1
|
Mukherjee S, Barua A, Wang L, Tian B, Moore CL. The alternative polyadenylation regulator CFIm25 promotes macrophage differentiation and activates the NF-κB pathway. Cell Commun Signal 2025; 23:115. [PMID: 40022203 PMCID: PMC11871739 DOI: 10.1186/s12964-025-02114-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2024] [Accepted: 02/18/2025] [Indexed: 03/03/2025] Open
Abstract
BACKGROUND Macrophages are required for development and tissue repair and protect against microbial attacks. In response to external signals, monocytes differentiate into macrophages, but our knowledge of changes that promote this transition at the level of mRNA processing, in particular mRNA polyadenylation, needs advancement if it is to inform new disease treatments. Here, we identify CFIm25, a well-documented regulator of poly(A) site choice, as a novel mediator of macrophage differentiation. METHODS CFIm25 expression was analyzed in differentiating primary human monocytes and monocytic cell lines. Overexpression and depletion experiments were performed to assess CFIm25's role in differentiation, NF-κB signaling, and alternative polyadenylation (APA). mRNA 3' end-focused sequencing was conducted to identify changes in poly(A) site use of genes involved in macrophage differentiation and function. Cell cycle markers, NF-κB pathway components, and their targets were examined. The role of CFIm25 in NF-κB signaling was further evaluated through chemical inhibition and knockdown of pathway regulators. RESULTS CFIm25 showed a striking increase upon macrophage differentiation, suggesting it promotes this process. Indeed, CFIm25 overexpression during differentiation amplified the acquisition of macrophage characteristics and caused an earlier slowing of the cell cycle, a hallmark of this transition, along with APA-mediated downregulation of cyclin D1. The NF-κB signaling pathway plays a major role in maturation of monocytes to macrophages, and the mRNAs of null, TBL1XR1, and NFKB1, all positive regulators of NF-κB signaling, underwent 3'UTR shortening, coupled with an increase in the corresponding proteins. CFIm25 overexpression also elevated phosphorylation of the NF-κB-p65 transcription activator, produced an earlier increase in the NF-κB targets p21, Bcl-XL, ICAM1 and TNF-α, and resulted in greater resistance to NF-κB chemical inhibition. Knockdown of Tables 2 and TBL1XR1 in CFIm25-overexpressing cells attenuated these effects, reinforcing the mechanistic link between CFIm25-regulated APA and NF-κB activation. Conversely, depletion of CFIm25 hindered differentiation and led to lengthening of NFKB1, TAB2, and TBL1XR1 3' UTRs. CONCLUSIONS Our study establishes CFIm25 as a key mediator of macrophage differentiation that operates through a coordinated control of cell cycle progression and NF-κB signaling. This linkage of mRNA processing and immune cell function also expands our understanding of the role of alternative polyadenylation in regulating cell signaling.
Collapse
Affiliation(s)
- Srimoyee Mukherjee
- Department of Developmental, Molecular, and Chemical Biology, Tufts University School of Medicine, Boston, MA, 02111, USA
| | - Atish Barua
- Department of Developmental, Molecular, and Chemical Biology, Tufts University School of Medicine, Boston, MA, 02111, USA
| | - Luyang Wang
- The Wistar Institute, Philadelphia, PA, 19104, USA
| | - Bin Tian
- The Wistar Institute, Philadelphia, PA, 19104, USA
| | - Claire L Moore
- Department of Developmental, Molecular, and Chemical Biology, Tufts University School of Medicine, Boston, MA, 02111, USA.
| |
Collapse
|
2
|
Khan N, Gupta M, Masamha CP. Characterization and molecular targeting of CFIm25 (NUDT21/CPSF5) mRNA using miRNAs. FASEB J 2025; 39:e70324. [PMID: 39812508 PMCID: PMC11760631 DOI: 10.1096/fj.202402184r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2024] [Revised: 12/07/2024] [Accepted: 01/06/2025] [Indexed: 01/16/2025]
Abstract
Changes in protein levels of the mammalian cleavage factor, CFIm25, play a role in regulating pathological processes including neural dysfunction, fibrosis, and tumorigenesis. However, despite these effects, little is known about how CFIm25 (NUDT21) expression is regulated at the RNA level. A potential regulator of NUDT21 mRNA are small non-coding microRNAs (miRNAs). In general, miRNAs bind to the 3'untranslated regions (3'UTRs) and can target the bound mRNA for degradation or inhibit translation thus affecting the levels of protein in cells. Interestingly, a mechanism known as alternative polyadenylation (APA) enables mRNAs to escape miRNA regulation by generating mRNAs with 3'UTRs of different sizes. As many miRNA target sites are located within the 3'UTR, shortening the 3'UTR allows mRNAs to evade miRNAs targeting this region. The differences in the lengths and the sequence composition of the 3'UTRs may also impact the mRNA's translatability and subcellular localization. APA has been reported to regulate over 70% of protein coding genes, thus increasing the transcript repertoire. Several proteins, including mammalian cleavage factor, CFIm25 (NUDT21), have been shown to regulate APA. In this study we wanted to determine whether CFIm25 (NUDT21), itself a regulator of APA, undergoes APA to evade miRNA regulation. We used the blood cancer mantle cell lymphoma (MCL) cells as a model and showed that in these cells, NUDT21 is relatively stable with a long half-life. In addition, the NUDT21 pre-mRNA undergoes alternative APA within the same terminal exon. The three different sized NUDT21 mRNAs have different 3'UTR lengths and they each use a different canonical polyadenylation signal, AAUAAA, for 3'end cleavage and polyadenylation. Use of miRNA mimics and inhibitors showed that miR-23a, miR-222, and miR-323a play a significant role in regulating NUDT21 expression. Hence, these results suggest that NUDT21 mRNA is stable and the different 3'UTRs generated through APA of NUDT21 play an important role in evading miRNA regulation and offers insights into how levels of CFIm25 (NUDT21) may be fine-tuned as needed under different physiological and pathological conditions.
Collapse
Affiliation(s)
- Naazneen Khan
- Department of Pharmaceutical SciencesButler UniversityIndianapolisIndianaUSA
- Department of NeurologyIndiana UniversityIndianapolisIndianaUSA
| | - Mahesh Gupta
- Department of Pharmaceutical SciencesButler UniversityIndianapolisIndianaUSA
| | | |
Collapse
|
3
|
Aygün N, Vuong C, Krupa O, Mory J, Le BD, Valone JM, Liang D, Shafie B, Zhang P, Salinda A, Wen C, Gandal MJ, Love MI, de la Torre-Ubieta L, Stein JL. Genetics of cell-type-specific post-transcriptional gene regulation during human neurogenesis. Am J Hum Genet 2024; 111:1877-1898. [PMID: 39168119 PMCID: PMC11393701 DOI: 10.1016/j.ajhg.2024.07.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 07/18/2024] [Accepted: 07/23/2024] [Indexed: 08/23/2024] Open
Abstract
The function of some genetic variants associated with brain-relevant traits has been explained through colocalization with expression quantitative trait loci (eQTL) conducted in bulk postmortem adult brain tissue. However, many brain-trait associated loci have unknown cellular or molecular function. These genetic variants may exert context-specific function on different molecular phenotypes including post-transcriptional changes. Here, we identified genetic regulation of RNA editing and alternative polyadenylation (APA) within a cell-type-specific population of human neural progenitors and neurons. More RNA editing and isoforms utilizing longer polyadenylation sequences were observed in neurons, likely due to higher expression of genes encoding the proteins mediating these post-transcriptional events. We also detected hundreds of cell-type-specific editing quantitative trait loci (edQTLs) and alternative polyadenylation QTLs (apaQTLs). We found colocalizations of a neuron edQTL in CCDC88A with educational attainment and a progenitor apaQTL in EP300 with schizophrenia, suggesting that genetically mediated post-transcriptional regulation during brain development leads to differences in brain function.
Collapse
Affiliation(s)
- Nil Aygün
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; UNC Neuroscience Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Celine Vuong
- Intellectual and Developmental Disabilities Research Center, Semel Institute, David Geffen School of Medicine University of California, Los Angeles, Los Angeles, CA 90095, USA; Semel Institute for Neuroscience and Human Behavior, David Geffen School of Medicine University of California, Los Angeles, Los Angeles, CA 90095, USA; Department of Psychiatry and Biobehavioral Sciences, Semel Institute, David Geffen School of Medicine University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Oleh Krupa
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; UNC Neuroscience Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Jessica Mory
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; UNC Neuroscience Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Brandon D Le
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; UNC Neuroscience Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Jordan M Valone
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; UNC Neuroscience Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Dan Liang
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; UNC Neuroscience Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Beck Shafie
- Intellectual and Developmental Disabilities Research Center, Semel Institute, David Geffen School of Medicine University of California, Los Angeles, Los Angeles, CA 90095, USA; Semel Institute for Neuroscience and Human Behavior, David Geffen School of Medicine University of California, Los Angeles, Los Angeles, CA 90095, USA; Department of Psychiatry and Biobehavioral Sciences, Semel Institute, David Geffen School of Medicine University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Pan Zhang
- Intellectual and Developmental Disabilities Research Center, Semel Institute, David Geffen School of Medicine University of California, Los Angeles, Los Angeles, CA 90095, USA; Semel Institute for Neuroscience and Human Behavior, David Geffen School of Medicine University of California, Los Angeles, Los Angeles, CA 90095, USA; Department of Psychiatry and Biobehavioral Sciences, Semel Institute, David Geffen School of Medicine University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Angelo Salinda
- Intellectual and Developmental Disabilities Research Center, Semel Institute, David Geffen School of Medicine University of California, Los Angeles, Los Angeles, CA 90095, USA; Semel Institute for Neuroscience and Human Behavior, David Geffen School of Medicine University of California, Los Angeles, Los Angeles, CA 90095, USA; Department of Psychiatry and Biobehavioral Sciences, Semel Institute, David Geffen School of Medicine University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Cindy Wen
- Intellectual and Developmental Disabilities Research Center, Semel Institute, David Geffen School of Medicine University of California, Los Angeles, Los Angeles, CA 90095, USA; Semel Institute for Neuroscience and Human Behavior, David Geffen School of Medicine University of California, Los Angeles, Los Angeles, CA 90095, USA; Department of Psychiatry and Biobehavioral Sciences, Semel Institute, David Geffen School of Medicine University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Michael J Gandal
- Intellectual and Developmental Disabilities Research Center, Semel Institute, David Geffen School of Medicine University of California, Los Angeles, Los Angeles, CA 90095, USA; Semel Institute for Neuroscience and Human Behavior, David Geffen School of Medicine University of California, Los Angeles, Los Angeles, CA 90095, USA; Department of Psychiatry and Biobehavioral Sciences, Semel Institute, David Geffen School of Medicine University of California, Los Angeles, Los Angeles, CA 90095, USA; Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Michael I Love
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; Department of Biostatistics, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Luis de la Torre-Ubieta
- Intellectual and Developmental Disabilities Research Center, Semel Institute, David Geffen School of Medicine University of California, Los Angeles, Los Angeles, CA 90095, USA; Semel Institute for Neuroscience and Human Behavior, David Geffen School of Medicine University of California, Los Angeles, Los Angeles, CA 90095, USA; Department of Psychiatry and Biobehavioral Sciences, Semel Institute, David Geffen School of Medicine University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Jason L Stein
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; UNC Neuroscience Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA.
| |
Collapse
|
4
|
Mukherjee S, Barua A, Wang L, Tian B, Moore CL. The alternative polyadenylation regulator CFIm25 promotes macrophage differentiation and activates the NF-κβ pathway. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.09.03.611136. [PMID: 39282342 PMCID: PMC11398326 DOI: 10.1101/2024.09.03.611136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/05/2025]
Abstract
Macrophages are required for our body's development and tissue repair and protect against microbial attacks. We previously reported a crucial role for regulation of mRNA 3'-end cleavage and polyadenylation (C/P) in monocyte to macrophage differentiation. The CFIm25 subunit of the C/P complex showed a striking increase upon differentiation of monocytes with Phorbol Myristate Acetate, suggesting that it promotes this process. To test this hypothesis, CFIm25 was overexpressed in two different monocytic cell lines, followed by differentiation. Both cell lines showed a significant increase in macrophage characteristics and an earlier slowing of the cell cycle. In contrast, depletion of CFIm25 hindered differentiation. Cell cycle slowing upon CFIm25 overexpression was consistent with a greater decrease in the proliferation markers PCNA and cyclin D1, coupled with increased 3'UTR lengthening of cyclin D1 mRNA. Since choice of other poly(A) sites could be affected by manipulating CFIm25, we identified additional genes with altered use of poly(A) sites during differentiation and examined how this changed upon CFIm25 overexpression. The mRNAs of positive regulators of NF-κB signaling, TAB2 and TBL1XR1, and NFKB1, which encodes the NF-κB p50 precursor, underwent 3'UTR shortening that was associated with increased protein expression compared to the control. Cells overexpressing CFIm25 also showed elevated levels of phosphorylated NF-κB-p65 and the NF-κB targets p21, Bcl-XL, ICAM1 and TNF-α at an earlier time and greater resistance to NF-κB chemical inhibition. In conclusion, our study supports a model in which CFIm25 accelerates the monocyte to macrophage transition by promoting alternative polyadenylation events which lead to activation of the NF-κB pathway.
Collapse
|
5
|
Zhou Y, Yang J, Huang L, Liu C, Yu M, Chen R, Zhou Q. Nudt21-mediated alternative polyadenylation of MZT1 3'UTR contributes to pancreatic cancer progression. iScience 2024; 27:108822. [PMID: 38303721 PMCID: PMC10831950 DOI: 10.1016/j.isci.2024.108822] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 11/26/2023] [Accepted: 01/02/2024] [Indexed: 02/03/2024] Open
Abstract
Alternative polyadenylation (APA) is an important post-transcriptional regulatory mechanism and is involved in many diseases, but its function and mechanism in regulating pancreatic cancer (PC) pathogenesis remain unclear. In this study, we found that the 3' UTR shortening of MZT1 was the most prominent APA event in PC liver metastases. The short-3'UTR isoform exerted a stronger effect in promoting cell proliferation and migration both in vitro and in vivo. NUDT21, a core cleavage factor involved in APA, promoted the usage of proximal polyadenylation sites (PASs) on MZT1 mRNA by binding to the UGUA element located upstream of the proximal PAS. High percentage of distal polyA site usage index of MZT1 was significantly associated with a better prognosis. These findings demonstrate a crucial mechanism that NUDT21-mediated APA of MZT1 could promote the progression of PC. Our findings provided a better understanding of the connection between PC progression and APA machinery.
Collapse
Affiliation(s)
- Yu Zhou
- Department of Pancreatic Surgery, Department of General Surgery, Guangdong Provincial People’s Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, Guangdong Province, China
| | - Jiabin Yang
- Department of Pancreatic Surgery, Department of General Surgery, Guangdong Provincial People’s Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, Guangdong Province, China
- School of Medicine, South China University of Technology, Guangzhou, Guangdong Province, China
| | - Leyi Huang
- Department of Pancreatobiliary Surgery, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, Guangdong Province, China
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation Medical Research Center, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, Guangdong Province, China
| | - Chao Liu
- Department of Pathology, Guangdong Provincial People’s Hospital, Guangdong Academy of Medical Sciences, Guangzhou, Guangdong Province, China
| | - Min Yu
- Department of Pancreatic Surgery, Department of General Surgery, Guangdong Provincial People’s Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, Guangdong Province, China
| | - Rufu Chen
- Department of Pancreatic Surgery, Department of General Surgery, Guangdong Provincial People’s Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, Guangdong Province, China
| | - Quanbo Zhou
- Department of Pancreatic Surgery, Department of General Surgery, Guangdong Provincial People’s Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, Guangdong Province, China
- Department of Pancreatobiliary Surgery, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, Guangdong Province, China
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation Medical Research Center, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, Guangdong Province, China
| |
Collapse
|
6
|
Liu W, Pang Y, Yu X, Lu D, Yang Y, Meng F, Xu C, Yuan L, Nan Y. Pan-cancer analysis of NUDT21 and its effect on the proliferation of human head and neck squamous cell carcinoma. Aging (Albany NY) 2024; 16:3363-3385. [PMID: 38349866 PMCID: PMC10929839 DOI: 10.18632/aging.205539] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Accepted: 01/08/2024] [Indexed: 02/15/2024]
Abstract
BACKGROUND Based on bioinformatics research of NUDT21 in pan-cancer, we aimed to clarify the mechanism of NUDT21 in HHNC by experiment. METHODS The correlation between differential expression of NUDT21 in pan-cancer and survival prognosis, genomic instability, tumor stemness, DNA repair, RNA methylation and with immune microenvironment were analyzed by the application of different pan-cancer analysis web databases. In addition, immunohistochemistry staining and genetic detection of NUDT21 in HHNCC tumor tissues by immunohistochemistry and qRT-PCR. Then, through in vitro cell experiments, NUDT21 was knocked down by lentivirus to detect the proliferation, cycle, apoptosis of FaDu and CNE-2Z cells, and finally by PathScan intracellular signaling array reagent to detect the apoptotic protein content. RESULTS Based on the pan-cancer analysis, we found that elevated expression of NUDT21 in most cancers was significantly correlated with TMB, MSI, neoantigens and chromosomal ploidy, and in epigenetics, elevated NUDT21 expression was strongly associated with genomic stability, mismatch repair genes, tumor stemness, and RNA methylation. Based on immunosuppressive score, we found that NUDT21 plays an essential role in the immunosuppressive environment by suppressing immune checkpointing effect in most cancers. In addition, using HHNSCC as a study target, PCR and pathological detection of NUDT21 in tumor tissues was significantly increased than that in paracancerous normal tissues. In vitro cellular assays, silencing NUDT21 inhibited proliferation and promoted apoptosis in FaDu and CNE-2Z cells, and blocked the cell cycle in the G2/M phase. Therefore, the experiments confirmed that NUDT21 promotes the proliferation of FaDu by suppressing the expression of apoptotic.
