1
|
Koopmans T, van Rooij E. Molecular gatekeepers of endogenous adult mammalian cardiomyocyte proliferation. Nat Rev Cardiol 2025:10.1038/s41569-025-01145-y. [PMID: 40195566 DOI: 10.1038/s41569-025-01145-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 03/10/2025] [Indexed: 04/09/2025]
Abstract
Irreversible cardiac fibrosis, cardiomyocyte death and chronic cardiac dysfunction after myocardial infarction pose a substantial global health-care challenge, with no curative treatments available. To regenerate the injured heart, cardiomyocytes must proliferate to replace lost myocardial tissue - a capability that adult mammals have largely forfeited to adapt to the demanding conditions of life. Using various preclinical models, our understanding of cardiomyocyte proliferation has progressed remarkably, leading to the successful reactivation of cell cycle induction in adult animals, with functional recovery after cardiac injury. Central to this success is the targeting of key pathways and structures that drive cardiomyocyte maturation after birth - nucleation and ploidy, sarcomere structure, developmental signalling, chromatin and epigenetic regulation, the microenvironment and metabolic maturation - forming a complex regulatory framework that allows efficient cellular contraction but restricts cardiomyocyte proliferation. In this Review, we explore the molecular pathways underlying these core mechanisms and how their manipulation can reactivate the cell cycle in cardiomyocytes, potentially contributing to cardiac repair.
Collapse
Affiliation(s)
- Tim Koopmans
- Hubrecht Institute, Royal Netherlands Academy of Arts and Sciences (KNAW) and University Medical Center Utrecht, Utrecht, Netherlands
| | - Eva van Rooij
- Hubrecht Institute, Royal Netherlands Academy of Arts and Sciences (KNAW) and University Medical Center Utrecht, Utrecht, Netherlands.
- Department of Cardiology, University Medical Center Utrecht, Utrecht, Netherlands.
| |
Collapse
|
2
|
Uscategui Calderon M, Spaeth ML, Granitto M, Gonzalez BA, Weirauch MT, Kottyan LC, Yutzey KE. GDF10 promotes rodent cardiomyocyte maturation during the postnatal period. J Mol Cell Cardiol 2025; 201:16-31. [PMID: 39909309 PMCID: PMC11925653 DOI: 10.1016/j.yjmcc.2025.01.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Revised: 01/29/2025] [Accepted: 01/30/2025] [Indexed: 02/07/2025]
Abstract
Cardiomyocytes and cardiac fibroblasts undergo coordinated maturation after birth, and cardiac fibroblasts are required for postnatal cardiomyocyte maturation in mice. Here, we investigate the role of cardiac fibroblast-expressed Growth Differentiation Factor 10 (GDF10) in postnatal heart development. In neonatal mice, Gdf10 is expressed specifically in cardiac fibroblasts, with its highest expression coincident with the onset of cardiomyocyte cell cycle arrest and transition to hypertrophic growth. In neonatal rat ventricular myocyte (NRVM) cultures, GDF10 treatment promotes cardiomyocyte maturation indicated by increased binucleation, downregulation of cell cycle progression genes, and upregulation of cell cycle inhibitor genes. GDF10 treatment leads to an increase in cardiomyocyte cell size, together with increased expression of mature sarcomeric protein isoforms and decreased expression of fetal cardiac genes. RNAsequencing of GDF10-treated NRVM shows an increase in the expression of genes related to myocardial maturation, including upregulation of sodium and potassium channel genes. In vivo, loss of Gdf10 leads to a delay in myocardial maturation indicated by decreased cardiomyocyte cell size and binucleation, as well as increased mitotic activity, at postnatal (P) day 7. Further, induction of mature sarcomeric protein isoform gene expression is delayed, and expression of cell cycle progression genes is prolonged. However, by P10, indicators of cardiomyocyte maturation and mitotic activity are normalized in Gdf10-null hearts relative to controls. Together, these results implicate GDF10 as a novel crosstalk mediator between cardiomyocytes and cardiac fibroblasts, which is required for appropriate timing of cardiomyocyte maturation steps including binucleation, hypertrophy, mature sarcomeric isoform gene expression, and cell cycle arrest in the postnatal period.
Collapse
Affiliation(s)
- Maria Uscategui Calderon
- Molecular and Developmental Biology Graduate Program, Division of Developmental Biology, Cincinnati Children's Hospital Medical Center, University of Cincinnati College of Medicine, Cincinnati, OH, USA; The Heart Institute, Division of Molecular Cardiovascular Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Maria L Spaeth
- The Heart Institute, Division of Molecular Cardiovascular Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Marissa Granitto
- Molecular and Developmental Biology Graduate Program, Division of Developmental Biology, Cincinnati Children's Hospital Medical Center, University of Cincinnati College of Medicine, Cincinnati, OH, USA; Center for Autoimmune Genomics and Etiology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Brittany A Gonzalez
- The Heart Institute, Division of Molecular Cardiovascular Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Matthew T Weirauch
- Molecular and Developmental Biology Graduate Program, Division of Developmental Biology, Cincinnati Children's Hospital Medical Center, University of Cincinnati College of Medicine, Cincinnati, OH, USA; Center for Autoimmune Genomics and Etiology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA; Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, USA; Division of Allergy & Immunology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA; Division of Human Genetics, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA; Division of Biomedical Informatics, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA; Division of Developmental Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Leah C Kottyan
- Molecular and Developmental Biology Graduate Program, Division of Developmental Biology, Cincinnati Children's Hospital Medical Center, University of Cincinnati College of Medicine, Cincinnati, OH, USA; Center for Autoimmune Genomics and Etiology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA; Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, USA; Division of Allergy & Immunology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA; Division of Human Genetics, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Katherine E Yutzey
- Molecular and Developmental Biology Graduate Program, Division of Developmental Biology, Cincinnati Children's Hospital Medical Center, University of Cincinnati College of Medicine, Cincinnati, OH, USA; The Heart Institute, Division of Molecular Cardiovascular Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA; Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, USA.
| |
Collapse
|
3
|
Punde A, Rayrikar A, Maity S, Patra C. Extracellular matrix in cardiac morphogenesis, fibrosis, and regeneration. Cells Dev 2025:204023. [PMID: 40154789 DOI: 10.1016/j.cdev.2025.204023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2024] [Revised: 03/14/2025] [Accepted: 03/22/2025] [Indexed: 04/01/2025]
Abstract
The extracellular matrix (ECM) plays a crucial role in providing structural integrity and regulating cell communication essential for organ development, homeostasis, and regeneration, including hearts. Evidence indicates that disruptions in the spatiotemporal expression or alterations in ECM components lead to cardiac malformations, including a wide range of congenital heart diseases (CHDs). Furthermore, research on injured hearts across various vertebrate species, some of which show effective regeneration while others experience irreversible fibrosis, underscores the significance of ECM molecules in cardiac regeneration. This review presents an overview of heart development and the dynamics of ECM during cardiac morphogenesis, beginning with the formation of the contractile heart tube and advancing to the development of distinct chambers separated by valves to facilitate unidirectional blood flow. Furthermore, we discuss research emphasizing the multifaceted roles of secreted molecules in mediating fibrosis and regeneration following myocardial injury.
Collapse
Affiliation(s)
- Ashwini Punde
- Department of Developmental Biology, Agharkar Research Institute, Pune, Maharashtra, 411004, India
| | - Amey Rayrikar
- Department of Developmental Biology, Agharkar Research Institute, Pune, Maharashtra, 411004, India
| | - Shreya Maity
- Department of Developmental Biology, Agharkar Research Institute, Pune, Maharashtra, 411004, India
| | - Chinmoy Patra
- Department of Developmental Biology, Agharkar Research Institute, Pune, Maharashtra, 411004, India.
| |
Collapse
|
4
|
Bois A, Grandela C, Gallant J, Mummery C, Menasché P. Revitalizing the heart: strategies and tools for cardiomyocyte regeneration post-myocardial infarction. NPJ Regen Med 2025; 10:6. [PMID: 39843488 PMCID: PMC11754855 DOI: 10.1038/s41536-025-00394-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Accepted: 01/13/2025] [Indexed: 01/24/2025] Open
Abstract
Myocardial infarction (MI) causes the loss of millions of cardiomyocytes, and current treatments do not address this root issue. New therapies focus on stimulating cardiomyocyte division in the adult heart, inspired by the regenerative capacities of lower vertebrates and neonatal mice. This review explores strategies for heart regeneration, offers insights into cardiomyocyte proliferation, evaluates in vivo models, and discusses integrating in vitro human cardiac models to advance cardiac regeneration research.
Collapse
Affiliation(s)
- Axelle Bois
- Department of Anatomy and Embryology, Leiden University Medical Center, 2333 ZA, Leiden, The Netherlands
- Department of Cardiovascular Surgery, Université Paris Cité, INSERM U970, PARCC Hôpital Européen Georges Pompidou, 75015, Paris, France
| | - Catarina Grandela
- Department of Anatomy and Embryology, Leiden University Medical Center, 2333 ZA, Leiden, The Netherlands
| | - James Gallant
- Department of Anatomy and Embryology, Leiden University Medical Center, 2333 ZA, Leiden, The Netherlands
| | - Christine Mummery
- Department of Anatomy and Embryology, Leiden University Medical Center, 2333 ZA, Leiden, The Netherlands.
| | - Philippe Menasché
- Department of Cardiovascular Surgery, Université Paris Cité, INSERM U970, PARCC Hôpital Européen Georges Pompidou, 75015, Paris, France
| |
Collapse
|
5
|
Wang X, Kulik K, Wan TC, Lough JW, Auchampach JA. Histone H2A.Z Deacetylation and Dedifferentiation in Infarcted/Tip60-depleted Cardiomyocytes. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2024.01.11.575312. [PMID: 38260622 PMCID: PMC10802610 DOI: 10.1101/2024.01.11.575312] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/24/2024]
Abstract
Myocardial infarction (MI) results in the loss of billions of cardiomyocytes (CMs), resulting in cardiac dysfunction. To re-muscularize injured myocardium, new CMs must be generated via renewed proliferation of surviving CMs. Approaches to induce proliferation of CMs after injury have been insufficient. Toward this end we are targeting the acetyltransferase Tip60, encoded by the Kat5 gene, based on the rationale that its pleiotropic functions combine to block CM proliferation at multiple checkpoints. We previously demonstrated that genetic depletion of Tip60 in a mouse model after MI reduces scarring, retains cardiac function, and activates the CM cell-cycle, although it remains unclear whether this culminates in the generation of daughter CMs. In order for pre-existing CMs in the adult heart to undergo proliferation, it has become accepted that they must first dedifferentiate, a process highlighted by loss of maturity, epithelial to mesenchymal transitioning (EMT), and reversion from fatty acid oxidation to glycolytic metabolism, accompanied by softening of the myocardial extracellular matrix (ECM). Based on recently published findings that Tip60 induces and maintains the differentiated state of hematopoietic stem cells and neurons via site-specific acetylation of the histone variant H2A.Z, we assessed levels of acetylated H2A.Z and dedifferentiation markers after depleting Tip60 in CMs post-MI. We report that genetic depletion of Tip60 from CMs after MI results in the near obliteration of acetylated H2A.Z in CM nuclei, accompanied by the altered expression of genes indicative of EMT induction, ECM softening, decreased fatty acid oxidation, and depressed expression of genes that regulate the TCA cycle. In accord with the possibility that site-specific acetylation of H2A.Z maintains adult CMs in a mature state of differentiation, CUT&Tag revealed enrichment of H2A.ZacK4/K7 in genetic motifs and in GO terms respectively associated with CM transcription factor binding and muscle development/differentiation. Along with our previous findings, these results support the notion that Tip60 has multiple targets in CMs that combine to maintain the differentiated state and prevent proliferation.
Collapse
Affiliation(s)
- Xinrui Wang
- Department of Pharmacology and Toxicology
- Cardiovascular Center Medical College of Wisconsin Milwaukee, WI 53226
| | - Katherine Kulik
- Department of Cell Biology Neurobiology and Anatomy
- Cardiovascular Center Medical College of Wisconsin Milwaukee, WI 53226
| | - Tina C. Wan
- Department of Pharmacology and Toxicology
- Cardiovascular Center Medical College of Wisconsin Milwaukee, WI 53226
| | - John W. Lough
- Department of Cell Biology Neurobiology and Anatomy
- Cardiovascular Center Medical College of Wisconsin Milwaukee, WI 53226
| | - John A. Auchampach
- Department of Pharmacology and Toxicology
- Cardiovascular Center Medical College of Wisconsin Milwaukee, WI 53226
| |
Collapse
|
6
|
Wang X, Yu S, Xie L, Xiang M, Ma H. The role of the extracellular matrix in cardiac regeneration. Heliyon 2025; 11:e41157. [PMID: 39834404 PMCID: PMC11745795 DOI: 10.1016/j.heliyon.2024.e41157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Revised: 11/16/2024] [Accepted: 12/11/2024] [Indexed: 01/22/2025] Open
Abstract
The extracellular matrix (ECM) is a complex and dynamic three-dimensional network that functions as an architectural scaffold to maintain cardiac homeostasis. Important biochemical and mechanical signals associated with cell‒cell communication are provided via the reciprocal interaction between cells and the ECM. By converting mechanical cues into biochemical signals, the ECM regulates many cell processes, including migration, adhesion, growth, differentiation, proliferation, and apoptosis. Moreover, the ECM facilitates the replacement of dead cells and preserves the structural integrity of the heart, making it essential in conditions such as myocardial infarction and other pathological states. When excessive ECM deposition or abnormal production of ECM components occurs, the heart undergoes fibrosis, leading to cardiac dysfunction and heart failure. However, emerging evidence suggests that the ECM may contribute to heart regeneration following cardiac injury. The present review offers a complete overview of the existing information and novel discoveries regarding the involvement of the ECM in heart regeneration from both mechanical and biochemical perspectives. Understanding the ECM and its involvement in mechanotransduction holds significant potential for advancing therapeutic approaches in heart repair and regeneration.
Collapse
Affiliation(s)
- Xiying Wang
- Department of Cardiology, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
- State Key Laboratory of Transvascular Implantation Devices, Hangzhou, China
- Department of Gastroenterology, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
- Cardiovascular Key Laboratory of Zhejiang Province, Hangzhou, China
| | - Shuo Yu
- Department of Anesthesiology, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Lan Xie
- Department of Cardiology, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
- State Key Laboratory of Transvascular Implantation Devices, Hangzhou, China
- Department of Rheumatology, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Zhejiang, China
- Cardiovascular Key Laboratory of Zhejiang Province, Hangzhou, China
| | - Meixiang Xiang
- Department of Cardiology, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
- State Key Laboratory of Transvascular Implantation Devices, Hangzhou, China
- Cardiovascular Key Laboratory of Zhejiang Province, Hangzhou, China
| | - Hong Ma
- Department of Cardiology, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
- State Key Laboratory of Transvascular Implantation Devices, Hangzhou, China
- Cardiovascular Key Laboratory of Zhejiang Province, Hangzhou, China
| |
Collapse
|
7
|
Morikawa Y, Kim JH, Li RG, Liu L, Liu S, Deshmukh V, Hill MC, Martin JF. YAP Overcomes Mechanical Barriers to Induce Mitotic Rounding and Adult Cardiomyocyte Division. Circulation 2025; 151:76-93. [PMID: 39392007 DOI: 10.1161/circulationaha.123.066004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Accepted: 09/18/2024] [Indexed: 10/12/2024]
Abstract
BACKGROUND Many specialized cells in adult organs acquire a state of cell cycle arrest and quiescence through unknown mechanisms. Our limited understanding of mammalian cell cycle arrest is derived primarily from cell culture models. Adult mammalian cardiomyocytes, a classic example of cell cycle arrested cells, exit the cell cycle postnatally and remain in an arrested state for the life of the organism. Cardiomyocytes can be induced to re-enter the cell cycle by YAP5SA, an active form of the Hippo signaling pathway effector YAP. METHODS We performed clonal analyses to determine the cell cycle kinetics of YAP5SA cardiomyocytes. We also performed single-cell RNA sequencing, marker gene analysis, and functional studies to examine how YAP5SA cardiomyocytes progress through the cell cycle. RESULTS We discovered that YAP5SA-expressing cardiomyocytes divided efficiently, with >20% of YAP5SA cardiomyocyte clones containing ≥2 cardiomyocytes. YAP5SA cardiomyocytes re-entered cell cycle at the G1/S transition and had an S phase lasting ≈48 hours. Sarcomere disassembly is required for cardiomyocyte progression from S to G2 phase and the induction of mitotic rounding. Although oscillatory Cdk expression was induced in YAP5SA cardiomyocytes, these cells inefficiently progressed through G2 phase. This is improved by inhibiting P21 function, implicating checkpoint activity as an additional barrier to YAP5SA-induced cardiomyocyte division. CONCLUSIONS Our data reveal that YAP5SA overcomes the mechanically constrained myocardial microenvironment to induce mitotic rounding with cardiomyocyte division, thus providing new insights into the in vivo mechanisms that maintain cell cycle quiescence in adult mammals.
