the tissue parenchyma. Here, we combined in vivo phage display with microdialysis-based parenchymal recovery and high-throughput sequencing to select for peptides that, besides vascular homing, facilitate extravasation and tissue penetration. We first demonstrated in skin wounds that the method can selectively separate known homing peptides from those with additional tissue-penetrating ability. Screening of a naïve peptide library identifies peptides that home and extravasate to extravascular granulation tissue in vascularized and diabetic wounds and cross blood-retina barrier in retinopathy. Our work suggests that in vivo phage display combined with microdialysis can be used for the discovery of vascular homing peptides capable of extravasation and tissue penetration.
Collapse
Affiliation(s)
- Toini Pemmari
- Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
- Department of Orthopedics and Traumatology and Eye Centre, Tampere University Hospital, Tampere, Finland
| | - Stuart Prince
- Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
- Department of Orthopedics and Traumatology and Eye Centre, Tampere University Hospital, Tampere, Finland
| | - Niklas Wiss
- Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
- Department of Orthopedics and Traumatology and Eye Centre, Tampere University Hospital, Tampere, Finland
| | - Kuldar Kõiv
- Laboratory of Precision- and Nanomedicine, Institute of Biomedicine and Translational Medicine, University of Tartu, Tartu, Estonia
| | - Ulrike May
- Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
- Department of Orthopedics and Traumatology and Eye Centre, Tampere University Hospital, Tampere, Finland
| | - Tarmo Mölder
- Laboratory of Precision- and Nanomedicine, Institute of Biomedicine and Translational Medicine, University of Tartu, Tartu, Estonia
| | - Aleksander Sudakov
- Laboratory of Precision- and Nanomedicine, Institute of Biomedicine and Translational Medicine, University of Tartu, Tartu, Estonia
| | - Fernanda Munoz Caro
- Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
- Department of Orthopedics and Traumatology and Eye Centre, Tampere University Hospital, Tampere, Finland
| | - Soili Lehtonen
- Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
- Department of Orthopedics and Traumatology and Eye Centre, Tampere University Hospital, Tampere, Finland
| | - Hannele Uusitalo-Järvinen
- Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
- Department of Orthopedics and Traumatology and Eye Centre, Tampere University Hospital, Tampere, Finland
| | - Tambet Teesalu
- Laboratory of Precision- and Nanomedicine, Institute of Biomedicine and Translational Medicine, University of Tartu, Tartu, Estonia
| | - Tero Ah Järvinen
- Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
- Department of Orthopedics and Traumatology and Eye Centre, Tampere University Hospital, Tampere, Finland
| |
Collapse
|
3
|
Topkiran UC, Valimukhametova AR, Vashani D, Paul H, Dorsky A, Sottile O, Johnson DA, Burnett W, Coffer JL, Akkaraju GR, Naumov AV. Holistic Investigation of Graphene Quantum Dot Endocytosis. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2025; 21:e2406095. [PMID: 39895235 PMCID: PMC11878264 DOI: 10.1002/smll.202406095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Revised: 01/20/2025] [Indexed: 02/04/2025]
Abstract
Graphene quantum dots (GQDs) have gained popularity in nano-biotechnology due to their multifunctional delivery and imaging capabilities. The outcome of their therapeutic delivery applications relies on understanding cell internalization routes. Current literature presents often conflicting results based on surveying only a few endocytosis inhibitors. Herein, a holistic approach to cell uptake studies by utilizing six different inhibitors while considering their on- and off-target effects on internalization of the GQDs of different charges is provided. Endocytosis paths are explored by tracking intracellular GQD fluorescence in HeLa or HEK-293 cells. Contrary to the previous assumptions of a singular entry route, findings suggest that GQDs enter the cells through several endocytosis paths with some more prevalent than others. Selectivity between the pathways is based on GQD charge and functional groups. Positively charged nitrogen-doped GQDs (NGQDs) predominantly utilize a fast endophilin-mediated endocytosis (FEME) in HeLa cells with a secondary preference for clathrin-mediated endocytosis (CME). In HEK-293 cells NGQDs internalize via clathrin-independent, glycosylphosphatidylinositol-anchored protein-enriched compartments (CLIC/GEEC) and FEME. Conversely, GQDs with a substantial negative surface charge uptake through CME in HeLa cells. The optimization of these mechanisms can enhance GQD applications in biomedicine, ideally streamlining their translation into the clinic.
Collapse
Affiliation(s)
- Ugur C. Topkiran
- Department of Physics and AstronomyTexas Christian UniversityTCU Box 298840Fort WorthTX76129USA
| | | | - Diya Vashani
- Department of Physics and AstronomyTexas Christian UniversityTCU Box 298840Fort WorthTX76129USA
| | - Himish Paul
- Department of Physics and AstronomyTexas Christian UniversityTCU Box 298840Fort WorthTX76129USA
| | - Abby Dorsky
- Department of Physics and AstronomyTexas Christian UniversityTCU Box 298840Fort WorthTX76129USA
| | - Olivia Sottile
- Department of Physics and AstronomyTexas Christian UniversityTCU Box 298840Fort WorthTX76129USA
| | - Dustin A. Johnson
- Department of Physics and AstronomyTexas Christian UniversityTCU Box 298840Fort WorthTX76129USA
| | - William Burnett
- Department of Chemistry and BiochemistryTexas Christian UniversityTCU Box 298840Fort WorthTX76129USA
| | - Jeffery L. Coffer
- Department of Chemistry and BiochemistryTexas Christian UniversityTCU Box 298840Fort WorthTX76129USA
| | - Giridhar R. Akkaraju
- Department of BiologyTexas Christian UniversityTCU Box 298840Fort WorthTX76129USA
| | - Anton V. Naumov
- Department of Physics and AstronomyTexas Christian UniversityTCU Box 298840Fort WorthTX76129USA
| |
Collapse
|
4
|
Szewczyk-Roszczenko OK, Roszczenko P, Shmakova A, Yushyn I, Holota S, Karpenko O, Czarnomysy R, Bielawska A, Vassetzky Y, Lesyk R, Bielawski K. Novel endocytosis inhibitors block entry of HIV-1 Tat into neural cells. Am J Physiol Cell Physiol 2025; 328:C404-C413. [PMID: 39716389 DOI: 10.1152/ajpcell.00723.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2024] [Revised: 12/04/2024] [Accepted: 12/04/2024] [Indexed: 12/25/2024]
Abstract
Many pathogens including viruses enter cells by endocytosis. We identified and evaluated novel endocytosis inhibitors capable of blocking the entry of the HIV-1 Transactivation of Transcription protein (Tat) protein into neuronal cells and investigated their potential protective properties against Tat-induced neurotoxicity. In this study, the compounds Les-6631 and Les-6633 were synthesized and assessed. The effects of these compounds on the internalization of dextran and the cell-penetrating peptide (CPP) Tat-Cy5 complex in nerve cells were examined. In addition, the ability of these compounds to protect against oxidative stress and DNA damage induced by the full-length Tat protein was investigated. Les-6631 and Les-6633 were found to inhibit endocytosis better than the classical endocytosis inhibitor chlorpromazine, thereby effectively preventing the entry of the Tat protein into nerve cells. Moreover, compounds demonstrated the capacity to reduce oxidative stress and protect DNA from Tat-induced damage. In a neuro-AIDS model, both compounds proved effective in preventing neurotoxicity associated with HIV-1 infection, indicating its potential for therapeutic applications. Les-6631 and Les-6633 thus can protect cells from the harmful effects of pathogens. Their use in a neuro-AIDS model suggests a potential application in protective therapies for the nervous system in patients with HIV.NEW & NOTEWORTHY This study identifies novel rhodadyn-based inhibitors, Les-6631 and Les-6633, which selectively block dynamin's GTPase activity while sparing clathrin-mediated pathways. They effectively inhibit cellular uptake, protect neural cells from HIV-1 Tat-induced oxidative stress, and reduce mitochondrial and DNA damage. Their selective dynamin inhibition and antioxidant properties highlight their therapeutic potential for neurodegeneration and viral infections, offering cell protection without disrupting essential endocytic functions.
Collapse
Affiliation(s)
| | - Piotr Roszczenko
- Department of Biotechnology, Medical University of Białystok, Białystok, Poland
| | - Anna Shmakova
- CNRS UMR9018, Institut Gustave Roussy, Université Paris Saclay, Villejuif, France
| | - Ihor Yushyn
- Department of Pharmaceutical, Organic and Bioorganic Chemistry, Danylo Halytsky Lviv National Medical University, Lviv, Ukraine
| | - Serhii Holota
- Department of Pharmaceutical, Organic and Bioorganic Chemistry, Danylo Halytsky Lviv National Medical University, Lviv, Ukraine
| | - Olexandr Karpenko
- Department of Chemistry, Taras Shevchenko National University, Kyiv, Ukraine
- Enamine Ltd, Kyiv, Ukraine
| | - Robert Czarnomysy
- Department of Synthesis and Technology of Drugs, Medical University of Białystok, Białystok, Poland
| | - Anna Bielawska
- Department of Biotechnology, Medical University of Białystok, Białystok, Poland
| | - Yegor Vassetzky
- CNRS UMR9018, Institut Gustave Roussy, Université Paris Saclay, Villejuif, France
| | - Roman Lesyk
- Department of Pharmaceutical, Organic and Bioorganic Chemistry, Danylo Halytsky Lviv National Medical University, Lviv, Ukraine
| | - Krzysztof Bielawski
- Department of Synthesis and Technology of Drugs, Medical University of Białystok, Białystok, Poland
| |
Collapse
|
5
|
Li J, Foged C. Evaluating the breadth of nucleic acid-based payloads delivered in lipid nanoparticles to establish fundamental differences in development. Expert Opin Drug Deliv 2024; 21:1441-1461. [PMID: 39387233 DOI: 10.1080/17425247.2024.2409142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Revised: 08/29/2024] [Accepted: 09/23/2024] [Indexed: 10/15/2024]
Abstract
INTRODUCTION Nucleic acid (NA)-based therapeutics have shown great potential for downregulating or augmenting gene expression, and for promising applications, e.g., protein-replacement therapy and vaccination, a comprehensive understanding of the requirements for their targeted delivery to specific tissues or cells is needed. AREAS COVERED In this review, we discuss clinical applications of four representative types of NA-based therapeutics, i.e. antisense oligonucleotides, small interfering RNA, messenger RNA, and circular RNA, with a focus on the lipid nanoparticle (LNP) technology used for intracellular delivery. The in vivo fate of LNPs is discussed to improve the understanding of trafficking of nanomedicines at the systemic and cellular levels. In addition, NA-based vaccines are discussed, focusing on targeting antigen-presenting cells and immune activation. EXPERT OPINION Optimization of delivery systems for NA-based therapeutics is mainly focused on the standard requirements of prolonged systemic circulation and enhancing endosomal escape. Depending on the final destination in specific target tissues or cells, strategies should be adjusted to achieve the desired biodistribution of NA-based payloads. More studies relating to the pharmacokinetics of both cargo and carrier are encouraged, because their in vivo fates may differ, considering the possibility of premature cargo release before reaching the target.
Collapse
Affiliation(s)
- Jinjin Li
- Department of Pharmacy, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen Ø, Denmark
| | - Camilla Foged
- Department of Pharmacy, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen Ø, Denmark
| |
Collapse
|
6
|
Wan C, Puscher H, Ouyang Y, Wu J, Tian Y, Li S, Yin Q, Shen J. An AAGAB-to-CCDC32 handover mechanism controls the assembly of the AP2 adaptor complex. Proc Natl Acad Sci U S A 2024; 121:e2409341121. [PMID: 39145939 PMCID: PMC11348294 DOI: 10.1073/pnas.2409341121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Accepted: 07/13/2024] [Indexed: 08/16/2024] Open
Abstract
Vesicular transport relies on multimeric trafficking complexes to capture cargo and drive vesicle budding and fusion. Faithful assembly of the trafficking complexes is essential to their functions but remains largely unexplored. Assembly of AP2 adaptor, a heterotetrameric protein complex regulating clathrin-mediated endocytosis, is assisted by the chaperone AAGAB. Here, we found that AAGAB initiates AP2 assembly by stabilizing its α and σ2 subunits, but the AAGAB:α:σ2 complex cannot recruit additional AP2 subunits. We identified CCDC32 as another chaperone regulating AP2 assembly. CCDC32 recognizes the AAGAB:α:σ2 complex, and its binding leads to the formation of an α:σ2:CCDC32 ternary complex. The α:σ2:CCDC32 complex serves as a template that sequentially recruits the µ2 and β2 subunits of AP2 to complete AP2 assembly, accompanied by CCDC32 release. The AP2-regulating function of CCDC32 is disrupted by a disease-causing mutation. These findings demonstrate that AP2 is assembled by a handover mechanism switching from AAGAB-based initiation complexes to CCDC32-based template complexes. A similar mechanism may govern the assembly of other trafficking complexes exhibiting the same configuration as AP2.
Collapse
Affiliation(s)
- Chun Wan
- Department of Molecular, Cellular and Developmental Biology, University of Colorado, Boulder, CO80309
| | - Harrison Puscher
- Department of Molecular, Cellular and Developmental Biology, University of Colorado, Boulder, CO80309
| | - Yan Ouyang
- Department of Molecular, Cellular and Developmental Biology, University of Colorado, Boulder, CO80309
| | - Jingyi Wu
- Department of Molecular, Cellular and Developmental Biology, University of Colorado, Boulder, CO80309
| | - Yuan Tian
- Department of Biological Sciences and Institute of Molecular Biophysics, Florida State University, Tallahassee, FL32306
| | - Suzhao Li
- Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO80045
| | - Qian Yin
- Department of Biological Sciences and Institute of Molecular Biophysics, Florida State University, Tallahassee, FL32306
| | - Jingshi Shen
- Department of Molecular, Cellular and Developmental Biology, University of Colorado, Boulder, CO80309
| |
Collapse
|
7
|
Sulpiana, Amalia R, Atik N. The Roles of Endocytosis and Autophagy at the Cellular Level During Influenza Virus Infection: A Mini-Review. Infect Drug Resist 2024; 17:3199-3208. [PMID: 39070720 PMCID: PMC11283801 DOI: 10.2147/idr.s471204] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Accepted: 07/18/2024] [Indexed: 07/30/2024] Open
Abstract
Acute respiratory infections contribute to morbidity and mortality worldwide. The common cause of this deadly disease is a virus, and one of the most commonly found is the influenza virus. Influenza viruses have several capabilities in infection, including utilizing the host's machinery to survive within cells and replicate safely. This review aims to examine the literature on how influenza viruses use host machinery, including endocytosis and autophagy, for their internalization and replication within cells. This review method involves a literature search by examining articles published in the PubMed and Scopus databases. The keywords used were "Endocytosis" OR "Autophagy" AND "Influenza Virus". Eighteen articles were included due to inclusion and exclusion criteria. GTPases switch, and V-ATPase plays a key role in the endocytic machinery hijacked by influenza viruses to enter host cells. On the other hand, LC3 and Atg5 facilitate influenza-induced apoptosis via the autophagic pathway. In conclusion, influenza viruses primarily use clathrin-mediated endocytosis to enter cells and avoid degradation during endosomal maturation by exiting endosomes for transfer to the nucleus for replication. It also uses autophagy to induce apoptosis to continue replication. The capability of the influenza viruses to hijack endocytosis and autophagy mechanisms could be critical points for further research. Therefore, we discuss how the influenza virus utilizes both endocytosis and autophagy and the approach for a new strategic therapy targeting those mechanisms.