Collapse
Affiliation(s)
- Wenjing Liu
- Key Laboratory of Ningxia Minority Medicine Modernization Ministry of Education, Ningxia Medical University, Yinchuan 750004, Ningxia Hui Autonomous Region, China
| | - Yingna Pang
- Department of Otolaryngology Head and Neck Surgery, The Second Hospital of Jilin University, Changchun 130000, China
| | - Xiaolu Yu
- Department of Otolaryngology Head and Neck Surgery, The Second Hospital of Jilin University, Changchun 130000, China
| | - Doudou Lu
- Clinical Medical College, Ningxia Medical University, Yinchuan 750004, Ningxia Hui Autonomous Region, China
| | - Yating Yang
- Traditional Chinese Medicine College, Ningxia Medical University, Yinchuan 750004, Ningxia Hui Autonomous Region, China
| | - Fandi Meng
- Traditional Chinese Medicine College, Ningxia Medical University, Yinchuan 750004, Ningxia Hui Autonomous Region, China
| | - Chengbi Xu
- Department of Otolaryngology Head and Neck Surgery, The Second Hospital of Jilin University, Changchun 130000, China
| | - Ling Yuan
- College of Pharmacy, Ningxia Medical University, Yinchuan 750004, Ningxia Hui Autonomous Region, China
| | - Yi Nan
- Key Laboratory of Ningxia Minority Medicine Modernization Ministry of Education, Ningxia Medical University, Yinchuan 750004, Ningxia Hui Autonomous Region, China
| |
Collapse
|
7
|
Kang B, Yang Y, Hu K, Ruan X, Liu YL, Lee P, Lee J, Wang J, Zhang X. Infernape uncovers cell type-specific and spatially resolved alternative polyadenylation in the brain. Genome Res 2023; 33:1774-1787. [PMID: 37907328 PMCID: PMC10691540 DOI: 10.1101/gr.277864.123] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Accepted: 09/12/2023] [Indexed: 11/02/2023]
Abstract
Differential polyadenylation sites (PAs) critically regulate gene expression, but their cell type-specific usage and spatial distribution in the brain have not been systematically characterized. Here, we present Infernape, which infers and quantifies PA usage from single-cell and spatial transcriptomic data and show its application in the mouse brain. Infernape uncovers alternative intronic PAs and 3'-UTR lengthening during cortical neurogenesis. Progenitor-neuron comparisons in the excitatory and inhibitory neuron lineages show overlapping PA changes in embryonic brains, suggesting that the neural proliferation-differentiation axis plays a prominent role. In the adult mouse brain, we uncover cell type-specific PAs and visualize such events using spatial transcriptomic data. Over two dozen neurodevelopmental disorder-associated genes such as Csnk2a1 and Mecp2 show differential PAs during brain development. This study presents Infernape to identify PAs from scRNA-seq and spatial data, and highlights the role of alternative PAs in neuronal gene regulation.
Collapse
Affiliation(s)
- Bowei Kang
- Department of Human Genetics, The University of Chicago, Chicago, Illinois 60637, USA
| | - Yalan Yang
- Department of Human Genetics, The University of Chicago, Chicago, Illinois 60637, USA
| | - Kaining Hu
- Department of Human Genetics, The University of Chicago, Chicago, Illinois 60637, USA
| | - Xiangbin Ruan
- Department of Human Genetics, The University of Chicago, Chicago, Illinois 60637, USA
| | - Yi-Lin Liu
- Department of Statistics, The University of Chicago, Chicago, Illinois 60637, USA
| | - Pinky Lee
- Department of Human Genetics, The University of Chicago, Chicago, Illinois 60637, USA
| | - Jasper Lee
- Department of Human Genetics, The University of Chicago, Chicago, Illinois 60637, USA
| | - Jingshu Wang
- Department of Statistics, The University of Chicago, Chicago, Illinois 60637, USA;
| | - Xiaochang Zhang
- Department of Human Genetics, The University of Chicago, Chicago, Illinois 60637, USA;
- The Neuroscience Institute, The University of Chicago, Chicago, Illinois 60637, USA
| |
Collapse
|
8
|
Zhang Z, Bae B, Cuddleston WH, Miura P. Coordination of alternative splicing and alternative polyadenylation revealed by targeted long read sequencing. Nat Commun 2023; 14:5506. [PMID: 37679364 PMCID: PMC10484994 DOI: 10.1038/s41467-023-41207-8] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Accepted: 08/25/2023] [Indexed: 09/09/2023] Open
Abstract
Nervous system development is associated with extensive regulation of alternative splicing (AS) and alternative polyadenylation (APA). AS and APA have been extensively studied in isolation, but little is known about how these processes are coordinated. Here, the coordination of cassette exon (CE) splicing and APA in Drosophila was investigated using a targeted long-read sequencing approach we call Pull-a-Long-Seq (PL-Seq). This cost-effective method uses cDNA pulldown and Nanopore sequencing combined with an analysis pipeline to quantify inclusion of alternative exons in connection with alternative 3' ends. Using PL-Seq, we identified genes that exhibit significant differences in CE splicing depending on connectivity to short versus long 3'UTRs. Genomic long 3'UTR deletion was found to alter upstream CE splicing in short 3'UTR isoforms and ELAV loss differentially affected CE splicing depending on connectivity to alternative 3'UTRs. This work highlights the importance of considering connectivity to alternative 3'UTRs when monitoring AS events.
Collapse
Affiliation(s)
- Zhiping Zhang
- Department of Genetics and Genome Sciences, University of Connecticut School of Medicine, Farmington, CT, USA
- Department of Biology, University of Nevada, Reno, Reno, NV, USA
| | - Bongmin Bae
- Department of Biology, University of Nevada, Reno, Reno, NV, USA
| | | | - Pedro Miura
- Department of Genetics and Genome Sciences, University of Connecticut School of Medicine, Farmington, CT, USA.
- Department of Biology, University of Nevada, Reno, Reno, NV, USA.
- Institute for System Genomics, University of Connecticut, Storrs, CT, USA.
| |
Collapse
|
9
|
Aygün N, Krupa O, Mory J, Le B, Valone J, Liang D, Love MI, Stein JL. Genetics of cell-type-specific post-transcriptional gene regulation during human neurogenesis. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.08.30.555019. [PMID: 37693528 PMCID: PMC10491258 DOI: 10.1101/2023.08.30.555019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/12/2023]
Abstract
The function of some genetic variants associated with brain-relevant traits has been explained through colocalization with expression quantitative trait loci (eQTL) conducted in bulk post-mortem adult brain tissue. However, many brain-trait associated loci have unknown cellular or molecular function. These genetic variants may exert context-specific function on different molecular phenotypes including post-transcriptional changes. Here, we identified genetic regulation of RNA-editing and alternative polyadenylation (APA), within a cell-type-specific population of human neural progenitors and neurons. More RNA-editing and isoforms utilizing longer polyadenylation sequences were observed in neurons, likely due to higher expression of genes encoding the proteins mediating these post-transcriptional events. We also detected hundreds of cell-type-specific editing quantitative trait loci (edQTLs) and alternative polyadenylation QTLs (apaQTLs). We found colocalizations of a neuron edQTL in CCDC88A with educational attainment and a progenitor apaQTL in EP300 with schizophrenia, suggesting genetically mediated post-transcriptional regulation during brain development lead to differences in brain function.
Collapse
Affiliation(s)
- Nil Aygün
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
- UNC Neuroscience Center University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Oleh Krupa
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
- UNC Neuroscience Center University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Jessica Mory
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
- UNC Neuroscience Center University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Brandon Le
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
- UNC Neuroscience Center University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Jordan Valone
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
- UNC Neuroscience Center University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Dan Liang
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
- UNC Neuroscience Center University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Michael I. Love
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
- Department of Biostatistics, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Jason L. Stein
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
- UNC Neuroscience Center University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
- Lead contact
| |
Collapse
|
10
|
Zhang Q, Tian B. The emerging theme of 3'UTR mRNA isoform regulation in reprogramming of cell metabolism. Biochem Soc Trans 2023; 51:1111-1119. [PMID: 37171086 PMCID: PMC10771799 DOI: 10.1042/bst20221128] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Revised: 03/26/2023] [Accepted: 04/19/2023] [Indexed: 05/13/2023]
Abstract
The 3' untranslated region (3'UTR) of mRNA plays a key role in the post-transcriptional regulation of gene expression. Most eukaryotic protein-coding genes express 3'UTR isoforms owing to alternative cleavage and polyadenylation (APA). The 3'UTR isoform expression profile of a cell changes in cell proliferation, differentiation, and stress conditions. Here, we review the emerging theme of regulation of 3'UTR isoforms in cell metabolic reprogramming, focusing on cell growth and autophagy responses through the mTOR pathway. We discuss regulatory events that converge on the Cleavage Factor I complex, a master regulator of APA in 3'UTRs, and recent understandings of isoform-specific m6A modification and endomembrane association in determining differential metabolic fates of 3'UTR isoforms.
Collapse
Affiliation(s)
- Qiang Zhang
- Gene Expression and Regulation Program and Center for Systems and Computational Biology, The Wistar Institute, Philadelphia, PA 19104, U.S.A
| | - Bin Tian
- Gene Expression and Regulation Program and Center for Systems and Computational Biology, The Wistar Institute, Philadelphia, PA 19104, U.S.A
| |
Collapse
|
11
|
LaForce GR, Philippidou P, Schaffer AE. mRNA isoform balance in neuronal development and disease. WILEY INTERDISCIPLINARY REVIEWS. RNA 2023; 14:e1762. [PMID: 36123820 PMCID: PMC10024649 DOI: 10.1002/wrna.1762] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Revised: 07/11/2022] [Accepted: 08/15/2022] [Indexed: 11/07/2022]
Abstract
Balanced mRNA isoform diversity and abundance are spatially and temporally regulated throughout cellular differentiation. The proportion of expressed isoforms contributes to cell type specification and determines key properties of the differentiated cells. Neurons are unique cell types with intricate developmental programs, characteristic cellular morphologies, and electrophysiological potential. Neuron-specific gene expression programs establish these distinctive cellular characteristics and drive diversity among neuronal subtypes. Genes with neuron-specific alternative processing are enriched in key neuronal functions, including synaptic proteins, adhesion molecules, and scaffold proteins. Despite the similarity of neuronal gene expression programs, each neuronal subclass can be distinguished by unique alternative mRNA processing events. Alternative processing of developmentally important transcripts alters coding and regulatory information, including interaction domains, transcript stability, subcellular localization, and targeting by RNA binding proteins. Fine-tuning of mRNA processing is essential for neuronal activity and maintenance. Thus, the focus of neuronal RNA biology research is to dissect the transcriptomic mechanisms that underlie neuronal homeostasis, and consequently, predispose neuronal subtypes to disease. This article is categorized under: RNA in Disease and Development > RNA in Disease RNA in Disease and Development > RNA in Development.
Collapse
Affiliation(s)
- Geneva R LaForce
- Department of Genetics and Genome Sciences, Case Western Reserve University, Cleveland, Ohio, USA
| | - Polyxeni Philippidou
- Department of Neurosciences, Case Western Reserve University, Cleveland, Ohio, USA
| | - Ashleigh E Schaffer
- Department of Genetics and Genome Sciences, Case Western Reserve University, Cleveland, Ohio, USA
| |
Collapse
|
12
|
Masamha CP. The emerging roles of CFIm25 (NUDT21/CPSF5) in human biology and disease. WILEY INTERDISCIPLINARY REVIEWS. RNA 2023; 14:e1757. [PMID: 35965101 PMCID: PMC9925614 DOI: 10.1002/wrna.1757] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Revised: 07/07/2022] [Accepted: 07/11/2022] [Indexed: 11/11/2022]
Abstract
The mammalian cleavage factor I subunit CFIm25 (NUDT21) binds to the UGUA sequences of precursor RNAs. Traditionally, CFIm25 is known to facilitate 3' end formation of pre-mRNAs resulting in the formation of polyadenylated transcripts. Recent studies suggest that CFIm25 may be involved in the cyclization and hence generation of circular RNAs (circRNAs) that contain UGUA motifs. These circRNAs act as competing endogenous RNAs (ceRNAs) that disrupt the ceRNA-miRNA-mRNA axis. Other emerging roles of CFIm25 include regulating both alternative splicing and alternative polyadenylation (APA). APA generates different sized transcripts that may code for different proteins, or more commonly transcripts that code for the same protein but differ in the length and sequence content of their 3' UTRs (3' UTR-APA). CFIm25 mediated global changes in 3' UTR-APA affect human physiology including spermatogenesis and the determination of cell fate. Deregulation of CFIm25 and changes in 3' UTR-APA have been implicated in several human diseases including cancer. In many cancers, CFIm25 acts as a tumor suppressor. However, there are some cancers where CFIm25 has the opposite effect. Alterations in CFIm25-driven 3' UTR-APA may also play a role in neural dysfunction and fibrosis. CFIm25 mediated 3' UTR-APA changes can be used to generate specific signatures that can be used as potential biomarkers in development and disease. Due to the emerging role of CFIm25 as a regulator of the aforementioned RNA processing events, modulation of CFIm25 levels may be a novel viable therapeutic approach. This article is categorized under: RNA Processing > 3' End Processing RNA in Disease and Development > RNA in Disease.
Collapse
Affiliation(s)
- Chioniso Patience Masamha
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, Butler University, Indianapolis, Indiana, USA
| |
Collapse
|
13
|
Wang T, Ye W, Zhang J, Li H, Zeng W, Zhu S, Ji G, Wu X, Ma L. Alternative 3'-untranslated regions regulate high-salt tolerance of Spartina alterniflora. PLANT PHYSIOLOGY 2023; 191:2570-2587. [PMID: 36682816 PMCID: PMC10069910 DOI: 10.1093/plphys/kiad030] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Revised: 12/06/2022] [Accepted: 12/15/2022] [Indexed: 05/15/2023]
Abstract
High-salt stress continues to challenge the growth and survival of many plants. Alternative polyadenylation (APA) produces mRNAs with different 3'-untranslated regions (3' UTRs) to regulate gene expression at the post-transcriptional level. However, the roles of alternative 3' UTRs in response to salt stress remain elusive. Here, we report the function of alternative 3' UTRs in response to high-salt stress in S. alterniflora (Spartina alterniflora), a monocotyledonous halophyte tolerant of high-salt environments. We found that high-salt stress induced global APA dynamics, and ∼42% of APA genes responded to salt stress. High-salt stress led to 3' UTR lengthening of 207 transcripts through increasing the usage of distal poly(A) sites. Transcripts with alternative 3' UTRs were mainly enriched in salt stress-related ion transporters. Alternative 3' UTRs of HIGH-AFFINITY K+ TRANSPORTER 1 (SaHKT1) increased RNA stability and protein synthesis in vivo. Regulatory AU-rich elements were identified in alternative 3' UTRs, boosting the protein level of SaHKT1. RNAi-knock-down experiments revealed that the biogenesis of 3' UTR lengthening in SaHKT1 was controlled by the poly(A) factor CLEAVAGE AND POLYADENYLATION SPECIFICITY FACTOR 30 (SaCPSF30). Over-expression of SaHKT1 with an alternative 3' UTR in rice (Oryza sativa) protoplasts increased mRNA accumulation of salt-tolerance genes in an AU-rich element-dependent manner. These results suggest that mRNA 3' UTR lengthening is a potential mechanism in response to high-salt stress. These results also reveal complex regulatory roles of alternative 3' UTRs coupling APA and regulatory elements at the post-transcriptional level in plants.
Collapse
Affiliation(s)
- Taotao Wang
- College of Forestry, Haixia Institute of Science and Technology, School of Future Technology, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China
| | - Wenbin Ye
- Department of Automation, Xiamen University, Xiamen, Fujian 361005, China
| | - Jiaxiang Zhang
- College of Forestry, Haixia Institute of Science and Technology, School of Future Technology, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China
- College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China
| | - Han Li
- College of Forestry, Haixia Institute of Science and Technology, School of Future Technology, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China
- College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China
| | - Weike Zeng
- College of Forestry, Haixia Institute of Science and Technology, School of Future Technology, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China
- College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China
| | - Sheng Zhu
- Department of Automation, Xiamen University, Xiamen, Fujian 361005, China
| | - Guoli Ji
- Department of Automation, Xiamen University, Xiamen, Fujian 361005, China
| | - Xiaohui Wu
- Pasteurien College, Soochow University, Suzhou, Jiangsu 215000, China
| | - Liuyin Ma
- College of Forestry, Haixia Institute of Science and Technology, School of Future Technology, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China
| |
Collapse
|
14
|
Zhang Z, Bae B, Cuddleston WH, Miura P. Coordination of Alternative Splicing and Alternative Polyadenylation revealed by Targeted Long-Read Sequencing. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.03.23.533999. [PMID: 36993601 PMCID: PMC10055423 DOI: 10.1101/2023.03.23.533999] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 06/19/2023]
Abstract
Nervous system development is associated with extensive regulation of alternative splicing (AS) and alternative polyadenylation (APA). AS and APA have been extensively studied in isolation, but little is known about how these processes are coordinated. Here, the coordination of cassette exon (CE) splicing and APA in Drosophila was investigated using a targeted long-read sequencing approach we call Pull-a-Long-Seq (PL-Seq). This cost-effective method uses cDNA pulldown and Nanopore sequencing combined with an analysis pipeline to resolve the connectivity of alternative exons to alternative 3' ends. Using PL-Seq, we identified genes that exhibit significant differences in CE splicing depending on connectivity to short versus long 3'UTRs. Genomic long 3'UTR deletion was found to alter upstream CE splicing in short 3'UTR isoforms and ELAV loss differentially affected CE splicing depending on connectivity to alternative 3'UTRs. This work highlights the importance of considering connectivity to alternative 3'UTRs when monitoring AS events.
