1
|
Heeren S, Sanders M, Shaw JJ, Pinto Brandão-Filho S, Côrtes Boité M, Motta Cantanhêde L, Chourabi K, Maes I, Llanos-Cuentas A, Arevalo J, Marco JD, Lemey P, Cotton JA, Dujardin JC, Cupolillo E, Van den Broeck F. Evolutionary genomics of Leishmania braziliensis across the neotropical realm. Commun Biol 2024; 7:1587. [PMID: 39609617 PMCID: PMC11605123 DOI: 10.1038/s42003-024-07278-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Accepted: 11/15/2024] [Indexed: 11/30/2024] Open
Abstract
The Neotropical realm, one of the most biodiverse regions on Earth, houses a broad range of zoonoses that pose serious public health threats. Protozoan parasites of the Leishmania (Viannia) braziliensis clade cause zoonotic leishmaniasis in Latin America with clinical symptoms ranging from simple cutaneous to destructive, disfiguring mucosal lesions. We present the first comprehensive genome-wide continental study including 257 cultivated isolates representing most of the geographical distribution of this major human pathogen. The L. braziliensis clade is genetically highly heterogeneous, consisting of divergent parasite groups that are associated with different environments and vary greatly in diversity. Apart from several small ecologically isolated groups with little diversity, our sampling identifies two major parasite groups, one associated with the Amazon and the other with the Atlantic Forest biomes. These groups show different recombination histories, as suggested by high levels of heterozygosity and effective population sizes in the Amazonian group in contrast to high levels of linkage and clonality in the Atlantic group. We argue that these differences are linked to strong eco-epidemiological differences between the two regions. In contrast to geographically focused studies, our study provides a broad understanding of the molecular epidemiology of zoonotic parasites circulating in tropical America.
Collapse
Affiliation(s)
- Senne Heeren
- Department of Biomedical Sciences, Institute of Tropical Medicine, Antwerp, Belgium.
- Department of Microbiology, Immunology and Transplantation, Rega Institute for Medical Research, Katholieke Universiteit Leuven, Leuven, Belgium.
- Department of Biomedical Sciences, University of Antwerp, Antwerp, Belgium.
| | | | - Jeffrey Jon Shaw
- Departamento de Parasitologia, Instituto de Ciências Biomédicas, Universidade de São Paulo (USP), São Paulo, Brazil
| | | | - Mariana Côrtes Boité
- Leishmaniasis Research Laboratory, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro, Brazil
| | - Lilian Motta Cantanhêde
- Leishmaniasis Research Laboratory, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro, Brazil
- Instituto Nacional de Ciência e Tecnologia de Epidemiologia da Amazônia Ocidental, INCT EpiAmO, Porto Velho, Brazil
| | - Khaled Chourabi
- Leishmaniasis Research Laboratory, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro, Brazil
| | - Ilse Maes
- Department of Biomedical Sciences, Institute of Tropical Medicine, Antwerp, Belgium
| | - Alejandro Llanos-Cuentas
- Instituto de Medicina Tropical Alexander von Humboldt, Universidad Peruana Cayetano Heredia, Lima, Peru
| | - Jorge Arevalo
- Instituto de Medicina Tropical Alexander von Humboldt, Universidad Peruana Cayetano Heredia, Lima, Peru
| | - Jorge D Marco
- Instituto de Patología Experimental, Universidad Nacional de Salta-Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Salta, Argentina
| | - Philippe Lemey
- Department of Microbiology, Immunology and Transplantation, Rega Institute for Medical Research, Katholieke Universiteit Leuven, Leuven, Belgium
| | - James A Cotton
- Welcome Sanger Institute, Hinxton, United Kingdom
- School of Biodiversity, One Health and Comparative Medicine, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, UK
| | - Jean-Claude Dujardin
- Department of Biomedical Sciences, Institute of Tropical Medicine, Antwerp, Belgium
- Department of Biomedical Sciences, University of Antwerp, Antwerp, Belgium
| | - Elisa Cupolillo
- Leishmaniasis Research Laboratory, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro, Brazil.
- Instituto Nacional de Ciência e Tecnologia de Epidemiologia da Amazônia Ocidental, INCT EpiAmO, Porto Velho, Brazil.
| | - Frederik Van den Broeck
- Department of Biomedical Sciences, Institute of Tropical Medicine, Antwerp, Belgium.
