1
|
Mousavi SI, Lacy MM, Li X, Berro J. Fast Actin Disassembly and Fimbrin Mechanosensitivity Support Rapid Turnover in a Model of Clathrin-Mediated Endocytosis. Cytoskeleton (Hoboken) 2025. [PMID: 40035221 DOI: 10.1002/cm.22002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2024] [Revised: 01/20/2025] [Accepted: 01/21/2025] [Indexed: 03/05/2025]
Abstract
The actin cytoskeleton is central to force production in numerous cellular processes in eukaryotic cells. During clathrin-mediated endocytosis (CME), a dynamic actin meshwork is required to deform the membrane against high membrane tension or turgor pressure. Previous experimental work from our lab showed that several endocytic proteins, including actin and actin-interacting proteins, turn over several times during the formation of a vesicle during CME in yeast, and their dwell time distributions were reminiscent of gamma distributions with a peak around 1 s. However, the distribution for the filament cross-linking protein fimbrin contains a second peak around 0.5 s. To better understand the nature of these dwell time distributions, we developed a stochastic model for the dynamics of actin and its binding partners. Our model demonstrates that very fast actin filament disassembly is necessary to reproduce experimental dwell time distributions. Our model also predicts that actin-binding proteins bind rapidly to nascent filaments and filaments are fully decorated. Last, our model predicts that fimbrin detachment from actin endocytic structures is mechanosensitive to explain the extra peak observed in the dwell time distribution.
Collapse
Affiliation(s)
- Sayed Iman Mousavi
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, Connecticut, USA
- Nanobiology Institute, Yale University, West Haven, Connecticut, USA
| | - Michael M Lacy
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, Connecticut, USA
- Nanobiology Institute, Yale University, West Haven, Connecticut, USA
| | - Xiaobai Li
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, Connecticut, USA
- Nanobiology Institute, Yale University, West Haven, Connecticut, USA
| | - Julien Berro
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, Connecticut, USA
- Nanobiology Institute, Yale University, West Haven, Connecticut, USA
- Department of Cell Biology, Yale University School of Medicine, New Haven, Connecticut, USA
| |
Collapse
|
2
|
Müller T, Krüger T, Engstler M. Subcellular dynamics in unicellular parasites. Trends Parasitol 2025; 41:222-234. [PMID: 39933989 DOI: 10.1016/j.pt.2025.01.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2024] [Revised: 01/16/2025] [Accepted: 01/17/2025] [Indexed: 02/13/2025]
Abstract
Bioimaging has made tremendous advances in this century. Innovations in high- and super-resolution microscopy are well established, and live-cell imaging is extensively used to gain an overview of dynamic processes. But the combination of high spatial and temporal resolution necessary to capture intracellular dynamics is rarely achieved. Further, efficient software pipelines - that can handle the recorded data and allow comprehensive analyses - are being developed but lag behind other technical innovations in applicability for broad groups of researchers. Especially in parasites, which offer great potential for studying subcellular dynamics, the possibilities have only begun to be probed. In all cases, the complete description of dynamic molecular movement in 3D space remains a challenging necessity.
Collapse
|
3
|
Sun WW, Michalak DJ, Sochacki KA, Kunamaneni P, Alfonzo-Méndez MA, Arnold AM, Strub MP, Hinshaw JE, Taraska JW. Cryo-electron tomography pipeline for plasma membranes. Nat Commun 2025; 16:855. [PMID: 39833141 PMCID: PMC11747107 DOI: 10.1038/s41467-025-56045-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Accepted: 01/03/2025] [Indexed: 01/22/2025] Open
Abstract
Cryo-electron tomography (cryoET) provides sub-nanometer protein structure within the dense cellular environment. Existing sample preparation methods are insufficient at accessing the plasma membrane and its associated proteins. Here, we present a correlative cryo-electron tomography pipeline optimally suited to image large ultra-thin areas of isolated basal and apical plasma membranes. The pipeline allows for angstrom-scale structure determination with subtomogram averaging and employs a genetically encodable rapid chemically-induced electron microscopy visible tag for marking specific proteins within the complex cellular environment. The pipeline provides efficient, distributable, low-cost sample preparation and enables targeted structural studies of identified proteins at the plasma membrane of mammalian cells.
Collapse
Affiliation(s)
- Willy W Sun
- National Heart, Lung, and Blood Institute, US National Institutes of Health, Bethesda, MD, USA
| | - Dennis J Michalak
- National Heart, Lung, and Blood Institute, US National Institutes of Health, Bethesda, MD, USA
| | - Kem A Sochacki
- National Heart, Lung, and Blood Institute, US National Institutes of Health, Bethesda, MD, USA.
| | - Prasanthi Kunamaneni
- National Heart, Lung, and Blood Institute, US National Institutes of Health, Bethesda, MD, USA
- National Institute of Diabetes and Digestive and Kidney Diseases, US National Institutes of Health, Bethesda, MD, USA
| | - Marco A Alfonzo-Méndez
- National Heart, Lung, and Blood Institute, US National Institutes of Health, Bethesda, MD, USA
| | - Andreas M Arnold
- National Heart, Lung, and Blood Institute, US National Institutes of Health, Bethesda, MD, USA
| | - Marie-Paule Strub
- National Heart, Lung, and Blood Institute, US National Institutes of Health, Bethesda, MD, USA
| | - Jenny E Hinshaw
- National Institute of Diabetes and Digestive and Kidney Diseases, US National Institutes of Health, Bethesda, MD, USA.
| | - Justin W Taraska
- National Heart, Lung, and Blood Institute, US National Institutes of Health, Bethesda, MD, USA.
| |
Collapse
|
4
|
Hill JM, Cai S, Carver MD, Drubin DG. A role for cross-linking proteins in actin filament network organization and force generation. Proc Natl Acad Sci U S A 2024; 121:e2407838121. [PMID: 39405356 PMCID: PMC11513903 DOI: 10.1073/pnas.2407838121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Accepted: 08/20/2024] [Indexed: 10/23/2024] Open
Abstract
The high turgor pressure across the plasma membrane of yeasts creates a requirement for substantial force production by actin polymerization and myosin motor activity for clathrin-mediated endocytosis (CME). Endocytic internalization is severely impeded in the absence of fimbrin, an actin filament crosslinking protein called Sac6 in budding yeast. Here, we combine live-cell imaging and mathematical modeling to gain insights into the role of actin filament crosslinking proteins in force generation. Genetic manipulation showed that CME sites with more crosslinking proteins are more effective at internalization under high load. Simulations of an experimentally constrained, agent-based mathematical model recapitulate the result that endocytic networks with more double-bound fimbrin molecules internalize the plasma membrane against elevated turgor pressure more effectively. Networks with large numbers of crosslinks also have more growing actin filament barbed ends at the plasma membrane, where the addition of new actin monomers contributes to force generation and vesicle internalization. Our results provide a richer understanding of the crucial role played by actin filament crosslinking proteins during actin network force generation, highlighting the contribution of these proteins to the self-organization of the actin filament network and force generation under increased load.
Collapse
Affiliation(s)
- Jennifer M. Hill
- Department of Molecular and Cell Biology, University of California, Berkeley, CA94720
| | - Songlin Cai
- Department of Molecular and Cell Biology, University of California, Berkeley, CA94720
| | - Michael D. Carver
- Department of Molecular and Cell Biology, University of California, Berkeley, CA94720
| | - David G. Drubin
- Department of Molecular and Cell Biology, University of California, Berkeley, CA94720
| |
Collapse
|
5
|
Wang X, Berro J, Ma R. Vesiculation pathways in clathrin-mediated endocytosis. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.08.13.607731. [PMID: 39185216 PMCID: PMC11343097 DOI: 10.1101/2024.08.13.607731] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 08/27/2024]
Abstract
During clathrin-mediated endocytosis, a patch of flat plasma membrane is internalized to form a vesicle. In mammalian cells, how the clathrin coat deforms the membrane into a vesicle remains unclear and two main hypotheses have been debated. The "constant area" hypothesis assumes that clathrin molecules initially form a flat lattice on the membrane and deform the membrane by changing its intrinsic curvature while keeping the coating area constant. The alternative "constant curvature" hypothesis assumes that the intrinsic curvature of the clathrin lattice remains constant during the formation of a vesicle while the surface area it covers increases. Previous experimental studies were unable to unambiguously determine which hypothesis is correct. In this paper, we show that these two hypotheses are only two extreme cases of a continuum of vesiculation pathways if we account for the free energies associated with clathrin assembly and curvature generation. By tracing the negative gradient of the free energy, we define vesiculation pathways in the phase space of the coating area and the intrinsic curvature of clathrin coat. Our results show that, overall, the differences in measurable membrane morphology between the different models are not as big as expected, and the main differences are most salient at the early stage of endocytosis. Furthermore, the best fitting pathway to experimental data is not compatible with the constant-curvature model and resembles a constant-area-like pathway where the coating area initially expands with minor changes in the intrinsic curvature, later followed by a dramatic increase in the intrinsic curvature and minor change in the coating area. Our results also suggest that experimental measurement of the tip radius and the projected area of the clathrin coat will be the key to distinguish between models.
Collapse
Affiliation(s)
- Xinran Wang
- Department of Physics, Xiamen University, Xiamen 361005, China
- Fujian Provincial Key Lab for Soft Functional Materials Research, Xiamen University, 361005, China
| | - Julien Berro
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT 06520, USA
- Nanobiology Institute, Yale University, West Haven, CT 06516, USA
- Department of Cell Biology, Yale University School of Medicine, New Haven, CT 06520, USA
| | - Rui Ma
- Department of Physics, Xiamen University, Xiamen 361005, China
- Fujian Provincial Key Lab for Soft Functional Materials Research, Xiamen University, 361005, China
| |
Collapse
|
6
|
Sun Y, Yeam A, Kuo J, Iwamoto Y, Hu G, Drubin DG. The conserved protein adaptors CALM/AP180 and FCHo1/2 cooperatively recruit Eps15 to promote the initiation of clathrin-mediated endocytosis in yeast. PLoS Biol 2024; 22:e3002833. [PMID: 39316607 PMCID: PMC11451990 DOI: 10.1371/journal.pbio.3002833] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Revised: 10/04/2024] [Accepted: 09/05/2024] [Indexed: 09/26/2024] Open
Abstract
Clathrin-mediated endocytosis (CME) is a critical trafficking process that begins when an elaborate endocytic protein network is established at the plasma membrane. Interaction of early endocytic proteins with anionic phospholipids and/or cargo has been suggested to trigger CME initiation. However, the exact mechanism by which CME sites are initiated has not been fully elucidated. In the budding yeast Saccharomyces cerevisiae, higher levels of anionic phospholipids and cargo molecules exist in the newly formed daughter cell compared to the levels in the mother cell during polarized growth. Taking advantage of this asymmetry, we quantitatively compared CME proteins in S. cerevisiae mother versus daughter cells, observing differences in the dynamics and composition of key endocytic proteins. Our results show that CME site initiation occurs preferentially on regions of the plasma membrane with a relatively higher density of endocytic cargo and/or acidic phospholipids. Furthermore, our combined live cell-imaging and yeast genetics analysis provided evidence for a molecular mechanism in which CME sites are initiated when Yap1801 and Yap1802 (yeast CALM/AP180) and Syp1 (yeast FCHo1/2) coordinate with anionic phospholipids and cargo molecules to trigger Ede1 (yeast Eps15)-centric CME initiation complex assembly at the plasma membrane.