Collapse
Affiliation(s)
- Zhiping Zhang
- Department of Biology, University of Nevada, Reno, Reno, NV, USA
- Department of Genetics and Genome Sciences, UConn Health, Farmington, CT, USA
| | - Bongmin Bae
- Department of Biology, University of Nevada, Reno, Reno, NV, USA
| | | | - Pedro Miura
- Department of Biology, University of Nevada, Reno, Reno, NV, USA
- Department of Genetics and Genome Sciences, UConn Health, Farmington, CT, USA
| |
Collapse
|
15
|
de Prisco N, Ford C, Elrod ND, Lee W, Tang LC, Huang KL, Lin A, Ji P, Jonnakuti VS, Boyle L, Cabaj M, Botta S, Õunap K, Reinson K, Wojcik MH, Rosenfeld JA, Bi W, Tveten K, Prescott T, Gerstner T, Schroeder A, Fong CT, George-Abraham JK, Buchanan CA, Hanson-Khan A, Bernstein JA, Nella AA, Chung WK, Brandt V, Jovanovic M, Targoff KL, Yalamanchili HK, Wagner EJ, Gennarino VA. Alternative polyadenylation alters protein dosage by switching between intronic and 3'UTR sites. SCIENCE ADVANCES 2023; 9:eade4814. [PMID: 36800428 PMCID: PMC9937581 DOI: 10.1126/sciadv.ade4814] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Accepted: 01/19/2023] [Indexed: 06/18/2023]
Abstract
Alternative polyadenylation (APA) creates distinct transcripts from the same gene by cleaving the pre-mRNA at poly(A) sites that can lie within the 3' untranslated region (3'UTR), introns, or exons. Most studies focus on APA within the 3'UTR; however, here, we show that CPSF6 insufficiency alters protein levels and causes a developmental syndrome by deregulating APA throughout the transcript. In neonatal humans and zebrafish larvae, CPSF6 insufficiency shifts poly(A) site usage between the 3'UTR and internal sites in a pathway-specific manner. Genes associated with neuronal function undergo mostly intronic APA, reducing their expression, while genes associated with heart and skeletal function mostly undergo 3'UTR APA and are up-regulated. This suggests that, under healthy conditions, cells toggle between internal and 3'UTR APA to modulate protein expression.
Collapse
Affiliation(s)
- Nicola de Prisco
- Department of Genetics and Development, Columbia University Irving Medical Center, New York, NY, USA
- Columbia Stem Cell Initiative, Columbia University Irving Medical Center, New York, NY, USA
| | - Caitlin Ford
- Department of Genetics and Development, Columbia University Irving Medical Center, New York, NY, USA
- Department of Pediatrics, College of Physicians and Surgeons, Columbia University Irving Medical Center, New York, NY, USA
| | - Nathan D. Elrod
- Department of Biochemistry and Molecular Biology, University of Texas Medical Branch at Galveston, Galveston, TX, USA
| | - Winston Lee
- Department of Genetics and Development, Columbia University Irving Medical Center, New York, NY, USA
- Department Ophthalmology, Columbia University Irving Medical Center, New York, NY, USA
| | - Lauren C. Tang
- Department of Biological Sciences, Columbia University, New York, NY, USA
| | - Kai-Lieh Huang
- Department of Biochemistry and Molecular Biology, University of Texas Medical Branch at Galveston, Galveston, TX, USA
- Department of Biochemistry and Biophysics, University of Rochester School of Medicine and Dentistry, Rochester, NY, USA
| | - Ai Lin
- Department of Etiology and Carcinogenesis, National Cancer Center/National Clinical Research Center/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, WC67+HC Dongcheng, Beijing, China
| | - Ping Ji
- Department of Biochemistry and Molecular Biology, University of Texas Medical Branch at Galveston, Galveston, TX, USA
| | - Venkata S. Jonnakuti
- Department of Pediatrics, Baylor College of Medicine and Texas Children’s Hospital, Houston, TX, USA
- Jan and Dan Duncan Neurological Research Institute, Texas Children’s Hospital, Houston, TX, USA
- Program in Quantitative and Computational Biology, Baylor College of Medicine, Houston, TX, USA
- Medical Scientist Training Program, Baylor College of Medicine, Houston, TX, USA
| | - Lia Boyle
- Department of Genetics and Development, Columbia University Irving Medical Center, New York, NY, USA
- Department of Pediatrics, College of Physicians and Surgeons, Columbia University Irving Medical Center, New York, NY, USA
| | - Maximilian Cabaj
- Department of Genetics and Development, Columbia University Irving Medical Center, New York, NY, USA
| | - Salvatore Botta
- Department of Genetics and Development, Columbia University Irving Medical Center, New York, NY, USA
- Department of Translational Medical Science, University of Campania Luigi Vanvitelli, Caserta, Italy
| | - Katrin Õunap
- Department of Clinical Genetics, Genetics and Personalized Medicine Clinic, Tartu University Hospital, Tartu, Estonia
- Institute of Clinical Medicine, University of Tartu, Tartu, Estonia
| | - Karit Reinson
- Department of Clinical Genetics, Genetics and Personalized Medicine Clinic, Tartu University Hospital, Tartu, Estonia
- Institute of Clinical Medicine, University of Tartu, Tartu, Estonia
| | - Monica H. Wojcik
- Broad Center for Mendelian Genomics, Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Jill A. Rosenfeld
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
- Baylor Genetics Laboratories, Houston, TX, USA
| | - Weimin Bi
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
- Baylor Genetics Laboratories, Houston, TX, USA
| | - Kristian Tveten
- Department of Medical Genetics, Telemark Hospital Trust, 3710 Skien, Norway
| | - Trine Prescott
- Department of Medical Genetics, Telemark Hospital Trust, 3710 Skien, Norway
| | - Thorsten Gerstner
- Department of Child Neurology and Rehabilitation and Department of Pediatrics, Hospital of Southern Norway, Arendal, Norway
| | - Audrey Schroeder
- Division of Medical Genetics, University of Rochester Medical Center, Rochester, NY, USA
| | - Chin-To Fong
- Department of Pediatrics and of Medicine, University of Rochester Medical Center, Rochester, NY, USA
| | - Jaya K. George-Abraham
- Dell Children’s Medical Group, Austin, TX, USA
- Department of Pediatrics, The University of Texas at Austin Dell Medical School, Austin, TX, USA
| | | | - Andrea Hanson-Khan
- Department of Pediatrics, Division of Medical Genetics, Stanford School of Medicine, Palo Alto, CA, USA
- Department of Genetics, Stanford School of Medicine, Palo Alto, CA, USA
| | - Jonathan A. Bernstein
- Department of Pediatrics, Division of Medical Genetics, Stanford School of Medicine, Palo Alto, CA, USA
| | - Aikaterini A. Nella
- Jan and Dan Duncan Neurological Research Institute, Texas Children’s Hospital, Houston, TX, USA
| | - Wendy K. Chung
- Department of Pediatrics, College of Physicians and Surgeons, Columbia University Irving Medical Center, New York, NY, USA
- Department of Medicine, Columbia University Irving Medical Center, New York, NY, USA
| | - Vicky Brandt
- Department of Genetics and Development, Columbia University Irving Medical Center, New York, NY, USA
| | - Marko Jovanovic
- Department of Biological Sciences, Columbia University, New York, NY, USA
| | - Kimara L. Targoff
- Columbia Stem Cell Initiative, Columbia University Irving Medical Center, New York, NY, USA
- Department of Pediatrics, College of Physicians and Surgeons, Columbia University Irving Medical Center, New York, NY, USA
| | - Hari Krishna Yalamanchili
- Jan and Dan Duncan Neurological Research Institute, Texas Children’s Hospital, Houston, TX, USA
- USDA/ARS Children’s Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, Houston, TX, USA
| | - Eric J. Wagner
- Department of Biochemistry and Molecular Biology, University of Texas Medical Branch at Galveston, Galveston, TX, USA
- Department of Biochemistry and Biophysics, University of Rochester School of Medicine and Dentistry, Rochester, NY, USA
| | - Vincenzo A. Gennarino
- Department of Genetics and Development, Columbia University Irving Medical Center, New York, NY, USA
- Columbia Stem Cell Initiative, Columbia University Irving Medical Center, New York, NY, USA
- Department of Pediatrics, College of Physicians and Surgeons, Columbia University Irving Medical Center, New York, NY, USA
- Department of Neurology, Columbia University Irving Medical Center, New York, NY, USA
- Initiative for Columbia Ataxia and Tremor, Columbia University Irving Medical Center, New York, NY, USA
| |
Collapse
|
16
|
Cui Y, Arnold FJ, Peng F, Wang D, Li JS, Michels S, Wagner EJ, La Spada AR, Li W. Alternative polyadenylation transcriptome-wide association study identifies APA-linked susceptibility genes in brain disorders. Nat Commun 2023; 14:583. [PMID: 36737438 PMCID: PMC9898543 DOI: 10.1038/s41467-023-36311-8] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Accepted: 01/25/2023] [Indexed: 02/05/2023] Open
Abstract
Alternative polyadenylation (APA) plays an essential role in brain development; however, current transcriptome-wide association studies (TWAS) largely overlook APA in nominating susceptibility genes. Here, we performed a 3' untranslated region (3'UTR) APA TWAS (3'aTWAS) for 11 brain disorders by combining their genome-wide association studies data with 17,300 RNA-seq samples across 2,937 individuals. We identified 354 3'aTWAS-significant genes, including known APA-linked risk genes, such as SNCA in Parkinson's disease. Among these 354 genes, ~57% are not significant in traditional expression- and splicing-TWAS studies, since APA may regulate the translation, localization and protein-protein interaction of the target genes independent of mRNA level expression or splicing. Furthermore, we discovered ATXN3 as a 3'aTWAS-significant gene for amyotrophic lateral sclerosis, and its modulation substantially impacted pathological hallmarks of amyotrophic lateral sclerosis in vitro. Together, 3'aTWAS is a powerful strategy to nominate important APA-linked brain disorder susceptibility genes, most of which are largely overlooked by conventional expression and splicing analyses.
Collapse
Affiliation(s)
- Ya Cui
- Division of Computational Biomedicine, Department of Biological Chemistry, School of Medicine, University of California, Irvine, Irvine, CA, 92697, USA
| | - Frederick J Arnold
- Departments of Pathology & Laboratory Medicine, Neurology, and Biological Chemistry, School of Medicine, and the UCI Institute for Neurotherapeutics, University of California Irvine, Irvine, CA, 92697, USA
| | - Fanglue Peng
- Department of Molecular and Cellular Biology, University Baylor College of Medicine, Houston, TX, 77030, USA
| | - Dan Wang
- Department of Medicine, Division of Cardiology, University of California, Los Angeles, Los Angeles, CA, 90095, USA
| | - Jason Sheng Li
- Division of Computational Biomedicine, Department of Biological Chemistry, School of Medicine, University of California, Irvine, Irvine, CA, 92697, USA
| | - Sebastian Michels
- Departments of Pathology & Laboratory Medicine, Neurology, and Biological Chemistry, School of Medicine, and the UCI Institute for Neurotherapeutics, University of California Irvine, Irvine, CA, 92697, USA
| | - Eric J Wagner
- School of Medicine and Dentistry, University of Rochester Medical Center, Rochester, NY, 14642, USA
| | - Albert R La Spada
- Departments of Pathology & Laboratory Medicine, Neurology, and Biological Chemistry, School of Medicine, and the UCI Institute for Neurotherapeutics, University of California Irvine, Irvine, CA, 92697, USA.
| | - Wei Li
- Division of Computational Biomedicine, Department of Biological Chemistry, School of Medicine, University of California, Irvine, Irvine, CA, 92697, USA.
| |
Collapse
|
17
|
Tseng HW, Mota-Sydor A, Leventis R, Jovanovic P, Topisirovic I, Duchaine T. Distinct, opposing functions for CFIm59 and CFIm68 in mRNA alternative polyadenylation of Pten and in the PI3K/Akt signalling cascade. Nucleic Acids Res 2022; 50:9397-9412. [PMID: 35993810 PMCID: PMC9458458 DOI: 10.1093/nar/gkac704] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Revised: 07/29/2022] [Accepted: 08/18/2022] [Indexed: 12/24/2022] Open
Abstract
Precise maintenance of PTEN dosage is crucial for tumor suppression across a wide variety of cancers. Post-transcriptional regulation of Pten heavily relies on regulatory elements encoded by its 3'UTR. We previously reported the important diversity of 3'UTR isoforms of Pten mRNAs produced through alternative polyadenylation (APA). Here, we reveal the direct regulation of Pten APA by the mammalian cleavage factor I (CFIm) complex, which in turn contributes to PTEN protein dosage. CFIm consists of the UGUA-binding CFIm25 and APA regulatory subunits CFIm59 or CFIm68. Deep sequencing analyses of perturbed (KO and KD) cell lines uncovered the differential regulation of Pten APA by CFIm59 and CFIm68 and further revealed that their divergent functions have widespread impact for APA in transcriptomes. Differentially regulated genes include numerous factors within the phosphoinositide 3-kinase (PI3K)/protein kinase B (Akt) signalling pathway that PTEN counter-regulates. We further reveal a stratification of APA dysregulation among a subset of PTEN-driven cancers, with recurrent alterations among PI3K/Akt pathway genes regulated by CFIm. Our results refine the transcriptome selectivity of the CFIm complex in APA regulation, and the breadth of its impact in PTEN-driven cancers.
Collapse
Affiliation(s)
- Hsin-Wei Tseng
- Rosalind and Morris Goodman Cancer Institute, McGill University, Montréal H3G 1Y6, Canada,Department of Biochemistry, McGill University, Montréal,H3G 1Y6, Canada
| | - Anthony Mota-Sydor
- Rosalind and Morris Goodman Cancer Institute, McGill University, Montréal H3G 1Y6, Canada,Department of Biochemistry, McGill University, Montréal,H3G 1Y6, Canada
| | - Rania Leventis
- Rosalind and Morris Goodman Cancer Institute, McGill University, Montréal H3G 1Y6, Canada,Department of Biochemistry, McGill University, Montréal,H3G 1Y6, Canada
| | - Predrag Jovanovic
- Lady Davis Institute for Medical Research, Montréal H3T 1E2, Canada,Department of Medicine, Division of Experimental Medicine, McGill University, Montréal H4A 3J1, Canada
| | - Ivan Topisirovic
- Department of Biochemistry, McGill University, Montréal,H3G 1Y6, Canada,Lady Davis Institute for Medical Research, Montréal H3T 1E2, Canada,Gerald Bronfman Department of Oncology, McGill University, Montréal H4A 3T2, Canada,Department of Medicine, Division of Experimental Medicine, McGill University, Montréal H4A 3J1, Canada
| | - Thomas F Duchaine
- To whom correspondence should be addressed. Tel: +1 514 918 0639; Fax: +1 514 398 6769;
| |
Collapse
|
18
|
Ran Y, Huang S, Shi J, Feng Q, Deng Y, Xiang AP, Yao C. CFIm25 regulates human stem cell function independently of its role in mRNA alternative polyadenylation. RNA Biol 2022; 19:686-702. [PMID: 35491945 PMCID: PMC9067535 DOI: 10.1080/15476286.2022.2071025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
It has recently been shown that CFIm25, a canonical mRNA 3’ processing factor, could play a variety of physiological roles through its molecular function in the regulation of mRNA alternative polyadenylation (APA). Here, we used CRISPR/Cas9-mediated gene editing approach in human embryonic stem cells (hESCs) for CFIm25, and obtained three gene knockdown/mutant cell lines. CFIm25 gene editing resulted in higher proliferation rate and impaired differentiation potential for hESCs, with these effects likely to be directly regulated by the target genes, including the pluripotency factor rex1. Mechanistically, we unexpected found that perturbation in CFIm25 gene expression did not significantly affect cellular mRNA 3’ processing efficiency and APA profile. Rather, we provided evidences that CFIm25 may impact RNA polymerase II (RNAPII) occupancy at the body of transcribed genes, and promote the expression level of a group of transcripts associated with cellular proliferation and/or differentiation. Taken together, these results reveal novel mechanisms underlying CFIm25ʹs modulation in determination of cell fate, and provide evidence that the process of mammalian gene transcription may be regulated by an mRNA 3’ processing factor.