Collapse
Affiliation(s)
- Yuka Morikawa
- Cardiomyocyte Renewal Laboratory, Texas Heart Institute, Houston (Y.M., J.H.K., R.G.L., L.L., S.L., J.F.M.)
| | - Jong H Kim
- Cardiomyocyte Renewal Laboratory, Texas Heart Institute, Houston (Y.M., J.H.K., R.G.L., L.L., S.L., J.F.M.)
| | - Rich Gang Li
- Cardiomyocyte Renewal Laboratory, Texas Heart Institute, Houston (Y.M., J.H.K., R.G.L., L.L., S.L., J.F.M.)
| | - Lin Liu
- Cardiomyocyte Renewal Laboratory, Texas Heart Institute, Houston (Y.M., J.H.K., R.G.L., L.L., S.L., J.F.M.)
| | - Shijie Liu
- Cardiomyocyte Renewal Laboratory, Texas Heart Institute, Houston (Y.M., J.H.K., R.G.L., L.L., S.L., J.F.M.)
| | - Vaibhav Deshmukh
- Department of Integrative Physiology (V.D., J.F.M.), Baylor College of Medicine, Houston, TX
| | - Matthew C Hill
- Cardiovascular Research Center, Massachusetts General Hospital, Boston (M.C.H.)
- Cardiovascular Disease Initiative, Broad Institute of Massachusetts Institute of Technology and Harvard, Boston (M.C.H.)
| | - James F Martin
- Cardiomyocyte Renewal Laboratory, Texas Heart Institute, Houston (Y.M., J.H.K., R.G.L., L.L., S.L., J.F.M.)
- Department of Integrative Physiology (V.D., J.F.M.), Baylor College of Medicine, Houston, TX
- Genetics and Genomics Graduate Program (J.F.M.), Baylor College of Medicine, Houston, TX
- Center for Organ Repair and Renewal (J.F.M.), Baylor College of Medicine, Houston, TX
- Cardiovascular Research Institute (J.F.M.), Baylor College of Medicine, Houston, TX
| |
Collapse
|
8
|
Velayutham N, Lee RT. Spotlight on YAP: Unlocking New Insights to Overcome the Barriers to Heart Regeneration. Circulation 2025; 151:94-97. [PMID: 39723984 DOI: 10.1161/circulationaha.124.072263] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/28/2024]
Affiliation(s)
- Nivedhitha Velayutham
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA (N.V., R.T.L.)
| | - Richard T Lee
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA (N.V., R.T.L.)
- Division of Cardiovascular Medicine, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA (R.T.L.)
| |
Collapse
|
9
|
Masciale V, Banchelli F, Grisendi G, Samarelli AV, Raineri G, Rossi T, Zanoni M, Cortesi M, Bandini S, Ulivi P, Martinelli G, Stella F, Dominici M, Aramini B. The molecular features of lung cancer stem cells in dedifferentiation process-driven epigenetic alterations. J Biol Chem 2024; 300:107994. [PMID: 39547513 PMCID: PMC11714729 DOI: 10.1016/j.jbc.2024.107994] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2024] [Revised: 10/30/2024] [Accepted: 11/05/2024] [Indexed: 11/17/2024] Open
Abstract
Cancer stem cells (CSCs) may be dedifferentiated somatic cells following oncogenic processes, representing a subpopulation of cells able to promote tumor growth with their capacities for proliferation and self-renewal, inducing lineage heterogeneity, which may be a main cause of resistance to therapies. It has been shown that the "less differentiated process" may have an impact on tumor plasticity, particularly when non-CSCs may dedifferentiate and become CSC-like. Bidirectional interconversion between CSCs and non-CSCs has been reported in other solid tumors, where the inflammatory stroma promotes cell reprogramming by enhancing Wnt signaling through nuclear factor kappa B activation in association with intracellular signaling, which may induce cells' pluripotency, the oncogenic transformation can be considered another important aspect in the acquisition of "new" development programs with oncogenic features. During cell reprogramming, mutations represent an initial step toward dedifferentiation, in which tumor cells switch from a partially or terminally differentiated stage to a less differentiated stage that is mainly manifested by re-entry into the cell cycle, acquisition of a stem cell-like phenotype, and expression of stem cell markers. This phenomenon typically shows up as a change in the form, function, and pattern of gene and protein expression, and more specifically, in CSCs. This review would highlight the main epigenetic alterations, major signaling pathways and driver mutations in which CSCs, in tumors and specifically, in lung cancer, could be involved, acting as key elements in the differentiation/dedifferentiation process. This would highlight the main molecular mechanisms which need to be considered for more tailored therapies.
Collapse
Affiliation(s)
- Valentina Masciale
- Laboratory of Cellular Therapies, Department of Medical and Surgical Sciences for Children & Adults, University Hospital of Modena, Modena, Italy
| | - Federico Banchelli
- Department of Statistical Sciences "Paolo Fortunati", Alma Mater Studiorum- University of Bologna, Bologna, Italy
| | - Giulia Grisendi
- Laboratory of Cellular Therapies, Department of Medical and Surgical Sciences for Children & Adults, University Hospital of Modena, Modena, Italy
| | - Anna Valeria Samarelli
- Laboratory of and Respiratory Medicine, Department of Medical and Surgical Sciences for Children & Adults, University Hospital of Modena, Modena, Italy
| | - Giulia Raineri
- Laboratory of Cellular Therapies, Department of Medical and Surgical Sciences for Children & Adults, University Hospital of Modena, Modena, Italy
| | - Tania Rossi
- Biosciences Laboratory, IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) "Dino Amadori", Meldola, Italy
| | - Michele Zanoni
- Biosciences Laboratory, IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) "Dino Amadori", Meldola, Italy
| | - Michela Cortesi
- Biosciences Laboratory, IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) "Dino Amadori", Meldola, Italy
| | - Sara Bandini
- Biosciences Laboratory, IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) "Dino Amadori", Meldola, Italy
| | - Paola Ulivi
- Biosciences Laboratory, IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) "Dino Amadori", Meldola, Italy
| | - Giovanni Martinelli
- Biosciences Laboratory, IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) "Dino Amadori", Meldola, Italy
| | - Franco Stella
- Thoracic Surgery Unit, Department of Medical and Surgical Sciences-DIMEC of the Alma Mater Studiorum, University of Bologna, G.B. Morgagni-L. Pierantoni Hospital, Forlì, Italy
| | - Massimo Dominici
- Laboratory of Cellular Therapies, Department of Medical and Surgical Sciences for Children & Adults, University Hospital of Modena, Modena, Italy; Division of Oncology, University Hospital of Modena and Reggio Emilia, University of Modena and Reggio Emilia, Modena, Italy
| | - Beatrice Aramini
- Thoracic Surgery Unit, Department of Medical and Surgical Sciences-DIMEC of the Alma Mater Studiorum, University of Bologna, G.B. Morgagni-L. Pierantoni Hospital, Forlì, Italy.
| |
Collapse
|
10
|
Huang H, Park S, Ross I, Moreno J, Khyeam S, Simmons J, Huang GN, Payumo AY. Quantitative label-free digital holographic imaging of cardiomyocyte optical volume, nucleation, and cell division. J Mol Cell Cardiol 2024; 196:94-104. [PMID: 39251060 PMCID: PMC11801258 DOI: 10.1016/j.yjmcc.2024.09.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Revised: 08/18/2024] [Accepted: 09/05/2024] [Indexed: 09/11/2024]
Abstract
Cardiac regeneration in newborn rodents depends on the ability of pre-existing cardiomyocytes to proliferate and divide. This capacity is lost within the first week of postnatal development when these cells rapidly switch from hyperplasia to hypertrophy, withdraw from the cell cycle, become binucleated, and increase in size. How these dynamic changes in cell size and nucleation impact cardiomyocyte proliferative potential is not well understood. In this study, we innovate the application of a commercially available digital holographic imaging microscope, the Holomonitor M4, to evaluate the proliferative responses of mononucleated and binucleated cardiomyocytes after CHIR99021 treatment, a model proliferative stimulus. This system enables long-term label-free quantitative tracking of primary cardiomyocyte dynamics in real-time with single-cell resolution. Our results confirm that chemical inhibition of glycogen synthase kinase 3 with CHIR99021 promotes complete cell division of both mononucleated and binucleated cardiomyocytes with high frequency. Quantitative tracking of cardiomyocyte volume dynamics during these proliferative events revealed that both mononucleated and binucleated cardiomyocytes reach a similar size-increase threshold prior to attempted cell division. Binucleated cardiomyocytes attempt to divide with lower frequency than mononucleated cardiomyocytes, which may be associated with inadequate increases in cell size. By defining the interrelationship between cardiomyocyte size, nucleation, and cell cycle control, we may better understand the cellular mechanisms that drive the loss of mammalian cardiac regenerative capacity after birth.
Collapse
Affiliation(s)
- Herman Huang
- Department of Biological Sciences, San Jose State University, San Jose, CA 95192, USA
| | - Sangsoon Park
- Cardiovascular Research Institute & Department of Physiology, University of California, San Francisco, San Francisco, CA 94158, USA; Eli and Edythe Broad Center for Regeneration Medicine and Stem Cell Research, University of California, San Francisco, San Francisco, CA 94158, USA; BAKAR Aging Research Institute, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Ines Ross
- Department of Biological Sciences, San Jose State University, San Jose, CA 95192, USA
| | - Joseph Moreno
- Cardiovascular Research Institute & Department of Physiology, University of California, San Francisco, San Francisco, CA 94158, USA; Eli and Edythe Broad Center for Regeneration Medicine and Stem Cell Research, University of California, San Francisco, San Francisco, CA 94158, USA; BAKAR Aging Research Institute, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Sheamin Khyeam
- Cardiovascular Research Institute & Department of Physiology, University of California, San Francisco, San Francisco, CA 94158, USA; Eli and Edythe Broad Center for Regeneration Medicine and Stem Cell Research, University of California, San Francisco, San Francisco, CA 94158, USA; BAKAR Aging Research Institute, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Jacquelyn Simmons
- Department of Biological Sciences, San Jose State University, San Jose, CA 95192, USA
| | - Guo N Huang
- Cardiovascular Research Institute & Department of Physiology, University of California, San Francisco, San Francisco, CA 94158, USA; Eli and Edythe Broad Center for Regeneration Medicine and Stem Cell Research, University of California, San Francisco, San Francisco, CA 94158, USA; BAKAR Aging Research Institute, University of California, San Francisco, San Francisco, CA 94158, USA.
| | - Alexander Y Payumo
- Department of Biological Sciences, San Jose State University, San Jose, CA 95192, USA.
| |
Collapse
|
11
|
Gao K, Xie Y, Xu F, Peng Q, Fu L, Wang G, Qiu J. Silk fibroin promotes H3K9me3 expression and chromatin reorganization to regulate endothelial cell proliferation. APL Bioeng 2024; 8:026115. [PMID: 38827498 PMCID: PMC11143938 DOI: 10.1063/5.0203858] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2024] [Accepted: 05/07/2024] [Indexed: 06/04/2024] Open
Abstract
Silk fibroin (SF), which is extensively utilized in tissue engineering and vascular grafts for enhancing vascular regeneration, has not been thoroughly investigated for its epigenetic effects on endothelial cells (EC). This study employed RNA sequencing analysis to evaluate the activation of histone modification regulatory genes in EC treated with SF. Subsequent investigations revealed elevated H3K9me3 levels in SF-treated EC, as evidenced by immunofluorescence and western blot analysis. The study utilized H2B-eGFP endothelial cells to demonstrate that SF treatment results in the accumulation of H2B-marked chromatin in the nuclear inner cavities of EC. Inhibition of H3K9me3 levels by a histone deacetylase inhibitor TSA decreased cell proliferation. Furthermore, the activation of the MAPK signaling pathway using chromium picolinate decreased the proliferative activity and H3K9me3 level in SF-treated EC. SF also appeared to enhance cell growth and proliferation by modulating the H3K9me3 level and reorganizing chromatin, particularly after oxidative stress induced by H2O2 treatment. In summary, these findings indicate that SF promotes EC proliferation by increasing the H3K9me3 level even under stress conditions.
Collapse
Affiliation(s)
- Kaixiang Gao
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, State and Local Joint Engineering Laboratory for Vascular Implants, Bioengineering College of Chongqing University, Chongqing 400030, China
| | - Yafan Xie
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, State and Local Joint Engineering Laboratory for Vascular Implants, Bioengineering College of Chongqing University, Chongqing 400030, China
| | - Fangning Xu
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, State and Local Joint Engineering Laboratory for Vascular Implants, Bioengineering College of Chongqing University, Chongqing 400030, China
| | - Qin Peng
- Institute of Systems and Physical Biology, Shenzhen Bay Laboratory, Shenzhen 518132, China
| | - Li Fu
- The Eighth Affiliated Hospital, Sun Yat-sen University, Shenzhen 518033, China
| | - Guixue Wang
- Authors to whom correspondence should be addressed:; ; and . Tel.: 023-65102507
| | - Juhui Qiu
- Authors to whom correspondence should be addressed:; ; and . Tel.: 023-65102507
| |
Collapse
|
12
|
Zhu C, Yuan T, Krishnan J. Targeting cardiomyocyte cell cycle regulation in heart failure. Basic Res Cardiol 2024; 119:349-369. [PMID: 38683371 PMCID: PMC11142990 DOI: 10.1007/s00395-024-01049-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 03/11/2024] [Accepted: 03/29/2024] [Indexed: 05/01/2024]
Abstract
Heart failure continues to be a significant global health concern, causing substantial morbidity and mortality. The limited ability of the adult heart to regenerate has posed challenges in finding effective treatments for cardiac pathologies. While various medications and surgical interventions have been used to improve cardiac function, they are not able to address the extensive loss of functioning cardiomyocytes that occurs during cardiac injury. As a result, there is growing interest in understanding how the cell cycle is regulated and exploring the potential for stimulating cardiomyocyte proliferation as a means of promoting heart regeneration. This review aims to provide an overview of current knowledge on cell cycle regulation and mechanisms underlying cardiomyocyte proliferation in cases of heart failure, while also highlighting established and novel therapeutic strategies targeting this area for treatment purposes.
Collapse
Affiliation(s)
- Chaonan Zhu
- Department of Medicine III, Cardiology/Angiology/Nephrology, Goethe University Hospital, 60590, Frankfurt am Main, Germany
- Institute for Cardiovascular Regeneration, Goethe University, 60590, Frankfurt am Main, Germany
| | - Ting Yuan
- Department of Medicine III, Cardiology/Angiology/Nephrology, Goethe University Hospital, 60590, Frankfurt am Main, Germany.
- Institute for Cardiovascular Regeneration, Goethe University, 60590, Frankfurt am Main, Germany.
- German Center for Cardiovascular Research, Partner Site Rhein-Main, 60590, Frankfurt am Main, Germany.