Collapse
Affiliation(s)
- Yidi Sun
- Department of Molecular and Cell Biology, University of California, Berkeley, California, United States of America
| | - Albert Yeam
- Department of Molecular and Cell Biology, University of California, Berkeley, California, United States of America
| | - Jonathan Kuo
- Department of Molecular and Cell Biology, University of California, Berkeley, California, United States of America
| | - Yuichiro Iwamoto
- Department of Molecular and Cell Biology, University of California, Berkeley, California, United States of America
| | - Gean Hu
- Department of Molecular and Cell Biology, University of California, Berkeley, California, United States of America
| | - David G. Drubin
- Department of Molecular and Cell Biology, University of California, Berkeley, California, United States of America
| |
Collapse
|
7
|
Johnson A. Mechanistic divergences of endocytic clathrin-coated vesicle formation in mammals, yeasts and plants. J Cell Sci 2024; 137:jcs261847. [PMID: 39161994 PMCID: PMC11361644 DOI: 10.1242/jcs.261847] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/21/2024] Open
Abstract
Clathrin-coated vesicles (CCVs), generated by clathrin-mediated endocytosis (CME), are essential eukaryotic trafficking organelles that transport extracellular and plasma membrane-bound materials into the cell. In this Review, we explore mechanisms of CME in mammals, yeasts and plants, and highlight recent advances in the characterization of endocytosis in plants. Plants separated from mammals and yeast over 1.5 billion years ago, and plant cells have distinct biophysical parameters that can influence CME, such as extreme turgor pressure. Plants can therefore provide a wider perspective on fundamental processes in eukaryotic cells. We compare key mechanisms that drive CCV formation and explore what these mechanisms might reveal about the core principles of endocytosis across the tree of life. Fascinatingly, CME in plants appears to more closely resemble that in mammalian cells than that in yeasts, despite plants being evolutionarily further from mammals than yeast. Endocytic initiation appears to be highly conserved across these three systems, requiring similar protein domains and regulatory processes. Clathrin coat proteins and their honeycomb lattice structures are also highly conserved. However, major differences are found in membrane-bending mechanisms. Unlike in mammals or yeast, plant endocytosis occurs independently of actin, highlighting that mechanistic assumptions about CME across different systems should be made with caution.
Collapse
Affiliation(s)
- Alexander Johnson
- Division of Anatomy, Center for Anatomy & Cell Biology, Medical University of Vienna, Vienna 1090, Austria
- Medical Imaging Cluster (MIC), Medical University of Vienna, Vienna 1090, Austria
- Biosciences, University of Exeter, Exeter EX4 4QD, UK
| |
Collapse
|
8
|
Sun WW, Michalak DJ, Sochacki KA, Kunamaneni P, Alfonzo-Méndez MA, Arnold AM, Strub MP, Hinshaw JE, Taraska JW. Cryo-electron tomography pipeline for plasma membranes. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.06.27.600657. [PMID: 39372776 PMCID: PMC11451596 DOI: 10.1101/2024.06.27.600657] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 10/08/2024]
Abstract
Cryo-electron tomography (cryoET) provides sub-nanometer protein structure within the dense cellular environment. Existing sample preparation methods are insufficient at accessing the plasma membrane and its associated proteins. Here, we present a correlative cryo-electron tomography pipeline optimally suited to image large ultra-thin areas of isolated basal and apical plasma membranes. The pipeline allows for angstrom-scale structure determination with sub-tomogram averaging and employs a genetically-encodable rapid chemically-induced electron microscopy visible tag for marking specific proteins within the complex cell environment. The pipeline provides fast, efficient, distributable, low-cost sample preparation and enables targeted structural studies of identified proteins at the plasma membrane of cells.
Collapse
Affiliation(s)
- Willy W. Sun
- National Heart, Lung, and Blood Institute, US National Institutes of Health, Bethesda, Maryland, USA
- These authors contributed equally
| | - Dennis J. Michalak
- National Heart, Lung, and Blood Institute, US National Institutes of Health, Bethesda, Maryland, USA
- These authors contributed equally
| | - Kem A. Sochacki
- National Heart, Lung, and Blood Institute, US National Institutes of Health, Bethesda, Maryland, USA
- These authors contributed equally
| | - Prasanthi Kunamaneni
- National Heart, Lung, and Blood Institute, US National Institutes of Health, Bethesda, Maryland, USA
- National Institute of Diabetes and Digestive and Kidney Diseases, US National Institutes of Health, Bethesda, Maryland, USA
| | - Marco A. Alfonzo-Méndez
- National Heart, Lung, and Blood Institute, US National Institutes of Health, Bethesda, Maryland, USA
| | - Andreas M. Arnold
- National Heart, Lung, and Blood Institute, US National Institutes of Health, Bethesda, Maryland, USA
| | - Marie-Paule Strub
- National Heart, Lung, and Blood Institute, US National Institutes of Health, Bethesda, Maryland, USA
| | - Jenny E. Hinshaw
- National Institute of Diabetes and Digestive and Kidney Diseases, US National Institutes of Health, Bethesda, Maryland, USA
| | - Justin W. Taraska
- National Heart, Lung, and Blood Institute, US National Institutes of Health, Bethesda, Maryland, USA
| |
Collapse
|
9
|
Hummel DR, Hakala M, Toret CP, Kaksonen M. Bsp1, a fungal CPI motif protein, regulates actin filament capping in endocytosis and cytokinesis. Mol Biol Cell 2024; 35:br6. [PMID: 38088874 PMCID: PMC10881157 DOI: 10.1091/mbc.e23-10-0391] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 11/28/2023] [Accepted: 12/07/2023] [Indexed: 01/14/2024] Open
Abstract
The capping of barbed filament ends is a fundamental mechanism for actin regulation. Capping protein controls filament growth and actin turnover in cells by binding to the barbed ends of the filaments with high affinity and slow off-rate. The interaction between capping protein and actin is regulated by capping protein interaction (CPI) motif proteins. We identified a novel CPI motif protein, Bsp1, which is involved in cytokinesis and endocytosis in budding yeast. We demonstrate that Bsp1 is an actin binding protein with a high affinity for capping protein via its CPI motif. In cells, Bsp1 regulates capping protein at endocytic sites and is a major recruiter of capping protein to the cytokinetic actin ring. Lastly, we define Bsp1-related proteins as a distinct fungi-specific CPI protein group. Our results suggest that Bsp1 promotes actin filament capping by the capping protein. This study establishes Bsp1 as a new capping protein regulator and promising candidate to regulate actin networks in fungi.
Collapse
Affiliation(s)
- Daniel R. Hummel
- Department of Biochemistry, University of Geneva, 1205 Geneva, Switzerland
| | - Markku Hakala
- Department of Biochemistry, University of Geneva, 1205 Geneva, Switzerland
| | | | - Marko Kaksonen
- Department of Biochemistry, University of Geneva, 1205 Geneva, Switzerland
| |
Collapse
|
10
|
Abstract
Membrane fusion and budding mediate fundamental processes like intracellular trafficking, exocytosis, and endocytosis. Fusion is thought to open a nanometer-range pore that may subsequently close or dilate irreversibly, whereas budding transforms flat membranes into vesicles. Reviewing recent breakthroughs in real-time visualization of membrane transformations well exceeding this classical view, we synthesize a new model and describe its underlying mechanistic principles and functions. Fusion involves hemi-to-full fusion, pore expansion, constriction and/or closure while fusing vesicles may shrink, enlarge, or receive another vesicle fusion; endocytosis follows exocytosis primarily by closing Ω-shaped profiles pre-formed through the flat-to-Λ-to-Ω-shape transition or formed via fusion. Calcium/SNARE-dependent fusion machinery, cytoskeleton-dependent membrane tension, osmotic pressure, calcium/dynamin-dependent fission machinery, and actin/dynamin-dependent force machinery work together to generate fusion and budding modes differing in pore status, vesicle size, speed and quantity, controls release probability, synchronization and content release rates/amounts, and underlies exo-endocytosis coupling to maintain membrane homeostasis. These transformations, underlying mechanisms, and functions may be conserved for fusion and budding in general.
Collapse
Affiliation(s)
- Ling-Gang Wu
- National Institute of Neurological Disorders and Stroke, Bethesda, MD, USA.
| | - Chung Yu Chan
- National Institute of Neurological Disorders and Stroke, Bethesda, MD, USA
| |
Collapse
|
11
|
Pedersen RT, Snoberger A, Pyrpassopoulos S, Safer D, Drubin DG, Ostap EM. Endocytic myosin-1 is a force-insensitive, power-generating motor. J Cell Biol 2023; 222:e202303095. [PMID: 37549220 PMCID: PMC10406613 DOI: 10.1083/jcb.202303095] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 05/17/2023] [Accepted: 07/24/2023] [Indexed: 08/09/2023] Open
Abstract
Myosins are required for clathrin-mediated endocytosis, but their precise molecular roles in this process are not known. This is, in part, because the biophysical properties of the relevant motors have not been investigated. Myosins have diverse mechanochemical activities, ranging from powerful contractility against mechanical loads to force-sensitive anchoring. To better understand the essential molecular contribution of myosin to endocytosis, we studied the in vitro force-dependent kinetics of the Saccharomyces cerevisiae endocytic type I myosin called Myo5, a motor whose role in clathrin-mediated endocytosis has been meticulously studied in vivo. We report that Myo5 is a low-duty-ratio motor that is activated ∼10-fold by phosphorylation and that its working stroke and actin-detachment kinetics are relatively force-insensitive. Strikingly, the in vitro mechanochemistry of Myo5 is more like that of cardiac myosin than that of slow anchoring myosin-1s found on endosomal membranes. We, therefore, propose that Myo5 generates power to augment actin assembly-based forces during endocytosis in cells.
Collapse
Affiliation(s)
- Ross T.A. Pedersen
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA, USA
| | - Aaron Snoberger
- Pennsylvania Muscle Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Serapion Pyrpassopoulos
- Pennsylvania Muscle Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Daniel Safer
- Pennsylvania Muscle Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - David G. Drubin
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA, USA
| | - E. Michael Ostap
- Pennsylvania Muscle Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| |
Collapse
|
12
|
Pedersen RTA, Snoberger A, Pyrpassopoulos S, Safer D, Drubin DG, Ostap EM. Endocytic myosin-1 is a force-insensitive, power-generating motor. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.03.21.533689. [PMID: 36993306 PMCID: PMC10055380 DOI: 10.1101/2023.03.21.533689] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/31/2023]
Abstract
Myosins are required for clathrin-mediated endocytosis, but their precise molecular roles in this process are not known. This is, in part, because the biophysical properties of the relevant motors have not been investigated. Myosins have diverse mechanochemical activities, ranging from powerful contractility against mechanical loads to force-sensitive anchoring. To better understand the essential molecular contribution of myosin to endocytosis, we studied the in vitro force-dependent kinetics of the Saccharomyces cerevisiae endocytic type I myosin called Myo5, a motor whose role in clathrin-mediated endocytosis has been meticulously studied in vivo. We report that Myo5 is a low-duty-ratio motor that is activated ∼10-fold by phosphorylation, and that its working stroke and actin-detachment kinetics are relatively force-insensitive. Strikingly, the in vitro mechanochemistry of Myo5 is more like that of cardiac myosin than like that of slow anchoring myosin-1s found on endosomal membranes. We therefore propose that Myo5 generates power to augment actin assembly-based forces during endocytosis in cells. Summary Pedersen, Snoberger et al. measure the force-sensitivity of the yeast endocytic the myosin-1 called Myo5 and find that it is more likely to generate power than to serve as a force-sensitive anchor in cells. Implications for Myo5's role in clathrin-mediated endocytosis are discussed.
Collapse
Affiliation(s)
- Ross TA Pedersen
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA 94720
- Present address: Department of Embryology, Carnegie Institution for Science, Baltimore, MD 21218
- Equal Contribution
| | - Aaron Snoberger
- Pennsylvania Muscle Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104
- Equal Contribution
| | - Serapion Pyrpassopoulos
- Pennsylvania Muscle Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104
| | - Daniel Safer
- Pennsylvania Muscle Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104
| | - David G Drubin
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA 94720
| | - E Michael Ostap
- Pennsylvania Muscle Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104
| |
Collapse
|
13
|
Stoops EH, Ferrin MA, Jorgens DM, Drubin DG. Self-organizing actin networks drive sequential endocytic protein recruitment and vesicle release on synthetic lipid bilayers. Proc Natl Acad Sci U S A 2023; 120:e2302622120. [PMID: 37216532 PMCID: PMC10235984 DOI: 10.1073/pnas.2302622120] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Accepted: 04/21/2023] [Indexed: 05/24/2023] Open
Abstract
Forces generated by actin assembly assist membrane invagination during clathrin-mediated endocytosis (CME). The sequential recruitment of core endocytic proteins and regulatory proteins, and assembly of the actin network, are well documented in live cells and are highly conserved from yeasts to humans. However, understanding of CME protein self-organization, as well as the biochemical and mechanical principles that underlie actin's role in CME, is lacking. Here, we show that supported lipid bilayers coated with purified yeast Wiskott Aldrich Syndrome Protein (WASP), an endocytic actin assembly regulator, and incubated in cytoplasmic yeast extracts, recruit downstream endocytic proteins and assemble actin networks. Time-lapse imaging of WASP-coated bilayers revealed sequential recruitment of proteins from different endocytic modules, faithfully replicating in vivo behavior. Reconstituted actin networks assemble in a WASP-dependent manner and deform lipid bilayers, as seen by electron microscopy. Time-lapse imaging revealed that vesicles are released from the lipid bilayers with a burst of actin assembly. Actin networks pushing on membranes have previously been reconstituted; here, we have reconstituted a biologically important variation of these actin networks that self-organize on bilayers and produce pulling forces sufficient to bud off membrane vesicles. We propose that actin-driven vesicle generation may represent an ancient evolutionary precursor to diverse vesicle forming processes adapted for a wide array of cellular environments and applications.