Collapse
Affiliation(s)
- Yi Ran
- Center for Stem Cell Biology and Tissue Engineering, Key Laboratory for Stem Cells and Tissue Engineering, Ministry of Education, Sun Yat-Sen University, Guangzhou, China
| | - Shanshan Huang
- Center for Stem Cell Biology and Tissue Engineering, Key Laboratory for Stem Cells and Tissue Engineering, Ministry of Education, Sun Yat-Sen University, Guangzhou, China
| | - Junjie Shi
- Center for Stem Cell Biology and Tissue Engineering, Key Laboratory for Stem Cells and Tissue Engineering, Ministry of Education, Sun Yat-Sen University, Guangzhou, China
| | - Qiumin Feng
- Center for Stem Cell Biology and Tissue Engineering, Key Laboratory for Stem Cells and Tissue Engineering, Ministry of Education, Sun Yat-Sen University, Guangzhou, China
| | - Yanhui Deng
- Center for Stem Cell Biology and Tissue Engineering, Key Laboratory for Stem Cells and Tissue Engineering, Ministry of Education, Sun Yat-Sen University, Guangzhou, China
| | - Andy Peng Xiang
- Center for Stem Cell Biology and Tissue Engineering, Key Laboratory for Stem Cells and Tissue Engineering, Ministry of Education, Sun Yat-Sen University, Guangzhou, China
| | - Chengguo Yao
- Center for Stem Cell Biology and Tissue Engineering, Key Laboratory for Stem Cells and Tissue Engineering, Ministry of Education, Sun Yat-Sen University, Guangzhou, China
- Department of Genetics and Cell Biology, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, China
| |
Collapse
|
19
|
RNA Modifications and RNA Metabolism in Neurological Disease Pathogenesis. Int J Mol Sci 2021; 22:ijms222111870. [PMID: 34769301 PMCID: PMC8584444 DOI: 10.3390/ijms222111870] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 10/16/2021] [Accepted: 10/26/2021] [Indexed: 02/06/2023] Open
Abstract
The intrinsic cellular heterogeneity and molecular complexity of the mammalian nervous system relies substantially on the dynamic nature and spatiotemporal patterning of gene expression. These features of gene expression are achieved in part through mechanisms involving various epigenetic processes such as DNA methylation, post-translational histone modifications, and non-coding RNA activity, amongst others. In concert, another regulatory layer by which RNA bases and sugar residues are chemically modified enhances neuronal transcriptome complexity. Similar RNA modifications in other systems collectively constitute the cellular epitranscriptome that integrates and impacts various physiological processes. The epitranscriptome is dynamic and is reshaped constantly to regulate vital processes such as development, differentiation and stress responses. Perturbations of the epitranscriptome can lead to various pathogenic conditions, including cancer, cardiovascular abnormalities and neurological diseases. Recent advances in next-generation sequencing technologies have enabled us to identify and locate modified bases/sugars on different RNA species. These RNA modifications modulate the stability, transport and, most importantly, translation of RNA. In this review, we discuss the formation and functions of some frequently observed RNA modifications—including methylations of adenine and cytosine bases, and isomerization of uridine to pseudouridine—at various layers of RNA metabolism, together with their contributions to abnormal physiological conditions that can lead to various neurodevelopmental and neurological disorders.
Collapse
|
20
|
Zhu Y, Zhang R, Zhang Y, Cheng X, Li L, Wu Z, Ding K. NUDT21 Promotes Tumor Growth and Metastasis Through Modulating SGPP2 in Human Gastric Cancer. Front Oncol 2021; 11:670353. [PMID: 34660260 PMCID: PMC8514838 DOI: 10.3389/fonc.2021.670353] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2021] [Accepted: 09/13/2021] [Indexed: 01/24/2023] Open
Abstract
Gastric cancer is one of the major malignancies with poor survival outcome. In this study, we reported that NUDT21 promoted cell proliferation, colony formation, cell migration and invasion in gastric cancer cells. The expression levels of NUDT21 were found to be much higher in human gastric cancer tissues compared with normal gastric tissues. NUDT21 expression was positively correlated with tumor size, lymph node metastasis and clinical stage in gastric cancer patients. High level of NUDT21 was associated with poor overall survival (OS) rates in gastric cancer patients. The expression levels of NUDT21 were also much higher in gastric cancer tissues from patients with tumor metastasis compared with those of patients without tumor metastasis. Moreover, forced expression of NUDT21 in gastric cancer cells promoted tumor growth and cell proliferation in xenograft nude mice, and depletion of NUDT21 in gastric cancer cells restrained lung metastasis in vivo. Through high throughput RNA-sequencing, SGPP2 was identified to be positively regulated by NUDT21 and mediated the tumor promoting role of NUDT21 in gastric cancer cells. Therefore, NUDT21 played an oncogenic role in human gastric cancer cells. NUDT21 could be considered as a novel potential target for gastric cancer therapy.
Collapse
Affiliation(s)
- Yong Zhu
- Department of Pathophysiology, School of Basic Medicine, Anhui Medical University, Hefei, China
| | - Rumeng Zhang
- Department of Pathology, School of Basic Medicine, Anhui Medical University, Hefei, China
| | - Ying Zhang
- Department of Oncology of the First Affiliated Hospital, Division of Life Science and Medicine, The CAS Key Laboratory of Innate Immunity and Chronic Disease, University of Science and Technology of China, Hefei, China
| | - Xiao Cheng
- Department of Pathology, School of Basic Medicine, Anhui Medical University, Hefei, China
| | - Lin Li
- Department of Pathology, School of Basic Medicine, Anhui Medical University, Hefei, China
| | - Zhengsheng Wu
- Department of Pathology, School of Basic Medicine, Anhui Medical University, Hefei, China
- Department of Pathology, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Keshuo Ding
- Department of Pathology, School of Basic Medicine, Anhui Medical University, Hefei, China
- Department of Pathology, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| |
Collapse
|
21
|
Mohanan NK, Shaji F, Koshre GR, Laishram RS. Alternative polyadenylation: An enigma of transcript length variation in health and disease. WILEY INTERDISCIPLINARY REVIEWS-RNA 2021; 13:e1692. [PMID: 34581021 DOI: 10.1002/wrna.1692] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Revised: 06/16/2021] [Accepted: 08/24/2021] [Indexed: 12/19/2022]
Abstract
Alternative polyadenylation (APA) is a molecular mechanism during a pre-mRNA processing that involves usage of more than one polyadenylation site (PA-site) generating transcripts of varying length from a single gene. The location of a PA-site affects transcript length and coding potential of an mRNA contributing to both mRNA and protein diversification. This variation in the transcript length affects mRNA stability and translation, mRNA subcellular and tissue localization, and protein function. APA is now considered as an important regulatory mechanism in the pathophysiology of human diseases. An important consequence of the changes in the length of 3'-untranslated region (UTR) from disease-induced APA is altered protein expression. Yet, the relationship between 3'-UTR length and protein expression remains a paradox in a majority of diseases. Here, we review occurrence of APA, mechanism of PA-site selection, and consequences of transcript length variation in different diseases. Emerging evidence reveals coordinated involvement of core RNA processing factors including poly(A) polymerases in the PA-site selection in diseases-associated APAs. Targeting such APA regulators will be therapeutically significant in combating drug resistance in cancer and other complex diseases. This article is categorized under: RNA Processing > 3' End Processing RNA in Disease and Development > RNA in Disease Translation > Regulation.
Collapse
Affiliation(s)
- Neeraja K Mohanan
- Cardiovascular and Diabetes Biology Group, Rajiv Gandhi Centre for Biotechnology, Trivandrum, India
- Manipal Academy of Higher Education, Manipal, India
| | - Feba Shaji
- Cardiovascular and Diabetes Biology Group, Rajiv Gandhi Centre for Biotechnology, Trivandrum, India
- Regional Centre for Biotechnology, Faridabad, India
| | - Ganesh R Koshre
- Cardiovascular and Diabetes Biology Group, Rajiv Gandhi Centre for Biotechnology, Trivandrum, India
- Manipal Academy of Higher Education, Manipal, India
| | - Rakesh S Laishram
- Cardiovascular and Diabetes Biology Group, Rajiv Gandhi Centre for Biotechnology, Trivandrum, India
| |
Collapse
|
22
|
Rodrigues DC, Mufteev M, Ellis J. Regulation, diversity and function of MECP2 exon and 3'UTR isoforms. Hum Mol Genet 2021; 29:R89-R99. [PMID: 32681172 PMCID: PMC7530521 DOI: 10.1093/hmg/ddaa154] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Revised: 07/12/2020] [Accepted: 07/14/2020] [Indexed: 12/11/2022] Open
Abstract
The methyl-CpG-binding protein 2 (MECP2) is a critical global regulator of gene expression. Mutations in MECP2 cause neurodevelopmental disorders including Rett syndrome (RTT). MECP2 exon 2 is spliced into two alternative messenger ribonucleic acid (mRNA) isoforms encoding MECP2-E1 or MECP2-E2 protein isoforms that differ in their N-termini. MECP2-E2, isolated first, was used to define the general roles of MECP2 in methyl-deoxyribonucleic acid (DNA) binding, targeting of transcriptional regulatory complexes, and its disease-causing impact in RTT. It was later found that MECP2-E1 is the most abundant isoform in the brain and its exon 1 is also mutated in RTT. MECP2 transcripts undergo alternative polyadenylation generating mRNAs with four possible 3'untranslated region (UTR) lengths ranging from 130 to 8600 nt. Together, the exon and 3'UTR isoforms display remarkable abundance disparity across cell types and tissues during development. These findings indicate discrete means of regulation and suggest that protein isoforms perform non-overlapping roles. Multiple regulatory programs have been explored to explain these disparities. DNA methylation patterns of the MECP2 promoter and first intron impact MECP2-E1 and E2 isoform levels. Networks of microRNAs and RNA-binding proteins also post-transcriptionally regulate the stability and translation efficiency of MECP2 3'UTR isoforms. Finally, distinctions in biophysical properties in the N-termini between MECP2-E1 and E2 lead to variable protein stabilities and DNA binding dynamics. This review describes the steps taken from the discovery of MECP2, the description of its key functions, and its association with RTT, to the emergence of evidence revealing how MECP2 isoforms are differentially regulated at the transcriptional, post-transcriptional and post-translational levels.
Collapse
Affiliation(s)
- Deivid Carvalho Rodrigues
- Program in Developmental and Stem Cell Biology, The Hospital for Sick Children, Toronto ON M5G 0A4, Canada
| | - Marat Mufteev
- Program in Developmental and Stem Cell Biology, The Hospital for Sick Children, Toronto ON M5G 0A4, Canada.,Department of Molecular Genetics, University of Toronto, Toronto ON M5S 1A8, Canada
| | - James Ellis
- Program in Developmental and Stem Cell Biology, The Hospital for Sick Children, Toronto ON M5G 0A4, Canada.,Department of Molecular Genetics, University of Toronto, Toronto ON M5S 1A8, Canada
| |
Collapse
|
23
|
Cui Y, Peng F, Wang D, Li Y, Li JS, Li L, Li W. 3'aQTL-atlas: an atlas of 3'UTR alternative polyadenylation quantitative trait loci across human normal tissues. Nucleic Acids Res 2021; 50:D39-D45. [PMID: 34432052 PMCID: PMC8728222 DOI: 10.1093/nar/gkab740] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2021] [Revised: 08/10/2021] [Accepted: 08/13/2021] [Indexed: 11/25/2022] Open
Abstract
Genome-wide association studies (GWAS) have identified thousands of non-coding single-nucleotide polymorphisms (SNPs) associated with human traits and diseases. However, functional interpretation of these SNPs remains a significant challenge. Our recent study established the concept of 3′ untranslated region (3′UTR) alternative polyadenylation (APA) quantitative trait loci (3′aQTLs), which can be used to interpret ∼16.1% of GWAS SNPs and are distinct from gene expression QTLs and splicing QTLs. Despite the growing interest in 3′aQTLs, there is no comprehensive database for users to search and visualize them across human normal tissues. In the 3′aQTL-atlas (https://wlcb.oit.uci.edu/3aQTLatlas), we provide a comprehensive list of 3′aQTLs containing ∼1.49 million SNPs associated with APA of target genes, based on 15,201 RNA-seq samples across 49 human Genotype-Tissue Expression (GTEx v8) tissues isolated from 838 individuals. The 3′aQTL-atlas provides a ∼2-fold increase in sample size compared with our published study. It also includes 3′aQTL searches by Gene/SNP across tissues, a 3′aQTL genome browser, 3′aQTL boxplots, and GWAS-3′aQTL colocalization event visualization. The 3′aQTL-atlas aims to establish APA as an emerging molecular phenotype to explain a large fraction of GWAS risk SNPs, leading to significant novel insights into the genetic basis of APA and APA-linked susceptibility genes in human traits and diseases.
Collapse
Affiliation(s)
- Ya Cui
- Division of Computational Biomedicine, Department of Biological Chemistry, School of Medicine, University of California, Irvine, Irvine, CA 92697, USA
| | - Fanglue Peng
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX 77030, USA
| | - Dan Wang
- Department of Medicine, Division of Cardiology, University of California, Los Angeles, Los Angeles, CA, 90095, USA
| | - Yumei Li
- Division of Computational Biomedicine, Department of Biological Chemistry, School of Medicine, University of California, Irvine, Irvine, CA 92697, USA
| | - Jason Sheng Li
- Division of Computational Biomedicine, Department of Biological Chemistry, School of Medicine, University of California, Irvine, Irvine, CA 92697, USA
| | - Lei Li
- Division of Computational Biomedicine, Department of Biological Chemistry, School of Medicine, University of California, Irvine, Irvine, CA 92697, USA
| | - Wei Li
- Division of Computational Biomedicine, Department of Biological Chemistry, School of Medicine, University of California, Irvine, Irvine, CA 92697, USA
| |
Collapse
|
24
|
Pereira-Castro I, Moreira A. On the function and relevance of alternative 3'-UTRs in gene expression regulation. WILEY INTERDISCIPLINARY REVIEWS-RNA 2021; 12:e1653. [PMID: 33843145 DOI: 10.1002/wrna.1653] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Revised: 03/15/2021] [Accepted: 03/16/2021] [Indexed: 12/12/2022]
Abstract
Messanger RNA (mRNA) isoforms with alternative 3'-untranslated regions (3'-UTRs) are produced by alternative polyadenylation (APA), which occurs during transcription in most eukaryotic genes. APA fine-tunes gene expression in a cell-type- and cellular state-dependent manner. Selection of an APA site entails the binding of core cleavage and polyadenylation factors to a particular polyadenylation site localized in the pre-mRNA and is controlled by multiple regulatory determinants, including transcription, pre-mRNA cis-regulatory sequences, and protein factors. Alternative 3'-UTRs serve as platforms for specific RNA binding proteins and microRNAs, which regulate gene expression in a coordinated manner by controlling mRNA fate and function in the cell. Genome-wide studies illustrated the full extent of APA prevalence and revealed that specific 3'-UTR profiles are associated with particular cellular states and diseases. Generally, short 3'-UTRs are associated with proliferative and cancer cells, and long 3'-UTRs are mostly found in polarized and differentiated cells. Fundamental new insights on the physiological consequences of this widespread event and the molecular mechanisms involved have been revealed through single-cell studies. Publicly available comprehensive databases that cover all APA mRNA isoforms identified in many cellular states and diseases reveal specific APA signatures. Therapies tackling APA mRNA isoforms or APA regulators may be regarded as innovative and attractive tools for diagnostics or treatment of several pathologies. We highlight the function of APA and alternative 3'-UTRs in gene expression regulation, the control of these mechanisms, their physiological consequences, and their potential use as new biomarkers and therapeutic tools. This article is categorized under: RNA Processing > 3' End Processing RNA Interactions with Proteins and Other Molecules > Protein-RNA Interactions: Functional Implications RNA in Disease and Development > RNA in Disease.
Collapse
Affiliation(s)
- Isabel Pereira-Castro
- Gene Regulation, i3S, Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal.,IBMC, Instituto de Biologia Molecular e Celular, Universidade do Porto, Porto, Portugal
| | - Alexandra Moreira
- Gene Regulation, i3S, Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal.,IBMC, Instituto de Biologia Molecular e Celular, Universidade do Porto, Porto, Portugal.,ICBAS, Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto, Porto, Portugal
| |
Collapse
|
25
|
Shao Y, Bajikar SS, Tirumala HP, Gutierrez MC, Wythe JD, Zoghbi HY. Identification and characterization of conserved noncoding cis-regulatory elements that impact Mecp2 expression and neurological functions. Genes Dev 2021; 35:489-494. [PMID: 33737384 PMCID: PMC8015713 DOI: 10.1101/gad.345397.120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2020] [Accepted: 02/24/2021] [Indexed: 11/24/2022]
Abstract
In this study, Shao et al. investigated the transcriptional regulation of MeCP2, and identified six putative noncoding regulatory elements of Mecp2, two of which are conserved in humans. Their findings provide insight into transcriptional regulation of Mecp2/MECP2 and highlight genomic sites that could serve as diagnostic and therapeutic targets in Rett syndrome (RTT) and MECP2 duplication syndrome (MDS). While changes in MeCP2 dosage cause Rett syndrome (RTT) and MECP2 duplication syndrome (MDS), its transcriptional regulation is poorly understood. Here, we identified six putative noncoding regulatory elements of Mecp2, two of which are conserved in humans. Upon deletion in mice and human iPSC-derived neurons, these elements altered RNA and protein levels in opposite directions and resulted in a subset of RTT- and MDS-like behavioral deficits in mice. Our discovery provides insight into transcriptional regulation of Mecp2/MECP2 and highlights genomic sites that could serve as diagnostic and therapeutic targets in RTT or MDS.