- Cardio-Pulmonary Institute, Goethe University Hospital, 60590, Frankfurt am Main, Germany.
| | - Jaya Krishnan
- Department of Medicine III, Cardiology/Angiology/Nephrology, Goethe University Hospital, 60590, Frankfurt am Main, Germany.
- Institute for Cardiovascular Regeneration, Goethe University, 60590, Frankfurt am Main, Germany.
- German Center for Cardiovascular Research, Partner Site Rhein-Main, 60590, Frankfurt am Main, Germany.
- Cardio-Pulmonary Institute, Goethe University Hospital, 60590, Frankfurt am Main, Germany.
| |
Collapse
|
13
|
Baccouche BM, Elde S, Wang H, Woo YJ. Structural, angiogenic, and immune responses influencing myocardial regeneration: a glimpse into the crucible. NPJ Regen Med 2024; 9:18. [PMID: 38688935 PMCID: PMC11061134 DOI: 10.1038/s41536-024-00357-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2023] [Accepted: 03/15/2024] [Indexed: 05/02/2024] Open
Abstract
Complete cardiac regeneration remains an elusive therapeutic goal. Although much attention has been focused on cardiomyocyte proliferation, especially in neonatal mammals, recent investigations have unearthed mechanisms by which non-cardiomyocytes, such as endothelial cells, fibroblasts, macrophages, and other immune cells, play critical roles in modulating the regenerative capacity of the injured heart. The degree to which each of these cell types influence cardiac regeneration, however, remains incompletely understood. This review highlights the roles of these non-cardiomyocytes and their respective contributions to cardiac regeneration, with emphasis on natural heart regeneration after cardiac injury during the neonatal period.
Collapse
Affiliation(s)
- Basil M Baccouche
- Stanford University Department of Cardiothoracic Surgery, Palo Alto, CA, USA
| | - Stefan Elde
- Stanford University Department of Cardiothoracic Surgery, Palo Alto, CA, USA
| | - Hanjay Wang
- Stanford University Department of Cardiothoracic Surgery, Palo Alto, CA, USA
| | - Y Joseph Woo
- Stanford University Department of Cardiothoracic Surgery, Palo Alto, CA, USA.
| |
Collapse
|
14
|
Feng J, Li Y, Li Y, Yin Q, Li H, Li J, Zhou B, Meng J, Lian H, Wu M, Li Y, Dou K, Song W, Lu B, Liu L, Hu S, Nie Y. Versican Promotes Cardiomyocyte Proliferation and Cardiac Repair. Circulation 2024; 149:1004-1015. [PMID: 37886839 DOI: 10.1161/circulationaha.123.066298] [Citation(s) in RCA: 35] [Impact Index Per Article: 35.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/19/2023] [Accepted: 10/03/2023] [Indexed: 10/28/2023]
Abstract
BACKGROUND The adult mammalian heart is incapable of regeneration, whereas a transient regenerative capacity is maintained in the neonatal heart, primarily through the proliferation of preexisting cardiomyocytes. Neonatal heart regeneration after myocardial injury is accompanied by an expansion of cardiac fibroblasts and compositional changes in the extracellular matrix. Whether and how these changes influence cardiomyocyte proliferation and heart regeneration remains to be investigated. METHODS We used apical resection and myocardial infarction surgical models in neonatal and adult mice to investigate extracellular matrix components involved in heart regeneration after injury. Single-cell RNA sequencing and liquid chromatography-mass spectrometry analyses were used for versican identification. Cardiac fibroblast-specific Vcan deletion was achieved using the mouse strains Col1a2-2A-CreER and Vcanfl/fl. Molecular signaling pathways related to the effects of versican were assessed through Western blot, immunostaining, and quantitative reverse transcription polymerase chain reaction. Cardiac fibrosis and heart function were evaluated by Masson trichrome staining and echocardiography, respectively. RESULTS Versican, a cardiac fibroblast-derived extracellular matrix component, was upregulated after neonatal myocardial injury and promoted cardiomyocyte proliferation. Conditional knockout of Vcan in cardiac fibroblasts decreased cardiomyocyte proliferation and impaired neonatal heart regeneration. In adult mice, intramyocardial injection of versican after myocardial infarction enhanced cardiomyocyte proliferation, reduced fibrosis, and improved cardiac function. Furthermore, versican augmented the proliferation of human induced pluripotent stem cell-derived cardiomyocytes. Mechanistically, versican activated integrin β1 and downstream signaling molecules, including ERK1/2 and Akt, thereby promoting cardiomyocyte proliferation and cardiac repair. CONCLUSIONS Our study identifies versican as a cardiac fibroblast-derived pro-proliferative proteoglycan and clarifies the role of versican in promoting adult cardiac repair. These findings highlight its potential as a therapeutic factor for ischemic heart diseases.
Collapse
Affiliation(s)
- Jie Feng
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Disease, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing (J.F., Y.D.L., H.T.L., J.L., J.M., H.L., Y.H.L., K.F.D., W.H.S., B.L., L.H.L., S.S.H., Y.N.)
| | - Yandong Li
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Disease, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing (J.F., Y.D.L., H.T.L., J.L., J.M., H.L., Y.H.L., K.F.D., W.H.S., B.L., L.H.L., S.S.H., Y.N.)
| | - Yan Li
- State Key Laboratory of Tribology, Tsinghua University, Beijing, China (Y.L.)
| | - Qianqian Yin
- Institute of Medical Innovation and Research, Peking University Third Hospital, Peking University, Beijing, China (Q.Q.Y.)
| | - Haotong Li
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Disease, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing (J.F., Y.D.L., H.T.L., J.L., J.M., H.L., Y.H.L., K.F.D., W.H.S., B.L., L.H.L., S.S.H., Y.N.)
| | - Jun Li
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Disease, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing (J.F., Y.D.L., H.T.L., J.L., J.M., H.L., Y.H.L., K.F.D., W.H.S., B.L., L.H.L., S.S.H., Y.N.)
| | - Bin Zhou
- State Key Laboratory of Cell Biology, CAS Center for Excellence in Molecular Cell Science, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, University of Chinese Academy of Sciences, Chinese Academic of Sciences, Shanghai (B.Z.)
| | - Jian Meng
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Disease, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing (J.F., Y.D.L., H.T.L., J.L., J.M., H.L., Y.H.L., K.F.D., W.H.S., B.L., L.H.L., S.S.H., Y.N.)
| | - Hong Lian
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Disease, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing (J.F., Y.D.L., H.T.L., J.L., J.M., H.L., Y.H.L., K.F.D., W.H.S., B.L., L.H.L., S.S.H., Y.N.)
| | - Mengge Wu
- Experimental Animal Center, Fuwai Central-China Hospital, Central China Branch of National Center for Cardiovascular Diseases, Zhengzhou (M.G.W.)
| | - Yahuan Li
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Disease, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing (J.F., Y.D.L., H.T.L., J.L., J.M., H.L., Y.H.L., K.F.D., W.H.S., B.L., L.H.L., S.S.H., Y.N.)
| | - Kefei Dou
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Disease, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing (J.F., Y.D.L., H.T.L., J.L., J.M., H.L., Y.H.L., K.F.D., W.H.S., B.L., L.H.L., S.S.H., Y.N.)
| | - Weihua Song
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Disease, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing (J.F., Y.D.L., H.T.L., J.L., J.M., H.L., Y.H.L., K.F.D., W.H.S., B.L., L.H.L., S.S.H., Y.N.)
| | - Bin Lu
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Disease, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing (J.F., Y.D.L., H.T.L., J.L., J.M., H.L., Y.H.L., K.F.D., W.H.S., B.L., L.H.L., S.S.H., Y.N.)
| | - Lihui Liu
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Disease, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing (J.F., Y.D.L., H.T.L., J.L., J.M., H.L., Y.H.L., K.F.D., W.H.S., B.L., L.H.L., S.S.H., Y.N.)
| | - Shengshou Hu
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Disease, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing (J.F., Y.D.L., H.T.L., J.L., J.M., H.L., Y.H.L., K.F.D., W.H.S., B.L., L.H.L., S.S.H., Y.N.)
| | - Yu Nie
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Disease, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing (J.F., Y.D.L., H.T.L., J.L., J.M., H.L., Y.H.L., K.F.D., W.H.S., B.L., L.H.L., S.S.H., Y.N.)
- Shenzhen Key Laboratory of Cardiovascular Disease, Fuwai Hospital Chinese Academy of Medical Sciences (Y.N.)
- National Health Commission Key Laboratory of Cardiovascular Regenerative Medicine, Fuwai Central-China Hospital, Central China Branch of National Center for Cardiovascular Diseases, Zhengzhou (Y.N.)
| |
Collapse
|
15
|
Tan FH, Bronner ME. Regenerative loss in the animal kingdom as viewed from the mouse digit tip and heart. Dev Biol 2024; 507:44-63. [PMID: 38145727 PMCID: PMC10922877 DOI: 10.1016/j.ydbio.2023.12.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2023] [Revised: 11/30/2023] [Accepted: 12/19/2023] [Indexed: 12/27/2023]
Abstract
The myriad regenerative abilities across the animal kingdom have fascinated us for centuries. Recent advances in developmental, molecular, and cellular biology have allowed us to unearth a surprising diversity of mechanisms through which these processes occur. Developing an all-encompassing theory of animal regeneration has thus proved a complex endeavor. In this chapter, we frame the evolution and loss of animal regeneration within the broad developmental constraints that may physiologically inhibit regenerative ability across animal phylogeny. We then examine the mouse as a model of regeneration loss, specifically the experimental systems of the digit tip and heart. We discuss the digit tip and heart as a positionally-limited system of regeneration and a temporally-limited system of regeneration, respectively. We delve into the physiological processes involved in both forms of regeneration, and how each phase of the healing and regenerative process may be affected by various molecular signals, systemic changes, or microenvironmental cues. Lastly, we also discuss the various approaches and interventions used to induce or improve the regenerative response in both contexts, and the implications they have for our understanding regenerative ability more broadly.
Collapse
Affiliation(s)
- Fayth Hui Tan
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | - Marianne E Bronner
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA.
| |
Collapse
|
16
|
Bai M, Chen H, Zhang Z, Liu X, Zhang D, Wang C. Substrate stiffness promotes dentinogenesis via LAMB1-FAK-MEK1/2 signaling axis. Oral Dis 2024; 30:562-574. [PMID: 36519511 DOI: 10.1111/odi.14469] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2022] [Revised: 12/09/2022] [Accepted: 12/12/2022] [Indexed: 12/23/2022]
Abstract
OBJECTIVES In vivo, the principal function of mechanosensitive odontoblasts is to synthesize and secrete the matrix which then calcifies and forms reactive dentin after exposure to appropriate stimuli. This study aims to develop the influence of mechanical factors on dentinogenesis based on odontoblasts, which contribute to reparative dentin formation. METHODS We fabricated polydimethylsiloxane with different stiffnesses and seeded 17IIA11 odontoblast-like cells on the substrates in different stiffnesses. Cell morphology was detected by scanning electron microscope, and the mineralization phenotype was detected by alkaline phosphatase staining and alizarin red staining, while expression levels of dentinogenesis-related genes (including Runx2, Osx, and Alp) were assayed by qPCR. To explore mechanism, protein distribution and expression levels were detected by immunofluorescent staining, Western blotting, and immunoprecipitation. RESULTS In our results, during dentinogenesis, 17IIA11 odontoblast-like cells appeared better extension on stiffer substrates. The binding between LAMB1 and FAK contributed to converting mechanical stimuli into biochemical signaling, thereby controlling mitogen-activated protein kinase kinase 1/2 activity in stiffness-driven dentinogenesis. CONCLUSION The present study suggests odontoblast behaviors can be directly regulated by mechanical factors at cell-material interfaces, which offers fundamental mechanism in remodeling cell microenvironment, thereby contributing to physiological phenomena explanation and tissue engineering progress.
Collapse
Affiliation(s)
- Mingru Bai
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
- National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
- Department of Cariology and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Huiyu Chen
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Zhaowei Zhang
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Xiaoyu Liu
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Demao Zhang
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
- National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
- West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu, China
| | - Chengling Wang
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
- National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
- Department of Cariology and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| |
Collapse
|
17
|
Nakamura F. The Role of Mechanotransduction in Contact Inhibition of Locomotion and Proliferation. Int J Mol Sci 2024; 25:2135. [PMID: 38396812 PMCID: PMC10889191 DOI: 10.3390/ijms25042135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 01/30/2024] [Accepted: 02/01/2024] [Indexed: 02/25/2024] Open
Abstract
Contact inhibition (CI) represents a crucial tumor-suppressive mechanism responsible for controlling the unbridled growth of cells, thus preventing the formation of cancerous tissues. CI can be further categorized into two distinct yet interrelated components: CI of locomotion (CIL) and CI of proliferation (CIP). These two components of CI have historically been viewed as separate processes, but emerging research suggests that they may be regulated by both distinct and shared pathways. Specifically, recent studies have indicated that both CIP and CIL utilize mechanotransduction pathways, a process that involves cells sensing and responding to mechanical forces. This review article describes the role of mechanotransduction in CI, shedding light on how mechanical forces regulate CIL and CIP. Emphasis is placed on filamin A (FLNA)-mediated mechanotransduction, elucidating how FLNA senses mechanical forces and translates them into crucial biochemical signals that regulate cell locomotion and proliferation. In addition to FLNA, trans-acting factors (TAFs), which are proteins or regulatory RNAs capable of directly or indirectly binding to specific DNA sequences in distant genes to regulate gene expression, emerge as sensitive players in both the mechanotransduction and signaling pathways of CI. This article presents methods for identifying these TAF proteins and profiling the associated changes in chromatin structure, offering valuable insights into CI and other biological functions mediated by mechanotransduction. Finally, it addresses unanswered research questions in these fields and delineates their possible future directions.
Collapse
Affiliation(s)
- Fumihiko Nakamura
- School of Pharmaceutical Science and Technology, Tianjin University, 92 Weijin Road, Nankai District, Tianjin 300072, China
| |
Collapse
|
18
|
Abstract
Permanent fibrosis and chronic deterioration of heart function in patients after myocardial infarction present a major health-care burden worldwide. In contrast to the restricted potential for cellular and functional regeneration of the adult mammalian heart, a robust capacity for cardiac regeneration is seen during the neonatal period in mammals as well as in the adults of many fish and amphibian species. However, we lack a complete understanding as to why cardiac regeneration takes place more efficiently in some species than in others. The capacity of the heart to regenerate after injury is controlled by a complex network of cellular and molecular mechanisms that form a regulatory landscape, either permitting or restricting regeneration. In this Review, we provide an overview of the diverse array of vertebrates that have been studied for their cardiac regenerative potential and discuss differential heart regeneration outcomes in closely related species. Additionally, we summarize current knowledge about the core mechanisms that regulate cardiac regeneration across vertebrate species.
