1
|
Matsuda M, Sokol SY. Prickle2 regulates apical junction remodeling and tissue fluidity during vertebrate neurulation. J Cell Biol 2025; 224:e202407025. [PMID: 39951022 PMCID: PMC11827586 DOI: 10.1083/jcb.202407025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Revised: 12/29/2024] [Accepted: 01/21/2025] [Indexed: 02/16/2025] Open
Abstract
The process of folding the flat neuroectoderm into an elongated neural tube depends on tissue fluidity, a property that allows epithelial deformation while preserving tissue integrity. Neural tube folding also requires the planar cell polarity (PCP) pathway. Here, we report that Prickle2 (Pk2), a core PCP component, increases tissue fluidity by promoting the remodeling of apical junctions (AJs) in Xenopus embryos. This Pk2 activity is mediated by the unique evolutionarily conserved Ser/Thr-rich region (STR) in the carboxyterminal half of the protein. Mechanistically, the effects of Pk2 require Rac1 and are accompanied by increased dynamics of C-cadherin and tricellular junctions, the hotspots of AJ remodeling. Notably, Pk2 depletion leads to the accumulation of mediolaterally oriented cells in the neuroectoderm, whereas the overexpression of Pk2 or Pk1 containing the Pk2-derived STR promotes cell elongation along the anteroposterior axis. We propose that Pk2-dependent regulation of tissue fluidity contributes to anteroposterior tissue elongation in response to extrinsic cues.
Collapse
Affiliation(s)
- Miho Matsuda
- Department of Cell, Developmental and Regenerative Biology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Sergei Y. Sokol
- Department of Cell, Developmental and Regenerative Biology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| |
Collapse
|
2
|
Taneja N, Moubarak MF, McGovern MJ, Yeoh K, Zallen JA. Actin crosslinking is required for force sensing at tricellular junctions. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.02.21.639590. [PMID: 40060614 PMCID: PMC11888364 DOI: 10.1101/2025.02.21.639590] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 03/20/2025]
Abstract
Mechanical forces are essential for tissue morphogenesis, but risk causing ruptures that could compromise tissue function. In epithelial tissues, adherens junctions withstand the forces that drive morphogenesis by recruiting proteins that stabilize cell adhesion and reinforce connections to the actin cytoskeleton under tension. However, how junctional actin networks respond to forces in vivo is not well understood. Here we show that the actin crosslinker Fimbrin is recruited to tricellular junctions under tension and plays a central role in amplifying actomyosin contractility and stabilizing cell adhesion. Loss of Fimbrin results in a failure to reorganize actin under tension and an inability to enhance myosin-II activity and recruit junction-stabilizing proteins in response to force, disrupting cell adhesion. Conversely, increasing Fimbrin activity constitutively activates force-response pathways, aberrantly stabilizing adhesion. These results demonstrate that Fimbrin-mediated actin crosslinking is an essential step in modulating actomyosin dynamics and reinforcing cell adhesion under tension during epithelial remodeling.
Collapse
Affiliation(s)
- Nilay Taneja
- HHMI and Developmental Biology Program, Sloan Kettering Institute
| | | | | | - Kenji Yeoh
- HHMI and Developmental Biology Program, Sloan Kettering Institute
| | | |
Collapse
|
3
|
Weng S, Hayashi M, Inoue Y, Wallingford JB. Planar polarized force propagation integrates cell behavior with tissue shaping during convergent extension. Curr Biol 2025; 35:1-10.e3. [PMID: 39610250 PMCID: PMC11706704 DOI: 10.1016/j.cub.2024.10.070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 09/11/2024] [Accepted: 10/28/2024] [Indexed: 11/30/2024]
Abstract
Convergent extension (CE) is an evolutionarily conserved developmental process that elongates tissues and organs via collective cell movements known as cell intercalation. Here, we sought to understand the mechanisms connecting cell behaviors and tissue shaping. We focus on an often-overlooked aspect of cell intercalation, the resolution of 4-cell vertices. Our data reveal that imbalanced cellular forces are involved in a timely vertex resolution, which, in turn, enables the propagation of such cellular forces, facilitating the propagation of tissue-scale CE. Conversely, delayed vertex resolution leads to a subtle but significant change in tissue-wide cell packing and exerts a profound impact by blocking force propagation, resulting in CE propagation defects. Our findings propose a collaborative nature of local cell intercalations in propagating tissue-wide CE. It unveils a multiscale biomechanical synergy underpinning the cellular mechanisms that orchestrate tissue morphogenesis during CE.
Collapse
Affiliation(s)
- Shinuo Weng
- Department of Molecular Biosciences, University of Texas at Austin, Austin, TX 78712, USA.
| | - Masaya Hayashi
- Department of Micro Engineering, Kyoto University, Nishikyo, Kyoto 615-8540, Japan
| | - Yasuhiro Inoue
- Department of Micro Engineering, Kyoto University, Nishikyo, Kyoto 615-8540, Japan
| | - John B Wallingford
- Department of Molecular Biosciences, University of Texas at Austin, Austin, TX 78712, USA.
| |
Collapse
|
4
|
Sabbagh S, Harris TJC. Surrounding tissue morphogenesis with disrupted posterior midgut invagination during Drosophila gastrulation. Dev Biol 2025; 517:168-177. [PMID: 39389442 DOI: 10.1016/j.ydbio.2024.10.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Revised: 10/01/2024] [Accepted: 10/07/2024] [Indexed: 10/12/2024]
Abstract
Gastrulation involves multiple, physically-coupled tissue rearrangements. During Drosophila gastrulation, posterior midgut (PMG) invagination promotes both germband extension and hindgut invagination, but whether the normal epithelial rearrangement of PMG invagination is required for morphogenesis of the connected tissues has been unclear. In steppke mutants, epithelial organization of the PMG primordium is strongly disrupted. Despite this disruption, germband extension and hindgut invagination are remarkably effective, and involve myosin network inductions known to promote their wild-type remodelling. Known tissue-autonomous signaling could explain the planar-polarized, junctional myosin networks of the germband, but pushing forces from PMG invagination have been implicated in inducing apical myosin networks of the hindgut primordium. To confirm that the wave of hindgut primordium myosin accumulations is due to mechanical effects, rather than diffusive signalling, we analyzed α-catenin RNAi embryos, in which all of the epithelial tissues initially form but then lose cell-cell adhesion, and observed strongly diminished hindgut primordium myosin accumulations. Thus, alternate mechanical changes in steppke mutants seem to circumvent the lack of normal PMG invagination to induce hindgut myosin networks and invagination. Overall, both germband extension and hindgut invagination are robust to experimental disruption of the PMG invagination, and, although the processes occur with some abnormalities in steppke mutants, there is remarkable redundancy in the multi-tissue system. Such redundancy could allow complex morphogenetic processes to change over evolutionary time.
Collapse
Affiliation(s)
- Sandra Sabbagh
- Department of Cell & Systems Biology, University of Toronto, Canada
| | - Tony J C Harris
- Department of Cell & Systems Biology, University of Toronto, Canada.
| |
Collapse
|
5
|
Borges A, Chara O. Peeking into the future: inferring mechanics in dynamical tissues. Biochem Soc Trans 2024; 52:2579-2592. [PMID: 39656056 DOI: 10.1042/bst20230225] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 11/07/2024] [Accepted: 11/18/2024] [Indexed: 12/20/2024]
Abstract
Cells exert forces on each other and their environment, shaping the tissue. The resulting mechanical stresses can be determined experimentally or estimated computationally using stress inference methods. Over the years, mechanical stress inference has become a non-invasive, low-cost computational method for estimating the relative intercellular stresses and intracellular pressures of tissues. This mini-review introduces and compares the static and dynamic modalities of stress inference, considering their advantages and limitations. To date, most software has focused on static inference, which requires only a single microscopy image as input. Although applicable in quasi-equilibrium states, this approach neglects the influence that cell rearrangements might have on the inference. In contrast, dynamic stress inference relies on a time series of microscopy images to estimate stresses and pressures. Here, we discuss both static and dynamic mechanical stress inference in terms of their physical, mathematical, and computational foundations and then outline what we believe are promising avenues for in silico inference of the mechanical states of tissues.
Collapse
Affiliation(s)
- Augusto Borges
- Unit Sensory Biology and Organogenesis, Helmholtz Zentrum München, Munich, Germany
- Graduate School of Quantitative Biosciences, Ludwig Maximilian University, Munich, Germany
| | - Osvaldo Chara
- School of Biosciences, University of Nottingham, Sutton Bonington Campus, Nottingham LE12, U.K
- Instituto de Tecnología, Universidad Argentina de la Empresa, Buenos Aires, Argentina
| |
Collapse
|
6
|
de Leeuw NF, Budhathoki R, Russell LJ, Loerke D, Blankenship JT. Nuclei as mechanical bumpers during epithelial remodeling. J Cell Biol 2024; 223:e202405078. [PMID: 39325019 PMCID: PMC11450824 DOI: 10.1083/jcb.202405078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Revised: 08/21/2024] [Accepted: 09/03/2024] [Indexed: 09/27/2024] Open
Abstract
The morphogenesis of developing tissues relies on extensive cellular rearrangements in shape, position, and identity. A key process in reshaping tissues is cell intercalation-driven elongation, where epithelial cells align and intercalate along a common axis. Typically, analyses focus on how peripheral cortical forces influence cell shape changes. Less attention is given to how inhomogeneities in internal structures, particularly the nucleus, impact cell shaping. Here, we examine how pulsed contractile and extension dynamics interact with the nucleus in elongating Drosophila embryos. Our data show that tightly packed nuclei in apical layers hinder tissue remodeling/oscillatory behaviors. We identify two mechanisms for resolving internuclear tensions: nuclear deformation and dispersion. Embryos with non-deformable nuclei use nuclear dispersion to maintain near-normal extensile rates, while those with non-dispersible nuclei due to microtubule inhibition exhibit disruptions in contractile behaviors. Disrupting both mechanisms leads to severe tissue extension defects and cell extrusion. These findings highlight the critical role of nuclear shape and positioning in topological remodeling of epithelia.
Collapse
Affiliation(s)
- Noah F. de Leeuw
- Department of Physics and Astronomy, University of Denver, Denver, CO, USA
| | - Rashmi Budhathoki
- Department of Biological Sciences, University of Denver, Denver, CO, USA
| | - Liam J. Russell
- Department of Physics and Astronomy, University of Denver, Denver, CO, USA
- Department of Biological Sciences, University of Denver, Denver, CO, USA
| | - Dinah Loerke
- Department of Physics and Astronomy, University of Denver, Denver, CO, USA
| | | |
Collapse
|
7
|
Wang X, Cupo CM, Ostvar S, Countryman AD, Kasza KE. E-cadherin tunes tissue mechanical behavior before and during morphogenetic tissue flows. Curr Biol 2024; 34:3367-3379.e5. [PMID: 39013464 DOI: 10.1016/j.cub.2024.06.038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Revised: 04/02/2024] [Accepted: 06/14/2024] [Indexed: 07/18/2024]
Abstract
Adhesion between epithelial cells enables the remarkable mechanical behavior of epithelial tissues during morphogenesis. However, it remains unclear how cell-cell adhesion influences mechanics in both static and dynamically flowing confluent epithelial tissues. Here, we systematically modulate E-cadherin-mediated adhesion in the Drosophila embryo and study the effects on the mechanical behavior of the germband epithelium before and during dramatic tissue remodeling and flow associated with body axis elongation. Before axis elongation, we find that increasing E-cadherin levels produces tissue comprising more elongated cells and predicted to be more fluid-like, providing reduced resistance to tissue flow. During axis elongation, we find that the dominant effect of E-cadherin is tuning the speed at which cells proceed through rearrangement events. Before and during axis elongation, E-cadherin levels influence patterns of actomyosin-dependent forces, supporting the notion that E-cadherin tunes tissue mechanics in part through effects on actomyosin. Notably, the effects of ∼4-fold changes in E-cadherin levels on overall tissue structure and flow are relatively weak, suggesting that the system is tolerant to changes in absolute E-cadherin levels over this range where an intact tissue is formed. Taken together, these findings reveal dual-and sometimes opposing-roles for E-cadherin-mediated adhesion in controlling tissue structure and dynamics in vivo, which result in unexpected relationships between adhesion and flow in confluent tissues.