Collapse
Affiliation(s)
- Yingyao Shao
- Jan and Dan Duncan Neurological Research Institute at Texas Children's Hospital, Baylor College of Medicine, Houston, Texas 77030, USA.,Program in Developmental Biology, Baylor College of Medicine, Houston, Texas 77030, USA.,Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas 77030, USA
| | - Sameer S Bajikar
- Jan and Dan Duncan Neurological Research Institute at Texas Children's Hospital, Baylor College of Medicine, Houston, Texas 77030, USA.,Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas 77030, USA
| | - Harini P Tirumala
- Jan and Dan Duncan Neurological Research Institute at Texas Children's Hospital, Baylor College of Medicine, Houston, Texas 77030, USA.,Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas 77030, USA
| | - Manuel Cantu Gutierrez
- Program in Developmental Biology, Baylor College of Medicine, Houston, Texas 77030, USA.,Department of Molecular Physiology and Biophysics, Baylor College of Medicine, Houston, Texas 77030, USA.,Cardiovascular Research Institute, Baylor College of Medicine, Houston, Texas 77030, USA
| | - Joshua D Wythe
- Program in Developmental Biology, Baylor College of Medicine, Houston, Texas 77030, USA.,Department of Molecular Physiology and Biophysics, Baylor College of Medicine, Houston, Texas 77030, USA.,Cardiovascular Research Institute, Baylor College of Medicine, Houston, Texas 77030, USA
| | - Huda Y Zoghbi
- Jan and Dan Duncan Neurological Research Institute at Texas Children's Hospital, Baylor College of Medicine, Houston, Texas 77030, USA.,Program in Developmental Biology, Baylor College of Medicine, Houston, Texas 77030, USA.,Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas 77030, USA.,Howard Hughes Medical Institute, Baylor College of Medicine, Houston, Texas 77030, USA.,Department of Pediatrics, Baylor College of Medicine, Houston, Texas 77030, USA
| |
Collapse
|
26
|
Population-scale genetic control of alternative polyadenylation and its association with human diseases. QUANTITATIVE BIOLOGY 2021. [DOI: 10.15302/j-qb-021-0252] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
27
|
Grozdanov PN, Masoumzadeh E, Kalscheuer VM, Bienvenu T, Billuart P, Delrue MA, Latham MP, MacDonald CC. A missense mutation in the CSTF2 gene that impairs the function of the RNA recognition motif and causes defects in 3' end processing is associated with intellectual disability in humans. Nucleic Acids Res 2020; 48:9804-9821. [PMID: 32816001 PMCID: PMC7515730 DOI: 10.1093/nar/gkaa689] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2020] [Revised: 08/03/2020] [Accepted: 08/18/2020] [Indexed: 11/25/2022] Open
Abstract
CSTF2 encodes an RNA-binding protein that is essential for mRNA cleavage and polyadenylation (C/P). No disease-associated mutations have been described for this gene. Here, we report a mutation in the RNA recognition motif (RRM) of CSTF2 that changes an aspartic acid at position 50 to alanine (p.D50A), resulting in intellectual disability in male patients. In mice, this mutation was sufficient to alter polyadenylation sites in over 1300 genes critical for brain development. Using a reporter gene assay, we demonstrated that C/P efficiency of CSTF2D50A was lower than wild type. To account for this, we determined that p.D50A changed locations of amino acid side chains altering RNA binding sites in the RRM. The changes modified the electrostatic potential of the RRM leading to a greater affinity for RNA. These results highlight the significance of 3′ end mRNA processing in expression of genes important for brain plasticity and neuronal development.
Collapse
Affiliation(s)
- Petar N Grozdanov
- Department of Cell Biology & Biochemistry, School of Medicine, Texas Tech University Health Sciences Center, Lubbock, TX 79430-6540, USA
| | - Elahe Masoumzadeh
- Department of Chemistry & Biochemistry, Texas Tech University, Lubbock, TX 79409-1061, USA
| | - Vera M Kalscheuer
- Max Planck Institute for Molecular Genetics, Research Group Development and Disease, Ihnestr. 63-73, D-14195 Berlin, Germany
| | - Thierry Bienvenu
- Institut de Psychiatrie et de Neurosciences de Paris, Inserm U1266, 102 rue de la Santé, 75014 Paris, France
| | - Pierre Billuart
- Institut de Psychiatrie et de Neurosciences de Paris, Inserm U1266, 102 rue de la Santé, 75014 Paris, France
| | - Marie-Ange Delrue
- Département de Génétique Médicale, CHU Sainte Justine, Montréal, Canada
| | - Michael P Latham
- Department of Chemistry & Biochemistry, Texas Tech University, Lubbock, TX 79409-1061, USA
| | - Clinton C MacDonald
- Department of Cell Biology & Biochemistry, School of Medicine, Texas Tech University Health Sciences Center, Lubbock, TX 79430-6540, USA
| |
Collapse
|
28
|
Kishor A, Fritz SE, Haque N, Ge Z, Tunc I, Yang W, Zhu J, Hogg JR. Activation and inhibition of nonsense-mediated mRNA decay control the abundance of alternative polyadenylation products. Nucleic Acids Res 2020; 48:7468-7482. [PMID: 32542372 DOI: 10.1093/nar/gkaa491] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2020] [Revised: 05/26/2020] [Accepted: 05/29/2020] [Indexed: 12/16/2022] Open
Abstract
Alternative polyadenylation (APA) produces transcript 3' untranslated regions (3'UTRs) with distinct sequences, lengths, stabilities and functions. We show here that APA products include a class of cryptic nonsense-mediated mRNA decay (NMD) substrates with extended 3'UTRs that gene- or transcript-level analyses of NMD often fail to detect. Transcriptome-wide, the core NMD factor UPF1 preferentially recognizes long 3'UTR products of APA, leading to their systematic downregulation. Counteracting this mechanism, the multifunctional RNA-binding protein PTBP1 regulates the balance of short and long 3'UTR isoforms by inhibiting NMD, in addition to its previously described modulation of co-transcriptional polyadenylation (polyA) site choice. Further, we find that many transcripts with altered APA isoform abundance across multiple tumor types are controlled by NMD. Together, our findings reveal a widespread role for NMD in shaping the outcomes of APA.
Collapse
Affiliation(s)
- Aparna Kishor
- Biochemistry and Biophysics Center, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Sarah E Fritz
- Biochemistry and Biophysics Center, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Nazmul Haque
- Biochemistry and Biophysics Center, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Zhiyun Ge
- Biochemistry and Biophysics Center, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Ilker Tunc
- Bioinformatics and Computational Biology Laboratory, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Wenjing Yang
- Systems Biology Center, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Jun Zhu
- Systems Biology Center, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - J Robert Hogg
- Biochemistry and Biophysics Center, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD 20892, USA
| |
Collapse
|
29
|
Yalamanchili HK, Alcott CE, Ji P, Wagner EJ, Zoghbi HY, Liu Z. PolyA-miner: accurate assessment of differential alternative poly-adenylation from 3'Seq data using vector projections and non-negative matrix factorization. Nucleic Acids Res 2020; 48:e69. [PMID: 32463457 PMCID: PMC7337927 DOI: 10.1093/nar/gkaa398] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2019] [Revised: 04/05/2020] [Accepted: 05/04/2020] [Indexed: 12/23/2022] Open
Abstract
Almost 70% of human genes undergo alternative polyadenylation (APA) and generate mRNA transcripts with varying lengths, typically of the 3′ untranslated regions (UTR). APA plays an important role in development and cellular differentiation, and its dysregulation can cause neuropsychiatric diseases and increase cancer severity. Increasing awareness of APA’s role in human health and disease has propelled the development of several 3′ sequencing (3′Seq) techniques that allow for precise identification of APA sites. However, despite the recent data explosion, there are no robust computational tools that are precisely designed to analyze 3′Seq data. Analytical approaches that have been used to analyze these data predominantly use proximal to distal usage. With about 50% of human genes having more than two APA isoforms, current methods fail to capture the entirety of APA changes and do not account for non-proximal to non-distal changes. Addressing these key challenges, this study demonstrates PolyA-miner, an algorithm to accurately detect and assess differential alternative polyadenylation specifically from 3′Seq data. Genes are abstracted as APA matrices, and differential APA usage is inferred using iterative consensus non-negative matrix factorization (NMF) based clustering. PolyA-miner accounts for all non-proximal to non-distal APA switches using vector projections and reflects precise gene-level 3′UTR changes. It can also effectively identify novel APA sites that are otherwise undetected when using reference-based approaches. Evaluation on multiple datasets—first-generation MicroArray Quality Control (MAQC) brain and Universal Human Reference (UHR) PolyA-seq data, recent glioblastoma cell line NUDT21 knockdown Poly(A)-ClickSeq (PAC-seq) data, and our own mouse hippocampal and human stem cell-derived neuron PAC-seq data—strongly supports the value and protocol-independent applicability of PolyA-miner. Strikingly, in the glioblastoma cell line data, PolyA-miner identified more than twice the number of genes with APA changes than initially reported. With the emerging importance of APA in human development and disease, PolyA-miner can significantly improve data analysis and help decode the underlying APA dynamics.
Collapse
Affiliation(s)
- Hari Krishna Yalamanchili
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA.,Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, Houston, TX 77030, USA
| | - Callison E Alcott
- Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, Houston, TX 77030, USA.,Program in Developmental Biology, Baylor College of Medicine, Houston, TX 77030, USA.,Medical Scientist Training Program, Baylor College of Medicine, Houston, TX 77030, USA
| | - Ping Ji
- Department of Biochemistry & Molecular Biology, University of Texas Medical Branch, Galveston, TX, 77555, USA
| | - Eric J Wagner
- Department of Biochemistry & Molecular Biology, University of Texas Medical Branch, Galveston, TX, 77555, USA
| | - Huda Y Zoghbi
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA.,Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, Houston, TX 77030, USA.,Howard Hughes Medical Institute, Houston, TX 77030, USA.,Department of Pediatrics, Baylor College of Medicine, Houston, TX 77030, USA.,Department of Neuroscience, Baylor College of Medicine, Houston, TX 77030, USA
| | - Zhandong Liu
- Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, Houston, TX 77030, USA.,Department of Pediatrics, Baylor College of Medicine, Houston, TX 77030, USA
| |
Collapse
|
30
|
Nourse J, Spada S, Danckwardt S. Emerging Roles of RNA 3'-end Cleavage and Polyadenylation in Pathogenesis, Diagnosis and Therapy of Human Disorders. Biomolecules 2020; 10:biom10060915. [PMID: 32560344 PMCID: PMC7356254 DOI: 10.3390/biom10060915] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Revised: 06/10/2020] [Accepted: 06/13/2020] [Indexed: 12/11/2022] Open
Abstract
A crucial feature of gene expression involves RNA processing to produce 3′ ends through a process termed 3′ end cleavage and polyadenylation (CPA). This ensures the nascent RNA molecule can exit the nucleus and be translated to ultimately give rise to a protein which can execute a function. Further, alternative polyadenylation (APA) can produce distinct transcript isoforms, profoundly expanding the complexity of the transcriptome. CPA is carried out by multi-component protein complexes interacting with multiple RNA motifs and is tightly coupled to transcription, other steps of RNA processing, and even epigenetic modifications. CPA and APA contribute to the maintenance of a multitude of diverse physiological processes. It is therefore not surprising that disruptions of CPA and APA can lead to devastating disorders. Here, we review potential CPA and APA mechanisms involving both loss and gain of function that can have tremendous impacts on health and disease. Ultimately we highlight the emerging diagnostic and therapeutic potential CPA and APA offer.
Collapse
Affiliation(s)
- Jamie Nourse
- Institute for Clinical Chemistry and Laboratory Medicine, University Medical Center of the Johannes Gutenberg University, 55131 Mainz, Germany; (J.N.); (S.S.)
- Center for Thrombosis and Hemostasis (CTH), University Medical Center of the Johannes Gutenberg University, 55131 Mainz, Germany
| | - Stefano Spada
- Institute for Clinical Chemistry and Laboratory Medicine, University Medical Center of the Johannes Gutenberg University, 55131 Mainz, Germany; (J.N.); (S.S.)
- Center for Thrombosis and Hemostasis (CTH), University Medical Center of the Johannes Gutenberg University, 55131 Mainz, Germany
| | - Sven Danckwardt
- Institute for Clinical Chemistry and Laboratory Medicine, University Medical Center of the Johannes Gutenberg University, 55131 Mainz, Germany; (J.N.); (S.S.)
- Center for Thrombosis and Hemostasis (CTH), University Medical Center of the Johannes Gutenberg University, 55131 Mainz, Germany
- German Center for Cardiovascular Research (DZHK), Rhine-Main, Germany
- Correspondence:
| |
Collapse
|
31
|
Kidd SL, Fowler E, Reinhardt T, Compton T, Mateu N, Newman H, Bellini D, Talon R, McLoughlin J, Krojer T, Aimon A, Bradley A, Fairhead M, Brear P, Díaz-Sáez L, McAuley K, Sore HF, Madin A, O'Donovan DH, Huber KVM, Hyvönen M, von Delft F, Dowson CG, Spring DR. Demonstration of the utility of DOS-derived fragment libraries for rapid hit derivatisation in a multidirectional fashion. Chem Sci 2020; 11:10792-10801. [PMID: 34094333 PMCID: PMC8162264 DOI: 10.1039/d0sc01232g] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Accepted: 05/14/2020] [Indexed: 12/26/2022] Open
Abstract
Organic synthesis underpins the evolution of weak fragment hits into potent lead compounds. Deficiencies within current screening collections often result in the requirement of significant synthetic investment to enable multidirectional fragment growth, limiting the efficiency of the hit evolution process. Diversity-oriented synthesis (DOS)-derived fragment libraries are constructed in an efficient and modular fashion and thus are well-suited to address this challenge. To demonstrate the effective nature of such libraries within fragment-based drug discovery, we herein describe the screening of a 40-member DOS library against three functionally distinct biological targets using X-Ray crystallography. Firstly, we demonstrate the importance for diversity in aiding hit identification with four fragment binders resulting from these efforts. Moreover, we also exemplify the ability to readily access a library of analogues from cheap commercially available materials, which ultimately enabled the exploration of a minimum of four synthetic vectors from each molecule. In total, 10-14 analogues of each hit were rapidly accessed in three to six synthetic steps. Thus, we showcase how DOS-derived fragment libraries enable efficient hit derivatisation and can be utilised to remove the synthetic limitations encountered in early stage fragment-based drug discovery.
Collapse
Affiliation(s)
- Sarah L Kidd
- Department of Chemistry, University of Cambridge Lensfield Road Cambridge CB2 1EW UK
| | - Elaine Fowler
- Department of Chemistry, University of Cambridge Lensfield Road Cambridge CB2 1EW UK
| | - Till Reinhardt
- Department of Chemistry, University of Cambridge Lensfield Road Cambridge CB2 1EW UK
| | - Thomas Compton
- Department of Chemistry, University of Cambridge Lensfield Road Cambridge CB2 1EW UK
| | - Natalia Mateu
- Department of Chemistry, University of Cambridge Lensfield Road Cambridge CB2 1EW UK
| | - Hector Newman
- School of Life Sciences, University of Warwick Coventry UK
- Diamond Light Source Ltd., Harwell Science and Innovation Campus Didcot OX11 0QX UK
| | - Dom Bellini
- School of Life Sciences, University of Warwick Coventry UK
| | - Romain Talon
- Diamond Light Source Ltd., Harwell Science and Innovation Campus Didcot OX11 0QX UK
- Structural Genomics Consortium (SGC), University of Oxford Oxford OX3 7DQ UK
| | - Joseph McLoughlin
- Department of Biochemistry, University of Cambridge Tennis Court Road Cambridge CB2 1GA UK
| | - Tobias Krojer
- Target Discovery Institute, Nuffield Department of Medicine, University of Oxford Oxford UK
| | - Anthony Aimon
- Diamond Light Source Ltd., Harwell Science and Innovation Campus Didcot OX11 0QX UK
- Structural Genomics Consortium (SGC), University of Oxford Oxford OX3 7DQ UK
| | - Anthony Bradley
- Diamond Light Source Ltd., Harwell Science and Innovation Campus Didcot OX11 0QX UK
| | - Michael Fairhead
- Structural Genomics Consortium (SGC), University of Oxford Oxford OX3 7DQ UK
| | - Paul Brear
- Department of Biochemistry, University of Cambridge Tennis Court Road Cambridge CB2 1GA UK
| | - Laura Díaz-Sáez
- Structural Genomics Consortium (SGC), University of Oxford Oxford OX3 7DQ UK
- Target Discovery Institute, Nuffield Department of Medicine, University of Oxford Oxford UK
| | - Katherine McAuley
- Diamond Light Source Ltd., Harwell Science and Innovation Campus Didcot OX11 0QX UK
| | - Hannah F Sore
- Department of Chemistry, University of Cambridge Lensfield Road Cambridge CB2 1EW UK
| | - Andrew Madin
- Hit Discovery, Discovery Sciences, R&D, AstraZeneca Cambridge UK
| | | | - Kilian V M Huber
- Structural Genomics Consortium (SGC), University of Oxford Oxford OX3 7DQ UK
- Target Discovery Institute, Nuffield Department of Medicine, University of Oxford Oxford UK
| | - Marko Hyvönen
- Department of Biochemistry, University of Cambridge Tennis Court Road Cambridge CB2 1GA UK
| | - Frank von Delft
- Diamond Light Source Ltd., Harwell Science and Innovation Campus Didcot OX11 0QX UK
- Structural Genomics Consortium (SGC), University of Oxford Oxford OX3 7DQ UK
- Department of Biochemistry, University of Johannesburg Auckland Park 2006 South Africa
| | | | - David R Spring
- Department of Chemistry, University of Cambridge Lensfield Road Cambridge CB2 1EW UK
| |
Collapse
|
32
|
Wang BJ, Liu DC, Guo QY, Han XW, Bi XM, Wang H, Wu ZS, Wu WY. NUDT21 Suppresses Breast Cancer Tumorigenesis Through Regulating CPSF6 Expression. Cancer Manag Res 2020; 12:3069-3078. [PMID: 32431549 PMCID: PMC7200255 DOI: 10.2147/cmar.s239664] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2019] [Accepted: 04/09/2020] [Indexed: 12/15/2022] Open
Abstract
Background NUDT21, an RNA binding protein, has been reported to play an important role in the regulation of multiple biological responses. Detection of NUDT21 expression may lead to the identification of a novel marker for breast cancer. Purpose The aim of this study was to investigate the clinical significance and functional role of NUDT21 in breast cancer. Methods The protein expression of NUDT21 was examined by immunohistochemistry (IHC) in 100 paraffin-embedded, archived breast cancer samples and 100 benign breast tissues. Then, the correlations between the NUDT21 expression and clinicopathologic characteristics and prognoses of the breast cancer patients were analyzed. In addition, the function of NUDT21 in breast cancer cell lines was detected by the methyl thiazolyl tetrazolium, colony formation and transwell assays. Finally, mass spectrometry analysis and Western blotting were used to identify the proteins that interact directly with NUDT21. Results IHC analysis revealed that the expression of NUDT21 was significantly lower in breast cancer tissues compared with benign breast disease tissues. The correlation analysis revealed that low expression of NUDT21 was positively correlated with tumor size, lymph node metastasis, and TNM stage. Also, Kaplan–Meier survival curves showed that patients with lower NUDT21 expression had shorter overall survival and relapse-free survival compared with higher NUDT21 expression. In addition, the knockdown of NUDT21 enhanced cell proliferation, migration, invasion and epithelial-mesenchymal transition (EMT). Consistently, the overexpression of NUDT21 inhibited cell proliferation, migration, invasion, and EMT. In addition, NUDT21 directly interacted with CPSF6 and negatively regulated its expression. Moreover, the knockdown of CPSF6 reversed NUDT21 expression-induced cancer cell migration and invasion. Conclusion NUDT21 might play a tumor-suppressive role by inhibiting cell proliferation and invasion via the NUDT21/CPSF6 signaling pathway in breast cancer cells.