Collapse
Affiliation(s)
- Emily H. Stoops
- Department of Molecular and Cell Biology, University of California, Berkeley, CA94720
| | - Michael A. Ferrin
- Department of Molecular and Cell Biology, University of California, Berkeley, CA94720
| | | | - David G. Drubin
- Department of Molecular and Cell Biology, University of California, Berkeley, CA94720
| |
Collapse
|
14
|
Wozny MR, Di Luca A, Morado DR, Picco A, Khaddaj R, Campomanes P, Ivanović L, Hoffmann PC, Miller EA, Vanni S, Kukulski W. In situ architecture of the ER-mitochondria encounter structure. Nature 2023:10.1038/s41586-023-06050-3. [PMID: 37165187 DOI: 10.1038/s41586-023-06050-3] [Citation(s) in RCA: 51] [Impact Index Per Article: 25.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2022] [Accepted: 04/04/2023] [Indexed: 05/12/2023]
Abstract
The endoplasmic reticulum and mitochondria are main hubs of eukaryotic membrane biogenesis that rely on lipid exchange via membrane contact sites1-3, but the underpinning mechanisms remain poorly understood. In yeast, tethering and lipid transfer between the two organelles is mediated by the endoplasmic reticulum-mitochondria encounter structure (ERMES), a four-subunit complex of unresolved stoichiometry and architecture4-6. Here we determined the molecular organization of ERMES within Saccharomyces cerevisiae cells using integrative structural biology by combining quantitative live imaging, cryo-correlative microscopy, subtomogram averaging and molecular modelling. We found that ERMES assembles into approximately 25 discrete bridge-like complexes distributed irregularly across a contact site. Each bridge consists of three synaptotagmin-like mitochondrial lipid binding protein domains oriented in a zig-zag arrangement. Our molecular model of ERMES reveals a pathway for lipids. These findings resolve the in situ supramolecular architecture of a major inter-organelle lipid transfer machinery and provide a basis for the mechanistic understanding of lipid fluxes in eukaryotic cells.
Collapse
Affiliation(s)
- Michael R Wozny
- MRC Laboratory of Molecular Biology, Cambridge, UK
- Department of Anatomy and Cell Biology, McGill University, Montreal, Quebec, Canada
| | - Andrea Di Luca
- Department of Biology, University of Fribourg, Fribourg, Switzerland
| | - Dustin R Morado
- MRC Laboratory of Molecular Biology, Cambridge, UK
- SciLifeLab, Solna, Sweden
- Max Planck Institute of Biochemistry, Martinsried, Germany
| | - Andrea Picco
- Department of Biochemistry, University of Geneva, Geneva, Switzerland
| | - Rasha Khaddaj
- Institute of Biochemistry and Molecular Medicine, University of Bern, Bern, Switzerland
| | - Pablo Campomanes
- Department of Biology, University of Fribourg, Fribourg, Switzerland
| | - Lazar Ivanović
- Institute of Biochemistry and Molecular Medicine, University of Bern, Bern, Switzerland
- Graduate School for Cellular and Biomedical Sciences, University of Bern, Bern, Switzerland
| | - Patrick C Hoffmann
- MRC Laboratory of Molecular Biology, Cambridge, UK
- Max Planck Institute of Biophysics, Frankfurt am Main, Germany
| | | | - Stefano Vanni
- Department of Biology, University of Fribourg, Fribourg, Switzerland.
| | - Wanda Kukulski
- MRC Laboratory of Molecular Biology, Cambridge, UK.
- Institute of Biochemistry and Molecular Medicine, University of Bern, Bern, Switzerland.
| |
Collapse
|
15
|
Hummel DR, Kaksonen M. Spatio-temporal regulation of endocytic protein assembly by SH3 domains in yeast. Mol Biol Cell 2023; 34:ar19. [PMID: 36696224 PMCID: PMC10011730 DOI: 10.1091/mbc.e22-09-0406] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Clathrin-mediated endocytosis is a conserved eukaryotic membrane trafficking pathway that is driven by a sequentially assembled molecular machinery that contains over 60 different proteins. SH3 domains are the most abundant protein-protein interaction domain in this process, but the function of most SH3 domains in protein dynamics remains elusive. Using mutagenesis and live-cell fluorescence microscopy in the budding yeast Saccharomyces cerevisiae, we dissected SH3-mediated regulation of the endocytic pathway. Our data suggest that multiple SH3 domains regulate the actin nucleation-promoting Las17-Vrp1 complex, and that the network of SH3 interactions coordinates both Las17-Vrp1 assembly and dissociation. Furthermore, most endocytic SH3 domain proteins use the SH3 domain for their own recruitment, while a minority use the SH3 domain to recruit other proteins and not themselves. Our results provide a dynamic map of SH3 functions in yeast endocytosis and a framework for SH3 interaction network studies across biology.
Collapse
Affiliation(s)
- Daniel R Hummel
- Department of Biochemistry, University of Geneva, Department of Biochemistry, 1205 Genève, Switzerland
| | - Marko Kaksonen
- Department of Biochemistry, University of Geneva, Department of Biochemistry, 1205 Genève, Switzerland
| |
Collapse
|
16
|
Wu YL, Hoess P, Tschanz A, Matti U, Mund M, Ries J. Maximum-likelihood model fitting for quantitative analysis of SMLM data. Nat Methods 2023; 20:139-148. [PMID: 36522500 PMCID: PMC9834062 DOI: 10.1038/s41592-022-01676-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Accepted: 10/14/2022] [Indexed: 12/23/2022]
Abstract
Quantitative data analysis is important for any single-molecule localization microscopy (SMLM) workflow to extract biological insights from the coordinates of the single fluorophores. However, current approaches are restricted to simple geometries or require identical structures. Here, we present LocMoFit (Localization Model Fit), an open-source framework to fit an arbitrary model to localization coordinates. It extracts meaningful parameters from individual structures and can select the most suitable model. In addition to analyzing complex, heterogeneous and dynamic structures for in situ structural biology, we demonstrate how LocMoFit can assemble multi-protein distribution maps of six nuclear pore components, calculate single-particle averages without any assumption about geometry or symmetry, and perform a time-resolved reconstruction of the highly dynamic endocytic process from static snapshots. We provide extensive simulation and visualization routines to validate the robustness of LocMoFit and tutorials to enable any user to increase the information content they can extract from their SMLM data.
Collapse
Affiliation(s)
- Yu-Le Wu
- Cell Biology and Biophysics Unit, European Molecular Biology Laboratory (EMBL), Heidelberg, Germany
- Collaboration for joint PhD degree between EMBL and Heidelberg University, Faculty of Biosciences, Heidelberg, Germany
| | - Philipp Hoess
- Cell Biology and Biophysics Unit, European Molecular Biology Laboratory (EMBL), Heidelberg, Germany
| | - Aline Tschanz
- Cell Biology and Biophysics Unit, European Molecular Biology Laboratory (EMBL), Heidelberg, Germany
- Collaboration for joint PhD degree between EMBL and Heidelberg University, Faculty of Biosciences, Heidelberg, Germany
| | - Ulf Matti
- Cell Biology and Biophysics Unit, European Molecular Biology Laboratory (EMBL), Heidelberg, Germany
| | - Markus Mund
- Cell Biology and Biophysics Unit, European Molecular Biology Laboratory (EMBL), Heidelberg, Germany
- Department of Biochemistry, University of Geneva, Geneva, Switzerland
| | - Jonas Ries
- Cell Biology and Biophysics Unit, European Molecular Biology Laboratory (EMBL), Heidelberg, Germany.
| |
Collapse
|
17
|
Gingras RM, Sulpizio AM, Park J, Bretscher A. High-resolution secretory timeline from vesicle formation at the Golgi to fusion at the plasma membrane in S. cerevisiae. eLife 2022; 11:e78750. [PMID: 36331188 PMCID: PMC9671497 DOI: 10.7554/elife.78750] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Accepted: 11/03/2022] [Indexed: 11/06/2022] Open
Abstract
Most of the components in the yeast secretory pathway have been studied, yet a high-resolution temporal timeline of their participation is lacking. Here, we define the order of acquisition, lifetime, and release of critical components involved in late secretion from the Golgi to the plasma membrane. Of particular interest is the timing of the many reported effectors of the secretory vesicle Rab protein Sec4, including the myosin-V Myo2, the exocyst complex, the lgl homolog Sro7, and the small yeast-specific protein Mso1. At the trans-Golgi network (TGN) Sec4's GEF, Sec2, is recruited to Ypt31-positive compartments, quickly followed by Sec4 and Myo2 and vesicle formation. While transported to the bud tip, the entire exocyst complex, including Sec3, is assembled on to the vesicle. Before fusion, vesicles tether for 5 s, during which the vesicle retains the exocyst complex and stimulates lateral recruitment of Rho3 on the plasma membrane. Sec2 and Myo2 are rapidly lost, followed by recruitment of cytosolic Sro7, and finally the SM protein Sec1, which appears for just 2 s prior to fusion. Perturbation experiments reveal an ordered and robust series of events during tethering that provide insights into the function of Sec4 and effector exchange.
Collapse
Affiliation(s)
- Robert M Gingras
- Department of Molecular Biology and Genetics, Weill Institute for Cell and Molecular Biology, Cornell UniversityIthacaUnited States
| | - Abigail M Sulpizio
- Department of Molecular Biology and Genetics, Weill Institute for Cell and Molecular Biology, Cornell UniversityIthacaUnited States
| | - Joelle Park
- Department of Molecular Biology and Genetics, Weill Institute for Cell and Molecular Biology, Cornell UniversityIthacaUnited States
| | - Anthony Bretscher
- Department of Molecular Biology and Genetics, Weill Institute for Cell and Molecular Biology, Cornell UniversityIthacaUnited States
| |
Collapse
|
18
|
Skruzny M. The endocytic protein machinery as an actin-driven membrane-remodeling machine. Eur J Cell Biol 2022; 101:151267. [PMID: 35970066 DOI: 10.1016/j.ejcb.2022.151267] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Revised: 08/02/2022] [Accepted: 08/02/2022] [Indexed: 12/14/2022] Open
Abstract
In clathrin-mediated endocytosis, a principal membrane trafficking route of all eukaryotic cells, forces are applied to invaginate the plasma membrane and form endocytic vesicles. These forces are provided by specific endocytic proteins and the polymerizing actin cytoskeleton. One of the best-studied endocytic systems is endocytosis in yeast, known for its simplicity, experimental amenability, and overall similarity to human endocytosis. Importantly, the yeast endocytic protein machinery generates and transmits tremendous force to bend the plasma membrane, making this system beneficial for mechanistic studies of cellular force-driven membrane reshaping. This review summarizes important protein players, molecular functions, applied forces, and open questions and perspectives of this robust, actin-powered membrane-remodeling protein machine.