Collapse
Affiliation(s)
- Michael Weinberger
- Institute of Developmental & Regenerative Medicine, University of Oxford, Oxford, UK
- MRC Weatherall Institute of Molecular Medicine, Radcliffe Department of Medicine, University of Oxford, Oxford, UK
| | - Paul R Riley
- Institute of Developmental & Regenerative Medicine, University of Oxford, Oxford, UK.
| |
Collapse
|
19
|
Johnson BB, Cosson MV, Tsansizi LI, Holmes TL, Gilmore T, Hampton K, Song OR, Vo NTN, Nasir A, Chabronova A, Denning C, Peffers MJ, Merry CLR, Whitelock J, Troeberg L, Rushworth SA, Bernardo AS, Smith JGW. Perlecan (HSPG2) promotes structural, contractile, and metabolic development of human cardiomyocytes. Cell Rep 2024; 43:113668. [PMID: 38198277 DOI: 10.1016/j.celrep.2023.113668] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Revised: 11/01/2023] [Accepted: 12/22/2023] [Indexed: 01/12/2024] Open
Abstract
Perlecan (HSPG2), a heparan sulfate proteoglycan similar to agrin, is key for extracellular matrix (ECM) maturation and stabilization. Although crucial for cardiac development, its role remains elusive. We show that perlecan expression increases as cardiomyocytes mature in vivo and during human pluripotent stem cell differentiation to cardiomyocytes (hPSC-CMs). Perlecan-haploinsuffient hPSCs (HSPG2+/-) differentiate efficiently, but late-stage CMs have structural, contractile, metabolic, and ECM gene dysregulation. In keeping with this, late-stage HSPG2+/- hPSC-CMs have immature features, including reduced ⍺-actinin expression and increased glycolytic metabolism and proliferation. Moreover, perlecan-haploinsuffient engineered heart tissues have reduced tissue thickness and force generation. Conversely, hPSC-CMs grown on a perlecan-peptide substrate are enlarged and display increased nucleation, typical of hypertrophic growth. Together, perlecan appears to play the opposite role of agrin, promoting cellular maturation rather than hyperplasia and proliferation. Perlecan signaling is likely mediated via its binding to the dystroglycan complex. Targeting perlecan-dependent signaling may help reverse the phenotypic switch common to heart failure.
Collapse
Affiliation(s)
- Benjamin B Johnson
- Centre for Metabolic Health, Norwich Medical School, University of East Anglia, Norwich Research Park, Norwich NR4 7UQ, UK
| | - Marie-Victoire Cosson
- The Francis Crick Institute, London NW1 1AT, UK; NHLI, Imperial College London, London, UK
| | - Lorenza I Tsansizi
- The Francis Crick Institute, London NW1 1AT, UK; NHLI, Imperial College London, London, UK
| | - Terri L Holmes
- Centre for Metabolic Health, Norwich Medical School, University of East Anglia, Norwich Research Park, Norwich NR4 7UQ, UK
| | | | - Katherine Hampton
- Centre for Metabolic Health, Norwich Medical School, University of East Anglia, Norwich Research Park, Norwich NR4 7UQ, UK
| | - Ok-Ryul Song
- The Francis Crick Institute, London NW1 1AT, UK; High-Throughput Screening Science Technology Platform, The Francis Crick Institute, London NW1 1AT, UK
| | - Nguyen T N Vo
- School of Medicine, Regenerating and Modelling Tissues, Biodiscovery Institute, University Park, University of Nottingham, Nottingham NG7 2RD, UK
| | - Aishah Nasir
- School of Medicine, Regenerating and Modelling Tissues, Biodiscovery Institute, University Park, University of Nottingham, Nottingham NG7 2RD, UK
| | - Alzbeta Chabronova
- Institute of Life Course and Medical Sciences, William Henry Duncan Building, 6 West Derby Street, Liverpool L7 8TX, UK
| | - Chris Denning
- School of Medicine, Regenerating and Modelling Tissues, Biodiscovery Institute, University Park, University of Nottingham, Nottingham NG7 2RD, UK
| | - Mandy J Peffers
- Institute of Life Course and Medical Sciences, William Henry Duncan Building, 6 West Derby Street, Liverpool L7 8TX, UK
| | - Catherine L R Merry
- School of Medicine, Regenerating and Modelling Tissues, Biodiscovery Institute, University Park, University of Nottingham, Nottingham NG7 2RD, UK; Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala, Sweden
| | - John Whitelock
- School of Medicine, Regenerating and Modelling Tissues, Biodiscovery Institute, University Park, University of Nottingham, Nottingham NG7 2RD, UK; Graduate School of Biomedical Engineering, University of New South Wales, Sydney, NSW 2052, Australia
| | - Linda Troeberg
- Centre for Metabolic Health, Norwich Medical School, University of East Anglia, Norwich Research Park, Norwich NR4 7UQ, UK
| | - Stuart A Rushworth
- Centre for Metabolic Health, Norwich Medical School, University of East Anglia, Norwich Research Park, Norwich NR4 7UQ, UK
| | - Andreia S Bernardo
- The Francis Crick Institute, London NW1 1AT, UK; NHLI, Imperial College London, London, UK.
| | - James G W Smith
- Centre for Metabolic Health, Norwich Medical School, University of East Anglia, Norwich Research Park, Norwich NR4 7UQ, UK.
| |
Collapse
|
20
|
Beisaw A, Wu CC. Cardiomyocyte maturation and its reversal during cardiac regeneration. Dev Dyn 2024; 253:8-27. [PMID: 36502296 DOI: 10.1002/dvdy.557] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2022] [Revised: 12/03/2022] [Accepted: 12/03/2022] [Indexed: 12/14/2022] Open
Abstract
Cardiovascular disease is a leading cause of death worldwide. Due to the limited proliferative and regenerative capacity of adult cardiomyocytes, the lost myocardium is not replenished efficiently and is replaced by a fibrotic scar, which eventually leads to heart failure. Current therapies to cure or delay the progression of heart failure are limited; hence, there is a pressing need for regenerative approaches to support the failing heart. Cardiomyocytes undergo a series of transcriptional, structural, and metabolic changes after birth (collectively termed maturation), which is critical for their contractile function but limits the regenerative capacity of the heart. In regenerative organisms, cardiomyocytes revert from their terminally differentiated state into a less mature state (ie, dedifferentiation) to allow for proliferation and regeneration to occur. Importantly, stimulating adult cardiomyocyte dedifferentiation has been shown to promote morphological and functional improvement after myocardial infarction, further highlighting the importance of cardiomyocyte dedifferentiation in heart regeneration. Here, we review several hallmarks of cardiomyocyte maturation, and summarize how their reversal facilitates cardiomyocyte proliferation and heart regeneration. A detailed understanding of how cardiomyocyte dedifferentiation is regulated will provide insights into therapeutic options to promote cardiomyocyte de-maturation and proliferation, and ultimately heart regeneration in mammals.
Collapse
Affiliation(s)
- Arica Beisaw
- Institute of Experimental Cardiology, Heidelberg University, Heidelberg, Germany
| | - Chi-Chung Wu
- European Center for Angioscience (ECAS), Medical Faculty Mannheim, Heidelberg University, Heidelberg, Germany
| |
Collapse
|
21
|
Hwang H, Rampoldi A, Forghani P, Li D, Fite J, Boland G, Maher K, Xu C. Space microgravity increases expression of genes associated with proliferation and differentiation in human cardiac spheres. NPJ Microgravity 2023; 9:88. [PMID: 38071377 PMCID: PMC10710480 DOI: 10.1038/s41526-023-00336-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Accepted: 11/21/2023] [Indexed: 04/12/2024] Open
Abstract
Efficient generation of cardiomyocytes from human-induced pluripotent stem cells (hiPSCs) is important for their application in basic and translational studies. Space microgravity can significantly change cell activities and function. Previously, we reported upregulation of genes associated with cardiac proliferation in cardiac progenitors derived from hiPSCs that were exposed to space microgravity for 3 days. Here we investigated the effect of long-term exposure of hiPSC-cardiac progenitors to space microgravity on global gene expression. Cryopreserved 3D hiPSC-cardiac progenitors were sent to the International Space Station (ISS) and cultured for 3 weeks under ISS microgravity and ISS 1 G conditions. RNA-sequencing analyses revealed upregulation of genes associated with cardiac differentiation, proliferation, and cardiac structure/function and downregulation of genes associated with extracellular matrix regulation in the ISS microgravity cultures compared with the ISS 1 G cultures. Gene ontology analysis and Kyoto Encyclopedia of Genes and Genomes mapping identified the upregulation of biological processes, molecular function, cellular components, and pathways associated with cell cycle, cardiac differentiation, and cardiac function. Taking together, these results suggest that space microgravity has a beneficial effect on the differentiation and growth of cardiac progenitors.
Collapse
Affiliation(s)
- Hyun Hwang
- Department of Pediatrics, Emory University School of Medicine and Children's Healthcare of Atlanta, Atlanta, GA, USA
| | - Antonio Rampoldi
- Department of Pediatrics, Emory University School of Medicine and Children's Healthcare of Atlanta, Atlanta, GA, USA
| | - Parvin Forghani
- Department of Pediatrics, Emory University School of Medicine and Children's Healthcare of Atlanta, Atlanta, GA, USA
| | - Dong Li
- Department of Pediatrics, Emory University School of Medicine and Children's Healthcare of Atlanta, Atlanta, GA, USA
| | | | | | - Kevin Maher
- Department of Pediatrics, Emory University School of Medicine and Children's Healthcare of Atlanta, Atlanta, GA, USA
| | - Chunhui Xu
- Department of Pediatrics, Emory University School of Medicine and Children's Healthcare of Atlanta, Atlanta, GA, USA.
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA, USA.
| |
Collapse
|
22
|
Park S, Huang H, Ross I, Moreno J, Khyeam S, Simmons J, Huang GN, Payumo AY. Quantitative Three-dimensional Label-free Digital Holographic Imaging of Cardiomyocyte Size, Ploidy, and Cell Division. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.11.02.565407. [PMID: 37961676 PMCID: PMC10635088 DOI: 10.1101/2023.11.02.565407] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2023]
Abstract
Cardiac regeneration in newborn rodents depends on the ability of pre-existing cardiomyocytes to proliferate and divide. This capacity is lost within the first week of postnatal development when these cells rapidly switch from hyperplasia to hypertrophy, withdraw from the cell cycle, become binucleated, and increase in size. How these dynamic changes in size and ploidy impact cardiomyocyte proliferative potential is not well understood. In this study, we innovate the application of a commercially available digital holographic imaging microscope, the Holomonitor M4, to evaluate the proliferative responses of mononucleated diploid and binucleated tetraploid cardiomyocytes. This instrument coupled with the powerful Holomonitor App Suite software enables long-term label-free quantitative three-dimensional tracking of primary cardiomyocyte dynamics in real-time with single-cell resolution. Our digital holographic imaging results provide direct evidence that mononucleated cardiomyocytes retain significant proliferative potential as most can successfully divide with high frequency. In contrast, binucleated cardiomyocytes exhibit a blunted response to a proliferative stimulus with the majority not attempting to divide at all. Nevertheless, some binucleated cardiomyocytes were capable of complete division, suggesting that these cells still do retain limited proliferative capacity. By quantitatively tracking cardiomyocyte volume dynamics during these proliferative responses, we reveal that both mononucleated and binucleated cells reach a unique size threshold prior to attempted cell division. The absolute threshold is increased by binucleation, which may limit the ability of binucleated cardiomyocytes to divide. By defining the interrelationship between cardiomyocyte size, ploidy, and cell cycle control, we will better understand the cellular mechanisms that drive the loss of mammalian cardiac regenerative capacity after birth.
Collapse
|
23
|
Guinard I, Nguyen T, Brassard-Jollive N, Weber J, Ruch L, Reininger L, Brouard N, Eckly A, Collin D, Lanza F, Léon C. Matrix stiffness controls megakaryocyte adhesion, fibronectin fibrillogenesis, and proplatelet formation through Itgβ3. Blood Adv 2023; 7:4003-4018. [PMID: 37171626 PMCID: PMC10410137 DOI: 10.1182/bloodadvances.2022008680] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Revised: 04/13/2023] [Accepted: 04/17/2023] [Indexed: 05/13/2023] Open
Abstract
Megakaryocytes (MKs) are the precursor cells of platelets, located in the bone marrow (BM). Once mature, they extend elongated projections named proplatelets through sinusoid vessels, emerging from the marrow stroma into the circulating blood. Not all signals from the microenvironment that regulate proplatelet formation are understood, particularly those from the BM biomechanics. We sought to investigate how MKs perceive and adapt to modifications of the stiffness of their environment. Although the BM is one of the softest tissue of the body, its rigidification results from excess fibronectin (FN), and other matrix protein deposition occur upon myelofibrosis. Here, we have shown that mouse MKs are able to detect the stiffness of a FN-coated substrate and adapt their morphology accordingly. Using a polydimethylsiloxane substrate with stiffness varying from physiological to pathological marrow, we found that a stiff matrix favors spreading, intracellular contractility, and FN fibrils assembly at the expense of proplatelet formation. Itgb3, but not Itgb1, is required for stiffness sensing, whereas both integrins are involved in fibrils assembly. In contrast, soft substrates promote proplatelet formation in an Itgb3-dependent manner, consistent with the ex vivo decrease in proplatelet formation and the in vivo decrease in platelet number in Itgb3-deficient mice. Our findings demonstrate the importance of environmental stiffness for MK functions with potential pathophysiological implications during pathologies that deregulate FN deposition and modulate stiffness in the marrow.
Collapse
Affiliation(s)
- Ines Guinard
- UMR_S1255, INSERM, Etablissement Français du Sang-Grand Est, Fédération de Médecine Translationnelle de Strasbourg, Université de Strasbourg, Strasbourg, France
| | - Thao Nguyen
- UMR_S1255, INSERM, Etablissement Français du Sang-Grand Est, Fédération de Médecine Translationnelle de Strasbourg, Université de Strasbourg, Strasbourg, France
| | - Noémie Brassard-Jollive
- UMR_S1255, INSERM, Etablissement Français du Sang-Grand Est, Fédération de Médecine Translationnelle de Strasbourg, Université de Strasbourg, Strasbourg, France
| | - Josiane Weber
- UMR_S1255, INSERM, Etablissement Français du Sang-Grand Est, Fédération de Médecine Translationnelle de Strasbourg, Université de Strasbourg, Strasbourg, France
| | - Laurie Ruch
- UMR_S1255, INSERM, Etablissement Français du Sang-Grand Est, Fédération de Médecine Translationnelle de Strasbourg, Université de Strasbourg, Strasbourg, France
| | - Laura Reininger
- UMR_S1255, INSERM, Etablissement Français du Sang-Grand Est, Fédération de Médecine Translationnelle de Strasbourg, Université de Strasbourg, Strasbourg, France
| | - Nathalie Brouard
- UMR_S1255, INSERM, Etablissement Français du Sang-Grand Est, Fédération de Médecine Translationnelle de Strasbourg, Université de Strasbourg, Strasbourg, France
| | - Anita Eckly
- UMR_S1255, INSERM, Etablissement Français du Sang-Grand Est, Fédération de Médecine Translationnelle de Strasbourg, Université de Strasbourg, Strasbourg, France
| | | | - François Lanza
- UMR_S1255, INSERM, Etablissement Français du Sang-Grand Est, Fédération de Médecine Translationnelle de Strasbourg, Université de Strasbourg, Strasbourg, France
| | - Catherine Léon
- UMR_S1255, INSERM, Etablissement Français du Sang-Grand Est, Fédération de Médecine Translationnelle de Strasbourg, Université de Strasbourg, Strasbourg, France
| |
Collapse
|
24
|
Oh GC, Choi YJ, Park BW, Ban K, Park HJ. Are There Hopeful Therapeutic Strategies to Regenerate the Infarcted Hearts? Korean Circ J 2023; 53:367-386. [PMID: 37271744 DOI: 10.4070/kcj.2023.0098] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Accepted: 04/26/2023] [Indexed: 06/06/2023] Open
Abstract
Ischemic heart disease remains the primary cause of morbidity and mortality worldwide. Despite significant advancements in pharmacological and revascularization techniques in the late 20th century, heart failure prevalence after myocardial infarction has gradually increased over the last 2 decades. After ischemic injury, pathological remodeling results in cardiomyocytes (CMs) loss and fibrosis, which leads to impaired heart function. Unfortunately, there are no clinical therapies to regenerate CMs to date, and the adult heart's limited turnover rate of CMs hinders its ability to self-regenerate. In this review, we present novel therapeutic strategies to regenerate injured myocardium, including (1) reconstruction of cardiac niche microenvironment, (2) recruitment of functional CMs by promoting their proliferation or differentiation, and (3) organizing 3-dimensional tissue construct beyond the CMs. Additionally, we highlight recent mechanistic insights that govern these strategies and identify current challenges in translating these approaches to human patients.