- Department of Microbiology, Immunology and Transplantation, Rega Institute for Medical Research, Katholieke Universiteit Leuven, Leuven, Belgium.
| |
Collapse
|
2
|
Reis-Cunha JL, Jeffares DC. Detecting complex infections in trypanosomatids using whole genome sequencing. BMC Genomics 2024; 25:1011. [PMID: 39472783 PMCID: PMC11520695 DOI: 10.1186/s12864-024-10862-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Accepted: 10/03/2024] [Indexed: 11/02/2024] Open
Abstract
BACKGROUND Trypanosomatid parasites are a group of protozoans that cause devastating diseases that disproportionately affect developing countries. These protozoans have developed several mechanisms for adaptation to survive in the mammalian host, such as extensive expansion of multigene families enrolled in host-parasite interaction, adaptation to invade and modulate host cells, and the presence of aneuploidy and polyploidy. Two mechanisms might result in "complex" isolates, with more than two haplotypes being present in a single sample: multiplicity of infections (MOI) and polyploidy. We have developed and validated a methodology to identify multiclonal infections and polyploidy using whole genome sequencing reads, based on fluctuations in allelic read depth in heterozygous positions, which can be easily implemented in experiments sequencing genomes from one sample to larger population surveys. RESULTS The methodology estimates the complexity index (CI) of an isolate, and compares real samples with simulated clonal infections at individual and populational level, excluding regions with somy and gene copy number variation. It was primarily validated with simulated MOI and known polyploid isolates respectively from Leishmania and Trypanosoma cruzi. Then, the approach was used to assess the complexity of infection using genome wide SNP data from 497 trypanosomatid samples from four clades, L. donovani/L. infantum, L. braziliensis, T. cruzi and T. brucei providing an overview of multiclonal infection and polyploidy in these cultured parasites. We show that our method robustly detects complex infections in samples with at least 25x coverage, 100 heterozygous SNPs and where 5-10% of the reads correspond to the secondary clone. We find that relatively small proportions (≤ 7%) of cultured trypanosomatid isolates are complex. CONCLUSIONS The method can accurately identify polyploid isolates, and can identify multiclonal infections in scenarios with sufficient genome read coverage. We pack our method in a single R script that requires only a standard variant call format (VCF) file to run ( https://github.com/jaumlrc/Complex-Infections ). Our analyses indicate that multiclonality and polyploidy do occur in all clades, but not very frequently in cultured trypanosomatids. We caution that our estimates are lower bounds due to the limitations of current laboratory and bioinformatic methods.
Collapse
Affiliation(s)
- João Luís Reis-Cunha
- York Biomedical Research Institute, Department of Biology and York Biomedical Research Institute, University of York, York, YO10 5DD, UK.
| | - Daniel Charlton Jeffares
- York Biomedical Research Institute, Department of Biology and York Biomedical Research Institute, University of York, York, YO10 5DD, UK.
| |
Collapse
|
3
|
Morrison LJ, Steketee PC, Tettey MD, Matthews KR. Pathogenicity and virulence of African trypanosomes: From laboratory models to clinically relevant hosts. Virulence 2023; 14:2150445. [PMID: 36419235 DOI: 10.1080/21505594.2022.2150445] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Accepted: 11/17/2022] [Indexed: 11/25/2022] Open
Abstract
African trypanosomes are vector-borne protozoa, which cause significant human and animal disease across sub-Saharan Africa, and animal disease across Asia and South America. In humans, infection is caused by variants of Trypanosoma brucei, and is characterized by varying rate of progression to neurological disease, caused by parasites exiting the vasculature and entering the brain. Animal disease is caused by multiple species of trypanosome, primarily T. congolense, T. vivax, and T. brucei. These trypanosomes also infect multiple species of mammalian host, and this complexity of trypanosome and host diversity is reflected in the spectrum of severity of disease in animal trypanosomiasis, ranging from hyperacute infections associated with mortality to long-term chronic infections, and is also a main reason why designing interventions for animal trypanosomiasis is so challenging. In this review, we will provide an overview of the current understanding of trypanosome determinants of infection progression and severity, covering laboratory models of disease, as well as human and livestock disease. We will also highlight gaps in knowledge and capabilities, which represent opportunities to both further our fundamental understanding of how trypanosomes cause disease, as well as facilitating the development of the novel interventions that are so badly needed to reduce the burden of disease caused by these important pathogens.