Collapse
Affiliation(s)
- Bi-Jun Wang
- Department of General Surgery, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, People's Republic of China
| | - Da-Chao Liu
- Department of General Surgery, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, People's Republic of China
| | - Qian-Ying Guo
- Department of Pathology, Anhui Medical University, Hefei, Anhui, People's Republic of China
| | - Xiao-Wen Han
- Department of Pathology, Anhui Medical University, Hefei, Anhui, People's Republic of China
| | - Xiao-Min Bi
- Department of Pathology, Anhui Medical University, Hefei, Anhui, People's Republic of China
| | - Hao Wang
- Department of Pathology, Anhui Medical University, Hefei, Anhui, People's Republic of China
| | - Zheng-Sheng Wu
- Department of Pathology, Anhui Medical University, Hefei, Anhui, People's Republic of China
| | - Wen-Yong Wu
- Department of General Surgery, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, People's Republic of China
| |
Collapse
|
33
|
Alcott CE, Yalamanchili HK, Ji P, van der Heijden ME, Saltzman A, Elrod N, Lin A, Leng M, Bhatt B, Hao S, Wang Q, Saliba A, Tang J, Malovannaya A, Wagner EJ, Liu Z, Zoghbi HY. Partial loss of CFIm25 causes learning deficits and aberrant neuronal alternative polyadenylation. eLife 2020; 9:e50895. [PMID: 32319885 PMCID: PMC7176433 DOI: 10.7554/elife.50895] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2019] [Accepted: 04/05/2020] [Indexed: 12/19/2022] Open
Abstract
We previously showed that NUDT21-spanning copy-number variations (CNVs) are associated with intellectual disability (Gennarino et al., 2015). However, the patients' CNVs also included other genes. To determine if reduced NUDT21 function alone can cause disease, we generated Nudt21+/- mice to mimic NUDT21-deletion patients. We found that although these mice have 50% reduced Nudt21 mRNA, they only have 30% less of its cognate protein, CFIm25. Despite this partial protein-level compensation, the Nudt21+/- mice have learning deficits, cortical hyperexcitability, and misregulated alternative polyadenylation (APA) in their hippocampi. Further, to determine the mediators driving neural dysfunction in humans, we partially inhibited NUDT21 in human stem cell-derived neurons to reduce CFIm25 by 30%. This induced APA and protein level misregulation in hundreds of genes, a number of which cause intellectual disability when mutated. Altogether, these results show that disruption of NUDT21-regulated APA events in the brain can cause intellectual disability.
Collapse
Affiliation(s)
- Callison E Alcott
- Program in Developmental Biology, Baylor College of MedicineHoustonUnited States
- Jan and Dan Duncan Neurological Research Institute at Texas Children’s HospitalHoustonUnited States
- Medical Scientist Training Program, Baylor College of MedicineHoustonUnited States
| | - Hari Krishna Yalamanchili
- Jan and Dan Duncan Neurological Research Institute at Texas Children’s HospitalHoustonUnited States
- Department of Molecular and Human Genetics, Baylor College of MedicineHoustonUnited States
| | - Ping Ji
- Department of Biochemistry & Molecular Biology, University of Texas Medical BranchGalvestonUnited States
| | - Meike E van der Heijden
- Jan and Dan Duncan Neurological Research Institute at Texas Children’s HospitalHoustonUnited States
- Department of Neuroscience, Baylor College of MedicineHoustonUnited States
| | - Alexander Saltzman
- Verna and Marrs McLean Department of Biochemistry and Molecular Biology Baylor College of MedicineHoustonUnited States
| | - Nathan Elrod
- Department of Biochemistry & Molecular Biology, University of Texas Medical BranchGalvestonUnited States
| | - Ai Lin
- Department of Biochemistry & Molecular Biology, University of Texas Medical BranchGalvestonUnited States
- Department of Etiology and Carcinogenesis, National Cancer Center/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical CollegeBeijingChina
| | - Mei Leng
- Verna and Marrs McLean Department of Biochemistry and Molecular Biology Baylor College of MedicineHoustonUnited States
| | - Bhoomi Bhatt
- Verna and Marrs McLean Department of Biochemistry and Molecular Biology Baylor College of MedicineHoustonUnited States
| | - Shuang Hao
- Jan and Dan Duncan Neurological Research Institute at Texas Children’s HospitalHoustonUnited States
- Section of Neurology, Department of Pediatrics, Baylor College of MedicineHoustonUnited States
| | - Qi Wang
- Jan and Dan Duncan Neurological Research Institute at Texas Children’s HospitalHoustonUnited States
- Section of Neurology, Department of Pediatrics, Baylor College of MedicineHoustonUnited States
| | - Afaf Saliba
- Jan and Dan Duncan Neurological Research Institute at Texas Children’s HospitalHoustonUnited States
- Department of Molecular and Human Genetics, Baylor College of MedicineHoustonUnited States
| | - Jianrong Tang
- Jan and Dan Duncan Neurological Research Institute at Texas Children’s HospitalHoustonUnited States
- Section of Neurology, Department of Pediatrics, Baylor College of MedicineHoustonUnited States
| | - Anna Malovannaya
- Verna and Marrs McLean Department of Biochemistry and Molecular Biology Baylor College of MedicineHoustonUnited States
- Department of Molecular and Cellular Biology, Baylor College of MedicineHoustonUnited States
- Mass Spectrometry Proteomics Core, Baylor College of MedicineHoustonUnited States
- Dan L Duncan Comprehensive Cancer Center, Baylor College of MedicineHoustonUnited States
| | - Eric J Wagner
- Department of Biochemistry & Molecular Biology, University of Texas Medical BranchGalvestonUnited States
| | - Zhandong Liu
- Jan and Dan Duncan Neurological Research Institute at Texas Children’s HospitalHoustonUnited States
- Section of Neurology, Department of Pediatrics, Baylor College of MedicineHoustonUnited States
- Graduate Program in Quantitative and Computational Biosciences, Baylor College of MedicineHoustonUnited States
| | - Huda Y Zoghbi
- Program in Developmental Biology, Baylor College of MedicineHoustonUnited States
- Jan and Dan Duncan Neurological Research Institute at Texas Children’s HospitalHoustonUnited States
- Department of Molecular and Human Genetics, Baylor College of MedicineHoustonUnited States
- Department of Neuroscience, Baylor College of MedicineHoustonUnited States
- Department of Pediatrics, Baylor College of MedicineHoustonUnited States
- Howard Hughes Medical Institute, Baylor College of MedicineHoustonUnited States
| |
Collapse
|
34
|
Tillotson R, Bird A. The Molecular Basis of MeCP2 Function in the Brain. J Mol Biol 2020; 432:1602-1623. [PMID: 31629770 DOI: 10.1016/j.jmb.2019.10.004] [Citation(s) in RCA: 99] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2019] [Revised: 10/04/2019] [Accepted: 10/05/2019] [Indexed: 12/14/2022]
Abstract
MeCP2 is a reader of the DNA methylome that occupies a large proportion of the genome due to its high abundance and the frequency of its target sites. It has been the subject of extensive study because of its link with 'MECP2-related disorders', of which Rett syndrome is the most prevalent. This review integrates evidence from patient mutation data with results of experimental studies using mouse models, cell lines and in vitro systems to critically evaluate our understanding of MeCP2 protein function. Recent evidence challenges the idea that MeCP2 is a multifunctional hub that integrates diverse processes to underpin neuronal function, suggesting instead that its primary role is to recruit the NCoR1/2 co-repressor complex to methylated sites in the genome, leading to dampening of gene expression.
Collapse
Affiliation(s)
- Rebekah Tillotson
- Genetics and Genome Biology Program, The Hospital for Sick Children, The Peter Gilgan Centre for Research and Learning, Toronto, ON M5G 0A4, Canada; Medical Research Council (MRC) Molecular Haematology Unit, Weatherall Institute of Molecular Medicine, University of Oxford, John Radcliffe Hospital, Headington, Oxford, OX3 9DS, UK
| | - Adrian Bird
- Wellcome Centre for Cell Biology, University of Edinburgh, The Michael Swann Building, King's Buildings, Max Born Crescent, Edinburgh, EH9 3BF, UK.
| |
Collapse
|
35
|
Two cases of 16q12.1q21 deletions and refinement of the critical region. Eur J Med Genet 2020; 63:103878. [PMID: 32045705 DOI: 10.1016/j.ejmg.2020.103878] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2019] [Revised: 01/27/2020] [Accepted: 02/07/2020] [Indexed: 11/23/2022]
Abstract
Interstitial deletions of 16q chromosome including 16q12.1q21 region are very rare, with only three cases reported to date. Main clinical features include dysmorphisms, short stature, microcephaly, eye abnormalities, epilepsy, development delay, intellectual disability, and autism spectrum disorder. We report two independent subjects with 16q12.1q21 deletion syndrome presenting with dysmorphic facial features, developmental delay, strabismus, and aggressive behavior. A minimal region of overlap spanning 1.7 Mb on chromosome 16, including IRX5, GNAO1, and NUDT21 genes was shared among these two cases and those previously reported. This minimal region of overlap suggests the potential pathogenic role of these genes, previously implicated in diseases of the central nervous system.
Collapse
|
36
|
Abstract
BACKGROUND RNA-binding proteins (RBPs) are crucial in modulating RNA metabolism in eukaryotes thereby controlling an extensive network of RBP-RNA interactions. Although previous studies on the conservation of RBP targets have been carried out in lower eukaryotes such as yeast, relatively little is known about the extent of conservation of the binding sites of RBPs across mammalian species. RESULTS In this study, we employ CLIP-seq datasets for 60 human RBPs and demonstrate that most binding sites for a third of these RBPs are conserved in at least 50% of the studied vertebrate species. Across the studied RBPs, binding sites were found to exhibit a median conservation of 58%, ~ 20% higher than random genomic locations, suggesting a significantly higher preservation of RBP-RNA interaction networks across vertebrates. RBP binding sites were highly conserved across primates with weak conservation profiles in birds and fishes. We also note that phylogenetic relationship between members of an RBP family does not explain the extent of conservation of their binding sites across species. Multivariate analysis to uncover features contributing to differences in the extents of conservation of binding sites across RBPs revealed RBP expression level and number of post-transcriptional targets to be the most prominent factors. Examination of the location of binding sites at the gene level confirmed that binding sites occurring on the 3' region of a gene are highly conserved across species with 90% of the RBPs exhibiting a significantly higher conservation of binding sites in 3' regions of a gene than those occurring in the 5'. Gene set enrichment analysis on the extent of conservation of binding sites to identify significantly associated human phenotypes revealed an enrichment for multiple developmental abnormalities. CONCLUSIONS Our results suggest that binding sites of human RBPs are highly conserved across primates with weak conservation profiles in lower vertebrates and evolutionary relationship between members of an RBP family does not explain the extent of conservation of their binding sites. Expression level and number of targets of an RBP are important factors contributing to the differences in the extent of conservation of binding sites. RBP binding sites on 3' ends of a gene are the most conserved across species. Phenotypic analysis on the extent of conservation of binding sites revealed the importance of lineage-specific developmental events in post-transcriptional regulatory network evolution.
Collapse
Affiliation(s)
- Aarthi Ramakrishnan
- Department of Biohealth Informatics, School of Informatics and Computing, Indiana University Purdue University, Indianapolis, IN, 46202, USA
| | - Sarath Chandra Janga
- Department of Biohealth Informatics, School of Informatics and Computing, Indiana University Purdue University, Indianapolis, IN, 46202, USA. .,Centre for Computational Biology and Bioinformatics, Indiana University School of Medicine, Indianapolis, IN, 46202, USA. .,Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, IN, 46202, USA.
| |
Collapse
|
37
|
Brumbaugh J, Di Stefano B, Hochedlinger K. Reprogramming: identifying the mechanisms that safeguard cell identity. Development 2019; 146:146/23/dev182170. [PMID: 31792064 DOI: 10.1242/dev.182170] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Development and homeostasis rely upon concerted regulatory pathways to establish the specialized cell types needed for tissue function. Once a cell type is specified, the processes that restrict and maintain cell fate are equally important in ensuring tissue integrity. Over the past decade, several approaches to experimentally reprogram cell fate have emerged. Importantly, efforts to improve and understand these approaches have uncovered novel molecular determinants that reinforce lineage commitment and help resist cell fate changes. In this Review, we summarize recent studies that have provided insights into the various chromatin factors, post-transcriptional processes and features of genomic organization that safeguard cell identity in the context of reprogramming to pluripotency. We also highlight how these factors function in other experimental, physiological and pathological cell fate transitions, including direct lineage conversion, pluripotency-to-totipotency reversion and cancer.
Collapse
Affiliation(s)
- Justin Brumbaugh
- Department of Molecular, Cellular, and Developmental Biology, University of Colorado Boulder, Boulder, CO 80309, USA
| | - Bruno Di Stefano
- Department of Molecular Biology, Massachusetts General Hospital, 185 Cambridge Street, Boston, MA 02114, USA.,Center for Regenerative Medicine, Massachusetts General Hospital, 185 Cambridge Street, Boston, MA 02114, USA.,Cancer Center, Massachusetts General Hospital, 185 Cambridge Street, Boston, MA 02114, USA.,Department of Genetics, Harvard Medical School, Boston, 77 Avenue Louis Pasteur, Boston, MA 02115, USA.,Harvard Stem Cell Institute, 1350 Massachusetts Avenue, Cambridge, MA 02138, USA
| | - Konrad Hochedlinger
- Department of Molecular Biology, Massachusetts General Hospital, 185 Cambridge Street, Boston, MA 02114, USA .,Center for Regenerative Medicine, Massachusetts General Hospital, 185 Cambridge Street, Boston, MA 02114, USA.,Cancer Center, Massachusetts General Hospital, 185 Cambridge Street, Boston, MA 02114, USA.,Department of Genetics, Harvard Medical School, Boston, 77 Avenue Louis Pasteur, Boston, MA 02115, USA.,Harvard Stem Cell Institute, 1350 Massachusetts Avenue, Cambridge, MA 02138, USA
| |
Collapse
|
38
|
Xiong M, Chen L, Zhou L, Ding Y, Kazobinka G, Chen Z, Hou T. NUDT21 inhibits bladder cancer progression through ANXA2 and LIMK2 by alternative polyadenylation. Am J Cancer Res 2019; 9:7156-7167. [PMID: 31695759 PMCID: PMC6831288 DOI: 10.7150/thno.36030] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2019] [Accepted: 08/09/2019] [Indexed: 11/25/2022] Open
Abstract
Purpose: Nudix Hydrolase 21 (NUDT21) is a crucial mediator involved in alternative polyadenylation (APA), and this molecule has been reported to be a tumor suppressor in human cancers. However, neither the role NUDT21 plays in bladder cancer (BC) nor the mechanisms which are involved have been investigated. Methods: Expression levels of NUDT21 in BC were evaluated with real-time PCR, western blotting, and immunohistochemistry (IHC). In vitro and in vivo assays were performed to investigate the function of NUDT21 in tumorigenesis in bladder cancer cells. The TOP/FOP flash reporter assay, western blot, and global APA site profiling analysis were used to identify the pathway which mediates the biologic roles of NUDT21 in BC. Results: NUDT21 expression is reduced in BC tissue and cells, and BC patients with lower NUDT21 expression have shorter overall and recurrent-free survival than patients with higher NUDT21 expression. NUDT21 ectopic expression or knockdown respectively profoundly inhibited or promoted the capacity of BC cells for proliferation, migration and invasion. We also identified a number of genes with shortened 3'UTRs through modulation of NUDT21 expression, and further characterized the NUDT21-regulated genes ANXA2 and LIMK2. We found NUDT21 modulates the expression of ANXA2 and LIMK2 in the Wnt/β-catenin and NF-κB signaling pathways. Conclusions: These findings show NUDT21 plays a crucial role in BC progression, at least in part through ANXA2 and LIMK2 which act by alternative polyadenylation. NUDT21 may thus have potential as a diagnostic and therapeutic target in treatment of BC.
