1
|
Yamaguchi TN, Houlahan KE, Zhu H, Kurganovs N, Livingstone J, Fox NS, Yuan J, Sietsma Penington J, Jung CH, Schwarz T, Jaratlerdsiri W, van Riet J, Georgeson P, Mangiola S, Taraszka K, Lesurf R, Jiang J, Chow K, Heisler LE, Shiah YJ, Ramanand SG, Clarkson MJ, Nguyen A, Espiritu SMG, Stuchbery R, Jovelin R, Huang V, Bell C, O’Connor E, McCoy PJ, Lalansingh CM, Cmero M, Salcedo A, Chan EK, Liu LY, Stricker PD, Bhandari V, Bornman RM, Sendorek DH, Lonie A, Prokopec SD, Fraser M, Peters JS, Foucal A, Mutambirwa SB, Mcintosh L, Orain M, Wakefield M, Picard V, Park DJ, Hovington H, Kerger M, Bergeron A, Sabelnykova V, Seo JH, Pomerantz MM, Zaitlen N, Waszak SM, Gusev A, Lacombe L, Fradet Y, Ryan A, Kishan AU, Lolkema MP, Weischenfeldt J, Têtu B, Costello AJ, Hayes VM, Hung RJ, He HH, McPherson JD, Pasaniuc B, van der Kwast T, Papenfuss AT, Freedman ML, Pope BJ, Bristow RG, Mani RS, Corcoran NM, Reimand J, Hovens CM, Boutros PC. The Germline and Somatic Origins of Prostate Cancer Heterogeneity. Cancer Discov 2025; 15:988-1017. [PMID: 39945744 PMCID: PMC12046336 DOI: 10.1158/2159-8290.cd-23-0882] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 12/06/2024] [Accepted: 02/10/2025] [Indexed: 02/23/2025]
Abstract
SIGNIFICANCE This study uncovered 223 recurrently mutated driver regions using the largest cohort of prostate tumors to date. It reveals associations between germline SNPs, somatic drivers, and tumor aggression, offering significant insights into how prostate tumor evolution is shaped by germline factors and the timing of somatic mutations.
Collapse
Affiliation(s)
- Takafumi N. Yamaguchi
- Ontario Institute for Cancer Research, Toronto, Canada
- Department of Human Genetics, University of California, Los Angeles, Los Angeles, California
- Jonsson Comprehensive Cancer Centre, University of California, Los Angeles, Los Angeles, California
- Institute for Precision Health, University of California, Los Angeles, Los Angeles, California
| | - Kathleen E. Houlahan
- Ontario Institute for Cancer Research, Toronto, Canada
- Department of Human Genetics, University of California, Los Angeles, Los Angeles, California
- Jonsson Comprehensive Cancer Centre, University of California, Los Angeles, Los Angeles, California
- Institute for Precision Health, University of California, Los Angeles, Los Angeles, California
- Department of Medical Biophysics, University of Toronto, Toronto, Canada
- Vector Institute, Toronto, Canada
- Stanford Cancer Institute, Stanford University School of Medicine, Stanford, California
| | - Helen Zhu
- Ontario Institute for Cancer Research, Toronto, Canada
- Department of Medical Biophysics, University of Toronto, Toronto, Canada
- Vector Institute, Toronto, Canada
- Princess Margaret Cancer Centre, University Health Network, Toronto, Canada
| | - Natalie Kurganovs
- Ontario Institute for Cancer Research, Toronto, Canada
- Princess Margaret Cancer Centre, University Health Network, Toronto, Canada
- Australian Prostate Cancer Research Centre Epworth, Richmond, Australia
- Department of Surgery, The University of Melbourne, Parkville, Australia
| | - Julie Livingstone
- Ontario Institute for Cancer Research, Toronto, Canada
- Department of Human Genetics, University of California, Los Angeles, Los Angeles, California
- Jonsson Comprehensive Cancer Centre, University of California, Los Angeles, Los Angeles, California
- Institute for Precision Health, University of California, Los Angeles, Los Angeles, California
| | - Natalie S. Fox
- Ontario Institute for Cancer Research, Toronto, Canada
- Department of Human Genetics, University of California, Los Angeles, Los Angeles, California
- Jonsson Comprehensive Cancer Centre, University of California, Los Angeles, Los Angeles, California
- Institute for Precision Health, University of California, Los Angeles, Los Angeles, California
- Department of Medical Biophysics, University of Toronto, Toronto, Canada
| | - Jiapei Yuan
- Department of Pathology, UT Southwestern Medical Center, Dallas, Texas
| | | | - Chol-Hee Jung
- Melbourne Bioinformatics, The University of Melbourne, Melbourne, Australia
| | - Tommer Schwarz
- Bioinformatics Interdepartmental Program, University of California, Los Angeles, Los Angeles, California
- Department of Pathology and Laboratory Medicine, University of California, Los Angeles, Los Angeles, California
| | - Weerachai Jaratlerdsiri
- Laboratory for Human Comparative and Prostate Cancer Genomics, Genomics and Epigenetics Division, Garvan Institute of Medical Research, Darlinghurst, Australia
| | - Job van Riet
- Department of Medical Oncology, Erasmus University, Rotterdam, the Netherlands
| | - Peter Georgeson
- Melbourne Bioinformatics, The University of Melbourne, Melbourne, Australia
| | - Stefano Mangiola
- Australian Prostate Cancer Research Centre Epworth, Richmond, Australia
- Department of Surgery, The University of Melbourne, Parkville, Australia
- Bioinformatics Division, Walter and Eliza Hall Institute, Parkville, Australia
| | - Kodi Taraszka
- Department of Computer Science, University of California, Los Angeles, Los Angeles, California
| | - Robert Lesurf
- Ontario Institute for Cancer Research, Toronto, Canada
| | - Jue Jiang
- Laboratory for Human Comparative and Prostate Cancer Genomics, Genomics and Epigenetics Theme, Garvan Institute of Medical Research, Darlinghurst, Australia
| | - Ken Chow
- Australian Prostate Cancer Research Centre Epworth, Richmond, Australia
- Department of Surgery, The University of Melbourne, Parkville, Australia
- Division of Urology, Royal Melbourne Hospital, Parkville, Australia
| | | | - Yu-Jia Shiah
- Ontario Institute for Cancer Research, Toronto, Canada
| | | | - Michael J. Clarkson
- Australian Prostate Cancer Research Centre Epworth, Richmond, Australia
- Department of Surgery, The University of Melbourne, Parkville, Australia
| | - Anne Nguyen
- Australian Prostate Cancer Research Centre Epworth, Richmond, Australia
- Department of Surgery, The University of Melbourne, Parkville, Australia
| | | | - Ryan Stuchbery
- Australian Prostate Cancer Research Centre Epworth, Richmond, Australia
- Department of Surgery, The University of Melbourne, Parkville, Australia
| | | | - Vincent Huang
- Ontario Institute for Cancer Research, Toronto, Canada
| | - Connor Bell
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts
| | - Edward O’Connor
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts
| | - Patrick J. McCoy
- Australian Prostate Cancer Research Centre Epworth, Richmond, Australia
- Department of Surgery, The University of Melbourne, Parkville, Australia
| | | | - Marek Cmero
- Australian Prostate Cancer Research Centre Epworth, Richmond, Australia
- Department of Surgery, The University of Melbourne, Parkville, Australia
- Bioinformatics Division, Walter and Eliza Hall Institute, Parkville, Australia
| | - Adriana Salcedo
- Ontario Institute for Cancer Research, Toronto, Canada
- Department of Human Genetics, University of California, Los Angeles, Los Angeles, California
- Jonsson Comprehensive Cancer Centre, University of California, Los Angeles, Los Angeles, California
- Institute for Precision Health, University of California, Los Angeles, Los Angeles, California
- Department of Medical Biophysics, University of Toronto, Toronto, Canada
| | - Eva K.F. Chan
- St Vincent’s Clinical School, University of New South Wales, Randwick, Australia
- Department of Urology, St. Vincent’s Hospital Sydney, Darlinghurst, Australia
| | - Lydia Y. Liu
- Ontario Institute for Cancer Research, Toronto, Canada
- Department of Human Genetics, University of California, Los Angeles, Los Angeles, California
- Jonsson Comprehensive Cancer Centre, University of California, Los Angeles, Los Angeles, California
- Institute for Precision Health, University of California, Los Angeles, Los Angeles, California
- Department of Medical Biophysics, University of Toronto, Toronto, Canada
- Vector Institute, Toronto, Canada
| | - Phillip D. Stricker
- Department of Urology, St. Vincent’s Hospital Sydney, Darlinghurst, Australia
| | - Vinayak Bhandari
- Ontario Institute for Cancer Research, Toronto, Canada
- Department of Medical Biophysics, University of Toronto, Toronto, Canada
| | - Riana M.S. Bornman
- School of Health Systems and Public Health, University of Pretoria, Pretoria, South Africa
| | | | - Andrew Lonie
- Melbourne Bioinformatics, The University of Melbourne, Melbourne, Australia
| | | | - Michael Fraser
- Ontario Institute for Cancer Research, Toronto, Canada
- Princess Margaret Cancer Centre, University Health Network, Toronto, Canada
| | - Justin S. Peters
- Australian Prostate Cancer Research Centre Epworth, Richmond, Australia
- Department of Surgery, The University of Melbourne, Parkville, Australia
| | - Adrien Foucal
- Ontario Institute for Cancer Research, Toronto, Canada
| | | | - Lachlan Mcintosh
- Bioinformatics Division, Walter and Eliza Hall Institute, Parkville, Australia
| | - Michèle Orain
- Research Centre of CHU de Québec-Université Laval, Québec City, Canada
| | - Matthew Wakefield
- Bioinformatics Division, Walter and Eliza Hall Institute, Parkville, Australia
| | - Valérie Picard
- Division of Urology and Research Centre of CHU de Québec-Université Laval, Québec City, Canada
| | - Daniel J. Park
- Melbourne Bioinformatics, The University of Melbourne, Melbourne, Australia
| | - Hélène Hovington
- Division of Urology and Research Centre of CHU de Québec-Université Laval, Québec City, Canada
| | - Michael Kerger
- Australian Prostate Cancer Research Centre Epworth, Richmond, Australia
| | - Alain Bergeron
- Division of Urology and Research Centre of CHU de Québec-Université Laval, Québec City, Canada
| | | | - Ji-Heui Seo
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts
| | - Mark M. Pomerantz
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts
| | - Noah Zaitlen
- Department of Neurology, University of California, Los Angeles, Los Angeles, California
- Department of Computational Medicine, University of California, Los Angeles, Los Angeles, California
| | - Sebastian M. Waszak
- Centre for Molecular Medicine Norway (NCMM), Nordic EMBL Partnership, University of Oslo and Oslo University Hospital, Oslo, Norway
- Swiss Institute for Experimental Cancer Research (ISREC), School of Life Sciences, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Alexander Gusev
- Division of Population Sciences, Dana-Farber Cancer Institute, Boston, Massachusetts
- Division of Genetics, Brigham Women’s Hospital and Harvard Medical School, Boston, Massachusetts
- The Eli and Edythe L. Broad Institute, Cambridge, Massachusetts
| | - Louis Lacombe
- Division of Urology and Research Centre of CHU de Québec-Université Laval, Québec City, Canada
| | - Yves Fradet
- Division of Urology and Research Centre of CHU de Québec-Université Laval, Québec City, Canada
| | - Andrew Ryan
- TissuPath Specialist Pathology Services, Mount Waverley, Australia
| | - Amar U. Kishan
- Jonsson Comprehensive Cancer Centre, University of California, Los Angeles, Los Angeles, California
- Department of Radiation Oncology, University of California, Los Angeles, Los Angeles, California
| | - Martijn P. Lolkema
- Department of Computer Science, University of California, Los Angeles, Los Angeles, California
- Center for Personalized Cancer Treatment, Rotterdam, the Netherlands
| | - Joachim Weischenfeldt
- Biotech Research & Innovation Centre (BRIC), University of Copenhagen, Copenhagen, Denmark
- Finsen Laboratory, Rigshospitalet, Copenhagen, Denmark
- Department of Urology, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Bernard Têtu
- Research Centre of CHU de Québec-Université Laval, Québec City, Canada
| | - Anthony J. Costello
- Australian Prostate Cancer Research Centre Epworth, Richmond, Australia
- Department of Surgery, The University of Melbourne, Parkville, Australia
- Division of Urology, Royal Melbourne Hospital, Parkville, Australia
| | - Vanessa M. Hayes
- St Vincent’s Clinical School, University of New South Wales, Randwick, Australia
- Department of Urology, St. Vincent’s Hospital Sydney, Darlinghurst, Australia
- School of Health Systems and Public Health, University of Pretoria, Pretoria, South Africa
- Central Clinical School, University of Sydney, Camperdown, Australia
- Department of Medical Sciences, University of Limpopo, Mankweng, South Africa
| | - Rayjean J. Hung
- Prosserman Centre for Population Health Research, Lunenfeld-Tanenbaum Research Institute, Toronto, Canada
- Epidemiology Division, Dalla Lana School of Public Health, University of Toronto, Toronto, Canada
| | - Housheng H. He
- Department of Medical Biophysics, University of Toronto, Toronto, Canada
- Princess Margaret Cancer Centre, University Health Network, Toronto, Canada
| | - John D. McPherson
- Ontario Institute for Cancer Research, Toronto, Canada
- Department of Medical Biophysics, University of Toronto, Toronto, Canada
| | - Bogdan Pasaniuc
- Jonsson Comprehensive Cancer Centre, University of California, Los Angeles, Los Angeles, California
- Institute for Precision Health, University of California, Los Angeles, Los Angeles, California
- Department of Pathology and Laboratory Medicine, University of California, Los Angeles, Los Angeles, California
- Department of Computational Medicine, University of California, Los Angeles, Los Angeles, California
| | | | - Anthony T. Papenfuss
- Melbourne Bioinformatics, The University of Melbourne, Melbourne, Australia
- Department of Medical Biology, University of Melbourne, Parkville, Australia
- Department of Mathematics and Statistics, University of Melbourne, Parkville, Australia
- Peter MacCallum Cancer Centre, Victorian Comprehensive Cancer Centre, Melbourne, Australia
- Sir Peter MacCallum Department of Oncology, University of Melbourne, Parkville, Australia
| | - Matthew L. Freedman
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts
- Division of Population Sciences, Dana-Farber Cancer Institute, Boston, Massachusetts
- Center for Functional Cancer Epigenetics, Dana-Farber Cancer Institute, Boston, Massachusetts
| | - Bernard J. Pope
- Department of Surgery, The University of Melbourne, Parkville, Australia
- Melbourne Bioinformatics, The University of Melbourne, Melbourne, Australia
- Department of Clinical Pathology, The University of Melbourne, Parkville, Australia
- Precision Medicine, School of Clinical Sciences at Monash Health, Monash University, Clayton, Australia
- Department of Medicine, Monash University, Clayton, Australia
| | - Robert G. Bristow
- Department of Medical Biophysics, University of Toronto, Toronto, Canada
- Princess Margaret Cancer Centre, University Health Network, Toronto, Canada
- Manchester Cancer Research Centre, Manchester, United Kingdom
| | - Ram S. Mani
- Department of Pathology, UT Southwestern Medical Center, Dallas, Texas
- Department of Urology, UT Southwestern Medical Center, Dallas, Texas
| | - Niall M. Corcoran
- Australian Prostate Cancer Research Centre Epworth, Richmond, Australia
- Department of Surgery, The University of Melbourne, Parkville, Australia
- Division of Urology, Royal Melbourne Hospital, Parkville, Australia
- Department of Urology, Peninsula Health, Frankston, Australia
- The Victorian Comprehensive Cancer Centre, Parkville, Australia
| | - Jüri Reimand
- Ontario Institute for Cancer Research, Toronto, Canada
- Department of Medical Biophysics, University of Toronto, Toronto, Canada
| | - Christopher M. Hovens
- Australian Prostate Cancer Research Centre Epworth, Richmond, Australia
- Department of Surgery, The University of Melbourne, Parkville, Australia
| | - Paul C. Boutros
- Department of Human Genetics, University of California, Los Angeles, Los Angeles, California
- Jonsson Comprehensive Cancer Centre, University of California, Los Angeles, Los Angeles, California
- Institute for Precision Health, University of California, Los Angeles, Los Angeles, California
- Department of Medical Biophysics, University of Toronto, Toronto, Canada
- Vector Institute, Toronto, Canada
- Department of Urology, University of California, Los Angeles, Los Angeles, California
| |
Collapse
|
2
|
Ong JY, Abdusamad M, Ramirez I, Gholkar A, Zhang X, Gimeno TV, Torres JZ. Cul3 substrate adaptor SPOP targets Nup153 for degradation. Mol Biol Cell 2025; 36:ar24. [PMID: 39785820 PMCID: PMC11974958 DOI: 10.1091/mbc.e24-04-0198] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 01/02/2025] [Accepted: 01/03/2025] [Indexed: 01/12/2025] Open
Abstract
SPOP is a Cul3 substrate adaptor responsible for the degradation of many proteins related to cell growth and proliferation. Because mutation or misregulation of SPOP drives cancer progression, understanding the suite of SPOP substrates is important to understanding the regulation of cell proliferation. Here, we identify Nup153, a component of the nuclear basket of the nuclear pore complex, as a novel substrate of SPOP. SPOP and Nup153 bind to each other and colocalize at the nuclear envelope and some nuclear foci in cells. The binding interaction between SPOP and Nup153 is complex and multivalent. Nup153 is ubiquitylated and degraded upon expression of SPOPWT but not its substrate binding-deficient mutant SPOPF102C. Depletion of SPOP via RNAi leads to Nup153 stabilization. Upon loss of SPOP activity, the nuclear envelope localization of spindle assembly checkpoint protein Mad1, which is tethered to the nuclear envelope by Nup153, is stronger. Altogether, our results demonstrate that SPOP regulates Nup153 levels and expands our understanding of the role of SPOP in protein and cellular homeostasis.
Collapse
Affiliation(s)
- Joseph Y. Ong
- Department of Chemistry and Biochemistry, University of California, Los Angeles, Los Angeles, CA 90095
| | - Mai Abdusamad
- Department of Chemistry and Biochemistry, University of California, Los Angeles, Los Angeles, CA 90095
| | - Ivan Ramirez
- Department of Chemistry and Biochemistry, University of California, Los Angeles, Los Angeles, CA 90095
| | - Ankur Gholkar
- Department of Chemistry and Biochemistry, University of California, Los Angeles, Los Angeles, CA 90095
| | - Xiaoxuan Zhang
- Department of Chemistry and Biochemistry, University of California, Los Angeles, Los Angeles, CA 90095
| | - Thomas V. Gimeno
- Department of Chemistry and Biochemistry, University of California, Los Angeles, Los Angeles, CA 90095
| | - Jorge Z. Torres
- Department of Chemistry and Biochemistry, University of California, Los Angeles, Los Angeles, CA 90095
- Molecular Biology Institute, University of California, Los Angeles, Los Angeles, CA 90095
- Jonsson Comprehensive Cancer Center, University of California, Los Angeles, Los Angeles, CA 90095
| |
Collapse
|
3
|
Pedrani M, Salfi G, Merler S, Testi I, Cani M, Turco F, Trevisi E, Tortola L, Treglia G, Di Tanna GL, Vogl U, Gillessen S, Theurillat JP, Pereira Mestre R. Prognostic and Predictive Role of SPOP Mutations in Prostate Cancer: A Systematic Review and Meta-analysis. Eur Urol Oncol 2024; 7:1199-1215. [PMID: 38704358 DOI: 10.1016/j.euo.2024.04.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 03/21/2024] [Accepted: 04/09/2024] [Indexed: 05/06/2024]
Abstract
CONTEXT Mutations in the speckle-type POZ (SPOP) gene are frequently identified in prostate cancer (PC); yet, prognostic implications for affected patients remain unclear. Limited consensus exists regarding tailored treatments for SPOP-mutant (SPOPmut) PC. OBJECTIVE To elucidate the prognostic and predictive significance of SPOP mutations across distinct PC stages and treatments. EVIDENCE ACQUISITION A systematic literature search of PubMed, Embase, and Scopus was conducted up to January 29, 2024. The meta-analysis included studies comparing survival outcomes between SPOPmut and SPOP wild-type (SPOPwt) PC. EVIDENCE SYNTHESIS From 669 records, 26 studies (including five abstracts) were analyzed. A meta-analysis of metastasis-free survival in localized (hazard ratio [HR]: 0.72, 95% confidence interval [CI]: 0.59-0.88; p < 0.01) and overall survival (OS) in metastatic PC (HR: 0.64, 95% CI: 0.53-0.76; p < 0.01) showed a favorable prognosis for patients with SPOPmut PC. In metastatic settings, SPOP mutations correlated with improved progression-free survival (PFS) and OS in patients undergoing androgen deprivation therapy ± androgen receptor signaling inhibitor (HR: 0.51, 95% CI: 0.35-0.76, p < 0.01, and HR: 0.60, 95% CI:0.46-0.79, p < 0.01, respectively). In metastatic castration-resistant PC, only abiraterone provided improved PFS and OS to patients with SPOP mutations compared with patients with SPOPwt, but data were limited. SPOP mutations did not correlate with improved PFS (p = 0.80) or OS (p = 0.27) for docetaxel. CONCLUSIONS Patients with SPOPmut PC seem to exhibit superior oncological outcomes compared with patients with SPOPwt. Tailored risk stratification and treatment approaches should be explored in such patients. PATIENT SUMMARY Speckle-type POZ (SPOP) mutations could be a favorable prognostic factor in patients with prostate cancer (PC) and may also predict better progression-free and overall survival than treatment with hormonal agents. Therefore, less intensified treatments omitting chemotherapy for patients with SPOP-mutant PC should be explored in clinical trials.