Collapse
Affiliation(s)
- Liam J Morrison
- Roslin Institute, Royal (Dick) School of Veterinary Studies, University of Edinburgh, Midlothian, UK
| | - Pieter C Steketee
- Roslin Institute, Royal (Dick) School of Veterinary Studies, University of Edinburgh, Midlothian, UK
| | - Mabel D Tettey
- Institute for Immunology and Infection Research, School of Biological Sciences, University of Edinburgh, Edinburgh, UK
| | - Keith R Matthews
- Institute for Immunology and Infection Research, School of Biological Sciences, University of Edinburgh, Edinburgh, UK
| |
Collapse
|
4
|
Freitas S, Parker DJ, Labédan M, Dumas Z, Schwander T. Evidence for cryptic sex in parthenogenetic stick insects of the genus Timema. Proc Biol Sci 2023; 290:20230404. [PMID: 37727092 PMCID: PMC10509586 DOI: 10.1098/rspb.2023.0404] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Accepted: 08/23/2023] [Indexed: 09/21/2023] Open
Abstract
Obligately parthenogenetic species are expected to be short lived since the lack of sex and recombination should translate into a slower adaptation rate and increased accumulation of deleterious alleles. Some, however, are thought to have been reproducing without males for millions of years. It is not clear how these old parthenogens can escape the predicted long-term costs of parthenogenesis, but an obvious explanation is cryptic sex. In this study, we screen for signatures of cryptic sex in eight populations of four parthenogenetic species of Timema stick insects, some estimated to be older than 1 Myr. Low genotype diversity, homozygosity of individuals and high linkage disequilibrium (LD) unaffected by marker distances support exclusively parthenogenetic reproduction in six populations. However, in two populations (namely, of the species Timema douglasi and T. monikensis) we find strong evidence for cryptic sex, most likely mediated by rare males. These populations had comparatively high genotype diversities, lower LD, and a clear LD decay with genetic distance. Rare sex in species that are otherwise largely parthenogenetic could help explain the unusual success of parthenogenesis in the Timema genus and raises the question whether episodes of rare sex are in fact the simplest explanation for the persistence of many old parthenogens in nature.
Collapse
Affiliation(s)
- Susana Freitas
- Department of Ecology and Evolution, University of Lausanne, Lausanne, Switzerland
| | - Darren J. Parker
- Department of Ecology and Evolution, University of Lausanne, Lausanne, Switzerland
- School of Natural Sciences, Bangor University, Bangor, UK
| | - Marjorie Labédan
- Department of Ecology and Evolution, University of Lausanne, Lausanne, Switzerland
| | - Zoé Dumas
- Department of Ecology and Evolution, University of Lausanne, Lausanne, Switzerland
| | - Tanja Schwander
- Department of Ecology and Evolution, University of Lausanne, Lausanne, Switzerland
| |
Collapse
|
5
|
Milner DS, Galindo LJ, Irwin NAT, Richards TA. Transporter Proteins as Ecological Assets and Features of Microbial Eukaryotic Pangenomes. Annu Rev Microbiol 2023; 77:45-66. [PMID: 36944262 DOI: 10.1146/annurev-micro-032421-115538] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/23/2023]
Abstract
Here we review two connected themes in evolutionary microbiology: (a) the nature of gene repertoire variation within species groups (pangenomes) and (b) the concept of metabolite transporters as accessory proteins capable of providing niche-defining "bolt-on" phenotypes. We discuss the need for improved sampling and understanding of pangenome variation in eukaryotic microbes. We then review the factors that shape the repertoire of accessory genes within pangenomes. As part of this discussion, we outline how gene duplication is a key factor in both eukaryotic pangenome variation and transporter gene family evolution. We go on to outline how, through functional characterization of transporter-encoding genes, in combination with analyses of how transporter genes are gained and lost from accessory genomes, we can reveal much about the niche range, the ecology, and the evolution of virulence of microbes. We advocate for the coordinated systematic study of eukaryotic pangenomes through genome sequencing and the functional analysis of genes found within the accessory gene repertoire.