Collapse
Affiliation(s)
- Xun Wang
- Department of Mechanical Engineering, Columbia University, New York, NY 10027, USA
| | - Christian M Cupo
- Department of Mechanical Engineering, Columbia University, New York, NY 10027, USA
| | - Sassan Ostvar
- Department of Mechanical Engineering, Columbia University, New York, NY 10027, USA
| | - Andrew D Countryman
- Department of Mechanical Engineering, Columbia University, New York, NY 10027, USA
| | - Karen E Kasza
- Department of Mechanical Engineering, Columbia University, New York, NY 10027, USA.
| |
Collapse
|
8
|
Vanderleest TE, Xie Y, Budhathoki R, Linvill K, Hobson C, Heddleston J, Loerke D, Blankenship JT. Lattice light sheet microscopy reveals 4D force propagation dynamics and leading-edge behaviors in an embryonic epithelium in Drosophila. Curr Biol 2024; 34:3165-3177.e3. [PMID: 38959881 DOI: 10.1016/j.cub.2024.06.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 04/04/2024] [Accepted: 06/07/2024] [Indexed: 07/05/2024]
Abstract
How pulsed contractile dynamics drive the remodeling of cell and tissue topologies in epithelial sheets has been a key question in development and disease. Due to constraints in imaging and analysis technologies, studies that have described the in vivo mechanisms underlying changes in cell and neighbor relationships have largely been confined to analyses of planar apical regions. Thus, how the volumetric nature of epithelial cells affects force propagation and remodeling of the cell surface in three dimensions, including especially the apical-basal axis, is unclear. Here, we perform lattice light sheet microscopy (LLSM)-based analysis to determine how far and fast forces propagate across different apical-basal layers, as well as where topological changes initiate from in a columnar epithelium. These datasets are highly time- and depth-resolved and reveal that topology-changing forces are spatially entangled, with contractile force generation occurring across the observed apical-basal axis in a pulsed fashion, while the conservation of cell volumes constrains instantaneous cell deformations. Leading layer behaviors occur opportunistically in response to favorable phasic conditions, with lagging layers "zippering" to catch up as new contractile pulses propel further changes in cell topologies. These results argue against specific zones of topological initiation and demonstrate the importance of systematic 4D-based analysis in understanding how forces and deformations in cell dimensions propagate in a three-dimensional environment.
Collapse
Affiliation(s)
- Timothy E Vanderleest
- Department of Biological Sciences, University of Denver, Denver, CO 80208, USA; Department of Physics and Astronomy, University of Denver, Denver, CO 80208, USA
| | - Yi Xie
- Department of Biological Sciences, University of Denver, Denver, CO 80208, USA
| | - Rashmi Budhathoki
- Department of Biological Sciences, University of Denver, Denver, CO 80208, USA
| | - Katie Linvill
- Department of Physics and Astronomy, University of Denver, Denver, CO 80208, USA
| | - Chad Hobson
- Advanced Imaging Center, Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA 20147, USA
| | - John Heddleston
- Cleveland Clinic Florida Research & Innovation Center, Port St. Lucie, FL, USA
| | - Dinah Loerke
- Department of Physics and Astronomy, University of Denver, Denver, CO 80208, USA.
| | - J Todd Blankenship
- Department of Biological Sciences, University of Denver, Denver, CO 80208, USA.
| |
Collapse
|
9
|
Wang X, Cupo CM, Ostvar S, Countryman AD, Kasza KE. E-cadherin tunes tissue mechanical behavior before and during morphogenetic tissue flows. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.07.592778. [PMID: 38766260 PMCID: PMC11100719 DOI: 10.1101/2024.05.07.592778] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2024]
Abstract
Adhesion between epithelial cells enables the remarkable mechanical behavior of epithelial tissues during morphogenesis. However, it remains unclear how cell-cell adhesion influences mechanics in static as well as in dynamically flowing epithelial tissues. Here, we systematically modulate E-cadherin-mediated adhesion in the Drosophila embryo and study the effects on the mechanical behavior of the germband epithelium before and during dramatic tissue remodeling and flow associated with body axis elongation. Before axis elongation, we find that increasing E-cadherin levels produces tissue comprising more elongated cells and predicted to be more fluid-like, providing reduced resistance to tissue flow. During axis elongation, we find that the dominant effect of E-cadherin is tuning the speed at which cells proceed through rearrangement events, revealing potential roles for E-cadherin in generating friction between cells. Before and during axis elongation, E-cadherin levels influence patterns of actomyosin-dependent forces, supporting the notion that E-cadherin tunes tissue mechanics in part through effects on actomyosin. Taken together, these findings reveal dual-and sometimes opposing-roles for E-cadherin-mediated adhesion in controlling tissue structure and dynamics in vivo that result in unexpected relationships between adhesion and flow.
Collapse
|
10
|
Cupo C, Allan C, Ailiani V, Kasza KE. Signatures of structural disorder in developing epithelial tissues. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.02.12.579900. [PMID: 38405955 PMCID: PMC10888831 DOI: 10.1101/2024.02.12.579900] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/27/2024]
Abstract
Epithelial cells generate functional tissues in developing embryos through collective movements and shape changes. In some morphogenetic events, a tissue dramatically reorganizes its internal structure - often generating high degrees of structural disorder - to accomplish changes in tissue shape. However, the origins of structural disorder in epithelia and what roles it might play in morphogenesis are poorly understood. We study this question in the Drosophila germband epithelium, which undergoes dramatic changes in internal structure as cell rearrangements drive elongation of the embryo body axis. Using two order parameters that quantify volumetric and shear disorder, we show that structural disorder increases during body axis elongation and is strongly linked with specific developmental processes. Both disorder metrics begin to increase around the onset of axis elongation, but then plateau at values that are maintained throughout the process. Notably, the disorder plateau values for volumetric disorder are similar to those for random cell packings, suggesting this may reflect a limit on tissue behavior. In mutant embryos with disrupted external stresses from the ventral furrow, both disorder metrics reach wild-type maximum disorder values with a delay, correlating with delays in cell rearrangements. In contrast, in mutants with disrupted internal stresses and cell rearrangements, volumetric disorder is reduced compared to wild type, whereas shear disorder depends on specific external stress patterns. Together, these findings demonstrate that internal and external stresses both contribute to epithelial tissue disorder and suggest that the maximum values of disorder in a developing tissue reflect physical or biological limits on morphogenesis.
Collapse
|
11
|
Pérez-Verdugo F, Banerjee S. Tension Remodeling Regulates Topological Transitions in Epithelial Tissues. PRX LIFE 2023; 1:023006. [PMID: 39450340 PMCID: PMC11500814 DOI: 10.1103/prxlife.1.023006] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 10/26/2024]
Abstract
Cell neighbor exchanges play a critical role in regulating tissue fluidity during epithelial morphogenesis and repair. In vivo, these neighbor exchanges are often hindered by the formation of transiently stable fourfold vertices, which can develop into complex multicellular rosettes where five or more cell junctions meet. Despite their importance, the mechanical origins of multicellular rosettes have remained elusive, and current cellular models lack the ability to explain their formation and maintenance. Here we present a dynamic vertex model of epithelial tissues with strain-dependent tension remodeling and mechanical memory dissipation. We show that an increase in cell junction tension upon contraction and reduction in tension upon extension can stabilize higher-order vertices, temporarily stalling cell rearrangements. On the other hand, inducing mechanical memory dissipation via relaxation of junction strain and stress promotes the resolution of higher-order vertices, facilitating cell neighbor exchanges. We demonstrate that by tuning the rates of tension remodeling and mechanical memory dissipation, we can control topological transitions and tissue material properties, recapitulating complex cellular topologies seen in developing organisms.
Collapse
Affiliation(s)
| | - Shiladitya Banerjee
- Department of Physics, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, USA
| |
Collapse
|
12
|
Dornan AJ, Halberg KV, Beuter LK, Davies SA, Dow JAT. Compromised junctional integrity phenocopies age-dependent renal dysfunction in Drosophila Snakeskin mutants. J Cell Sci 2023; 136:jcs261118. [PMID: 37694602 PMCID: PMC10565245 DOI: 10.1242/jcs.261118] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Accepted: 09/05/2023] [Indexed: 09/12/2023] Open
Abstract
Transporting epithelia provide a protective barrier against pathogenic insults while allowing the controlled exchange of ions, solutes and water with the external environment. In invertebrates, these functions depend on formation and maintenance of 'tight' septate junctions (SJs). However, the mechanism by which SJs affect transport competence and tissue homeostasis, and how these are modulated by ageing, remain incompletely understood. Here, we demonstrate that the Drosophila renal (Malpighian) tubules undergo an age-dependent decline in secretory capacity, which correlates with mislocalisation of SJ proteins and progressive degeneration in cellular morphology and tissue homeostasis. Acute loss of the SJ protein Snakeskin in adult tubules induced progressive changes in cellular and tissue architecture, including altered expression and localisation of junctional proteins with concomitant loss of cell polarity and barrier integrity, demonstrating that compromised junctional integrity is sufficient to replicate these ageing-related phenotypes. Taken together, our work demonstrates a crucial link between epithelial barrier integrity, tubule transport competence, renal homeostasis and organismal viability, as well as providing novel insights into the mechanisms underpinning ageing and renal disease.