Collapse
Affiliation(s)
- Sulpiana
- Biomedical Science Master Program, Faculty of Medicine, Universitas Padjadjaran, Bandung, West Java, 54211, Indonesia
- Faculty of Medicine, IPB University, Bogor, 16680, Indonesia
| | - Riezki Amalia
- Department of Pharmacology and Clinical Pharmacy, Faculty of Pharmacy, Universitas Padjadjaran, Bandung, West Java, Indonesia
| | - Nur Atik
- Department of Biomedical Sciences, Faculty of Medicine, Universitas Padjadjaran, Bandung, West Java, 40161, Indonesia
| |
Collapse
|
8
|
Naudi-Fabra S, Elena-Real CA, Vedel IM, Tengo M, Motzny K, Jiang PL, Schmieder P, Liu F, Milles S. An extended interaction site determines binding between AP180 and AP2 in clathrin mediated endocytosis. Nat Commun 2024; 15:5884. [PMID: 39003270 PMCID: PMC11246429 DOI: 10.1038/s41467-024-50212-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Accepted: 07/03/2024] [Indexed: 07/15/2024] Open
Abstract
The early phases of clathrin mediated endocytosis are organized through a highly complex interaction network mediated by clathrin associated sorting proteins (CLASPs) that comprise long intrinsically disordered regions (IDRs). AP180 is a CLASP exclusively expressed in neurons and comprises a long IDR of around 600 residues, whose function remains partially elusive. Using NMR spectroscopy, we discovered an extended and strong interaction site within AP180 with the major adaptor protein AP2, and describe its binding dynamics at atomic resolution. We find that the 70 residue-long site determines the overall interaction between AP180 and AP2 in a dynamic equilibrium between its bound and unbound states, while weaker binding sites contribute to the overall affinity at much higher concentrations of AP2. Our data suggest that this particular interaction site might play a central role in recruitment of adaptors to the clathrin coated pit, whereas more transient and promiscuous interactions allow reshaping of the interaction network until cargo uptake inside a coated vesicle.
Collapse
Affiliation(s)
- Samuel Naudi-Fabra
- Leibniz-Forschungsinstitut für Molekulare Pharmakologie, Robert-Rössle-Straße 10, 13125, Berlin, Germany
- Université Grenoble Alpes, CNRS, CEA, IBS, F-38000, Grenoble, France
| | - Carlos A Elena-Real
- Leibniz-Forschungsinstitut für Molekulare Pharmakologie, Robert-Rössle-Straße 10, 13125, Berlin, Germany
| | - Ida Marie Vedel
- Leibniz-Forschungsinstitut für Molekulare Pharmakologie, Robert-Rössle-Straße 10, 13125, Berlin, Germany
| | - Maud Tengo
- Université Grenoble Alpes, CNRS, CEA, IBS, F-38000, Grenoble, France
| | - Kathrin Motzny
- Leibniz-Forschungsinstitut für Molekulare Pharmakologie, Robert-Rössle-Straße 10, 13125, Berlin, Germany
| | - Pin-Lian Jiang
- Leibniz-Forschungsinstitut für Molekulare Pharmakologie, Robert-Rössle-Straße 10, 13125, Berlin, Germany
| | - Peter Schmieder
- Leibniz-Forschungsinstitut für Molekulare Pharmakologie, Robert-Rössle-Straße 10, 13125, Berlin, Germany
| | - Fan Liu
- Leibniz-Forschungsinstitut für Molekulare Pharmakologie, Robert-Rössle-Straße 10, 13125, Berlin, Germany
| | - Sigrid Milles
- Leibniz-Forschungsinstitut für Molekulare Pharmakologie, Robert-Rössle-Straße 10, 13125, Berlin, Germany.
- Université Grenoble Alpes, CNRS, CEA, IBS, F-38000, Grenoble, France.
| |
Collapse
|
9
|
Mukhopadhyay U, Mandal T, Chakraborty M, Sinha B. The Plasma Membrane and Mechanoregulation in Cells. ACS OMEGA 2024; 9:21780-21797. [PMID: 38799362 PMCID: PMC11112598 DOI: 10.1021/acsomega.4c01962] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 04/26/2024] [Accepted: 04/30/2024] [Indexed: 05/29/2024]
Abstract
Cells inhabit a mechanical microenvironment that they continuously sense and adapt to. The plasma membrane (PM), serving as the boundary of the cell, plays a pivotal role in this process of adaptation. In this Review, we begin by examining well-studied processes where mechanoregulation proves significant. Specifically, we highlight examples from the immune system and stem cells, besides discussing processes involving fibroblasts and other cell types. Subsequently, we discuss the common molecular players that facilitate the sensing of the mechanical signal and transform it into a chemical response covering integrins YAP/TAZ and Piezo. We then review how this understanding of molecular elements is leveraged in drug discovery and tissue engineering alongside a discussion of the methodologies used to measure mechanical properties. Focusing on the processes of endocytosis, we discuss how cells may respond to altered membrane mechanics using endo- and exocytosis. Through the process of depleting/adding the membrane area, these could also impact membrane mechanics. We compare pathways from studies illustrating the involvement of endocytosis in mechanoregulation, including clathrin-mediated endocytosis (CME) and the CLIC/GEEC (CG) pathway as central examples. Lastly, we review studies on cell-cell fusion during myogenesis, the mechanical integrity of muscle fibers, and the reported and anticipated roles of various molecular players and processes like endocytosis, thereby emphasizing the significance of mechanoregulation at the PM.
Collapse
Affiliation(s)
- Upasana Mukhopadhyay
- Department of Biological
Sciences, Indian Institute of Science Education
and Research Kolkata, Mohanpur, West Bengal 741246, India
| | - Tithi Mandal
- Department of Biological
Sciences, Indian Institute of Science Education
and Research Kolkata, Mohanpur, West Bengal 741246, India
| | | | - Bidisha Sinha
- Department of Biological
Sciences, Indian Institute of Science Education
and Research Kolkata, Mohanpur, West Bengal 741246, India
| |
Collapse
|
10
|
Cogill SA, Lee JH, Jeon MT, Kim DG, Chang Y. Hopping the Hurdle: Strategies to Enhance the Molecular Delivery to the Brain through the Blood-Brain Barrier. Cells 2024; 13:789. [PMID: 38786013 PMCID: PMC11119906 DOI: 10.3390/cells13100789] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2023] [Revised: 04/04/2024] [Accepted: 04/30/2024] [Indexed: 05/25/2024] Open
Abstract
Modern medicine has allowed for many advances in neurological and neurodegenerative disease (ND). However, the number of patients suffering from brain diseases is ever increasing and the treatment of brain diseases remains an issue, as drug efficacy is dramatically reduced due to the existence of the unique vascular structure, namely the blood-brain barrier (BBB). Several approaches to enhance drug delivery to the brain have been investigated but many have proven to be unsuccessful due to limited transport or damage induced in the BBB. Alternative approaches to enhance molecular delivery to the brain have been revealed in recent studies through the existence of molecular delivery pathways that regulate the passage of peripheral molecules. In this review, we present recent advancements of the basic research for these delivery pathways as well as examples of promising ventures to overcome the molecular hurdles that will enhance therapeutic interventions in the brain and potentially save the lives of millions of patients.
Collapse
Affiliation(s)
- Sinnead Anne Cogill
- Dementia Research Group, Korea Brain Research Institute, Daegu 41062, Republic of Korea; (S.A.C.); (J.-H.L.); (M.-T.J.)
- Department of Brain & Cognitive Sciences, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu 42988, Republic of Korea
| | - Jae-Hyeok Lee
- Dementia Research Group, Korea Brain Research Institute, Daegu 41062, Republic of Korea; (S.A.C.); (J.-H.L.); (M.-T.J.)
- Department of Bio and Brain Engineering, Korea Advanced Institute of Science Technology (KAIST), Daejeon 34141, Republic of Korea
| | - Min-Tae Jeon
- Dementia Research Group, Korea Brain Research Institute, Daegu 41062, Republic of Korea; (S.A.C.); (J.-H.L.); (M.-T.J.)
| | - Do-Geun Kim
- Dementia Research Group, Korea Brain Research Institute, Daegu 41062, Republic of Korea; (S.A.C.); (J.-H.L.); (M.-T.J.)
- Department of Brain & Cognitive Sciences, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu 42988, Republic of Korea
| | - Yongmin Chang
- Department of Molecular Medicine, School of Medicine, Kyungpook National University, Daegu 41944, Republic of Korea
- Department of Radiology, Kyungpook National University Hospital, Daegu 41944, Republic of Korea
| |
Collapse
|
11
|
Cano I, Wild M, Gupta U, Chaudhary S, Ng YSE, Saint-Geniez M, D'Amore PA, Hu Z. Endomucin selectively regulates vascular endothelial growth factor receptor-2 endocytosis through its interaction with AP2. Cell Commun Signal 2024; 22:225. [PMID: 38605348 PMCID: PMC11007909 DOI: 10.1186/s12964-024-01606-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Accepted: 04/05/2024] [Indexed: 04/13/2024] Open
Abstract
The endothelial glycocalyx, located at the luminal surface of the endothelium, plays an important role in the regulation of leukocyte adhesion, vascular permeability, and vascular homeostasis. Endomucin (EMCN), a component of the endothelial glycocalyx, is a mucin-like transmembrane glycoprotein selectively expressed by venous and capillary endothelium. We have previously shown that knockdown of EMCN impairs retinal vascular development in vivo and vascular endothelial growth factor 165 isoform (VEGF165)-induced cell migration, proliferation, and tube formation by human retinal endothelial cells in vitro and that EMCN is essential for VEGF165-stimulated clathrin-mediated endocytosis and signaling of VEGF receptor 2 (VEGFR2). Clathrin-mediated endocytosis is an essential step in receptor signaling and is of paramount importance for a number of receptors for growth factors involved in angiogenesis. In this study, we further investigated the molecular mechanism underlying EMCN's involvement in the regulation of VEGF-induced endocytosis. In addition, we examined the specificity of EMCN's role in angiogenesis-related cell surface receptor tyrosine kinase endocytosis and signaling. We identified that EMCN interacts with AP2 complex, which is essential for clathrin-mediated endocytosis. Lack of EMCN did not affect clathrin recruitment to the AP2 complex following VEGF stimulation, but it is necessary for the interaction between VEGFR2 and the AP2 complex during endocytosis. EMCN does not inhibit VEGFR1 and FGFR1 internalization or their downstream activities since EMCN interacts with VEGFR2 but not VEGFR1 or FGFR1. Additionally, EMCN also regulates VEGF121-induced VEGFR2 phosphorylation and internalization.
Collapse
Affiliation(s)
- Issahy Cano
- Schepens Eye Research Institute of Massachusetts Eye and Ear, Boston, MA, USA
- Department of Ophthalmology, Harvard Medical School, Boston, MA, USA
- Present affiliation: Department of Molecular Medicine, Cornell University, Ithaca, NY, USA
| | - Melissa Wild
- Schepens Eye Research Institute of Massachusetts Eye and Ear, Boston, MA, USA
- Department of Ophthalmology, Harvard Medical School, Boston, MA, USA
| | - Urvi Gupta
- Case Western Reserve University School of Medicine, Cleveland, OH, USA
| | - Suman Chaudhary
- Schepens Eye Research Institute of Massachusetts Eye and Ear, Boston, MA, USA
- Department of Ophthalmology, Harvard Medical School, Boston, MA, USA
| | - Yin Shan Eric Ng
- Schepens Eye Research Institute of Massachusetts Eye and Ear, Boston, MA, USA
- Department of Ophthalmology, Harvard Medical School, Boston, MA, USA
- Present Affiliation: EyeBiotech, London, UK
| | - Magali Saint-Geniez
- Schepens Eye Research Institute of Massachusetts Eye and Ear, Boston, MA, USA
- Department of Ophthalmology, Harvard Medical School, Boston, MA, USA
- Present affiliation: Novartis Institutes for Biomedical Research, Cambridge, MA, USA
| | - Patricia A D'Amore
- Schepens Eye Research Institute of Massachusetts Eye and Ear, Boston, MA, USA
- Department of Ophthalmology, Harvard Medical School, Boston, MA, USA
- Department of Pathology, Harvard Medical School, Boston, MA, USA
| | - Zhengping Hu
- Schepens Eye Research Institute of Massachusetts Eye and Ear, Boston, MA, USA.
- Department of Ophthalmology, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
12
|
Kryvenko V, Vadász I. Alveolar-capillary endocytosis and trafficking in acute lung injury and acute respiratory distress syndrome. Front Immunol 2024; 15:1360370. [PMID: 38533500 PMCID: PMC10963603 DOI: 10.3389/fimmu.2024.1360370] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Accepted: 02/29/2024] [Indexed: 03/28/2024] Open
Abstract
Acute respiratory distress syndrome (ARDS) is associated with high morbidity and mortality but lacks specific therapeutic options. Diverse endocytic processes play a key role in all phases of acute lung injury (ALI), including the initial insult, development of respiratory failure due to alveolar flooding, as a consequence of altered alveolar-capillary barrier function, as well as in the resolution or deleterious remodeling after injury. In particular, clathrin-, caveolae-, endophilin- and glycosylphosphatidyl inositol-anchored protein-mediated endocytosis, as well as, macropinocytosis and phagocytosis have been implicated in the setting of acute lung damage. This manuscript reviews our current understanding of these endocytic pathways and subsequent intracellular trafficking in various phases of ALI, and also aims to identify potential therapeutic targets for patients with ARDS.
Collapse
Affiliation(s)
- Vitalii Kryvenko
- Department of Internal Medicine, Justus Liebig University, Universities of Giessen and Marburg Lung Center (UGMLC), Member of the German Center for Lung Research (DZL), Giessen, Germany
- The Cardio-Pulmonary Institute (CPI), Giessen, Germany
- Institute for Lung Health (ILH), Giessen, Germany
| | - István Vadász
- Department of Internal Medicine, Justus Liebig University, Universities of Giessen and Marburg Lung Center (UGMLC), Member of the German Center for Lung Research (DZL), Giessen, Germany
- The Cardio-Pulmonary Institute (CPI), Giessen, Germany
- Institute for Lung Health (ILH), Giessen, Germany
| |
Collapse
|
13
|
Carter T, Iqbal M. The Influenza A Virus Replication Cycle: A Comprehensive Review. Viruses 2024; 16:316. [PMID: 38400091 PMCID: PMC10892522 DOI: 10.3390/v16020316] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Revised: 02/15/2024] [Accepted: 02/17/2024] [Indexed: 02/25/2024] Open
Abstract
Influenza A virus (IAV) is the primary causative agent of influenza, colloquially called the flu. Each year, it infects up to a billion people, resulting in hundreds of thousands of human deaths, and causes devastating avian outbreaks with worldwide losses worth billions of dollars. Always present is the possibility that a highly pathogenic novel subtype capable of direct human-to-human transmission will spill over into humans, causing a pandemic as devastating if not more so than the 1918 influenza pandemic. While antiviral drugs for influenza do exist, they target very few aspects of IAV replication and risk becoming obsolete due to antiviral resistance. Antivirals targeting other areas of IAV replication are needed to overcome this resistance and combat the yearly epidemics, which exact a serious toll worldwide. This review aims to summarise the key steps in the IAV replication cycle, along with highlighting areas of research that need more focus.