Collapse
Affiliation(s)
- David S Milner
- Department of Biology, University of Oxford, Oxford, United Kingdom;
| | | | - Nicholas A T Irwin
- Department of Biology, University of Oxford, Oxford, United Kingdom;
- Merton College, University of Oxford, Oxford, United Kingdom
| | - Thomas A Richards
- Department of Biology, University of Oxford, Oxford, United Kingdom;
| |
Collapse
|
6
|
S Raposo D, A Zufall R, Caruso A, Titelboim D, Abramovich S, Hassenrück C, Kucera M, Morard R. Invasion success of a Lessepsian symbiont-bearing foraminifera linked to high dispersal ability, preadaptation and suppression of sexual reproduction. Sci Rep 2023; 13:12578. [PMID: 37537233 PMCID: PMC10400638 DOI: 10.1038/s41598-023-39652-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Accepted: 07/28/2023] [Indexed: 08/05/2023] Open
Abstract
Among the most successful Lessepsian invaders is the symbiont-bearing benthic foraminifera Amphistegina lobifera. In its newly conquered habitat, this prolific calcifier and ecosystem engineer is exposed to environmental conditions that exceed the range of its native habitat. To disentangle which processes facilitated the invasion success of A. lobifera into the Mediterranean Sea we analyzed a ~ 1400 bp sequence fragment covering the SSU and ITS gene markers to compare the populations from its native regions and along the invasion gradient. The genetic variability was studied at four levels: intra-genomic, population, regional and geographical. We observed that the invasion is not associated with genetic differentiation, but the invasive populations show a distinct suppression of intra-genomic variability among the multiple copies of the rRNA gene. A reduced genetic diversity compared to the Indopacific is observed already in the Red Sea populations and their high dispersal potential into the Mediterranean appears consistent with a bridgehead effect resulting from the postglacial expansion from the Indian Ocean into the Red Sea. We conclude that the genetic structure of the invasive populations reflects two processes: high dispersal ability of the Red Sea source population pre-adapted to Mediterranean conditions and a likely suppression of sexual reproduction in the invader. This discovery provides a new perspective on the cost of invasion in marine protists: The success of the invasive A. lobifera in the Mediterranean Sea comes at the cost of abandonment of sexual reproduction.
Collapse
Affiliation(s)
- Débora S Raposo
- Center for Marine Environmental Sciences, MARUM, Universität Bremen, Bremen, Germany.
| | - Rebecca A Zufall
- Department of Biology and Biochemistry, University of Houston, Houston, USA
| | - Antonio Caruso
- Dipartimento di Scienze e Tecnologie Biologiche Chimiche e Farmaceutiche, Università degli Studi di Palermo, Palermo, Italy
| | - Danna Titelboim
- Department of Earth Sciences, University of Oxford, Oxford, UK
| | - Sigal Abramovich
- Department of Earth and Environmental Sciences, Ben Gurion University of the Negev, Beer Sheva, Israel
| | - Christiane Hassenrück
- Center for Marine Environmental Sciences, MARUM, Universität Bremen, Bremen, Germany
- Department of Biological Oceanography, Leibniz Institute for Baltic Sea Research Warnemünde (IOW), Rostock, Warnemünde, Germany
| | - Michal Kucera
- Center for Marine Environmental Sciences, MARUM, Universität Bremen, Bremen, Germany
| | - Raphaël Morard
- Center for Marine Environmental Sciences, MARUM, Universität Bremen, Bremen, Germany
| |
Collapse
|
7
|
Hadermann A, Heeren S, Maes I, Dujardin JC, Domagalska MA, Van den Broeck F. Genome diversity of Leishmania aethiopica. Front Cell Infect Microbiol 2023; 13:1147998. [PMID: 37153154 PMCID: PMC10157169 DOI: 10.3389/fcimb.2023.1147998] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Accepted: 03/27/2023] [Indexed: 05/09/2023] Open
Abstract
Leishmania aethiopica is a zoonotic Old World parasite transmitted by Phlebotomine sand flies and causing cutaneous leishmaniasis in Ethiopia and Kenya. Despite a range of clinical manifestations and a high prevalence of treatment failure, L. aethiopica is one of the most neglected species of the Leishmania genus in terms of scientific attention. Here, we explored the genome diversity of L. aethiopica by analyzing the genomes of twenty isolates from Ethiopia. Phylogenomic analyses identified two strains as interspecific hybrids involving L. aethiopica as one parent and L. donovani and L. tropica respectively as the other parent. High levels of genome-wide heterozygosity suggest that these two hybrids are equivalent to F1 progeny that propagated mitotically since the initial hybridization event. Analyses of allelic read depths further revealed that the L. aethiopica - L. tropica hybrid was diploid and the L. aethiopica - L. donovani hybrid was triploid, as has been described for other interspecific Leishmania hybrids. When focusing on L. aethiopica, we show that this species is genetically highly diverse and consists of both asexually evolving strains and groups of recombining parasites. A remarkable observation is that some L. aethiopica strains showed an extensive loss of heterozygosity across large regions of the nuclear genome, which likely arose from gene conversion/mitotic recombination. Hence, our prospection of L. aethiopica genomics revealed new insights into the genomic consequences of both meiotic and mitotic recombination in Leishmania.