Collapse
Affiliation(s)
- Michal Skruzny
- Cell Biology and Biophysics Unit, European Molecular Biology Laboratory (EMBL), Meyerhofstrasse 1, 69117 Heidelberg, Germany.
| |
Collapse
|
19
|
Menon D, Hummel D, Kaksonen M. Regulation of membrane scission in yeast endocytosisDepartment of Biochemistry and National Centre of Competence in Research, Chemical Biology, University of Geneva, Geneva, Switzerland. Mol Biol Cell 2022; 33:ar114. [PMID: 35976707 DOI: 10.1091/mbc.e21-07-0346] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
During clathrin-mediated endocytosis, a flat plasma membrane is shaped into an invagination that undergoes scission to form a vesicle. In mammalian cells, the force that drives the transition from invagination to vesicle is primarily provided by the GTPase dynamin that acts in concert with crescent-shaped BAR domain proteins. In yeast cells, the mechanism of endocytic scission is unclear. The yeast BAR domain protein complex Rvs161/167 (Rvs) nevertheless plays an important role in this process: deletion of Rvs dramatically reduces scission efficiency. A mechanistic understanding of the influence of Rvs on scission however, remains incomplete. We used quantitative live-cell imaging and genetic manipulation to understand the recruitment and function of Rvs and other late-stage proteins at yeast endocytic sites. We found that arrival of Rvs at endocytic sites is timed by interaction of its BAR domain with specific membrane curvature. A second domain of Rvs167 - the SH3 domain - affects localization efficiency of Rvs. We show that Myo3, one of the two type-I myosins in Saccharomyces cerevisiae, has a role in recruiting Rvs167 via the SH3 domain. Removal of the SH3 domain also affects assembly and disassembly of actin and impedes membrane invagination. Our results indicate that both BAR and SH3 domains are important for the role of Rvs as a regulator of scission. We tested other proteins implicated in vesicle formation in Saccharomyces cerevisiae, and found that neither synaptojanins nor dynamin contribute directly to membrane scission. We propose that recruitment of Rvs BAR domains delays scission and allows invaginations to grow by stabilizing them. We also propose that vesicle formation is dependent on the force exerted by the actin network.
Collapse
Affiliation(s)
- Deepikaa Menon
- Department of Biochemistry and National Centre of Competence in Research, Chemical Biology, University of Geneva, Geneva, Switzerland
| | - Daniel Hummel
- Department of Biochemistry and National Centre of Competence in Research, Chemical Biology, University of Geneva, Geneva, Switzerland
| | - Marko Kaksonen
- Department of Biochemistry and National Centre of Competence in Research, Chemical Biology, University of Geneva, Geneva, Switzerland
| |
Collapse
|
20
|
Mendes A, Heil HS, Coelho S, Leterrier C, Henriques R. Mapping molecular complexes with super-resolution microscopy and single-particle analysis. Open Biol 2022; 12:220079. [PMID: 35892200 PMCID: PMC9326279 DOI: 10.1098/rsob.220079] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Understanding the structure of supramolecular complexes provides insight into their functional capabilities and how they can be modulated in the context of disease. Super-resolution microscopy (SRM) excels in performing this task by resolving ultrastructural details at the nanoscale with molecular specificity. However, technical limitations, such as underlabelling, preclude its ability to provide complete structures. Single-particle analysis (SPA) overcomes this limitation by combining information from multiple images of identical structures and producing an averaged model, effectively enhancing the resolution and coverage of image reconstructions. This review highlights important studies using SRM-SPA, demonstrating how it broadens our knowledge by elucidating features of key biological structures with unprecedented detail.
Collapse
Affiliation(s)
| | | | - Simao Coelho
- Instituto Gulbenkian de Ciência, Oeiras, Portugal
| | | | - Ricardo Henriques
- Instituto Gulbenkian de Ciência, Oeiras, Portugal,MRC Laboratory for Molecular Cell Biology, University College London, London, UK
| |
Collapse
|
21
|
Shin W, Zucker B, Kundu N, Lee SH, Shi B, Chan CY, Guo X, Harrison JT, Turechek JM, Hinshaw JE, Kozlov MM, Wu LG. Molecular mechanics underlying flat-to-round membrane budding in live secretory cells. Nat Commun 2022; 13:3697. [PMID: 35760780 PMCID: PMC9237132 DOI: 10.1038/s41467-022-31286-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Accepted: 06/10/2022] [Indexed: 12/21/2022] Open
Abstract
Membrane budding entails forces to transform flat membrane into vesicles essential for cell survival. Accumulated studies have identified coat-proteins (e.g., clathrin) as potential budding factors. However, forces mediating many non-coated membrane buddings remain unclear. By visualizing proteins in mediating endocytic budding in live neuroendocrine cells, performing in vitro protein reconstitution and physical modeling, we discovered how non-coated-membrane budding is mediated: actin filaments and dynamin generate a pulling force transforming flat membrane into Λ-shape; subsequently, dynamin helices surround and constrict Λ-profile's base, transforming Λ- to Ω-profile, and then constrict Ω-profile's pore, converting Ω-profiles to vesicles. These mechanisms control budding speed, vesicle size and number, generating diverse endocytic modes differing in these parameters. Their impact is widespread beyond secretory cells, as the unexpectedly powerful functions of dynamin and actin, previously thought to mediate fission and overcome tension, respectively, may contribute to many dynamin/actin-dependent non-coated-membrane buddings, coated-membrane buddings, and other membrane remodeling processes.
Collapse
Affiliation(s)
- Wonchul Shin
- National Institute of Neurological Disorders and Stroke, Bethesda, MD, USA
| | - Ben Zucker
- Department of Physiology and Pharmacology, Sackler Faculty of Medicine, Tel Aviv University, 69978, Ramat Aviv, Israel
| | - Nidhi Kundu
- Structural Cell Biology Section, Laboratory of Cell and Molecular Biology, National Institute of Diabetes and Digestive and Kidney Diseases, Bethesda, MD, USA
| | - Sung Hoon Lee
- Chung-Ang University, 84 Heukseok-ro, Dongjak-gu, Seoul, 06974, Republic of Korea
| | - Bo Shi
- National Institute of Neurological Disorders and Stroke, Bethesda, MD, USA
| | - Chung Yu Chan
- National Institute of Neurological Disorders and Stroke, Bethesda, MD, USA
| | - Xiaoli Guo
- National Institute of Neurological Disorders and Stroke, Bethesda, MD, USA
| | - Jonathan T Harrison
- Structural Cell Biology Section, Laboratory of Cell and Molecular Biology, National Institute of Diabetes and Digestive and Kidney Diseases, Bethesda, MD, USA
| | | | - Jenny E Hinshaw
- Structural Cell Biology Section, Laboratory of Cell and Molecular Biology, National Institute of Diabetes and Digestive and Kidney Diseases, Bethesda, MD, USA.
| | - Michael M Kozlov
- Department of Physiology and Pharmacology, Sackler Faculty of Medicine, Tel Aviv University, 69978, Ramat Aviv, Israel.
| | - Ling-Gang Wu
- National Institute of Neurological Disorders and Stroke, Bethesda, MD, USA.
| |
Collapse
|
22
|
Kaplan C, Kenny SJ, Chen X, Schöneberg J, Sitarska E, Diz-Muñoz A, Akamatsu M, Xu K, Drubin DG. Load adaptation by endocytic actin networks. Mol Biol Cell 2022; 33:ar50. [PMID: 35389747 PMCID: PMC9265150 DOI: 10.1091/mbc.e21-11-0589] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Revised: 03/28/2022] [Accepted: 03/29/2022] [Indexed: 11/11/2022] Open
Abstract
Clathrin-mediated endocytosis (CME) robustness under elevated membrane tension is maintained by actin assembly-mediated force generation. However, whether more actin assembles at endocytic sites in response to increased load has not previously been investigated. Here actin network ultrastructure at CME sites was examined under low and high membrane tension. Actin and N-WASP spatial organization indicate that actin polymerization initiates at the base of clathrin-coated pits and that the network then grows away from the plasma membrane. Actin network height at individual CME sites was not coupled to coat shape, raising the possibility that local differences in mechanical load feed back on assembly. By manipulating membrane tension and Arp2/3 complex activity, we tested the hypothesis that actin assembly at CME sites increases in response to elevated load. Indeed, in response to elevated membrane tension, actin grew higher, resulting in greater coverage of the clathrin coat, and CME slowed. When membrane tension was elevated and the Arp2/3 complex was inhibited, shallow clathrin-coated pits accumulated, indicating that this adaptive mechanism is especially crucial for coat curvature generation. We propose that actin assembly increases in response to increased load to ensure CME robustness over a range of plasma membrane tensions.
Collapse
Affiliation(s)
- Charlotte Kaplan
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA 94720-3220
| | - Sam J. Kenny
- Department of Chemistry, University of California, Berkeley, Berkeley, CA 94720-3220
| | - Xuyan Chen
- Department of Chemistry, University of California, Berkeley, Berkeley, CA 94720-3220
| | - Johannes Schöneberg
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA 94720-3220
- Department of pharmacology and Department of chemistry and biochemistry, University of California, San Diego, La Jolla, CA 92093
| | - Ewa Sitarska
- Cell Biology and Biophysics Unit, European Molecular Biology Laboratory Heidelberg, 69117 Heidelberg, Germany
- Collaboration for joint PhD degree between EMBL and Heidelberg University, Faculty of Biosciences
| | - Alba Diz-Muñoz
- Cell Biology and Biophysics Unit, European Molecular Biology Laboratory Heidelberg, 69117 Heidelberg, Germany
| | - Matthew Akamatsu
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA 94720-3220
| | - Ke Xu
- Department of Chemistry, University of California, Berkeley, Berkeley, CA 94720-3220
- Chan Zuckerberg Biohub, San Francisco, CA 94158
| | - David G. Drubin
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA 94720-3220
| |
Collapse
|
23
|
Kozak M, Kaksonen M. Condensation of Ede1 promotes the initiation of endocytosis. eLife 2022; 11:72865. [PMID: 35412456 PMCID: PMC9064294 DOI: 10.7554/elife.72865] [Citation(s) in RCA: 46] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Accepted: 04/01/2022] [Indexed: 11/27/2022] Open
Abstract
Clathrin-mediated endocytosis is initiated by a network of weakly interacting proteins through a poorly understood mechanism. Ede1, the yeast homolog of mammalian Eps15, is an early-arriving endocytic protein and a key initiation factor. In the absence of Ede1, most other early endocytic proteins lose their punctate localization and endocytic uptake is decreased. We show that in yeast cells, cytosolic concentration of Ede1 is buffered at a critical level. Excess amounts of Ede1 form large condensates which recruit other endocytic proteins and exhibit properties of phase-separated liquid droplets. We demonstrate that the central region of Ede1, containing a coiled-coil and a prion-like region, is essential for both the condensate formation and the function of Ede1 in endocytosis. The functionality of Ede1 mutants lacking the central region can be partially rescued by an insertion of heterologous prion-like domains. Conversely, fusion of a heterologous lipid-binding domain with the central region of Ede1 can promote clustering into stable plasma membrane domains. We propose that the ability of Ede1 to form condensed networks supports the clustering of early endocytic proteins and promotes the initiation of endocytosis.
Collapse
Affiliation(s)
- Mateusz Kozak
- Department of Biochemistry, University of Geneva, Geneva, Switzerland
| | - Marko Kaksonen
- Department of Biochemistry, University of Geneva, Geneva, Switzerland
| |
Collapse
|
24
|
Tagliatti E, Cortese K. Imaging Endocytosis Dynamics in Health and Disease. MEMBRANES 2022; 12:membranes12040393. [PMID: 35448364 PMCID: PMC9028293 DOI: 10.3390/membranes12040393] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Revised: 03/16/2022] [Accepted: 03/29/2022] [Indexed: 02/06/2023]
Abstract
Endocytosis is a critical process for cell growth and viability. It mediates nutrient uptake, guarantees plasma membrane homeostasis, and generates intracellular signaling cascades. Moreover, it plays an important role in dead cell clearance and defense against external microbes. Finally, endocytosis is an important cellular route for the delivery of nanomedicines for therapeutic treatments. Thus, it is not surprising that both environmental and genetic perturbation of endocytosis have been associated with several human conditions such as cancer, neurological disorders, and virus infections, among others. Over the last decades, a lot of research has been focused on developing advanced imaging methods to monitor endocytosis events with high resolution in living cells and tissues. These include fluorescence imaging, electron microscopy, and correlative and super-resolution microscopy. In this review, we outline the major endocytic pathways and briefly discuss how defects in the molecular machinery of these pathways lead to disease. We then discuss the current imaging methodologies used to study endocytosis in different contexts, highlighting strengths and weaknesses.