Collapse
Affiliation(s)
- Martino Pedrani
- Oncology Institute of Southern Switzerland (IOSI), Ente Ospedaliero Cantonale (EOC), Bellinzona, Switzerland; Department of Oncology and Hemato-Oncology, Università degli Studi di Milano, Milan, Italy
| | - Giuseppe Salfi
- Oncology Institute of Southern Switzerland (IOSI), Ente Ospedaliero Cantonale (EOC), Bellinzona, Switzerland; Institute of Oncology Research (IOR), Bellinzona, Switzerland
| | - Sara Merler
- Oncology Institute of Southern Switzerland (IOSI), Ente Ospedaliero Cantonale (EOC), Bellinzona, Switzerland; Institute of Oncology Research (IOR), Bellinzona, Switzerland; Section of Innovation Biomedicine - Oncology Area, Department of Engineering for Innovation Medicine, University of Verona and Verona University Hospital Trust, Verona, Italy; Faculty of Biomedical Sciences, Università della Svizzera Italiana, Lugano, Switzerland
| | - Irene Testi
- Oncology Institute of Southern Switzerland (IOSI), Ente Ospedaliero Cantonale (EOC), Bellinzona, Switzerland; Medical Oncology Unit, University Hospital of Parma, Parma, Italy
| | - Massimiliano Cani
- Oncology Institute of Southern Switzerland (IOSI), Ente Ospedaliero Cantonale (EOC), Bellinzona, Switzerland; Oncology Unit, Department of Oncology, University of Turin, S. Luigi Gonzaga Hospital, Orbassano, Italy
| | - Fabio Turco
- Oncology Institute of Southern Switzerland (IOSI), Ente Ospedaliero Cantonale (EOC), Bellinzona, Switzerland
| | - Elena Trevisi
- Oncology Institute of Southern Switzerland (IOSI), Ente Ospedaliero Cantonale (EOC), Bellinzona, Switzerland
| | - Luigi Tortola
- Oncology Institute of Southern Switzerland (IOSI), Ente Ospedaliero Cantonale (EOC), Bellinzona, Switzerland
| | - Giorgio Treglia
- Faculty of Biomedical Sciences, Università della Svizzera Italiana, Lugano, Switzerland; Imaging Institute of Southern Switzerland, Ente Ospedaliero Cantonale (EOC), Bellinzona, Switzerland; Faculty of Biology and Medicine, University of Lausanne, Lausanne, Switzerland
| | - Gian Luca Di Tanna
- Department of Business Economics, Health and Social Care, University of Applied Sciences and Arts of Southern Switzerland, Manno, Switzerland
| | - Ursula Vogl
- Oncology Institute of Southern Switzerland (IOSI), Ente Ospedaliero Cantonale (EOC), Bellinzona, Switzerland
| | - Silke Gillessen
- Oncology Institute of Southern Switzerland (IOSI), Ente Ospedaliero Cantonale (EOC), Bellinzona, Switzerland; Faculty of Biomedical Sciences, Università della Svizzera Italiana, Lugano, Switzerland
| | - Jean-Philippe Theurillat
- Institute of Oncology Research (IOR), Bellinzona, Switzerland; Faculty of Biomedical Sciences, Università della Svizzera Italiana, Lugano, Switzerland
| | - Ricardo Pereira Mestre
- Oncology Institute of Southern Switzerland (IOSI), Ente Ospedaliero Cantonale (EOC), Bellinzona, Switzerland; Institute of Oncology Research (IOR), Bellinzona, Switzerland; Faculty of Biomedical Sciences, Università della Svizzera Italiana, Lugano, Switzerland; Clinical Research Unit, myDoctorAngel Sagl, Bioggio, Switzerland.
| |
Collapse
|
4
|
Park J, Kim J. CRISPR/Cas9 Technology Providing the Therapeutic Landscape of Metastatic Prostate Cancer. Pharmaceuticals (Basel) 2024; 17:1589. [PMID: 39770431 PMCID: PMC11676443 DOI: 10.3390/ph17121589] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2024] [Revised: 11/20/2024] [Accepted: 11/22/2024] [Indexed: 01/11/2025] Open
Abstract
Prostate cancer (PCa) is the most prevalent malignancy and the second leading cause of cancer-related death in men. Although current therapies can effectively manage the primary tumor, most patients with late-stage disease manifest with metastasis in different organs. From surgery to treatment intensification (TI), several combinations of therapies are administered to improve the prognosis of patients with metastatic PCa. Due to the high frequency of the mutation during the metastatic phase, the clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated nuclease 9 (Cas9) genetic engineering tool can accelerate the effects of TI by enhancing targeted gene therapy or immunotherapy. This review describes the genetic background of metastatic PCa and how CRISPR/Cas9 technology can contribute to the field of PCa treatment development. It also discusses the current limitations of conventional PCa therapy and the potential of CRISPR-based PCa therapy.
Collapse
Affiliation(s)
- Jieun Park
- Department of Neurology, College of Medicine, Dongguk University, Ilsan, Goyang 10326, Republic of Korea;
| | - Jaehong Kim
- Department of Biochemistry, College of Medicine, Gachon University, Incheon 21999, Republic of Korea
| |
Collapse
|
5
|
Orme JJ, Taza F, De Sarkar N, Tewari AK, Arsalan Naqvi S, Riaz IB, Childs DS, Omar N, Adra N, Ashkar R, Cheng HH, Schweizer MT, Sokolova AO, Agarwal N, Barata P, Sartor O, Bastos D, Smaletz O, Berchuck JE, McClure H, Taplin ME, Aggarwal R, Sternberg CN, Vlachostergios PJ, Alva AS, Mehra N, Nelson PS, Hwang J, Dehm SM, Shi Q, Fleischmann Z, Sokol ES, Elliott A, Huang H, Bryce A, Marshall CH, Antonarakis ES. Co-occurring BRCA2/SPOP Mutations Predict Exceptional Poly (ADP-ribose) Polymerase Inhibitor Sensitivity in Metastatic Castration-Resistant Prostate Cancer. Eur Urol Oncol 2024; 7:877-887. [PMID: 38072760 PMCID: PMC11162506 DOI: 10.1016/j.euo.2023.11.014] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 11/06/2023] [Accepted: 11/21/2023] [Indexed: 06/10/2024]
Abstract
BACKGROUND AND OBJECTIVE BRCA2 mutations in metastatic castration-resistant prostate cancer (mCRPC) confer sensitivity to poly (ADP-ribose) polymerase (PARP) inhibitors. However, additional factors predicting PARP inhibitor efficacy in mCRPC are needed. Preclinical studies support a relationship between speckle-type POZ protein (SPOP) inactivation and PARP inhibitor sensitivity. We hypothesized that SPOP mutations may predict enhanced PARP inhibitor response in BRCA2-altered mCRPC. METHODS We conducted a multicenter retrospective study involving 13 sites. We identified 131 patients with BRCA2-altered mCRPC treated with PARP inhibitors, 14 of which also carried concurrent SPOP mutations. The primary efficacy endpoint was prostate-specific antigen (PSA) response rate (≥50% PSA decline). The secondary endpoints were biochemical progression-free survival (PSA-PFS), clinical/radiographic progression-free survival (PFS), and overall survival (OS). These were compared by multivariable Cox proportional hazard models adjusting for age, tumor stage, baseline PSA level, Gleason sum, prior therapies, BRCA2 alteration types, and co-occurring mutations. KEY FINDINGS AND LIMITATIONS Baseline characteristics were similar between groups. PSA responses were observed in 60% (70/117) of patients with BRCA2mut/SPOPwt disease and in 86% (12/14) of patients with BRCA2mut/SPOPmut disease (p = 0.06). The median time on PARP inhibitor treatment was 24.0 mo (95% confidence interval [CI] 19.2 mo to not reached) in this group versus 8.0 mo (95% CI 6.1-10.9 mo) in patients with BRCA2 mutation alone (p = 0.05). In an unadjusted analysis, patients with BRCA2mut/SPOPmut disease experienced longer PSA-PFS (hazard ratio [HR] 0.33 [95% CI 0.15-0.72], p = 0.005) and clinical/radiographic PFS (HR 0.4 [95% CI 0.18-0.86], p = 0.02), and numerically longer OS (HR 0.4 [95% CI 0.15-1.12], p = 0.08). In a multivariable analysis including histology, Gleason sum, prior taxane, prior androgen receptor pathway inhibitor, stage, PSA, BRCA2 alteration characteristics, and other co-mutations, patients with BRCA2mut/SPOPmut disease experienced longer PSA-PFS (HR 0.16 [95% CI 0.05-0.47], adjusted p = 0.001), clinical/radiographic PFS (HR 0.28 [95% CI 0.1-0.81], adjusted p = 0.019), and OS (HR 0.19 [95% CI 0.05-0.69], adjusted p = 0.012). In a separate cohort of patients not treated with a PARP inhibitor, there was no difference in OS between patients with BRCA2mut/SPOPmut versus BRCA2mut/SPOPwt disease (HR 0.97 [95% CI 0.40-2.4], p = 0.94). In a genomic signature analysis, Catalog of Somatic Mutations in Cancer (COSMIC) SBS3 scores predictive of homologous recombination repair (HRR) defects were higher for BRCA2mut/SPOPmut than for BRCA2mut/SPOPwt disease (p = 0.04). This was a retrospective study, and additional prospective validation cohorts are needed. CONCLUSIONS AND CLINICAL IMPLICATIONS In this retrospective analysis, PARP inhibitors appeared more effective in patients with BRCA2mut/SPOPmut than in patients with BRCA2mut/SPOPwt mCRPC. This may be related to an increase in HRR defects in coaltered disease. PATIENT SUMMARY In this study, we demonstrate that co-alteration of both BRCA2 and SPOP predicts superior clinical outcomes to treatment with poly (ADP-ribose) polymerase (PARP) inhibitors than BRCA2 alteration without SPOP mutation.
Collapse
Affiliation(s)
- Jacob J Orme
- Department of Medical Oncology, Mayo Clinic, Rochester, MN, USA; Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN, USA
| | - Fadi Taza
- Division of Hematology & Medical Oncology, Department of Medicine, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Navonil De Sarkar
- Department of Pathology and Cancer Center, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Alok K Tewari
- Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
| | | | - Irbaz B Riaz
- Division of Hematology and Oncology, Mayo Clinic, Scottsdale, AZ, USA
| | - Daniel S Childs
- Department of Medical Oncology, Mayo Clinic, Rochester, MN, USA
| | - Noha Omar
- Ascension St Agnes Hospital, Baltimore, MD, USA
| | - Nabil Adra
- Division of Hematology & Medical Oncology, Department of Medicine, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Ryan Ashkar
- Division of Hematology & Medical Oncology, Department of Medicine, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Heather H Cheng
- University of Washington and Fred Hutchinson Cancer Center, Seattle, WA, USA
| | - Michael T Schweizer
- University of Washington and Fred Hutchinson Cancer Center, Seattle, WA, USA
| | | | - Neeraj Agarwal
- Huntsman Cancer Institute, University of Utah, Salt Lake City, UT, USA
| | | | - Oliver Sartor
- Department of Medical Oncology, Mayo Clinic, Rochester, MN, USA
| | - Diogo Bastos
- Oncology Center, Hospital Sírio-Libanês, São Paulo, Brazil
| | - Oren Smaletz
- Hospital Israelita Albert Einstein, São Paulo, Brazil
| | - Jacob E Berchuck
- Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
| | - Heather McClure
- Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
| | - Mary-Ellen Taplin
- Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
| | - Rahul Aggarwal
- University of California San Francisco, San Francisco, CA, USA
| | - Cora N Sternberg
- Englander Institute for Precision Medicine, Weill Cornell Medicine, New York, NY, USA
| | | | | | - Niven Mehra
- Radboud University, Nijmegen, The Netherlands
| | - Peter S Nelson
- University of Washington and Fred Hutchinson Cancer Center, Seattle, WA, USA
| | - Justin Hwang
- Division of Hematology, Oncology and Transplantation, University of Minnesota, Minneapolis, MN, USA
| | - Scott M Dehm
- Division of Hematology, Oncology and Transplantation, University of Minnesota, Minneapolis, MN, USA; Masonic Cancer Center, Minneapolis, MN, USA; Department of Laboratory Medicine and Pathology, University of Minnesota, Minneapolis, MN, USA; Department of Urology, University of Minnesota, Minneapolis, MN, USA
| | - Qian Shi
- Department of Medical Oncology, Mayo Clinic, Rochester, MN, USA; Department of Quantitative Health Sciences, Mayo Clinic, Rochester, MN, USA
| | | | | | | | - Haojie Huang
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN, USA
| | - Alan Bryce
- Division of Hematology and Oncology, Mayo Clinic, Scottsdale, AZ, USA
| | | | - Emmanuel S Antonarakis
- Division of Hematology, Oncology and Transplantation, University of Minnesota, Minneapolis, MN, USA; Masonic Cancer Center, Minneapolis, MN, USA.
| |
Collapse
|
6
|
Yang XJ, Xu YF, Zhu Q. SPOP expression is associated with tumor-infiltrating lymphocytes in pancreatic cancer. PLoS One 2024; 19:e0306994. [PMID: 39074086 DOI: 10.1371/journal.pone.0306994] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2023] [Accepted: 06/26/2024] [Indexed: 07/31/2024] Open
Abstract
BACKGROUND Speckle Type POZ Protein (SPOP), despite its tumor type-dependent role in tumorigenesis, primarily as a tumor suppressor gene is associated with a variety of different cancers. However, its function in pancreatic cancer remains uncertain. METHODS SPOP expression and the association between its expression and patient prognosis and immune function were evaluated using The Cancer Genome Atlas (TCGA), Genotype-Tissue Expression (GTEx), The Tumor Immune Estimation Resource 2.0 (TIMER2.0) database, cBioportal, and various bioinformatic databases. Enrichment analysis of SPOP and the association between SPOP expression with clinical stage and grade were analyzed using the R software package. Then immunohistochemistry (IHC) was used to estimate the correlation between SPOP and tumor-infiltrating lymphocytes (TILs) in patients with pancreatic cancer. RESULTS As part of our study, we assessed that SPOP was anomalously expressed in kinds of cancers, associated with clinical stage and outcomes. Meanwhile, SPOP also played a crucial role in the tumor microenvironment (TME). The expression level of SPOP was significantly correlated to tumor-infiltrating immune cells (TICs) in pancreatic cancer. CONCLUSIONS Our study uncovered the potential corrections in SPOP with TICs, suggesting that SPOP may act as a biomarker for immunotherapy in pancreatic cancer.
Collapse
Affiliation(s)
- Xiao Juan Yang
- Abdominal Oncology Ward, Cancer Center, West China Hospital of Sichuan University, Chengdu, Sichuan, P.R. China
| | - Yong Feng Xu
- Abdominal Oncology Ward, Cancer Center, West China Hospital of Sichuan University, Chengdu, Sichuan, P.R. China
| | - Qing Zhu
- Abdominal Oncology Ward, Cancer Center, West China Hospital of Sichuan University, Chengdu, Sichuan, P.R. China
| |
Collapse
|
7
|
Kaushal JB, Takkar S, Batra SK, Siddiqui JA. Diverse landscape of genetically engineered mouse models: Genomic and molecular insights into prostate cancer. Cancer Lett 2024; 593:216954. [PMID: 38735382 PMCID: PMC11799897 DOI: 10.1016/j.canlet.2024.216954] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 04/26/2024] [Accepted: 05/08/2024] [Indexed: 05/14/2024]
Abstract
Prostate cancer (PCa) is a significant health concern for men worldwide and is particularly prevalent in the United States. It is a complex disease presenting different molecular subtypes and varying degrees of aggressiveness. Transgenic/genetically engineered mouse models (GEMMs) greatly enhanced our understanding of the intricate molecular processes that underlie PCa progression and have offered valuable insights into potential therapeutic targets for this disease. The integration of whole-exome and whole-genome sequencing, along with expression profiling, has played a pivotal role in advancing GEMMs by facilitating the identification of genetic alterations driving PCa development. This review focuses on genetically modified mice classified into the first and second generations of PCa models. We summarize whether models created by manipulating the function of specific genes replicate the consequences of genomic alterations observed in human PCa, including early and later disease stages. We discuss cases where GEMMs did not fully exhibit the expected human PCa phenotypes and possible causes of the failure. Here, we summarize the comprehensive understanding, recent advances, strengths and limitations of the GEMMs in advancing our insights into PCa, offering genetic and molecular perspectives for developing novel GEMM models.
Collapse
Affiliation(s)
- Jyoti B Kaushal
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE-68198, USA
| | - Simran Takkar
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE-68198, USA
| | - Surinder K Batra
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE-68198, USA; Fred and Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE-68198, USA; Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, NE-68198, USA.
| | - Jawed A Siddiqui
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE-68198, USA; Fred and Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE-68198, USA.
| |
Collapse
|
8
|
Smith SF, Brewer DS, Hurst R, Cooper CS. Applications of Urinary Extracellular Vesicles in the Diagnosis and Active Surveillance of Prostate Cancer. Cancers (Basel) 2024; 16:1717. [PMID: 38730670 PMCID: PMC11083542 DOI: 10.3390/cancers16091717] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2024] [Revised: 04/23/2024] [Accepted: 04/24/2024] [Indexed: 05/13/2024] Open
Abstract
Prostate cancer is the most common non-cutaneous cancer among men in the UK, causing significant health and economic burdens. Diagnosis and risk prognostication can be challenging due to the genetic and clinical heterogeneity of prostate cancer as well as uncertainties in our knowledge of the underlying biology and natural history of disease development. Urinary extracellular vesicles (EVs) are microscopic, lipid bilayer defined particles released by cells that carry a variety of molecular cargoes including nucleic acids, proteins and other molecules. Urine is a plentiful source of prostate-derived EVs. In this narrative review, we summarise the evidence on the function of urinary EVs and their applications in the evolving field of prostate cancer diagnostics and active surveillance. EVs are implicated in the development of all hallmarks of prostate cancer, and this knowledge has been applied to the development of multiple diagnostic tests, which are largely based on RNA and miRNA. Common gene probes included in multi-probe tests include PCA3 and ERG, and the miRNAs miR-21 and miR-141. The next decade will likely bring further improvements in the diagnostic accuracy of biomarkers as well as insights into molecular biological mechanisms of action that can be translated into opportunities in precision uro-oncology.
Collapse
Affiliation(s)
- Stephanie F. Smith
- Metabolic Health Research Centre, Norwich Medical School, University of East Anglia, Norwich Research Park, Norwich NR4 7TJ, UK (C.S.C.)