Collapse
Affiliation(s)
- Amber Hadermann
- Department of Biomedical Sciences, Institute of Tropical Medicine, Antwerp, Belgium
| | - Senne Heeren
- Department of Biomedical Sciences, Institute of Tropical Medicine, Antwerp, Belgium
- Department of Microbiology, Immunology and Transplantation, Rega Institute for Medical Research, Katholieke Universiteit Leuven, Leuven, Belgium
- Department of Biomedical Sciences, University of Antwerp, Antwerp, Belgium
| | - Ilse Maes
- Department of Biomedical Sciences, Institute of Tropical Medicine, Antwerp, Belgium
| | - Jean-Claude Dujardin
- Department of Biomedical Sciences, Institute of Tropical Medicine, Antwerp, Belgium
| | - Malgorzata Anna Domagalska
- Department of Biomedical Sciences, Institute of Tropical Medicine, Antwerp, Belgium
- *Correspondence: Frederik Van den Broeck, ; Malgorzata Anna Domagalska,
| | - Frederik Van den Broeck
- Department of Biomedical Sciences, Institute of Tropical Medicine, Antwerp, Belgium
- Department of Microbiology, Immunology and Transplantation, Rega Institute for Medical Research, Katholieke Universiteit Leuven, Leuven, Belgium
- *Correspondence: Frederik Van den Broeck, ; Malgorzata Anna Domagalska,
| |
Collapse
|
8
|
VSGs Expressed during Natural T. b. gambiense Infection Exhibit Extensive Sequence Divergence and a Subspecies-Specific Bias towards Type B N-Terminal Domains. mBio 2022; 13:e0255322. [PMID: 36354333 PMCID: PMC9765701 DOI: 10.1128/mbio.02553-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Trypanosoma brucei gambiense is the primary causative agent of human African trypanosomiasis (HAT), a vector-borne disease endemic to West and Central Africa. The extracellular parasite evades antibody recognition within the host bloodstream by altering its variant surface glycoprotein (VSG) coat through a process of antigenic variation. The serological tests that are widely used to screen for HAT use VSG as one of the target antigens. However, the VSGs expressed during human infection have not been characterized. Here, we use VSG sequencing (VSG-seq) to analyze the VSGs expressed in the blood of patients infected with T. b. gambiense and compared them to VSG expression in Trypanosoma brucei rhodesiense infections in humans as well as Trypanosoma brucei brucei infections in mice. The 44 VSGs expressed during T. b. gambiense infection revealed a striking bias toward expression of type B N termini (82% of detected VSGs). This bias is specific to T. b. gambiense, which is unique among T. brucei subspecies in its chronic clinical presentation and anthroponotic nature. The expressed T. b. gambiense VSGs also share very little similarity to sequences from 36 T. b. gambiense whole-genome sequencing data sets, particularly in areas of the VSG protein exposed to host antibodies, suggesting the antigen repertoire is under strong selective pressure to diversify. Overall, this work demonstrates new features of antigenic variation in T. brucei gambiense and highlights the importance of understanding VSG repertoires in nature. IMPORTANCE Human African trypanosomiasis is a neglected tropical disease primarily caused by the extracellular parasite Trypanosoma brucei gambiense. To avoid elimination by the host, these parasites repeatedly replace their variant surface glycoprotein (VSG) coat. Despite the important role of VSGs in prolonging infection, VSG expression during human infections is poorly understood. A better understanding of natural VSG gene expression dynamics can clarify the mechanisms that T. brucei uses to alter its VSG coat. We analyzed the expressed VSGs detected in the blood of patients with trypanosomiasis. Our findings indicate that there are features of antigenic variation unique to human-infective T. brucei subspecies and that natural VSG repertoires may vary more than previously expected.