Collapse
Affiliation(s)
- Toby Carter
- The Pirbright Institute, Ash Road, Pirbright, Woking GU24 0NF, UK;
| | | |
Collapse
|
14
|
Deisl C, Moe OW, Hilgemann DW. Constitutive Plasma Membrane Turnover in T-REx293 cells via Ordered Membrane Domain Endocytosis under Mitochondrial Control. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.01.17.576124. [PMID: 38293164 PMCID: PMC10827192 DOI: 10.1101/2024.01.17.576124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2024]
Abstract
Clathrin/dynamin-independent endocytosis of ordered plasma membrane domains (ordered membrane domain endocytosis, OMDE) can become massive in response to cytoplasmic Ca elevations, G protein activation by non-hydrolyzable GTP analogs, and enhanced oxidative metabolism. In patch-clamped murine bone marrow macrophages (BMMs), cytoplasmic succinate and pyruvate, but not β-hydroxybutyrate, induce OMDE of 75% of the plasma membrane within 2 min. The responses require palmitoylation of membrane proteins, being decreased by 70% in BMMs lacking the acyltransferase, DHHC5, by treatment with carnitine to shift long-chain acyl groups from cytoplasmic to mitochondrial acyl-CoAs, by bromopalmitate/albumin complexes to block DHHCs, and by the mitochondria-specific cyclosporin, NIM811, to block permeability transition pores that may release mitochondrial coenzyme A into the cytoplasm. Using T-REx293 cells, OMDE amounts to 40% with succinate, pyruvate, or GTPγS, and it is inhibited by actin cytoskeleton disruption. Pyruvate-induced OMDE is blocked by the hydrophobic antioxidant, edaravone, which prevents permeability transition pore openings. Using fluorescent 3kD dextrans to monitor endocytosis, OMDE appears to be constitutively active in T-REx293 cells but not in BMMs. After 1 h without substrates or bicarbonate, pyruvate and hydroxybutyrate inhibit constitutive OMDE, as expected for a shift of CoA from long-chain acyl-CoAs to other CoA metabolites. In the presence of bicarbonate, pyruvate strongly enhances OMDE, which is then blocked by β-hydroxybutyrate, bromopalmitate/albumin complexes, cyclosporines, or edaravone. After pyruvate responses, T-REx293 cells grow normally with no evidence for apoptosis. Fatty acid-free albumin (15 μM) inhibits basal OMDE in T-REx293 cells, as do cyclosporines, carnitine, and RhoA blockade. Surprisingly, OMDE in the absence of substrates and bicarbonate is not inhibited by siRNA knockdown of the acyltransferases, DHHC5 or DHHC2, which are required for activated OMDE in patch clamp experiments. We verify biochemically that small CoA metabolites decrease long-chain acyl-CoAs. We verify also that palmitoylations of many PM-associated proteins decrease and increase when OMDE is inhibited and stimulated, respectively, by different metabolites. STED microscopy reveals that vesicles formed during constitutive OMDE in T-REX293 cells have 90 to 130 nm diameters. In summary, OMDE is likely a major G-protein-dependent endocytic mechanism that can be constitutively active in some cell types, albeit not BMMs. OMDE depends on different DHHC acyltransferases in different circumstances and can be limited by local supplies of fatty acids, CoA, and long-chain acyl-CoAs.
Collapse
Affiliation(s)
- Christine Deisl
- Department of Physiology, University of Texas Southwestern Medical Center, Dallas, Texas, USA
- Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, Texas, USA
- Charles and Jane Pak Center for Mineral Metabolism and Clinical Research, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Orson W Moe
- Department of Physiology, University of Texas Southwestern Medical Center, Dallas, Texas, USA
- Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, Texas, USA
- Charles and Jane Pak Center for Mineral Metabolism and Clinical Research, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Donald W Hilgemann
- Department of Physiology, University of Texas Southwestern Medical Center, Dallas, Texas, USA
- Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, Texas, USA
- Charles and Jane Pak Center for Mineral Metabolism and Clinical Research, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| |
Collapse
|
15
|
Johannes L, Shafaq-Zadah M, Dransart E, Wunder C, Leffler H. Endocytic Roles of Glycans on Proteins and Lipids. Cold Spring Harb Perspect Biol 2024; 16:a041398. [PMID: 37735065 PMCID: PMC10759989 DOI: 10.1101/cshperspect.a041398] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/23/2023]
Abstract
Most cell surface proteins are decorated by glycans, and the plasma membrane is rich in glycosylated lipids. The mechanisms by which the enormous complexity of these glycan structures on proteins and lipids is exploited to control glycoprotein activity by setting their cell surface residence time and the ways by which they are taken up into cells are still under active investigation. Here, two mechanisms are presented, termed galectin lattices and glycolipid-lectin (GL-Lect)-driven endocytosis, which are among the most prominent to establish a link between glycan information and endocytosis. Types of glycans on glycoproteins and glycolipids are reviewed from the angle of their interaction with glycan-binding proteins that are at the heart of galectin lattices and GL-Lect-driven endocytosis. Examples are given to show how these mechanisms affect cellular functions ranging from cell migration and signaling to vascularization and immune modulation. Finally, outstanding challenges on the link between glycosylation and endocytosis are discussed.
Collapse
Affiliation(s)
- Ludger Johannes
- Cellular and Chemical Biology Unit, Institut Curie, 75248 Paris Cedex 05, France
| | | | - Estelle Dransart
- Cellular and Chemical Biology Unit, Institut Curie, 75248 Paris Cedex 05, France
| | - Christian Wunder
- Cellular and Chemical Biology Unit, Institut Curie, 75248 Paris Cedex 05, France
| | - Hakon Leffler
- Section MIG (Microbiology, Immunology, Glycobiology), Department of Laboratory Medicine, Lund University, 22362 Lund, Sweden
| |
Collapse
|
16
|
Kumari S, Raj S, Babu MA, Bhatti GK, Bhatti JS. Antibody-drug conjugates in cancer therapy: innovations, challenges, and future directions. Arch Pharm Res 2024; 47:40-65. [PMID: 38153656 DOI: 10.1007/s12272-023-01479-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Accepted: 12/20/2023] [Indexed: 12/29/2023]
Abstract
The emergence of antibody-drug conjugates (ADCs) as a potential therapeutic avenue in cancer treatment has garnered significant attention. By combining the selective specificity of monoclonal antibodies with the cytotoxicity of drug molecules, ADCs aim to increase the therapeutic index, selectively targeting cancer cells while minimizing systemic toxicity. Various ADCs have been licensed for clinical usage, with ongoing research paving the way for additional options. However, the manufacture of ADCs faces several challenges. These include identifying suitable target antigens, enhancing antibodies, linkers, and payloads, and managing resistance mechanisms and side effects. This review focuses on the strategies to overcome these hurdles, such as site-specific conjugation techniques, novel antibody formats, and combination therapy. Our focus lies on current advancements in antibody engineering, linker technology, and cytotoxic payloads while addressing the challenges associated with ADC development. Furthermore, we explore the future potential of personalized medicine, leveraging individual patients' molecular profiles, to propel ADC treatments forward. As our understanding of the molecular mechanisms driving cancer progression continues to expand, we anticipate the development of new ADCs that offer more effective and personalized therapeutic options for cancer patients.
Collapse
Affiliation(s)
- Shivangi Kumari
- Laboratory of Translational Medicine and Nanotherapeutics, Department of Human Genetics and Molecular Medicine, School of Health Sciences, Central University of Punjab, Bathinda, India
| | - Sonam Raj
- Laboratory of Translational Medicine and Nanotherapeutics, Department of Human Genetics and Molecular Medicine, School of Health Sciences, Central University of Punjab, Bathinda, India
| | - M Arockia Babu
- Institute of Pharmaceutical Research, GLA University, Mathura, U.P., India
| | - Gurjit Kaur Bhatti
- Department of Medical Lab Technology, University Institute of Applied Health Sciences, Chandigarh University, Mohali, India
| | - Jasvinder Singh Bhatti
- Laboratory of Translational Medicine and Nanotherapeutics, Department of Human Genetics and Molecular Medicine, School of Health Sciences, Central University of Punjab, Bathinda, India.
| |
Collapse
|
17
|
Lee J, Gonzalez-Hernandez AJ, Kristt M, Abreu N, Roßmann K, Arefin A, Marx DC, Broichhagen J, Levitz J. Distinct beta-arrestin coupling and intracellular trafficking of metabotropic glutamate receptor homo- and heterodimers. SCIENCE ADVANCES 2023; 9:eadi8076. [PMID: 38055809 PMCID: PMC10699790 DOI: 10.1126/sciadv.adi8076] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Accepted: 11/03/2023] [Indexed: 12/08/2023]
Abstract
The metabotropic glutamate receptors (mGluRs) are family C, dimeric G protein-coupled receptors (GPCRs), which play critical roles in synaptic transmission. Despite an increasing appreciation of the molecular diversity of this family, how distinct mGluR subtypes are regulated remains poorly understood. We reveal that different group II/III mGluR subtypes show markedly different beta-arrestin (β-arr) coupling and endocytic trafficking. While mGluR2 is resistant to internalization and mGluR3 shows transient β-arr coupling, which enables endocytosis and recycling, mGluR8 and β-arr form stable complexes, which leads to efficient lysosomal targeting and degradation. Using chimeras and mutagenesis, we pinpoint carboxyl-terminal domain regions that control β-arr coupling and trafficking, including the identification of an mGluR8 splice variant with impaired internalization. We then use a battery of high-resolution fluorescence assays to find that heterodimerization further expands the diversity of mGluR regulation. Together, this work provides insight into the relationship between GPCR/β-arr complex formation and trafficking while revealing diversity and intricacy in the regulation of mGluRs.
Collapse
Affiliation(s)
- Joon Lee
- Department of Biochemistry, Weill Cornell Medicine, New York, NY 10065, USA
| | | | - Melanie Kristt
- Department of Biochemistry, Weill Cornell Medicine, New York, NY 10065, USA
| | - Nohely Abreu
- Department of Biochemistry, Weill Cornell Medicine, New York, NY 10065, USA
| | - Kilian Roßmann
- Leibniz-Forschungsinstitut für Molekulare Pharmakologie, 13125 Berlin, Germany
| | - Anisul Arefin
- Department of Biochemistry, Weill Cornell Medicine, New York, NY 10065, USA
| | - Dagan C. Marx
- Department of Biochemistry, Weill Cornell Medicine, New York, NY 10065, USA
| | | | - Joshua Levitz
- Department of Biochemistry, Weill Cornell Medicine, New York, NY 10065, USA
- Department of Psychiatry, Weill Cornell Medicine, New York, NY 10065, USA
| |
Collapse
|
18
|
Tripathi R, Guglani A, Ghorpade R, Wang B. Biotin conjugates in targeted drug delivery: is it mediated by a biotin transporter, a yet to be identified receptor, or (an)other unknown mechanism(s)? J Enzyme Inhib Med Chem 2023; 38:2276663. [PMID: 37955285 PMCID: PMC10653662 DOI: 10.1080/14756366.2023.2276663] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Accepted: 10/24/2023] [Indexed: 11/14/2023] Open
Abstract
Conjugation of drugs with biotin is a widely studied strategy for targeted drug delivery. The structure-activity relationship (SAR) studies through H3-biotin competition experiments conclude with the presence of a free carboxylic acid being essential for its uptake via the sodium-dependent multivitamin transporter (SMVT, the major biotin transporter). However, biotin conjugation with a payload requires modification of the carboxylic acid to an amide or ester group. Then, there is the question as to how/whether the uptake of biotin conjugates goes through the SMVT. If not, then what is the mechanism? Herein, we present known uptake mechanisms of biotin and its applications reported in the literature. We also critically analyse possible uptake mechanism(s) of biotin conjugates to address the disconnect between the results from SMVT-based SAR and "biotin-facilitated" targeted drug delivery. We believe understanding the uptake mechanism of biotin conjugates is critical for their future applications and further development.
Collapse
Affiliation(s)
- Ravi Tripathi
- Department of Chemistry and Center for Diagnostics and Therapeutics, Georgia State University, Atlanta, GA, USA
| | - Anchala Guglani
- Department of Biology, Georgia State University, Atlanta, GA, USA
| | - Rujuta Ghorpade
- Department of Chemistry and Center for Diagnostics and Therapeutics, Georgia State University, Atlanta, GA, USA
| | - Binghe Wang
- Department of Chemistry and Center for Diagnostics and Therapeutics, Georgia State University, Atlanta, GA, USA
| |
Collapse
|
19
|
Zhu F, Wang S, Zhu X, Pang C, Cui P, Yang F, Li R, Zhan Q, Xin H. Potential effects of biomaterials on macrophage function and their signalling pathways. Biomater Sci 2023; 11:6977-7002. [PMID: 37695360 DOI: 10.1039/d3bm01213a] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/12/2023]
Abstract
The use of biomaterials in biomedicine and healthcare has increased in recent years. Macrophages are the primary immune cells that induce inflammation and tissue repair after implantation of biomaterials. Given that macrophages exhibit high heterogeneity and plasticity, the influence of biomaterials on macrophage phenotype should be considered a crucial evaluation criterion during the development of novel biomaterials. This review provides a comprehensive summary of the physicochemical, biological, and dynamic characteristics of biomaterials that drive the regulation of immune responses in macrophages. The mechanisms involved in the interaction between macrophages and biomaterials, including endocytosis, receptors, signalling pathways, integrins, inflammasomes and long non-coding RNAs, are summarised in this review. In addition, research prospects of the interaction between macrophages and biomaterials are discussed. An in-depth understanding of mechanisms underlying the spatiotemporal changes in macrophage phenotype induced by biomaterials and their impact on macrophage polarization can facilitate the identification and development of novel biomaterials with superior performance. These biomaterials may be used for tissue repair and regeneration, vaccine or drug delivery and immunotherapy.
Collapse
Affiliation(s)
- Fujun Zhu
- Department of Burns and Plastic Surgery, the No. 924th Hospital of the Joint Logistic Support Force of the Chinese PLA, Guilin, Guangxi 541002, People's Republic of China.
| | - Shaolian Wang
- Central Sterile Supply Department, the No. 924th Hospital of the Joint Logistic Support Force of the Chinese PLA, Guilin, Guangxi 541002, People's Republic of China
| | - Xianglian Zhu
- Outpatient Department, the No. 924th Hospital of the Joint Logistic Support Force of the Chinese PLA, Guilin, Guangxi 541002, People's Republic of China
| | - Caixiang Pang
- Department of Emergency Medicine, the No. 924th Hospital of the Joint Logistic Support Force of the Chinese PLA, Guilin, Guangxi 541002, People's Republic of China
| | - Pei Cui
- Animal Laboratory, the No. 924th Hospital of the Joint Logistic Support Force of the Chinese PLA, Guilin, Guangxi 541002, People's Republic of China
| | - Fuwang Yang
- Department of Burns and Plastic Surgery, the No. 924th Hospital of the Joint Logistic Support Force of the Chinese PLA, Guilin, Guangxi 541002, People's Republic of China.
| | - Rongsheng Li
- Animal Laboratory, the No. 924th Hospital of the Joint Logistic Support Force of the Chinese PLA, Guilin, Guangxi 541002, People's Republic of China
| | - Qiu Zhan
- Animal Laboratory, the No. 924th Hospital of the Joint Logistic Support Force of the Chinese PLA, Guilin, Guangxi 541002, People's Republic of China
| | - Haiming Xin
- Department of Burns and Plastic Surgery, the No. 924th Hospital of the Joint Logistic Support Force of the Chinese PLA, Guilin, Guangxi 541002, People's Republic of China.
| |
Collapse
|
20
|
Szewczyk-Roszczenko OK, Roszczenko P, Shmakova A, Finiuk N, Holota S, Lesyk R, Bielawska A, Vassetzky Y, Bielawski K. The Chemical Inhibitors of Endocytosis: From Mechanisms to Potential Clinical Applications. Cells 2023; 12:2312. [PMID: 37759535 PMCID: PMC10527932 DOI: 10.3390/cells12182312] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Accepted: 09/07/2023] [Indexed: 09/29/2023] Open
Abstract
Endocytosis is one of the major ways cells communicate with their environment. This process is frequently hijacked by pathogens. Endocytosis also participates in the oncogenic transformation. Here, we review the approaches to inhibit endocytosis, discuss chemical inhibitors of this process, and discuss potential clinical applications of the endocytosis inhibitors.