- Department of Urology, Norfolk and Norwich University Hospitals, Norwich NR4 7UY, UK
| | - Daniel S. Brewer
- Metabolic Health Research Centre, Norwich Medical School, University of East Anglia, Norwich Research Park, Norwich NR4 7TJ, UK (C.S.C.)
| | - Rachel Hurst
- Metabolic Health Research Centre, Norwich Medical School, University of East Anglia, Norwich Research Park, Norwich NR4 7TJ, UK (C.S.C.)
| | - Colin S. Cooper
- Metabolic Health Research Centre, Norwich Medical School, University of East Anglia, Norwich Research Park, Norwich NR4 7TJ, UK (C.S.C.)
| |
Collapse
|
9
|
Woodcock DJ, Sahli A, Teslo R, Bhandari V, Gruber AJ, Ziubroniewicz A, Gundem G, Xu Y, Butler A, Anokian E, Pope BJ, Jung CH, Tarabichi M, Dentro SC, Farmery JHR, Van Loo P, Warren AY, Gnanapragasam V, Hamdy FC, Bova GS, Foster CS, Neal DE, Lu YJ, Kote-Jarai Z, Fraser M, Bristow RG, Boutros PC, Costello AJ, Corcoran NM, Hovens CM, Massie CE, Lynch AG, Brewer DS, Eeles RA, Cooper CS, Wedge DC. Genomic evolution shapes prostate cancer disease type. CELL GENOMICS 2024; 4:100511. [PMID: 38428419 PMCID: PMC10943594 DOI: 10.1016/j.xgen.2024.100511] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Revised: 10/11/2021] [Accepted: 02/08/2024] [Indexed: 03/03/2024]
Abstract
The development of cancer is an evolutionary process involving the sequential acquisition of genetic alterations that disrupt normal biological processes, enabling tumor cells to rapidly proliferate and eventually invade and metastasize to other tissues. We investigated the genomic evolution of prostate cancer through the application of three separate classification methods, each designed to investigate a different aspect of tumor evolution. Integrating the results revealed the existence of two distinct types of prostate cancer that arise from divergent evolutionary trajectories, designated as the Canonical and Alternative evolutionary disease types. We therefore propose the evotype model for prostate cancer evolution wherein Alternative-evotype tumors diverge from those of the Canonical-evotype through the stochastic accumulation of genetic alterations associated with disruptions to androgen receptor DNA binding. Our model unifies many previous molecular observations, providing a powerful new framework to investigate prostate cancer disease progression.
Collapse
Affiliation(s)
- Dan J Woodcock
- Nuffield Department of Surgical Sciences, University of Oxford, Oxford, UK; Nuffield Department of Medicine, University of Oxford, Oxford, UK; Big Data Institute, University of Oxford, Oxford, UK
| | - Atef Sahli
- Nuffield Department of Medicine, University of Oxford, Oxford, UK; Big Data Institute, University of Oxford, Oxford, UK
| | | | - Vinayak Bhandari
- Department of Medical Biophysics, University of Toronto, Toronto, ON, Canada
| | - Andreas J Gruber
- Nuffield Department of Medicine, University of Oxford, Oxford, UK; Big Data Institute, University of Oxford, Oxford, UK; Department of Biology, University of Konstanz, Konstanz, Germany
| | - Aleksandra Ziubroniewicz
- Nuffield Department of Surgical Sciences, University of Oxford, Oxford, UK; Big Data Institute, University of Oxford, Oxford, UK
| | - Gunes Gundem
- Cancer Genome Project, Wellcome Trust Sanger Institute, Hinxton, UK; Memorial Sloan-Kettering Cancer Center, New York, NY, USA
| | - Yaobo Xu
- Cancer Genome Project, Wellcome Trust Sanger Institute, Hinxton, UK
| | - Adam Butler
- Cancer Genome Project, Wellcome Trust Sanger Institute, Hinxton, UK
| | | | - Bernard J Pope
- Melbourne Bioinformatics, University of Melbourne, Melbourne, VIC, Australia; Department of Clinical Pathology, The University of Melbourne, Melbourne, VIC, Australia; Department of Medicine, Central Clinical School, Monash University, Melbourne, VIC, Australia
| | - Chol-Hee Jung
- Melbourne Bioinformatics, University of Melbourne, Melbourne, VIC, Australia
| | - Maxime Tarabichi
- The Francis Crick Institute, London, UK; Institute of Interdisciplinary Research (IRIBHM), Universite Libre de Bruxelles, Brussels, Belgium
| | - Stefan C Dentro
- Nuffield Department of Medicine, University of Oxford, Oxford, UK; Cancer Genome Project, Wellcome Trust Sanger Institute, Hinxton, UK; The Francis Crick Institute, London, UK
| | - J Henry R Farmery
- Statistics and Computational Biology Laboratory, Cancer Research UK Cambridge Institute, Cambridge, UK
| | - Peter Van Loo
- The Francis Crick Institute, London, UK; Department of Genetics, The University of Texas MD Anderson Cancer Center, Houston, TX, USA; Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Anne Y Warren
- Department of Histopathology, Cambridge University Hospitals NHS Foundation Trust, Cambridge, UK
| | - Vincent Gnanapragasam
- Cambridge Urology Translational Research and Clinical Trials Office, Addenbrooke's Hospital, Cambridge, UK; Division of Urology, Department of Surgery, University of Cambridge, Cambridge, UK; Department of Urology, Cambridge University Hospitals NHS Foundation Trust, Cambridge, UK
| | - Freddie C Hamdy
- Nuffield Department of Surgical Sciences, University of Oxford, Oxford, UK
| | - G Steven Bova
- Prostate Cancer Research Center, Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland; Tays Cancer Center, Tampere University Hospital, Tampere, Finland
| | | | - David E Neal
- Uro-Oncology Research Group, Cancer Research UK Cambridge Institute, Cambridge, UK; Department of Surgical Oncology, University of Cambridge, Addenbrooke's Hospital, Cambridge, UK
| | - Yong-Jie Lu
- Centre for Molecular Oncology, Barts Cancer Institute, Queen Mary University of London, London, UK
| | | | - Michael Fraser
- Department of Medical Biophysics, University of Toronto, Toronto, ON, Canada
| | - Robert G Bristow
- Department of Medical Biophysics, University of Toronto, Toronto, ON, Canada; Division of Cancer Sciences, Faculty of Biology, Health and Medicine, University of Manchester, Manchester, UK; The Christie NHS Foundation Trust, Manchester, UK; CRUK Manchester Institute, University of Manchester, Manchester, UK; Manchester Cancer Research Centre, University of Manchester, Manchester, UK
| | - Paul C Boutros
- Department of Medical Biophysics, University of Toronto, Toronto, ON, Canada; Departments of Human Genetics and Urology, University of California, Los Angeles, Los Angeles, CA, USA; Jonsson Comprehensive Cancer Center, University of California, Los Angeles, Los Angeles, CA, USA
| | - Anthony J Costello
- Department of Surgery, University of Melbourne, Melbourne, VIC, Australia; Department of Urology, Royal Melbourne Hospital, Melbourne, VIC, Australia; Victorian Comprehensive Cancer Centre, Parkville, VIC, Australia
| | - Niall M Corcoran
- Department of Surgery, University of Melbourne, Melbourne, VIC, Australia; Department of Urology, Royal Melbourne Hospital, Melbourne, VIC, Australia; Victorian Comprehensive Cancer Centre, Parkville, VIC, Australia
| | - Christopher M Hovens
- Department of Surgery, University of Melbourne, Melbourne, VIC, Australia; Department of Urology, Royal Melbourne Hospital, Melbourne, VIC, Australia; Victorian Comprehensive Cancer Centre, Parkville, VIC, Australia
| | - Charlie E Massie
- Uro-Oncology Research Group, Cancer Research UK Cambridge Institute, Cambridge, UK; Early Detection Programme and Urological Malignancies Programme, Cancer Research UK Cambridge Centre, Department of Oncology, University of Cambridge, Cambridge, UK
| | - Andy G Lynch
- Statistics and Computational Biology Laboratory, Cancer Research UK Cambridge Institute, Cambridge, UK; School of Medicine/School of Mathematics and Statistics, University of St Andrews, St Andrews, UK
| | - Daniel S Brewer
- Norwich Medical School, University of East Anglia, Norwich, UK; Earlham Institute, Norwich, UK.
| | - Rosalind A Eeles
- The Institute of Cancer Research, London, UK; Royal Marsden NHS Foundation Trust, London, UK.
| | - Colin S Cooper
- The Institute of Cancer Research, London, UK; Norwich Medical School, University of East Anglia, Norwich, UK.
| | - David C Wedge
- Nuffield Department of Medicine, University of Oxford, Oxford, UK; Big Data Institute, University of Oxford, Oxford, UK; Manchester Cancer Research Centre, University of Manchester, Manchester, UK; Oxford NIHR Biomedical Research Centre, Oxford, UK; Manchester NIHR Biomedical Research Centre, Manchester, UK.
| |
Collapse
|
10
|
Maekawa S, Takata R, Obara W. Molecular Mechanisms of Prostate Cancer Development in the Precision Medicine Era: A Comprehensive Review. Cancers (Basel) 2024; 16:523. [PMID: 38339274 PMCID: PMC10854717 DOI: 10.3390/cancers16030523] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Revised: 01/21/2024] [Accepted: 01/22/2024] [Indexed: 02/12/2024] Open
Abstract
The progression of prostate cancer (PCa) relies on the activation of the androgen receptor (AR) by androgens. Despite efforts to block this pathway through androgen deprivation therapy, resistance can occur through several mechanisms, including the abnormal activation of AR, resulting in castration-resistant PCa following the introduction of treatment. Mutations, amplifications, and splicing variants in AR-related genes have garnered attention in this regard. Furthermore, recent large-scale next-generation sequencing analysis has revealed the critical roles of AR and AR-related genes, as well as the DNA repair, PI3K, and cell cycle pathways, in the onset and progression of PCa. Moreover, research on epigenomics and microRNA has increasingly become popular; however, it has not translated into the development of effective therapeutic strategies. Additionally, treatments targeting homologous recombination repair mutations and the PI3K/Akt pathway have been developed and are increasingly accessible, and multiple clinical trials have investigated the efficacy of immune checkpoint inhibitors. In this comprehensive review, we outline the status of PCa research in genomics and briefly explore potential future developments in the field of epigenetic modifications and microRNAs.
Collapse
Affiliation(s)
- Shigekatsu Maekawa
- Department of Urology, Iwate Medical University, Iwate 028-3694, Japan; (R.T.); (W.O.)
| | | | | |
Collapse
|
11
|
Khan S, Baligar P, Tandon C, Nayyar J, Tandon S. Molecular heterogeneity in prostate cancer and the role of targeted therapy. Life Sci 2024; 336:122270. [PMID: 37979833 DOI: 10.1016/j.lfs.2023.122270] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 11/03/2023] [Accepted: 11/12/2023] [Indexed: 11/20/2023]
Abstract
Data collected from large-scale studies has shown that the incidence of prostate cancer globally is on the rise, which could be attributed to an overall increase in lifespan. So, the question is how has modern science with all its new technologies and clinical breakthroughs mitigated or managed this disease? The answer is not a simple one as prostate cancer exhibits various subtypes, each with its unique characteristics or signatures which creates challenges in treatment. To understand the complexity of prostate cancer these signatures must be deciphered. Molecular studies of prostate cancer samples have identified certain genetic and epigenetic alterations, which are instrumental in tumorigenesis. Some of these candidates include the androgen receptor (AR), various oncogenes, tumor suppressor genes, and the tumor microenvironment, which serve as major drivers that lead to cancer progression. These aberrant genes and their products can give an insight into prostate cancer development and progression by acting as potent markers to guide future therapeutic approaches. Thus, understanding the complexity of prostate cancer is crucial for targeting specific markers and tailoring treatments accordingly.
Collapse
Affiliation(s)
- Sabiha Khan
- Amity Institute of Molecular Medicine, Amity University Uttar Pradesh, India
| | - Prakash Baligar
- Amity Institute of Molecular Medicine, Amity University Uttar Pradesh, India
| | - Chanderdeep Tandon
- Amity School of Biological Sciences, Amity University Punjab, Mohali, India
| | - Jasamrit Nayyar
- Department of Chemistry, Goswami Ganesh Dutt Sanatan Dharam College, Chandigarh, India
| | - Simran Tandon
- Amity School of Health Sciences, Amity University Punjab, Mohali, India.
| |
Collapse
|
12
|
Geng C, Zhang MC, Manyam GC, Vykoukal JV, Fahrmann JF, Peng S, Wu C, Park S, Kondraganti S, Wang D, Robinson BD, Loda M, Barbieri CE, Yap TA, Corn PG, Hanash S, Broom BM, Pilié PG, Thompson TC. SPOP Mutations Target STING1 Signaling in Prostate Cancer and Create Therapeutic Vulnerabilities to PARP Inhibitor-Induced Growth Suppression. Clin Cancer Res 2023; 29:4464-4478. [PMID: 37581614 PMCID: PMC11017857 DOI: 10.1158/1078-0432.ccr-23-1439] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Revised: 07/12/2023] [Accepted: 08/11/2023] [Indexed: 08/16/2023]
Abstract
PURPOSE Speckle-type POZ protein (SPOP) is important in DNA damage response (DDR) and maintenance of genomic stability. Somatic heterozygous missense mutations in the SPOP substrate-binding cleft are found in up to 15% of prostate cancers. While mutations in SPOP predict for benefit from androgen receptor signaling inhibition (ARSi) therapy, outcomes for patients with SPOP-mutant (SPOPmut) prostate cancer are heterogeneous and targeted treatments for SPOPmut castrate-resistant prostate cancer (CRPC) are lacking. EXPERIMENTAL DESIGN Using in silico genomic and transcriptomic tumor data, proteomics analysis, and genetically modified cell line models, we demonstrate mechanistic links between SPOP mutations, STING signaling alterations, and PARP inhibitor vulnerabilities. RESULTS We demonstrate that SPOP mutations are associated with upregulation of a 29-gene noncanonical (NC) STING (NC-STING) signature in a subset of SPOPmut, treatment-refractory CRPC patients. We show in preclinical CRPC models that SPOP targets and destabilizes STING1 protein, and prostate cancer-associated SPOP mutations result in upregulated NC-STING-NF-κB signaling and macrophage- and tumor microenvironment (TME)-facilitated reprogramming, leading to tumor cell growth. Importantly, we provide in vitro and in vivo mechanism-based evidence that PARP inhibitor (PARPi) treatment results in a shift from immunosuppressive NC-STING-NF-κB signaling to antitumor, canonical cGAS-STING-IFNβ signaling in SPOPmut CRPC and results in enhanced tumor growth inhibition. CONCLUSIONS We provide evidence that SPOP is critical in regulating immunosuppressive versus antitumor activity downstream of DNA damage-induced STING1 activation in prostate cancer. PARPi treatment of SPOPmut CRPC alters this NC-STING signaling toward canonical, antitumor cGAS-STING-IFNβ signaling, highlighting a novel biomarker-informed treatment strategy for prostate cancer.
Collapse
Affiliation(s)
- Chuandong Geng
- Department of Genitourinary Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Man-Chao Zhang
- Department of Genitourinary Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Ganiraju C. Manyam
- Department of Bioinformatics and Computational Biology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Jody V. Vykoukal
- Department of Clinical Cancer Prevention, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Johannes F. Fahrmann
- Department of Clinical Cancer Prevention, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Shan Peng
- Department of Genitourinary Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Cheng Wu
- Department of Genitourinary Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Sanghee Park
- Department of Genitourinary Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Shakuntala Kondraganti
- Department of Genitourinary Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Daoqi Wang
- Department of Genitourinary Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Brian D. Robinson
- Caryl and Israel Englander Institute for Precision Medicine, Weill Cornell Medicine, New York, New York
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, New York
| | - Massimo Loda
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, New York
- Sandra and Edward Meyer Cancer Center, Weill Cornell Medicine, New York, New York
| | - Christopher E. Barbieri
- Caryl and Israel Englander Institute for Precision Medicine, Weill Cornell Medicine, New York, New York
- Sandra and Edward Meyer Cancer Center, Weill Cornell Medicine, New York, New York
- Department of Urology, Weill Cornell Medicine, New York, New York
| | - Timothy A. Yap
- Khalifa Institute for Personalized Cancer Therapy, The University of Texas MD Anderson Cancer Center, Houston, Texas
- Investigational Cancer Therapeutics (Phase I Program), The University of Texas MD Anderson Cancer Center, Houston, Texas
- The Institute for Applied Cancer Science, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Paul G. Corn
- Department of Genitourinary Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Samir Hanash
- Department of Clinical Cancer Prevention, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Bradley M. Broom
- Department of Bioinformatics and Computational Biology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Patrick G. Pilié
- Department of Genitourinary Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Timothy C. Thompson
- Department of Genitourinary Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| |
Collapse
|
13
|
Koukourakis IM, Platoni K, Kouloulias V, Arelaki S, Zygogianni A. Prostate Cancer Stem Cells: Biology and Treatment Implications. Int J Mol Sci 2023; 24:14890. [PMID: 37834336 PMCID: PMC10573523 DOI: 10.3390/ijms241914890] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Revised: 09/30/2023] [Accepted: 10/01/2023] [Indexed: 10/15/2023] Open
Abstract
Stem cells differentiate into mature organ/tissue-specific cells at a steady pace under normal conditions, but their growth can be accelerated during the process of tissue healing or in the context of certain diseases. It is postulated that the proliferation and growth of carcinomas are sustained by the presence of a vital cellular compartment resembling stem cells residing in normal tissues: 'stem-like cancer cells' or cancer stem cells (CSCs). Mutations in prostate stem cells can lead to the formation of prostate cancer. Prostate CSCs (PCSCs) have been identified and partially characterized. These express surface markers include CD44, CD133, integrin α2β1, and pluripotency factors like OCT4, NANOG, and SOX2. Several signaling pathways are also over-activated, including Notch, PTEN/Akt/PI3K, RAS-RAF-MEK-ERK and HH. Moreover, PCSCs appear to induce resistance to radiotherapy and chemotherapy, while their presence has been linked to aggressive cancer behavior and higher relapse rates. The development of treatment policies to target PCSCs in tumors is appealing as radiotherapy and chemotherapy, through cancer cell killing, trigger tumor repopulation via activated stem cells. Thus, blocking this reactive stem cell mobilization may facilitate a positive outcome through cytotoxic treatment.
Collapse
Affiliation(s)
- Ioannis M. Koukourakis
- Radiation Oncology Unit, 1st Department of Radiology, Aretaieion Hospital, School of Medicine, National and Kapodistrian University of Athens (NKUOA), 11528 Athens, Greece; (I.M.K.); (A.Z.)
| | - Kalliopi Platoni
- Medical Physics Unit, 2nd Department of Radiology, Attikon University Hospital, School of Medicine, National and Kapodistrian University of Athens (NKUOA), 12462 Athens, Greece
| | - Vassilis Kouloulias
- Radiation Oncology Unit, 2nd Department of Radiology, School of Medicine, National and Kapodistrian University of Athens (NKUOA), 12462 Athens, Greece;
| | - Stella Arelaki
- Translational Functional Cancer Genomics, National Center for Tumor Diseases, German Cancer Research Center, 69120 Heidelberg, Germany;
| | - Anna Zygogianni
- Radiation Oncology Unit, 1st Department of Radiology, Aretaieion Hospital, School of Medicine, National and Kapodistrian University of Athens (NKUOA), 11528 Athens, Greece; (I.M.K.); (A.Z.)
| |
Collapse
|
14
|
Grypari IM, Tzelepi V, Gyftopoulos K. DNA Damage Repair Pathways in Prostate Cancer: A Narrative Review of Molecular Mechanisms, Emerging Biomarkers and Therapeutic Targets in Precision Oncology. Int J Mol Sci 2023; 24:11418. [PMID: 37511177 PMCID: PMC10380086 DOI: 10.3390/ijms241411418] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2023] [Revised: 07/09/2023] [Accepted: 07/11/2023] [Indexed: 07/30/2023] Open
Abstract
Prostate cancer (PCa) has a distinct molecular signature, including characteristic chromosomal translocations, gene deletions and defective DNA damage repair mechanisms. One crucial pathway involved is homologous recombination deficiency (HRD) and it is found in almost 20% of metastatic castrate-resistant PCa (mCRPC). Inherited/germline mutations are associated with a hereditary predisposition to early PCa development and aggressive behavior. BRCA2, ATM and CHECK2 are the most frequently HRD-mutated genes. BRCA2-mutated tumors have unfavorable clinical and pathological characteristics, such as intraductal carcinoma. PARP inhibitors, due to the induction of synthetic lethality, have been therapeutically approved for mCRPC with HRD alterations. Mutations are detected in metastatic tissue, while a liquid biopsy is utilized during follow-up, recognizing acquired resistance mechanisms. The mismatch repair (MMR) pathway is another DNA repair mechanism implicated in carcinogenesis, although only 5% of metastatic PCa is affected. It is associated with aggressive disease. PD-1 inhibitors have been used in MMR-deficient tumors; thus, the MMR status should be tested in all metastatic PCa cases. A surrogate marker of defective DNA repair mechanisms is the tumor mutational burden. PDL-1 expression and intratumoral lymphocytes have ambivalent predictive value. Few experimental molecules have been so far proposed as potential biomarkers. Future research may further elucidate the role of DNA damage pathways in PCa, revealing new therapeutic targets and predictive biomarkers.