Collapse
Affiliation(s)
- Gyu-Chul Oh
- Division of Cardiology, Department of Internal Medicine, Seoul St. Mary's Hospital, The Catholic University of Korea, Seoul, Korea
| | - Yeon-Jik Choi
- Division of Cardiology, Department of Internal Medicine, Eunpyeong St. Mary's Hospital, The Catholic University of Korea, Seoul, Korea
| | - Bong-Woo Park
- Department of Biomedicine & Health Sciences, The Catholic University of Korea, Seoul, Korea
| | - Kiwon Ban
- Department of Biomedical Sciences, City University of Hong Kong, Kowloon, Hong Kong.
| | - Hun-Jun Park
- Division of Cardiology, Department of Internal Medicine, Seoul St. Mary's Hospital, The Catholic University of Korea, Seoul, Korea
- Department of Biomedicine & Health Sciences, The Catholic University of Korea, Seoul, Korea.
| |
Collapse
|
25
|
Jia X, Lin W, Wang W. Regulation of chromatin organization during animal regeneration. CELL REGENERATION (LONDON, ENGLAND) 2023; 12:19. [PMID: 37259007 DOI: 10.1186/s13619-023-00162-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Accepted: 03/21/2023] [Indexed: 06/02/2023]
Abstract
Activation of regeneration upon tissue damages requires the activation of many developmental genes responsible for cell proliferation, migration, differentiation, and tissue patterning. Ample evidence revealed that the regulation of chromatin organization functions as a crucial mechanism for establishing and maintaining cellular identity through precise control of gene transcription. The alteration of chromatin organization can lead to changes in chromatin accessibility and/or enhancer-promoter interactions. Like embryogenesis, each stage of tissue regeneration is accompanied by dynamic changes of chromatin organization in regeneration-responsive cells. In the past decade, many studies have been conducted to investigate the contribution of chromatin organization during regeneration in various tissues, organs, and organisms. A collection of chromatin regulators were demonstrated to play critical roles in regeneration. In this review, we will summarize the progress in the understanding of chromatin organization during regeneration in different research organisms and discuss potential common mechanisms responsible for the activation of regeneration response program.
Collapse
Affiliation(s)
- Xiaohui Jia
- National Institute of Biological Sciences, Beijing, 102206, China
- China Agricultural University, Beijing, 100083, China
| | - Weifeng Lin
- National Institute of Biological Sciences, Beijing, 102206, China
- Tsinghua Institute of Multidisciplinary Biomedical Research, Tsinghua University, Beijing, 100084, China
| | - Wei Wang
- National Institute of Biological Sciences, Beijing, 102206, China.
- Tsinghua Institute of Multidisciplinary Biomedical Research, Tsinghua University, Beijing, 100084, China.
| |
Collapse
|
26
|
Alhejailan RS, Garoffolo G, Raveendran VV, Pesce M. Cells and Materials for Cardiac Repair and Regeneration. J Clin Med 2023; 12:jcm12103398. [PMID: 37240504 DOI: 10.3390/jcm12103398] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Revised: 05/05/2023] [Accepted: 05/09/2023] [Indexed: 05/28/2023] Open
Abstract
After more than 20 years following the introduction of regenerative medicine to address the problem of cardiac diseases, still questions arise as to the best cell types and materials to use to obtain effective clinical translation. Now that it is definitively clear that the heart does not have a consistent reservoir of stem cells that could give rise to new myocytes, and that there are cells that could contribute, at most, with their pro-angiogenic or immunomodulatory potential, there is fierce debate on what will emerge as the winning strategy. In this regard, new developments in somatic cells' reprogramming, material science and cell biophysics may be of help, not only for protecting the heart from the deleterious consequences of aging, ischemia and metabolic disorders, but also to boost an endogenous regeneration potential that seems to be lost in the adulthood of the human heart.
Collapse
Affiliation(s)
- Reem Saud Alhejailan
- Cell Biology Department, King's Faisal Specialist Hospital & Research Center, Riyadh 11564, Saudi Arabia
| | - Gloria Garoffolo
- Unità di Ingegneria Tissutale Cardiovascolare, Centro Cardiologico Monzino, IRCCS, 20138 Milan, Italy
| | - Vineesh Vimala Raveendran
- Cell Biology Department, King's Faisal Specialist Hospital & Research Center, Riyadh 11564, Saudi Arabia
| | - Maurizio Pesce
- Unità di Ingegneria Tissutale Cardiovascolare, Centro Cardiologico Monzino, IRCCS, 20138 Milan, Italy
| |
Collapse
|
27
|
Uscategui Calderon M, Gonzalez BA, Yutzey KE. Cardiomyocyte-fibroblast crosstalk in the postnatal heart. Front Cell Dev Biol 2023; 11:1163331. [PMID: 37077417 PMCID: PMC10106698 DOI: 10.3389/fcell.2023.1163331] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Accepted: 03/22/2023] [Indexed: 04/05/2023] Open
Abstract
During the postnatal period in mammals, the heart undergoes significant remodeling in response to increased circulatory demands. In the days after birth, cardiac cells, including cardiomyocytes and fibroblasts, progressively lose embryonic characteristics concomitant with the loss of the heart’s ability to regenerate. Moreover, postnatal cardiomyocytes undergo binucleation and cell cycle arrest with induction of hypertrophic growth, while cardiac fibroblasts proliferate and produce extracellular matrix (ECM) that transitions from components that support cellular maturation to production of the mature fibrous skeleton of the heart. Recent studies have implicated interactions of cardiac fibroblasts and cardiomyocytes within the maturing ECM environment to promote heart maturation in the postnatal period. Here, we review the relationships of different cardiac cell types and the ECM as the heart undergoes both structural and functional changes during development. Recent advances in the field, particularly in several recently published transcriptomic datasets, have highlighted specific signaling mechanisms that underlie cellular maturation and demonstrated the biomechanical interdependence of cardiac fibroblast and cardiomyocyte maturation. There is increasing evidence that postnatal heart development in mammals is dependent on particular ECM components and that resulting changes in biomechanics influence cell maturation. These advances, in definition of cardiac fibroblast heterogeneity and function in relation to cardiomyocyte maturation and the extracellular environment provide, support for complex cell crosstalk in the postnatal heart with implications for heart regeneration and disease mechanisms.
Collapse
Affiliation(s)
- Maria Uscategui Calderon
- Division of Molecular Cardiovascular Biology, The Heart Institute, Cincinnati Children’s Medical Center, Cincinnati, OH, United States
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, United States
| | - Brittany A. Gonzalez
- Division of Molecular Cardiovascular Biology, The Heart Institute, Cincinnati Children’s Medical Center, Cincinnati, OH, United States
| | - Katherine E. Yutzey
- Division of Molecular Cardiovascular Biology, The Heart Institute, Cincinnati Children’s Medical Center, Cincinnati, OH, United States
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, United States
- *Correspondence: Katherine E. Yutzey,
| |
Collapse
|
28
|
Wang C, Ramahdita G, Genin G, Huebsch N, Ma Z. Dynamic mechanobiology of cardiac cells and tissues: Current status and future perspective. BIOPHYSICS REVIEWS 2023; 4:011314. [PMID: 37008887 PMCID: PMC10062054 DOI: 10.1063/5.0141269] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Accepted: 03/08/2023] [Indexed: 03/31/2023]
Abstract
Mechanical forces impact cardiac cells and tissues over their entire lifespan, from development to growth and eventually to pathophysiology. However, the mechanobiological pathways that drive cell and tissue responses to mechanical forces are only now beginning to be understood, due in part to the challenges in replicating the evolving dynamic microenvironments of cardiac cells and tissues in a laboratory setting. Although many in vitro cardiac models have been established to provide specific stiffness, topography, or viscoelasticity to cardiac cells and tissues via biomaterial scaffolds or external stimuli, technologies for presenting time-evolving mechanical microenvironments have only recently been developed. In this review, we summarize the range of in vitro platforms that have been used for cardiac mechanobiological studies. We provide a comprehensive review on phenotypic and molecular changes of cardiomyocytes in response to these environments, with a focus on how dynamic mechanical cues are transduced and deciphered. We conclude with our vision of how these findings will help to define the baseline of heart pathology and of how these in vitro systems will potentially serve to improve the development of therapies for heart diseases.
Collapse
Affiliation(s)
| | - Ghiska Ramahdita
- Department of Biomedical Engineering, Washington University in St. Louis, St. Louis, Missouri 63130, USA
| | | | | | - Zhen Ma
- Authors to whom correspondence should be addressed: and
| |
Collapse
|
29
|
Tan YZ, Shen HR, Wang YL, Wang QL, Wu XP, Yu SN, Wang HJ. Retinoic acid released from self-assembling peptide activates cardiomyocyte proliferation and enhances repair of infarcted myocardium. Exp Cell Res 2023; 422:113440. [PMID: 36481206 DOI: 10.1016/j.yexcr.2022.113440] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Revised: 12/01/2022] [Accepted: 12/03/2022] [Indexed: 12/12/2022]
Abstract
The limited cardiomyocyte proliferation is insufficient for repair of the myocardium. Therefore, activating cardiomyocyte proliferation might be a reasonable option for myocardial regeneration. Here, we investigated effect of retinoic acid (RA) on inducing adult cardiomyocyte proliferation and assessed efficacy of self-assembling peptide (SAP)-released RA in activating regeneration of the infarcted myocardium. Effect of RA on inducing cardiomyocyte proliferation was examined with the isolated cardiomyocytes. Expression of the cell cycle-associated genes and paracrine factors in the infarcted myocardium was examined at one week after treatment with SAP-carried RA. Cardiomyocyte proliferation, myocardial regeneration and improvement of cardiac function were assessed at four weeks after treatment. In the adult rat myocardium, expression of RA synthetase gene Raldh2 and RA concentration were decreased significantly. After treatment with RA, the proliferated cardiomyocytes were increased. The formulated SAP could sustainedly release RA. After treatment with SAP-carried RA, expression of the pro-proliferative genes in cell cycle and paracrine factors in the infarcted myocardium were up-regulated. Myocardial regeneration was enhanced, and cardiac function was improved significantly. These results demonstrate that RA can induce adult cardiomyocytes to proliferate effectively. The sustained release of RA with SAP is a promise strategy to enhance repair of the infarcted myocardium.
Collapse
Affiliation(s)
- Yu-Zhen Tan
- Department of Anatomy, Histology and Embryology, Shanghai Medical School of Fudan University, Shanghai, 200032, China.
| | - Hao-Ran Shen
- Department of Anatomy, Histology and Embryology, Shanghai Medical School of Fudan University, Shanghai, 200032, China
| | - Yong-Li Wang
- Department of Anatomy, Histology and Embryology, Shanghai Medical School of Fudan University, Shanghai, 200032, China; Department of Cardiology, Shanghai Chest Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200030, China
| | - Qiang-Li Wang
- Department of Anatomy, Histology and Embryology, Shanghai Medical School of Fudan University, Shanghai, 200032, China; Department of Histology and Embryology, School of Basic Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Xue-Ping Wu
- Department of Anatomy, Histology and Embryology, Shanghai Medical School of Fudan University, Shanghai, 200032, China
| | - Shu-Na Yu
- Department of Anatomy, Histology and Embryology, Shanghai Medical School of Fudan University, Shanghai, 200032, China
| | - Hai-Jie Wang
- Department of Anatomy, Histology and Embryology, Shanghai Medical School of Fudan University, Shanghai, 200032, China.
| |
Collapse
|
30
|
Sorbini M, Arab S, Soni T, Frisiras A, Mehta S. How can the adult zebrafish and neonatal mice teach us about stimulating cardiac regeneration in the human heart? Regen Med 2023; 18:85-99. [PMID: 36416596 DOI: 10.2217/rme-2022-0161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
The proliferative capacity of mammalian cardiomyocytes diminishes shortly after birth. In contrast, adult zebrafish and neonatal mice can regenerate cardiac tissues, highlighting new potential therapeutic avenues. Different factors have been found to promote cardiomyocyte proliferation in zebrafish and neonatal mice; these include maintenance of mononuclear and diploid cardiomyocytes and upregulation of the proto-oncogene c-Myc. The growth factor NRG-1 controls cell proliferation and interacts with the Hippo-Yap pathway to modulate regeneration. Key components of the extracellular matrix such as Agrin are also crucial for cardiac regeneration. Novel therapies explored in this review, include intramyocardial injection of Agrin or zebrafish-ECM and NRG-1 administration. These therapies may induce regeneration in patients and should be further explored.
Collapse
Affiliation(s)
- Michela Sorbini
- Barts and the London School of Medicien and Dentistry, Queen Mary University of London, E1 2AD, London, UK.,Imperial College School of Medicine, SW7 2AZ, London, UK
| | - Sammy Arab
- Imperial College School of Medicine, SW7 2AZ, London, UK
| | - Tara Soni
- Imperial College School of Medicine, SW7 2AZ, London, UK
| | | | - Samay Mehta
- Imperial College School of Medicine, SW7 2AZ, London, UK
| |
Collapse
|
31
|
Extracellular Matrix-Based Approaches in Cardiac Regeneration: Challenges and Opportunities. Int J Mol Sci 2022; 23:ijms232415783. [PMID: 36555424 PMCID: PMC9779713 DOI: 10.3390/ijms232415783] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Revised: 12/02/2022] [Accepted: 12/07/2022] [Indexed: 12/14/2022] Open
Abstract
Cardiac development is characterized by the active proliferation of different cardiac cell types, in particular cardiomyocytes and endothelial cells, that eventually build the beating heart. In mammals, these cells lose their regenerative potential early after birth, representing a major obstacle to our current capacity to restore the myocardial structure and function after an injury. Increasing evidence indicates that the cardiac extracellular matrix (ECM) actively regulates and orchestrates the proliferation, differentiation, and migration of cardiac cells within the heart, and that any change in either the composition of the ECM or its mechanical properties ultimately affect the behavior of these cells throughout one's life. Thus, understanding the role of ECMs' proteins and related signaling pathways on cardiac cell proliferation is essential to develop effective strategies fostering the regeneration of a damaged heart. This review provides an overview of the components of the ECM and its mechanical properties, whose function in cardiac regeneration has been elucidated, with a major focus on the strengths and weaknesses of the experimental models so far exploited to demonstrate the actual pro-regenerative capacity of the components of the ECM and to translate this knowledge into new therapies.
Collapse
|
32
|
Ivanova VV, Milto IV, Serebryakova ON, Sukhodolo IV. Detection of Matrix Metalloproteinases in the Heart of Preterm Rats. BIOL BULL+ 2022; 49:671-676. [DOI: 10.1134/s1062359022060073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Revised: 03/14/2022] [Accepted: 06/08/2022] [Indexed: 01/05/2025]
|
33
|
Cardiac fibroblasts and mechanosensation in heart development, health and disease. Nat Rev Cardiol 2022; 20:309-324. [PMID: 36376437 DOI: 10.1038/s41569-022-00799-2] [Citation(s) in RCA: 41] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 10/04/2022] [Indexed: 11/16/2022]
Abstract
The term 'mechanosensation' describes the capacity of cells to translate mechanical stimuli into the coordinated regulation of intracellular signals, cellular function, gene expression and epigenetic programming. This capacity is related not only to the sensitivity of the cells to tissue motion, but also to the decryption of tissue geometric arrangement and mechanical properties. The cardiac stroma, composed of fibroblasts, has been historically considered a mechanically passive component of the heart. However, the latest research suggests that the mechanical functions of these cells are an active and necessary component of the developmental biology programme of the heart that is involved in myocardial growth and homeostasis, and a crucial determinant of cardiac repair and disease. In this Review, we discuss the general concept of cell mechanosensation and force generation as potent regulators in heart development and pathology, and describe the integration of mechanical and biohumoral pathways predisposing the heart to fibrosis and failure. Next, we address the use of 3D culture systems to integrate tissue mechanics to mimic cardiac remodelling. Finally, we highlight the potential of mechanotherapeutic strategies, including pharmacological treatment and device-mediated left ventricular unloading, to reverse remodelling in the failing heart.