Collapse
Affiliation(s)
- Anthony J. Dornan
- School of Molecular Biosciences, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow G12 8QQ, UK
| | - Kenneth V. Halberg
- Section for Cell and Neurobiology, Department of Biology, University of Copenhagen, Universitetsparken 15, Copenhagen DK-2100, Denmark
| | - Liesa-Kristin Beuter
- School of Molecular Biosciences, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow G12 8QQ, UK
- Department of Animal Ecology and Systematics, Justus-Liebig-University Giessen, Giessen D-35392, Germany
| | - Shireen-Anne Davies
- School of Molecular Biosciences, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow G12 8QQ, UK
| | - Julian A. T. Dow
- School of Molecular Biosciences, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow G12 8QQ, UK
| |
Collapse
|
13
|
Lien JC, Wang YL. Cyclic stretching combined with cell-cell adhesion is sufficient for inducing cell intercalation. Biophys J 2023; 122:3146-3158. [PMID: 37408306 PMCID: PMC10432222 DOI: 10.1016/j.bpj.2023.06.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Revised: 02/09/2023] [Accepted: 06/23/2023] [Indexed: 07/07/2023] Open
Abstract
Although the important role of cell intercalation within a collective has long been recognized particularly for morphogenesis, the underlying mechanism remains poorly understood. Here we investigate the possibility that cellular responses to cyclic stretching play a major role in this process. By applying synchronized imaging and cyclic stretching to epithelial cells cultured on micropatterned polyacrylamide (PAA) substrates, we discovered that uniaxial cyclic stretching induces cell intercalation along with cell shape change and cell-cell interfacial remodeling. The process involved intermediate steps as previously reported for cell intercalation during embryonic morphogenesis, including the appearance of cell vertices, anisotropic vertex resolution, and directional expansion of cell-cell interface. Using mathematical modeling, we further found that cell shape change in conjunction with dynamic cell-cell adhesions was sufficient to account for the observations. Further investigation with small-molecule inhibitors indicated that disruption of myosin II activities suppressed cyclic stretching-induced intercalation while inhibiting the appearance of oriented vertices. Inhibition of Wnt signaling did not suppress stretch-induced cell shape change but disrupted cell intercalation and vertex resolution. Our results suggest that cyclic stretching, by inducing cell shape change and reorientation in the presence of dynamic cell-cell adhesions, can induce at least some aspects of cell intercalation and that this process is dependent in distinct ways on myosin II activities and Wnt signaling.
Collapse
Affiliation(s)
- Jui-Chien Lien
- Department of Biomedical Engineering, Carnegie Mellon University, Pittsburgh, Pennsylvania
| | - Yu-Li Wang
- Department of Biomedical Engineering, Carnegie Mellon University, Pittsburgh, Pennsylvania.
| |
Collapse
|
14
|
Kuebler CA, Paré AC. Striped Expression of Leucine-Rich Repeat Proteins Coordinates Cell Intercalation and Compartment Boundary Formation in the Early Drosophila Embryo. Symmetry (Basel) 2023; 15:1490. [PMID: 38650964 PMCID: PMC11034934 DOI: 10.3390/sym15081490] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/25/2024] Open
Abstract
Planar polarity is a commonly observed phenomenon in which proteins display a consistent asymmetry in their subcellular localization or activity across the plane of a tissue. During animal development, planar polarity is a fundamental mechanism for coordinating the behaviors of groups of cells to achieve anisotropic tissue remodeling, growth, and organization. Therefore, a primary focus of developmental biology research has been to understand the molecular mechanisms underlying planar polarity in a variety of systems to identify conserved principles of tissue organization. In the early Drosophila embryo, the germband neuroectoderm epithelium rapidly doubles in length along the anterior-posterior axis through a process known as convergent extension (CE); it also becomes subdivided into tandem tissue compartments through the formation of compartment boundaries (CBs). Both processes are dependent on the planar polarity of proteins involved in cellular tension and adhesion. The enrichment of actomyosin-based tension and adherens junction-based adhesion at specific cell-cell contacts is required for coordinated cell intercalation, which drives CE, and the creation of highly stable cell-cell contacts at CBs. Recent studies have revealed a system for rapid cellular polarization triggered by the expression of leucine-rich-repeat (LRR) cell-surface proteins in striped patterns. In particular, the non-uniform expression of Toll-2, Toll-6, Toll-8, and Tartan generates local cellular asymmetries that allow cells to distinguish between cell-cell contacts oriented parallel or perpendicular to the anterior-posterior axis. In this review, we discuss (1) the biomechanical underpinnings of CE and CB formation, (2) how the initial symmetry-breaking events of anterior-posterior patterning culminate in planar polarity, and (3) recent advances in understanding the molecular mechanisms downstream of LRR receptors that lead to planar polarized tension and junctional adhesion.
Collapse
Affiliation(s)
- Chloe A. Kuebler
- Department of Biological Sciences, University of Arkansas, Fayetteville, AR 72701, USA
| | - Adam C. Paré
- Department of Biological Sciences, University of Arkansas, Fayetteville, AR 72701, USA
| |
Collapse
|
15
|
Herrera-Perez RM, Cupo C, Allan C, Dagle AB, Kasza KE. Tissue flows are tuned by actomyosin-dependent mechanics in developing embryos. PRX LIFE 2023; 1:013004. [PMID: 38736460 PMCID: PMC11086709 DOI: 10.1103/prxlife.1.013004] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/14/2024]
Abstract
Rapid epithelial tissue flows are essential to building and shaping developing embryos. However, the mechanical properties of embryonic epithelial tissues and the factors that control these properties are not well understood. Actomyosin generates contractile tensions and contributes to the mechanical properties of cells and cytoskeletal networks in vitro, but it remains unclear how the levels and patterns of actomyosin activity contribute to embryonic epithelial tissue mechanics in vivo. To dissect the roles of cell-generated tensions in the mechanics of flowing epithelial tissues, we use optogenetic tools to manipulate actomyosin contractility with spatiotemporal precision in the Drosophila germband epithelium, which rapidly flows during body axis elongation. We find that manipulating actomyosin-dependent tensions by either optogenetic activation or deactivation of actomyosin alters the solid-fluid mechanical properties of the germband epithelium, leading to changes in cell rearrangements and tissue-level flows. Optogenetically activating actomyosin leads to increases in the overall level but decreases in the anisotropy of tension in the tissue, whereas optogenetically deactivating actomyosin leads to decreases in both the level and anisotropy of tension compared to in wild-type embryos. We find that optogenetically activating actomyosin results in more solid-like (less fluid-like) tissue properties, which is associated with reduced cell rearrangements and tissue flow compared to in wild-type embryos. Optogenetically deactivating actomyosin also results in more solid-like properties than in wild-type embryos but less solid-like properties compared to optogenetically activating actomyosin. Together, these findings indicate that increasing the overall tension level is associated with more solid-like properties in tissues that are relatively isotropic, whereas high tension anisotropy fluidizes the tissue. Our results reveal that epithelial tissue flows in developing embryos involve the coordinated actomyosin-dependent regulation of the mechanical properties of tissues and the tensions driving them to flow in order to achieve rapid tissue remodeling.
Collapse
Affiliation(s)
| | - Christian Cupo
- Department of Mechanical Engineering, Columbia University, New York, New York, 10027, USA
| | - Cole Allan
- Department of Mechanical Engineering, Columbia University, New York, New York, 10027, USA
| | - Alicia B Dagle
- Department of Mechanical Engineering, Columbia University, New York, New York, 10027, USA
| | - Karen E Kasza
- Department of Mechanical Engineering, Columbia University, New York, New York, 10027, USA
| |
Collapse
|
16
|
Rosa C, Malin J, Hatini V. Medioapical contractile pulses coordinated between cells regulate Drosophila eye morphogenesis. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.03.17.529936. [PMID: 36993651 PMCID: PMC10055172 DOI: 10.1101/2023.03.17.529936] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/19/2023]
Abstract
Lattice cells (LCs) in the developing Drosophila retina constantly move and change shape before attaining final forms. Previously we showed that repeated contraction and expansion of apical cell contacts affect these dynamics. Here we describe a second contributing factor, the assembly of a medioapical actomyosin ring composed of nodes linked by filaments that attract each other, fuse, and contract the LCs' apical area. This medioapical actomyosin network is dependent on Rho1 and its known effectors. Apical cell area contraction alternates with relaxation, generating pulsatile changes in apical cell area. Strikingly, cycles of contraction and relaxation of cell area are reciprocally synchronized between adjacent LCs. Further, in a genetic screen, we identified RhoGEF2 as an activator of these Rho1 functions and RhoGAP71E/C-GAP as an inhibitor. Thus, Rho1 signaling regulates pulsatile medioapical actomyosin contraction exerting force on neighboring cells, coordinating cell behavior across the epithelium. This ultimately serves to control cell shape and maintain tissue integrity during epithelial morphogenesis of the retina.
Collapse
|
17
|
Uechi H, Kuranaga E. Underlying mechanisms that ensure actomyosin-mediated directional remodeling of cell-cell contacts for multicellular movement: Tricellular junctions and negative feedback as new aspects underlying actomyosin-mediated directional epithelial morphogenesis: Tricellular junctions and negative feedback as new aspects underlying actomyosin-mediated directional epithelial morphogenesis. Bioessays 2023; 45:e2200211. [PMID: 36929512 DOI: 10.1002/bies.202200211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 02/27/2023] [Accepted: 03/01/2023] [Indexed: 03/18/2023]
Abstract
Actomyosin (actin-myosin II complex)-mediated contractile forces are central to the generation of multifaceted uni- and multi-cellular material properties and dynamics such as cell division, migration, and tissue morphogenesis. In the present article, we summarize our recent researches addressing molecular mechanisms that ensure actomyosin-mediated directional cell-cell junction remodeling, either shortening or extension, driving cell rearrangement for epithelial morphogenesis. Genetic perturbation clarified two points concerning cell-cell junction remodeling: an inhibitory mechanism against negative feedback in which actomyosin contractile forces, which are well known to induce cell-cell junction shortening, can concomitantly alter actin dynamics, oppositely leading to perturbation of the shortening; and tricellular junctions as a point that organizes extension of new cell-cell junctions after shortening. These findings highlight the notion that cells develop underpinning mechanisms to transform the multi-tasking property of actomyosin contractile forces into specific and proper cellular dynamics in space and time.
Collapse
Affiliation(s)
- Hiroyuki Uechi
- Laboratory for Histogenetic Dynamics, Graduate School of Life Sciences, Tohoku University, Sendai, Japan
| | - Erina Kuranaga
- Laboratory for Histogenetic Dynamics, Graduate School of Life Sciences, Tohoku University, Sendai, Japan
| |
Collapse
|
18
|
Sheppard L, Green DG, Lerchbaumer G, Rothenberg KE, Fernandez-Gonzalez R, Tepass U. The α-Catenin mechanosensing M region is required for cell adhesion during tissue morphogenesis. J Cell Biol 2023; 222:e202108091. [PMID: 36520419 PMCID: PMC9757846 DOI: 10.1083/jcb.202108091] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Revised: 09/08/2022] [Accepted: 11/18/2022] [Indexed: 12/23/2022] Open
Abstract
α-Catenin couples the cadherin-catenin complex to the actin cytoskeleton. The mechanosensitive α-Catenin M region undergoes conformational changes upon application of force to recruit interaction partners. Here, we took advantage of the tension landscape in the Drosophila embryo to define three different states of α-Catenin mechanosensing in support of cell adhesion. Low-, medium-, and high-tension contacts showed a corresponding recruitment of Vinculin and Ajuba, which was dependent on the α-Catenin M region. In contrast, the Afadin homolog Canoe acts in parallel to α-Catenin at bicellular low- and medium-tension junctions but requires an interaction with α-Catenin for its tension-sensitive enrichment at high-tension tricellular junctions. Individual M region domains make complex contributions to cell adhesion through their impact on interaction partner recruitment, and redundancies with the function of Canoe. Our data argue that α-Catenin and its interaction partners are part of a cooperative and partially redundant mechanoresponsive network that supports AJs remodeling during morphogenesis.