Collapse
Affiliation(s)
- Ioanna-Maria Grypari
- Cytology Department, Aretaieion University Hospital, National Kapodistrian University of Athens, 11528 Athens, Greece
| | - Vasiliki Tzelepi
- Department of Pathology, School of Medicine, University of Patras, 26504 Patras, Greece
| | - Kostis Gyftopoulos
- Department of Anatomy, School of Medicine, University of Patras, 26504 Patras, Greece
| |
Collapse
|
15
|
Sanjaya P, Maljanen K, Katainen R, Waszak SM, Aaltonen LA, Stegle O, Korbel JO, Pitkänen E. Mutation-Attention (MuAt): deep representation learning of somatic mutations for tumour typing and subtyping. Genome Med 2023; 15:47. [PMID: 37420249 PMCID: PMC10326961 DOI: 10.1186/s13073-023-01204-4] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2022] [Accepted: 06/21/2023] [Indexed: 07/09/2023] Open
Abstract
BACKGROUND Cancer genome sequencing enables accurate classification of tumours and tumour subtypes. However, prediction performance is still limited using exome-only sequencing and for tumour types with low somatic mutation burden such as many paediatric tumours. Moreover, the ability to leverage deep representation learning in discovery of tumour entities remains unknown. METHODS We introduce here Mutation-Attention (MuAt), a deep neural network to learn representations of simple and complex somatic alterations for prediction of tumour types and subtypes. In contrast to many previous methods, MuAt utilizes the attention mechanism on individual mutations instead of aggregated mutation counts. RESULTS We trained MuAt models on 2587 whole cancer genomes (24 tumour types) from the Pan-Cancer Analysis of Whole Genomes (PCAWG) and 7352 cancer exomes (20 types) from the Cancer Genome Atlas (TCGA). MuAt achieved prediction accuracy of 89% for whole genomes and 64% for whole exomes, and a top-5 accuracy of 97% and 90%, respectively. MuAt models were found to be well-calibrated and perform well in three independent whole cancer genome cohorts with 10,361 tumours in total. We show MuAt to be able to learn clinically and biologically relevant tumour entities including acral melanoma, SHH-activated medulloblastoma, SPOP-associated prostate cancer, microsatellite instability, POLE proofreading deficiency, and MUTYH-associated pancreatic endocrine tumours without these tumour subtypes and subgroups being provided as training labels. Finally, scrunity of MuAt attention matrices revealed both ubiquitous and tumour-type specific patterns of simple and complex somatic mutations. CONCLUSIONS Integrated representations of somatic alterations learnt by MuAt were able to accurately identify histological tumour types and identify tumour entities, with potential to impact precision cancer medicine.
Collapse
Affiliation(s)
- Prima Sanjaya
- Institute for Molecular Medicine Finland (FIMM), HiLIFE, University of Helsinki, Helsinki, Finland
- Applied Tumor Genomics Research Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland
- iCAN Digital Precision Cancer Medicine Flagship, Helsinki, Finland
| | - Katri Maljanen
- Institute for Molecular Medicine Finland (FIMM), HiLIFE, University of Helsinki, Helsinki, Finland
- Applied Tumor Genomics Research Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland
- iCAN Digital Precision Cancer Medicine Flagship, Helsinki, Finland
| | - Riku Katainen
- Institute for Molecular Medicine Finland (FIMM), HiLIFE, University of Helsinki, Helsinki, Finland
- Applied Tumor Genomics Research Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland
- iCAN Digital Precision Cancer Medicine Flagship, Helsinki, Finland
- Department of Medical and Clinical Genetics, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Sebastian M Waszak
- Centre for Molecular Medicine Norway (NCMM), Nordic EMBL Partnership, University of Oslo and Oslo University Hospital, Oslo, Norway
- Swiss Institute for Experimental Cancer Research School of Life Sciences, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
- Department of Neurology, University of California, San Francisco (UCSF), San Francisco, CA, USA
| | - Lauri A Aaltonen
- Applied Tumor Genomics Research Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland
- Department of Medical and Clinical Genetics, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Oliver Stegle
- Division of Computational Genomics and Systems Genetics, German Cancer Research Center (DKFZ), Heidelberg, Germany
- Genome Biology Unit, European Molecular Biology Laboratory, Heidelberg, Germany
| | - Jan O Korbel
- Division of Computational Genomics and Systems Genetics, German Cancer Research Center (DKFZ), Heidelberg, Germany
- Genome Biology Unit, European Molecular Biology Laboratory, Heidelberg, Germany
- European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Genome Campus, Hinxton, Cambridge, UK
| | - Esa Pitkänen
- Institute for Molecular Medicine Finland (FIMM), HiLIFE, University of Helsinki, Helsinki, Finland.
- Applied Tumor Genomics Research Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland.
- iCAN Digital Precision Cancer Medicine Flagship, Helsinki, Finland.
- Genome Biology Unit, European Molecular Biology Laboratory, Heidelberg, Germany.
| |
Collapse
|
16
|
Ong JY, Torres JZ. Cul3 substrate adaptor SPOP targets Nup153 for degradation. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.05.13.540659. [PMID: 37293018 PMCID: PMC10245568 DOI: 10.1101/2023.05.13.540659] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
SPOP is a Cul3 substrate adaptor responsible for degradation of many proteins related to cell growth and proliferation. Because mutation or misregulation of SPOP drives cancer progression, understanding the suite of SPOP substrates is important to understanding regulation of cell proliferation. Here, we identify Nup153, a component of the nuclear basket of the nuclear pore complex, as a novel substrate of SPOP. SPOP and Nup153 bind to each other and colocalize at the nuclear envelope and some nuclear foci in cells. The binding interaction between SPOP and Nup153 is complex and multivalent. Nup153 is ubiquitylated and degraded upon expression of SPOPWT but not its substrate binding-deficient mutant SPOPF102C. Depletion of SPOP via RNAi leads to Nup153 stabilization. Upon loss of SPOP, the nuclear envelope localization of spindle assembly checkpoint protein Mad1, which is tethered to the nuclear envelope by Nup153, is stronger. Altogether, our results demonstrate SPOP regulates Nup153 levels and expands our understanding of the role of SPOP in protein and cellular homeostasis.
Collapse
Affiliation(s)
- Joseph Y Ong
- Department of Chemistry and Biochemistry, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Jorge Z Torres
- Department of Chemistry and Biochemistry, University of California, Los Angeles, Los Angeles, CA 90095, USA
- Molecular Biology Institute, University of California, Los Angeles, Los Angeles, CA 90095, USA
- Jonsson Comprehensive Cancer Center, University of California, Los Angeles, Los Angeles, CA 90095, USA
| |
Collapse
|
17
|
Stangl A, Wilner C, Li P, Maahs L, Hwang C, Pilling A. Molecular features and race-associated outcomes of SPOP-mutant metastatic castration-resistant prostate cancer. Prostate 2023; 83:524-533. [PMID: 36604824 DOI: 10.1002/pros.24481] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Revised: 11/28/2022] [Accepted: 12/13/2022] [Indexed: 01/07/2023]
Abstract
BACKGROUND Inactivating alterations in SPOP frequently occur in prostate cancer and promote increased dependency on androgen receptor (AR)-mediated oncogenic signaling. The presence of SPOP mutation (SPOP-mutant [SPOP-mut]) may therefore impact therapeutic outcomes with AR-directed therapies and docetaxel in metastatic castration-resistant (mCRPC). METHODS This was a retrospective study of mCRPC patients treated at an urban academic hospital (n = 103). Patients underwent tumor DNA sequencing to determine SPOP mutational status (SPOP-mut). Outcomes measured were overall survival (OS) from diagnosis and treatment with second-generation AR signaling inhibitor (ARSI) or docetaxel and time to PSA progression (prostate-specific antigen-progression-free survival [PSA-PFS]) compared by SPOP status using Kaplan-Meier curves and log-rank test. The univariable and multivariable Cox proportional hazard model evaluated the association of SPOP mutation and outcomes adjusted for clinicopathologic features. RESULTS SPOP-mut was associated with longer PSA-PFS in mCRPC (median 1.79 vs. 0.84 years; p = 0.06) and multivariate analysis (hazard ratio [HR] = 0.37; 95% confidence interval [CI]: 0.17-0.84; p = 0.02). SPOP-mut demonstrated a higher median PSA decline compared to SPOP wild-type (median decline 100% vs. 92%, p = 0.02). SPOP-mut was not associated with OS from the start of ARSI or docetaxel (median OS not reached vs. 2.0 years) or PSA-PFS on docetaxel (median PSA-PFS 0.4 vs. 0.5 years) in mCRPC. The majority of SPOP mutations were identified in African American (AA) patients (69.2%) compared to Caucasian patients (30.8%). Race-associated multivariate analysis revealed no significant differences in OS from the start of ARSI or the start of docetaxel and no differences in ARSI or docetaxel PSA-PFS between AA and Caucasian patients. Molecular profiling demonstrated that AA patients had a higher frequency of SPOP mutations and greater heterogeneity of SPOP variants within the coding sequence. Analysis of concurrent genomic alterations revealed that SPOP mutations co-occur with APC mutations (p = 0.001) and alterations in the Wnt pathway (p = 0.017). CONCLUSIONS Inactivating mutations in SPOP are associated with better response to ARSI treatment in mCRPC overall. Additional analysis with a larger cohort is needed to evaluate the association of SPOP status and outcomes with docetaxel. Race-associated clinical outcomes and molecular features were observed, suggesting the benefit of biomarker-directed therapy selection for individualized patient subsets in guiding treatment decisions for mCRPC patients.
Collapse
Affiliation(s)
- Andrew Stangl
- Wayne State University School of Medicine, Detroit, Michigan, USA
| | - Christopher Wilner
- Department of Internal Medicine, Henry Ford Health System, Henry Ford Cancer Institute, Detroit, Michigan, USA
| | - Pin Li
- Depatment of Public Health Sciences, Henry Ford Health System, Henry Ford Cancer Institute, Detroit, Michigan, USA
| | - Lucas Maahs
- Department of Internal Medicine, Henry Ford Health System, Henry Ford Cancer Institute, Detroit, Michigan, USA
| | - Clara Hwang
- Department of Internal Medicine, Henry Ford Health System, Henry Ford Cancer Institute, Detroit, Michigan, USA
| | - Amanda Pilling
- Department of Internal Medicine, Henry Ford Health System, Henry Ford Cancer Institute, Detroit, Michigan, USA
| |
Collapse
|
18
|
Mukherjee AG, Gopalakrishnan AV. Unlocking the mystery associated with infertility and prostate cancer: an update. Med Oncol 2023; 40:160. [PMID: 37099242 DOI: 10.1007/s12032-023-02028-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Accepted: 04/08/2023] [Indexed: 04/27/2023]
Abstract
Male-specific reproductive disorders and cancers have increased intensely in recent years, making them a significant public health problem. Prostate cancer (PC) is the most often diagnosed cancer in men and is one of the leading causes of cancer-related mortality. Both genetic and epigenetic modifications contribute to the development and progression of PC, even though the exact underlying processes causing this disease have yet to be identified. Male infertility is also a complex and poorly understood phenomenon believed to afflict a significant portion of the male population. Chromosomal abnormalities, compromised DNA repair systems, and Y chromosome alterations are just a few of the proposed explanations. It is becoming widely accepted that infertility shares a link with PC. Much of the link between infertility and PC is probably attributable to common genetic defects. This article provides an overview of PC and spermatogenic abnormalities. This study also investigates the link between male infertility and PC and uncovers the underlying reasons, risk factors, and biological mechanisms contributing to this association.
Collapse
Affiliation(s)
- Anirban Goutam Mukherjee
- Department of Biomedical Sciences, School of Bio-Sciences and Technology, Vellore Institute of Technology (VIT), Vellore, Tamil Nadu, 632014, India
| | - Abilash Valsala Gopalakrishnan
- Department of Biomedical Sciences, School of Bio-Sciences and Technology, Vellore Institute of Technology (VIT), Vellore, Tamil Nadu, 632014, India.
| |
Collapse
|
19
|
Zhu Y, Duong L, Lu X, Lu X. Cancer-cell-intrinsic mechanisms shaping the immunosuppressive landscape of prostate cancer. Asian J Androl 2023; 25:171-178. [PMID: 36367020 PMCID: PMC10069702 DOI: 10.4103/aja202283] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Accepted: 09/26/2022] [Indexed: 11/09/2022] Open
Abstract
Although immunotherapy has revolutionized cancer treatment and achieved remarkable success across many different cancer types, only a subset of patients shows meaningful clinical responses. In particular, advanced prostate cancer exhibits overwhelming de novo resistance to immune checkpoint blockade therapy. This is primarily due to the immunosuppressive tumor microenvironment of prostate cancer. Therefore, it is paramount to understand how prostate cancer cell-intrinsic mechanisms promote immune evasion and foster an immunosuppressive microenvironment. Here, we review recent findings that reveal the roles of the genetic alterations, androgen receptor signaling, cancer cell plasticity, and oncogenic pathways in shaping the immunosuppressive microenvironment and thereby driving immunotherapy resistance. Based on preclinical and clinical observations, a variety of therapeutic strategies are being developed that may illuminate new paths to enhance immunotherapy efficacy in prostate cancer.
Collapse
Affiliation(s)
- Yini Zhu
- Department of Biological Sciences, Boler-Parseghian Center for Rare and Neglected Diseases, Harper Cancer Research Institute, University of Notre Dame, Notre Dame, IN 46556, USA
- Integrated Biomedical Sciences Graduate Program, University of Notre Dame, Notre Dame, IN 46556, USA
| | - Loan Duong
- Department of Biological Sciences, Boler-Parseghian Center for Rare and Neglected Diseases, Harper Cancer Research Institute, University of Notre Dame, Notre Dame, IN 46556, USA
- Integrated Biomedical Sciences Graduate Program, University of Notre Dame, Notre Dame, IN 46556, USA
| | - Xuemin Lu
- Department of Biological Sciences, Boler-Parseghian Center for Rare and Neglected Diseases, Harper Cancer Research Institute, University of Notre Dame, Notre Dame, IN 46556, USA
| | - Xin Lu
- Department of Biological Sciences, Boler-Parseghian Center for Rare and Neglected Diseases, Harper Cancer Research Institute, University of Notre Dame, Notre Dame, IN 46556, USA
- Integrated Biomedical Sciences Graduate Program, University of Notre Dame, Notre Dame, IN 46556, USA
- Tumor Microenvironment and Metastasis Program, Indiana University Melvin and Bren Simon Comprehensive Cancer Center, Indianapolis, IN 46202, USA
| |
Collapse
|
20
|
Montero-Ovalle W, Sanabria-Salas MC, Mesa-López de Mesa J, Varela-Ramírez R, Segura-Moreno YY, Sánchez-Villalobos SA, Nuñez-Lemus M, Serrano ML. Determination of TMPRSS2-ERG, SPOP, FOXA1, and IDH1 prostate cancer molecular subtypes in Colombian patients and their possible implications for prognosis. Cell Biol Int 2023; 47:1017-1030. [PMID: 36740223 DOI: 10.1002/cbin.12000] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Revised: 11/30/2022] [Accepted: 01/21/2023] [Indexed: 02/07/2023]
Abstract
Prostate cancer (PCa) is one of cancer with of the highest incidence and mortality worldwide. Current disease prognostic markers do not differentiate aggressive from indolent PCa with sufficient certainty, and characterization by molecular subtypes has been sought to allow a better classification. TMPRSS2-ERG, SPOP, FOXA1, and IDH1 molecular subtypes have been described, but the association of these subtypes with prognosis in PCa is unclear; their frequency in Colombian patients is also unknown. Formalin-fixed and paraffin-embedded samples of radical prostatectomy from 112 patients with PCa were used. The TMPRSS2-ERG subtype was assessed with fluorescent in situ hybridization. The mutations in SPOP, FOXA1, and IDH1 in hot-spot regions were evaluated using Sanger sequencing. Fusion was detected in 71 patients (63.4%). No statistically significant differences were found between the state of fusion and the variables analyzed. In the 41 fusion-negative cases (36.6%), two patients (4.9%) had missense mutations in SPOP (p.F102C and p.F133L), representing a 1.8% of the overall cohort. The low frequency of this subtype in Colombians could be explained by the reported variability in the frequency of these mutations according to the population (5%-20%). No mutations were found in FOXA1 in the cases analyzed. The synonym SNP rs11554137 IDH1105GGT was found in tumor tissue but not in the normal tissue in one case. A larger cohort of Colombian PCa patients is needed for future studies to validate these findings and gain a better understanding of the molecular profile of this cancer in our population and if there are any differences by Colombian regions.
Collapse
Affiliation(s)
- Wendy Montero-Ovalle
- Cancer Biology Research Group, Instituto Nacional de Cancerología, Bogotá, Colombia.,Department of Chemistry, Faculty of Sciences, Universidad Nacional de Colombia, Bogotá, Colombia
| | | | | | - Rodolfo Varela-Ramírez
- Department of Oncological Urology, Instituto Nacional de Cancerología, Bogotá, Colombia.,Department of Surgery, Faculty of Medicine Universidad Nacional de Colombia, Bogotá, Colombia
| | | | | | - Marcela Nuñez-Lemus
- Research Support and Monitoring Group, Instituto Nacional de Cancerología, Bogotá, Colombia
| | - Martha L Serrano
- Cancer Biology Research Group, Instituto Nacional de Cancerología, Bogotá, Colombia.,Department of Chemistry, Faculty of Sciences, Universidad Nacional de Colombia, Bogotá, Colombia
| |
Collapse
|
21
|
Li H, Gigi L, Zhao D. CHD1, a multifaceted epigenetic remodeler in prostate cancer. Front Oncol 2023; 13:1123362. [PMID: 36776288 PMCID: PMC9909554 DOI: 10.3389/fonc.2023.1123362] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Accepted: 01/11/2023] [Indexed: 01/27/2023] Open
Abstract
Chromatin remodeling proteins contribute to DNA replication, transcription, repair, and recombination. The chromodomain helicase DNA-binding (CHD) family of remodelers plays crucial roles in embryonic development, hematopoiesis, and neurogenesis. As the founding member, CHD1 is capable of assembling nucleosomes, remodeling chromatin structure, and regulating gene transcription. Dysregulation of CHD1 at genetic, epigenetic, and post-translational levels is common in malignancies and other human diseases. Through interacting with different genetic alterations, CHD1 possesses the capabilities to exert oncogenic or tumor-suppressive functions in context-dependent manners. In this Review, we summarize the biochemical properties and dysregulation of CHD1 in cancer cells, and then discuss CHD1's roles in different contexts of prostate cancer, with an emphasis on its crosstalk with diverse signaling pathways. Furthermore, we highlight the potential therapeutic strategies for cancers with dysregulated CHD1. At last, we discuss current research gaps in understanding CHD1's biological functions and molecular basis during disease progression, as well as the modeling systems for biology study and therapeutic development.
Collapse
Affiliation(s)
- Haoyan Li
- Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Loraine Gigi
- Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
- Texas A&M School of Public Health, Texas A&M University, College Station, TX, United States
| | - Di Zhao
- Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| |
Collapse
|
22
|
Ren L, Yang X, Wang W, Lin H, Huang G, Liu Z, Pan J, Mao X. A cuproptosis-related LncRNA signature: Integrated analysis associated with biochemical recurrence and immune landscape in prostate cancer. Front Genet 2023; 14:1096783. [PMID: 36911392 PMCID: PMC9999016 DOI: 10.3389/fgene.2023.1096783] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2022] [Accepted: 02/10/2023] [Indexed: 03/14/2023] Open
Abstract
Background: As a new form of regulated cell death, cuproptosis differs profoundly from apoptosis, ferroptosis, pyroptosis, and necroptosis. The correlation between cuproptosis and long non-coding RNAs (lncRNAs) has been increasingly studied recently. In this study, a novel cuproptosis-related lncRNA prognostic signature was developed to investigate biochemical recurrence (BCR) and tumor immune landscape in prostate cancer (PCa). Methods and Materials: The transcriptome data and clinicopathologic information of PCa patients were downloaded from The Cancer Genome Atlas (TCGA). Pearson's correlation analysis was applied to identify lncRNAs associated with cuproptosis. Based on Cox regression analysis and the least absolute shrinkage and selection operator (LASSO) regression analysis, we developed a cuproptosis-related lncRNA prognostic model (risk score) to predict the BCR of PCa patients. Additionally, we also constructed a nomogram with the risk score and clinicopathologic features. The biological function, tumor mutation burden (TMB), immune cell infiltration, expression levels of immune checkpoint genes, and anti-cancer drug sensitivity were investigated. Results: We constructed and validated the cuproptosis-related lncRNA signature prognostic model (risk score) by six crlncRNAs. All patients were divided into the low- and high-risk groups based on the median risk score. The Kaplan-Meier (KM) survival analysis revealed that the high-risk group had shorter BCR-free survival (BCRFS). The risk score has been proven to be an independent prognostic factor of BCR in PCa patients. In addition, a nomogram of risk scores and clinicopathologic features was established and demonstrated an excellent predictive capability of BCR. The ROC curves further validated that this nomogram had higher accuracy of predicting the BCR compared to other clinicopathologic features. We also found that the high-risk group had higher TMB levels and more infiltrated immune cells. Furthermore, patients with high TMB in the high-risk group were inclined to have the shortest BCRFS. Finally, patients in the high-risk group were more susceptible to docetaxel, gefitinib, methotrexate, paclitaxel, and vinblastine. Conclusion: The novel crlncRNA signature prognostic model shows a greatly prognostic prediction value of BCR for PCa patients, extends our thought on the association of cuproptosis and PCa, and provides novel insights into individual-based treatment strategies for PCa.