Collapse
Affiliation(s)
- Erica Tagliatti
- Laboratory of Pharmacology and Brain Pathology, Humanitas Clinical and Research Center, Via Manzoni 56, 20089 Milano, Italy
- Department of Clinical and Experimental Epilepsy, UCL Queen Square Institute of Neurology, University College London, London WC1E 6BT, UK
- Correspondence: (E.T.); (K.C.)
| | - Katia Cortese
- Cellular Electron Microscopy Laboratory, Department of Experimental Medicine (DIMES), Human Anatomy, Università di Genova, Via Antonio de Toni 14, 16132 Genova, Italy
- Correspondence: (E.T.); (K.C.)
| |
Collapse
|
25
|
Wu LG, Chan CY. Multiple Roles of Actin in Exo- and Endocytosis. Front Synaptic Neurosci 2022; 14:841704. [PMID: 35308832 PMCID: PMC8931529 DOI: 10.3389/fnsyn.2022.841704] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Accepted: 02/11/2022] [Indexed: 11/20/2022] Open
Abstract
Cytoskeletal filamentous actin (F-actin) has long been considered a molecule that may regulate exo- and endocytosis. However, its exact roles remained elusive. Recent studies shed new light on many crucial roles of F-actin in regulating exo- and endocytosis. Here, this progress is reviewed from studies of secretory cells, particularly neurons and endocrine cells. These studies reveal that F-actin is involved in mediating all kinetically distinguishable forms of endocytosis, including ultrafast, fast, slow, bulk, and overshoot endocytosis, likely via membrane pit formation. F-actin promotes vesicle replenishment to the readily releasable pool most likely via active zone clearance, which may sustain synaptic transmission and overcome short-term depression of synaptic transmission during repetitive firing. By enhancing plasma membrane tension, F-actin promotes fusion pore expansion, vesicular content release, and a fusion mode called shrink fusion involving fusing vesicle shrinking. Not only F-actin, but also the F-actin assembly pathway, including ATP hydrolysis, N-WASH, and formin, are involved in mediating these roles of exo- and endocytosis. Neurological disorders, including spinocerebellar ataxia 13 caused by Kv3.3 channel mutation, may involve impairment of F-actin and its assembly pathway, leading in turn to impairment of exo- and endocytosis at synapses that may contribute to neurological disorders.
Collapse
Affiliation(s)
- Ling-Gang Wu
- National Institute of Neurological Disorders and Stroke, Bethesda, MD, United States
| | | |
Collapse
|
26
|
Aniento F, Sánchez de Medina Hernández V, Dagdas Y, Rojas-Pierce M, Russinova E. Molecular mechanisms of endomembrane trafficking in plants. THE PLANT CELL 2022; 34:146-173. [PMID: 34550393 PMCID: PMC8773984 DOI: 10.1093/plcell/koab235] [Citation(s) in RCA: 63] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Accepted: 09/12/2021] [Indexed: 05/10/2023]
Abstract
Endomembrane trafficking is essential for all eukaryotic cells. The best-characterized membrane trafficking organelles include the endoplasmic reticulum (ER), Golgi apparatus, early and recycling endosomes, multivesicular body, or late endosome, lysosome/vacuole, and plasma membrane. Although historically plants have given rise to cell biology, our understanding of membrane trafficking has mainly been shaped by the much more studied mammalian and yeast models. Whereas organelles and major protein families that regulate endomembrane trafficking are largely conserved across all eukaryotes, exciting variations are emerging from advances in plant cell biology research. In this review, we summarize the current state of knowledge on plant endomembrane trafficking, with a focus on four distinct trafficking pathways: ER-to-Golgi transport, endocytosis, trans-Golgi network-to-vacuole transport, and autophagy. We acknowledge the conservation and commonalities in the trafficking machinery across species, with emphasis on diversity and plant-specific features. Understanding the function of organelles and the trafficking machinery currently nonexistent in well-known model organisms will provide great opportunities to acquire new insights into the fundamental cellular process of membrane trafficking.
Collapse
Affiliation(s)
| | - Víctor Sánchez de Medina Hernández
- Gregor Mendel Institute, Austrian Academy of Sciences, Vienna BioCenter, 1030 Vienna, Austria
- Vienna BioCenter PhD Program, Doctoral School of the University of Vienna and Medical University of Vienna, A-1030, Vienna, Austria
| | | | | | | |
Collapse
|
27
|
Gaertner F, Reis-Rodrigues P, de Vries I, Hons M, Aguilera J, Riedl M, Leithner A, Tasciyan S, Kopf A, Merrin J, Zheden V, Kaufmann WA, Hauschild R, Sixt M. WASp triggers mechanosensitive actin patches to facilitate immune cell migration in dense tissues. Dev Cell 2022; 57:47-62.e9. [PMID: 34919802 PMCID: PMC8751638 DOI: 10.1016/j.devcel.2021.11.024] [Citation(s) in RCA: 41] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Revised: 09/06/2021] [Accepted: 11/24/2021] [Indexed: 12/26/2022]
Abstract
When crawling through the body, leukocytes often traverse tissues that are densely packed with extracellular matrix and other cells, and this raises the question: How do leukocytes overcome compressive mechanical loads? Here, we show that the actin cortex of leukocytes is mechanoresponsive and that this responsiveness requires neither force sensing via the nucleus nor adhesive interactions with a substrate. Upon global compression of the cell body as well as local indentation of the plasma membrane, Wiskott-Aldrich syndrome protein (WASp) assembles into dot-like structures, providing activation platforms for Arp2/3 nucleated actin patches. These patches locally push against the external load, which can be obstructing collagen fibers or other cells, and thereby create space to facilitate forward locomotion. We show in vitro and in vivo that this WASp function is rate limiting for ameboid leukocyte migration in dense but not in loose environments and is required for trafficking through diverse tissues such as skin and lymph nodes.
Collapse
Affiliation(s)
- Florian Gaertner
- Institute of Science and Technology Austria, 3400 Klosterneuburg, Austria.
| | | | - Ingrid de Vries
- Institute of Science and Technology Austria, 3400 Klosterneuburg, Austria
| | - Miroslav Hons
- BIOCEV, First Faculty of Medicine, Charles University, Vestec, Czech Republic
| | - Juan Aguilera
- Institute of Science and Technology Austria, 3400 Klosterneuburg, Austria
| | - Michael Riedl
- Institute of Science and Technology Austria, 3400 Klosterneuburg, Austria
| | - Alexander Leithner
- Institute of Science and Technology Austria, 3400 Klosterneuburg, Austria
| | - Saren Tasciyan
- Institute of Science and Technology Austria, 3400 Klosterneuburg, Austria
| | - Aglaja Kopf
- Institute of Science and Technology Austria, 3400 Klosterneuburg, Austria
| | - Jack Merrin
- Institute of Science and Technology Austria, 3400 Klosterneuburg, Austria
| | - Vanessa Zheden
- Institute of Science and Technology Austria, 3400 Klosterneuburg, Austria
| | | | - Robert Hauschild
- Institute of Science and Technology Austria, 3400 Klosterneuburg, Austria
| | - Michael Sixt
- Institute of Science and Technology Austria, 3400 Klosterneuburg, Austria.
| |
Collapse
|
28
|
Abella M, Andruck L, Malengo G, Skruzny M. Actin-generated force applied during endocytosis measured by Sla2-based FRET tension sensors. Dev Cell 2021; 56:2419-2426.e4. [PMID: 34473942 DOI: 10.1016/j.devcel.2021.08.007] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Revised: 04/27/2021] [Accepted: 08/11/2021] [Indexed: 11/17/2022]
Abstract
Mechanical forces are integral to many cellular processes, including clathrin-mediated endocytosis, a principal membrane trafficking route into the cell. During endocytosis, forces provided by endocytic proteins and the polymerizing actin cytoskeleton reshape the plasma membrane into a vesicle. Assessing force requirements of endocytic membrane remodeling is essential for understanding endocytosis. Here, we determined actin-generated force applied during endocytosis using FRET-based tension sensors inserted into the major force-transmitting protein Sla2 in yeast. We measured at least 8 pN force transmitted over Sla2 molecule, hence possibly more than 300-880 pN applied during endocytic vesicle formation. Importantly, decreasing cell turgor pressure and plasma membrane tension reduced force transmitted over the Sla2. The measurements in hypotonic conditions and mutants lacking BAR-domain membrane scaffolds then showed the limits of the endocytic force-transmitting machinery. Our study provides force values and force profiles critical for understanding the mechanics of endocytosis and potentially other key cellular membrane-remodeling processes.
Collapse
Affiliation(s)
- Marc Abella
- Department of Systems and Synthetic Microbiology, Max Planck Institute for Terrestrial Microbiology, 35043 Marburg, Germany; LOEWE Center for Synthetic Microbiology (SYNMIKRO), 35043 Marburg, Germany
| | - Lynell Andruck
- Department of Systems and Synthetic Microbiology, Max Planck Institute for Terrestrial Microbiology, 35043 Marburg, Germany; LOEWE Center for Synthetic Microbiology (SYNMIKRO), 35043 Marburg, Germany
| | - Gabriele Malengo
- Flow Cytometry and Imaging Facility, Max Planck Institute for Terrestrial Microbiology, 35043 Marburg, Germany; LOEWE Center for Synthetic Microbiology (SYNMIKRO), 35043 Marburg, Germany
| | - Michal Skruzny
- Department of Systems and Synthetic Microbiology, Max Planck Institute for Terrestrial Microbiology, 35043 Marburg, Germany; LOEWE Center for Synthetic Microbiology (SYNMIKRO), 35043 Marburg, Germany.
| |
Collapse
|
29
|
Clathrin: the molecular shape shifter. Biochem J 2021; 478:3099-3123. [PMID: 34436540 DOI: 10.1042/bcj20200740] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2021] [Revised: 07/19/2021] [Accepted: 08/04/2021] [Indexed: 12/11/2022]
Abstract
Clathrin is best known for its contribution to clathrin-mediated endocytosis yet it also participates to a diverse range of cellular functions. Key to this is clathrin's ability to assemble into polyhedral lattices that include curved football or basket shapes, flat lattices or even tubular structures. In this review, we discuss clathrin structure and coated vesicle formation, how clathrin is utilised within different cellular processes including synaptic vesicle recycling, hormone desensitisation, spermiogenesis, cell migration and mitosis, and how clathrin's remarkable 'shapeshifting' ability to form diverse lattice structures might contribute to its multiple cellular functions.
Collapse
|
30
|
Allard A, Lopes Dos Santos R, Campillo C. Remodelling of membrane tubules by the actin cytoskeleton. Biol Cell 2021; 113:329-343. [PMID: 33826772 DOI: 10.1111/boc.202000148] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Revised: 03/25/2021] [Accepted: 03/27/2021] [Indexed: 12/14/2022]
Abstract
Inside living cells, the remodelling of membrane tubules by actomyosin networks is crucial for processes such as intracellular trafficking or organelle reshaping. In this review, we first present various in vivo situations in which actin affects membrane tubule remodelling, then we recall some results on force production by actin dynamics and on membrane tubules physics. Finally, we show that our knowledge of the underlying mechanisms by which actomyosin dynamics affect tubule morphology has recently been moved forward. This is thanks to in vitro experiments that mimic cellular membranes and actin dynamics and allow deciphering the physics of tubule remodelling in biochemically controlled conditions, and shed new light on tubule shape regulation.
Collapse
Affiliation(s)
- Antoine Allard
- LAMBE, Université d'Évry, CNRS, CEA, Université Paris-Saclay, Évry-Courcouronnes, 91025, France.,Sorbonne Université, UPMC, Paris 06, Paris, France.,Laboratoire Physico Chimie Curie, Institut Curie, PSL Research University, CNRS UMR168, Paris, France.,Department of Physics, University of Warwick, Gibbet Hill Road, Coventry, CV4 7AL, UK
| | | | - Clément Campillo
- LAMBE, Université d'Évry, CNRS, CEA, Université Paris-Saclay, Évry-Courcouronnes, 91025, France
| |
Collapse
|
31
|
Pedersen RTA, Hassinger JE, Marchando P, Drubin DG. Spatial regulation of clathrin-mediated endocytosis through position-dependent site maturation. J Cell Biol 2020; 219:211446. [PMID: 33053166 PMCID: PMC7545360 DOI: 10.1083/jcb.202002160] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2020] [Revised: 07/08/2020] [Accepted: 09/04/2020] [Indexed: 12/17/2022] Open
Abstract
During clathrin-mediated endocytosis (CME), over 50 different proteins assemble on the plasma membrane to reshape it into a cargo-laden vesicle. It has long been assumed that cargo triggers local CME site assembly in Saccharomyces cerevisiae based on the discovery that cortical actin patches, which cluster near exocytic sites, are CME sites. Quantitative imaging data reported here lead to a radically different view of which CME steps are regulated and which steps are deterministic. We quantitatively and spatially describe progression through the CME pathway and pinpoint a cargo-sensitive regulatory transition point that governs progression from the initiation phase of CME to the internalization phase. Thus, site maturation, rather than site initiation, accounts for the previously observed polarized distribution of actin patches in this organism. While previous studies suggested that cargo ensures its own internalization by regulating either CME initiation rates or frequency of abortive events, our data instead identify maturation through a checkpoint in the pathway as the cargo-sensitive step.