Collapse
Affiliation(s)
- Luka Sheppard
- Department of Cell and Systems Biology, University of Toronto, Toronto, Canada
| | - David G. Green
- Department of Cell and Systems Biology, University of Toronto, Toronto, Canada
| | - Gerald Lerchbaumer
- Department of Cell and Systems Biology, University of Toronto, Toronto, Canada
| | - Katheryn E. Rothenberg
- Institute of Biomedical Engineering, University of Toronto, Toronto, Canada
- Ted Rogers Centre for Heart Research, University of Toronto, Toronto, Canada
| | - Rodrigo Fernandez-Gonzalez
- Department of Cell and Systems Biology, University of Toronto, Toronto, Canada
- Institute of Biomedical Engineering, University of Toronto, Toronto, Canada
- Ted Rogers Centre for Heart Research, University of Toronto, Toronto, Canada
- Developmental and Stem Cell Biology Program, The Hospital for Sick Children, Toronto, Canada
| | - Ulrich Tepass
- Department of Cell and Systems Biology, University of Toronto, Toronto, Canada
| |
Collapse
|
19
|
Sonam S, Balasubramaniam L, Lin SZ, Ivan YMY, Jaumà IP, Jebane C, Karnat M, Toyama Y, Marcq P, Prost J, Mège RM, Rupprecht JF, Ladoux B. Mechanical stress driven by rigidity sensing governs epithelial stability. NATURE PHYSICS 2023; 19:132-141. [PMID: 36686215 PMCID: PMC7614076 DOI: 10.1038/s41567-022-01826-2] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
Epithelia act as a barrier against environmental stress and abrasion and in vivo they are continuously exposed to environments of various mechanical properties. The impact of this environment on epithelial integrity remains elusive. By culturing epithelial cells on 2D hydrogels, we observe a loss of epithelial monolayer integrity through spontaneous hole formation when grown on soft substrates. Substrate stiffness triggers an unanticipated mechanical switch of epithelial monolayers from tensile on soft to compressive on stiff substrates. Through active nematic modelling, we find that spontaneous half-integer defect formation underpinning large isotropic stress fluctuations initiate hole opening events. Our data show that monolayer rupture due to high tensile stress is promoted by the weakening of cell-cell junctions that could be induced by cell division events or local cellular stretching. Our results show that substrate stiffness provides feedback on monolayer mechanical state and that topological defects can trigger stochastic mechanical failure, with potential application towards a mechanistic understanding of compromised epithelial integrity during immune response and morphogenesis.
Collapse
Affiliation(s)
- Surabhi Sonam
- Université de Paris, CNRS, Institut Jacques Monod, F-75006 Paris, France
| | | | - Shao-Zhen Lin
- Aix Marseille Univ, Université de Toulon, CNRS, CPT, Turing Center for Living Systems, Marseille, France
| | | | - Irina Pi Jaumà
- Université de Paris, CNRS, Institut Jacques Monod, F-75006 Paris, France
| | - Cecile Jebane
- Université de Paris, CNRS, Institut Jacques Monod, F-75006 Paris, France
| | - Marc Karnat
- Aix Marseille Univ, Université de Toulon, CNRS, CPT, Turing Center for Living Systems, Marseille, France
| | - Yusuke Toyama
- Mechanobiology Institute, National University of Singapore, Singapore
- Department of Biological Sciences, National University of Singapore, Singapore
| | - Philippe Marcq
- Physique et Mécanique des Milieux Hétérogènes, CNRS, ESPCI Paris, PSL University, Sorbonne Université, Université de Paris, 75005, Paris, France
| | - Jacques Prost
- Mechanobiology Institute, National University of Singapore, Singapore
- Physico-Chimie Curie, Institut Curie, CNRS UMR 168, Paris, France
| | - René-Marc Mège
- Université de Paris, CNRS, Institut Jacques Monod, F-75006 Paris, France
| | - Jean-François Rupprecht
- Aix Marseille Univ, Université de Toulon, CNRS, CPT, Turing Center for Living Systems, Marseille, France
- Corresponding authors Dr. Benoit Ladoux, , Dr. Jean-François Rupprecht,
| | - Benoît Ladoux
- Université de Paris, CNRS, Institut Jacques Monod, F-75006 Paris, France
- Corresponding authors Dr. Benoit Ladoux, , Dr. Jean-François Rupprecht,
| |
Collapse
|
20
|
Vanderleest TE, Xie Y, Smits C, Blankenship JT, Loerke D. Interface extension is a continuum property suggesting a linkage between AP contractile and DV lengthening processes. Mol Biol Cell 2022; 33:ar142. [PMID: 36129772 PMCID: PMC9727811 DOI: 10.1091/mbc.e21-07-0352] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
In the early Drosophila embryo, the elongation of the anterior-posterior (AP) body axis is driven by cell intercalation in the germband epithelium. Neighboring cells intercalate through the contraction of AP interfaces (between AP neighbors) into higher-order vertices, which then resolve through the extension of new dorsal-ventral (DV) interfaces (between DV neighbors). Although interface contraction has been extensively studied, less is known about how new interfaces are established. Here we show that DV interface elongation behaviors initiate at the same time as AP contractions, and that DV interfaces which are newly created from resolution of higher-order vertices do not appear to possess a unique 'identity;' instead, all horizontal interfaces undergo lengthening, elongating through ratchetlike sliding behaviors analogous to those found in AP interfaces. Cortical F-actin networks are essential for high area oscillation amplitudes required for effective ratcheting. Our results suggest that, contrary to canonical models, the elongation of new DV interfaces is not produced by a mechanistically separate process. Instead, medial myosin populations drive oscillating radial forces in the cells to generate transient force asymmetries at all tricellular vertices, which-combined with planar polarized stabilization-produce directional ratcheted sliding to generate both AP interface contraction and DV interface elongation.
Collapse
Affiliation(s)
| | - Yi Xie
- Department of Biological Sciences, University of Denver, Denver, CO 80208
| | - Celia Smits
- Department of Biological Sciences, University of Denver, Denver, CO 80208
| | - J. Todd Blankenship
- Department of Biological Sciences, University of Denver, Denver, CO 80208,*Address correspondence to: Dinah Loerke (); Todd Blankenship ()
| | - Dinah Loerke
- Department of Physics and Astronomy, University of Denver, Denver, CO 80208,*Address correspondence to: Dinah Loerke (); Todd Blankenship ()
| |
Collapse
|
21
|
Patil LS, Varner VD. Toward Measuring the Mechanical Stresses Exerted by Branching Embryonic Airway Epithelial Explants in 3D Matrices of Matrigel. Ann Biomed Eng 2022; 50:1143-1157. [PMID: 35718813 PMCID: PMC9590229 DOI: 10.1007/s10439-022-02989-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Accepted: 06/03/2022] [Indexed: 11/01/2022]
Abstract
Numerous organs in the bodies of animals, including the lung, kidney, and mammary gland, contain ramified networks of epithelial tubes. These structures arise during development via a process known as branching morphogenesis. Previous studies have shown that mechanical forces directly impact this process, but the patterns of mechanical stress exerted by branching embryonic epithelia are not well understood. This is, in part, owing to a lack of experimental tools. Traditional traction force microscopy assays rely on the use of compliant hydrogels with well-defined mechanical properties. Isolated embryonic epithelial explants, however, have only been shown to branch in three-dimensional matrices of reconstituted basement membrane protein, or Matrigel, a biomaterial with poorly characterized mechanical behavior, especially in the regime of large deformations. Here, to compute the traction stresses generated by branching epithelial explants, we quantified the finite-deformation constitutive behavior of gels of reconstituted basement membrane protein subjected to multi-axial mechanical loads. We then modified the mesenchyme-free assay for the ex vivo culture of isolated embryonic airway epithelial explants by suspending fluorescent microspheres within the surrounding gel and tracking their motion during culture. Surprisingly, the tracked bead motion was non-zero in regions of the gel far away from the explants, suggestive of passive swelling deformations within the matrix. To compute accurate traction stresses, these swelling deformations must be decomposed from those generated by the branching explants. We thus tracked the motion of beads suspended within cell-free matrices and quantified spatiotemporal patterns of gel swelling. Taken together, these passive swelling data can be combined with the measured mechanical properties of the gel to compute the traction forces exerted by intact embryonic epithelial explants.
Collapse
Affiliation(s)
- Lokesh S Patil
- Department of Bioengineering, University of Texas at Dallas, Richardson, TX, USA
| | - Victor D Varner
- Department of Bioengineering, University of Texas at Dallas, Richardson, TX, USA.
- Department of Surgery, UT Southwestern Medical Center, Dallas, TX, USA.
| |
Collapse
|
22
|
Fu C, Arora A, Engl W, Sheetz M, Viasnoff V. Cooperative regulation of adherens junction expansion through Epidermal Growth Factor Receptor (EGFR) activation. J Cell Sci 2022; 135:274477. [DOI: 10.1242/jcs.258929] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Accepted: 01/12/2022] [Indexed: 11/20/2022] Open
Abstract
The mechanisms controlling the dynamics of expansion of adherens junctions are significantly less understood than those controlling their static properties. Here, we report that for suspended cell aggregates, the time to form a new junction between two cells speeds up with the number of junctions that the cells are already engaged in. Upon junction formation, the activation of the Epidermal Growth Factor Receptor (EGFR) distally affects the actin turnover dynamics of the cell-free cortex. The “primed” actin cortex results in a faster expansion of the subsequent new junctions. In such aggregates, we show that this mechanism results in a cooperative acceleration of the junction expansion dynamics (kinetype) but leaves the cell contractility, and hence the final junction size (phenotype), unaltered.
Collapse
Affiliation(s)
- Chaoyu Fu
- Mechanobiology Institute, National University of Singapore, Singapore, Singapore
| | - Aditya Arora
- Mechanobiology Institute, National University of Singapore, Singapore, Singapore
| | - Wilfried Engl
- Mechanobiology Institute, National University of Singapore, Singapore, Singapore
| | - Michael Sheetz
- Mechanobiology Institute, National University of Singapore, Singapore, Singapore
- Biochemistry and Molecular Biology Department, University of Texas Medical Branch, Galveston, Texas, USA
| | - Virgile Viasnoff
- Mechanobiology Institute, National University of Singapore, Singapore, Singapore
- CNRS Biomechanics of Cell Contacts, Singapore, Singapore
- Department of Biological Sciences, National University of Singapore, Singapore, Singapore
| |
Collapse
|
23
|
Herrera-Perez RM, Cupo C, Allan C, Lin A, Kasza KE. Using optogenetics to link myosin patterns to contractile cell behaviors during convergent extension. Biophys J 2021; 120:4214-4229. [PMID: 34293302 DOI: 10.1016/j.bpj.2021.06.041] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Revised: 05/03/2021] [Accepted: 06/02/2021] [Indexed: 10/24/2022] Open
Abstract
Distinct patterns of actomyosin contractility are often associated with particular epithelial tissue shape changes during development. For example, a planar-polarized pattern of myosin II localization regulated by Rho1 signaling during Drosophila body axis elongation is thought to drive cell behaviors that contribute to convergent extension. However, it is not well understood how specific aspects of a myosin pattern influence the multiple cell behaviors, including cell intercalation, cell shape changes, and apical cell area fluctuations, that simultaneously occur during morphogenesis. Here, we developed two optogenetic tools, optoGEF and optoGAP, to activate or deactivate Rho1 signaling, respectively. We used these tools to manipulate myosin patterns at the apical side of the germband epithelium during Drosophila axis elongation and analyzed the effects on contractile cell behaviors. We show that uniform activation or inactivation of Rho1 signaling across the apical surface of the germband is sufficient to disrupt the planar-polarized pattern of myosin at cell junctions on the timescale of 3-5 min, leading to distinct changes in junctional and medial myosin patterns in optoGEF and optoGAP embryos. These two perturbations to Rho1 activity both disrupt axis elongation and cell intercalation but have distinct effects on cell area fluctuations and cell packings that are linked with changes in the medial and junctional myosin pools. These studies demonstrate that acute optogenetic perturbations to Rho1 activity are sufficient to rapidly override the endogenous planar-polarized myosin pattern in the germband during axis elongation. Moreover, our results reveal that the levels of Rho1 activity and the balance between medial and junctional myosin play key roles not only in organizing the cell rearrangements that are known to directly contribute to axis elongation but also in regulating cell area fluctuations and cell packings, which have been proposed to be important factors influencing the mechanics of tissue deformation and flow.