Collapse
Affiliation(s)
- Lei Ren
- Department of Urology, The First Affiliated Hospital of Sun Yat-sen University, Sun Yat-sen University, Guangzhou, China
| | - Xu Yang
- Department of Urology, The First Affiliated Hospital of Sun Yat-sen University, Sun Yat-sen University, Guangzhou, China
| | - Weifeng Wang
- Department of Urology, The First Affiliated Hospital of Sun Yat-sen University, Sun Yat-sen University, Guangzhou, China
| | - Hansen Lin
- Department of Urology, The First Affiliated Hospital of Sun Yat-sen University, Sun Yat-sen University, Guangzhou, China
| | - Guankai Huang
- Department of Urology, The First Affiliated Hospital of Sun Yat-sen University, Sun Yat-sen University, Guangzhou, China
| | - Zixiong Liu
- Department of Urology, The Seventh Affiliated Hospital of Sun Yat-sen University, Sun Yat-sen University, Shenzhen, China
| | - Jincheng Pan
- Department of Urology, The First Affiliated Hospital of Sun Yat-sen University, Sun Yat-sen University, Guangzhou, China
| | - Xiaopeng Mao
- Department of Urology, The First Affiliated Hospital of Sun Yat-sen University, Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
23
|
Eickelschulte S, Riediger AL, Angeles AK, Janke F, Duensing S, Sültmann H, Görtz M. Biomarkers for the Detection and Risk Stratification of Aggressive Prostate Cancer. Cancers (Basel) 2022; 14:cancers14246094. [PMID: 36551580 PMCID: PMC9777028 DOI: 10.3390/cancers14246094] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Revised: 12/05/2022] [Accepted: 12/09/2022] [Indexed: 12/14/2022] Open
Abstract
Current strategies for the clinical management of prostate cancer are inadequate for a precise risk stratification between indolent and aggressive tumors. Recently developed tissue-based molecular biomarkers have refined the risk assessment of the disease. The characterization of tissue biopsy components and subsequent identification of relevant tissue-based molecular alterations have the potential to improve the clinical decision making and patient outcomes. However, tissue biopsies are invasive and spatially restricted due to tumor heterogeneity. Therefore, there is an urgent need for complementary diagnostic and prognostic options. Liquid biopsy approaches are minimally invasive with potential utility for the early detection, risk stratification, and monitoring of tumors. In this review, we focus on tissue and liquid biopsy biomarkers for early diagnosis and risk stratification of prostate cancer, including modifications on the genomic, epigenomic, transcriptomic, and proteomic levels. High-risk molecular alterations combined with orthogonal clinical parameters can improve the identification of aggressive tumors and increase patient survival.
Collapse
Affiliation(s)
- Samaneh Eickelschulte
- Junior Clinical Cooperation Unit, Multiparametric Methods for Early Detection of Prostate Cancer, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
- Department of Urology, University Hospital Heidelberg, 69120 Heidelberg, Germany
- Division of Cancer Genome Research, German Cancer Research Center (DKFZ), National Center for Tumor Diseases (NCT), 69120 Heidelberg, Germany
| | - Anja Lisa Riediger
- Junior Clinical Cooperation Unit, Multiparametric Methods for Early Detection of Prostate Cancer, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
- Department of Urology, University Hospital Heidelberg, 69120 Heidelberg, Germany
- Division of Cancer Genome Research, German Cancer Research Center (DKFZ), National Center for Tumor Diseases (NCT), 69120 Heidelberg, Germany
- Faculty of Biosciences, Heidelberg University, 69120 Heidelberg, Germany
| | - Arlou Kristina Angeles
- Division of Cancer Genome Research, German Cancer Research Center (DKFZ), National Center for Tumor Diseases (NCT), 69120 Heidelberg, Germany
| | - Florian Janke
- Division of Cancer Genome Research, German Cancer Research Center (DKFZ), National Center for Tumor Diseases (NCT), 69120 Heidelberg, Germany
| | - Stefan Duensing
- Molecular Urooncology, Department of Urology, University Hospital Heidelberg, 69120 Heidelberg, Germany
| | - Holger Sültmann
- Division of Cancer Genome Research, German Cancer Research Center (DKFZ), National Center for Tumor Diseases (NCT), 69120 Heidelberg, Germany
- German Cancer Consortium (DKTK), 69120 Heidelberg, Germany
| | - Magdalena Görtz
- Junior Clinical Cooperation Unit, Multiparametric Methods for Early Detection of Prostate Cancer, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
- Department of Urology, University Hospital Heidelberg, 69120 Heidelberg, Germany
- Correspondence: ; Tel.: +49-6221-42-2603
| |
Collapse
|
24
|
Wasim S, Lee SY, Kim J. Complexities of Prostate Cancer. Int J Mol Sci 2022; 23:14257. [PMID: 36430730 PMCID: PMC9696501 DOI: 10.3390/ijms232214257] [Citation(s) in RCA: 67] [Impact Index Per Article: 22.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Revised: 11/14/2022] [Accepted: 11/16/2022] [Indexed: 11/19/2022] Open
Abstract
Prostate cancer has a long disease history and a wide variety and uncertainty in individual patients' clinical progress. In recent years, we have seen a revolutionary advance in both prostate cancer patient care and in the research field. The power of deep sequencing has provided cistromic and transcriptomic knowledge of prostate cancer that has not discovered before. Our understanding of prostate cancer biology, from bedside and molecular imaging techniques, has also been greatly advanced. It is important that our current theragnostic schemes, including our diagnostic modalities, therapeutic responses, and the drugs available to target non-AR signaling should be improved. This review article discusses the current progress in the understanding of prostate cancer biology and the recent advances in diagnostic and therapeutic strategies.
Collapse
Affiliation(s)
- Sobia Wasim
- Department of Neuroscience, College of Medicine, Gachon University, Incheon 21936, Republic of Korea
| | - Sang-Yoon Lee
- Department of Neuroscience, College of Medicine, Gachon University, Incheon 21936, Republic of Korea
| | - Jaehong Kim
- Department of Biochemistry, College of Medicine, Gachon University, Incheon 21999, Republic of Korea
| |
Collapse
|
25
|
Yang X, Zhu Q. SPOP in Cancer: Phenomena, Mechanisms and Its Role in Therapeutic Implications. Genes (Basel) 2022; 13:2051. [PMID: 36360288 PMCID: PMC9690554 DOI: 10.3390/genes13112051] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2022] [Revised: 10/14/2022] [Accepted: 11/04/2022] [Indexed: 11/15/2023] Open
Abstract
Speckle-type POZ (pox virus and zinc finger protein) protein (SPOP) is a cullin 3-based E3 ubiquitin ligase adaptor protein that plays a crucial role in ubiquitin-mediated protein degradation. Recently, SPOP has attracted major research attention as it is frequently mutated in a range of cancers, highlighting pleiotropic tumorigenic effects and associations with treatment resistance. Structurally, SPOP contains a functionally critical N-terminal meprin and TRAF homology (MATH) domain for many SPOP substrates. SPOP has two other domains, including the internal Bric-a-brac-Tramtrack/Broad (BTB) domain, which is linked with SPOP dimerization and binding to cullin3, and a C-terminal nuclear localization sequence (NLS). The dysregulation of SPOP-mediated proteolysis is associated with the development and progression of different cancers since abnormalities in SPOP function dysregulate cellular signaling pathways by targeting oncoproteins or tumor suppressors in a tumor-specific manner. SPOP is also involved in genome stability through its role in the DNA damage response and DNA replication. More recently, studies have shown that the expression of SPOP can be modulated in various ways. In this review, we summarize the current understanding of SPOP's functions in cancer and discuss how to design a rational therapeutic target.
Collapse
Affiliation(s)
| | - Qing Zhu
- Department of Abdominal Oncology, West China Hospital of Sichuan University, Chengdu 610041, China
| |
Collapse
|
26
|
Belikov AV, Vyatkin AD, Leonov SV. Novel Driver Strength Index highlights important cancer genes in TCGA PanCanAtlas patients. PeerJ 2022; 10:e13860. [PMID: 35975235 PMCID: PMC9375969 DOI: 10.7717/peerj.13860] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Accepted: 07/18/2022] [Indexed: 01/18/2023] Open
Abstract
Background Cancer driver genes are usually ranked by mutation frequency, which does not necessarily reflect their driver strength. We hypothesize that driver strength is higher for genes preferentially mutated in patients with few driver mutations overall, because these few mutations should be strong enough to initiate cancer. Methods We propose formulas for the Driver Strength Index (DSI) and the Normalized Driver Strength Index (NDSI), the latter independent of gene mutation frequency. We validate them using TCGA PanCanAtlas datasets, established driver prediction algorithms and custom computational pipelines integrating SNA, CNA and aneuploidy driver contributions at the patient-level resolution. Results DSI and especially NDSI provide substantially different gene rankings compared to the frequency approach. E.g., NDSI prioritized members of specific protein families, including G proteins GNAQ, GNA11 and GNAS, isocitrate dehydrogenases IDH1 and IDH2, and fibroblast growth factor receptors FGFR2 and FGFR3. KEGG analysis shows that top NDSI-ranked genes comprise EGFR/FGFR2/GNAQ/GNA11-NRAS/HRAS/KRAS-BRAF pathway, AKT1-MTOR pathway, and TCEB1-VHL-HIF1A pathway. Conclusion Our indices are able to select for driver gene attributes not selected by frequency sorting, potentially for driver strength. Genes and pathways prioritized are likely the strongest contributors to cancer initiation and progression and should become future therapeutic targets.
Collapse
|
27
|
Arenas-Gallo C, Owiredu J, Weinstein I, Lewicki P, Basourakos SP, Vince R, Al Hussein Al Awamlh B, Schumacher FR, Spratt DE, Barbieri CE, Shoag JE. Race and prostate cancer: genomic landscape. Nat Rev Urol 2022; 19:547-561. [PMID: 35945369 DOI: 10.1038/s41585-022-00622-0] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/23/2022] [Indexed: 11/09/2022]
Abstract
In the past 20 years, new insights into the genomic pathogenesis of prostate cancer have been provided. Large-scale integrative genomics approaches enabled researchers to characterize the genetic and epigenetic landscape of prostate cancer and to define different molecular subclasses based on the combination of genetic alterations, gene expression patterns and methylation profiles. Several molecular drivers of prostate cancer have been identified, some of which are different in men of different races. However, the extent to which genomics can explain racial disparities in prostate cancer outcomes is unclear. Future collaborative genomic studies overcoming the underrepresentation of non-white patients and other minority populations are essential.
Collapse
Affiliation(s)
- Camilo Arenas-Gallo
- Department of Urology, University Hospitals Cleveland Medical Center, Case Western Reserve University School of Medicine, Cleveland, OH, USA
| | - Jude Owiredu
- Department of Urology, NewYork-Presbyterian Hospital, Weill Cornell Medicine, New York, NY, USA
| | - Ilon Weinstein
- Department of Urology, University Hospitals Cleveland Medical Center, Case Western Reserve University School of Medicine, Cleveland, OH, USA
| | - Patrick Lewicki
- Department of Urology, NewYork-Presbyterian Hospital, Weill Cornell Medicine, New York, NY, USA
| | - Spyridon P Basourakos
- Department of Urology, NewYork-Presbyterian Hospital, Weill Cornell Medicine, New York, NY, USA
| | - Randy Vince
- Department of Urology, University of Michigan, Ann Arbor, MI, USA
| | - Bashir Al Hussein Al Awamlh
- Department of Urology, NewYork-Presbyterian Hospital, Weill Cornell Medicine, New York, NY, USA.,Department of Urology, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Fredrick R Schumacher
- Department of Population and Quantitative Health Sciences, Case Western Reserve University School of Medicine, Cleveland, OH, USA.,Case Comprehensive Cancer Center, Case Western Reserve University, Cleveland, OH, USA
| | - Daniel E Spratt
- Department of Radiation Oncology, University Hospitals Seidman Cancer Center, Case Western Reserve University School of Medicine, Cleveland, OH, USA
| | - Christopher E Barbieri
- Department of Urology, NewYork-Presbyterian Hospital, Weill Cornell Medicine, New York, NY, USA
| | - Jonathan E Shoag
- Department of Urology, University Hospitals Cleveland Medical Center, Case Western Reserve University School of Medicine, Cleveland, OH, USA. .,Department of Urology, NewYork-Presbyterian Hospital, Weill Cornell Medicine, New York, NY, USA. .,Case Comprehensive Cancer Center, Case Western Reserve University, Cleveland, OH, USA.
| |
Collapse
|
28
|
Mourkioti I, Angelopoulou A, Belogiannis K, Lagopati N, Potamianos S, Kyrodimos E, Gorgoulis V, Papaspyropoulos A. Interplay of Developmental Hippo-Notch Signaling Pathways with the DNA Damage Response in Prostate Cancer. Cells 2022; 11:cells11152449. [PMID: 35954292 PMCID: PMC9367915 DOI: 10.3390/cells11152449] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Revised: 08/01/2022] [Accepted: 08/05/2022] [Indexed: 11/16/2022] Open
Abstract
Prostate cancer belongs in the class of hormone-dependent cancers, representing a major cause of cancer incidence in men worldwide. Since upon disease onset almost all prostate cancers are androgen-dependent and require active androgen receptor (AR) signaling for their survival, the primary treatment approach has for decades relied on inhibition of the AR pathway via androgen deprivation therapy (ADT). However, following this line of treatment, cancer cell pools often become resistant to therapy, contributing to disease progression towards the significantly more aggressive castration-resistant prostate cancer (CRPC) form, characterized by poor prognosis. It is, therefore, of critical importance to elucidate the molecular mechanisms and signaling pathways underlying the progression of early-stage prostate cancer towards CRPC. In this review, we aim to shed light on the role of major signaling pathways including the DNA damage response (DDR) and the developmental Hippo and Notch pathways in prostate tumorigenesis. We recapitulate key evidence demonstrating the crosstalk of those pathways as well as with pivotal prostate cancer-related 'hubs' such as AR signaling, and evaluate the clinical impact of those interactions. Moreover, we attempt to identify molecules of the complex DDR-Hippo-Notch interplay comprising potentially novel therapeutic targets in the battle against prostate tumorigenesis.
Collapse
Affiliation(s)
- Ioanna Mourkioti
- Molecular Carcinogenesis Group, Department of Histology and Embryology, Medical School, National Kapodistrian University of Athens (NKUA), 11527 Athens, Greece
| | - Andriani Angelopoulou
- Molecular Carcinogenesis Group, Department of Histology and Embryology, Medical School, National Kapodistrian University of Athens (NKUA), 11527 Athens, Greece
| | - Konstantinos Belogiannis
- Molecular Carcinogenesis Group, Department of Histology and Embryology, Medical School, National Kapodistrian University of Athens (NKUA), 11527 Athens, Greece
| | - Nefeli Lagopati
- Molecular Carcinogenesis Group, Department of Histology and Embryology, Medical School, National Kapodistrian University of Athens (NKUA), 11527 Athens, Greece
- Biomedical Research Foundation, Academy of Athens, 11527 Athens, Greece
| | - Spyridon Potamianos
- First ENT Department, Hippocration Hospital, University of Athens, 11527 Athens, Greece
| | - Efthymios Kyrodimos
- First ENT Department, Hippocration Hospital, University of Athens, 11527 Athens, Greece
| | - Vassilis Gorgoulis
- Molecular Carcinogenesis Group, Department of Histology and Embryology, Medical School, National Kapodistrian University of Athens (NKUA), 11527 Athens, Greece
- Biomedical Research Foundation, Academy of Athens, 11527 Athens, Greece
- Clinical Molecular Pathology, Medical School, University of Dundee, Dundee DD1 9SY, UK
- Molecular and Clinical Cancer Sciences, Manchester Cancer Research Centre, Manchester Academic Health Sciences Centre, University of Manchester, Manchester M20 4GJ, UK
- Center for New Biotechnologies and Precision Medicine, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece
- Faculty of Health and Medical Sciences, University of Surrey, Surrey GU2 7YH, UK
- Correspondence: (V.G.); (A.P.); Tel.: +30-210-7462352 (V.G.); +30-210-7462174 (A.P.)
| | - Angelos Papaspyropoulos
- Molecular Carcinogenesis Group, Department of Histology and Embryology, Medical School, National Kapodistrian University of Athens (NKUA), 11527 Athens, Greece
- Biomedical Research Foundation, Academy of Athens, 11527 Athens, Greece
- Correspondence: (V.G.); (A.P.); Tel.: +30-210-7462352 (V.G.); +30-210-7462174 (A.P.)
| |
Collapse
|
29
|
Developing New Treatment Options for Castration-Resistant Prostate Cancer and Recurrent Disease. Biomedicines 2022; 10:biomedicines10081872. [PMID: 36009418 PMCID: PMC9405166 DOI: 10.3390/biomedicines10081872] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Revised: 07/20/2022] [Accepted: 07/29/2022] [Indexed: 11/16/2022] Open
Abstract
Prostate cancer (PCa) is a major diagnosed cancer among men globally, and about 20% of patients develop metastatic prostate cancer (mPCa) in the initial diagnosis. PCa is a typical androgen-dependent disease; thus, hormonal therapy is commonly used as a standard care for mPCa by inhibiting androgen receptor (AR) activities, or androgen metabolism. Inevitably, almost all PCa will acquire resistance and become castration-resistant PCa (CRPC) that is associated with AR gene mutations or amplification, the presence of AR variants, loss of AR expression toward neuroendocrine phenotype, or other hormonal receptors. Treating CRPC poses a great challenge to clinicians. Research efforts in the last decade have come up with several new anti-androgen agents to prolong overall survival of CRPC patients. In addition, many potential targeting agents have been at the stage of being able to translate many preclinical discoveries into clinical practices. At this juncture, it is important to highlight the emerging strategies including small-molecule inhibitors to AR variants, DNA repair enzymes, cell survival pathway, neuroendocrine differentiation pathway, radiotherapy, CRPC-specific theranostics and immune therapy that are underway or have recently been completed.
Collapse
|
30
|
Cotter K, Rubin MA. The evolving landscape of prostate cancer somatic mutations. Prostate 2022; 82 Suppl 1:S13-S24. [PMID: 35657155 PMCID: PMC9328313 DOI: 10.1002/pros.24353] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Revised: 03/17/2022] [Accepted: 03/28/2022] [Indexed: 12/15/2022]
Abstract
BACKGROUND The landscape of somatic mutations in prostate cancer (PCa) has quickly evolved over the past years. RESULTS This evolution was in part due to the improved quality and lower cost of genomic sequencing platforms available to an ever-larger group of clinicians and researchers. The result of these efforts is a better understanding of early and late mutations that are enriched or nearly exclusive to treated PCa. There are, however, some important limitations to the current knowledge. The expanding variety of next-generation sequencing (NGS) assays either capture a wide spectrum of mutations but at low coverage or are focused panels that cover a select number of genes, most often cancer-related, at a deep coverage. Both of these approaches have their advantages, but ultimately miss low-frequency mutations or fail to cover the spectrum of potential mutations. Additionally, some alterations, such as the common ETS gene fusions, require a mixture of DNA and RNA analysis to capture the true frequency. Finally, almost all studies rely on bulk PCa tumor samples, which fail to consider tumor heterogeneity. Given all these caveats, the true picture of the somatic landscape of PCa continues to develop. SUMMARY In this review, the focus will be on how the landscape of mutations evolves during disease progression considering therapy. It will focus on a select group of early and late mutations and utilize SPOP mutations to illustrate recurrent alterations that may have clinical implications.