Collapse
Affiliation(s)
- Ross T A Pedersen
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA
| | - Julian E Hassinger
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA.,Biophysics Graduate Group, University of California, Berkeley, Berkeley, CA
| | - Paul Marchando
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA
| | - David G Drubin
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA
| |
Collapse
|
32
|
Kessels MM, Qualmann B. Interplay between membrane curvature and the actin cytoskeleton. Curr Opin Cell Biol 2020; 68:10-19. [PMID: 32927373 DOI: 10.1016/j.ceb.2020.08.008] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Revised: 08/10/2020] [Accepted: 08/11/2020] [Indexed: 12/26/2022]
Abstract
An intimate interplay of the plasma membrane with curvature-sensing and curvature-inducing proteins would allow for defining specific sites or nanodomains of action at the plasma membrane, for example, for protrusion, invagination, and polarization. In addition, such connections are predestined to ensure spatial and temporal order and sequences. The combined forces of membrane shapers and the cortical actin cytoskeleton might hereby in particular be required to overcome the strong resistance against membrane rearrangements in case of high plasma membrane tension or cellular turgor. Interestingly, also the opposite might be necessary, the inhibition of both membrane shapers and cytoskeletal reinforcement structures to relieve membrane tension to protect cells from membrane damage and rupturing during mechanical stress. In this review article, we discuss recent conceptual advances enlightening the interplay of plasma membrane curvature and the cortical actin cytoskeleton during endocytosis, modulations of membrane tensions, and the shaping of entire cells.
Collapse
Affiliation(s)
- Michael M Kessels
- Institute of Biochemistry I, Jena University Hospital, Friedrich Schiller University Jena, Nonnenplan 2-4, 07743, Jena, Germany
| | - Britta Qualmann
- Institute of Biochemistry I, Jena University Hospital, Friedrich Schiller University Jena, Nonnenplan 2-4, 07743, Jena, Germany.
| |
Collapse
|
33
|
Shah SI, Ong HL, Demuro A, Ullah G. PunctaSpecks: A tool for automated detection, tracking, and analysis of multiple types of fluorescently labeled biomolecules. Cell Calcium 2020; 89:102224. [PMID: 32502904 PMCID: PMC7343294 DOI: 10.1016/j.ceca.2020.102224] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2020] [Revised: 05/12/2020] [Accepted: 05/21/2020] [Indexed: 01/21/2023]
Abstract
Recent advances in imaging technology and fluorescent probes have made it possible to gain information about the dynamics of subcellular processes at unprecedented spatiotemporal scales. Unfortunately, a lack of automated tools to efficiently process the resulting imaging data encoding fine details of the biological processes remains a major bottleneck in utilizing the full potential of these powerful experimental techniques. Here we present a computational tool, called PunctaSpecks, that can characterize fluorescence signals arising from a wide range of biological molecules under normal and pathological conditions. Among other things, the program can calculate the number, areas, life-times, and amplitudes of fluorescence signals arising from multiple sources, track diffusing fluorescence sources like moving mitochondria, and determine the overlap probability of two processes or organelles imaged using indicator dyes of different colors. We have tested PunctaSpecks on synthetic time-lapse movies containing mobile fluorescence objects of various sizes, mimicking the activity of biomolecules. The robustness of the software is tested by varying the level of noise along with random but known pattern of appearing, disappearing, and movement of these objects. Next, we use PunctaSpecks to characterize protein-protein interaction involved in store-operated Ca2+ entry through the formation and activation of plasma membrane-bound ORAI1 channel and endoplasmic reticulum membrane-bound stromal interaction molecule (STIM), the evolution of inositol 1,4,5-trisphosphate (IP3)-induced Ca2+ signals from sub-micrometer size local events into global waves in human cortical neurons, and the activity of Alzheimer's disease-associated β amyloid pores in the plasma membrane. The tool can also be used to study other dynamical processes imaged through fluorescence molecules. The open source algorithm allows for extending the program to analyze more than two types of biomolecules visualized using markers of different colors.
Collapse
Affiliation(s)
| | - Hwei Ling Ong
- Secretory Physiology Section, NIDCR, NIH, Bethesda, MD, 20892,USA
| | - Angelo Demuro
- Department of Neurobiology and Behavior, University of California, Irvine, CA 92697, USA
| | - Ghanim Ullah
- Department of Physics, University of South Florida, Tampa, FL 33647, USA.
| |
Collapse
|
34
|
Skruzny M, Pohl E, Gnoth S, Malengo G, Sourjik V. The protein architecture of the endocytic coat analyzed by FRET microscopy. Mol Syst Biol 2020; 16:e9009. [PMID: 32400111 PMCID: PMC7218409 DOI: 10.15252/msb.20199009] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2019] [Revised: 04/02/2020] [Accepted: 04/03/2020] [Indexed: 12/16/2022] Open
Abstract
Endocytosis is a fundamental cellular trafficking pathway, which requires an organized assembly of the multiprotein endocytic coat to pull the plasma membrane into the cell. Although the protein composition of the endocytic coat is known, its functional architecture is not well understood. Here, we determine the nanoscale organization of the endocytic coat by FRET microscopy in yeast Saccharomyces cerevisiae. We assessed pairwise proximities of 18 conserved coat-associated proteins and used clathrin subunits and protein truncations as molecular rulers to obtain a high-resolution protein map of the coat. Furthermore, we followed rearrangements of coat proteins during membrane invagination and their binding dynamics at the endocytic site. We show that the endocytic coat proteins are not confined inside the clathrin lattice, but form distinct functional layers above and below the lattice. Importantly, key endocytic proteins transverse the clathrin lattice deeply into the cytoplasm connecting thus the membrane and cytoplasmic parts of the coat. We propose that this design enables an efficient and regulated function of the endocytic coat during endocytic vesicle formation.
Collapse
Affiliation(s)
- Michal Skruzny
- Department of Systems and Synthetic MicrobiologyMax Planck Institute for Terrestrial MicrobiologyMarburgGermany
- LOEWE Center for Synthetic Microbiology (SYNMIKRO)MarburgGermany
| | - Emma Pohl
- Department of Systems and Synthetic MicrobiologyMax Planck Institute for Terrestrial MicrobiologyMarburgGermany
- LOEWE Center for Synthetic Microbiology (SYNMIKRO)MarburgGermany
| | - Sandina Gnoth
- Department of Systems and Synthetic MicrobiologyMax Planck Institute for Terrestrial MicrobiologyMarburgGermany
- LOEWE Center for Synthetic Microbiology (SYNMIKRO)MarburgGermany
| | - Gabriele Malengo
- Department of Systems and Synthetic MicrobiologyMax Planck Institute for Terrestrial MicrobiologyMarburgGermany
- LOEWE Center for Synthetic Microbiology (SYNMIKRO)MarburgGermany
| | - Victor Sourjik
- Department of Systems and Synthetic MicrobiologyMax Planck Institute for Terrestrial MicrobiologyMarburgGermany
- LOEWE Center for Synthetic Microbiology (SYNMIKRO)MarburgGermany
| |
Collapse
|
35
|
Prigent M, Chaillot J, Tisserand H, Boy-Marcotte E, Cuif MH. Three members of the yeast N-BAR proteins family form heterogeneous lattices in vivo and interact differentially with two RabGAP proteins. Sci Rep 2020; 10:1698. [PMID: 32015451 PMCID: PMC6997364 DOI: 10.1038/s41598-020-58606-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2019] [Accepted: 01/08/2020] [Indexed: 11/26/2022] Open
Abstract
The yeast N-BAR (Bin/Amphiphysin/Rvs167) protein Rvs167 is recruited by the Rab GTPase Activating Proteins (RabGAP) Gyp5 and Gyl1 to the tip of small buds to act in exocytosis. Investigating other N-BAR proteins involved in Gyp5/Gyl1/Rvs167 complexes, we found that Rvs161, an Rvs167 paralog, is absent from the complexes formed at the tip of small buds. Immunoprecipitation and Bimolecular Fluorescence Complementation (BiFC) analysis show that both Rvs167 and Rvs161 interact in vivo with Gvp36, an N-BAR protein. Rvs167 molecules also interact independently of Rvs161 and Gvp36. Rvs167/Rvs167 and Rvs167/Gyp5 interactions predominate over other combinations at the tip of small buds, suggesting that N-BAR lattices enriched in Rvs167 molecules form at these sites. By combining BiFC with markers specific to each organelle, we analyzed systematically in living cells the locations of the BiFC signals generated by combinations of the three N-BAR proteins. We show that the BiFC signals differ according to organelle and cell site, strongly suggesting heterogeneity in the composition of N-BAR protein lattices in vivo. Our results reveal that the organization of N-BAR protein lattices in vivo is complex and are consistent with N-BAR proteins forming various types of dimers and lattices of variable composition.
Collapse
Affiliation(s)
- Magali Prigent
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), 91198, Gif-sur-Yvette, France
| | - Julien Chaillot
- Institut sur la Nutrition et les Aliments Fonctionnels (INAF), Université Laval, 2440 Boulevard Hochelaga, Québec, QC, G1V 0A6, Canada
| | - Hélène Tisserand
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), 91198, Gif-sur-Yvette, France
| | - Emmanuelle Boy-Marcotte
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), 91198, Gif-sur-Yvette, France
| | - Marie-Hélène Cuif
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), 91198, Gif-sur-Yvette, France.
| |
Collapse
|
36
|
Narasimhan M, Johnson A, Prizak R, Kaufmann WA, Tan S, Casillas-Pérez B, Friml J. Evolutionarily unique mechanistic framework of clathrin-mediated endocytosis in plants. eLife 2020; 9:52067. [PMID: 31971511 PMCID: PMC7012609 DOI: 10.7554/elife.52067] [Citation(s) in RCA: 67] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2019] [Accepted: 01/22/2020] [Indexed: 12/13/2022] Open
Abstract
In plants, clathrin mediated endocytosis (CME) represents the major route for cargo internalisation from the cell surface. It has been assumed to operate in an evolutionary conserved manner as in yeast and animals. Here we report characterisation of ultrastructure, dynamics and mechanisms of plant CME as allowed by our advancement in electron microscopy and quantitative live imaging techniques. Arabidopsis CME appears to follow the constant curvature model and the bona fide CME population generates vesicles of a predominantly hexagonal-basket type; larger and with faster kinetics than in other models. Contrary to the existing paradigm, actin is dispensable for CME events at the plasma membrane but plays a unique role in collecting endocytic vesicles, sorting of internalised cargos and directional endosome movement that itself actively promote CME events. Internalized vesicles display a strongly delayed and sequential uncoating. These unique features highlight the independent evolution of the plant CME mechanism during the autonomous rise of multicellularity in eukaryotes.