Collapse
Affiliation(s)
| | - Christian Cupo
- Department of Mechanical Engineering, Columbia University, New York, New York
| | - Cole Allan
- Department of Mechanical Engineering, Columbia University, New York, New York
| | - Annie Lin
- Department of Mechanical Engineering, Columbia University, New York, New York
| | - Karen E Kasza
- Department of Mechanical Engineering, Columbia University, New York, New York.
| |
Collapse
|
24
|
Gorfinkiel N, Martinez Arias A. The cell in the age of the genomic revolution: Cell Regulatory Networks. Cells Dev 2021; 168:203720. [PMID: 34252599 DOI: 10.1016/j.cdev.2021.203720] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2021] [Revised: 07/05/2021] [Accepted: 07/07/2021] [Indexed: 12/30/2022]
Abstract
Over the last few years an intense activity in the areas of advanced microscopy and quantitative cell biology has put the focus on the morphogenetic events that shape embryos. The interest in these processes is taking place against the backdrop of genomic studies, particularly of global patterns of gene expression at the level of single cells, which cannot fully account for the way cells build tissues and organs. Here we discuss the need to integrate the activity of genes with that of cells and propose the need to develop a framework, based on cellular processes and cell interactions, that parallels that which has been created for gene activity in the form of Gene Regulatory Networks (GRNs). We begin to do this by suggesting elements for building Cell Regulatory Networks (CRNs). In the same manner that GRNs create schedules of gene expression that result in the emergence of cell fates over time, CRNs create tissues and organs i.e. space. We also suggest how GRNs and CRNs might interact in the building of embryos through feedback loops involving mechanics and tissue tectonics.
Collapse
Affiliation(s)
- Nicole Gorfinkiel
- Departamento de Genética, Fisiología y Microbiología, Facultad de CC Biológicas, Universidad Complutense, José Antonio Nováis 12, Madrid, Spain.
| | - Alfonso Martinez Arias
- Systems Bioengineering, DCEXS, Universidad Pompeu Fabra, ICREA (Institució Catalana de Recerca i Estudis Avançats), Doctor Aiguader 88, Pg. Lluís Companys 23, Barcelona, Spain.
| |
Collapse
|
25
|
Johnson RI. Hexagonal patterning of the Drosophila eye. Dev Biol 2021; 478:173-182. [PMID: 34245727 DOI: 10.1016/j.ydbio.2021.07.004] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2021] [Revised: 07/04/2021] [Accepted: 07/06/2021] [Indexed: 10/24/2022]
Abstract
A complex network of transcription factor interactions propagates across the larval eye disc to establish columns of evenly-spaced R8 precursor cells, the founding cells of Drosophila ommatidia. After the recruitment of additional photoreceptors to each ommatidium, the surrounding cells are organized into their stereotypical pattern during pupal development. These support cells - comprised of pigment and cone cells - are patterned to encapsulate the photoreceptors and separate ommatidia with an hexagonal honeycomb lattice. Since the proteins and processes essential for correct eye patterning are conserved, elucidating how these function and change during Drosophila eye patterning can substantially advance our understanding of transcription factor and signaling networks, cytoskeletal structures, adhesion complexes, and the biophysical properties of complex tissues during their morphogenesis. Our understanding of many of these aspects of Drosophila eye patterning is largely descriptive. Many important questions, especially relating to the regulation and integration of cellular events, remain.
Collapse
Affiliation(s)
- Ruth I Johnson
- Biology Department, Wesleyan University, 52 Lawn Avenue, Middletown, CT, USA.
| |
Collapse
|
26
|
Microenvironmental innate immune signaling and cell mechanical responses promote tumor growth. Dev Cell 2021; 56:1884-1899.e5. [PMID: 34197724 DOI: 10.1016/j.devcel.2021.06.007] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2020] [Revised: 05/01/2021] [Accepted: 06/09/2021] [Indexed: 01/08/2023]
Abstract
Tissue homeostasis is achieved by balancing stem cell maintenance, cell proliferation and differentiation, as well as the purging of damaged cells. Elimination of unfit cells maintains tissue health; however, the underlying mechanisms driving competitive growth when homeostasis fails, for example, during tumorigenesis, remain largely unresolved. Here, using a Drosophila intestinal model, we find that tumor cells outcompete nearby enterocytes (ECs) by influencing cell adhesion and contractility. This process relies on activating the immune-responsive Relish/NF-κB pathway to induce EC delamination and requires a JNK-dependent transcriptional upregulation of the peptidoglycan recognition protein PGRP-LA. Consequently, in organisms with impaired PGRP-LA function, tumor growth is delayed and lifespan extended. Our study identifies a non-cell-autonomous role for a JNK/PGRP-LA/Relish signaling axis in mediating death of neighboring normal cells to facilitate tumor growth. We propose that intestinal tumors "hijack" innate immune signaling to eliminate enterocytes in order to support their own growth.
Collapse
|
27
|
Chowdhury F, Huang B, Wang N. Cytoskeletal prestress: The cellular hallmark in mechanobiology and mechanomedicine. Cytoskeleton (Hoboken) 2021; 78:249-276. [PMID: 33754478 PMCID: PMC8518377 DOI: 10.1002/cm.21658] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Revised: 03/16/2021] [Accepted: 03/17/2021] [Indexed: 12/13/2022]
Abstract
Increasing evidence demonstrates that mechanical forces, in addition to soluble molecules, impact cell and tissue functions in physiology and diseases. How living cells integrate mechanical signals to perform appropriate biological functions is an area of intense investigation. Here, we review the evidence of the central role of cytoskeletal prestress in mechanotransduction and mechanobiology. Elevating cytoskeletal prestress increases cell stiffness and reinforces cell stiffening, facilitates long-range cytoplasmic mechanotransduction via integrins, enables direct chromatin stretching and rapid gene expression, spurs embryonic development and stem cell differentiation, and boosts immune cell activation and killing of tumor cells whereas lowering cytoskeletal prestress maintains embryonic stem cell pluripotency, promotes tumorigenesis and metastasis of stem cell-like malignant tumor-repopulating cells, and elevates drug delivery efficiency of soft-tumor-cell-derived microparticles. The overwhelming evidence suggests that the cytoskeletal prestress is the governing principle and the cellular hallmark in mechanobiology. The application of mechanobiology to medicine (mechanomedicine) is rapidly emerging and may help advance human health and improve diagnostics, treatment, and therapeutics of diseases.
Collapse
Affiliation(s)
- Farhan Chowdhury
- Department of Mechanical Engineering and Energy ProcessesSouthern Illinois University CarbondaleCarbondaleIllinoisUSA
| | - Bo Huang
- Department of Immunology, Institute of Basic Medical Sciences & State Key Laboratory of Medical Molecular BiologyChinese Academy of Medical Sciences and Peking Union Medical CollegeBeijingChina
| | - Ning Wang
- Department of Mechanical Science and EngineeringUniversity of Illinois at Urbana‐ChampaignUrbanaIllinoisUSA
| |
Collapse
|
28
|
Abstract
The generation of organismal form - morphogenesis - arises from forces produced at the cellular level. In animal cells, much of this force is produced by the actin cytoskeleton. Here, we review how mechanisms of actin-based force generation are deployed during animal morphogenesis to sculpt organs and organisms. Furthermore, we consider how cytoskeletal forces are coupled through cell adhesions to propagate across tissues, and discuss cases where cytoskeletal force or adhesion is patterned across a tissue to direct shape changes. Together, our review provides a conceptual framework that reflects our current understanding of animal morphogenesis and gives perspectives on future opportunities for study.
Collapse
Affiliation(s)
- D Nathaniel Clarke
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02142, USA
| | - Adam C Martin
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02142, USA.
| |
Collapse
|
29
|
A two-tier junctional mechanism drives simultaneous tissue folding and extension. Dev Cell 2021; 56:1469-1483.e5. [PMID: 33891900 DOI: 10.1016/j.devcel.2021.04.003] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Revised: 02/18/2021] [Accepted: 03/31/2021] [Indexed: 11/20/2022]
Abstract
During embryo development, tissues often undergo multiple concomitant changes in shape. It is unclear which signaling pathways and cellular mechanisms are responsible for multiple simultaneous tissue shape transformations. We focus on the process of concomitant tissue folding and extension that is key during gastrulation and neurulation. We use the Drosophila embryo as model system and focus on the process of mesoderm invagination. Here, we show that the prospective mesoderm simultaneously folds and extends. We report that mesoderm cells, under the control of anterior-posterior and dorsal-ventral gene patterning synergy, establish two sets of adherens junctions at different apical-basal positions with specialized functions: while apical junctions drive apical constriction initiating tissue bending, lateral junctions concomitantly drive polarized cell intercalation, resulting in tissue convergence-extension. Thus, epithelial cells devise multiple specialized junctional sets that drive composite morphogenetic processes under the synergistic control of apparently orthogonal signaling sources.
Collapse
|
30
|
Collinet C, Lecuit T. Programmed and self-organized flow of information during morphogenesis. Nat Rev Mol Cell Biol 2021; 22:245-265. [PMID: 33483696 DOI: 10.1038/s41580-020-00318-6] [Citation(s) in RCA: 154] [Impact Index Per Article: 38.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/13/2020] [Indexed: 11/09/2022]
Abstract
How the shape of embryos and organs emerges during development is a fundamental question that has fascinated scientists for centuries. Tissue dynamics arise from a small set of cell behaviours, including shape changes, cell contact remodelling, cell migration, cell division and cell extrusion. These behaviours require control over cell mechanics, namely active stresses associated with protrusive, contractile and adhesive forces, and hydrostatic pressure, as well as material properties of cells that dictate how cells respond to active stresses. In this Review, we address how cell mechanics and the associated cell behaviours are robustly organized in space and time during tissue morphogenesis. We first outline how not only gene expression and the resulting biochemical cues, but also mechanics and geometry act as sources of morphogenetic information to ultimately define the time and length scales of the cell behaviours driving morphogenesis. Next, we present two idealized modes of how this information flows - how it is read out and translated into a biological effect - during morphogenesis. The first, akin to a programme, follows deterministic rules and is hierarchical. The second follows the principles of self-organization, which rests on statistical rules characterizing the system's composition and configuration, local interactions and feedback. We discuss the contribution of these two modes to the mechanisms of four very general classes of tissue deformation, namely tissue folding and invagination, tissue flow and extension, tissue hollowing and, finally, tissue branching. Overall, we suggest a conceptual framework for understanding morphogenetic information that encapsulates genetics and biochemistry as well as mechanics and geometry as information modules, and the interplay of deterministic and self-organized mechanisms of their deployment, thereby diverging considerably from the traditional notion that shape is fully encoded and determined by genes.