Collapse
|
34
|
Di Girolamo N, Park M. Cell identity changes in ocular surface Epithelia. Prog Retin Eye Res 2022:101148. [DOI: 10.1016/j.preteyeres.2022.101148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 10/13/2022] [Accepted: 11/09/2022] [Indexed: 11/21/2022]
|
35
|
Healing the Broken Hearts: A Glimpse on Next Generation Therapeutics. HEARTS 2022. [DOI: 10.3390/hearts3040013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Cardiovascular diseases are the leading cause of death worldwide, accounting for 32% of deaths globally and thus representing almost 18 million people according to WHO. Myocardial infarction, the most prevalent adult cardiovascular pathology, affects over half a million people in the USA according to the last records of the AHA. However, not only adult cardiovascular diseases are the most frequent diseases in adulthood, but congenital heart diseases also affect 0.8–1.2% of all births, accounting for mild developmental defects such as atrial septal defects to life-threatening pathologies such as tetralogy of Fallot or permanent common trunk that, if not surgically corrected in early postnatal days, they are incompatible with life. Therefore, both congenital and adult cardiovascular diseases represent an enormous social and economic burden that invariably demands continuous efforts to understand the causes of such cardiovascular defects and develop innovative strategies to correct and/or palliate them. In the next paragraphs, we aim to briefly account for our current understanding of the cellular bases of both congenital and adult cardiovascular diseases, providing a perspective of the plausible lines of action that might eventually result in increasing our understanding of cardiovascular diseases. This analysis will come out with the building blocks for designing novel and innovative therapeutic approaches to healing the broken hearts.
Collapse
|
36
|
Abstract
Heart regenerative medicine has been gradually evolving from a view of the heart as a nonregenerative organ with terminally differentiated cardiac muscle cells. Understanding the biology of the heart during homeostasis and in response to injuries has led to the realization that cellular communication between all cardiac cell types holds great promise for treatments. Indeed, recent studies highlight new disease-reversion concepts in addition to cardiomyocyte renewal, such as matrix- and vascular-targeted therapies, and immunotherapy with a focus on inflammation and fibrosis. In this review, we will discuss the cross-talk within the cardiac microenvironment and how specific therapies aim to target the hostile cardiac milieu under pathological conditions.
Collapse
Affiliation(s)
- Eldad Tzahor
- Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Stefanie Dimmeler
- Institute of Cardiovascular Regeneration, Center of Molecular Medicine, Goethe University Frankfurt, 60594 Frankfurt, Germany.,Cardiopulmonary Institute, Goethe University Frankfurt, Frankfurt, Germany.,German Center for Cardiovascular Research, RheinMain, Frankfurt, Germany
| |
Collapse
|
37
|
Kuwabara JT, Hara A, Heckl JR, Peña B, Bhutada S, DeMaris R, Ivey MJ, DeAngelo LP, Liu X, Park J, Jahansooz JR, Mestroni L, McKinsey TA, Apte SS, Tallquist MD. Regulation of extracellular matrix composition by fibroblasts during perinatal cardiac maturation. J Mol Cell Cardiol 2022; 169:84-95. [PMID: 35569524 PMCID: PMC10149041 DOI: 10.1016/j.yjmcc.2022.05.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Revised: 05/05/2022] [Accepted: 05/08/2022] [Indexed: 01/18/2023]
Abstract
BACKGROUND Cardiac fibroblasts are the main non-myocyte population responsible for extracellular matrix (ECM) production. During perinatal development, fibroblast expansion coincides with the transition from hyperplastic to hypertrophic myocardial growth. Therefore, we investigated the consequences of fibroblast loss at the time of cardiomyocyte maturation by depleting fibroblasts in the perinatal mouse. METHODS AND RESULTS We evaluated the microenvironment of the perinatal heart in the absence of fibroblasts and the potential functional impact of fibroblast loss in regulation of cardiomyocyte cell cycle arrest and binucleation. Cre-mediated expression of diphtheria toxin A in PDGFRα expressing cells immediately after birth eliminated 70-80% of the cardiac fibroblasts. At postnatal day 5, hearts lacking fibroblasts appeared similar to controls with normal morphology and comparable numbers of endothelial and smooth muscle cells, despite a pronounced reduction in fibrillar collagen. Immunoblotting and proteomic analysis of control and fibroblast-deficient hearts identified differential abundance of several ECM proteins. In addition, fibroblast loss decreased tissue stiffness and resulted in increased cardiomyocyte mitotic index, DNA synthesis, and cytokinesis. Moreover, decellularized matrix from fibroblast-deficient hearts promoted cardiomyocyte DNA replication. While cardiac architecture was not overtly affected by fibroblast reduction, few pups survived past postnatal day 11, suggesting an overall requirement for PDGFRα expressing fibroblasts. CONCLUSIONS These studies demonstrate the key role of fibroblasts in matrix production and cardiomyocyte cross-talk during mouse perinatal heart maturation and revealed that fibroblast-derived ECM may modulate cardiomyocyte maturation in vivo. Neonatal depletion of fibroblasts demonstrated that although hearts can tolerate reduced ECM composition, fibroblast loss eventually leads to perinatal death as the approach simultaneously reduced fibroblast populations in other organs.
Collapse
Affiliation(s)
- Jill T Kuwabara
- Center for Cardiovascular Research, John A. Burns School of Medicine, University of Hawaii at Manoa, Honolulu, HI 96813, United States of America; Department of Cell and Molecular Biology, John A. Burns School of Medicine, University of Hawaii at Manoa, Honolulu, HI 96813, United States of America
| | - Akitoshi Hara
- Center for Cardiovascular Research, John A. Burns School of Medicine, University of Hawaii at Manoa, Honolulu, HI 96813, United States of America
| | - Jack R Heckl
- Center for Cardiovascular Research, John A. Burns School of Medicine, University of Hawaii at Manoa, Honolulu, HI 96813, United States of America; Department of Cell and Molecular Biology, John A. Burns School of Medicine, University of Hawaii at Manoa, Honolulu, HI 96813, United States of America
| | - Brisa Peña
- Department of Medicine, Division of Cardiology, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, United States of America; Department of Bioengineering, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, United States of America; Consortium for Fibrosis Research & Translation, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, United States of America
| | - Sumit Bhutada
- Department of Biomedical Engineering, Cleveland Clinic Lerner Research Institute, Cleveland, OH 44195, United States of America
| | - Regan DeMaris
- Center for Cardiovascular Research, John A. Burns School of Medicine, University of Hawaii at Manoa, Honolulu, HI 96813, United States of America
| | - Malina J Ivey
- Center for Cardiovascular Research, John A. Burns School of Medicine, University of Hawaii at Manoa, Honolulu, HI 96813, United States of America; Department of Cell and Molecular Biology, John A. Burns School of Medicine, University of Hawaii at Manoa, Honolulu, HI 96813, United States of America; Department of Pathology and Laboratory Medicine, University of Cincinnati, Cincinnati, OH 45267, United States of America
| | - Lydia P DeAngelo
- Center for Cardiovascular Research, John A. Burns School of Medicine, University of Hawaii at Manoa, Honolulu, HI 96813, United States of America
| | - Xiaoting Liu
- Center for Cardiovascular Research, John A. Burns School of Medicine, University of Hawaii at Manoa, Honolulu, HI 96813, United States of America
| | - Juwon Park
- Center for Cardiovascular Research, John A. Burns School of Medicine, University of Hawaii at Manoa, Honolulu, HI 96813, United States of America
| | - Julia R Jahansooz
- Center for Cardiovascular Research, John A. Burns School of Medicine, University of Hawaii at Manoa, Honolulu, HI 96813, United States of America
| | - Luisa Mestroni
- Department of Medicine, Division of Cardiology, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, United States of America
| | - Timothy A McKinsey
- Department of Medicine, Division of Cardiology, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, United States of America; Consortium for Fibrosis Research & Translation, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, United States of America
| | - Suneel S Apte
- Department of Biomedical Engineering, Cleveland Clinic Lerner Research Institute, Cleveland, OH 44195, United States of America
| | - Michelle D Tallquist
- Center for Cardiovascular Research, John A. Burns School of Medicine, University of Hawaii at Manoa, Honolulu, HI 96813, United States of America.
| |
Collapse
|
38
|
Wang X, Ansari A, Pierre V, Young K, Kothapalli CR, von Recum HA, Senyo SE. Injectable Extracellular Matrix Microparticles Promote Heart Regeneration in Mice with Post-ischemic Heart Injury. Adv Healthc Mater 2022; 11:e2102265. [PMID: 35118812 PMCID: PMC9035118 DOI: 10.1002/adhm.202102265] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Revised: 12/28/2021] [Indexed: 12/20/2022]
Abstract
Ischemic heart injury causes permanent cardiomyocyte loss and fibrosis impairing cardiac function. Tissue derived biomaterials have shown promise as an injectable treatment for the post-ischemic heart. Specifically, decellularized extracellular matrix (dECM) is a protein rich suspension that forms a therapeutic hydrogel once injected and improves the heart post-injury response in rodents and pig models. Current dECM-derived biomaterials are delivered to the heart as a liquid dECM hydrogel precursor or colloidal suspension, which gels over several minutes. To increase the functionality of the dECM therapy, an injectable solid dECM microparticle formulation derived from heart tissue to control sizing and extend stability in aqueous conditions is developed. When delivered into the infarcted mouse heart, these dECM microparticles protect cardiac function promote vessel density and reduce left ventricular remodeling by sustained delivery of biomolecules. Longer retention, higher stiffness, and slower protein release of dECM microparticles are noted compared to liquid dECM hydrogel precursor. In addition, the dECM microparticle can be developed as a platform for macromolecule delivery. Together, the results suggest that dECM microparticles can be developed as a modular therapy for heart injury.
Collapse
Affiliation(s)
- Xinming Wang
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, Ohio 44106, United States
| | - Ali Ansari
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, Ohio 44106, United States
| | - Valinteshley Pierre
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, Ohio 44106, United States
| | - Kathleen Young
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, Ohio 44106, United States
| | - Chandrasekhar R. Kothapalli
- Department of Chemical and Biomedical Engineering, Cleveland State University, Cleveland, Ohio 44115, United States
| | - Horst A. von Recum
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, Ohio 44106, United States
| | - Samuel E. Senyo
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, Ohio 44106, United States
| |
Collapse
|
39
|
Auchampach J, Han L, Huang GN, Kühn B, Lough JW, O'Meara CC, Payumo AY, Rosenthal NA, Sucov HM, Yutzey KE, Patterson M. Measuring cardiomyocyte cell-cycle activity and proliferation in the age of heart regeneration. Am J Physiol Heart Circ Physiol 2022; 322:H579-H596. [PMID: 35179974 PMCID: PMC8934681 DOI: 10.1152/ajpheart.00666.2021] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Revised: 01/24/2022] [Accepted: 02/11/2022] [Indexed: 12/14/2022]
Abstract
During the past two decades, the field of mammalian myocardial regeneration has grown dramatically, and with this expanded interest comes increasing claims of experimental manipulations that mediate bona fide proliferation of cardiomyocytes. Too often, however, insufficient evidence or improper controls are provided to support claims that cardiomyocytes have definitively proliferated, a process that should be strictly defined as the generation of two de novo functional cardiomyocytes from one original cardiomyocyte. Throughout the literature, one finds inconsistent levels of experimental rigor applied, and frequently the specific data supplied as evidence of cardiomyocyte proliferation simply indicate cell-cycle activation or DNA synthesis, which do not necessarily lead to the generation of new cardiomyocytes. In this review, we highlight potential problems and limitations faced when characterizing cardiomyocyte proliferation in the mammalian heart, and summarize tools and experimental standards, which should be used to support claims of proliferation-based remuscularization. In the end, definitive establishment of de novo cardiomyogenesis can be difficult to prove; therefore, rigorous experimental strategies should be used for such claims.
Collapse
Affiliation(s)
- John Auchampach
- Department of Pharmacology and Toxicology and the Cardiovascular Center, Medical College of Wisconsin, Milwaukee, Wisconsin
| | - Lu Han
- Department of Pediatrics, Medical College of Wisconsin, Milwaukee, Wisconsin
- Division of Pediatric Cardiology, Herma Heart Institute, Children's Hospital of Wisconsin, Milwaukee, Wisconsin
| | - Guo N Huang
- Cardiovascular Research Institute and Department of Physiology, University of California, San Francisco, California
| | - Bernhard Kühn
- Division of Cardiology, Pediatric Institute for Heart Regeneration and Therapeutics, UPMC Children's Hospital of Pittsburgh, Pittsburgh, Pennsylvania
- Department of Pediatrics, University of Pittsburgh, Pittsburgh, Pennsylvania
- McGowan Institute of Regenerative Medicine, Pittsburgh, Pennsylvania
| | - John W Lough
- Department of Cell Biology Neurobiology and Anatomy and the Cardiovascular Center, Medical College of Wisconsin, Milwaukee, Wisconsin
| | - Caitlin C O'Meara
- Department of Physiology and the Cardiovascular Center, Medical College of Wisconsin, Milwaukee, Wisconsin
| | - Alexander Y Payumo
- Department of Biological Sciences, San José State University, San Jose, California
| | - Nadia A Rosenthal
- The Jackson Laboratory, Bar Harbor, Maine
- Australian Regenerative Medicine Institute, Monash University, Melbourne, Victoria, Australia
- National Heart and Lung Institute, Imperial College of London, London, United Kingdom
| | - Henry M Sucov
- Department of Regenerative Medicine and Cell Biology, Medical University of South Carolina, Charleston, South Carolina
| | - Katherine E Yutzey
- The Heart Institute, Cincinnati Children's Medical Center, Cincinnati, Ohio
- Department of Pediatrics, University of Cincinnati, Cincinnati, Ohio
| | - Michaela Patterson
- Department of Cell Biology Neurobiology and Anatomy and the Cardiovascular Center, Medical College of Wisconsin, Milwaukee, Wisconsin
| |
Collapse
|
40
|
Clerk A, Meijles DN, Hardyman MA, Fuller SJ, Chothani SP, Cull JJ, Cooper ST, Alharbi HO, Vanezis K, Felkin LE, Markou T, Leonard SJ, Shaw SW, Rackham OJ, Cook SA, Glennon PE, Sheppard MN, Sembrat JC, Rojas M, McTiernan CF, Barton PJ, Sugden PH. Cardiomyocyte BRAF and type 1 RAF inhibitors promote cardiomyocyte and cardiac hypertrophy in mice in vivo. Biochem J 2022; 479:401-424. [PMID: 35147166 PMCID: PMC8883496 DOI: 10.1042/bcj20210615] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Revised: 01/12/2022] [Accepted: 01/27/2022] [Indexed: 12/13/2022]
Abstract
The extracellular signal-regulated kinase 1/2 (ERK1/2) cascade promotes cardiomyocyte hypertrophy and is cardioprotective, with the three RAF kinases forming a node for signal integration. Our aims were to determine if BRAF is relevant for human heart failure, whether BRAF promotes cardiomyocyte hypertrophy, and if Type 1 RAF inhibitors developed for cancer (that paradoxically activate ERK1/2 at low concentrations: the 'RAF paradox') may have the same effect. BRAF was up-regulated in heart samples from patients with heart failure compared with normal controls. We assessed the effects of activated BRAF in the heart using mice with tamoxifen-activated Cre for cardiomyocyte-specific knock-in of the activating V600E mutation into the endogenous gene. We used echocardiography to measure cardiac dimensions/function. Cardiomyocyte BRAFV600E induced cardiac hypertrophy within 10 d, resulting in increased ejection fraction and fractional shortening over 6 weeks. This was associated with increased cardiomyocyte size without significant fibrosis, consistent with compensated hypertrophy. The experimental Type 1 RAF inhibitor, SB590885, and/or encorafenib (a RAF inhibitor used clinically) increased ERK1/2 phosphorylation in cardiomyocytes, and promoted hypertrophy, consistent with a 'RAF paradox' effect. Both promoted cardiac hypertrophy in mouse hearts in vivo, with increased cardiomyocyte size and no overt fibrosis. In conclusion, BRAF potentially plays an important role in human failing hearts, activation of BRAF is sufficient to induce hypertrophy, and Type 1 RAF inhibitors promote hypertrophy via the 'RAF paradox'. Cardiac hypertrophy resulting from these interventions was not associated with pathological features, suggesting that Type 1 RAF inhibitors may be useful to boost cardiomyocyte function.