Collapse
Affiliation(s)
| | - Alexander Johnson
- Institute of Science and Technology Austria, Klosterneuburg, Austria
| | - Roshan Prizak
- Institute of Science and Technology Austria, Klosterneuburg, Austria.,Institute of Biological and Chemical Systems - Biological Information Processing, Karlsruhe Institute of Technology, Eggenstein-Leopoldshafen, Germany
| | | | - Shutang Tan
- Institute of Science and Technology Austria, Klosterneuburg, Austria
| | | | - Jiří Friml
- Institute of Science and Technology Austria, Klosterneuburg, Austria
| |
Collapse
|
37
|
Akamatsu M, Vasan R, Serwas D, Ferrin MA, Rangamani P, Drubin DG. Principles of self-organization and load adaptation by the actin cytoskeleton during clathrin-mediated endocytosis. eLife 2020; 9:49840. [PMID: 31951196 PMCID: PMC7041948 DOI: 10.7554/elife.49840] [Citation(s) in RCA: 104] [Impact Index Per Article: 20.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2019] [Accepted: 01/16/2020] [Indexed: 12/20/2022] Open
Abstract
Force generation by actin assembly shapes cellular membranes. An experimentally constrained multiscale model shows that a minimal branched actin network is sufficient to internalize endocytic pits against membrane tension. Around 200 activated Arp2/3 complexes are required for robust internalization. A newly developed molecule-counting method determined that ~200 Arp2/3 complexes assemble at sites of clathrin-mediated endocytosis in human cells. Simulations predict that actin self-organizes into a radial branched array with growing ends oriented toward the base of the pit. Long actin filaments bend between attachment sites in the coat and the base of the pit. Elastic energy stored in bent filaments, whose presence was confirmed by cryo-electron tomography, contributes to endocytic internalization. Elevated membrane tension directs more growing filaments toward the base of the pit, increasing actin nucleation and bending for increased force production. Thus, spatially constrained actin filament assembly utilizes an adaptive mechanism enabling endocytosis under varying physical constraints. The outer membrane of a cell is a tight but elastic barrier that controls what enters or leaves the cell. Large molecules typically cannot cross this membrane unaided. Instead, to enter the cell, they must be packaged into a pocket of the membrane that is then pulled inside. This process, called endocytosis, shuttles material into a cell hundreds of times a minute. Endocytosis relies on molecular machines that assemble and disassemble at the membrane as required. One component, a protein called actin, self-assembles near the membrane into long filaments with many repeated subunits. These filaments grow against the membrane, pulling it inwards. But it was not clear how actin filaments organize in such a way that allows them to pull on the membrane with enough force – and without a template to follow. Akamatsu et al. set about identifying how actin operates during endocytosis by using computer simulations that were informed by measurements made in living cells. The simulations included information about the location of actin and other essential molecules, along with the details of how these molecules work individually and together. Akamatsu et al. also developed a method to count the numbers of molecules of a key protein at individual sites of endocytosis. High-resolution imaging was then used to create 3D pictures of actin and endocytosis in action in human cells grown in the laboratory. The analysis showed the way actin filaments arrange themselves depends on the starting positions of a few key molecules that connect to actin. Imaging confirmed that, like a pole-vaulting pole, the flexible actin filaments bend to store energy and then release it to pull the membrane inwards during endocytosis. Finally, the simulations predicted that the collection of filaments adapts its shape and size in response to the resistance of the elastic membrane. This makes the system opportunistic and adaptable to the unpredictable environment within cells.
Collapse
Affiliation(s)
- Matthew Akamatsu
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, United States
| | - Ritvik Vasan
- Department of Mechanical and Aerospace Engineering, University of California, San Diego, La Jolla, United States
| | - Daniel Serwas
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, United States
| | - Michael A Ferrin
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, United States
| | - Padmini Rangamani
- Department of Mechanical and Aerospace Engineering, University of California, San Diego, La Jolla, United States
| | - David G Drubin
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, United States
| |
Collapse
|
38
|
Lacy MM, Baddeley D, Berro J. Single-molecule turnover dynamics of actin and membrane coat proteins in clathrin-mediated endocytosis. eLife 2019; 8:52355. [PMID: 31855180 PMCID: PMC6977972 DOI: 10.7554/elife.52355] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2019] [Accepted: 12/18/2019] [Indexed: 12/22/2022] Open
Abstract
Actin dynamics generate forces to deform the membrane and overcome the cell’s high turgor pressure during clathrin-mediated endocytosis (CME) in yeast, but precise molecular details are still unresolved. Our previous models predicted that actin filaments of the endocytic meshwork continually polymerize and disassemble, turning over multiple times during an endocytic event, similar to other actin systems. We applied single-molecule speckle tracking in live fission yeast to directly measure molecular turnover within CME sites for the first time. In contrast with the overall ~20 s lifetimes of actin and actin-associated proteins in endocytic patches, we detected single-molecule residence times around 1 to 2 s, and similarly high turnover rates of membrane-associated proteins in CME. Furthermore, we find heterogeneous behaviors in many proteins’ motions. These results indicate that endocytic proteins turn over up to five times during the formation of an endocytic vesicle, and suggest revising quantitative models of force production.
Collapse
Affiliation(s)
- Michael M Lacy
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, United States.,Nanobiology Institute, Yale University, West Haven, United States.,Integrated Graduate Program in Physical and Engineering Biology, Yale University, New Haven, United States
| | - David Baddeley
- Nanobiology Institute, Yale University, West Haven, United States.,Department of Cell Biology, Yale University School of Medicine, New Haven, United States
| | - Julien Berro
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, United States.,Nanobiology Institute, Yale University, West Haven, United States.,Department of Cell Biology, Yale University School of Medicine, New Haven, United States
| |
Collapse
|
39
|
Lacy MM, Baddeley D, Berro J. Single-molecule turnover dynamics of actin and membrane coat proteins in clathrin-mediated endocytosis. eLife 2019; 8. [PMID: 31855180 DOI: 10.1101/617746] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2019] [Accepted: 12/18/2019] [Indexed: 05/20/2023] Open
Abstract
Actin dynamics generate forces to deform the membrane and overcome the cell's high turgor pressure during clathrin-mediated endocytosis (CME) in yeast, but precise molecular details are still unresolved. Our previous models predicted that actin filaments of the endocytic meshwork continually polymerize and disassemble, turning over multiple times during an endocytic event, similar to other actin systems. We applied single-molecule speckle tracking in live fission yeast to directly measure molecular turnover within CME sites for the first time. In contrast with the overall ~20 s lifetimes of actin and actin-associated proteins in endocytic patches, we detected single-molecule residence times around 1 to 2 s, and similarly high turnover rates of membrane-associated proteins in CME. Furthermore, we find heterogeneous behaviors in many proteins' motions. These results indicate that endocytic proteins turn over up to five times during the formation of an endocytic vesicle, and suggest revising quantitative models of force production.
Collapse
Affiliation(s)
- Michael M Lacy
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, United States
- Nanobiology Institute, Yale University, West Haven, United States
- Integrated Graduate Program in Physical and Engineering Biology, Yale University, New Haven, United States
| | - David Baddeley
- Nanobiology Institute, Yale University, West Haven, United States
- Department of Cell Biology, Yale University School of Medicine, New Haven, United States
| | - Julien Berro
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, United States
- Nanobiology Institute, Yale University, West Haven, United States
- Department of Cell Biology, Yale University School of Medicine, New Haven, United States
| |
Collapse
|
40
|
Sun Y, Schöneberg J, Chen X, Jiang T, Kaplan C, Xu K, Pollard TD, Drubin DG. Direct comparison of clathrin-mediated endocytosis in budding and fission yeast reveals conserved and evolvable features. eLife 2019; 8:50749. [PMID: 31829937 PMCID: PMC6908435 DOI: 10.7554/elife.50749] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2019] [Accepted: 11/14/2019] [Indexed: 12/13/2022] Open
Abstract
Conserved proteins drive clathrin-mediated endocytosis (CME), which from yeast to humans involves a burst of actin assembly. To gain mechanistic insights into this process, we performed a side-by-side quantitative comparison of CME in two distantly related yeast species. Though endocytic protein abundance in S. pombe and S. cerevisiae is more similar than previously thought, membrane invagination speed and depth are two-fold greater in fission yeast. In both yeasts, accumulation of ~70 WASp molecules activates the Arp2/3 complex to drive membrane invagination. In contrast to budding yeast, WASp-mediated actin nucleation plays an essential role in fission yeast endocytosis. Genetics and live-cell imaging revealed core CME spatiodynamic similarities between the two yeasts, although the assembly of two zones of actin filaments is specific for fission yeast and not essential for CME. These studies identified conserved CME mechanisms and species-specific adaptations with broad implications that are expected to extend from yeast to humans.
Collapse
Affiliation(s)
- Yidi Sun
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, United States
| | - Johannes Schöneberg
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, United States
| | - Xuyan Chen
- Department of Chemistry, University of California, Berkeley, Berkeley, United States
| | - Tommy Jiang
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, United States
| | - Charlotte Kaplan
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, United States
| | - Ke Xu
- Department of Chemistry, University of California, Berkeley, Berkeley, United States
| | - Thomas D Pollard
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, United States.,Department of Cell Biology, Yale University, New Haven, United States.,Department of Molecular Cellular and Developmental Biology, Yale University, New Haven, United States
| | - David G Drubin
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, United States
| |
Collapse
|
41
|
Baker K, Gyamfi IA, Mashanov GI, Molloy JE, Geeves MA, Mulvihill DP. TORC2-Gad8-dependent myosin phosphorylation modulates regulation by calcium. eLife 2019; 8:e51150. [PMID: 31566560 PMCID: PMC6802964 DOI: 10.7554/elife.51150] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2019] [Accepted: 09/26/2019] [Indexed: 01/22/2023] Open
Abstract
Cells respond to changes in their environment through signaling networks that modulate cytoskeleton and membrane organization to coordinate cell-cycle progression, polarized cell growth and multicellular development. Here, we define a novel regulatory mechanism by which the motor activity and function of the fission yeast type one myosin, Myo1, is modulated by TORC2-signalling-dependent phosphorylation. Phosphorylation of the conserved serine at position 742 (S742) within the neck region changes both the conformation of the neck region and the interactions between Myo1 and its associating calmodulin light chains. S742 phosphorylation thereby couples the calcium and TOR signaling networks that are involved in the modulation of myosin-1 dynamics to co-ordinate actin polymerization and membrane reorganization at sites of endocytosis and polarised cell growth in response to environmental and cell-cycle cues.
Collapse
Affiliation(s)
- Karen Baker
- School of BiosciencesUniversity of KentCanterburyUnited Kingdom
| | - Irene A Gyamfi
- School of BiosciencesUniversity of KentCanterburyUnited Kingdom
| | | | | | | | | |
Collapse
|
42
|
Balzer CJ, Wagner AR, Helgeson LA, Nolen BJ. Single-Turnover Activation of Arp2/3 Complex by Dip1 May Balance Nucleation of Linear versus Branched Actin Filaments. Curr Biol 2019; 29:3331-3338.e7. [PMID: 31564494 DOI: 10.1016/j.cub.2019.08.023] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2019] [Revised: 07/12/2019] [Accepted: 08/09/2019] [Indexed: 02/01/2023]
Abstract
Arp2/3 complex nucleates branched actin filaments important for cellular motility, endocytosis, meiosis, and cellular differentiation [1-4]. Wiskott-Aldrich syndrome proteins (WASPs), the prototypical Arp2/3 complex activators, activate Arp2/3 complex only once it is bound to the side of an actin filament [5, 6]. This ensures WASP-activated Arp2/3 complex only nucleates branched actin filaments but means branched actin networks must be seeded with an initial preformed filament. Dip1 and other WISH/DIP/SPIN90 family proteins activate Arp2/3 complex without preformed filaments [7], creating seed filaments that activate WASP-bound Arp2/3 complex [8]. Importantly, Dip1-mediated activation of Arp2/3 complex creates linear filaments instead of branches [7]. Cells may therefore need to limit Dip1 activity relative to WASP to preserve the dendritic nature of actin networks, although it is unclear whether such regulatory mechanisms exist. Here, we use total internal reflection fluorescence (TIRF) microscopy to show that Dip1 causes actin assembled with WASP and Arp2/3 complex to form disconnected networks with many linear filaments rather than highly branched arrays. We discover a key biochemical difference between Dip1 and WASP that may limit linear filament nucleation in cells; although WASP must be released for nucleation, Dip1 stays associated with Arp2/3 complex on the pointed ends of nucleated actin filaments, so Dip1 is consumed in the reaction. Using live-cell imaging of fission yeast, we provide evidence that Dip1 is a single-turnover activator of Arp2/3 complex in vivo, revealing a mechanism by which Dip1 can initiate branched actin networks at endocytic sites without disrupting their branched architectures.