Collapse
Affiliation(s)
| | - Piotr Roszczenko
- Department of Biotechnology, Medical University of Bialystok, Kilinskiego 1, 15-089 Bialystok, Poland; (P.R.); (A.B.)
| | - Anna Shmakova
- CNRS, UMR 9018, Institut Gustave Roussy, Université Paris-Saclay, 94800 Villejuif, France;
| | - Nataliya Finiuk
- Department of Regulation of Cell Proliferation and Apoptosis, Institute of Cell Biology of National Academy of Sciences of Ukraine, Drahomanov 14/16, 79005 Lviv, Ukraine;
| | - Serhii Holota
- Department of Pharmaceutical, Organic and Bioorganic Chemistry, Danylo Halytsky Lviv National Medical University, Pekarska 69, 79010 Lviv, Ukraine; (S.H.); (R.L.)
| | - Roman Lesyk
- Department of Pharmaceutical, Organic and Bioorganic Chemistry, Danylo Halytsky Lviv National Medical University, Pekarska 69, 79010 Lviv, Ukraine; (S.H.); (R.L.)
| | - Anna Bielawska
- Department of Biotechnology, Medical University of Bialystok, Kilinskiego 1, 15-089 Bialystok, Poland; (P.R.); (A.B.)
| | - Yegor Vassetzky
- CNRS, UMR 9018, Institut Gustave Roussy, Université Paris-Saclay, 94800 Villejuif, France;
| | - Krzysztof Bielawski
- Department of Synthesis and Technology of Drugs, Medical University of Bialystok, Kilinskiego 1, 15-089 Bialystok, Poland;
| |
Collapse
|
21
|
Fisher CG, Falk MM. Endocytosis and Endocytic Motifs across the Connexin Gene Family. Int J Mol Sci 2023; 24:12851. [PMID: 37629031 PMCID: PMC10454166 DOI: 10.3390/ijms241612851] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 08/11/2023] [Accepted: 08/13/2023] [Indexed: 08/27/2023] Open
Abstract
Proteins fated to be internalized by clathrin-mediated endocytosis require an endocytic motif, where AP-2 or another adaptor protein can bind and recruit clathrin. Tyrosine and di-leucine-based sorting signals are such canonical motifs. Connexin 43 (Cx43) has three canonical tyrosine-based endocytic motifs, two of which have been previously shown to recruit clathrin and mediate its endocytosis. In addition, di-leucine-based motifs have been characterized in the Cx32 C-terminal domain and shown to mediate its endocytosis. Here, we examined the amino acid sequences of all 21 human connexins to identify endocytic motifs across the connexin gene family. We find that although there is limited conservation of endocytic motifs between connexins, 14 of the 21 human connexins contain one or more canonical tyrosine or di-leucine-based endocytic motif in their C-terminal or intracellular loop domain. Three connexins contain non-canonical (modified) di-leucine motifs. However, four connexins (Cx25, Cx26, Cx31, and Cx40.1) do not harbor any recognizable endocytic motif. Interestingly, live cell time-lapse imaging of different GFP-tagged connexins that either contain or do not contain recognizable endocytic motifs readily undergo endocytosis, forming clearly identifiable annular gap junctions when expressed in HeLa cells. How connexins without defined endocytic motifs are endocytosed is currently not known. Our results demonstrate that an array of endocytic motifs exists in the connexin gene family. Further analysis will establish whether the sites we identified in this in silico analysis are legitimate endocytic motifs.
Collapse
Affiliation(s)
| | - Matthias M. Falk
- Department of Biological Sciences, Lehigh University, 111 Research Drive, Bethlehem, PA 18015, USA
| |
Collapse
|
22
|
Park JS, Perl A. Endosome Traffic Modulates Pro-Inflammatory Signal Transduction in CD4 + T Cells-Implications for the Pathogenesis of Systemic Lupus Erythematosus. Int J Mol Sci 2023; 24:10749. [PMID: 37445926 DOI: 10.3390/ijms241310749] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Revised: 06/10/2023] [Accepted: 06/26/2023] [Indexed: 07/15/2023] Open
Abstract
Endocytic recycling regulates the cell surface receptor composition of the plasma membrane. The surface expression levels of the T cell receptor (TCR), in concert with signal transducing co-receptors, regulate T cell responses, such as proliferation, differentiation, and cytokine production. Altered TCR expression contributes to pro-inflammatory skewing, which is a hallmark of autoimmune diseases, such as systemic lupus erythematosus (SLE), defined by a reduced function of regulatory T cells (Tregs) and the expansion of CD4+ helper T (Th) cells. The ensuing secretion of inflammatory cytokines, such as interferon-γ and interleukin (IL)-4, IL-17, IL-21, and IL-23, trigger autoantibody production and tissue infiltration by cells of the adaptive and innate immune system that induce organ damage. Endocytic recycling influences immunological synapse formation by CD4+ T lymphocytes, signal transduction from crosslinked surface receptors through recruitment of adaptor molecules, intracellular traffic of organelles, and the generation of metabolites to support growth, cytokine production, and epigenetic control of DNA replication and gene expression in the cell nucleus. This review will delineate checkpoints of endosome traffic that can be targeted for therapeutic interventions in autoimmune and other disease conditions.
Collapse
Affiliation(s)
- Joy S Park
- Department of Medicine, Norton College of Medicine, State University of New York, Upstate Medical University, Syracuse, NY 13210, USA
- Department of Biochemistry and Molecular Biology, Norton College of Medicine, State University of New York, Upstate Medical University, Syracuse, NY 13210, USA
| | - Andras Perl
- Department of Medicine, Norton College of Medicine, State University of New York, Upstate Medical University, Syracuse, NY 13210, USA
- Department of Biochemistry and Molecular Biology, Norton College of Medicine, State University of New York, Upstate Medical University, Syracuse, NY 13210, USA
- Department of Microbiology and Immunology, Norton College of Medicine, State University of New York, Upstate Medical University, Syracuse, NY 13210, USA
| |
Collapse
|
23
|
Iwamoto Y, Ye A, Shirazinejad C, Hurley JH, Drubin DG. Kinetic investigation reveals an HIV-1 Nef-dependent increase in AP-2 recruitment and productivity at endocytic sites. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.04.18.537262. [PMID: 37131815 PMCID: PMC10153213 DOI: 10.1101/2023.04.18.537262] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Lentiviruses express non-enzymatic accessory proteins whose function is to subvert cellular machinery in the infected host. The HIV-1 accessory protein Nef hijacks clathrin adaptors to degrade or mislocalize host proteins involved in antiviral defenses. Here, we investigate the interaction between Nef and clathrin-mediated endocytosis (CME), a major pathway for membrane protein internalization in mammalian cells, using quantitative live-cell microscopy in genome-edited Jurkat cells. Nef is recruited to CME sites on the plasma membrane, and this recruitment correlates with an increase in the recruitment and lifetime of CME coat protein AP-2 and late-arriving CME protein dynamin2. Furthermore, we find that CME sites that recruit Nef are more likely to recruit dynamin2, suggesting that Nef recruitment to CME sites promotes CME site maturation to ensure high efficiency in host protein downregulation.
Collapse
Affiliation(s)
- Yuichiro Iwamoto
- Department of Molecular and Cell Biology, University of California Berkeley; Berkeley CA 94720, USA
| | - Anna Ye
- Department of Molecular and Cell Biology, University of California Berkeley; Berkeley CA 94720, USA
| | - Cyna Shirazinejad
- Biophysics Graduate Group, University of California, Berkeley, Berkeley, CA 94720, USA
| | - James H Hurley
- Department of Molecular and Cell Biology, University of California Berkeley; Berkeley CA 94720, USA
- California Institute for Quantitative Biosciences, University of California, Berkeley, CA 94720, USA
- Biophysics Graduate Group, University of California, Berkeley, Berkeley, CA 94720, USA
- Helen Wills Neuroscience Institute, University of California, Berkeley, Berkeley, CA 94720, USA
| | - David G Drubin
- Department of Molecular and Cell Biology, University of California Berkeley; Berkeley CA 94720, USA
- California Institute for Quantitative Biosciences, University of California, Berkeley, CA 94720, USA
- Biophysics Graduate Group, University of California, Berkeley, Berkeley, CA 94720, USA
| |
Collapse
|
24
|
Yao Y, Ko Y, Grasman G, Raymond JE, Lahann J. The steep road to nonviral nanomedicines: Frequent challenges and culprits in designing nanoparticles for gene therapy. BEILSTEIN JOURNAL OF NANOTECHNOLOGY 2023; 14:351-361. [PMID: 36959977 PMCID: PMC10028570 DOI: 10.3762/bjnano.14.30] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Accepted: 02/28/2023] [Indexed: 06/18/2023]
Abstract
The potential of therapeutically loaded nanoparticles (NPs) has been successfully demonstrated during the last decade, with NP-mediated nonviral gene delivery gathering significant attention as highlighted by the broad clinical acceptance of mRNA-based COVID-19 vaccines. A significant barrier to progress in this emerging area is the wild variability of approaches reported in published literature regarding nanoparticle characterizations. Here, we provide a brief overview of the current status and outline important concerns regarding the need for standardized protocols to evaluate NP uptake, NP transfection efficacy, drug dose determination, and variability of nonviral gene delivery systems. Based on these concerns, we propose wide adherence to multimodal, multiparameter, and multistudy analysis of NP systems. Adoption of these proposed approaches will ensure improved transparency, provide a better basis for interlaboratory comparisons, and will simplify judging the significance of new findings in a broader context, all critical requirements for advancing the field of nonviral gene delivery.
Collapse
Affiliation(s)
- Yao Yao
- Biointerfaces Institute, University of Michigan, Ann Arbor, MI 48109, USA
- School of Dentistry, University of Michigan, Ann Arbor, MI 48109, USA
- Department of Chemical Engineering, University of Michigan, Ann Arbor, MI 48109, USA
| | - Yeongun Ko
- Biointerfaces Institute, University of Michigan, Ann Arbor, MI 48109, USA
- Department of Chemical Engineering, University of Michigan, Ann Arbor, MI 48109, USA
- School of Polymer Science and Engineering, Chonnam National University, Buk-gu, Gwangju 61186, South Korea
| | - Grant Grasman
- Biointerfaces Institute, University of Michigan, Ann Arbor, MI 48109, USA
- Department of Chemical Engineering, University of Michigan, Ann Arbor, MI 48109, USA
| | - Jeffery E Raymond
- Biointerfaces Institute, University of Michigan, Ann Arbor, MI 48109, USA
- Department of Chemical Engineering, University of Michigan, Ann Arbor, MI 48109, USA
| | - Joerg Lahann
- Biointerfaces Institute, University of Michigan, Ann Arbor, MI 48109, USA
- Department of Chemical Engineering, University of Michigan, Ann Arbor, MI 48109, USA
| |
Collapse
|
25
|
Shikanai M, Ito S, Nishimura YV, Akagawa R, Fukuda M, Yuzaki M, Nabeshima Y, Kawauchi T. Rab21 regulates caveolin-1-mediated endocytic trafficking to promote immature neurite pruning. EMBO Rep 2023; 24:e54701. [PMID: 36683567 PMCID: PMC9986827 DOI: 10.15252/embr.202254701] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Revised: 12/09/2022] [Accepted: 12/21/2022] [Indexed: 01/24/2023] Open
Abstract
Transmembrane proteins are internalized by clathrin- and caveolin-dependent endocytosis. Both pathways converge on early endosomes and are thought to share the small GTPase Rab5 as common regulator. In contrast to this notion, we show here that the clathrin- and caveolin-mediated endocytic pathways are differentially regulated. Rab5 and Rab21 localize to distinct populations of early endosomes in cortical neurons and preferentially regulate clathrin- and caveolin-mediated pathways, respectively, suggesting heterogeneity in the early endosomes, rather than a converging point. Suppression of Rab21, but not Rab5, results in decreased plasma membrane localization and total protein levels of caveolin-1, which perturbs immature neurite pruning of cortical neurons, an in vivo-specific step of neuronal maturation. Taken together, our data indicate that clathrin- and caveolin-mediated endocytic pathways run in parallel in early endosomes, which show different molecular regulation and physiological function.
Collapse
Affiliation(s)
- Mima Shikanai
- Department of PhysiologyKeio University School of MedicineTokyoJapan
| | - Shiho Ito
- Department of Aging Science and Medicine, Graduate School of MedicineKyoto UniversityKyotoJapan
- Laboratory of Molecular Life ScienceInstitute of Biomedical Research and Innovation, FBRI, CLIK‐5FKobeJapan
| | - Yoshiaki V Nishimura
- Division of Neuroscience, Faculty of MedicineTohoku Medical and Pharmaceutical UniversitySendaiJapan
| | - Remi Akagawa
- Laboratory of Molecular Life ScienceInstitute of Biomedical Research and Innovation, FBRI, CLIK‐5FKobeJapan
| | - Mitsunori Fukuda
- Laboratory of Membrane Trafficking Mechanisms, Department of Integrative Life Sciences, Graduate School of Life SciencesTohoku UniversitySendaiJapan
| | - Michisuke Yuzaki
- Department of PhysiologyKeio University School of MedicineTokyoJapan
| | - Yo‐ichi Nabeshima
- Department of Aging Science and Medicine, Graduate School of MedicineKyoto UniversityKyotoJapan
- Laboratory of Molecular Life ScienceInstitute of Biomedical Research and Innovation, FBRI, CLIK‐5FKobeJapan
| | - Takeshi Kawauchi
- Department of PhysiologyKeio University School of MedicineTokyoJapan
- Department of Aging Science and Medicine, Graduate School of MedicineKyoto UniversityKyotoJapan
- Laboratory of Molecular Life ScienceInstitute of Biomedical Research and Innovation, FBRI, CLIK‐5FKobeJapan
| |
Collapse
|
26
|
Wang S, Chen X, Crisman L, Dou X, Winborn CS, Wan C, Puscher H, Yin Q, Kennedy MJ, Shen J. Regulation of cargo exocytosis by a Reps1-Ralbp1-RalA module. SCIENCE ADVANCES 2023; 9:eade2540. [PMID: 36812304 PMCID: PMC9946360 DOI: 10.1126/sciadv.ade2540] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Accepted: 01/20/2023] [Indexed: 06/18/2023]
Abstract
Surface levels of membrane proteins are determined by a dynamic balance between exocytosis-mediated surface delivery and endocytosis-dependent retrieval from the cell surface. Imbalances in surface protein levels perturb surface protein homeostasis and cause major forms of human disease such as type 2 diabetes and neurological disorders. Here, we found a Reps1-Ralbp1-RalA module in the exocytic pathway broadly regulating surface protein levels. Reps1 and Ralbp1 form a binary complex that recognizes RalA, a vesicle-bound small guanosine triphosphatases (GTPase) promoting exocytosis through interacting with the exocyst complex. RalA binding results in Reps1 release and formation of a Ralbp1-RalA binary complex. Ralbp1 selectively recognizes GTP-bound RalA but is not a RalA effector. Instead, Ralbp1 binding maintains RalA in an active GTP-bound state. These studies uncovered a segment in the exocytic pathway and, more broadly, revealed a previously unrecognized regulatory mechanism for small GTPases, GTP state stabilization.