Collapse
|
9
|
Sima N, Dujeancourt-Henry A, Perlaza BL, Ungeheuer MN, Rotureau B, Glover L. SHERLOCK4HAT: A CRISPR-based tool kit for diagnosis of Human African Trypanosomiasis. EBioMedicine 2022; 85:104308. [PMCID: PMC9626900 DOI: 10.1016/j.ebiom.2022.104308] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Revised: 09/09/2022] [Accepted: 09/30/2022] [Indexed: 11/11/2022] Open
Abstract
Background To achieve elimination of Human African Trypanosomiasis (HAT) caused by Trypanosoma brucei gambiense (gHAT), the development of highly sensitive diagnostics is needed. We have developed a CRISPR based diagnostic for HAT using SHERLOCK (Specific High-sensitivity Enzymatic Reporter unLOCKing) that is readily adaptable to a field-based setting. Methods We adapted SHERLOCK for the detection of T. brucei species. We targeted 7SLRNA, TgSGP and SRA genes and tested SHERLOCK against RNA from blood, buffy coat, dried blood spots (DBS), and clinical samples. Findings The pan-Trypanozoon 7SLRNA and T. b. gambiense-specific TgSGP SHERLOCK assays had a sensitivity of 0.1 parasite/μL and a limit of detection 100 molecules/μL. T. b. rhodesiense-specific SRA had a sensitivity of 0.1 parasite/μL and a limit of detection of 10 molecules/μL. TgSGP SHERLOCK and SRA SHERLOCK detected 100% of the field isolated strains. Using clinical specimens from the WHO HAT cryobank, the 7SLRNA SHERLOCK detected trypanosomes in gHAT samples with 56.1%, 95% CI [46.25–65.53] sensitivity and 98.4%, 95% CI [91.41–99.92] specificity, and rHAT samples with 100%, 95% CI [83.18–100] sensitivity and 94.1%, 95% CI [80.91–98.95] specificity. The species-specific TgSGP and SRA SHERLOCK discriminated between the gambiense/rhodesiense HAT infections with 100% accuracy. Interpretation The 7SLRNA, TgSGP and SRA SHERLOCK discriminate between gHAT and rHAT infections, and could be used for epidemiological surveillance and diagnosis of HAT in the field after further technical development. Funding Institut Pasteur (PTR-175 SHERLOCK4HAT), French Government's Investissement d’Avenir program Laboratoire d’Excellence Integrative Biology of Emerging Infectious Diseases (LabEx IBEID), and Agence Nationale pour la Recherche (ANR-PRC 2021 SherPa).
Collapse
Affiliation(s)
- Núria Sima
- Trypanosome Molecular Biology, Department of Parasites and Insect Vectors, Institut Pasteur, Université Paris Cité, F-75015, Paris, France,Trypanosome Transmission Group, Trypanosome Cell Biology Unit, INSERM U1201 & Department of Parasites and Insect Vectors, Institut Pasteur, Université Paris Sorbonne, Paris, France
| | - Annick Dujeancourt-Henry
- Trypanosome Molecular Biology, Department of Parasites and Insect Vectors, Institut Pasteur, Université Paris Cité, F-75015, Paris, France
| | - Blanca Liliana Perlaza
- Institut Pasteur, ICAReB Platform (Clinical Investigation & Access to Research Bioresources) of the Center for Translational Science, Paris, France
| | - Marie-Noelle Ungeheuer
- Institut Pasteur, ICAReB Platform (Clinical Investigation & Access to Research Bioresources) of the Center for Translational Science, Paris, France
| | - Brice Rotureau
- Trypanosome Transmission Group, Trypanosome Cell Biology Unit, INSERM U1201 & Department of Parasites and Insect Vectors, Institut Pasteur, Université Paris Sorbonne, Paris, France,Parasitology Unit, Institut Pasteur of Guinea, Conakry, Guinea,Corresponding author.