Collapse
Affiliation(s)
- Kellie Cotter
- Department for BioMedical ResearchUniversity of BernBernSwitzerland
| | - Mark A. Rubin
- Department for BioMedical ResearchUniversity of BernBernSwitzerland
- Bern Center for Precision MedicineUniversity of BernBernSwitzerland
| |
Collapse
|
31
|
Zhai F, Li J, Ye M, Jin X. The functions and effects of CUL3-E3 ligases mediated non-degradative ubiquitination. Gene X 2022; 832:146562. [PMID: 35580799 DOI: 10.1016/j.gene.2022.146562] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2022] [Revised: 03/30/2022] [Accepted: 05/06/2022] [Indexed: 02/09/2023] Open
Abstract
Ubiquitination of substrates usually have two fates: one is degraded by 26S proteasome, and the other is non-degradative ubiquitination modification which is associated with cell cycle regulation, chromosome inactivation, protein transportation, tumorigenesis, achondroplasia, and neurological diseases. Cullin3 (CUL3), a scaffold protein, binding with the Bric-a-Brac-Tramtrack-Broad-complex (BTB) domain of substrates recognition adaptor and RING-finger protein 1 (RBX1) form ubiquitin ligases (E3). Based on the current researches, this review has summarized the functions and effects of CUL3-E3 ligases mediated non-degradative ubiquitination.
Collapse
Affiliation(s)
- Fengguang Zhai
- The Affiliated Hospital of Medical School, Ningbo University, Ningbo 315020, China; Department of Biochemistry and Molecular Biology, Zhejiang Key Laboratory of Pathphysiology, Medical School of Ningbo University, Ningbo 315211, China
| | - Jingyun Li
- The Affiliated Hospital of Medical School, Ningbo University, Ningbo 315020, China; Department of Biochemistry and Molecular Biology, Zhejiang Key Laboratory of Pathphysiology, Medical School of Ningbo University, Ningbo 315211, China
| | - Meng Ye
- The Affiliated Hospital of Medical School, Ningbo University, Ningbo 315020, China; Department of Biochemistry and Molecular Biology, Zhejiang Key Laboratory of Pathphysiology, Medical School of Ningbo University, Ningbo 315211, China.
| | - Xiaofeng Jin
- The Affiliated Hospital of Medical School, Ningbo University, Ningbo 315020, China; Department of Biochemistry and Molecular Biology, Zhejiang Key Laboratory of Pathphysiology, Medical School of Ningbo University, Ningbo 315211, China.
| |
Collapse
|
32
|
Tang L, Li W, Xu H, Zheng X, Qiu S, He W, Wei Q, Ai J, Yang L, Liu J. Mutator-Derived lncRNA Landscape: A Novel Insight Into the Genomic Instability of Prostate Cancer. Front Oncol 2022; 12:876531. [PMID: 35860569 PMCID: PMC9291324 DOI: 10.3389/fonc.2022.876531] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Accepted: 05/23/2022] [Indexed: 11/17/2022] Open
Abstract
Background Increasing evidence has emerged to reveal the correlation between genomic instability and long non-coding RNAs (lncRNAs). The genomic instability-derived lncRNA landscape of prostate cancer (PCa) and its critical clinical implications remain to be understood. Methods Patients diagnosed with PCa were recruited from The Cancer Genome Atlas (TCGA) program. Genomic instability-associated lncRNAs were identified by a mutator hypothesis-originated calculative approach. A signature (GILncSig) was derived from genomic instability-associated lncRNAs to classify PCa patients into high-risk and low-risk groups. The biochemical recurrence (BCR) model of a genomic instability-derived lncRNA signature (GILncSig) was established by Cox regression and stratified analysis in the train set. Then its prognostic value and association with clinical features were verified by Kaplan–Meier (K-M) analysis and receiver operating characteristic (ROC) curve in the test set and the total patient set. The regulatory network of transcription factors (TFs) and lncRNAs was established to evaluate TF–lncRNA interactions. Results A total of 95 genomic instability-associated lncRNAs of PCa were identified. We constructed the GILncSig based on 10 lncRNAs with independent prognostic value. GILncSig separated patients into the high-risk (n = 121) group and the low-risk (n = 121) group in the train set. Patients with high GILncSig score suffered from more frequent BCR than those with low GILncSig score. The results were further validated in the test set, the whole TCGA cohort, and different subgroups stratified by age and Gleason score (GS). A high GILncSig risk score was significantly associated with a high mutation burden and a low critical gene expression (PTEN and CDK12) in PCa. The predictive performance of our BCR model based on GILncSig outperformed other existing BCR models of PCa based on lncRNAs. The GILncSig also showed a remarkable ability to predict BCR in the subgroup of patients with TP53 mutation or wild type. Transcription factors, such as FOXA1, JUND, and SRF, were found to participate in the regulation of lncRNAs with prognostic value. Conclusion In summary, we developed a prognostic signature of BCR based on genomic instability-associated lncRNAs for PCa, which may provide new insights into the epigenetic mechanism of BCR.
Collapse
Affiliation(s)
- Liansha Tang
- Department of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
- West China Medical School of Sichuan University, Chengdu, China
| | - Wanjiang Li
- Department of Radiology, West China Hospital of Sichuan University, Chengdu, China
| | - Hang Xu
- Department of Urology, Institute of Urology, West China Hospital of Sichuan University, Chengdu, China
- Institute of System Genetics, West China Hospital of Sichuan University, Chengdu, China
| | - Xiaonan Zheng
- Department of Urology, Institute of Urology, West China Hospital of Sichuan University, Chengdu, China
- Institute of System Genetics, West China Hospital of Sichuan University, Chengdu, China
| | - Shi Qiu
- Department of Urology, Institute of Urology, West China Hospital of Sichuan University, Chengdu, China
| | - Wenbo He
- West China Medical School of Sichuan University, Chengdu, China
| | - Qiang Wei
- Department of Urology, Institute of Urology, West China Hospital of Sichuan University, Chengdu, China
| | - Jianzhong Ai
- Department of Urology, Institute of Urology, West China Hospital of Sichuan University, Chengdu, China
| | - Lu Yang
- Department of Urology, Institute of Urology, West China Hospital of Sichuan University, Chengdu, China
- *Correspondence: Lu Yang, ; Jiyan Liu,
| | - Jiyan Liu
- Department of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
- *Correspondence: Lu Yang, ; Jiyan Liu,
| |
Collapse
|
33
|
Kensler KH, Baichoo S, Pathania S, Rebbeck TR. The tumor mutational landscape of BRCA2-deficient primary and metastatic prostate cancer. NPJ Precis Oncol 2022; 6:39. [PMID: 35715489 PMCID: PMC9205939 DOI: 10.1038/s41698-022-00284-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Accepted: 05/17/2022] [Indexed: 02/08/2023] Open
Abstract
Carriers of germline BRCA2 pathogenic sequence variants have elevated aggressive prostate cancer risk and are candidates for precision oncology treatments. We examined whether BRCA2-deficient (BRCA2d) prostate tumors have distinct genomic alterations compared with BRCA2-intact (BRCA2i) tumors. Among 2536 primary and 899 metastatic prostate tumors from the ICGC, GENIE, and TCGA databases, we identified 138 primary and 85 metastatic BRCA2d tumors. Total tumor mutation burden (TMB) was higher among primary BRCA2d tumors, although pathogenic TMB did not differ by tumor BRCA2 status. Pathogenic and total single nucleotide variant (SNV) frequencies at KMT2D were higher in BRCA2d primary tumors, as was the total SNV frequency at KMT2D in BRCA2d metastatic tumors. Homozygous deletions at NEK3, RB1, and APC were enriched in BRCA2d primary tumors, and RB1 deletions in metastatic BRCA2d tumors as well. TMPRSS2-ETV1 fusions were more common in BRCA2d tumors. These results identify somatic alterations that hallmark etiological and prognostic differences between BRCA2d and BRCA2i prostate tumors.
Collapse
Affiliation(s)
- Kevin H Kensler
- Department of Population Health Sciences, Weill Cornell Medicine, New York, NY, USA
| | - Shakuntala Baichoo
- Department of Digital Technologies, FoICDT, University of Mauritius, Réduit, Mauritius
| | - Shailja Pathania
- Center for Personalized Cancer Therapy, University of Massachusetts, Boston, MA, USA
- Department of Biology, University of Massachusetts, Boston, MA, USA
| | - Timothy R Rebbeck
- Division of Population Sciences, Dana-Farber Cancer Institute, Boston, MA, USA.
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA, USA.
| |
Collapse
|
34
|
Novel insights into the SPOP E3 ubiquitin ligase: From the regulation of molecular mechanisms to tumorigenesis. Biomed Pharmacother 2022; 149:112882. [PMID: 35364375 DOI: 10.1016/j.biopha.2022.112882] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Revised: 03/13/2022] [Accepted: 03/23/2022] [Indexed: 11/20/2022] Open
Abstract
Ubiquitin-mediated protein degradation is the primary biological process by which protein abundance is regulated and protein homeostasis is maintained in eukaryotic cells. Speckle-type pox virus and zinc finger (POZ) protein (SPOP) is a typical substrate adaptor of the Cullin 3-RING ligase (CRL3) family; it serves as a bridge between the Cullin 3 (Cul3) scaffold protein and its substrates. In recent years, SPOP has received increasing attention because of its versatility in its regulatory pathways and the diversity of tumor types involved. Mechanistically, SPOP substrates are involved in a wide range of biological processes, and abnormalities in SPOP function perturb downstream biological processes and promote tumorigenesis. Additionally, liquid-liquid phase separation (LLPS), a potential mechanism of membraneless organelle formation, was recently found to mediate the self-triggered colocalization of substrates with higher-order oligomers of SPOP. Herein, we summarize the structure of SPOP and the specific mechanisms by which it mediates the efficient ubiquitination of substrates. Additionally, we review the biological functions of SPOP, the regulation of SPOP expression, the role of SPOP in tumorigenesis and its therapeutic value.
Collapse
|
35
|
Mangolini A, Rocca C, Bassi C, Ippolito C, Negrini M, Dell'Atti L, Lanza G, Gafà R, Bianchi N, Pinton P, Aguiari G. DETECTION OF DISEASE‐CAUSING MUTATIONS IN PROSTATE CANCER BY NGS SEQUENCING. Cell Biol Int 2022; 46:1047-1061. [PMID: 35347810 PMCID: PMC9320837 DOI: 10.1002/cbin.11803] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Accepted: 01/27/2022] [Indexed: 11/11/2022]
Abstract
Gene mutations may affect the fate of many tumors including prostate cancer (PCa); therefore, the research of specific mutations associated with tumor outcomes might help the urologist to identify the best therapy for PCa patients such as surgical resection, adjuvant therapy or active surveillance. Genomic DNA (gDNA) was extracted from 48 paraffin‐embedded PCa samples and normal paired tissues. Next, gDNA was amplified and analyzed by next‐generation sequencing (NGS) using a specific gene panel for PCa. Raw data were refined to exclude false‐positive mutations; thus, variants with coverage and frequency lower than 100× and 5%, respectively were removed. Mutation significance was processed by Genomic Evolutionary Rate Profiling, ClinVar, and Varsome tools. Most of 3000 mutations (80%) were single nucleotide variants and the remaining 20% indels. After raw data elaboration, 312 variants were selected. Most mutated genes were KMT2D (26.45%), FOXA1 (16.13%), ATM (15.81%), ZFHX3 (9.35%), TP53 (8.06%), and APC (5.48%). Hot spot mutations in FOXA1, ATM, ZFHX3, SPOP, and MED12 were also found. Truncating mutations of ATM, lesions lying in hot spot regions of SPOP and FOXA1 as well as mutations of TP53 correlated with poor prognosis. Importantly, we have also found some germline mutations associated with hereditary cancer‐predisposing syndrome. gDNA sequencing of 48 cancer tissues by NGS allowed to detect new tumor variants as well as confirmed lesions in genes linked to prostate cancer. Overall, somatic and germline mutations linked to good/poor prognosis could represent new prognostic tools to improve the management of PCa patients.
Collapse
Affiliation(s)
- Alessandra Mangolini
- Department of Neuroscience and RehabilitationUniversity of Ferraravia fossato di mortara, 7444121FerraraItaly
| | - Christian Rocca
- UO Urology, St Anna Hospital, via Aldo Moro 844124FerraraItaly
| | - Cristian Bassi
- Department of Translational MedicineUniversity of Ferraravia Luigi Borsari 4644121FerraraItaly
| | | | - Massimo Negrini
- Department of Translational MedicineUniversity of Ferraravia Luigi Borsari 4644121FerraraItaly
| | - Lucio Dell'Atti
- Division of Urology, Department of Clinical, Special and Dental Science, University Hospital "Ospedali Riuniti", Marche Polytechnic University, 71 Conca Street60126AnconaItaly
| | - Giovanni Lanza
- Department of Translational MedicineUniversity of Ferraravia Luigi Borsari 4644121FerraraItaly
| | - Roberta Gafà
- Department of Translational MedicineUniversity of Ferraravia Luigi Borsari 4644121FerraraItaly
| | - Nicoletta Bianchi
- Department of Translational MedicineUniversity of Ferraravia Luigi Borsari 4644121FerraraItaly
| | - Paolo Pinton
- Department of Medical SciencesUniversity of Ferraravia fossato di mortara, 64/B44121FerraraItaly
| | - Gianluca Aguiari
- Department of Neuroscience and RehabilitationUniversity of Ferraravia fossato di mortara, 7444121FerraraItaly
| |
Collapse
|
36
|
Christenson M, Song CS, Liu YG, Chatterjee B. Precision Targets for Intercepting the Lethal Progression of Prostate Cancer: Potential Avenues for Personalized Therapy. Cancers (Basel) 2022; 14:892. [PMID: 35205640 PMCID: PMC8870390 DOI: 10.3390/cancers14040892] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Revised: 02/02/2022] [Accepted: 02/08/2022] [Indexed: 02/04/2023] Open
Abstract
Organ-confined prostate cancer of low-grade histopathology is managed with radiation, surgery, active surveillance, or watchful waiting and exhibits a 5-year overall survival (OS) of 95%, while metastatic prostate cancer (PCa) is incurable, holding a 5-year OS of 30%. Treatment options for advanced PCa-metastatic and non-metastatic-include hormone therapy that inactivates androgen receptor (AR) signaling, chemotherapy and genome-targeted therapy entailing synthetic lethality of tumor cells exhibiting aberrant DNA damage response, and immune checkpoint inhibition (ICI), which suppresses tumors with genomic microsatellite instability and/or deficient mismatch repair. Cancer genome sequencing uncovered novel somatic and germline mutations, while mechanistic studies are revealing their pathological consequences. A microRNA has shown biomarker potential for stratifying patients who may benefit from angiogenesis inhibition prior to ICI. A 22-gene expression signature may select high-risk localized PCa, which would not additionally benefit from post-radiation hormone therapy. We present an up-to-date review of the molecular and therapeutic aspects of PCa, highlight genomic alterations leading to AR upregulation and discuss AR-degrading molecules as promising anti-AR therapeutics. New biomarkers and druggable targets are shaping innovative intervention strategies against high-risk localized and metastatic PCa, including AR-independent small cell-neuroendocrine carcinoma, while presenting individualized treatment opportunities through improved design and precision targeting.
Collapse
Affiliation(s)
| | | | | | - Bandana Chatterjee
- Department of Molecular Medicine, Long School of Medicine, University of Texas Health San Antonio, San Antonio, TX 78229, USA; (M.C.); (C.-S.S.); (Y.-G.L.)
| |
Collapse
|
37
|
Gu X, Zhuang A, Yu J, Chai P, Jia R, Ruan J. Phase separation drives tumor pathogenesis and evolution: all roads lead to Rome. Oncogene 2022; 41:1527-1535. [PMID: 35132182 DOI: 10.1038/s41388-022-02195-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2021] [Revised: 11/10/2021] [Accepted: 01/17/2022] [Indexed: 11/09/2022]
Abstract
Cells coordinate numerous biochemical reactions in space and time, depending on the subdivision of the intracellular space into functional compartments. Compelling evidence has demonstrated that phase separation induces the formation of membrane-less compartments to partition intracellular substances in a strictly regulated manner and participates in various biological processes. Based on the strong association of cancer with the dysregulation of intracellular physiological processes and the occurrence of phase separation in cancer-associated condensates, phase separation undoubtedly plays a significant role in tumorigenesis. In this review, we summarize the drivers and functions of phase separation, elaborate on the roles of phase separation in tumor pathogenesis and evolution, and propose substantial research and therapeutic prospects for phase separation in cancer.
Collapse
Affiliation(s)
- Xiang Gu
- Department of Ophthalmology, Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, 20025, PR China.,Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, 20025, PR China
| | - Ai Zhuang
- Department of Ophthalmology, Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, 20025, PR China.,Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, 20025, PR China
| | - Jie Yu
- Department of Ophthalmology, Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, 20025, PR China.,Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, 20025, PR China
| | - Peiwei Chai
- Department of Ophthalmology, Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, 20025, PR China. .,Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, 20025, PR China.
| | - Renbing Jia
- Department of Ophthalmology, Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, 20025, PR China. .,Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, 20025, PR China.
| | - Jing Ruan
- Department of Ophthalmology, Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, 20025, PR China. .,Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, 20025, PR China.
| |
Collapse
|
38
|
Burleson M, Deng JJ, Qin T, Duong TM, Yan Y, Gu X, Das D, Easley A, Liss MA, Yew PR, Bedolla R, Kumar AP, Huang THM, Zou Y, Chen Y, Chen CL, Huang H, Sun LZ, Boyer TG. GLI3 Is Stabilized by SPOP Mutations and Promotes Castration Resistance via Functional Cooperation with Androgen Receptor in Prostate Cancer. Mol Cancer Res 2022; 20:62-76. [PMID: 34610962 PMCID: PMC9258906 DOI: 10.1158/1541-7786.mcr-21-0108] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2021] [Revised: 08/24/2021] [Accepted: 09/28/2021] [Indexed: 11/16/2022]
Abstract
Although the Sonic hedgehog (SHH) signaling pathway has been implicated in promoting malignant phenotypes of prostate cancer, details on how it is activated and exerts its oncogenic role during prostate cancer development and progression is less clear. Here, we show that GLI3, a key SHH pathway effector, is transcriptionally upregulated during androgen deprivation and posttranslationally stabilized in prostate cancer cells by mutation of speckle-type POZ protein (SPOP). GLI3 is a substrate of SPOP-mediated proteasomal degradation in prostate cancer cells and prostate cancer driver mutations in SPOP abrogate GLI3 degradation. Functionally, GLI3 is necessary and sufficient for the growth and migration of androgen receptor (AR)-positive prostate cancer cells, particularly under androgen-depleted conditions. Importantly, we demonstrate that GLI3 physically interacts and functionally cooperates with AR to enrich an AR-dependent gene expression program leading to castration-resistant growth of xenografted prostate tumors. Finally, we identify an AR/GLI3 coregulated gene signature that is highly correlated with castration-resistant metastatic prostate cancer and predictive of disease recurrence. Together, these findings reveal that hyperactivated GLI3 promotes castration-resistant growth of prostate cancer and provide a rationale for therapeutic targeting of GLI3 in patients with castration-resistant prostate cancer (CRPC). IMPLICATIONS: We describe two clinically relevant mechanisms leading to hyperactivated GLI3 signaling and enhanced AR/GLI3 cross-talk, suggesting that GLI3-specific inhibitors might prove effective to block prostate cancer development or delay CRPC.