Collapse
Affiliation(s)
- Angela Clerk
- School of Biological Sciences, University of Reading, Reading, U.K
| | - Daniel N. Meijles
- Molecular and Clinical Sciences Institute, St. George's University of London, London, U.K
| | | | | | - Sonia P. Chothani
- Program in Cardiovascular and Metabolic Disorders, Duke-National University of Singapore Medical School, Singapore City, Singapore
| | - Joshua J. Cull
- School of Biological Sciences, University of Reading, Reading, U.K
| | - Susanna T.E. Cooper
- Molecular and Clinical Sciences Institute, St. George's University of London, London, U.K
| | - Hajed O. Alharbi
- School of Biological Sciences, University of Reading, Reading, U.K
| | - Konstantinos Vanezis
- National Heart and Lung Institute, Imperial College London, London, U.K
- MRC London Institute of Medical Sciences, Imperial College London, London, U.K
| | - Leanne E. Felkin
- National Heart and Lung Institute, Imperial College London, London, U.K
- Cardiovascular Research Centre, Royal Brompton and Harefield Hospitals, London, U.K
| | - Thomais Markou
- School of Biological Sciences, University of Reading, Reading, U.K
| | | | - Spencer W. Shaw
- School of Biological Sciences, University of Reading, Reading, U.K
| | - Owen J.L. Rackham
- Program in Cardiovascular and Metabolic Disorders, Duke-National University of Singapore Medical School, Singapore City, Singapore
| | - Stuart A. Cook
- Program in Cardiovascular and Metabolic Disorders, Duke-National University of Singapore Medical School, Singapore City, Singapore
- MRC London Institute of Medical Sciences, Imperial College London, London, U.K
- National Heart Centre Singapore, Singapore City, Singapore
| | - Peter E. Glennon
- University Hospitals Coventry and Warwickshire, University Hospital Cardiology Department, Clifford Bridge Road, Coventry, U.K
| | - Mary N. Sheppard
- CRY Cardiovascular Pathology Department, St. George's Healthcare NHS Trust, London, U.K
| | - John C. Sembrat
- Division of Pulmonary, Allergy and Critical Care Medicine, and Dorothy P & Richard P Simmons Center for Interstitial Lung Disease, Department of Medicine, University of Pittsburgh, Pittsburgh, U.S.A
| | - Mauricio Rojas
- Division of Pulmonary, Allergy and Critical Care Medicine, and Dorothy P & Richard P Simmons Center for Interstitial Lung Disease, Department of Medicine, University of Pittsburgh, Pittsburgh, U.S.A
| | - Charles F. McTiernan
- Heart, Lung, Blood Vascular Medicine Institute, University of Pittsburgh, Pittsburgh, U.S.A
| | - Paul J. Barton
- National Heart and Lung Institute, Imperial College London, London, U.K
- Cardiovascular Research Centre, Royal Brompton and Harefield Hospitals, London, U.K
| | - Peter H. Sugden
- School of Biological Sciences, University of Reading, Reading, U.K
| |
Collapse
|
41
|
Wang H, Wisneski A, Imbrie-Moore AM, Paulsen MJ, Wang Z, Xuan Y, Lopez Hernandez H, Hironaka CE, Lucian HJ, Shin HS, Anilkumar S, Thakore AD, Farry JM, Eskandari A, Williams KM, Grady F, Wu MA, Jung J, Stapleton LM, Steele AN, Zhu Y, Woo YJ. Natural cardiac regeneration conserves native biaxial left ventricular biomechanics after myocardial infarction in neonatal rats. J Mech Behav Biomed Mater 2022; 126:105074. [PMID: 35030471 PMCID: PMC8899021 DOI: 10.1016/j.jmbbm.2022.105074] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2020] [Revised: 12/23/2021] [Accepted: 01/02/2022] [Indexed: 02/03/2023]
Abstract
After myocardial infarction (MI), adult mammals exhibit scar formation, adverse left ventricular (LV) remodeling, LV stiffening, and impaired contractility, ultimately resulting in heart failure. Neonatal mammals, however, are capable of natural heart regeneration after MI. We hypothesized that neonatal cardiac regeneration conserves native biaxial LV mechanics after MI. Wistar rat neonates (1 day old, n = 46) and adults (8-10 weeks old, n = 20) underwent sham surgery or permanent left anterior descending coronary artery ligation. At 6 weeks after neonatal MI, Masson's trichrome staining revealed negligible fibrosis. Echocardiography for the neonatal MI (n = 15) and sham rats (n = 14) revealed no differences in LV wall thickness or chamber diameter, and both groups had normal ejection fraction (72.7% vs 77.5%, respectively, p = 0.1946). Biaxial tensile testing revealed similar stress-strain curves along both the circumferential and longitudinal axes across a full range of physiologic stresses and strains. The circumferential modulus (267.9 kPa vs 274.2 kPa, p = 0.7847), longitudinal modulus (269.3 kPa vs 277.1 kPa, p = 0.7435), and maximum shear stress (3.30 kPa vs 3.95 kPa, p = 0.5418) did not differ significantly between the neonatal MI and sham groups, respectively. In contrast, transmural scars were observed at 4 weeks after adult MI. Adult MI hearts (n = 7) exhibited profound LV wall thinning (p < 0.0001), chamber dilation (p = 0.0246), and LV dysfunction (ejection fraction 45.4% vs 79.7%, p < 0.0001) compared to adult sham hearts (n = 7). Adult MI hearts were significantly stiffer than adult sham hearts in both the circumferential (321.5 kPa vs 180.0 kPa, p = 0.0111) and longitudinal axes (315.4 kPa vs 172.3 kPa, p = 0.0173), and also exhibited greater maximum shear stress (14.87 kPa vs 3.23 kPa, p = 0.0162). Our study is the first to show that native biaxial LV mechanics are conserved after neonatal heart regeneration following MI, thus adding biomechanical support for the therapeutic potential of cardiac regeneration in the treatment of ischemic heart disease.
Collapse
Affiliation(s)
- Hanjay Wang
- Department of Cardiothoracic Surgery, Stanford University, Stanford, CA, USA; Stanford Cardiovascular Institute, Stanford University, Stanford, CA, USA
| | - Andrew Wisneski
- Department of Surgery, University of California San Francisco, San Francisco, CA, USA
| | - Annabel M Imbrie-Moore
- Department of Cardiothoracic Surgery, Stanford University, Stanford, CA, USA; Department of Mechanical Engineering, Stanford University, Stanford, CA, USA
| | - Michael J Paulsen
- Department of Cardiothoracic Surgery, Stanford University, Stanford, CA, USA
| | - Zhongjie Wang
- Department of Surgery, University of California San Francisco, San Francisco, CA, USA
| | - Yue Xuan
- Department of Surgery, University of California San Francisco, San Francisco, CA, USA
| | | | - Camille E Hironaka
- Department of Cardiothoracic Surgery, Stanford University, Stanford, CA, USA
| | - Haley J Lucian
- Department of Cardiothoracic Surgery, Stanford University, Stanford, CA, USA
| | - Hye Sook Shin
- Department of Cardiothoracic Surgery, Stanford University, Stanford, CA, USA
| | - Shreya Anilkumar
- Department of Cardiothoracic Surgery, Stanford University, Stanford, CA, USA
| | - Akshara D Thakore
- Department of Cardiothoracic Surgery, Stanford University, Stanford, CA, USA
| | - Justin M Farry
- Department of Cardiothoracic Surgery, Stanford University, Stanford, CA, USA
| | - Anahita Eskandari
- Department of Cardiothoracic Surgery, Stanford University, Stanford, CA, USA
| | - Kiah M Williams
- Department of Cardiothoracic Surgery, Stanford University, Stanford, CA, USA
| | - Frederick Grady
- Department of Cardiothoracic Surgery, Stanford University, Stanford, CA, USA
| | - Matthew A Wu
- Department of Cardiothoracic Surgery, Stanford University, Stanford, CA, USA
| | - Jinsuh Jung
- Department of Cardiothoracic Surgery, Stanford University, Stanford, CA, USA
| | - Lyndsay M Stapleton
- Department of Cardiothoracic Surgery, Stanford University, Stanford, CA, USA; Department of Bioengineering, Stanford University, Stanford, CA, USA
| | - Amanda N Steele
- Department of Cardiothoracic Surgery, Stanford University, Stanford, CA, USA; Department of Bioengineering, Stanford University, Stanford, CA, USA
| | - Yuanjia Zhu
- Department of Cardiothoracic Surgery, Stanford University, Stanford, CA, USA; Department of Bioengineering, Stanford University, Stanford, CA, USA
| | - Y Joseph Woo
- Department of Cardiothoracic Surgery, Stanford University, Stanford, CA, USA; Stanford Cardiovascular Institute, Stanford University, Stanford, CA, USA; Department of Bioengineering, Stanford University, Stanford, CA, USA.
| |
Collapse
|
42
|
Seelbinder B, Ghosh S, Schneider SE, Scott AK, Berman AG, Goergen CJ, Margulies KB, Bedi K, Casas E, Swearingen AR, Brumbaugh J, Calve S, Neu CP. Nuclear deformation guides chromatin reorganization in cardiac development and disease. Nat Biomed Eng 2021; 5:1500-1516. [PMID: 34857921 PMCID: PMC9300284 DOI: 10.1038/s41551-021-00823-9] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2019] [Accepted: 10/20/2021] [Indexed: 01/31/2023]
Abstract
In cardiovascular tissues, changes in the mechanical properties of the extracellular matrix are associated with cellular de-differentiation and with subsequent functional declines. However, the underlying mechanoreceptive mechanisms are largely unclear. Here, by generating high-resolution, full-field strain maps of cardiomyocyte nuclei during contraction in vitro, complemented with evidence from tissues from patients with cardiomyopathy and from mice with reduced cardiac performance, we show that cardiomyocytes establish a distinct nuclear organization during maturation, characterized by the reorganization of H3K9me3-marked chromatin towards the nuclear border. Specifically, we show that intranuclear tension is spatially correlated with H3K9me3-marked chromatin, that reductions in nuclear deformation (through environmental stiffening or through the disruption of complexes of the linker of nucleoskeleton and cytoskeleton) abrogate chromatin reorganization and lead to the dissociation of H3K9me3-marked chromatin from the nuclear periphery, and that the suppression of H3K9 methylation induces chromatin reorganization and reduces the expression of cardiac developmental genes. Overall, our findings indicate that, by integrating environmental mechanical cues, the nuclei of cardiomyocytes guide and stabilize the fate of cells through the reorganization of epigenetically marked chromatin.
Collapse
Affiliation(s)
- Benjamin Seelbinder
- Department of Mechanical Engineering, University of Colorado Boulder, Boulder (CO)
| | - Soham Ghosh
- Department of Mechanical Engineering, University of Colorado Boulder, Boulder (CO)
| | | | - Adrienne K. Scott
- Department of Mechanical Engineering, University of Colorado Boulder, Boulder (CO)
| | - Alycia G. Berman
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette (IN)
| | - Craig J. Goergen
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette (IN)
| | | | - Kenneth Bedi
- Cardiovascular Institute, University of Pennsylvania, Philadelphia (PA)
| | - Eduard Casas
- Department of Molecular, Cellular & Developmental Biology, University of Colorado Boulder, Boulder (CO)
| | - Alison R. Swearingen
- Department of Molecular, Cellular & Developmental Biology, University of Colorado Boulder, Boulder (CO)
| | - Justin Brumbaugh
- Department of Molecular, Cellular & Developmental Biology, University of Colorado Boulder, Boulder (CO)
| | - Sarah Calve
- Department of Mechanical Engineering, University of Colorado Boulder, Boulder (CO),Weldon School of Biomedical Engineering, Purdue University, West Lafayette (IN)
| | - Corey P. Neu
- Department of Mechanical Engineering, University of Colorado Boulder, Boulder (CO),Corresponding Author
| |
Collapse
|
43
|
Wang X, Pierre V, Senapati S, Park PSH, Senyo SE. Microenvironment Stiffness Amplifies Post-ischemia Heart Regeneration in Response to Exogenous Extracellular Matrix Proteins in Neonatal Mice. Front Cardiovasc Med 2021; 8:773978. [PMID: 34805326 PMCID: PMC8602555 DOI: 10.3389/fcvm.2021.773978] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Accepted: 10/14/2021] [Indexed: 11/13/2022] Open
Abstract
The cardiogenesis of the fetal heart is absent in juveniles and adults. Cross-transplantation of decellularized extracellular matrix (dECM) can stimulate regeneration in myocardial infarct (MI) models. We have previously shown that dECM and tissue stiffness have cooperative regulation of heart regeneration in transiently regenerative day 1 neonatal mice. To investigate underlying mechanisms of mechano-signaling and dECM, we pharmacologically altered heart stiffness and administered dECM hydrogels in non-regenerative mice after MI. The dECM combined with softening exhibits preserved cardiac function, LV geometry, increased cardiomyocyte mitosis and lowered fibrosis while stiffening further aggravated ischemic damage. Transcriptome analysis identified a protein in cardiomyocytes, CLCA2, confirmed to be upregulated after MI and downregulated by dECM in a mechanosensitive manner. Synthetic knock-down of CLCA2 expression induced mitosis in primary rat cardiomyocytes in the dish. Together, our results indicate that therapeutic efficacy of extracellular molecules for heart regeneration can be modulated by heart microenvironment stiffness in vivo.
Collapse
Affiliation(s)
- Xinming Wang
- Department of Biomedical Engineering, Case School of Engineering, Case Western Reserve University, Cleveland, OH, United States
| | - Valinteshley Pierre
- Department of Biomedical Engineering, Case School of Engineering, Case Western Reserve University, Cleveland, OH, United States
| | - Subhadip Senapati
- Department of Ophthalmology and Visual Sciences, School of Medicine, Case Western Reserve University, Cleveland, OH, United States
| | - Paul S.-H. Park
- Department of Ophthalmology and Visual Sciences, School of Medicine, Case Western Reserve University, Cleveland, OH, United States
| | - Samuel E. Senyo
- Department of Biomedical Engineering, Case School of Engineering, Case Western Reserve University, Cleveland, OH, United States
| |
Collapse
|
44
|
Bongiovanni C, Sacchi F, Da Pra S, Pantano E, Miano C, Morelli MB, D'Uva G. Reawakening the Intrinsic Cardiac Regenerative Potential: Molecular Strategies to Boost Dedifferentiation and Proliferation of Endogenous Cardiomyocytes. Front Cardiovasc Med 2021; 8:750604. [PMID: 34692797 PMCID: PMC8531484 DOI: 10.3389/fcvm.2021.750604] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Accepted: 09/13/2021] [Indexed: 12/27/2022] Open
Abstract
Despite considerable efforts carried out to develop stem/progenitor cell-based technologies aiming at replacing and restoring the cardiac tissue following severe damages, thus far no strategies based on adult stem cell transplantation have been demonstrated to efficiently generate new cardiac muscle cells. Intriguingly, dedifferentiation, and proliferation of pre-existing cardiomyocytes and not stem cell differentiation represent the preponderant cellular mechanism by which lower vertebrates spontaneously regenerate the injured heart. Mammals can also regenerate their heart up to the early neonatal period, even in this case by activating the proliferation of endogenous cardiomyocytes. However, the mammalian cardiac regenerative potential is dramatically reduced soon after birth, when most cardiomyocytes exit from the cell cycle, undergo further maturation, and continue to grow in size. Although a slow rate of cardiomyocyte turnover has also been documented in adult mammals, both in mice and humans, this is not enough to sustain a robust regenerative process. Nevertheless, these remarkable findings opened the door to a branch of novel regenerative approaches aiming at reactivating the endogenous cardiac regenerative potential by triggering a partial dedifferentiation process and cell cycle re-entry in endogenous cardiomyocytes. Several adaptations from intrauterine to extrauterine life starting at birth and continuing in the immediate neonatal period concur to the loss of the mammalian cardiac regenerative ability. A wide range of systemic and microenvironmental factors or cell-intrinsic molecular players proved to regulate cardiomyocyte proliferation and their manipulation has been explored as a therapeutic strategy to boost cardiac function after injuries. We here review the scientific knowledge gained thus far in this novel and flourishing field of research, elucidating the key biological and molecular mechanisms whose modulation may represent a viable approach for regenerating the human damaged myocardium.