Collapse
Affiliation(s)
- Claudio Collinet
- Aix-Marseille Université & CNRS, IBDM - UMR7288 & Turing Centre for Living Systems, Campus de Luminy Case 907, Marseille, France
| | - Thomas Lecuit
- Aix-Marseille Université & CNRS, IBDM - UMR7288 & Turing Centre for Living Systems, Campus de Luminy Case 907, Marseille, France. .,Collège de France, Paris, France.
| |
Collapse
|
31
|
Tsata V, Beis D. In Full Force. Mechanotransduction and Morphogenesis during Homeostasis and Tissue Regeneration. J Cardiovasc Dev Dis 2020; 7:jcdd7040040. [PMID: 33019569 PMCID: PMC7711708 DOI: 10.3390/jcdd7040040] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Revised: 09/17/2020] [Accepted: 09/25/2020] [Indexed: 12/21/2022] Open
Abstract
The interactions of form and function have been the focus of numerous studies in the context of development and more recently regeneration. Our understanding on how cells, tissues and organs sense and interpret external cues, such as mechanical forces, is becoming deeper as novel techniques in imaging are applied and the relevant signaling pathways emerge. These cellular responses can be found from bacteria to all multicellular organisms such as plants and animals. In this review, we focus on hemodynamic flow and endothelial shear stress during cardiovascular development and regeneration, where the interactions of morphogenesis and proper function are more prominent. In addition, we address the recent literature on the role of extracellular matrix and fibrotic response during tissue repair and regeneration. Finally, we refer to examples where the integration of multi-disciplinary approaches to understand the biomechanics of cellular responses could be utilized in novel medical applications.
Collapse
Affiliation(s)
- Vasiliki Tsata
- Correspondence: (V.T.); (D.B.); Tel.: +3021-0659-7439 (V.T. & D.B.)
| | - Dimitris Beis
- Correspondence: (V.T.); (D.B.); Tel.: +3021-0659-7439 (V.T. & D.B.)
| |
Collapse
|
32
|
Perez-Vale KZ, Peifer M. Orchestrating morphogenesis: building the body plan by cell shape changes and movements. Development 2020; 147:dev191049. [PMID: 32917667 PMCID: PMC7502592 DOI: 10.1242/dev.191049] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
During embryonic development, a simple ball of cells re-shapes itself into the elaborate body plan of an animal. This requires dramatic cell shape changes and cell movements, powered by the contractile force generated by actin and myosin linked to the plasma membrane at cell-cell and cell-matrix junctions. Here, we review three morphogenetic events common to most animals: apical constriction, convergent extension and collective cell migration. Using the fruit fly Drosophila as an example, we discuss recent work that has revealed exciting new insights into the molecular mechanisms that allow cells to change shape and move without tearing tissues apart. We also point out parallel events at work in other animals, which suggest that the mechanisms underlying these morphogenetic processes are conserved.
Collapse
Affiliation(s)
- Kia Z Perez-Vale
- Curriculum in Genetics and Molecular Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Mark Peifer
- Curriculum in Genetics and Molecular Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
- Department of Biology, University of North Carolina at Chapel Hill, CB#3280, Chapel Hill, NC 27599-3280, USA
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| |
Collapse
|
33
|
Miao H, Blankenship JT. The pulse of morphogenesis: actomyosin dynamics and regulation in epithelia. Development 2020; 147:dev186502. [PMID: 32878903 PMCID: PMC7490518 DOI: 10.1242/dev.186502] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Actomyosin networks are some of the most crucial force-generating components present in developing tissues. The contractile forces generated by these networks are harnessed during morphogenesis to drive various cell and tissue reshaping events. Recent studies of these processes have advanced rapidly, providing us with insights into how these networks are initiated, positioned and regulated, and how they act via individual contractile pulses and/or the formation of supracellular cables. Here, we review these studies and discuss the mechanisms that underlie the construction and turnover of such networks and structures. Furthermore, we provide an overview of how ratcheted processivity emerges from pulsed events, and how tissue-level mechanics are the coordinated output of many individual cellular behaviors.
Collapse
Affiliation(s)
- Hui Miao
- Department of Biological Sciences, Molecular and Cellular Biophysics Program, University of Denver, Denver, CO 80208, USA
| | - J Todd Blankenship
- Department of Biological Sciences, Molecular and Cellular Biophysics Program, University of Denver, Denver, CO 80208, USA
| |
Collapse
|
34
|
Abstract
Cell intercalation is a key topological transformation driving tissue morphogenesis, homeostasis and diseases such as cancer cell invasion. In recent years, much work has been undertaken to better elucidate the fundamental mechanisms controlling intercalation. Cells often use protrusions to propel themselves in between cell neighbours, resulting in topology changes. Nevertheless, in simple epithelial tissues, formed by a single layer of densely packed prism-shaped cells, topology change takes place in an astonishing fashion: cells exchange neighbours medio-laterally by conserving their apical-basal architecture and by maintaining an intact epithelial layer. Medio-lateral cell intercalation in simple epithelia is thus an exemplary case of both robustness and plasticity. Interestingly, in simple epithelia, cells use a combinatory set of mechanisms to ensure a topological transformation at the apical and basal sides. This article is part of the discussion meeting issue 'Contemporary morphogenesis'.
Collapse
Affiliation(s)
- Matteo Rauzi
- Université Côte d'Azur, CNRS, Inserm, iBV, Nice, France
| |
Collapse
|
35
|
Greig J, Bulgakova NA. Interplay between actomyosin and E-cadherin dynamics regulates cell shape in the Drosophila embryonic epidermis. J Cell Sci 2020; 133:jcs242321. [PMID: 32665321 DOI: 10.1242/jcs.242321] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2019] [Accepted: 07/01/2020] [Indexed: 01/03/2023] Open
Abstract
Precise regulation of cell shape is vital for building functional tissues. Here, we study the mechanisms that lead to the formation of highly elongated anisotropic epithelial cells in the Drosophila epidermis. We demonstrate that this cell shape is the result of two counteracting mechanisms at the cell surface that regulate the degree of elongation: actomyosin, which inhibits cell elongation downstream of RhoA (Rho1 in Drosophila) and intercellular adhesion, modulated via clathrin-mediated endocytosis of E-cadherin (encoded by shotgun in flies), which promotes cell elongation downstream of the GTPase Arf1 (Arf79F in Drosophila). We show that these two mechanisms do not act independently but are interconnected, with RhoA signalling reducing Arf1 recruitment to the plasma membrane. Additionally, cell adhesion itself regulates both mechanisms - p120-catenin, a regulator of intercellular adhesion, promotes the activity of both Arf1 and RhoA. Altogether, we uncover a complex network of interactions between cell-cell adhesion, the endocytic machinery and the actomyosin cortex, and demonstrate how this network regulates cell shape in an epithelial tissue in vivo.
Collapse
Affiliation(s)
- Joshua Greig
- Department of Biomedical Science and Bateson Centre, The University of Sheffield, Sheffield S10 2TN, UK
| | - Natalia A Bulgakova
- Department of Biomedical Science and Bateson Centre, The University of Sheffield, Sheffield S10 2TN, UK
| |
Collapse
|
36
|
Cavanaugh KE, Staddon MF, Banerjee S, Gardel ML. Adaptive viscoelasticity of epithelial cell junctions: from models to methods. Curr Opin Genet Dev 2020; 63:86-94. [PMID: 32604032 PMCID: PMC7483996 DOI: 10.1016/j.gde.2020.05.018] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Revised: 05/14/2020] [Accepted: 05/16/2020] [Indexed: 12/12/2022]
Abstract
Epithelial morphogenesis relies on constituent cells' ability to finely tune their mechanical properties. Resulting elastic-like and viscous-like behaviors arise from mechanochemical signaling coordinated spatiotemporally at cell-cell interfaces. Direct measurement of junction rheology can mechanistically dissect mechanical deformations and their molecular origins. However, the physical basis of junction viscoelasticity has only recently become experimentally tractable. Pioneering studies have uncovered exciting findings on the nature of contractile forces and junction deformations, inspiring a fundamentally new way of understanding morphogenesis. Here, we discuss novel techniques that directly test junctional mechanics and describe the relevant Vertex Models, and adaptations thereof, capturing these data. We then present the concept of adaptive tissue viscoelasticity, revealed by optogenetic junction manipulation. Finally, we offer future perspectives on this rapidly evolving field describing the material basis of tissue morphogenesis.
Collapse
Affiliation(s)
- Kate E Cavanaugh
- Department of Molecular Genetics and Cell Biology, University of Chicago, Chicago, IL 60637, USA; Committee on Development, Regeneration and Stem Cell Biology, University of Chicago, Chicago, IL 60637, USA
| | - Michael F Staddon
- Department of Physics and Astronomy, and Institute for the Physics of Living Systems, University College London, London WC1E 6BT, United Kingdom
| | - Shiladitya Banerjee
- Department of Physics, Carnegie Mellon University, Pittsburgh, PA 15213, USA
| | - Margaret L Gardel
- Institute for Biophysical Dynamics, University of Chicago, Chicago 60637 IL, USA; James Franck Institute, and Department ofPhysics, University of Chicago, Chicago 60637 IL, USA.
| |
Collapse
|
37
|
Stern T, Shvartsman SY, Wieschaus EF. Template-based mapping of dynamic motifs in tissue morphogenesis. PLoS Comput Biol 2020; 16:e1008049. [PMID: 32822341 PMCID: PMC7442231 DOI: 10.1371/journal.pcbi.1008049] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2019] [Accepted: 06/12/2020] [Indexed: 12/18/2022] Open
Abstract
Tissue morphogenesis relies on repeated use of dynamic behaviors at the levels of intracellular structures, individual cells, and cell groups. Rapidly accumulating live imaging datasets make it increasingly important to formalize and automate the task of mapping recurrent dynamic behaviors (motifs), as it is done in speech recognition and other data mining applications. Here, we present a "template-based search" approach for accurate mapping of sub- to multi-cellular morphogenetic motifs using a time series data mining framework. We formulated the task of motif mapping as a subsequence matching problem and solved it using dynamic time warping, while relying on high throughput graph-theoretic algorithms for efficient exploration of the search space. This formulation allows our algorithm to accurately identify the complete duration of each instance and automatically label different stages throughout its progress, such as cell cycle phases during cell division. To illustrate our approach, we mapped cell intercalations during germband extension in the early Drosophila embryo. Our framework enabled statistical analysis of intercalary cell behaviors in wild-type and mutant embryos, comparison of temporal dynamics in contracting and growing junctions in different genotypes, and the identification of a novel mode of iterative cell intercalation. Our formulation of tissue morphogenesis using time series opens new avenues for systematic decomposition of tissue morphogenesis.