Collapse
|
39
|
Ko J, Mills T, Huang J, Chen NY, Mertens TCJ, Collum SD, Lee G, Xiang Y, Han L, Zhou Y, Lee CG, Elias JA, Jyothula SSK, Rajagopal K, Karmouty-Quintana H, Blackburn MR. Transforming growth factor β1 alters the 3'-UTR of mRNA to promote lung fibrosis. J Biol Chem 2019; 294:15781-15794. [PMID: 31488543 DOI: 10.1074/jbc.ra119.009148] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2019] [Revised: 08/27/2019] [Indexed: 12/18/2022] Open
Abstract
Idiopathic pulmonary fibrosis (IPF) is a chronic disease characterized by the pathological remodeling of air sacs as a result of excessive accumulation of extracellular matrix (ECM) proteins, but the mechanism governing the robust protein expression is poorly understood. Our recent findings demonstrate that alternative polyadenylation (APA) caused by NUDT21 reduction is important for the increased expression of fibrotic mediators and ECM proteins in lung fibroblasts by shortening the 3'-untranslated regions (3'-UTRs) of mRNAs and stabilizing their transcripts, therefore activating pathological signaling pathways. Despite the importance of NUDT21 reduction in the regulation of fibrosis, the underlying mechanisms for the depletion are unknown. We demonstrate here that NUDT21 is depleted by TGFβ1. We found that miR203, which is increased in IPF, was induced by TGFβ1 to target the NUDT21 3'-UTR, thus depleting NUDT21 in human and mouse lung fibroblasts. TGFβ1-mediated NUDT21 reduction was attenuated by the miR203 inhibitor antagomiR203 in fibroblasts. TGFβ1 transgenic mice revealed that TGFβ1 down-regulates NUDT21 in fibroblasts in vivo Furthermore, TGFβ1 promoted differential APA of fibrotic genes, including FGF14, RICTOR, TMOD2, and UCP5, in association with increased protein expression. This unique differential APA signature was also observed in IPF fibroblasts. Altogether, our results identified TGFβ1 as an APA regulator through NUDT21 depletion amplifying pulmonary fibrosis.
Collapse
Affiliation(s)
- Junsuk Ko
- Department of Biochemistry and Molecular Biology, the University of Texas Health Science Center, Houston, Texas 77030.,MD Anderson UTHealth Graduate School, the University of Texas Health Science Center, Houston, Texas 77030
| | - Tingting Mills
- Department of Biochemistry and Molecular Biology, the University of Texas Health Science Center, Houston, Texas 77030
| | - Jingjing Huang
- Department of Geriatrics, The Second Affiliated Hospital of Nanjing Medical University, Nanjing, 210003 Jiangsu, China
| | - Ning-Yuan Chen
- Department of Biochemistry and Molecular Biology, the University of Texas Health Science Center, Houston, Texas 77030
| | - Tinne C J Mertens
- Department of Biochemistry and Molecular Biology, the University of Texas Health Science Center, Houston, Texas 77030
| | - Scott D Collum
- Department of Biochemistry and Molecular Biology, the University of Texas Health Science Center, Houston, Texas 77030.,MD Anderson UTHealth Graduate School, the University of Texas Health Science Center, Houston, Texas 77030
| | - Garam Lee
- Department of Biochemistry and Molecular Biology, the University of Texas Health Science Center, Houston, Texas 77030
| | - Yu Xiang
- Department of Biochemistry and Molecular Biology, the University of Texas Health Science Center, Houston, Texas 77030
| | - Leng Han
- Department of Biochemistry and Molecular Biology, the University of Texas Health Science Center, Houston, Texas 77030.,MD Anderson UTHealth Graduate School, the University of Texas Health Science Center, Houston, Texas 77030
| | - Yang Zhou
- Department of Molecular Microbiology and Immunology, Brown University, Providence, Rhode Island 02912
| | - Chun Geun Lee
- Department of Molecular Microbiology and Immunology, Brown University, Providence, Rhode Island 02912
| | - Jack A Elias
- Department of Molecular Microbiology and Immunology, Brown University, Providence, Rhode Island 02912
| | - Soma S K Jyothula
- Department of Internal Medicine, McGovern Medical School, the University of Texas Health Science Center, Houston, Texas 77030
| | - Keshava Rajagopal
- Department of Internal Medicine, McGovern Medical School, the University of Texas Health Science Center, Houston, Texas 77030
| | - Harry Karmouty-Quintana
- Department of Biochemistry and Molecular Biology, the University of Texas Health Science Center, Houston, Texas 77030.,MD Anderson UTHealth Graduate School, the University of Texas Health Science Center, Houston, Texas 77030
| | - Michael R Blackburn
- Department of Biochemistry and Molecular Biology, the University of Texas Health Science Center, Houston, Texas 77030 .,MD Anderson UTHealth Graduate School, the University of Texas Health Science Center, Houston, Texas 77030
| |
Collapse
|
40
|
MacDonald CC. Tissue-specific mechanisms of alternative polyadenylation: Testis, brain, and beyond (2018 update). WILEY INTERDISCIPLINARY REVIEWS. RNA 2019; 10:e1526. [PMID: 30816016 PMCID: PMC6617714 DOI: 10.1002/wrna.1526] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/31/2018] [Revised: 11/05/2018] [Accepted: 01/14/2019] [Indexed: 12/21/2022]
Abstract
Alternative polyadenylation (APA) is how genes choose different sites for 3' end formation for mRNAs during transcription. APA often occurs in a tissue- or developmental stage-specific manner that can significantly affect gene activity by changing the protein product generated, the stability of the transcript, its localization within the cell, or its translatability. Despite the important regulatory effects that APA has on tissue-specific gene expression, only a few examples have been characterized mechanistically. In this 2018 update to our 2010 review, we examine mechanisms for the control of APA and update our understanding of the older mechanisms since 2010. We once postulated the existence of tissue-specific factors in APA. However, while a few tissue-specific polyadenylation factors are known, the emerging conclusion is that the majority of APA is accomplished by altering levels of core polyadenylation proteins. Examples of those core proteins include CSTF2, CPSF1, and subunits of mammalian cleavage factor I. But despite support for these mechanisms, no one has yet documented any of these proteins changing in either a tissue-specific or developmental manner. Given the profound effect that APA can have on gene expression and human health, improved understanding of tissue-specific APA could lead to numerous advances in gene activity control. This article is categorized under: RNA Processing > 3' End Processing RNA in Disease and Development > RNA in Development.
Collapse
Affiliation(s)
- Clinton C. MacDonald
- Department of Cell Biology & BiochemistryTexas Tech University Health Sciences CenterLubbockTexas
| |
Collapse
|
41
|
Jafari Najaf Abadi MH, Shafabakhsh R, Asemi Z, Mirzaei HR, Sahebnasagh R, Mirzaei H, Hamblin MR. CFIm25 and alternative polyadenylation: Conflicting roles in cancer. Cancer Lett 2019; 459:112-121. [PMID: 31181319 DOI: 10.1016/j.canlet.2019.114430] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2019] [Revised: 06/01/2019] [Accepted: 06/04/2019] [Indexed: 12/11/2022]
Abstract
Alternative polyadenylation (APA) is now widely recognized to regulate gene expression. APA is an RNA-processing mechanism that generates distinct 3' termini on mRNAs, producing mRNA isoforms. Different factors influence the initiation and development of this process. CFIm25 (among others) is a cleavage and polyadenylation factor that plays a key role in the regulation of APA. Shortening of the 3'UTRs on mRNAs leads to enhanced cellular proliferation and tumorigenicity. One reason may be the up-regulation of growth promoting factors, such as Cyclin D1. Different studies have reported a dual role of CFIm25 in cancer (both oncogenic and tumor suppressor). microRNAs (miRNAs) may be involved in CFIm25 function as well as competing endogenous RNAs (ceRNAs). The present review focuses on the role of CFIm25 in cancer, cancer treatment, and possible involvement in other human diseases. We highlight the involvement of miRNAs and ceRNAs in the function of CFIm25 to affect gene expression. The lack of understanding of the mechanisms and regulation of CFIm25 and APA has underscored the need for further research regarding their role in cancer and other diseases.
Collapse
Affiliation(s)
| | - Rana Shafabakhsh
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Kashan University of Medical Sciences, Kashan, Iran.
| | - Zatollah Asemi
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Kashan University of Medical Sciences, Kashan, Iran.
| | - Hamid Reza Mirzaei
- Department of Medical Immunology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran.
| | - Roxana Sahebnasagh
- Department of Molecular Medicine, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran.
| | - Hamed Mirzaei
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Kashan University of Medical Sciences, Kashan, Iran.
| | - Michael R Hamblin
- Wellman Center for Photomedicine, Massachusetts General Hospital, Harvard Medical School, 40 Blossom Street, Boston, MA, 02114, USA.
| |
Collapse
|
42
|
Lang X, Zhao W, Huang D, Liu W, Shen H, Xu L, Xu S, Huang Y, Cheng W. The role of NUDT21 in microRNA-binging sites of EZH2 gene increases the of risk preeclampsia. J Cell Mol Med 2019; 23:3202-3213. [PMID: 30883033 PMCID: PMC6484293 DOI: 10.1111/jcmm.14179] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2018] [Revised: 12/11/2018] [Accepted: 01/04/2019] [Indexed: 12/14/2022] Open
Abstract
OBJECTIVES Preeclampsia (PE) is a major cause of mortality and morbidity among pregnant mothers and their fetuses worldwide. Recent studies have shown that several microRNAs (miRNAs) play crucial role in pathogenesis of PE patients; however, the mechanisms responsible for differences in miRNA function in PE largely remain to be determined. MATERIALS AND METHODS We studied that NUDT21 expression was markedly increased, whereas EZH2 was decreased in placental samples from patients with PE. We identified NUDT21 as an interaction partner of enhancer of zeste homologue 2 (EZH2). NUDT21 co-localized with EZH2 in the human trophoblast cell line, HTR-8/SVneo and NUDT21 was shown to bind to EZH2 in RNA immunoprecipitation assays. NUDT21 has previously been reported to be involved in alternative polyadenylation; thus, the interaction between NUDT21 and EZH2 may play an important role in the crosstalk between alternative polyadenylation (APA) and miRNA-mediated gene silencing in PE. RESULTS In the human trophoblast cell line HTR-8/SVneo, loss-of-function assays indicated that knockdown of NUDT21 suppressed cell proliferation, migration and tube formation. Furthermore, functional studies showed that NUDT21 elongated the 3'-UTR of mRNAs thereby exposing more miRNA binding sites (including miR138 and miR363), which enhanced the efficiency of miRNA-mediated gene silencing and promoted EZH2 binding. CONCLUSIONS This is the first report about the relationship of NUDT21 and EZH2. The data indicate that the aberrant expression of NUDT21 contributes to PE by targeting 3'-UTR of EZH2 mRNA. These findings may provide novel targets for future investigations into therapeutic strategies for PE.
Collapse
Affiliation(s)
- Xiao Lang
- Department of Obstetrics and Gynecology, School of MedicineInternational Peace Maternity and Child Health Hospital, Shanghai Jiao Tong UniversityShanghaiChina
| | - Wenxia Zhao
- Department of Obstetrics and GynecologyJiangwan Hospital of Shanghai Hongkou DistrictShanghaiChina
| | - Ding Huang
- Department of Obstetrics and Gynecology, School of MedicineInternational Peace Maternity and Child Health Hospital, Shanghai Jiao Tong UniversityShanghaiChina
| | - Wei Liu
- Department of Obstetrics and Gynecology, School of MedicineInternational Peace Maternity and Child Health Hospital, Shanghai Jiao Tong UniversityShanghaiChina
| | - Hong Shen
- Department of Obstetrics and Gynecology, School of MedicineInternational Peace Maternity and Child Health Hospital, Shanghai Jiao Tong UniversityShanghaiChina
| | - Liang Xu
- Department of Obstetrics and Gynecology, School of MedicineInternational Peace Maternity and Child Health Hospital, Shanghai Jiao Tong UniversityShanghaiChina
| | - Shan Xu
- Department of Obstetrics and GynecologyJiangwan Hospital of Shanghai Hongkou DistrictShanghaiChina
| | - Yongfang Huang
- Department of Obstetrics and GynecologyJiangwan Hospital of Shanghai Hongkou DistrictShanghaiChina
| | - Weiwei Cheng
- Department of Obstetrics and Gynecology, School of MedicineInternational Peace Maternity and Child Health Hospital, Shanghai Jiao Tong UniversityShanghaiChina
| |
Collapse
|
43
|
Zhu W, Zhang B, Li M, Mo F, Mi T, Wu Y, Teng Z, Zhou Q, Li W, Hu B. Precisely controlling endogenous protein dosage in hPSCs and derivatives to model FOXG1 syndrome. Nat Commun 2019; 10:928. [PMID: 30804331 PMCID: PMC6389984 DOI: 10.1038/s41467-019-08841-7] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2018] [Accepted: 01/23/2019] [Indexed: 01/25/2023] Open
Abstract
Dosage of key regulators impinge on developmental disorders such as FOXG1 syndrome. Since neither knock-out nor knock-down strategy assures flexible and precise protein abundance control, to study hypomorphic or haploinsufficiency expression remains challenging. We develop a system in human pluripotent stem cells (hPSCs) using CRISPR/Cas9 and SMASh technology, with which we can target endogenous proteins for precise dosage control in hPSCs and at multiple stages of neural differentiation. We also reveal FOXG1 dose-dependently affect the cellular constitution of human brain, with 60% mildly affect GABAergic interneuron development while 30% thresholds the production of MGE derived neurons. Abnormal interneuron differentiation accounts for various neurological defects such as epilepsy or seizures, which stimulates future innovative cures of FOXG1 syndrome. By means of its robustness and easiness, dosage-control of proteins in hPSCs and their derivatives will update the understanding and treatment of additional diseases caused by abnormal protein dosage. Altered dosage of developmental regulators such as transcription factors can result in disorders, such as FOXG1 syndrome. Here, the authors demonstrate the utility of SMASh technology for modulating protein dosage by modeling FOXG1 syndrome using human pluripotent stem cell-derived neurons and neural organoids.
Collapse
Affiliation(s)
- Wenliang Zhu
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China.,University of Chinese Academy of Sciences, Beijing, China.,Institute for Stem cell and Regeneration, Chinese Academy of Sciences, Beijing, China
| | - Boya Zhang
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China.,Institute for Stem cell and Regeneration, Chinese Academy of Sciences, Beijing, China
| | - Mengqi Li
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China.,Institute for Stem cell and Regeneration, Chinese Academy of Sciences, Beijing, China
| | - Fan Mo
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China.,University of Chinese Academy of Sciences, Beijing, China.,Institute for Stem cell and Regeneration, Chinese Academy of Sciences, Beijing, China
| | - Tingwei Mi
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Yihui Wu
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China.,University of Chinese Academy of Sciences, Beijing, China.,Institute for Stem cell and Regeneration, Chinese Academy of Sciences, Beijing, China
| | - Zhaoqian Teng
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China.,University of Chinese Academy of Sciences, Beijing, China.,Institute for Stem cell and Regeneration, Chinese Academy of Sciences, Beijing, China
| | - Qi Zhou
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China. .,University of Chinese Academy of Sciences, Beijing, China. .,Institute for Stem cell and Regeneration, Chinese Academy of Sciences, Beijing, China.
| | - Wei Li
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China. .,University of Chinese Academy of Sciences, Beijing, China. .,Institute for Stem cell and Regeneration, Chinese Academy of Sciences, Beijing, China.
| | - Baoyang Hu
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China. .,University of Chinese Academy of Sciences, Beijing, China. .,Institute for Stem cell and Regeneration, Chinese Academy of Sciences, Beijing, China.
| |
Collapse
|
44
|
Abnormal glycogen storage in tuberous sclerosis complex caused by impairment of mTORC1-dependent and -independent signaling pathways. Proc Natl Acad Sci U S A 2019; 116:2977-2986. [PMID: 30728291 DOI: 10.1073/pnas.1812943116] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Tuberous sclerosis complex (TSC) is an autosomal dominant syndrome that causes tumor formation in multiple organs. TSC is caused by inactivating mutations in the genes encoding TSC1/2, negative regulators of the mammalian target of rapamycin complex 1 (mTORC1). Diminished TSC function is associated with excess glycogen storage, but the causative mechanism is unknown. By studying human and mouse cells with defective or absent TSC2, we show that complete loss of TSC2 causes an increase in glycogen synthesis through mTORC1 hyperactivation and subsequent inactivation of glycogen synthase kinase 3β (GSK3β), a negative regulator of glycogen synthesis. Specific TSC2 pathogenic mutations, however, result in elevated glycogen levels with no changes in mTORC1 or GSK3β activities. We identify mTORC1-independent lysosomal depletion and impairment of autophagy as the driving causes underlying abnormal glycogen storage in TSC irrespective of the underlying mutation. The defective autophagic degradation of glycogen is associated with abnormal ubiquitination and degradation of essential proteins of the autophagy-lysosome pathway, such as LC3 and lysosomal associated membrane protein 1 and 2 (LAMP1/2) and is restored by the combined use of mTORC1 and Akt pharmacological inhibitors. In complementation to current models that place mTORC1 as the central therapeutic target for TSC pathogenesis, our findings identify mTORC1-independent pathways that are dysregulated in TSC and that should therefore be taken into account in the development of a therapeutic treatment.
Collapse
|
45
|
Gennarino VA, Palmer EE, McDonell LM, Wang L, Adamski CJ, Koire A, See L, Chen CA, Schaaf CP, Rosenfeld JA, Panzer JA, Moog U, Hao S, Bye A, Kirk EP, Stankiewicz P, Breman AM, McBride A, Kandula T, Dubbs HA, Macintosh R, Cardamone M, Zhu Y, Ying K, Dias KR, Cho MT, Henderson LB, Baskin B, Morris P, Tao J, Cowley MJ, Dinger ME, Roscioli T, Caluseriu O, Suchowersky O, Sachdev RK, Lichtarge O, Tang J, Boycott KM, Holder JL, Zoghbi HY. A Mild PUM1 Mutation Is Associated with Adult-Onset Ataxia, whereas Haploinsufficiency Causes Developmental Delay and Seizures. Cell 2019; 172:924-936.e11. [PMID: 29474920 DOI: 10.1016/j.cell.2018.02.006] [Citation(s) in RCA: 85] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2017] [Revised: 08/23/2017] [Accepted: 02/01/2018] [Indexed: 02/06/2023]
Abstract
Certain mutations can cause proteins to accumulate in neurons, leading to neurodegeneration. We recently showed, however, that upregulation of a wild-type protein, Ataxin1, caused by haploinsufficiency of its repressor, the RNA-binding protein Pumilio1 (PUM1), also causes neurodegeneration in mice. We therefore searched for human patients with PUM1 mutations. We identified eleven individuals with either PUM1 deletions or de novo missense variants who suffer a developmental syndrome (Pumilio1-associated developmental disability, ataxia, and seizure; PADDAS). We also identified a milder missense mutation in a family with adult-onset ataxia with incomplete penetrance (Pumilio1-related cerebellar ataxia, PRCA). Studies in patient-derived cells revealed that the missense mutations reduced PUM1 protein levels by ∼25% in the adult-onset cases and by ∼50% in the infantile-onset cases; levels of known PUM1 targets increased accordingly. Changes in protein levels thus track with phenotypic severity, and identifying posttranscriptional modulators of protein expression should identify new candidate disease genes.