| | - Lucy Glover
- Trypanosome Molecular Biology, Department of Parasites and Insect Vectors, Institut Pasteur, Université Paris Cité, F-75015, Paris, France,Corresponding author.
| |
Collapse
|
10
|
Geerts M, Chen Z, Bebronne N, Savill NJ, Schnaufer A, Büscher P, Van Reet N, Van den Broeck F. Deep kinetoplast genome analyses result in a novel molecular assay for detecting Trypanosoma brucei gambiense-specific minicircles. NAR Genom Bioinform 2022; 4:lqac081. [PMID: 36285287 PMCID: PMC9582789 DOI: 10.1093/nargab/lqac081] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Revised: 09/28/2022] [Accepted: 10/06/2022] [Indexed: 11/14/2022] Open
Abstract
The World Health Organization targeted Trypanosoma brucei gambiense (Tbg) human African trypanosomiasis for elimination of transmission by 2030. Sensitive molecular markers that specifically detect Tbg type 1 (Tbg1) parasites will be important tools to assist in reaching this goal. We aim at improving molecular diagnosis of Tbg1 infections by targeting the abundant mitochondrial minicircles within the kinetoplast of these parasites. Using Next-Generation Sequencing of total cellular DNA extracts, we assembled and annotated the kinetoplast genome and investigated minicircle sequence diversity in 38 animal- and human-infective trypanosome strains. Computational analyses recognized a total of 241 Minicircle Sequence Classes as Tbg1-specific, of which three were shared by the 18 studied Tbg1 strains. We developed a minicircle-based assay that is applicable on animals and as specific as the TgsGP-based assay, the current golden standard for molecular detection of Tbg1. The median copy number of the targeted minicircle was equal to eight, suggesting our minicircle-based assay may be used for the sensitive detection of Tbg1 parasites. Annotation of the targeted minicircle sequence indicated that it encodes genes essential for the survival of the parasite and will thus likely be preserved in natural Tbg1 populations, the latter ensuring the reliability of our novel diagnostic assay.
Collapse
Affiliation(s)
- Manon Geerts
- Department of Biomedical Sciences, Institute of Tropical Medicine, 2000 Antwerp, Belgium
| | - Zihao Chen
- Institute of Immunology and Infection Research, University of Edinburgh, Edinburgh EH9 3FL, UK
| | - Nicolas Bebronne
- Department of Biomedical Sciences, Institute of Tropical Medicine, 2000 Antwerp, Belgium
| | - Nicholas J Savill
- Institute of Immunology and Infection Research, University of Edinburgh, Edinburgh EH9 3FL, UK
| | - Achim Schnaufer
- Institute of Immunology and Infection Research, University of Edinburgh, Edinburgh EH9 3FL, UK
| | - Philippe Büscher
- Department of Biomedical Sciences, Institute of Tropical Medicine, 2000 Antwerp, Belgium
| | | | | |
Collapse
|
11
|
Ní Leathlobhair M, Lenski RE. Population genetics of clonally transmissible cancers. Nat Ecol Evol 2022; 6:1077-1089. [PMID: 35879542 DOI: 10.1038/s41559-022-01790-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Accepted: 05/12/2022] [Indexed: 11/08/2022]
Abstract
Populations of cancer cells are subject to the same core evolutionary processes as asexually reproducing, unicellular organisms. Transmissible cancers are particularly striking examples of these processes. These unusual cancers are clonal lineages that can spread through populations via physical transfer of living cancer cells from one host individual to another, and they have achieved long-term success in the colonization of at least eight different host species. Population genetic theory provides a useful framework for understanding the shift from a multicellular sexual animal into a unicellular asexual clone and its long-term effects on the genomes of these cancers. In this Review, we consider recent findings from transmissible cancer research with the goals of developing an evolutionarily informed perspective on transmissible cancers, examining possible implications for their long-term fate and identifying areas for future research on these exceptional lineages.
Collapse
Affiliation(s)
- Máire Ní Leathlobhair
- Big Data Institute, Li Ka Shing Centre for Health Information and Discovery, University of Oxford, Oxford, UK.
- Ludwig Institute for Cancer Research, Nuffield Department of Medicine, University of Oxford, Oxford, UK.