Collapse
Affiliation(s)
- Marieke Burleson
- Department of Molecular Medicine, UT Health San Antonio, San Antonio, Texas
| | - Janice J Deng
- Department of Cell Systems & Anatomy, UT Health San Antonio, San Antonio, Texas
| | - Tai Qin
- Department of Cell Systems & Anatomy, UT Health San Antonio, San Antonio, Texas
| | - Thu Minh Duong
- Department of Molecular Medicine, UT Health San Antonio, San Antonio, Texas
| | - Yuqian Yan
- Department of Biochemistry and Molecular Biology, Mayo Clinic College of Medicine, Rochester, Minnesota
| | - Xiang Gu
- Department of Cell Systems & Anatomy, UT Health San Antonio, San Antonio, Texas
| | - Debodipta Das
- Department of Cell Systems & Anatomy, UT Health San Antonio, San Antonio, Texas
| | - Acarizia Easley
- Department of Cell Systems & Anatomy, UT Health San Antonio, San Antonio, Texas
| | - Michael A Liss
- Department of Urology, UT Health San Antonio, San Antonio, Texas
| | - P Renee Yew
- Department of Molecular Medicine, UT Health San Antonio, San Antonio, Texas
| | - Roble Bedolla
- Department of Urology, UT Health San Antonio, San Antonio, Texas
| | | | - Tim Hui-Ming Huang
- Department of Molecular Medicine, UT Health San Antonio, San Antonio, Texas
| | - Yi Zou
- Greehey Children's Cancer Research Institute, UT Health San Antonio, San Antonio, Texas
| | - Yidong Chen
- Greehey Children's Cancer Research Institute, UT Health San Antonio, San Antonio, Texas
| | - Chun-Liang Chen
- Department of Molecular Medicine, UT Health San Antonio, San Antonio, Texas
| | - Haojie Huang
- Department of Biochemistry and Molecular Biology, Mayo Clinic College of Medicine, Rochester, Minnesota
| | - Lu-Zhe Sun
- Department of Cell Systems & Anatomy, UT Health San Antonio, San Antonio, Texas.
| | - Thomas G Boyer
- Department of Molecular Medicine, UT Health San Antonio, San Antonio, Texas.
| |
Collapse
|
39
|
Bernasocchi T, Theurillat JPP. SPOP-mutant prostate cancer: Translating fundamental biology into patient care. Cancer Lett 2021; 529:11-18. [PMID: 34974131 DOI: 10.1016/j.canlet.2021.12.024] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Revised: 11/30/2021] [Accepted: 12/21/2021] [Indexed: 02/06/2023]
Abstract
Comprehensive cancer genome studies have revealed genetically-defined subtypes of prostate cancer with distinct truncal driver mutations. Because prostate cancer has been largely seen as a rather uniform disease, the clinical significance of this discovery remained largely obscure. However, recent findings imply distinct biological features and therapeutic vulnerabilities linked to specific truncal mutations. Here we review our current understanding of prostate cancers harboring recurrent point mutations in the ubiquitin ligase adaptor protein SPOP and discuss opportunities for future clinical translation. More specifically, activation of the androgen receptor (AR) signaling emerges as the key oncogenic pathway. SPOP-mutant prostate cancer patients respond to AR inhibition in various clinical settings. Molecular insights on how mutant SPOP promotes tumorigenesis may open more specific therapeutic avenues which, in combination with conventional AR-targeting agents, could improve the outcome of patients with SPOP-mutant prostate cancer.
Collapse
Affiliation(s)
- Tiziano Bernasocchi
- Institute of Oncology Research, Bellinzona, TI, 6500, Switzerland; Università della Svizzera italiana (USI), Faculty of Biomedical Sciences, TI, 6900, Lugano, Switzerland
| | - Jean-Philippe P Theurillat
- Institute of Oncology Research, Bellinzona, TI, 6500, Switzerland; Università della Svizzera italiana (USI), Faculty of Biomedical Sciences, TI, 6900, Lugano, Switzerland.
| |
Collapse
|
40
|
De Sarkar N, Dasgupta S, Chatterjee P, Coleman I, Ha G, Ang LS, Kohlbrenner EA, Frank SB, Nunez TA, Salipante SJ, Corey E, Morrissey C, Van Allen E, Schweizer MT, Haffner MC, Patel R, Hanratty B, Lucas JM, Dumpit RF, Pritchard CC, Montgomery RB, Nelson PS. Genomic attributes of homology-directed DNA repair deficiency in metastatic prostate cancer. JCI Insight 2021; 6:152789. [PMID: 34877933 PMCID: PMC8675196 DOI: 10.1172/jci.insight.152789] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Accepted: 10/20/2021] [Indexed: 01/08/2023] Open
Abstract
Cancers with homology-directed DNA repair (HRR) deficiency exhibit high response rates to poly(ADP-ribose) polymerase inhibitors (PARPi) and platinum chemotherapy. Though mutations disrupting BRCA1 and BRCA2 associate with HRR deficiency (HRRd), patterns of genomic aberrations and mutation signatures may be more sensitive and specific indicators of compromised repair. Here, we evaluated whole-exome sequences from 418 metastatic prostate cancers (mPCs) and determined that one-fifth exhibited genomic characteristics of HRRd that included Catalogue Of Somatic Mutations In Cancer mutation signature 3. Notably, a substantial fraction of tumors with genomic features of HRRd lacked biallelic loss of a core HRR-associated gene, such as BRCA2. In this subset, HRRd associated with loss of chromodomain helicase DNA binding protein 1 but not with mutations in serine-protein kinase ATM, cyclin dependent kinase 12, or checkpoint kinase 2. HRRd genomic status was strongly correlated with responses to PARPi and platinum chemotherapy, a finding that supports evaluating biomarkers reflecting functional HRRd for treatment allocation.
Collapse
Affiliation(s)
| | | | | | | | - Gavin Ha
- Divisions of Human Biology.,Public Health Sciences, Fred Hutchinson Cancer Research Center, Seattle, Washington, USA
| | - Lisa S Ang
- Divisions of Human Biology.,Clinical Research
| | | | | | | | | | - Eva Corey
- Department of Urology, University of Washington, Seattle, Washington, USA
| | - Colm Morrissey
- Department of Urology, University of Washington, Seattle, Washington, USA
| | | | - Michael T Schweizer
- Division of Oncology, Department of Medicine, University of Washington, Seattle, Washington, USA
| | | | | | | | | | | | | | - Robert B Montgomery
- Division of Oncology, Department of Medicine, University of Washington, Seattle, Washington, USA
| | - Peter S Nelson
- Divisions of Human Biology.,Clinical Research.,Public Health Sciences, Fred Hutchinson Cancer Research Center, Seattle, Washington, USA.,Department of Laboratory Medicine and Pathology and.,Department of Urology, University of Washington, Seattle, Washington, USA.,Division of Oncology, Department of Medicine, University of Washington, Seattle, Washington, USA
| |
Collapse
|
41
|
A Transcription Factor-Based Risk Model for Predicting the Prognosis of Prostate Cancer and Potential Therapeutic Drugs. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2021; 2021:6894278. [PMID: 34853602 PMCID: PMC8629613 DOI: 10.1155/2021/6894278] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Accepted: 10/28/2021] [Indexed: 12/13/2022]
Abstract
Background Prostate cancer (PC) is one of the most critical cancers affecting men's health worldwide. The development of many cancers involves dysregulation or mutations in key transcription factors. This study established a transcription factor-based risk model to predict the prognosis of PC and potential therapeutic drugs. Materials and Methods In this study, RNA-sequencing data were downloaded and analyzed using The Cancer Genome Atlas dataset. A total of 145 genes related to the overall survival rate of PC patients were screened using the univariate Cox analysis. The Kdmist clustering method was used to classify prostate adenocarcinoma (PRAD), thereby determining the cluster related to the transcription factors. The support vector machine-recursive feature elimination method was used to identify genes related to the types of transcription factors and the key genes specifically upregulated or downregulated were screened. These genes were further analyzed using Lasso to establish a model. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) were used for the functional analysis. The TIMER algorithm was used to quantify the abundance of immune cells in PRAD samples. The chemotherapy response of each GBM patient was predicted based on the public pharmacogenomic database, Genomics of Drug Sensitivity in Cancer (GDSC, http://www.cancerrxgene.org). The R package "pRRophetic" was applied to drug sensitivity (IC50) value prediction. Results We screened 10 genes related to prognosis, including eight low-risk genes and two high-risk genes. The receiver operating characteristic (ROC) curve was 0.946. Patients in the high-risk score group had a poorer prognosis than those in the low-risk score group. The average area under the curve value of the model at different times was higher than 0.8. The risk score was an independent prognostic factor. Compared with the low-risk score group, early growth response-1 (EGR1), CACNA2D1, AC005831.1, SLC52A3, TMEM79, IL20RA, CRACR2A, and FAM189A2 expressions in the high-risk score group were decreased, while AC012181.1 and TRAPPC8 expressions were increased. GO and KEGG analyses showed that prognosis was related to various cancer signaling pathways. The proportion of B_cell, T_cell_CD4, and macrophages in the high-risk score group was significantly higher than that in the low-risk score group. A total of 25 classic immune checkpoint genes were screened out to express abnormally high-risk scores, and there were significant differences. Thirty mutant genes were identified; in the high- and low-risk score groups, SPOP, TP53, and TTN had the highest mutation frequency, and their mutations were mainly missense mutations. A total of 36 potential drug candidates for the treatment of PC were screened and identified. Conclusions Ten genes of both high-and low-risk scores were associated with the prognosis of PC. PC prognosis may be related to immune disorders. SPOP, TP53, and TTN may be potential targets for the prognosis of PC.
Collapse
|
42
|
Hernández-Llodrà S, Segalés L, Juanpere N, Marta Lorenzo T, Salido M, Nonell L, David López T, Rodríguez-Vida A, Bellmunt J, Fumadó L, Cecchini L, Lloreta-Trull J. SPOP and CHD1 alterations in prostate cancer: Relationship with PTEN loss, tumor grade, perineural infiltration, and PSA recurrence. Prostate 2021; 81:1267-1277. [PMID: 34533858 DOI: 10.1002/pros.24218] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/11/2020] [Revised: 05/06/2021] [Accepted: 08/16/2021] [Indexed: 02/06/2023]
Abstract
BACKGROUND In the non-ETS fusion of prostate cancer (PCa) pathway, SPOP mutations emerge as a distinct oncogenic driver subclass. Both SPOP downregulation and mutation can lead to SPOP target stabilization promoting dysregulation of key regulatory pathways. CHD1 gene is commonly deleted in PCa. CHD1 loss significantly co-occurs with SPOP mutations, resulting in a PCa subclass with increased AR transcriptional activity and with a specific epigenetic pattern. METHODS In this study, SPOP alterations at mutational and protein levels and CHD1 copy number alterations have been analyzed and correlated with ERG and PTEN protein expression and with the clinical pathological features of the patients. RESULTS SPOP protein loss has been detected in 42.9% of the cases, and it has been strongly associated with PTEN protein loss (p < .001). CHD1 gene loss has been detected in 24.5% and SPOP mutations in 5.9% of the cases. Loss of CHD1 has been strongly associated with SPOP mutations (p = .003) and has shown a trend to be associated with ERG wt cancers (p = .08). The loss of SPOP protein (p = .01) and the combination of PTEN and SPOP protein loss (p = .002) were both statistically more common in grade group 5 cancers, with a prevalence of 60% and 37.5%, respectively. Furthermore, SPOP loss/PTEN loss and SPOP wt/PTEN loss phenotypes were strongly associated with extraprostatic perineural infiltration (p = .007). Strong CHD1 loss was associated with a shorter time to PSA recurrence in the univariate (p = .04), and showed a trend to be associated with the PSA recurrence risk in the multivariate analysis (p = .058). CONCLUSIONS The results of the present study suggest that the loss of SPOP protein expression, either alone or in combination with loss of PTEN and, on the other hand, a marked loss of the CHD1 gene are very promising prognostic biomarkers in PCa.
Collapse
Affiliation(s)
| | - Laura Segalés
- Departament of Health and Experimental Sciences, Universitat Pompeu Fabra, Barcelona, Spain
- Hospital del Mar Medical Research Institute (IMIM), Barcelona, Spain
| | - Nuria Juanpere
- Departament of Health and Experimental Sciences, Universitat Pompeu Fabra, Barcelona, Spain
- Department of Pathology, Hospital del Mar-Parc de Salut Mar-IMIM, Barcelona, Spain
| | | | - Marta Salido
- Department of Pathology, Hospital del Mar-Parc de Salut Mar-IMIM, Barcelona, Spain
| | - Lara Nonell
- Hospital del Mar Medical Research Institute (IMIM), Barcelona, Spain
| | - Tech David López
- Hospital del Mar Medical Research Institute (IMIM), Barcelona, Spain
| | - Alejo Rodríguez-Vida
- Department of Medical Oncology, Hospital del Mar-Parc de Salut Mar-IMIM, Barcelona, Spain
| | - Joaquim Bellmunt
- Hospital del Mar Medical Research Institute (IMIM), Barcelona, Spain
- Department of Medical Oncology, Harvard Medical School, Hospital Beth Israel, Boston, Massachusetts, USA
| | - Lluís Fumadó
- Department of Urology, Hospital del Mar-Parc de Salut Mar-IMIM, Barcelona, Spain
| | - Lluís Cecchini
- Department of Urology, Hospital del Mar-Parc de Salut Mar-IMIM, Barcelona, Spain
| | - Josep Lloreta-Trull
- Departament of Health and Experimental Sciences, Universitat Pompeu Fabra, Barcelona, Spain
- Department of Pathology, Hospital del Mar-Parc de Salut Mar-IMIM, Barcelona, Spain
| |
Collapse
|
43
|
Chen YX, Tan LM, Gong JP, Huang MS, Yin JY, Zhang W, Zhou HH, Liu ZQ. Response prediction biomarkers and drug combinations of PARP inhibitors in prostate cancer. Acta Pharmacol Sin 2021; 42:1970-1980. [PMID: 33589795 PMCID: PMC8632930 DOI: 10.1038/s41401-020-00604-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/10/2020] [Accepted: 12/20/2020] [Indexed: 01/31/2023]
Abstract
PARP inhibitors are a group of inhibitors targeting poly(ADP-ribose) polymerases (PARP1 or PARP2) involved in DNA repair and transcriptional regulation, which may induce synthetic lethality in BRCAness tumors. Systematic analyzes of genomic sequencing in prostate cancer show that ~10%-19% of patients with primary prostate cancer have inactivated DNA repair genes, with a notably higher proportion of 23%-27% in patients with metastatic castration-resistant prostate cancer (mCRPC). These characteristic genomic alterations confer possible vulnerability to PARP inhibitors in patients with mCRPC who benefit only modestly from other therapies. However, only a small proportion of patients with mCRPC shows sensitivity to PARP inhibitors, and these sensitive patients cannot be fully identified by existing response prediction biomarkers. In this review, we provide an overview of the potential response prediction biomarkers and synergistic combinations studied in the preclinical and clinical stages, which may expand the population of patients with prostate cancer who may benefit from PARP inhibitors.
Collapse
Affiliation(s)
- Yi-Xin Chen
- Department of Clinical Pharmacology, Hunan Key Laboratory of Pharmacogenetics, and National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, China
- Institute of Clinical Pharmacology, Engineering Research Center for Applied Technology of Pharmacogenomics of Ministry of Education, Central South University, Changsha, 410078, China
| | - Li-Ming Tan
- Department of Pharmacy, The Second People's Hospital of Huaihua City, Huaihua, 418000, China
| | - Jian-Ping Gong
- Department of Pharmacy, The Second People's Hospital of Huaihua City, Huaihua, 418000, China
| | - Ma-Sha Huang
- Department of Clinical Pharmacology, Hunan Key Laboratory of Pharmacogenetics, and National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, China
- Institute of Clinical Pharmacology, Engineering Research Center for Applied Technology of Pharmacogenomics of Ministry of Education, Central South University, Changsha, 410078, China
| | - Ji-Ye Yin
- Department of Clinical Pharmacology, Hunan Key Laboratory of Pharmacogenetics, and National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, China
- Institute of Clinical Pharmacology, Engineering Research Center for Applied Technology of Pharmacogenomics of Ministry of Education, Central South University, Changsha, 410078, China
| | - Wei Zhang
- Department of Clinical Pharmacology, Hunan Key Laboratory of Pharmacogenetics, and National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, China
- Institute of Clinical Pharmacology, Engineering Research Center for Applied Technology of Pharmacogenomics of Ministry of Education, Central South University, Changsha, 410078, China
| | - Hong-Hao Zhou
- Department of Clinical Pharmacology, Hunan Key Laboratory of Pharmacogenetics, and National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, China
- Institute of Clinical Pharmacology, Engineering Research Center for Applied Technology of Pharmacogenomics of Ministry of Education, Central South University, Changsha, 410078, China
| | - Zhao-Qian Liu
- Department of Clinical Pharmacology, Hunan Key Laboratory of Pharmacogenetics, and National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, China.
- Institute of Clinical Pharmacology, Engineering Research Center for Applied Technology of Pharmacogenomics of Ministry of Education, Central South University, Changsha, 410078, China.
| |
Collapse
|
44
|
Mukhopadhyay C, Yang C, Xu L, Liu D, Wang Y, Huang D, Deonarine LD, Cyrta J, Davicioni E, Sboner A, Robinson BD, Chinnaiyan AM, Rubin MA, Barbieri CE, Zhou P. G3BP1 inhibits Cul3 SPOP to amplify AR signaling and promote prostate cancer. Nat Commun 2021; 12:6662. [PMID: 34795264 PMCID: PMC8602290 DOI: 10.1038/s41467-021-27024-x] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Accepted: 10/27/2021] [Indexed: 01/03/2023] Open
Abstract
SPOP, an E3 ubiquitin ligase, acts as a prostate-specific tumor suppressor with several key substrates mediating oncogenic function. However, the mechanisms underlying SPOP regulation are largely unknown. Here, we have identified G3BP1 as an interactor of SPOP and functions as a competitive inhibitor of Cul3SPOP, suggesting a distinctive mode of Cul3SPOP inactivation in prostate cancer (PCa). Transcriptomic analysis and functional studies reveal a G3BP1-SPOP ubiquitin signaling axis that promotes PCa progression through activating AR signaling. Moreover, AR directly upregulates G3BP1 transcription to further amplify G3BP1-SPOP signaling in a feed-forward manner. Our study supports a fundamental role of G3BP1 in disabling the tumor suppressive Cul3SPOP, thus defining a PCa cohort independent of SPOP mutation. Therefore, there are significantly more PCa that are defective for SPOP ubiquitin ligase than previously appreciated, and these G3BP1high PCa are more susceptible to AR-targeted therapy.