Collapse
Affiliation(s)
- Tomer Stern
- Department of Molecular Biology, Princeton University, Princeton, New Jersey, United States of America
- Department of Chemical and Biological Engineering, Princeton University, Princeton, New Jersey, United States of America
| | - Stanislav Y. Shvartsman
- Department of Chemical and Biological Engineering, Princeton University, Princeton, New Jersey, United States of America
- The Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, New Jersey, United States of America
- Center for Computational Biology, Flatiron Institute - Simons Foundation, New York, United States of America
| | - Eric F. Wieschaus
- Department of Molecular Biology, Princeton University, Princeton, New Jersey, United States of America
- The Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, New Jersey, United States of America
| |
Collapse
|
38
|
Gheisari E, Aakhte M, Müller HAJ. Gastrulation in Drosophila melanogaster: Genetic control, cellular basis and biomechanics. Mech Dev 2020; 163:103629. [PMID: 32615151 DOI: 10.1016/j.mod.2020.103629] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2020] [Revised: 06/08/2020] [Accepted: 06/24/2020] [Indexed: 01/31/2023]
Abstract
Gastrulation is generally understood as the morphogenetic processes that result in the spatial organization of the blastomere into the three germ layers, ectoderm, mesoderm and endoderm. This review summarizes our current knowledge of the morphogenetic mechanisms in Drosophila gastrulation. In addition to the events that drive mesoderm invagination and germband elongation, we pay particular attention to other, less well-known mechanisms including midgut invagination, cephalic furrow formation, dorsal fold formation, and mesoderm layer formation. This review covers topics ranging from the identification and functional characterization of developmental and morphogenetic control genes to the analysis of the physical properties of cells and tissues and the control of cell and tissue mechanics of the morphogenetic movements in the gastrula.
Collapse
Affiliation(s)
- Elham Gheisari
- Institute for Biology, Dept. Developmental Genetics, University of Kassel, Germany
| | - Mostafa Aakhte
- Institute for Biology, Dept. Developmental Genetics, University of Kassel, Germany
| | - H-Arno J Müller
- Institute for Biology, Dept. Developmental Genetics, University of Kassel, Germany.
| |
Collapse
|
39
|
Herrera-Perez RM, Kasza KE. Manipulating the Patterns of Mechanical Forces That Shape Multicellular Tissues. Physiology (Bethesda) 2020; 34:381-391. [PMID: 31577169 DOI: 10.1152/physiol.00018.2019] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
During embryonic development, spatial and temporal patterns of mechanical forces help to transform unstructured groups of cells into complex, functional tissue architectures. Here, we review emerging approaches to manipulate these patterns of forces to investigate the mechanical mechanisms that shape multicellular tissues, with a focus on recent experimental studies of epithelial tissue sheets in the embryo of the model organism Drosophila melanogaster.
Collapse
Affiliation(s)
| | - Karen E Kasza
- Department of Mechanical Engineering, Columbia University, New York, New York
| |
Collapse
|
40
|
Serrano Nájera G, Weijer CJ. Cellular processes driving gastrulation in the avian embryo. Mech Dev 2020; 163:103624. [PMID: 32562871 PMCID: PMC7511600 DOI: 10.1016/j.mod.2020.103624] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2020] [Revised: 05/18/2020] [Accepted: 05/28/2020] [Indexed: 01/18/2023]
Abstract
Gastrulation consists in the dramatic reorganisation of the epiblast, a one-cell thick epithelial sheet, into a multilayered embryo. In chick, the formation of the internal layers requires the generation of a macroscopic convection-like flow, which involves up to 50,000 epithelial cells in the epiblast. These cell movements locate the mesendoderm precursors into the midline of the epiblast to form the primitive streak. There they acquire a mesenchymal phenotype, ingress into the embryo and migrate outward to populate the inner embryonic layers. This review covers what is currently understood about how cell behaviours ultimately cause these morphogenetic events and how they are regulated. We discuss 1) how the biochemical patterning of the embryo before gastrulation creates compartments of differential cell behaviours, 2) how the global epithelial flows arise from the coordinated actions of individual cells, 3) how the cells delaminate individually from the epiblast during the ingression, and 4) how cells move after the ingression following stereotypical migration routes. We conclude by exploring new technical advances that will facilitate future research in the chick model system.
Collapse
Affiliation(s)
- Guillermo Serrano Nájera
- Division of Cell and Developmental Biology, School of Life Sciences, University of Dundee, Dundee DD1 5EH, UK
| | - Cornelis J Weijer
- Division of Cell and Developmental Biology, School of Life Sciences, University of Dundee, Dundee DD1 5EH, UK.
| |
Collapse
|
41
|
Wang X, Merkel M, Sutter LB, Erdemci-Tandogan G, Manning ML, Kasza KE. Anisotropy links cell shapes to tissue flow during convergent extension. Proc Natl Acad Sci U S A 2020; 117:13541-13551. [PMID: 32467168 PMCID: PMC7306759 DOI: 10.1073/pnas.1916418117] [Citation(s) in RCA: 98] [Impact Index Per Article: 19.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Within developing embryos, tissues flow and reorganize dramatically on timescales as short as minutes. This includes epithelial tissues, which often narrow and elongate in convergent extension movements due to anisotropies in external forces or in internal cell-generated forces. However, the mechanisms that allow or prevent tissue reorganization, especially in the presence of strongly anisotropic forces, remain unclear. We study this question in the converging and extending Drosophila germband epithelium, which displays planar-polarized myosin II and experiences anisotropic forces from neighboring tissues. We show that, in contrast to isotropic tissues, cell shape alone is not sufficient to predict the onset of rapid cell rearrangement. From theoretical considerations and vertex model simulations, we predict that in anisotropic tissues, two experimentally accessible metrics of cell patterns-the cell shape index and a cell alignment index-are required to determine whether an anisotropic tissue is in a solid-like or fluid-like state. We show that changes in cell shape and alignment over time in the Drosophila germband predict the onset of rapid cell rearrangement in both wild-type and snail twist mutant embryos, where our theoretical prediction is further improved when we also account for cell packing disorder. These findings suggest that convergent extension is associated with a transition to more fluid-like tissue behavior, which may help accommodate tissue-shape changes during rapid developmental events.
Collapse
Affiliation(s)
- Xun Wang
- Department of Mechanical Engineering, Columbia University, New York, NY 10027
| | - Matthias Merkel
- Department of Physics, Syracuse University, Syracuse, NY 13244
- BioInspired Institute, Syracuse University, Syracuse, NY 13244
- Centre de Physique Théorique (CPT), Turing Center for Living Systems, Aix Marseille Univ, Université de Toulon, CNRS, 13009 Marseille, France
| | - Leo B Sutter
- Department of Physics, Syracuse University, Syracuse, NY 13244
- BioInspired Institute, Syracuse University, Syracuse, NY 13244
| | - Gonca Erdemci-Tandogan
- Department of Physics, Syracuse University, Syracuse, NY 13244
- BioInspired Institute, Syracuse University, Syracuse, NY 13244
| | - M Lisa Manning
- Department of Physics, Syracuse University, Syracuse, NY 13244
- BioInspired Institute, Syracuse University, Syracuse, NY 13244
| | - Karen E Kasza
- Department of Mechanical Engineering, Columbia University, New York, NY 10027;
| |
Collapse
|
42
|
Abstract
Cell and tissue shape changes are the fundamental elements of morphogenesis that drive normal development of embryos into fully functional organisms. This requires a variety of cellular processes including establishment and maintenance of polarity, tissue growth and apoptosis, and cell differentiation, rearrangement, and migration. It is widely appreciated that the cytoskeletal networks play an important role in regulating many of these processes and, in particular, that pulsed actomyosin contractions are a core cellular mechanism driving cell shape changes and cell rearrangement. In this review, we discuss the role of pulsed actomyosin contractions during developmental morphogenesis, advances in our understanding of the mechanisms regulating actomyosin pulsing, and novel techniques to probe the role of pulsed actomyosin processes in
in vivo model systems.
Collapse
Affiliation(s)
- Ann Sutherland
- Department of Cell Biology, University of Virginia Health System, Charlottesville, VA, USA
| | - Alyssa Lesko
- Department of Cell Biology, University of Virginia Health System, Charlottesville, VA, USA
| |
Collapse
|
43
|
Spatial mapping of tissue properties in vivo reveals a 3D stiffness gradient in the mouse limb bud. Proc Natl Acad Sci U S A 2020; 117:4781-4791. [PMID: 32071242 DOI: 10.1073/pnas.1912656117] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
Numerous hypotheses invoke tissue stiffness as a key parameter that regulates morphogenesis and disease progression. However, current methods are insufficient to test hypotheses that concern physical properties deep in living tissues. Here we introduce, validate, and apply a magnetic device that generates a uniform magnetic field gradient within a space that is sufficient to accommodate an organ-stage mouse embryo under live conditions. The method allows rapid, nontoxic measurement of the three-dimensional (3D) spatial distribution of viscoelastic properties within mesenchyme and epithelia. Using the device, we identify an anteriorly biased mesodermal stiffness gradient along which cells move to shape the early limb bud. The stiffness gradient corresponds to a Wnt5a-dependent domain of fibronectin expression, raising the possibility that durotaxis underlies cell movements. Three-dimensional stiffness mapping enables the generation of hypotheses and potentially the rigorous testing of mechanisms of development and disease.
Collapse
|
44
|
Abstract
Convergent extension is a conserved mechanism for elongating tissues. In the Drosophila embryo, convergent extension is driven by planar polarized cell intercalation and is a paradigm for understanding the cellular, molecular, and biophysical mechanisms that establish tissue structure. Studies of convergent extension in Drosophila have provided key insights into the force-generating molecules that promote convergent extension in epithelial tissues, as well as the global systems of spatial information that systematically organize these cell behaviors. A general framework has emerged in which asymmetrically localized proteins involved in cytoskeletal tension and cell adhesion direct oriented cell movements, and spatial signals provided by the Toll, Tartan, and Teneurin receptor families break planar symmetry to establish and coordinate planar cell polarity throughout the tissue. In this chapter, we describe the cellular, molecular, and biophysical mechanisms that regulate cell intercalation in the Drosophila embryo, and discuss how research in this system has revealed conserved biological principles that control the organization of multicellular tissues and animal body plans.
Collapse
Affiliation(s)
- Adam C Paré
- Department of Biological Sciences, University of Arkansas, Fayetteville, AR, United States.
| | - Jennifer A Zallen
- Howard Hughes Medical Institute and Developmental Biology Program, Sloan Kettering Institute, New York, NY, United States.
| |
Collapse
|
45
|
Loerke D, Blankenship JT. Viscoelastic voyages - Biophysical perspectives on cell intercalation during Drosophila gastrulation. Semin Cell Dev Biol 2019; 100:212-222. [PMID: 31784092 DOI: 10.1016/j.semcdb.2019.11.005] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2019] [Revised: 09/11/2019] [Accepted: 11/11/2019] [Indexed: 12/18/2022]
Abstract
Developmental processes are driven by a combination of cytoplasmic, cortical, and surface-associated forces. However, teasing apart the contributions of these forces and how a viscoelastic cell responds has long been a key question in developmental biology. Recent advances in applying biophysical approaches to these questions is leading to a fundamentally new understanding of morphogenesis. In this review, we discuss how computational analysis of experimental findings and in silico modeling of Drosophila gastrulation processes has led to a deeper comprehension of the physical principles at work in the early embryo. We also summarize many of the emerging methodologies that permit biophysical analysis as well as those that provide direct and indirect measurements of force directions and magnitudes. Finally, we examine the multiple frameworks that have been used to model tissue and cellular behaviors.