Collapse
Affiliation(s)
- Shifeng Wang
- Department of Molecular, Cellular and Developmental Biology, University of Colorado, Boulder, CO 80309, USA
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, 100029, China
| | - Xu Chen
- Department of Molecular, Cellular and Developmental Biology, University of Colorado, Boulder, CO 80309, USA
| | - Lauren Crisman
- Department of Molecular, Cellular and Developmental Biology, University of Colorado, Boulder, CO 80309, USA
| | - Ximing Dou
- Department of Molecular, Cellular and Developmental Biology, University of Colorado, Boulder, CO 80309, USA
| | - Christina S. Winborn
- Department of Pharmacology, University of Colorado School of Medicine, Aurora, CO 80045, USA
| | - Chun Wan
- Department of Molecular, Cellular and Developmental Biology, University of Colorado, Boulder, CO 80309, USA
| | - Harrison Puscher
- Department of Molecular, Cellular and Developmental Biology, University of Colorado, Boulder, CO 80309, USA
| | - Qian Yin
- Department of Biological Sciences and Institute of Molecular Biophysics, Florida State University, Tallahassee, FL 32306, USA
| | - Matthew J. Kennedy
- Department of Pharmacology, University of Colorado School of Medicine, Aurora, CO 80045, USA
| | - Jingshi Shen
- Department of Molecular, Cellular and Developmental Biology, University of Colorado, Boulder, CO 80309, USA
| |
Collapse
|
27
|
Insights of Endocytosis Signaling in Health and Disease. Int J Mol Sci 2023; 24:ijms24032971. [PMID: 36769293 PMCID: PMC9918140 DOI: 10.3390/ijms24032971] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Revised: 01/20/2023] [Accepted: 01/31/2023] [Indexed: 02/05/2023] Open
Abstract
Endocytosis in mammalian cells is a fundamental cellular machinery that regulates vital physiological processes, such as the absorption of metabolites, release of neurotransmitters, uptake of hormone cellular defense, and delivery of biomolecules across the plasma membrane. A remarkable characteristic of the endocytic machinery is the sequential assembly of the complex proteins at the plasma membrane, followed by internalization and fusion of various biomolecules to different cellular compartments. In all eukaryotic cells, functional characterization of endocytic pathways is based on dynamics of the protein complex and signal transduction modules. To coordinate the assembly and functions of the numerous parts of the endocytic machinery, the endocytic proteins interact significantly within and between the modules. Clathrin-dependent and -independent endocytosis, caveolar pathway, and receptor mediated endocytosis have been attributed to a greater variety of physiological and pathophysiological roles such as, autophagy, metabolism, cell division, apoptosis, cellular defense, and intestinal permeabilization. Notably, any defect or alteration in the endocytic machinery results in the development of pathological consequences associated with human diseases such as cancer, cardiovascular diseases, neurological diseases, and inflammatory diseases. In this review, an in-depth endeavor has been made to illustrate the process of endocytosis, and associated mechanisms describing pathological manifestation associated with dysregulated endocytosis machinery.
Collapse
|
28
|
Jin Y, Deng Z, Zhu T. Membrane protein trafficking in the anti-tumor immune response: work of endosomal-lysosomal system. Cancer Cell Int 2022; 22:413. [PMID: 36528587 PMCID: PMC9759898 DOI: 10.1186/s12935-022-02805-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2022] [Accepted: 11/24/2022] [Indexed: 12/23/2022] Open
Abstract
Immunotherapy has changed the treatment landscape for multiple cancer types. In the recent decade, great progress has been made in immunotherapy, including immune checkpoint inhibitors, adoptive T-cell therapy, and cancer vaccines. ICIs work by reversing tumor-induced immunosuppression, resulting in robust activation of the immune system and lasting immune responses. Whereas, their clinical use faces several challenges, especially the low response rate in most patients. As an increasing number of studies have focused on membrane immune checkpoint protein trafficking and degradation, which interferes with response to immunotherapy, it is necessary to summarize the mechanism regulating those transmembrane domain proteins translocated into the cytoplasm and degraded via lysosome. In addition, other immune-related transmembrane domain proteins such as T-cell receptor and major histocompatibility are associated with neoantigen presentation. The endosomal-lysosomal system can also regulate TCR and neoantigen-MHC complexes on the membrane to affect the efficacy of adoptive T-cell therapy and cancer vaccines. In conclusion, we discuss the process of surface delivery, internalization, recycling, and degradation of immune checkpoint proteins, TCR, and neoantigen-MHC complexes on the endosomal-lysosomal system in biology for optimizing cancer immunotherapy.
Collapse
Affiliation(s)
- Yan Jin
- grid.412632.00000 0004 1758 2270Cancer Center, Renmin Hospital of Wuhan University, Wuhan, 430060 China
| | - Zhifeng Deng
- grid.412632.00000 0004 1758 2270Department of Otolaryngology Head and Neck Surgery, Renmin Hospital of Wuhan University, Wuhan, 430060 China
| | - Ting Zhu
- grid.412632.00000 0004 1758 2270Department of Otolaryngology Head and Neck Surgery, Renmin Hospital of Wuhan University, Wuhan, 430060 China
| |
Collapse
|
29
|
Grones P, De Meyer A, Pleskot R, Mylle E, Kraus M, Vandorpe M, Yperman K, Eeckhout D, Dragwidge JM, Jiang Q, Nolf J, Pavie B, De Jaeger G, De Rybel B, Van Damme D. The endocytic TPLATE complex internalizes ubiquitinated plasma membrane cargo. NATURE PLANTS 2022; 8:1467-1483. [PMID: 36456802 PMCID: PMC7613989 DOI: 10.1038/s41477-022-01280-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Accepted: 10/19/2022] [Indexed: 05/12/2023]
Abstract
Endocytosis controls the perception of stimuli by modulating protein abundance at the plasma membrane. In plants, clathrin-mediated endocytosis is the most prominent internalization pathway and relies on two multimeric adaptor complexes, the AP-2 and the TPLATE complex (TPC). Ubiquitination is a well-established modification triggering endocytosis of cargo proteins, but how this modification is recognized to initiate the endocytic event remains elusive. Here we show that TASH3, one of the large subunits of TPC, recognizes ubiquitinated cargo at the plasma membrane via its SH3 domain-containing appendage. TASH3 lacking this evolutionary specific appendage modification allows TPC formation but the plants show severely reduced endocytic densities, which correlates with reduced endocytic flux. Moreover, comparative plasma membrane proteomics identified differential accumulation of multiple ubiquitinated cargo proteins for which we confirm altered trafficking. Our findings position TPC as a key player for ubiquitinated cargo internalization, allowing future identification of target proteins under specific stress conditions.
Collapse
Affiliation(s)
- Peter Grones
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium.
- Center for Plant Systems Biology, VIB, Ghent, Belgium.
| | - Andreas De Meyer
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium
- Center for Plant Systems Biology, VIB, Ghent, Belgium
| | - Roman Pleskot
- Institute of Experimental Botany, Academy of Sciences of the Czech Republic, Prague, Czech Republic
| | - Evelien Mylle
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium
- Center for Plant Systems Biology, VIB, Ghent, Belgium
| | - Michael Kraus
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium
- Center for Plant Systems Biology, VIB, Ghent, Belgium
| | - Michael Vandorpe
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium
- Center for Plant Systems Biology, VIB, Ghent, Belgium
| | - Klaas Yperman
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium
- Center for Plant Systems Biology, VIB, Ghent, Belgium
- Leibniz-Forschungsinstitut für Molekulare Pharmakologie (FMP), Berlin, Germany
| | - Dominique Eeckhout
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium
- Center for Plant Systems Biology, VIB, Ghent, Belgium
| | - Jonathan Michael Dragwidge
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium
- Center for Plant Systems Biology, VIB, Ghent, Belgium
| | - Qihang Jiang
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium
- Center for Plant Systems Biology, VIB, Ghent, Belgium
| | - Jonah Nolf
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium
- Center for Plant Systems Biology, VIB, Ghent, Belgium
| | - Benjamin Pavie
- Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
- BioImaging Core, VIB, 9052 Ghent, Belgium
| | - Geert De Jaeger
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium
- Center for Plant Systems Biology, VIB, Ghent, Belgium
| | - Bert De Rybel
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium
- Center for Plant Systems Biology, VIB, Ghent, Belgium
| | - Daniël Van Damme
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium.
- Center for Plant Systems Biology, VIB, Ghent, Belgium.
| |
Collapse
|
30
|
Matthaeus C, Sochacki KA, Dickey AM, Puchkov D, Haucke V, Lehmann M, Taraska JW. The molecular organization of differentially curved caveolae indicates bendable structural units at the plasma membrane. Nat Commun 2022; 13:7234. [PMID: 36433988 PMCID: PMC9700719 DOI: 10.1038/s41467-022-34958-3] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Accepted: 11/11/2022] [Indexed: 11/27/2022] Open
Abstract
Caveolae are small coated plasma membrane invaginations with diverse functions. Caveolae undergo curvature changes. Yet, it is unclear which proteins regulate this process. To address this gap, we develop a correlative stimulated emission depletion (STED) fluorescence and platinum replica electron microscopy imaging (CLEM) method to image proteins at single caveolae. Caveolins and cavins are found at all caveolae, independent of curvature. EHD2 is detected at both low and highly curved caveolae. Pacsin2 associates with low curved caveolae and EHBP1 with mostly highly curved caveolae. Dynamin is absent from caveolae. Cells lacking dynamin show no substantial changes to caveolae, suggesting that dynamin is not directly involved in caveolae curvature. We propose a model where caveolins, cavins, and EHD2 assemble as a cohesive structural unit regulated by intermittent associations with pacsin2 and EHBP1. These coats can flatten and curve to enable lipid traffic, signaling, and changes to the surface area of the cell.
Collapse
Affiliation(s)
- Claudia Matthaeus
- Biochemistry and Biophysics Center, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, USA
| | - Kem A Sochacki
- Biochemistry and Biophysics Center, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, USA
| | - Andrea M Dickey
- Biochemistry and Biophysics Center, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, USA
| | - Dmytro Puchkov
- Leibniz-Forschungsinstitut für Molekulare Pharmakologie (FMP), Berlin, Germany
| | - Volker Haucke
- Leibniz-Forschungsinstitut für Molekulare Pharmakologie (FMP), Berlin, Germany
- Faculty of Biology, Chemistry and Pharmacy, Freie Universität Berlin, Berlin, Germany
| | - Martin Lehmann
- Leibniz-Forschungsinstitut für Molekulare Pharmakologie (FMP), Berlin, Germany
| | - Justin W Taraska
- Biochemistry and Biophysics Center, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, USA.
| |
Collapse
|
31
|
Youden B, Jiang R, Carrier AJ, Servos MR, Zhang X. A Nanomedicine Structure-Activity Framework for Research, Development, and Regulation of Future Cancer Therapies. ACS NANO 2022; 16:17497-17551. [PMID: 36322785 DOI: 10.1021/acsnano.2c06337] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Despite their clinical success in drug delivery applications, the potential of theranostic nanomedicines is hampered by mechanistic uncertainty and a lack of science-informed regulatory guidance. Both the therapeutic efficacy and the toxicity of nanoformulations are tightly controlled by the complex interplay of the nanoparticle's physicochemical properties and the individual patient/tumor biology; however, it can be difficult to correlate such information with observed outcomes. Additionally, as nanomedicine research attempts to gradually move away from large-scale animal testing, the need for computer-assisted solutions for evaluation will increase. Such models will depend on a clear understanding of structure-activity relationships. This review provides a comprehensive overview of the field of cancer nanomedicine and provides a knowledge framework and foundational interaction maps that can facilitate future research, assessments, and regulation. By forming three complementary maps profiling nanobio interactions and pathways at different levels of biological complexity, a clear picture of a nanoparticle's journey through the body and the therapeutic and adverse consequences of each potential interaction are presented.
Collapse
Affiliation(s)
- Brian Youden
- Department of Biology, University of Waterloo, 200 University Ave. W, Waterloo, Ontario N2L 3G1, Canada
| | - Runqing Jiang
- Department of Biology, University of Waterloo, 200 University Ave. W, Waterloo, Ontario N2L 3G1, Canada
- Department of Medical Physics, Grand River Regional Cancer Centre, Kitchener, Ontario N2G 1G3, Canada
| | - Andrew J Carrier
- Department of Chemistry, Cape Breton University, 1250 Grand Lake Road, Sydney, Nova Scotia B1P 6L2, Canada
| | - Mark R Servos
- Department of Biology, University of Waterloo, 200 University Ave. W, Waterloo, Ontario N2L 3G1, Canada
| | - Xu Zhang
- Department of Biology, University of Waterloo, 200 University Ave. W, Waterloo, Ontario N2L 3G1, Canada
- Department of Chemistry, Cape Breton University, 1250 Grand Lake Road, Sydney, Nova Scotia B1P 6L2, Canada
| |
Collapse
|
32
|
Zhu D, Zhang Z, Zhao J, Liu D, Gan L, Lau WB, Xie D, Meng Z, Yao P, Tsukuda J, Christopher TA, Lopez BL, Gao E, Koch WJ, Wang Y, Ma XL. Targeting Adiponectin Receptor 1 Phosphorylation Against Ischemic Heart Failure. Circ Res 2022; 131:e34-e50. [PMID: 35611695 PMCID: PMC9308652 DOI: 10.1161/circresaha.121.319976] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
BACKGROUND Despite significantly reduced acute myocardial infarction (MI) mortality in recent years, ischemic heart failure continues to escalate. Therapeutic interventions effectively reversing pathological remodeling are an urgent unmet medical need. We recently demonstrated that AdipoR1 (APN [adiponectin] receptor 1) phosphorylation by GRK2 (G-protein-coupled receptor kinase 2) contributes to maladaptive remodeling in the ischemic heart. The current study clarified the underlying mechanisms leading to AdipoR1 phosphorylative desensitization and investigated whether blocking AdipoR1 phosphorylation may restore its protective signaling, reversing post-MI remodeling. METHODS Specific sites and underlying molecular mechanisms responsible for AdipoR1 phosphorylative desensitization were investigated in vitro (neonatal and adult cardiomyocytes). The effects of AdipoR1 phosphorylation inhibition upon APN post-MI remodeling and heart failure progression were investigated in vivo. RESULTS Among 4 previously identified sites sensitive to GRK2 phosphorylation, alanine substitution of Ser205 (AdipoR1S205A), but not other 3 sites, rescued GRK2-suppressed AdipoR1 functions, restoring APN-induced cell salvage kinase activation and reducing oxidative cell death. The molecular investigation followed by functional determination demonstrated that AdipoR1 phosphorylation promoted clathrin-dependent (not caveolae) endocytosis and lysosomal-mediated (not proteasome) degradation, reducing AdipoR1 protein level and suppressing AdipoR1-mediated cytoprotective action. GRK2-induced AdipoR1 endocytosis and degradation were blocked by AdipoR1S205A overexpression. Moreover, AdipoR1S205E (pseudophosphorylation) phenocopied GRK2 effects, promoted AdipoR1 endocytosis and degradation, and inhibited AdipoR1 biological function. Most importantly, AdipoR1 function was preserved during heart failure development in AdipoR1-KO (AdipoR1 knockout) mice reexpressing hAdipoR1S205A. APN administration in the failing heart reversed post-MI remodeling and improved cardiac function. However, reexpressing hAdipoR1WT in AdipoR1-KO mice failed to restore APN cardioprotection. CONCLUSIONS Ser205 is responsible for AdipoR1 phosphorylative desensitization in the failing heart. Blockade of AdipoR1 phosphorylation followed by pharmacological APN administration is a novel therapy effective in reversing post-MI remodeling and mitigating heart failure progression.