Collapse
Affiliation(s)
- Chiara Bongiovanni
- Department of Experimental, Diagnostic and Specialty Medicine (DIMES), University of Bologna, Bologna, Italy.,Centre for Applied Biomedical Research (CRBA), University of Bologna, Bologna, Italy.,National Laboratory of Molecular Biology and Stem Cell Engineering, National Institute of Biostructures and Biosystems (INBB), Bologna, Italy
| | - Francesca Sacchi
- National Laboratory of Molecular Biology and Stem Cell Engineering, National Institute of Biostructures and Biosystems (INBB), Bologna, Italy
| | - Silvia Da Pra
- Department of Experimental, Diagnostic and Specialty Medicine (DIMES), University of Bologna, Bologna, Italy.,Centre for Applied Biomedical Research (CRBA), University of Bologna, Bologna, Italy
| | - Elvira Pantano
- Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) MultiMedica, Milan, Italy
| | - Carmen Miano
- National Laboratory of Molecular Biology and Stem Cell Engineering, National Institute of Biostructures and Biosystems (INBB), Bologna, Italy
| | - Marco Bruno Morelli
- Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) MultiMedica, Milan, Italy
| | - Gabriele D'Uva
- Department of Experimental, Diagnostic and Specialty Medicine (DIMES), University of Bologna, Bologna, Italy.,Centre for Applied Biomedical Research (CRBA), University of Bologna, Bologna, Italy.,National Laboratory of Molecular Biology and Stem Cell Engineering, National Institute of Biostructures and Biosystems (INBB), Bologna, Italy
| |
Collapse
|
45
|
Exogenous extracellular matrix proteins decrease cardiac fibroblast activation in stiffening microenvironment through CAPG. J Mol Cell Cardiol 2021; 159:105-119. [PMID: 34118218 PMCID: PMC10066715 DOI: 10.1016/j.yjmcc.2021.06.001] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/28/2020] [Revised: 06/04/2021] [Accepted: 06/07/2021] [Indexed: 11/20/2022]
Abstract
Controlling fibrosis is an essential part of regenerating the post-ischemic heart. In the post-ischemic heart, fibroblasts differentiate to myofibroblasts that produce collagen-rich matrix to physically stabilize the infarct area. Infarct models in adult mice result in permanent scarring unlike newborn animals which fully regenerate. Decellularized extracellular matrix (dECM) hydrogels derived from early-aged hearts have been shown to be a transplantable therapy that preserves heart function and stimulates cardiomyocyte proliferation and vascularization. In this study, we investigate the anti-fibrotic effects of injectable dECM hydrogels in a cardiac explant model in the context of age-associated tissue compliance. Treatments with adult and fetal dECM hydrogels were tested for molecular effects on cardiac fibroblast activation and fibrosis. Altered sensitivity of fibroblasts to the mechanosignaling of the remodeling microenvironment was evaluated by manipulating the native extracellular matrix in explants and also with elastomeric substrates in the presence of dECM hydrogels. The injectable fetal dECM hydrogel treatment decreases fibroblast activation and contractility and lowers the stiffness-mediated increases in fibroblast activation observed in stiffened explants. The anti-fibrotic effect of dECM hydrogel is most observable at highest stiffness. Experiments with primary cells on elastomeric substrates with dECM treatment support this phenomenon. Transcriptome analysis indicated that dECM hydrogels affect cytoskeleton related signaling including Macrophage capping protein (CAPG) and Leupaxin (LPXN). CAPG was down-regulated by the fetal dECM hydrogel. LPXN expression was decreased by stiffening the explants; however, this effect was reversed by dECM hydrogel treatment. Pharmacological disruption of cytoskeleton polymerization lowered fibroblast activation and CAPG levels. Knocking down CAPG expression with siRNA inhibited fibroblast activation and collagen deposition. Collectively, fibroblast activation is dependent on cooperative action of extracellular molecular signals and mechanosignaling by cytoskeletal integrity.
Collapse
|
46
|
Bailey EC, Kobielski S, Park J, Losick VP. Polyploidy in Tissue Repair and Regeneration. Cold Spring Harb Perspect Biol 2021; 13:a040881. [PMID: 34187807 PMCID: PMC8485745 DOI: 10.1101/cshperspect.a040881] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Polyploidy is defined as a cell with three or more whole genome sets and enables cell growth across the kingdoms of life. Studies in model organisms have revealed that polyploid cell growth can be required for optimal tissue repair and regeneration. In mammals, polyploid cell growth contributes to repair of many tissues, including the liver, heart, kidney, bladder, and eye, and similar strategies have been identified in Drosophila and zebrafish tissues. This review discusses the heterogeneity and versatility of polyploidy in tissue repair and regeneration. Polyploidy has been shown to restore tissue mass and maintain organ size as well as protect against oncogenic insults and genotoxic stress. Polyploid cells can also serve as a reservoir for new diploid cells in regeneration. The numerous mechanisms to generate polyploid cells provide an unlimited resource for tissues to exploit to undergo repair or regeneration.
Collapse
Affiliation(s)
- Erin C Bailey
- Department of Biology, Boston College, Chestnut Hill, Massachusetts 02467, USA
| | - Sara Kobielski
- Department of Biology, Boston College, Chestnut Hill, Massachusetts 02467, USA
| | - John Park
- Department of Biology, Boston College, Chestnut Hill, Massachusetts 02467, USA
| | - Vicki P Losick
- Department of Biology, Boston College, Chestnut Hill, Massachusetts 02467, USA
| |
Collapse
|
47
|
Maldonado-Velez G, Firulli AB. Mechanisms Underlying Cardiomyocyte Development: Can We Exploit Them to Regenerate the Heart? Curr Cardiol Rep 2021; 23:81. [PMID: 34081213 DOI: 10.1007/s11886-021-01510-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 04/14/2021] [Indexed: 11/27/2022]
Abstract
PURPOSE OF REVIEW It is well established that the adult mammalian cardiomyocytes retain a low capacity for cell cycle activity; however, it is insufficient to effectively respond to myocardial injury and facilitate cardiac regenerative repair. Lessons learned from species in which cardiomyocytes do allow for proliferative regeneration/repair have shed light into the mechanisms underlying cardiac regeneration post-injury. Importantly, many of these mechanisms are conserved across species, including mammals, and efforts to tap into these mechanisms effectively within the adult heart are currently of great interest. RECENT FINDINGS Targeting the endogenous gene regulatory networks (GRNs) shown to play roles in the cardiac regeneration of conducive species is seen as a strong approach, as delivery of a single or combination of genes has promise to effectively enhance cell cycle activity and CM proliferation in adult hearts post-myocardial infarction (MI). In situ re-induction of proliferative gene regulatory programs within existing, local, non-damaged cardiomyocytes helps overcome significant technical hurdles, such as successful engraftment of implanted cells or achieving complete cardiomyocyte differentiation from cell-based approaches. Although many obstacles currently exist and need to be overcome to successfully translate these approaches to clinical settings, the current efforts presented here show great promise.
Collapse
Affiliation(s)
- Gabriel Maldonado-Velez
- Herman B Wells Center for Pediatric Research Department of Pediatrics, Anatomy, Biochemistry, and Medical and Molecular Genetics, Indiana University School of Medicine, 1044 W. Walnut St., Indianapolis, IN, 46202-5225, USA
| | - Anthony B Firulli
- Herman B Wells Center for Pediatric Research Department of Pediatrics, Anatomy, Biochemistry, and Medical and Molecular Genetics, Indiana University School of Medicine, 1044 W. Walnut St., Indianapolis, IN, 46202-5225, USA.
| |
Collapse
|
48
|
Behmer Hansen RA, Wang X, Kaw G, Pierre V, Senyo SE. Accounting for Material Changes in Decellularized Tissue with Underutilized Methodologies. BIOMED RESEARCH INTERNATIONAL 2021; 2021:6696295. [PMID: 34159202 PMCID: PMC8187050 DOI: 10.1155/2021/6696295] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Revised: 05/05/2021] [Accepted: 05/21/2021] [Indexed: 11/17/2022]
Abstract
Tissue decellularization has rapidly developed to be a practical approach in tissue engineering research; biological tissue is cleared of cells resulting in a protein-rich husk as a natural scaffold for growing transplanted cells as a donor organ therapy. Minimally processed, acellular extracellular matrix reproduces natural interactions with cells in vitro and for tissue engineering applications in animal models. There are many decellularization techniques that achieve preservation of molecular profile (proteins and sugars), microstructure features such as organization of ECM layers (interstitial matrix and basement membrane) and organ level macrofeatures (vasculature and tissue compartments). While structural and molecular cues receive attention, mechanical and material properties of decellularized tissues are not often discussed. The effects of decellularization on an organ depend on the tissue properties, clearing mechanism, chemical interactions, solubility, temperature, and treatment duration. Physical characterization by a few labs including work from the authors provides evidence that decellularization protocols should be tailored to specific research questions. Physical characterization beyond histology and immunohistochemistry of the decellularized matrix (dECM) extends evaluation of retained functional features of the original tissue. We direct our attention to current technologies that can be employed for structure function analysis of dECM using underutilized tools such as atomic force microscopy (AFM), cryogenic electron microscopy (cryo-EM), dynamic mechanical analysis (DMA), Fourier-transform infrared spectroscopy (FTIR), mass spectrometry, and rheometry. Structural imaging and mechanical functional testing combined with high-throughput molecular analyses opens a new approach for a deeper appreciation of how cellular behavior is influenced by the isolated microenvironment (specifically dECM). Additionally, the impact of these features with different decellularization techniques and generation of synthetic material scaffolds with desired attributes are informed. Ultimately, this mechanical profiling provides a new dimension to our understanding of decellularized matrix and its role in new applications.
Collapse
Affiliation(s)
- Ryan A. Behmer Hansen
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH, USA
| | - Xinming Wang
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH, USA
| | - Gitanjali Kaw
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH, USA
| | - Valinteshley Pierre
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH, USA
| | - Samuel E. Senyo
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH, USA
| |
Collapse
|
49
|
He M, Cheng C, Tu J, Ji SS, Lou D, Bai B. Agrin expression is correlated with tumor development and poor prognosis in cholangiocarcinoma. J Int Med Res 2021; 49:3000605211009722. [PMID: 34018826 PMCID: PMC8150497 DOI: 10.1177/03000605211009722] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Objective This study examined the role of agrin in the development of cholangiocarcinoma (CCA). Methods Western blotting was performed to detect the expression of target genes. The correlation between agrin expression and prognosis was analyzed using the Kaplan–Meier method. Proliferation, migration, invasion, and tumorigenesis were examined in CCA cells and tissues using the Cell Counting Kit-8 assay, cell cycle analysis, transwell migration assay, and nude mouse tumorigenicity assay in vivo, respectively. Results Agrin expression was significantly upregulated in CCA tissues compared with that in adjacent non-tumor tissues, and agrin expression was correlated with poorer tumor characteristics such as portal vein tumor thrombus, intrahepatic metastasis, and worse survival. Forced agrin expression in CCA cells apparently promoted proliferation, colony formation, migration, invasion, and cell cycle progression, but agrin depletion had the opposite effects. Furthermore, agrin-depleted CCA cells developed fewer and smaller tumors than control cells in vivo. Mechanistic analyses indicated that agrin activated the Hippo signaling pathway and induced the translocation of YAP to the nucleus. Conclusions Agrin promoted CCA progression by activating the Hippo signaling pathway, suggesting its promise as a target for CCA therapy.
Collapse
Affiliation(s)
- Meimei He
- Department of Pharmacy, The Second Affiliated Hospital of Wenzhou Medical University, Wenzhou University, Wenzhou, 325000, Zhejiang Province, China
| | - Chen Cheng
- Department of Pharmacy, The Second Affiliated Hospital of Wenzhou Medical University, Wenzhou University, Wenzhou, 325000, Zhejiang Province, China
| | - Junxue Tu
- Department of Pharmacy, The Second Affiliated Hospital of Wenzhou Medical University, Wenzhou University, Wenzhou, 325000, Zhejiang Province, China
| | - Sha-Sha Ji
- Department of Pharmacy, Shaoxing Traditional Chinese Medicine Hospital, Shaoxing, Zhejiang Province, China
| | - Dan Lou
- Department of Pharmacy, The Second Affiliated Hospital of Wenzhou Medical University, Wenzhou University, Wenzhou, 325000, Zhejiang Province, China
| | - Binglong Bai
- Department of Pharmacy, The Second Affiliated Hospital of Wenzhou Medical University, Wenzhou University, Wenzhou, 325000, Zhejiang Province, China
| |
Collapse
|
50
|
Cho S, Lee C, Skylar-Scott MA, Heilshorn SC, Wu JC. Reconstructing the heart using iPSCs: Engineering strategies and applications. J Mol Cell Cardiol 2021; 157:56-65. [PMID: 33895197 DOI: 10.1016/j.yjmcc.2021.04.006] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Revised: 04/07/2021] [Accepted: 04/19/2021] [Indexed: 12/14/2022]
Abstract
Induced pluripotent stem cells (iPSCs) have emerged as a key component of cardiac tissue engineering, enabling studies of cardiovascular disease mechanisms, drug responses, and developmental processes in human 3D tissue models assembled from isogenic cells. Since the very first engineered heart tissues were introduced more than two decades ago, a wide array of iPSC-derived cardiac spheroids, organoids, and heart-on-a-chip models have been developed incorporating the latest available technologies and materials. In this review, we will first outline the fundamental biological building blocks required to form a functional unit of cardiac muscle, including iPSC-derived cells differentiated by soluble factors (e.g., small molecules), extracellular matrix scaffolds, and exogenous biophysical maturation cues. We will then summarize the different fabrication approaches and strategies employed to reconstruct the heart in vitro at varying scales and geometries. Finally, we will discuss how these platforms, with continued improvements in scalability and tissue maturity, can contribute to both basic cardiovascular research and clinical applications in the future.
Collapse
Affiliation(s)
- Sangkyun Cho
- Stanford Cardiovascular Institute, Stanford University School of Medicine, Stanford, CA 94025, USA; Department of Medicine, Division of Cardiovascular Medicine, Stanford University School of Medicine, Stanford, CA 94025, USA
| | - Chelsea Lee
- Stanford Cardiovascular Institute, Stanford University School of Medicine, Stanford, CA 94025, USA; Department of Medicine, Division of Cardiovascular Medicine, Stanford University School of Medicine, Stanford, CA 94025, USA
| | - Mark A Skylar-Scott
- Stanford Cardiovascular Institute, Stanford University School of Medicine, Stanford, CA 94025, USA; Betty Irene Moore Children's Heart Center, Stanford Children's Health, Stanford, CA 94025, USA
| | - Sarah C Heilshorn
- Stanford Cardiovascular Institute, Stanford University School of Medicine, Stanford, CA 94025, USA; Department of Materials Science and Engineering, Stanford University, Stanford, CA 94025, USA
| | - Joseph C Wu
- Stanford Cardiovascular Institute, Stanford University School of Medicine, Stanford, CA 94025, USA; Department of Medicine, Division of Cardiovascular Medicine, Stanford University School of Medicine, Stanford, CA 94025, USA.
| |
Collapse
|