Collapse
Affiliation(s)
- Chandrani Mukhopadhyay
- Department of Pathology and Laboratory Medicine, Weill Medical College of Cornell University, New York, NY, 10065, USA
| | - Chenyi Yang
- Department of Pathology and Laboratory Medicine, Weill Medical College of Cornell University, New York, NY, 10065, USA
| | - Limei Xu
- Department of Pathology and Laboratory Medicine, Weill Medical College of Cornell University, New York, NY, 10065, USA
| | - Deli Liu
- Sandra and Edward Meyer Cancer Center, Weill Cornell Medicine, New York, NY, 10065, USA
- Department of Urology, Weill Cornell Medicine, New York, NY, 10065, USA
- HRH Prince Alwaleed Bin Talal Bin Abdulaziz Alsaud Institute for Computational Biomedicine, Weill Cornell Medical College, New York, NY, 10065, USA
| | - Yu Wang
- Department of Pathology and Laboratory Medicine, Weill Medical College of Cornell University, New York, NY, 10065, USA
| | - Dennis Huang
- Department of Urology, Weill Cornell Medicine, New York, NY, 10065, USA
| | - Lesa Dayal Deonarine
- Sandra and Edward Meyer Cancer Center, Weill Cornell Medicine, New York, NY, 10065, USA
| | - Joanna Cyrta
- Department of Pathology and Laboratory Medicine, Weill Medical College of Cornell University, New York, NY, 10065, USA
| | | | - Andrea Sboner
- Department of Pathology and Laboratory Medicine, Weill Medical College of Cornell University, New York, NY, 10065, USA
- Sandra and Edward Meyer Cancer Center, Weill Cornell Medicine, New York, NY, 10065, USA
- HRH Prince Alwaleed Bin Talal Bin Abdulaziz Alsaud Institute for Computational Biomedicine, Weill Cornell Medical College, New York, NY, 10065, USA
- Englander Institute for Precision Medicine of Weill Cornell Medicine and New York-Presbyterian Hospital, New York, NY, 10065, USA
| | - Brian D Robinson
- Department of Pathology and Laboratory Medicine, Weill Medical College of Cornell University, New York, NY, 10065, USA
- Englander Institute for Precision Medicine of Weill Cornell Medicine and New York-Presbyterian Hospital, New York, NY, 10065, USA
| | - Arul M Chinnaiyan
- Michigan Center for Translational Pathology, University of Michigan, Ann Arbor, MI, USA
| | - Mark A Rubin
- Department of Pathology and Laboratory Medicine, Weill Medical College of Cornell University, New York, NY, 10065, USA
- Department of Urology, Weill Cornell Medicine, New York, NY, 10065, USA
- Englander Institute for Precision Medicine of Weill Cornell Medicine and New York-Presbyterian Hospital, New York, NY, 10065, USA
- Department for Biomedical Research, University of Bern, 3008, Bern, Switzerland
| | - Christopher E Barbieri
- Sandra and Edward Meyer Cancer Center, Weill Cornell Medicine, New York, NY, 10065, USA
- Department of Urology, Weill Cornell Medicine, New York, NY, 10065, USA
- Englander Institute for Precision Medicine of Weill Cornell Medicine and New York-Presbyterian Hospital, New York, NY, 10065, USA
| | - Pengbo Zhou
- Department of Pathology and Laboratory Medicine, Weill Medical College of Cornell University, New York, NY, 10065, USA.
| |
Collapse
|
45
|
von Werdt A, Brandt L, Schärer OD, Rubin MA. PARP Inhibition in Prostate Cancer With Homologous Recombination Repair Alterations. JCO Precis Oncol 2021; 5:PO.21.00152. [PMID: 34712892 PMCID: PMC8547927 DOI: 10.1200/po.21.00152] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Revised: 08/18/2021] [Accepted: 09/15/2021] [Indexed: 12/12/2022] Open
Abstract
PURPOSE With the broad use of next-generation sequencing assays, it has become clear that mutations in DNA repair genes are more commonly found than previously reported. In advanced prostate cancer patients with BRCA1/2 or ATM mutations, poly (ADP-ribose) polymerase inhibition (PARPi) causes an increased overall survival advantage compared with patients without these mutations. This review explores the advantages and limitations of PARPi treatment and its use beyond BRCA1/2-altered tumors. Furthermore, it discusses the benefits of current biomarkers and what role functional biomarkers and organoids may play in addressing the involvement of homologous recombination repair mutations in tumor development and progression. METHODS A systematic review was conducted in MEDLINE, National Library of Medicine, and ClinicalTrials.gov to identify studies published between January 1, 2016, and August 31, 2021. The search strategy incorporated terms for PARPi, BRCA, DNA damage, homologous recombination, organoids, patient-derived organoids, biomarker AND prostate cancer, breast cancer, ovarian cancer. RESULTS A total of 261 records remained after duplicate removal, 69 of which were included in the qualitative synthesis. CONCLUSION To improve the outcome of targeted therapy and increase sensitivity of tumor detection, patients should be repeatedly screened for DNA repair gene alterations and biomarkers. Future clinical studies should explore the use of PARPi beyond BRCA1/2 mutations and focus on finding new synthetically lethal interactions. This review explores PARPi and its use for more than just BRCA1/2 altered tumors![]()
Collapse
Affiliation(s)
- Alexander von Werdt
- Department for BioMedical Research (DBMR), University of Bern, Bern, Switzerland
| | - Laura Brandt
- Department for BioMedical Research (DBMR), University of Bern, Bern, Switzerland
| | - Orlando D Schärer
- Institute of Basic Science-Center for Genomic Integrity, Ulsan, South Korea.,Renaissance School of Medicine at Stony Brook University, Stony Brook, NY
| | - Mark A Rubin
- Department for BioMedical Research (DBMR), University of Bern, Bern, Switzerland.,Bern Center for Precision Medicine, University of Bern and University Hospital Bern, Bern, Switzerland
| |
Collapse
|
46
|
SPOP mutation induces replication over-firing by impairing Geminin ubiquitination and triggers replication catastrophe upon ATR inhibition. Nat Commun 2021; 12:5779. [PMID: 34599168 PMCID: PMC8486843 DOI: 10.1038/s41467-021-26049-6] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Accepted: 09/09/2021] [Indexed: 12/28/2022] Open
Abstract
Geminin and its binding partner Cdt1 are essential for the regulation of DNA replication. Here we show that the CULLIN3 E3 ubiquitin ligase adaptor protein SPOP binds Geminin at endogenous level and regulates DNA replication. SPOP promotes K27-linked non-degradative poly-ubiquitination of Geminin at lysine residues 100 and 127. This poly-ubiquitination of Geminin prevents DNA replication over-firing by indirectly blocking the association of Cdt1 with the MCM protein complex, an interaction required for DNA unwinding and replication. SPOP is frequently mutated in certain human cancer types and implicated in tumorigenesis. We show that cancer-associated SPOP mutations impair Geminin K27-linked poly-ubiquitination and induce replication origin over-firing and re-replication. The replication stress caused by SPOP mutations triggers replication catastrophe and cell death upon ATR inhibition. Our results reveal a tumor suppressor role of SPOP in preventing DNA replication over-firing and genome instability and suggest that SPOP-mutated tumors may be susceptible to ATR inhibitor therapy. Geminin-Cdt1 plays essential roles in the regulation of DNA replication. Here the authors reveal that the CULLIN3 E3 ubiquitin ligase adaptor protein SPOP prevents DNA replication over-firing and genome instability by affecting Geminin ubiquitination.
Collapse
|
47
|
Tewari AK, Cheung ATM, Crowdis J, Conway JR, Camp SY, Wankowicz SA, Livitz DG, Park J, Lis RT, Bosma-Moody A, He MX, AlDubayan SH, Zhang Z, McKay RR, Leshchiner I, Brown M, Balk SP, Getz G, Taplin ME, Van Allen EM. Molecular features of exceptional response to neoadjuvant anti-androgen therapy in high-risk localized prostate cancer. Cell Rep 2021; 36:109665. [PMID: 34496240 DOI: 10.1016/j.celrep.2021.109665] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Revised: 05/17/2021] [Accepted: 08/13/2021] [Indexed: 12/13/2022] Open
Abstract
High-risk localized prostate cancer (HRLPC) is associated with a substantial risk of recurrence and disease mortality. Recent clinical trials have shown that intensifying anti-androgen therapies administered before prostatectomy can induce pathologic complete responses or minimal residual disease, called exceptional response, although the molecular determinants of these clinical outcomes are largely unknown. Here, we perform whole-exome and transcriptome sequencing on pre-treatment multi-regional tumor biopsies from exceptional responders (ERs) and non-responders (NRs, pathologic T3 or lymph node-positive disease) to intensive neoadjuvant anti-androgen therapies. Clonal SPOP mutation and SPOPL copy-number loss are exclusively observed in ERs, while clonal TP53 mutation and PTEN copy-number loss are exclusively observed in NRs. Transcriptional programs involving androgen signaling and TGF-β signaling are enriched in ERs and NRs, respectively. These findings may guide prospective validation studies of these molecular features in large HRLPC clinical cohorts treated with neoadjuvant anti-androgens to improve patient stratification.
Collapse
Affiliation(s)
- Alok K Tewari
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA 02215, USA; Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Alexander T M Cheung
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA 02215, USA; Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Jett Crowdis
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA 02215, USA; Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Jake R Conway
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA 02215, USA; Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; Harvard Graduate Program in Bioinformatics and Integrative Genomics, Boston, MA 02115, USA
| | - Sabrina Y Camp
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA 02215, USA; Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Stephanie A Wankowicz
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA 02215, USA; Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | | | - Jihye Park
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA 02215, USA; Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Rosina T Lis
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA 02215, USA
| | - Alice Bosma-Moody
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA 02215, USA; Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Meng Xiao He
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA 02215, USA; Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; Harvard Graduate Program in Biophysics, Boston, MA 02115, USA
| | - Saud H AlDubayan
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA 02215, USA; Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; Division of Genetics, Brigham and Women's Hospital, Boston, MA 02115, USA
| | - Zhenwei Zhang
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA 02215, USA
| | - Rana R McKay
- Division of Hematology/Oncology, University of California San Diego, San Diego, CA 92037, USA
| | | | - Myles Brown
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA 02215, USA
| | - Steven P Balk
- Division of Cancer Biology, Beth Israel Deaconess Medical Center, Boston, MA 02215, USA
| | - Gad Getz
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; Department of Pathology, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Mary-Ellen Taplin
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA 02215, USA.
| | - Eliezer M Van Allen
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA 02215, USA; Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA.
| |
Collapse
|
48
|
Grbesa I, Augello MA, Liu D, McNally DR, Gaffney CD, Huang D, Lin K, Ivenitsky D, Goueli R, Robinson BD, Khani F, Deonarine LD, Blattner M, Elemento O, Davicioni E, Sboner A, Barbieri CE. Reshaping of the androgen-driven chromatin landscape in normal prostate cells by early cancer drivers and effect on therapeutic sensitivity. Cell Rep 2021; 36:109625. [PMID: 34496233 PMCID: PMC8477443 DOI: 10.1016/j.celrep.2021.109625] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Revised: 05/06/2021] [Accepted: 08/05/2021] [Indexed: 12/21/2022] Open
Abstract
The normal androgen receptor (AR) cistrome and transcriptional program are fundamentally altered in prostate cancer (PCa). Here, we profile the chromatin landscape and AR-directed transcriptional program in normal prostate cells and show the impact of SPOP mutations, an early event in prostate tumorigenesis. In genetically normal mouse prostate organoids, SPOP mutation results in accessibility and AR binding patterns similar to that of human PCa. Consistent with dependence on AR signaling, castration of SPOP mutant mouse models results in the loss of neoplastic phenotypes, and human SPOP mutant PCa shows a favorable response to AR-targeted therapies. Together, these data validate mouse prostate organoids as a robust model for studying epigenomic and transcriptional alterations in normal prostate, provide valuable datasets for further studies, and show that a single genomic alteration may be sufficient to reprogram the chromatin of normal prostate cells toward oncogenic phenotypes, with potential therapeutic implications for AR-targeting therapies.
Collapse
Affiliation(s)
- Ivana Grbesa
- Department of Urology, Weill Cornell Medicine, New York, NY 10065, USA; Sandra and Edward Meyer Cancer Center, Weill Cornell Medicine, New York, NY 10065, USA
| | - Michael A Augello
- Department of Urology, Weill Cornell Medicine, New York, NY 10065, USA; Sandra and Edward Meyer Cancer Center, Weill Cornell Medicine, New York, NY 10065, USA
| | - Deli Liu
- Department of Urology, Weill Cornell Medicine, New York, NY 10065, USA; Sandra and Edward Meyer Cancer Center, Weill Cornell Medicine, New York, NY 10065, USA; The HRH Prince Alwaleed Bin Talal Bin Abdulaziz Alsaud Institute for Computational Biomedicine, Weill Cornell Medicine, New York, NY 10065, USA
| | - Dylan R McNally
- Department of Physiology and Biophysics, Weill Cornell Medicine, New York, NY 10065, USA; Caryl and Israel Englander Institute for Precision Medicine, Weill Cornell Medicine, New York, NY 10065, USA; Department of Medicine and Weill Cornell Cancer Center, Weill Cornell Medicine, New York, NY 10021, USA
| | | | - Dennis Huang
- Department of Urology, Weill Cornell Medicine, New York, NY 10065, USA; Sandra and Edward Meyer Cancer Center, Weill Cornell Medicine, New York, NY 10065, USA
| | - Kevin Lin
- Sandra and Edward Meyer Cancer Center, Weill Cornell Medicine, New York, NY 10065, USA
| | - Daria Ivenitsky
- Sandra and Edward Meyer Cancer Center, Weill Cornell Medicine, New York, NY 10065, USA
| | - Ramy Goueli
- Department of Urology, Weill Cornell Medicine, New York, NY 10065, USA
| | - Brian D Robinson
- Caryl and Israel Englander Institute for Precision Medicine, Weill Cornell Medicine, New York, NY 10065, USA; Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, NY 10065, USA
| | - Francesca Khani
- Caryl and Israel Englander Institute for Precision Medicine, Weill Cornell Medicine, New York, NY 10065, USA; Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, NY 10065, USA
| | - Lesa D Deonarine
- Department of Urology, Weill Cornell Medicine, New York, NY 10065, USA; Sandra and Edward Meyer Cancer Center, Weill Cornell Medicine, New York, NY 10065, USA
| | - Mirjam Blattner
- Sandra and Edward Meyer Cancer Center, Weill Cornell Medicine, New York, NY 10065, USA; Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, NY 10065, USA
| | - Olivier Elemento
- The HRH Prince Alwaleed Bin Talal Bin Abdulaziz Alsaud Institute for Computational Biomedicine, Weill Cornell Medicine, New York, NY 10065, USA; Caryl and Israel Englander Institute for Precision Medicine, Weill Cornell Medicine, New York, NY 10065, USA; Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, NY 10065, USA
| | | | - Andrea Sboner
- Sandra and Edward Meyer Cancer Center, Weill Cornell Medicine, New York, NY 10065, USA; The HRH Prince Alwaleed Bin Talal Bin Abdulaziz Alsaud Institute for Computational Biomedicine, Weill Cornell Medicine, New York, NY 10065, USA; Caryl and Israel Englander Institute for Precision Medicine, Weill Cornell Medicine, New York, NY 10065, USA; Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, NY 10065, USA
| | - Christopher E Barbieri
- Department of Urology, Weill Cornell Medicine, New York, NY 10065, USA; Sandra and Edward Meyer Cancer Center, Weill Cornell Medicine, New York, NY 10065, USA; Caryl and Israel Englander Institute for Precision Medicine, Weill Cornell Medicine, New York, NY 10065, USA.
| |
Collapse
|
49
|
Yoon J, Kim M, Posadas EM, Freedland SJ, Liu Y, Davicioni E, Den RB, Trock BJ, Karnes RJ, Klein EA, Freeman MR, You S. A comparative study of PCS and PAM50 prostate cancer classification schemes. Prostate Cancer Prostatic Dis 2021; 24:733-742. [PMID: 33531653 PMCID: PMC8326303 DOI: 10.1038/s41391-021-00325-4] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2020] [Revised: 12/20/2020] [Accepted: 01/15/2021] [Indexed: 02/01/2023]
Abstract
BACKGROUND Two prostate cancer (PC) classification methods based on transcriptome profiles, a de novo method referred to as the "Prostate Cancer Classification System" (PCS) and a variation of the established PAM50 breast cancer algorithm, were recently proposed. Both studies concluded that most human PC can be assigned to one of three tumor subtypes, two categorized as luminal and one as basal, suggesting the two methods reflect consistency in underlying biology. Despite the similarity, differences and commonalities between the two classification methods have not yet been reported. METHODS Here, we describe a comparison of the PCS and PAM50 classification systems. PCS and PAM50 signatures consisting of 37 (PCS37) and 50 genes, respectively, were used to categorize 9,947 PC patients into PCS and PAM50 classes. Enrichment of hallmark gene sets and luminal and basal marker gene expression were assessed in the same datasets. Finally, survival analysis was performed to compare PCS and PAM50 subtypes in terms of clinical outcomes. RESULTS PCS and PAM50 subtypes show clear differential expression of PCS37 and PAM50 genes. While only three genes are shared in common between the two systems, there is some consensus between three subtype pairs (PCS1 versus Luminal B, PCS2 versus Luminal A, and PCS3 versus Basal) with respect to gene expression, cellular processes, and clinical outcomes. PCS categories displayed better separation of cellular processes and luminal and basal marker gene expression compared to PAM50. Although both PCS1 and Luminal B tumors exhibited the worst clinical outcomes, outcomes between aggressive and less aggressive subtypes were better defined in the PCS system, based on larger hazard ratios observed. CONCLUSION The PCS and PAM50 classification systems are similar in terms of molecular profiles and clinical outcomes. However, the PCS system exhibits greater separation in multiple clinical outcomes and provides better separation of prostate luminal and basal characteristics.
Collapse
Affiliation(s)
- Junhee Yoon
- Department of Surgery, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Minhyung Kim
- Department of Surgery, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Edwin M Posadas
- Urologic Oncology Program & Uro-Oncology Research Program, Cedars-Sinai Cancer, Cedars-Sinai Medical Center, Los Angeles, CA, USA
- Division of Oncology, Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Stephen J Freedland
- Department of Surgery, Cedars-Sinai Medical Center, Los Angeles, CA, USA
- Division of Urology, Department of Surgery, Veteran Affairs Healthcare System, Durham, NC, USA
| | - Yang Liu
- Decipher Biosciences Inc., San Diego, CA, USA
| | | | - Robert B Den
- Department of Radiation Oncology, Jefferson Medical College of Thomas Jefferson University, Philadelphia, PA, USA
| | - Bruce J Trock
- James Buchanan Brady Urological Institute, Johns Hopkins Hospital, Baltimore, MD, USA
| | | | - Eric A Klein
- Glickman Urological and Kidney Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Michael R Freeman
- Department of Surgery, Cedars-Sinai Medical Center, Los Angeles, CA, USA
- Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA, USA
- Department of Medicine, University of California, Los Angeles, CA, USA
| | - Sungyong You
- Department of Surgery, Cedars-Sinai Medical Center, Los Angeles, CA, USA.
- Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA, USA.
| |
Collapse
|
50
|
Armstrong AJ, Li X, Tucker M, Li S, Mu XJ, Eng KW, Sboner A, Rubin M, Gerstein M. Molecular medicine tumor board: whole-genome sequencing to inform on personalized medicine for a man with advanced prostate cancer. Prostate Cancer Prostatic Dis 2021; 24:786-793. [PMID: 33568750 PMCID: PMC8384621 DOI: 10.1038/s41391-021-00324-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2020] [Revised: 12/14/2020] [Accepted: 01/15/2021] [Indexed: 02/01/2023]
Abstract
PURPOSE Molecular profiling of cancer is increasingly common as part of routine care in oncology, and germline and somatic profiling may provide insights and actionable targets for men with metastatic prostate cancer. However, all reported cases are of deidentified individuals without full medical and genomic data available in the public domain. PATIENT AND METHODS We present a case of whole-genome tumor and germline sequencing in a patient with advanced prostate cancer, who has agreed to make his genomic and clinical data publicly available. RESULTS We describe an 84-year-old Caucasian male with a Gleason 10 oligometastastic hormone-sensitive prostate cancer. Whole-genome sequencing provided insights into his tumor's underlying mutational processes and the development of an SPOP mutation. It also revealed an androgen-receptor dependency of his cancer which was reflected in his durable response to radiation and hormonal therapy. Potentially actionable genomic lesions in the tumor were identified through a personalized medicine approach for potential future therapy, but at the moment, he remains in remission, illustrating the hormonal sensitivity of his SPOP-driven prostate cancer. We also placed this patient in the context of a large prostate-cancer cohort from the PCAWG (Pan-cancer Analysis of Whole Genomes) group. In this comparison, the patient's cancer appears typical in terms of the number and type of somatic mutations, but it has a somewhat larger contribution from the mutational process associated with aging. CONCLUSION We combined the expertise of medical oncology and genomics approaches to develop a molecular tumor board to integrate the care and study of this patient, who continues to have an outstanding response to his combined modality treatment. This identifiable case potentially helps overcome barriers to clinical and genomic data sharing.
Collapse
Affiliation(s)
- Andrew J Armstrong
- Duke Cancer Institute Center for Prostate and Urologic Cancer, Departments of Medicine, Surgery, Pharmacology and Cancer Biology, Duke Cancer Institute, Durham, NC, USA.
| | - Xiaotong Li
- Program in Computational Biology and Bioinformatics, Yale University, New Haven, CT, USA
| | - Matthew Tucker
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Shantao Li
- Program in Computational Biology and Bioinformatics, Yale University, New Haven, CT, USA
| | | | - Kenneth Wha Eng
- Department of Physiology and Biophysics, Englander Institute for Precision Medicine, HRH Prince Alwaleed Bin Talal Bin Abdulaziz Alsaud Institute for Computational Biomedicine, Weill Cornell Medical College, New York, NY, USA
| | - Andrea Sboner
- Department of Pathology and Laboratory Medicine, Englander Institute for Precision Medicine, HRH Prince Alwaleed Bin Talal Bin Abdulaziz Alsaud Institute for Computational Biomedicine, Meyer Cancer Center, Weill Cornell Medical College, New York, NY, USA
| | - Mark Rubin
- Department of Pathology and Laboratory Medicine, Englander Institute for Precision Medicine, HRH Prince Alwaleed Bin Talal Bin Abdulaziz Alsaud Institute for Computational Biomedicine, Meyer Cancer Center, Weill Cornell Medical College, New York, NY, USA.
- Department for BioMedical Research, University of Bern and Inselspital, 3010, Bern, Switzerland.
- Bern Center for Precision Medicine, University of Bern and Inselspital, 3010, Bern, Switzerland.
| | - Mark Gerstein
- Program in Computational Biology and Bioinformatics, Yale University, New Haven, CT, USA.
- Department of Molecular Biophysics and Biochemistry, Department of Statistics and Data Science, Department of Computer Science, Yale University, New Haven, CT, USA.
| |
Collapse
|