Collapse
Affiliation(s)
- Di Zhu
- Department of Emergency Medicine, Thomas Jefferson University, Philadelphia, PA 19107
| | - Zhen Zhang
- Department of Emergency Medicine, Thomas Jefferson University, Philadelphia, PA 19107
| | - Jianli Zhao
- Department of Emergency Medicine, Thomas Jefferson University, Philadelphia, PA 19107
| | - Demin Liu
- Department of Emergency Medicine, Thomas Jefferson University, Philadelphia, PA 19107
| | - Lu Gan
- Department of Emergency Medicine, Thomas Jefferson University, Philadelphia, PA 19107
| | - Wayne Bond Lau
- Department of Emergency Medicine, Thomas Jefferson University, Philadelphia, PA 19107
| | - Dina Xie
- Department of Emergency Medicine, Thomas Jefferson University, Philadelphia, PA 19107
| | - Zhijun Meng
- Department of Emergency Medicine, Thomas Jefferson University, Philadelphia, PA 19107
| | - Peng Yao
- Department of Emergency Medicine, Thomas Jefferson University, Philadelphia, PA 19107
| | - Jumpei Tsukuda
- Department of Emergency Medicine, Thomas Jefferson University, Philadelphia, PA 19107
| | | | - Bernard L. Lopez
- Department of Emergency Medicine, Thomas Jefferson University, Philadelphia, PA 19107
| | - Erhe Gao
- Department of Cardiovascular Sciences, Center for Translational Medicine, Temple University, Philadelphia, PA 19104
| | - Walter J. Koch
- Department of Cardiovascular Sciences, Center for Translational Medicine, Temple University, Philadelphia, PA 19104
| | - Yajing Wang
- Department of Emergency Medicine, Thomas Jefferson University, Philadelphia, PA 19107
- Corresponding Authors: Xinliang (Xin) Ma, M.D., Ph.D, Department of Medicine and, Department of Emergency Medicine, 1025 Walnut Street, College Building 300, Thomas Jefferson University, Philadelphia, PA 19107, Tel: 215-955-4994, Or Yajing Wang, MD,PhD, Department of Emergency Medicine, 1025 Walnut Street, College Building 325, Thomas Jefferson University, Philadelphia, PA 19107, Tel: 215-955-8895,
| | - Xin-Liang Ma
- Department of Emergency Medicine, Thomas Jefferson University, Philadelphia, PA 19107
- Corresponding Authors: Xinliang (Xin) Ma, M.D., Ph.D, Department of Medicine and, Department of Emergency Medicine, 1025 Walnut Street, College Building 300, Thomas Jefferson University, Philadelphia, PA 19107, Tel: 215-955-4994, Or Yajing Wang, MD,PhD, Department of Emergency Medicine, 1025 Walnut Street, College Building 325, Thomas Jefferson University, Philadelphia, PA 19107, Tel: 215-955-8895,
| |
Collapse
|
33
|
Park J, Jia S, Salter D, Bagnaninchi P, Hansen CG. The Hippo pathway drives the cellular response to hydrostatic pressure. EMBO J 2022; 41:e108719. [PMID: 35702882 PMCID: PMC9251841 DOI: 10.15252/embj.2021108719] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Revised: 04/13/2022] [Accepted: 05/16/2022] [Indexed: 11/24/2022] Open
Abstract
Cells need to rapidly and precisely react to multiple mechanical and chemical stimuli in order to ensure precise context-dependent responses. This requires dynamic cellular signalling events that ensure homeostasis and plasticity when needed. A less well-understood process is cellular response to elevated interstitial fluid pressure, where the cell senses and responds to changes in extracellular hydrostatic pressure. Here, using quantitative label-free digital holographic imaging, combined with genome editing, biochemical assays and confocal imaging, we analyse the temporal cellular response to hydrostatic pressure. Upon elevated cyclic hydrostatic pressure, the cell responds by rapid, dramatic and reversible changes in cellular volume. We show that YAP and TAZ, the co-transcriptional regulators of the Hippo signalling pathway, control cell volume and that cells without YAP and TAZ have lower plasma membrane tension. We present direct evidence that YAP/TAZ drive the cellular response to hydrostatic pressure, a process that is at least partly mediated via clathrin-dependent endocytosis. Additionally, upon elevated oscillating hydrostatic pressure, YAP/TAZ are activated and induce TEAD-mediated transcription and expression of cellular components involved in dynamic regulation of cell volume and extracellular matrix. This cellular response confers a feedback loop that allows the cell to robustly respond to changes in interstitial fluid pressure.
Collapse
Affiliation(s)
- Jiwon Park
- Centre for Inflammation ResearchInstitute for Regeneration and Repair, Edinburgh bioQuarterThe University of EdinburghEdinburghUK
- Centre for Regenerative MedicineInstitute for Regeneration and Repair, Edinburgh bioQuarterThe University of EdinburghEdinburghUK
| | - Siyang Jia
- Centre for Inflammation ResearchInstitute for Regeneration and Repair, Edinburgh bioQuarterThe University of EdinburghEdinburghUK
- Centre for Regenerative MedicineInstitute for Regeneration and Repair, Edinburgh bioQuarterThe University of EdinburghEdinburghUK
| | - Donald Salter
- Centre for Genomic & Experimental MedicineMRC Institute of Genetics & Molecular MedicineThe University of Edinburgh, Western General HospitalEdinburghUK
| | - Pierre Bagnaninchi
- Centre for Regenerative MedicineInstitute for Regeneration and Repair, Edinburgh bioQuarterThe University of EdinburghEdinburghUK
| | - Carsten G Hansen
- Centre for Inflammation ResearchInstitute for Regeneration and Repair, Edinburgh bioQuarterThe University of EdinburghEdinburghUK
- Centre for Regenerative MedicineInstitute for Regeneration and Repair, Edinburgh bioQuarterThe University of EdinburghEdinburghUK
| |
Collapse
|
34
|
Zaccai NR, Kadlecova Z, Dickson VK, Korobchevskaya K, Kamenicky J, Kovtun O, Umasankar PK, Wrobel AG, Kaufman JGG, Gray SR, Qu K, Evans PR, Fritzsche M, Sroubek F, Höning S, Briggs JAG, Kelly BT, Owen DJ, Traub LM. FCHO controls AP2's initiating role in endocytosis through a PtdIns(4,5)P 2-dependent switch. SCIENCE ADVANCES 2022; 8:eabn2018. [PMID: 35486718 PMCID: PMC9054013 DOI: 10.1126/sciadv.abn2018] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Accepted: 03/11/2022] [Indexed: 06/14/2023]
Abstract
Clathrin-mediated endocytosis (CME) is the main mechanism by which mammalian cells control their cell surface proteome. Proper operation of the pivotal CME cargo adaptor AP2 requires membrane-localized Fer/Cip4 homology domain-only proteins (FCHO). Here, live-cell enhanced total internal reflection fluorescence-structured illumination microscopy shows that FCHO marks sites of clathrin-coated pit (CCP) initiation, which mature into uniform-sized CCPs comprising a central patch of AP2 and clathrin corralled by an FCHO/Epidermal growth factor potential receptor substrate number 15 (Eps15) ring. We dissect the network of interactions between the FCHO interdomain linker and AP2, which concentrates, orients, tethers, and partially destabilizes closed AP2 at the plasma membrane. AP2's subsequent membrane deposition drives its opening, which triggers FCHO displacement through steric competition with phosphatidylinositol 4,5-bisphosphate, clathrin, cargo, and CME accessory factors. FCHO can now relocate toward a CCP's outer edge to engage and activate further AP2s to drive CCP growth/maturation.
Collapse
Affiliation(s)
- Nathan R. Zaccai
- CIMR, University of Cambridge, Biomedical Campus, Hills Road, Cambridge CB2 0XY, UK
| | - Zuzana Kadlecova
- CIMR, University of Cambridge, Biomedical Campus, Hills Road, Cambridge CB2 0XY, UK
| | | | - Kseniya Korobchevskaya
- Kennedy Institute of Rheumatology, University of Oxford, Roosevelt Drive, Oxford OX3 7FY, UK
| | - Jan Kamenicky
- Czech Academy of Sciences, Institute of Information Theory and Automation, Pod Vodarenskou vezi 4, 182 08 Prague 8, Czech Republic
| | - Oleksiy Kovtun
- MRC LMB Cambridge Biomedical Campus, Cambridge CB2 0QH, UK
| | - Perunthottathu K. Umasankar
- Intracellular Trafficking Laboratory, Transdisciplinary Biology Research Program, Rajiv Gandhi Centre for Biotechnology, Thiruvananthapuram, Kerala, India
| | - Antoni G. Wrobel
- CIMR, University of Cambridge, Biomedical Campus, Hills Road, Cambridge CB2 0XY, UK
| | | | - Sally R. Gray
- CIMR, University of Cambridge, Biomedical Campus, Hills Road, Cambridge CB2 0XY, UK
| | - Kun Qu
- MRC LMB Cambridge Biomedical Campus, Cambridge CB2 0QH, UK
| | | | - Marco Fritzsche
- Kennedy Institute of Rheumatology, University of Oxford, Roosevelt Drive, Oxford OX3 7FY, UK
- Rosalind Franklin Institute, Harwell Campus, Didcot, UK
| | - Filip Sroubek
- Czech Academy of Sciences, Institute of Information Theory and Automation, Pod Vodarenskou vezi 4, 182 08 Prague 8, Czech Republic
| | - Stefan Höning
- Institute for Biochemistry I, Medical Faculty, University of Cologne, Joseph-Stelzmann-Straße 52, 50931 Cologne, Germany
| | - John A. G. Briggs
- MRC LMB Cambridge Biomedical Campus, Cambridge CB2 0QH, UK
- Max Planck Institute of Biochemistry, 82152 Martinsried, Germany
| | - Bernard T. Kelly
- CIMR, University of Cambridge, Biomedical Campus, Hills Road, Cambridge CB2 0XY, UK
| | - David J. Owen
- CIMR, University of Cambridge, Biomedical Campus, Hills Road, Cambridge CB2 0XY, UK
| | - Linton M. Traub
- Department of Cell Biology, University of Pittsburgh School of Medicine, 3500 Terrace Street, Pittsburgh, PA, USA
| |
Collapse
|
35
|
Early Endosomal Vps34-Derived Phosphatidylinositol-3-Phosphate Is Indispensable for the Biogenesis of the Endosomal Recycling Compartment. Cells 2022; 11:cells11060962. [PMID: 35326413 PMCID: PMC8946653 DOI: 10.3390/cells11060962] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Revised: 02/17/2022] [Accepted: 03/09/2022] [Indexed: 12/29/2022] Open
Abstract
Phosphatidylinositol-3-phosphate (PI3P), a major identity tag of early endosomes (EEs), provides a platform for the recruitment of numerous cellular proteins containing an FYVE or PX domain that is required for PI3P-dependent maturation of EEs. Most of the PI3P in EEs is generated by the activity of Vps34, a catalytic component of class III phosphatidylinositol-3-phosphate kinase (PI3Ks) complex. In this study, we analyzed the role of Vps34-derived PI3P in the EE recycling circuit of unperturbed cells using VPS34-IN1 (IN1), a highly specific inhibitor of Vps34. IN1-mediated PI3P depletion resulted in the rapid dissociation of recombinant FYVE- and PX-containing PI3P-binding modules and endogenous PI3P-binding proteins, including EEA1 and EE sorting nexins. IN1 treatment triggered the rapid restructuring of EEs into a PI3P-independent functional configuration, and after IN1 washout, EEs were rapidly restored to a PI3P-dependent functional configuration. Analysis of the PI3P-independent configuration showed that the Vps34-derived PI3P is not essential for the pre-EE-associated functions and the fast recycling loop of the EE recycling circuit but contributes to EE maturation toward the degradation circuit, as previously shown in Vps34 knockout and knockdown studies. However, our study shows that Vps34-derived PI3P is also essential for the establishment of the Rab11a-dependent pathway, including recycling cargo sorting in this pathway and membrane flux from EEs to the pericentriolar endosomal recycling compartment (ERC). Rab11a endosomes of PI3P-depleted cells expanded and vacuolized outside the pericentriolar area without the acquisition of internalized transferrin (Tf). These endosomes had high levels of FIP5 and low levels of FIP3, suggesting that their maturation was arrested before the acquisition of FIP3. Consequently, Tf-loaded-, Rab11a/FIP5-, and Rab8a-positive endosomes disappeared from the pericentriolar area, implying that PI3P-associated functions are essential for ERC biogenesis. ERC loss was rapidly reversed after IN1 washout, which coincided with the restoration of FIP3 recruitment to Rab11a-positive endosomes and their dynein-dependent migration to the cell center. Thus, our study shows that Vps34-derived PI3P is indispensable in the recycling circuit to maintain the slow recycling pathway and biogenesis of the ERC.
Collapse
|
36
|
Luo J, Wang Z, Tang F, Feng K. Immune Defense Mechanism of Reticulitermes chinensis Snyder (Blattodea: Isoptera) against Serratia marcescens Bizio. INSECTS 2022; 13:insects13030226. [PMID: 35323524 PMCID: PMC8954430 DOI: 10.3390/insects13030226] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Revised: 02/21/2022] [Accepted: 02/22/2022] [Indexed: 12/05/2022]
Abstract
Simple Summary Reticulitermes chinensis Snyder is the most important pest in China. Serratia marcescens (SM1) can infect insects. In our lab, we found that SM1 can kill R. chinensis. However, the mechanisms underlying the immune defense of R. chinensis against SM1 is unknown. Therefore, understanding the interaction between R. chinensis and SM1 is important for termite control. In this study, immune-related differentially expressed genes (DEGs) in R. chinensis were identified and analyzed after SM1 infection. The results increased our understanding of immune responses in pests. This study was helpful for the development of immune suppressive agents in R. chinensis management. Abstract Reticulitermes chinensis Snyder is an important pest species in China. Serratia marcescens Bizio (SM1) is a potent biological bacterium. In our lab, we found that SM1 can kill R. chinensis. To date, the interaction between R. chinensis and SM1 has not been studied. Here, we explored immune responses of R. chinensis against SM1 using transcriptome sequencing. To elucidate immune-related genes, we identified 126,153 unigenes from R. chinensis. In total, 178 immune-related differentially expressed genes (DEGs) were identified. Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis showed that many cellular responses were enriched in the top 20 terms. Then, we systematically analyzed several cellular immune pathways involved in the response of R. chinensis to SM1, including phagocytosis, autophagy, and endocytosis pathways. Furthermore, the expression profiles of the cellular immune-related genes were assessed using quantitative reverse-transcription PCR, and the expression levels of the selected genes were upregulated. Further results revealed SM1-mediated activation of humoral immune responses genes, including Toll, IMD, and melanization pathways, which suggested the involvement of humoral immune responses in the defense against SM1. This research elucidated the mechanisms underlying the immune defense of R. chinensis against SM1, providing a solid theoretical basis for exploiting new immune suppressive agents to control R. chinensis. Moreover, this study will facilitate the better control of R. chinensis using SM1.