Collapse
Affiliation(s)
- Vincenzo A Gennarino
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA; Jan and Dan Duncan Neurological Research Institute at Texas Children's Hospital, Houston, TX 77030, USA.
| | - Elizabeth E Palmer
- Sydney Children's Hospital, Randwick, NSW 2031, Australia; School of Women's and Children's Health, UNSW Medicine, The University of New South Wales, NSW 2031, Australia; Genetics of Learning Disability Service, Waratah, NSW 2298, Australia
| | - Laura M McDonell
- Children's Hospital of Eastern Ontario Research Institute, University of Ottawa, Ottawa, ON K1H 8L1, Canada
| | - Li Wang
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA; Jan and Dan Duncan Neurological Research Institute at Texas Children's Hospital, Houston, TX 77030, USA
| | - Carolyn J Adamski
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA; Jan and Dan Duncan Neurological Research Institute at Texas Children's Hospital, Houston, TX 77030, USA; Howard Hughes Medical Institute, Baylor College of Medicine, Houston, TX 77030, USA
| | - Amanda Koire
- Program in Quantitative and Computational Biosciences, Baylor College of Medicine, Houston, TX 77030, USA
| | - Lauren See
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Chun-An Chen
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA; Jan and Dan Duncan Neurological Research Institute at Texas Children's Hospital, Houston, TX 77030, USA
| | - Christian P Schaaf
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA; Jan and Dan Duncan Neurological Research Institute at Texas Children's Hospital, Houston, TX 77030, USA
| | - Jill A Rosenfeld
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Jessica A Panzer
- Department of Pediatrics, Division of Neurology, Children's Hospital of Philadelphia, Philadelphia, PA, USA; Department of Neurology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Ute Moog
- Institute of Human Genetics, Heidelberg University, Im Neuenheimer Feld 440, 69120 Heidelberg, Germany
| | - Shuang Hao
- Jan and Dan Duncan Neurological Research Institute at Texas Children's Hospital, Houston, TX 77030, USA; Department of Pediatrics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Ann Bye
- Sydney Children's Hospital, Randwick, NSW 2031, Australia; School of Women's and Children's Health, UNSW Medicine, The University of New South Wales, NSW 2031, Australia
| | - Edwin P Kirk
- Sydney Children's Hospital, Randwick, NSW 2031, Australia; School of Women's and Children's Health, UNSW Medicine, The University of New South Wales, NSW 2031, Australia; Genetics Laboratory, NSW Health Pathology East Randwick, Sydney, NSW, Australia
| | - Pawel Stankiewicz
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA; Baylor Genetics Laboratories, Baylor College of Medicine, Houston, TX 77030, USA
| | - Amy M Breman
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA; Baylor Genetics Laboratories, Baylor College of Medicine, Houston, TX 77030, USA
| | - Arran McBride
- Children's Hospital of Eastern Ontario Research Institute, University of Ottawa, Ottawa, ON K1H 8L1, Canada
| | - Tejaswi Kandula
- Sydney Children's Hospital, Randwick, NSW 2031, Australia; School of Women's and Children's Health, UNSW Medicine, The University of New South Wales, NSW 2031, Australia
| | - Holly A Dubbs
- Division of Neurology, Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | | | - Michael Cardamone
- Sydney Children's Hospital, Randwick, NSW 2031, Australia; School of Women's and Children's Health, UNSW Medicine, The University of New South Wales, NSW 2031, Australia
| | - Ying Zhu
- Genetics Laboratory, NSW Health Pathology East Randwick, Sydney, NSW, Australia
| | - Kevin Ying
- Kinghorn Centre for Clinical Genomics, Garvan Institute of Medical Research, Darlinghurst, Sydney, NSW 2010, Australia
| | - Kerith-Rae Dias
- Kinghorn Centre for Clinical Genomics, Garvan Institute of Medical Research, Darlinghurst, Sydney, NSW 2010, Australia
| | - Megan T Cho
- GeneDx, 207 Perry Pkwy Gaithersburg, MD 20877, USA
| | | | | | - Paula Morris
- Kinghorn Centre for Clinical Genomics, Garvan Institute of Medical Research, Darlinghurst, Sydney, NSW 2010, Australia
| | - Jiang Tao
- Kinghorn Centre for Clinical Genomics, Garvan Institute of Medical Research, Darlinghurst, Sydney, NSW 2010, Australia; St. Vincent's Clinical School, University of New South Wales, Sydney, NSW 2010, Australia
| | - Mark J Cowley
- Kinghorn Centre for Clinical Genomics, Garvan Institute of Medical Research, Darlinghurst, Sydney, NSW 2010, Australia; St. Vincent's Clinical School, University of New South Wales, Sydney, NSW 2010, Australia
| | - Marcel E Dinger
- Kinghorn Centre for Clinical Genomics, Garvan Institute of Medical Research, Darlinghurst, Sydney, NSW 2010, Australia; St. Vincent's Clinical School, University of New South Wales, Sydney, NSW 2010, Australia
| | - Tony Roscioli
- Sydney Children's Hospital, Randwick, NSW 2031, Australia; Genetics Laboratory, NSW Health Pathology East Randwick, Sydney, NSW, Australia; Neuroscience Research Australia and Prince of Wales Clinical School, University of New South Wales, Randwick, NSW 2031, Australia
| | - Oana Caluseriu
- Department of Medical Genetics, University of Alberta, AB T6G 2H7, Canada
| | - Oksana Suchowersky
- Department of Medical Genetics, University of Alberta, AB T6G 2H7, Canada; Departments of Medicine (Neurology) and Pediatrics, University of Alberta, AB, Canada
| | - Rani K Sachdev
- Sydney Children's Hospital, Randwick, NSW 2031, Australia; School of Women's and Children's Health, UNSW Medicine, The University of New South Wales, NSW 2031, Australia
| | - Olivier Lichtarge
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Jianrong Tang
- Jan and Dan Duncan Neurological Research Institute at Texas Children's Hospital, Houston, TX 77030, USA; Department of Pediatrics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Kym M Boycott
- Children's Hospital of Eastern Ontario Research Institute, University of Ottawa, Ottawa, ON K1H 8L1, Canada
| | - J Lloyd Holder
- Jan and Dan Duncan Neurological Research Institute at Texas Children's Hospital, Houston, TX 77030, USA; Department of Pediatrics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Huda Y Zoghbi
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA; Jan and Dan Duncan Neurological Research Institute at Texas Children's Hospital, Houston, TX 77030, USA; Howard Hughes Medical Institute, Baylor College of Medicine, Houston, TX 77030, USA; Department of Pediatrics, Baylor College of Medicine, Houston, TX 77030, USA; Program in Developmental Biology, Baylor College of Medicine, Houston, TX 77030, USA.
| |
Collapse
|
46
|
Tellier M, Hardy JG, Norbury CJ, Murphy S. Effect of CFIm25 knockout on RNA polymerase II transcription. BMC Res Notes 2018; 11:894. [PMID: 30547832 PMCID: PMC6295108 DOI: 10.1186/s13104-018-4006-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2018] [Accepted: 12/10/2018] [Indexed: 12/14/2022] Open
Abstract
OBJECTIVES Transcription of eukaryotic protein-coding genes by RNA polymerase II (pol II) is a highly regulated process. Most human genes have multiple poly(A) sites, which define different possible mRNA ends, suggesting the existence of mechanisms that regulate which poly(A) site is used. Poly(A) site selection may be mediated by cleavage factor I (CFIm), which is part of the cleavage and polyadenylation (CPA) complex. CFIm comprises CFIm25, CFIm59 and CFim68 subunits. It has been documented that the CPA complex also regulates pol II transcription at the start of genes. We therefore investigated whether CFIm, in addition to its role in poly(A) site selection, is involved in the regulation of pol II transcription. DATA DESCRIPTION We provide genome-wide data of the effect of reducing by 90% expression of the CFIm25 constituent of CFIm, which is involved in pre-mRNA cleavage and polyadenylation, on pol II transcription in human cells. We performed pol II ChIP-seq in the presence or absence of CFIm25 and with or without an inhibitor of the cyclin-dependent kinase (CDK)9, which regulates the entry of pol II into productive elongation.
Collapse
Affiliation(s)
- Michael Tellier
- Sir William Dunn School of Pathology, University of Oxford, South Park Roads, Oxford, OX1 3RE UK
| | - Jessica G. Hardy
- Sir William Dunn School of Pathology, University of Oxford, South Park Roads, Oxford, OX1 3RE UK
| | - Chris J. Norbury
- Sir William Dunn School of Pathology, University of Oxford, South Park Roads, Oxford, OX1 3RE UK
| | - Shona Murphy
- Sir William Dunn School of Pathology, University of Oxford, South Park Roads, Oxford, OX1 3RE UK
| |
Collapse
|
47
|
Identification and Characterization of Transcripts Regulated by Circadian Alternative Polyadenylation in Mouse Liver. G3-GENES GENOMES GENETICS 2018; 8:3539-3548. [PMID: 30181259 PMCID: PMC6222568 DOI: 10.1534/g3.118.200559] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Dynamic control of gene expression is a hallmark of the circadian system. In mouse liver, approximately 5–20% of RNAs are expressed rhythmically, and over 50% of mouse genes are rhythmically expressed in at least one tissue. Recent genome-wide analyses unveiled that, in addition to rhythmic transcription, various post-transcriptional mechanisms play crucial roles in driving rhythmic gene expression. Alternative polyadenylation (APA) is an emerging post-transcriptional mechanism that changes the 3′-ends of transcripts by alternating poly(A) site usage. APA can thus result in changes in RNA processing, such as mRNA localization, stability, translation efficiency, and sometimes even in the localization of the encoded protein. It remains unclear, however, if and how APA is regulated by the circadian clock. To address this, we used an in silico approach and demonstrated in mouse liver that 57.4% of expressed genes undergo APA and each gene has 2.53 poly(A) sites on average. Among all expressed genes, 2.9% of genes alternate their poly(A) site usage with a circadian (i.e., approximately 24 hr) period. APA transcripts use distal sites with canonical poly(A) signals (PASs) more frequently; however, circadian APA transcripts exhibit less distinct usage preference between proximal and distal sites and use proximal sites more frequently. Circadian APA transcripts also harbor longer 3′UTRs, making them more susceptible to post-transcriptional regulation. Overall, our study serves as a platform to ultimately understand the mechanisms of circadian APA regulation.
Collapse
|
48
|
Zhang L, Zhang W. Knockdown of NUDT21 inhibits proliferation and promotes apoptosis of human K562 leukemia cells through ERK pathway. Cancer Manag Res 2018; 10:4311-4323. [PMID: 30349365 PMCID: PMC6183658 DOI: 10.2147/cmar.s173496] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Background NUDT21 is a mammalian precursor mRNA(pre-mRNA) 3’ end processing factor and plays an important role in the selection of poly(A) sites in 3’-untranslated region (3’-UTR). NUDT21 links alternative polyadenylation with regulation of glioblastoma and osteosarcoma progression and is found to be related to drug resistance in childhood acute leukemia. However, the effect of NUDT21 on leukemia cells and the underlying mechanism are unknown. Methods We knocked down NUDT21 in K562 cells and applied qRT-PCR and western blotting to quantitate the mRNA and protein expression. Cell proliferating and apoptosis were investigated subsequently by flow cytometry, BrdU, Caspase3/7. RNA microarray and intracellular signaling array were used to determine the important cell signaling pathways. Results We clarified that the mRNA expression levels of NUDT21 are higher in primary chronic myelocytic leukemia patients and K562 leukemic cells compared with healthy controls and PBMCs. Downregulation of NUDT21 expression in K562 cells inhibits proliferation and promotes apoptosis. Screening by mRNA chip and intracellular signaling array, we found that MAPK/ERK pathway represented the main molecular mechanism underlying the effects of NUDT21 knockdown in K562 cells. Conclusion NUDT21 played an important role in promoting proliferation and inhibiting apoptosis in leukemia K562 cells. The underlying mechanisms involved the modulation of PTEN and a set of downstream molecules including ERK1/2. Impact statement The present work shows that the expression of NUDT21 was upregulated in chronic myelocytic leukemia and K562 cells. Silencing NUDT21 inhibited the proliferation and promoted the apoptosis of K562 cells. Subsequent experiments confirmed that NUDT21 promoted K562 proliferation through regulating the expression of p-ERK. Our findings may provide insights into the molecular mechanism underlying the effects of NUDT21 on leukemia cells and a novel strategy for the treatment of leukemia.
Collapse
Affiliation(s)
- Lan Zhang
- Department of Haematology, First Hospital of Shanxi Medical University, Taiyuan 030001, China,
| | - Weihua Zhang
- Department of Haematology, First Hospital of Shanxi Medical University, Taiyuan 030001, China,
| |
Collapse
|
49
|
Guvenek A, Tian B. Analysis of alternative cleavage and polyadenylation in mature and differentiating neurons using RNA-seq data. QUANTITATIVE BIOLOGY 2018; 6:253-266. [PMID: 31380142 DOI: 10.1007/s40484-018-0148-3] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Background Most eukaryotic protein-coding genes exhibit alternative cleavage and polyadenylation (APA), resulting in mRNA isoforms with different 3' untranslated regions (3' UTRs). Studies have shown that brain cells tend to express long 3' UTR isoforms using distal cleavage and polyadenylation sites (PASs). Methods Using our recently developed, comprehensive PAS database PolyA_DB, we developed an efficient method to examine APA, named Significance Analysis of Alternative Polyadenylation using RNA-seq (SAAP-RS). We applied this method to study APA in brain cells and neurogenesis. Results We found that neurons globally express longer 3' UTRs than other cell types in brain, and microglia and endothelial cells express substantially shorter 3' UTRs. We show that the 3' UTR diversity across brain cells can be corroborated with single cell sequencing data. Further analysis of APA regulation of 3' UTRs during differentiation of embryonic stem cells into neurons indicates that a large fraction of the APA events regulated in neurogenesis are similarly modulated in myogenesis, but to a much greater extent. Conclusion Together, our data delineate APA profiles in different brain cells and indicate that APA regulation in neurogenesis is largely an augmented process taking place in other types of cell differentiation.
Collapse
Affiliation(s)
- Aysegul Guvenek
- Department of Microbiology, Biochemistry and Molecular Genetics, Rutgers New Jersey Medical School, Newark, NJ 07103, USA.,Rutgers School of Graduate Studies, Newark, NJ 07103, USA
| | - Bin Tian
- Department of Microbiology, Biochemistry and Molecular Genetics, Rutgers New Jersey Medical School, Newark, NJ 07103, USA.,Rutgers Cancer Institute of New Jersey, Newark, NJ 07103, USA.,Rutgers Brain Health Institute, Newark, NJ 07103, USA
| |
Collapse
|
50
|
Blair JD, Hockemeyer D, Doudna JA, Bateup HS, Floor SN. Widespread Translational Remodeling during Human Neuronal Differentiation. Cell Rep 2018; 21:2005-2016. [PMID: 29141229 DOI: 10.1016/j.celrep.2017.10.095] [Citation(s) in RCA: 95] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2017] [Revised: 10/13/2017] [Accepted: 10/24/2017] [Indexed: 01/04/2023] Open
Abstract
Faithful cellular differentiation requires temporally precise activation of gene expression programs, which are coordinated at the transcriptional and translational levels. Neurons express the most complex set of mRNAs of any human tissue, but translational changes during neuronal differentiation remain incompletely understood. Here, we induced forebrain neuronal differentiation of human embryonic stem cells (hESCs) and measured genome-wide RNA and translation levels with transcript-isoform resolution. We found that thousands of genes change translation status during differentiation without a corresponding change in RNA level. Specifically, we identified mTOR signaling as a key driver for elevated translation of translation-related genes in hESCs. In contrast, translational repression in active neurons is mediated by regulatory sequences in 3' UTRs. Together, our findings identify extensive translational control changes during human neuronal differentiation and a crucial role of 3' UTRs in driving cell-type-specific translation.
Collapse
Affiliation(s)
- John D Blair
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Dirk Hockemeyer
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Jennifer A Doudna
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA 94720, USA; Howard Hughes Medical Institute, University of California, Berkeley, Berkeley, CA 94720, USA; Department of Chemistry, University of California, Berkeley, Berkeley, CA 94720, USA; Innovative Genomics Institute, University of California, Berkeley, Berkeley, CA 94720, USA; Molecular Biophysics and Imaging Biosciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Helen S Bateup
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA 94720, USA; Helen Wills Neuroscience Institute, University of California, Berkeley, Berkeley, CA 94720, USA.
| | - Stephen N Floor
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA 94720, USA; Howard Hughes Medical Institute, University of California, Berkeley, Berkeley, CA 94720, USA; Department of Cell and Tissue Biology, University of California, San Francisco, San Francisco, CA 94143, USA; Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, CA 94143, USA.
| |
Collapse
|