Collapse
Affiliation(s)
- Connor J Balzer
- Department of Chemistry and Biochemistry, Institute of Molecular Biology, University of Oregon, Eugene, OR 97403, USA
| | - Andrew R Wagner
- Department of Chemistry and Biochemistry, Institute of Molecular Biology, University of Oregon, Eugene, OR 97403, USA
| | - Luke A Helgeson
- Department of Chemistry and Biochemistry, Institute of Molecular Biology, University of Oregon, Eugene, OR 97403, USA
| | - Brad J Nolen
- Department of Chemistry and Biochemistry, Institute of Molecular Biology, University of Oregon, Eugene, OR 97403, USA.
| |
Collapse
|
43
|
Case LB, Zhang X, Ditlev JA, Rosen MK. Stoichiometry controls activity of phase-separated clusters of actin signaling proteins. Science 2019; 363:1093-1097. [PMID: 30846599 DOI: 10.1126/science.aau6313] [Citation(s) in RCA: 337] [Impact Index Per Article: 56.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2018] [Accepted: 01/10/2019] [Indexed: 12/20/2022]
Abstract
Biomolecular condensates concentrate macromolecules into foci without a surrounding membrane. Many condensates appear to form through multivalent interactions that drive liquid-liquid phase separation (LLPS). LLPS increases the specific activity of actin regulatory proteins toward actin assembly by the Arp2/3 complex. We show that this increase occurs because LLPS of the Nephrin-Nck-N-WASP signaling pathway on lipid bilayers increases membrane dwell time of N-WASP and Arp2/3 complex, consequently increasing actin assembly. Dwell time varies with relative stoichiometry of the signaling proteins in the phase-separated clusters, rendering N-WASP and Arp2/3 activity stoichiometry dependent. This mechanism of controlling protein activity is enabled by the stoichiometrically undefined nature of biomolecular condensates. Such regulation should be a general feature of signaling systems that assemble through multivalent interactions and drive nonequilibrium outputs.
Collapse
Affiliation(s)
- Lindsay B Case
- The HHMI Summer Institute, Marine Biological Laboratory, Woods Hole, MA 02543, USA.,Department of Biophysics and Howard Hughes Medical Institute, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Xu Zhang
- Department of Biophysics and Howard Hughes Medical Institute, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Jonathon A Ditlev
- The HHMI Summer Institute, Marine Biological Laboratory, Woods Hole, MA 02543, USA.,Department of Biophysics and Howard Hughes Medical Institute, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Michael K Rosen
- The HHMI Summer Institute, Marine Biological Laboratory, Woods Hole, MA 02543, USA. .,Department of Biophysics and Howard Hughes Medical Institute, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| |
Collapse
|
44
|
MacQuarrie CD, Mangione MC, Carroll R, James M, Gould KL, Sirotkin V. The S. pombe adaptor protein Bbc1 regulates localization of Wsp1 and Vrp1 during endocytic actin patch assembly. J Cell Sci 2019; 132:jcs233502. [PMID: 31391237 PMCID: PMC6771142 DOI: 10.1242/jcs.233502] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2019] [Accepted: 07/24/2019] [Indexed: 01/01/2023] Open
Abstract
Arp2/3 complex-nucleated branched actin networks provide the key force necessary for endocytosis. The Arp2/3 complex is activated by nucleation-promoting factors including the Schizosaccharomyces pombe Wiskott-Aldrich syndrome protein (Wsp1) and myosin-1 (Myo1). There are >40 known yeast endocytic proteins with distinct spatial and temporal localizations and functions; however, it is still unclear how these proteins work together to drive endocytosis. Here, we used quantitative live-cell imaging to determine the function of the uncharacterized S. pombe protein Bbc1. We discovered that Myo1 interacts with and recruits Bbc1 to sites of endocytosis. Bbc1 competes with the verprolin Vrp1 for localization to patches and association with Myo1, thus releasing Vrp1 and its binding partner Wsp1 from Myo1. Normally Myo1 remains at the base of the endocytic invagination and Vrp1-Wsp1 internalizes with the endocytic vesicle. However, in the absence of Bbc1, a portion of Vrp1-Wsp1 remains with Myo1 at the base of the invagination, and endocytic structures internalize twice as far. We propose that Bbc1 disrupts a transient interaction of Myo1 with Vrp1 and Wsp1 and thereby limits Arp2/3 complex-mediated nucleation of actin branches at the plasma membrane.This article has an associated First Person interview with the first author of the paper.
Collapse
Affiliation(s)
- Cameron Dale MacQuarrie
- Department of Cell and Developmental Biology, SUNY Upstate Medical University, Syracuse, NY 13210, USA
| | - MariaSanta C Mangione
- Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, TN 37232, USA
| | - Robert Carroll
- Department of Cell and Developmental Biology, SUNY Upstate Medical University, Syracuse, NY 13210, USA
| | - Michael James
- Department of Cell and Developmental Biology, SUNY Upstate Medical University, Syracuse, NY 13210, USA
| | - Kathleen L Gould
- Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, TN 37232, USA
| | - Vladimir Sirotkin
- Department of Cell and Developmental Biology, SUNY Upstate Medical University, Syracuse, NY 13210, USA
| |
Collapse
|
45
|
WHAMM initiates autolysosome tubulation by promoting actin polymerization on autolysosomes. Nat Commun 2019; 10:3699. [PMID: 31420534 PMCID: PMC6697732 DOI: 10.1038/s41467-019-11694-9] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2018] [Accepted: 07/30/2019] [Indexed: 12/22/2022] Open
Abstract
WHAMM, a member of the Wiskott-Aldrich syndrome protein (WASP) family, is an actin nucleation promoting factor (NPF) that also associates with membranes and microtubules. Here we report that WHAMM is required for autophagic lysosome reformation (ALR). WHAMM knockout causes impairment of autolysosome tubulation, which results in accumulation of enlarged autolysosomes during prolonged starvation. Mechanistically, WHAMM is recruited to the autolysosome membrane through its specific interaction with PI(4,5)P2. WHAMM then works as an NPF which promotes assembly of an actin scaffold on the surface of the autolysosome to promote autolysosome tubulation. Our study demonstrates an unexpected role of the actin scaffold in regulating autophagic lysosome reformation. After autophagic cargo degradation, autolysosomes undergo a reformation process to recycle lysosomal membrane components. Here, Dai et al. demonstrate that the actin nucleation promoting factor WHAMM is required for autolysosome reformation by providing an actin scaffold to drive tubulation.
Collapse
|
46
|
Manenschijn HE, Picco A, Mund M, Rivier-Cordey AS, Ries J, Kaksonen M. Type-I myosins promote actin polymerization to drive membrane bending in endocytosis. eLife 2019; 8:44215. [PMID: 31385806 PMCID: PMC6684269 DOI: 10.7554/elife.44215] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2018] [Accepted: 07/23/2019] [Indexed: 12/24/2022] Open
Abstract
Clathrin-mediated endocytosis in budding yeast requires the formation of a dynamic actin network that produces the force to invaginate the plasma membrane against the intracellular turgor pressure. The type-I myosins Myo3 and Myo5 are important for endocytic membrane reshaping, but mechanistic details of their function remain scarce. Here, we studied the function of Myo3 and Myo5 during endocytosis using quantitative live-cell imaging and genetic perturbations. We show that the type-I myosins promote, in a dose-dependent way, the growth and expansion of the actin network, which controls the speed of membrane and coat internalization. We found that this myosin-activity is independent of the actin nucleation promoting activity of myosins, and cannot be compensated for by increasing actin nucleation. Our results suggest a new mechanism for type-I myosins to produce force by promoting actin filament polymerization.
Collapse
Affiliation(s)
- Hetty E Manenschijn
- Department of Biochemistry, University of Geneva, Geneva, Switzerland.,Cell Biology and Biophysics Unit, European Molecular Biology Laboratory (EMBL), Heidelberg, Germany
| | - Andrea Picco
- Department of Biochemistry, University of Geneva, Geneva, Switzerland.,NCCR Chemical Biology, University of Geneva, Geneva, Switzerland
| | - Markus Mund
- Department of Biochemistry, University of Geneva, Geneva, Switzerland.,Cell Biology and Biophysics Unit, European Molecular Biology Laboratory (EMBL), Heidelberg, Germany
| | | | - Jonas Ries
- Cell Biology and Biophysics Unit, European Molecular Biology Laboratory (EMBL), Heidelberg, Germany
| | - Marko Kaksonen
- Department of Biochemistry, University of Geneva, Geneva, Switzerland.,NCCR Chemical Biology, University of Geneva, Geneva, Switzerland
| |
Collapse
|
47
|
Taraska JW. A primer on resolving the nanoscale structure of the plasma membrane with light and electron microscopy. J Gen Physiol 2019; 151:974-985. [PMID: 31253697 PMCID: PMC6683668 DOI: 10.1085/jgp.201812227] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2019] [Accepted: 06/10/2019] [Indexed: 12/20/2022] Open
Abstract
Taraska reviews the imaging methods that are being used to understand the structure of the plasma membrane at the molecular level. The plasma membrane separates a cell from its external environment. All materials and signals that enter or leave the cell must cross this hydrophobic barrier. Understanding the architecture and dynamics of the plasma membrane has been a central focus of general cellular physiology. Both light and electron microscopy have been fundamental in this endeavor and have been used to reveal the dense, complex, and dynamic nanoscale landscape of the plasma membrane. Here, I review classic and recent developments in the methods used to image and study the structure of the plasma membrane, particularly light, electron, and correlative microscopies. I will discuss their history and use for mapping the plasma membrane and focus on how these tools have provided a structural framework for understanding the membrane at the scale of molecules. Finally, I will describe how these studies provide a roadmap for determining the nanoscale architecture of other organelles and entire cells in order to bridge the gap between cellular form and function.
Collapse
Affiliation(s)
- Justin W Taraska
- Biochemistry and Biophysics Center, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD
| |
Collapse
|
48
|
Nickaeen M, Berro J, Pollard TD, Slepchenko BM. Actin assembly produces sufficient forces for endocytosis in yeast. Mol Biol Cell 2019; 30:2014-2024. [PMID: 31242058 PMCID: PMC6727779 DOI: 10.1091/mbc.e19-01-0059] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
We formulated a spatially resolved model to estimate forces exerted by a polymerizing actin meshwork on an invagination of the plasma membrane during endocytosis in yeast cells. The model, which approximates the actin meshwork as a visco-active gel exerting forces on a rigid spherocylinder representing the endocytic invagination, is tightly constrained by experimental data. Simulations of the model produce forces that can overcome resistance of turgor pressure in yeast cells. Strong forces emerge due to the high density of polymerized actin in the vicinity of the invagination and because of entanglement of the meshwork due to its dendritic structure and cross-linking. The model predicts forces orthogonal to the invagination that are consistent with formation of a flask shape, which would diminish the net force due to turgor pressure. Simulations of the model with either two rings of nucleation-promoting factors (NPFs) as in fission yeast or a single ring of NPFs as in budding yeast produce enough force to elongate the invagination against the turgor pressure.
Collapse
Affiliation(s)
- Masoud Nickaeen
- Richard D. Berlin Center for Cell Analysis and Modeling, Department of Cell Biology, University of Connecticut Health Center, Farmington, CT 06030
| | - Julien Berro
- Departments of Molecular Biophysics and Biochemistry and of Cell Biology.,Nanobiology Institute, Yale University, New Haven, CT 06520
| | - Thomas D Pollard
- Departments of Molecular Biophysics and Biochemistry and of Cell Biology.,Department of Molecular Cellular and Developmental Biology, Yale University, New Haven, CT 06520
| | - Boris M Slepchenko
- Richard D. Berlin Center for Cell Analysis and Modeling, Department of Cell Biology, University of Connecticut Health Center, Farmington, CT 06030
| |
Collapse
|
49
|
Chasing Uptake: Super-Resolution Microscopy in Endocytosis and Phagocytosis. Trends Cell Biol 2019; 29:727-739. [PMID: 31227311 DOI: 10.1016/j.tcb.2019.05.006] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2019] [Revised: 05/14/2019] [Accepted: 05/23/2019] [Indexed: 11/21/2022]
Abstract
Since their invention about two decades ago, super-resolution microscopes have become a method of choice in cell biology. Owing to a spatial resolution below 50 nm, smaller than the size of most organelles, and an order of magnitude better than the diffraction limit of conventional light microscopes, super-resolution microscopy is a powerful technique for resolving intracellular trafficking. In this review we discuss discoveries in endocytosis and phagocytosis that have been made possible by super-resolution microscopy - from uptake at the plasma membrane, endocytic coat formation, and cytoskeletal rearrangements to endosomal maturation. The detailed visualization of the diverse molecular assemblies that mediate endocytic uptake will provide a better understanding of how cells ingest extracellular material.
Collapse
|
50
|
Regulation of actin dynamics by PI(4,5)P2 in cell migration and endocytosis. Curr Opin Cell Biol 2019; 56:7-13. [DOI: 10.1016/j.ceb.2018.08.003] [Citation(s) in RCA: 62] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2018] [Revised: 08/13/2018] [Accepted: 08/14/2018] [Indexed: 12/29/2022]
|