Collapse
Affiliation(s)
- Jian Luo
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing 210037, China; (J.L.); (Z.W.); (K.F.)
- College of Forestry, Nanjing Forestry University, Nanjing 210037, China
| | - Zhiqiang Wang
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing 210037, China; (J.L.); (Z.W.); (K.F.)
- College of Forestry, Nanjing Forestry University, Nanjing 210037, China
| | - Fang Tang
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing 210037, China; (J.L.); (Z.W.); (K.F.)
- College of Forestry, Nanjing Forestry University, Nanjing 210037, China
- Correspondence: ; Tel.: +86-138-1396-6269
| | - Kai Feng
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing 210037, China; (J.L.); (Z.W.); (K.F.)
- College of Forestry, Nanjing Forestry University, Nanjing 210037, China
| |
Collapse
|
37
|
Wang S, Wan C, Squiers GT, Shen J. Endocytosis Assays Using Cleavable Fluorescent Dyes. Methods Mol Biol 2022; 2473:181-194. [PMID: 35819767 DOI: 10.1007/978-1-0716-2209-4_14] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Endocytosis mediates the entry of surface and extracellular cargoes into the cell. In this chapter, we describe assays to quantitively measure the endocytosis of both soluble and transmembrane cargo proteins, taking advantage of cleavable fluorescent dyes labeling cargo proteins or antibodies recognizing cargo proteins. After removing surface-bound fluorescent dye, internalized cargoes are measured using confocal imaging and flow cytometry. We also describe strategies to determine the role of clathrin-mediated endocytosis (CME) in the internalization of a cargo by using a small molecule inhibitor of CME and knockout (KO) of the AAGAB gene, which encodes an essential regulator of CME.
Collapse
Affiliation(s)
- Shifeng Wang
- Department of Chinese Medicine Information Science, Beijing University of Chinese Medicine, Beijing, China.
- Department of Molecular, Cellular and Developmental Biology, University of Colorado, Boulder, CO, USA.
| | - Chun Wan
- Department of Molecular, Cellular and Developmental Biology, University of Colorado, Boulder, CO, USA
| | - Galen T Squiers
- Department of Molecular, Cellular and Developmental Biology, University of Colorado, Boulder, CO, USA
| | - Jingshi Shen
- Department of Molecular, Cellular and Developmental Biology, University of Colorado, Boulder, CO, USA.
| |
Collapse
|
38
|
Both Clathrin-Mediated and Membrane Microdomain-Associated Endocytosis Contribute to the Cellular Adaptation to Hyperosmotic Stress in Arabidopsis. Int J Mol Sci 2021; 22:ijms222212534. [PMID: 34830417 PMCID: PMC8621756 DOI: 10.3390/ijms222212534] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Revised: 11/16/2021] [Accepted: 11/18/2021] [Indexed: 11/23/2022] Open
Abstract
As sessile organisms, plants must directly deal with an often complex and adverse environment in which hyperosmotic stress is one of the most serious abiotic factors, challenging cellular physiology and integrity. The plasma membrane (PM) is the hydrophobic barrier between the inside and outside environments of cells and is considered a central compartment in cellular adaptation to diverse stress conditions through dynamic PM remodeling. Endocytosis is a powerful method for rapid remodeling of the PM. In animal cells, different endocytic pathways are activated in response to osmotic stress, while only a few reports are related to the endocytosis response pathway and involve a mechanism in plant cells upon hyperosmotic stress. In this study, using different endocytosis inhibitors, the microdomain-specific dye di-4-ANEPPDHQ, variable-angle total internal reflection fluorescence microscopy (VA-TIRFM), and confocal microscopy, we discovered that internalized Clathrin Light Chain-Green Fluorescent Protein (CLC-GFP) increased under hyperosmotic conditions, accompanied by decreased fluorescence intensity of CLC-GFP at the PM. CLC-GFP tended to have higher diffusion coefficients and a fraction of CLC-GFP molecules underwent slower diffusion upon hyperosmotic stress. Meanwhile, an increased motion range of CLC-GFP was found under hyperosmotic treatment compared with the control. In addition, the order of the PM decreased, but the order of the endosome increased when cells were in hyperosmotic conditions. Hence, our results demonstrated that clathrin-mediated endocytosis and membrane microdomain-associated endocytosis both participate in the adaptation to hyperosmotic stress. These findings will help to further understand the role and the regulatory mechanism involved in plant endocytosis in helping plants adapt to osmotic stress.
Collapse
|
39
|
Charpentier JC, King PD. Mechanisms and functions of endocytosis in T cells. Cell Commun Signal 2021; 19:92. [PMID: 34503523 PMCID: PMC8427877 DOI: 10.1186/s12964-021-00766-3] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Accepted: 07/17/2021] [Indexed: 11/11/2022] Open
Abstract
Once thought of primarily as a means to neutralize pathogens or to facilitate feeding, endocytosis is now known to regulate a wide range of eukaryotic cell processes. Among these are regulation of signal transduction, mitosis, lipid homeostasis, and directed migration, among others. Less well-appreciated are the roles various forms of endocytosis plays in regulating αβ and, especially, γδ T cell functions, such as T cell receptor signaling, antigen discovery by trogocytosis, and activated cell growth. Herein we examine the contribution of both clathrin-mediated and clathrin-independent mechanisms of endocytosis to T cell biology. Video Abstract
Collapse
Affiliation(s)
- John C Charpentier
- Department of Microbiology and Immunology, University of Michigan Medical School, 6606 Med Sci II, 1150 West Medical Center Drive, Ann Arbor, MI, 48109-5620, USA
| | - Philip D King
- Department of Microbiology and Immunology, University of Michigan Medical School, 6606 Med Sci II, 1150 West Medical Center Drive, Ann Arbor, MI, 48109-5620, USA.
| |
Collapse
|
40
|
Clathrin: the molecular shape shifter. Biochem J 2021; 478:3099-3123. [PMID: 34436540 DOI: 10.1042/bcj20200740] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2021] [Revised: 07/19/2021] [Accepted: 08/04/2021] [Indexed: 12/11/2022]
Abstract
Clathrin is best known for its contribution to clathrin-mediated endocytosis yet it also participates to a diverse range of cellular functions. Key to this is clathrin's ability to assemble into polyhedral lattices that include curved football or basket shapes, flat lattices or even tubular structures. In this review, we discuss clathrin structure and coated vesicle formation, how clathrin is utilised within different cellular processes including synaptic vesicle recycling, hormone desensitisation, spermiogenesis, cell migration and mitosis, and how clathrin's remarkable 'shapeshifting' ability to form diverse lattice structures might contribute to its multiple cellular functions.
Collapse
|
41
|
Link F, Borges AR, Jones NG, Engstler M. To the Surface and Back: Exo- and Endocytic Pathways in Trypanosoma brucei. Front Cell Dev Biol 2021; 9:720521. [PMID: 34422837 PMCID: PMC8377397 DOI: 10.3389/fcell.2021.720521] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Accepted: 07/06/2021] [Indexed: 01/10/2023] Open
Abstract
Trypanosoma brucei is one of only a few unicellular pathogens that thrives extracellularly in the vertebrate host. Consequently, the cell surface plays a critical role in both immune recognition and immune evasion. The variant surface glycoprotein (VSG) coats the entire surface of the parasite and acts as a flexible shield to protect invariant proteins against immune recognition. Antigenic variation of the VSG coat is the major virulence mechanism of trypanosomes. In addition, incessant motility of the parasite contributes to its immune evasion, as the resulting fluid flow on the cell surface drags immunocomplexes toward the flagellar pocket, where they are internalized. The flagellar pocket is the sole site of endo- and exocytosis in this organism. After internalization, VSG is rapidly recycled back to the surface, whereas host antibodies are thought to be transported to the lysosome for degradation. For this essential step to work, effective machineries for both sorting and recycling of VSGs must have evolved in trypanosomes. Our understanding of the mechanisms behind VSG recycling and VSG secretion, is by far not complete. This review provides an overview of the trypanosome secretory and endosomal pathways. Longstanding questions are pinpointed that, with the advent of novel technologies, might be answered in the near future.
Collapse
Affiliation(s)
- Fabian Link
- Department of Cell and Developmental Biology, Biocenter, University of Würzburg, Würzburg, Germany
| | - Alyssa R Borges
- Department of Cell and Developmental Biology, Biocenter, University of Würzburg, Würzburg, Germany
| | - Nicola G Jones
- Department of Cell and Developmental Biology, Biocenter, University of Würzburg, Würzburg, Germany
| | - Markus Engstler
- Department of Cell and Developmental Biology, Biocenter, University of Würzburg, Würzburg, Germany
| |
Collapse
|
42
|
Zhang L, Ding L, Li Y, Zhang F, Xu Y, Pan H, Wan X, Yan G, Yu F, Li R. EHD3 positively regulated by NR5A1 participates in testosterone synthesis via endocytosis. Life Sci 2021; 278:119570. [PMID: 33964295 DOI: 10.1016/j.lfs.2021.119570] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2021] [Revised: 04/19/2021] [Accepted: 04/25/2021] [Indexed: 01/23/2023]
Abstract
AIMS Increasing evidence has shown that hormone secretion is regulated by endocytosis. Eps15 homology domain-containing protein 3 (EHD3) is an endocytic-trafficking regulatory protein, but whether EHD3 is associated with testosterone secretion is not clear. This work aims to explore the role of EHD3 in testosterone synthesis. MAIN METHODS Testosterone concentration was determined by ELISA. The effects of EHD3 on endocytosis were assessed by exosomes tracing assay and Immunofluorescence. Targeting relationship between EHD3 and NR5A1 was verified by chromatin immunoprecipitation (ChIP) and dual luciferase reporter gene assay in Leydig cells. For in vivo assessments, conditional NR5A1 knockout mouse model was established with CRISPR/Cas9 gene targeting technology. KEY FINDINGS EHD3 overexpression significantly increased the concentration of testosterone. EHD3 knockdown markedly decreased testosterone synthesis by reducing endocytosis. The activity of the EHD3 promoter was positively regulated by NR5A1, which occupied the conserved sequence "AGGTCA" in the EHD3 promoter. Furthermore, mice with a Leydig cell-specific conditional NR5A1 knockout displayed the blunted levels of EHD3 and clathrin (a key factor for endocytosis), and serum testosterone concentration compared with NR5A1f/f mice. SIGNIFICANCE This study suggests a potential molecular mechanism of testosterone synthesis to fully understand male reproductive health.
Collapse
Affiliation(s)
- Lingling Zhang
- NHC Key Lab of Reproduction Regulation (Shanghai Institute of Planned Parenthood Research), School of Pharmacy, Fudan University, Shanghai 200032, China; NHC Key Lab of Reproduction Regulation (Shanghai Institute of Planned Parenthood Research), Fudan University, Shanghai 200032, China; Center for Reproductive Medicine, Drum Tower Clinic Medical College of Nanjing Medical University, Nanjing 210008, China; Center for Molecular Reproductive Medicine, Nanjing University, Nanjing 210008, China
| | - Lijun Ding
- Center for Reproductive Medicine, Drum Tower Clinic Medical College of Nanjing Medical University, Nanjing 210008, China; Center for Molecular Reproductive Medicine, Nanjing University, Nanjing 210008, China; Clinical Center for Stem Cell Research, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing 210008, China
| | - Yifan Li
- Center for Reproductive Medicine, Drum Tower Clinic Medical College of Nanjing Medical University, Nanjing 210008, China; Center for Molecular Reproductive Medicine, Nanjing University, Nanjing 210008, China
| | - Fangxi Zhang
- NHC Key Lab of Reproduction Regulation (Shanghai Institute of Planned Parenthood Research), School of Pharmacy, Fudan University, Shanghai 200032, China; NHC Key Lab of Reproduction Regulation (Shanghai Institute of Planned Parenthood Research), Fudan University, Shanghai 200032, China
| | - Yanhong Xu
- Center for Reproductive Medicine, Drum Tower Clinic Medical College of Nanjing Medical University, Nanjing 210008, China; Center for Molecular Reproductive Medicine, Nanjing University, Nanjing 210008, China
| | - Hongjie Pan
- NHC Key Lab of Reproduction Regulation (Shanghai Institute of Planned Parenthood Research), Fudan University, Shanghai 200032, China
| | - Xiaofeng Wan
- NHC Key Lab of Reproduction Regulation (Shanghai Institute of Planned Parenthood Research), Fudan University, Shanghai 200032, China
| | - Guijun Yan
- Center for Reproductive Medicine, Drum Tower Clinic Medical College of Nanjing Medical University, Nanjing 210008, China; Center for Molecular Reproductive Medicine, Nanjing University, Nanjing 210008, China
| | - Fei Yu
- Center for Experimental Animal, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing 210008, China.
| | - Runsheng Li
- NHC Key Lab of Reproduction Regulation (Shanghai Institute of Planned Parenthood Research), School of Pharmacy, Fudan University, Shanghai 200032, China; NHC Key Lab of Reproduction Regulation (Shanghai Institute of Planned Parenthood Research), Fudan University, Shanghai 200032, China.
| |
Collapse
|
43
|
Arora D, Damme DV. Motif-based endomembrane trafficking. PLANT PHYSIOLOGY 2021; 186:221-238. [PMID: 33605419 PMCID: PMC8154067 DOI: 10.1093/plphys/kiab077] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 02/17/2021] [Indexed: 05/08/2023]
Abstract
Endomembrane trafficking, which allows proteins and lipids to flow between the different endomembrane compartments, largely occurs by vesicle-mediated transport. Transmembrane proteins intended for transport are concentrated into a vesicle or carrier by undulation of a donor membrane. This is followed by vesicle scission, uncoating, and finally, fusion at the target membrane. Three major trafficking pathways operate inside eukaryotic cells: anterograde, retrograde, and endocytic. Each pathway involves a unique set of machinery and coat proteins that pack the transmembrane proteins, along with their associated lipids, into specific carriers. Adaptor and coatomer complexes are major facilitators that function in anterograde transport and in endocytosis. These complexes recognize the transmembrane cargoes destined for transport and recruit the coat proteins that help form the carriers. These complexes use either linear motifs or posttranslational modifications to recognize the cargoes, which are then packaged and delivered along the trafficking pathways. In this review, we focus on the different trafficking complexes that share a common evolutionary branch in Arabidopsis (Arabidopsis thaliana), and we discuss up-to-date knowledge about the cargo recognition motifs they use.