Collapse
Affiliation(s)
- Dinah Loerke
- Department of Physics and Astronomy, University of Denver, Denver, CO 80208, USA.
| | - J Todd Blankenship
- Department of Biological Sciences, University of Denver, Denver, CO 80208, USA.
| |
Collapse
|
46
|
Sutherland A, Keller R, Lesko A. Convergent extension in mammalian morphogenesis. Semin Cell Dev Biol 2019; 100:199-211. [PMID: 31734039 DOI: 10.1016/j.semcdb.2019.11.002] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2019] [Revised: 11/01/2019] [Accepted: 11/04/2019] [Indexed: 12/12/2022]
Abstract
Convergent extension is a fundamental morphogenetic process that underlies not only the generation of the elongated vertebrate body plan from the initially radially symmetrical embryo, but also the specific shape changes characteristic of many individual tissues. These tissue shape changes are the result of specific cell behaviors, coordinated in time and space, and affected by the physical properties of the tissue. While mediolateral cell intercalation is the classic cellular mechanism for producing tissue convergence and extension, other cell behaviors can also provide similar tissue-scale distortions or can modulate the effects of mediolateral cell intercalation to sculpt a specific shape. Regulation of regional tissue morphogenesis through planar polarization of the variety of underlying cell behaviors is well-recognized, but as yet is not well understood at the molecular level. Here, we review recent advances in understanding the cellular basis for convergence and extension and its regulation.
Collapse
Affiliation(s)
- Ann Sutherland
- Department of Cell Biology, University of Virginia Health System, Charlottesville, VA, 22908, USA.
| | - Raymond Keller
- Department of Biology, University of Virginia, Charlottesville, VA, 22903, USA.
| | - Alyssa Lesko
- Department of Cell Biology, University of Virginia Health System, Charlottesville, VA, 22908, USA.
| |
Collapse
|
47
|
Kasza KE, Supriyatno S, Zallen JA. Cellular defects resulting from disease-related myosin II mutations in Drosophila. Proc Natl Acad Sci U S A 2019; 116:22205-22211. [PMID: 31615886 PMCID: PMC6825282 DOI: 10.1073/pnas.1909227116] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
The nonmuscle myosin II motor protein produces forces that are essential to driving the cell movements and cell shape changes that generate tissue structure. Mutations in myosin II that are associated with human diseases are predicted to disrupt critical aspects of myosin function, but the mechanisms that translate altered myosin activity into specific changes in tissue organization and physiology are not well understood. Here we use the Drosophila embryo to model human disease mutations that affect myosin motor activity. Using in vivo imaging and biophysical analysis, we show that engineering human MYH9-related disease mutations into Drosophila myosin II produces motors with altered organization and dynamics that fail to drive rapid cell movements, resulting in defects in epithelial morphogenesis. In embryos that express the Drosophila myosin motor variants R707C or N98K and have reduced levels of wild-type myosin, myosin motors are correctly planar polarized and generate anisotropic contractile tension in the tissue. However, expression of these motor variants is associated with a cellular-scale reduction in the speed of cell intercalation, resulting in a failure to promote full elongation of the body axis. In addition, these myosin motor variants display slowed turnover and aberrant aggregation at the cell cortex, indicating that mutations in the motor domain influence mesoscale properties of myosin organization and dynamics. These results demonstrate that disease-associated mutations in the myosin II motor domain disrupt specific aspects of myosin localization and activity during cell intercalation, linking molecular changes in myosin activity to defects in tissue morphogenesis.
Collapse
Affiliation(s)
- Karen E Kasza
- Howard Hughes Medical Institute, Sloan Kettering Institute, New York, NY 10065;
- Developmental Biology Program, Sloan Kettering Institute, New York, NY 10065
- Department of Mechanical Engineering, Columbia University, New York, NY 10027
| | - Sara Supriyatno
- Howard Hughes Medical Institute, Sloan Kettering Institute, New York, NY 10065
- Developmental Biology Program, Sloan Kettering Institute, New York, NY 10065
| | - Jennifer A Zallen
- Howard Hughes Medical Institute, Sloan Kettering Institute, New York, NY 10065;
- Developmental Biology Program, Sloan Kettering Institute, New York, NY 10065
| |
Collapse
|
48
|
Bajur AT, Iyer KV, Knust E. Cytocortex-dependent dynamics of Drosophila Crumbs controls junctional stability and tension during germ band retraction. J Cell Sci 2019; 132:jcs.228338. [PMID: 31300472 DOI: 10.1242/jcs.228338] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2018] [Accepted: 07/05/2019] [Indexed: 12/21/2022] Open
Abstract
During morphogenesis, epithelia undergo dynamic rearrangements, which requires continuous remodelling of junctions and cell shape, but at the same time mechanisms preserving cell polarity and tissue integrity. Apico-basal polarity is key for the localisation of the machinery that enables cell shape changes. The evolutionarily conserved Drosophila Crumbs protein is critical for maintaining apico-basal polarity and epithelial integrity. How Crumbs is maintained in a dynamically developing embryo remains largely unknown. Here, we applied quantitative fluorescence techniques to show that, during germ band retraction, Crumbs dynamics correlates with the morphogenetic activity of the epithelium. Genetic and pharmacological perturbations revealed that the mobile pool of Crumbs is fine-tuned by the actomyosin cortex in a stage-dependent manner. Stabilisation of Crumbs at the plasma membrane depends on a proper link to the actomyosin cortex via an intact FERM-domain-binding site in its intracellular domain, loss of which leads to increased junctional tension and higher DE-cadherin (also known as Shotgun) turnover, resulting in impaired junctional rearrangements. These data define Crumbs as a mediator between polarity and junctional regulation to orchestrate epithelial remodelling in response to changes in actomyosin activity.This article has an associated First Person interview with the first author of the paper.
Collapse
Affiliation(s)
- Anna T Bajur
- Max-Planck Institute of Molecular Cell Biology and Genetics, 01307 Dresden, Germany
| | - K Venkatesan Iyer
- Max-Planck Institute of Molecular Cell Biology and Genetics, 01307 Dresden, Germany
| | - Elisabeth Knust
- Max-Planck Institute of Molecular Cell Biology and Genetics, 01307 Dresden, Germany
| |
Collapse
|
49
|
Uechi H, Kuranaga E. The Tricellular Junction Protein Sidekick Regulates Vertex Dynamics to Promote Bicellular Junction Extension. Dev Cell 2019; 50:327-338.e5. [PMID: 31353316 DOI: 10.1016/j.devcel.2019.06.017] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2018] [Revised: 03/20/2019] [Accepted: 06/22/2019] [Indexed: 01/23/2023]
Abstract
Remodeling of cell-cell junctions drives cell intercalation that causes tissue movement during morphogenesis through the shortening and growth of bicellular junctions. The growth of new junctions is essential for continuing and then completing cellular dynamics and tissue shape sculpting; however, the mechanism underlying junction growth remains obscure. We investigated Drosophila genitalia rotation where continuous cell intercalation occurs to show that myosin II accumulating at the vertices of a new junction is required for the junction growth. This myosin II accumulation requires the adhesive transmembrane protein Sidekick (Sdk), which localizes to the adherens junctions (AJs) of tricellular contacts (tAJs). Sdk also localizes to and blocks the accumulation of E-Cadherin at newly formed growing junctions, which maintains the growth rate. We propose that Sdk facilitates tAJ movement by mediating myosin II-driven contraction and altering the adhesive properties at the tAJs, leading to cell-cell junction extension during persistent junction remodeling.
Collapse
Affiliation(s)
- Hiroyuki Uechi
- Laboratory for Histogenetic Dynamics, Graduate School of Life Sciences, Tohoku University, 6-3 Aramaki Aza-Aoba, Aoba-ku, Sendai 980-8578, Japan
| | - Erina Kuranaga
- Laboratory for Histogenetic Dynamics, Graduate School of Life Sciences, Tohoku University, 6-3 Aramaki Aza-Aoba, Aoba-ku, Sendai 980-8578, Japan.
| |
Collapse
|
50
|
Letizia A, He D, Astigarraga S, Colombelli J, Hatini V, Llimargas M, Treisman JE. Sidekick Is a Key Component of Tricellular Adherens Junctions that Acts to Resolve Cell Rearrangements. Dev Cell 2019; 50:313-326.e5. [PMID: 31353315 DOI: 10.1016/j.devcel.2019.07.007] [Citation(s) in RCA: 59] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2019] [Revised: 05/03/2019] [Accepted: 07/02/2019] [Indexed: 11/27/2022]
Abstract
Tricellular adherens junctions are points of high tension that are central to the rearrangement of epithelial cells. However, the molecular composition of these junctions is unknown, making it difficult to assess their role in morphogenesis. Here, we show that Sidekick, an immunoglobulin family cell adhesion protein, is highly enriched at tricellular adherens junctions in Drosophila. This localization is modulated by tension, and Sidekick is itself necessary to maintain normal levels of cell bond tension. Loss of Sidekick causes defects in cell and junctional rearrangements in actively remodeling epithelial tissues like the retina and tracheal system. The adaptor proteins Polychaetoid and Canoe are enriched at tricellular adherens junctions in a Sidekick-dependent manner; Sidekick functionally interacts with both proteins and directly binds to Polychaetoid. We suggest that Polychaetoid and Canoe link Sidekick to the actin cytoskeleton to enable tricellular adherens junctions to maintain or transmit cell bond tension during epithelial cell rearrangements.
Collapse
Affiliation(s)
- Annalisa Letizia
- Institut de Biologia Molecular de Barcelona, CSIC, Parc Científic de Barcelona, Baldiri Reixac, 10-12, Barcelona 08028, Spain
| | - DanQing He
- Kimmel Center for Biology and Medicine at the Skirball Institute and Department of Cell Biology, NYU School of Medicine, 540 First Avenue, New York, NY 10016, USA
| | - Sergio Astigarraga
- Kimmel Center for Biology and Medicine at the Skirball Institute and Department of Cell Biology, NYU School of Medicine, 540 First Avenue, New York, NY 10016, USA
| | - Julien Colombelli
- Institute for Research in Biomedicine, The Barcelona Institute of Science and Technology, Parc Científic de Barcelona, Baldiri Reixac, 10, Barcelona 08028, Spain
| | - Victor Hatini
- Department of Developmental, Molecular & Chemical Biology, Program in Cell, Molecular and Developmental Biology and Program in Genetics, Tufts University School of Medicine, 150 Harrison Avenue, Jaharis 322, Boston, MA 02111, USA
| | - Marta Llimargas
- Institut de Biologia Molecular de Barcelona, CSIC, Parc Científic de Barcelona, Baldiri Reixac, 10-12, Barcelona 08028, Spain.
| | - Jessica E Treisman
- Kimmel Center for Biology and Medicine at the Skirball Institute and Department of Cell Biology, NYU School of Medicine, 540 First Avenue, New York, NY 10016, USA.
| |
Collapse
|