Collapse
Affiliation(s)
- Deepanksha Arora
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Technologiepark 71, Ghent 9052, Belgium
- VIB Center for Plant Systems Biology, Technologiepark 71, Ghent 9052, Belgium
| | - Daniёl Van Damme
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Technologiepark 71, Ghent 9052, Belgium
- VIB Center for Plant Systems Biology, Technologiepark 71, Ghent 9052, Belgium
- Author for communication:
| |
Collapse
|
44
|
Saha K, Yang JW, Hofmaier T, Venkatesan S, Steinkellner T, Kudlacek O, Sucic S, Freissmuth M, Sitte HH. Constitutive Endocytosis of the Neuronal Glutamate Transporter Excitatory Amino Acid Transporter-3 Requires ARFGAP1. Front Physiol 2021; 12:671034. [PMID: 34040545 PMCID: PMC8141794 DOI: 10.3389/fphys.2021.671034] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Accepted: 04/13/2021] [Indexed: 12/12/2022] Open
Abstract
The eukaryotic endocytic pathway regulates protein levels available at the plasma membrane by recycling them into specific endosomal compartments. ARFGAP1 is a component of the coat protein I (COPI) complex but it also plays a role in promoting adapter protein-2 (AP-2) mediated endocytosis. The excitatory amino acid transporter-3 (EAAT3) mediates the reuptake of glutamate from the synaptic cleft to achieve rapid termination of synaptic transmission at glutamatergic synapses. In this study, we identified two interacting proteins of EAAT3 by mass spectrometry (MS) ARFGAP1 and ARF6. We explored the role of ARFGAP1 and ARF6 in the endocytosis of EAAT3. Our data revealed that ARFGAP1 plays a role in the recycling of EAAT3, by utilizing its GTPase activating protein (GAP) activity and ARF6 acting as the substrate. ARFGAP1 promotes cargo sorting of EAAT3 via a single phenylalanine residue (F508) located at the C-terminus of the transporter. ARFGAP1-promoted AP-2 dependent endocytosis is abolished upon neutralizing F508. We utilized a heterologous expression system to identify an additional motif in the C-terminus of EAAT3 that regulates its endocytosis. Impairment in endocytosis did not affect somatodendritic targeting in cultured hippocampal neurons. Our findings support a model where endocytosis of EAAT3 is a multifactorial event regulated by ARFGAP1, occurring via the C-terminus of the transporter, and is the first study to examine the role of ARFGAP1 in the endocytosis of a transport protein.
Collapse
Affiliation(s)
- Kusumika Saha
- Institute of Pharmacology, Center for Physiology and Pharmacology, Medical University of Vienna, Vienna, Austria.,Institut Cochin, INSERM U1016, CNRS UMR8104, Université Paris Descartes, Paris, France
| | - Jae-Won Yang
- Institute of Pharmacology, Center for Physiology and Pharmacology, Medical University of Vienna, Vienna, Austria
| | - Tina Hofmaier
- Institute of Pharmacology, Center for Physiology and Pharmacology, Medical University of Vienna, Vienna, Austria
| | - SanthoshKannan Venkatesan
- Institute of Pharmacology, Center for Physiology and Pharmacology, Medical University of Vienna, Vienna, Austria
| | - Thomas Steinkellner
- Institute of Pharmacology, Center for Physiology and Pharmacology, Medical University of Vienna, Vienna, Austria
| | - Oliver Kudlacek
- Institute of Pharmacology, Center for Physiology and Pharmacology, Medical University of Vienna, Vienna, Austria
| | - Sonja Sucic
- Institute of Pharmacology, Center for Physiology and Pharmacology, Medical University of Vienna, Vienna, Austria
| | - Michael Freissmuth
- Institute of Pharmacology, Center for Physiology and Pharmacology, Medical University of Vienna, Vienna, Austria
| | - Harald H Sitte
- Institute of Pharmacology, Center for Physiology and Pharmacology, Medical University of Vienna, Vienna, Austria
| |
Collapse
|
45
|
Åberg C. Kinetics of nanoparticle uptake into and distribution in human cells. NANOSCALE ADVANCES 2021; 3:2196-2212. [PMID: 36133761 PMCID: PMC9416924 DOI: 10.1039/d0na00716a] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Accepted: 03/12/2021] [Indexed: 05/17/2023]
Abstract
Whether one wishes to optimise drug delivery using nano-sized carriers or avoid hazard posed by engineered nanomaterials, the kinetics of nanoparticle uptake into human cells and their subsequent intracellular distribution is key. Unique properties of the nanoscale implies that such nanoparticles are taken up and trafficked in a different fashion compared to molecular species. In this review, we discuss in detail how to describe the kinetics of nanoparticle uptake and intracellular distribution, using previous studies for illustration. We also cover the extracellular kinetics, particle degradation, endosomal escape and cell division, ending with an outlook on the future of kinetic studies.
Collapse
Affiliation(s)
- Christoffer Åberg
- Groningen Research Institute of Pharmacy, University of Groningen Antonius Deusinglaan 1 9713AV Groningen The Netherlands
| |
Collapse
|
46
|
Conditional destabilization of the TPLATE complex impairs endocytic internalization. Proc Natl Acad Sci U S A 2021; 118:2023456118. [PMID: 33876766 DOI: 10.1073/pnas.2023456118] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
In plants, endocytosis is essential for many developmental and physiological processes, including regulation of growth and development, hormone perception, nutrient uptake, and defense against pathogens. Our toolbox to modulate this process is, however, rather limited. Here, we report a conditional tool to impair endocytosis. We generated a partially functional TPLATE allele by substituting the most conserved domain of the TPLATE subunit of the endocytic TPLATE complex (TPC). This substitution destabilizes TPC and dampens the efficiency of endocytosis. Short-term heat treatment increases TPC destabilization and reversibly delocalizes TPLATE from the plasma membrane to aggregates in the cytoplasm. This blocks FM uptake and causes accumulation of various known endocytic cargoes at the plasma membrane. Short-term heat treatment therefore transforms the partially functional TPLATE allele into an effective conditional tool to impair endocytosis. Next to their role in endocytosis, several TPC subunits are also implicated in actin-regulated autophagosomal degradation. Inactivating TPC via the WDX mutation, however, does not impair autophagy, thus enabling specific and reversible modulation of endocytosis in planta.
Collapse
|
47
|
Svitkova B, Zavisova V, Nemethova V, Koneracka M, Kretova M, Razga F, Ursinyova M, Gabelova A. Differences in surface chemistry of iron oxide nanoparticles result in different routes of internalization. BEILSTEIN JOURNAL OF NANOTECHNOLOGY 2021; 12:270-281. [PMID: 33842184 PMCID: PMC8008094 DOI: 10.3762/bjnano.12.22] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Accepted: 03/11/2021] [Indexed: 06/12/2023]
Abstract
The efficient entry of nanotechnology-based pharmaceuticals into target cells is highly desired to reach high therapeutic efficiency while minimizing the side effects. Despite intensive research, the impact of the surface coating on the mechanism of nanoparticle uptake is not sufficiently understood yet. Herein, we present a mechanistic study of cellular internalization pathways of two magnetic iron oxide nanoparticles (MNPs) differing in surface chemistry into A549 cells. The MNP uptake was investigated in the presence of different inhibitors of endocytosis and monitored by spectroscopic and imaging techniques. The results revealed that the route of MNP entry into cells strongly depends on the surface chemistry of the MNPs. While serum bovine albumin-coated MNPs entered the cells via clathrin-mediated endocytosis (CME), caveolin-mediated endocytosis (CavME) or lipid rafts were preferentially involved in the internalization of polyethylene glycol-coated MNPs. Our data indicate that surface engineering can contribute to an enhanced delivery efficiency of nanoparticles.
Collapse
Affiliation(s)
- Barbora Svitkova
- Cancer Research Institute, Biomedical Research Center of the Slovak Academy of Sciences, Dubravska cesta 9, 845 05 Bratislava, Slovakia
| | - Vlasta Zavisova
- Institute of Experimental Physics, Slovak Academy of Sciences, Watsonova 47, 040 01 Kosice, Slovakia
| | - Veronika Nemethova
- Faculty of Medicine, Comenius University, Spitalska 24, 813 72 Bratislava, Slovakia
- Selecta Biotech SE, Istrijska 20, 841 07 Bratislava, Slovakia
| | - Martina Koneracka
- Institute of Experimental Physics, Slovak Academy of Sciences, Watsonova 47, 040 01 Kosice, Slovakia
| | - Miroslava Kretova
- Cancer Research Institute, Biomedical Research Center of the Slovak Academy of Sciences, Dubravska cesta 9, 845 05 Bratislava, Slovakia
| | - Filip Razga
- Faculty of Medicine, Comenius University, Spitalska 24, 813 72 Bratislava, Slovakia
- Selecta Biotech SE, Istrijska 20, 841 07 Bratislava, Slovakia
| | - Monika Ursinyova
- Slovak Medical University, Limbova 12, 833 03 Bratislava, Slovakia
| | - Alena Gabelova
- Cancer Research Institute, Biomedical Research Center of the Slovak Academy of Sciences, Dubravska cesta 9, 845 05 Bratislava, Slovakia
| |
Collapse
|
48
|
Chen Z, Mino RE, Mettlen M, Michaely P, Bhave M, Reed DK, Schmid SL. Wbox2: A clathrin terminal domain-derived peptide inhibitor of clathrin-mediated endocytosis. J Cell Biol 2021; 219:151850. [PMID: 32520988 PMCID: PMC7480105 DOI: 10.1083/jcb.201908189] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2019] [Revised: 12/03/2019] [Accepted: 05/14/2020] [Indexed: 12/11/2022] Open
Abstract
Clathrin-mediated endocytosis (CME) occurs via the formation of clathrin-coated vesicles from clathrin-coated pits (CCPs). Clathrin is recruited to CCPs through interactions between the AP2 complex and its N-terminal domain, which in turn recruits endocytic accessory proteins. Inhibitors of CME that interfere with clathrin function have been described, but their specificity and mechanisms of action are unclear. Here we show that overexpression of the N-terminal domain with (TDD) or without (TD) the distal leg inhibits CME and CCP dynamics by perturbing clathrin interactions with AP2 and SNX9. TDD overexpression does not affect clathrin-independent endocytosis or, surprisingly, AP1-dependent lysosomal trafficking from the Golgi. We designed small membrane–permeant peptides that encode key functional residues within the four known binding sites on the TD. One peptide, Wbox2, encoding residues along the W-box motif binding surface, binds to SNX9 and AP2 and potently and acutely inhibits CME.
Collapse
Affiliation(s)
- Zhiming Chen
- Department of Cell Biology, University of Texas Southwestern Medical Center, TX
| | - Rosa E Mino
- Department of Cell Biology, University of Texas Southwestern Medical Center, TX
| | - Marcel Mettlen
- Department of Cell Biology, University of Texas Southwestern Medical Center, TX
| | - Peter Michaely
- Department of Cell Biology, University of Texas Southwestern Medical Center, TX
| | - Madhura Bhave
- Department of Cell Biology, University of Texas Southwestern Medical Center, TX
| | - Dana Kim Reed
- Department of Cell Biology, University of Texas Southwestern Medical Center, TX
| | - Sandra L Schmid
- Department of Cell Biology, University of Texas Southwestern Medical Center, TX
| |
Collapse
|
49
|
Winkler J, De Meyer A, Mylle E, Storme V, Grones P, Van Damme D. Nanobody-Dependent Delocalization of Endocytic Machinery in Arabidopsis Root Cells Dampens Their Internalization Capacity. FRONTIERS IN PLANT SCIENCE 2021; 12:538580. [PMID: 33815429 PMCID: PMC8018273 DOI: 10.3389/fpls.2021.538580] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Accepted: 02/23/2021] [Indexed: 05/08/2023]
Abstract
Plant cells perceive and adapt to an ever-changing environment by modifying their plasma membrane (PM) proteome. Whereas secretion deposits new integral membrane proteins, internalization by endocytosis removes membrane proteins and associated ligands, largely with the aid of adaptor protein (AP) complexes and the scaffolding molecule clathrin. Two AP complexes function in clathrin-mediated endocytosis at the PM in plant cells, the heterotetrameric AP-2 complex and the hetero-octameric TPLATE complex (TPC). Whereas single subunit mutants in AP-2 develop into viable plants, genetic mutation of a single TPC subunit causes fully penetrant male sterility and silencing single subunits leads to seedling lethality. To address TPC function in somatic root cells, while minimizing indirect effects on plant growth, we employed nanobody-dependent delocalization of a functional, GFP-tagged TPC subunit, TML, in its respective homozygous genetic mutant background. In order to decrease the amount of functional TPC at the PM, we targeted our nanobody construct to the mitochondria and fused it to TagBFP2 to visualize it independently of its bait. We furthermore limited the effect of our delocalization to those tissues that are easily accessible for live-cell imaging by expressing it from the PIN2 promoter, which is active in root epidermal and cortex cells. With this approach, we successfully delocalized TML from the PM. Moreover, we also show co-recruitment of TML-GFP and AP2A1-TagRFP to the mitochondria, suggesting that our approach delocalized complexes, rather than individual adaptor complex subunits. In line with the specific expression domain, we only observed minor effects on root growth, yet realized a clear reduction of endocytic flux in epidermal root cells. Nanobody-dependent delocalization in plants, here exemplified using a TPC subunit, has the potential to be widely applicable to achieve specific loss-of-function analysis of otherwise lethal mutants.
Collapse
Affiliation(s)
- Joanna Winkler
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium
- VIB Center for Plant Systems Biology, Ghent, Belgium
| | - Andreas De Meyer
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium
- VIB Center for Plant Systems Biology, Ghent, Belgium
| | - Evelien Mylle
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium
- VIB Center for Plant Systems Biology, Ghent, Belgium
| | - Veronique Storme
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium
- VIB Center for Plant Systems Biology, Ghent, Belgium
| | - Peter Grones
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium
- VIB Center for Plant Systems Biology, Ghent, Belgium
| | - Daniël Van Damme
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium
- VIB Center for Plant Systems Biology, Ghent, Belgium
| |
Collapse
|
50
|
Rennick JJ, Johnston APR, Parton RG. Key principles and methods for studying the endocytosis of biological and nanoparticle therapeutics. NATURE NANOTECHNOLOGY 2021; 16:266-276. [PMID: 33712737 DOI: 10.1038/s41565-021-00858-8] [Citation(s) in RCA: 729] [Impact Index Per Article: 182.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2020] [Accepted: 01/19/2021] [Indexed: 05/20/2023]
Abstract
Endocytosis is a critical step in the process by which many therapeutic nanomedicines reach their intracellular targets. Our understanding of cellular uptake mechanisms has developed substantially in the past five years. However, these advances in cell biology have not fully translated to the nanoscience and therapeutics literature. Misconceptions surrounding the role of different endocytic pathways and how to study these pathways are hindering progress in developing improved nanoparticle therapies. Here, we summarize the latest insights into cellular uptake mechanisms and pathways. We highlight limitations of current systems to study endocytosis, particularly problems with non-specific inhibitors. We also summarize alternative genetic approaches to robustly probe these pathways and discuss the need to understand how cells endocytose particles in vivo. We hope that this critical assessment of the current methods used in studying nanoparticle uptake will guide future studies at the interface of cell biology and nanomedicine.
Collapse
Affiliation(s)
- Joshua J Rennick
- Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria, Australia
- ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, Brisbane, Queensland, Australia
| | - Angus P R Johnston
- Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria, Australia.
- ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, Brisbane, Queensland, Australia.
| | - Robert G Parton
- ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, Brisbane, Queensland, Australia.
- Institute for Molecular Bioscience and Centre for Microscopy and Microanalysis, The University of Queensland, Brisbane, Queensland, Australia.
| |
Collapse
|