- Department of Microbiology, Moyne Institute of Preventive Medicine, School of Genetics and Microbiology, Trinity College Dublin, Dublin, Ireland.
| | - Richard E Lenski
- Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing, MI, USA
- Ecology, Evolution, and Behavior Program, Michigan State University, East Lansing, MI, USA
| |
Collapse
|
12
|
Kent RS, Briggs EM, Colon BL, Alvarez C, Silva Pereira S, De Niz M. Paving the Way: Contributions of Big Data to Apicomplexan and Kinetoplastid Research. Front Cell Infect Microbiol 2022; 12:900878. [PMID: 35734575 PMCID: PMC9207352 DOI: 10.3389/fcimb.2022.900878] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Accepted: 05/06/2022] [Indexed: 11/13/2022] Open
Abstract
In the age of big data an important question is how to ensure we make the most out of the resources we generate. In this review, we discuss the major methods used in Apicomplexan and Kinetoplastid research to produce big datasets and advance our understanding of Plasmodium, Toxoplasma, Cryptosporidium, Trypanosoma and Leishmania biology. We debate the benefits and limitations of the current technologies, and propose future advancements that may be key to improving our use of these techniques. Finally, we consider the difficulties the field faces when trying to make the most of the abundance of data that has already been, and will continue to be, generated.
Collapse
Affiliation(s)
- Robyn S. Kent
- Department of Microbiology and Molecular Genetics, University of Vermont, Burlington, VT, United States
| | - Emma M. Briggs
- Institute for Immunology and Infection Research, School of Biological Sciences, University Edinburgh, Edinburgh, United Kingdom
- Wellcome Centre for Integrative Parasitology, Institute of Infection, Immunity and Inflammation, University of Glasgow, Glasgow, United Kingdom
| | - Beatrice L. Colon
- Wellcome Centre for Anti-Infectives Research, Division of Biological Chemistry and Drug Discovery, School of Life Sciences, University of Dundee, Dundee, United Kingdom
| | - Catalina Alvarez
- de Duve Institute, Université Catholique de Louvain, Brussels, Belgium
| | - Sara Silva Pereira
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina da Universidade de Lisboa, Lisboa, Portugal
| | - Mariana De Niz
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina da Universidade de Lisboa, Lisboa, Portugal
- Institut Pasteur, Paris, France
| |
Collapse
|
13
|
Cruz-Saavedra L, Schwabl P, Vallejo GA, Carranza JC, Muñoz M, Patino LH, Paniz-Mondolfi A, Llewellyn MS, Ramírez JD. Genome plasticity driven by aneuploidy and loss of heterozygosity in Trypanosoma cruzi. Microb Genom 2022; 8. [PMID: 35748878 PMCID: PMC9455712 DOI: 10.1099/mgen.0.000843] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Trypanosoma cruzi the causative agent of Chagas disease shows a marked genetic diversity and divided into at least six Discrete Typing Units (DTUs). High intra genetic variability has been observed in the TcI DTU, the most widely distributed DTU, where patterns of genomic diversity can provide information on ecological and evolutionary processes driving parasite population structure and genome organization. Chromosomal aneuploidies and rearrangements across multigene families represent an evidence of T. cruzi genome plasticity. We explored genomic diversity among 18 Colombian T. cruzi I clones and 15 T. cruzi I South American strains. Our results confirm high genomic variability, heterozygosity and presence of a clade compatible with the TcIdom genotype, described for strains from humans in Colombia and Venezuela. TcI showed high structural plasticity across the geographical region studied. Differential events of whole and segmental aneuploidy (SA) along chromosomes even between clones from the same strain were found and corroborated by the depth and allelic frequency. We detected loss of heterozygosity (LOH) events in different chromosomes, however, the size and location of segments under LOH varied between clones. Genes adjacent to breakpoints were evaluated, and retrotransposon hot spot genes flanked the beginning of segmental aneuploidies. Our results suggest that T. cruzi genomes, like those of Leishmania, may have a highly unstable structure and there is now an urgent need to design experiments to explore any potential adaptive role for the plasticity observed.
Collapse
Affiliation(s)
- Lissa Cruz-Saavedra
- Centro de Investigaciones en Microbiología y Biotecnología-UR (CIMBIUR), Facultad de Ciencias Naturales, Universidad del Rosario, Bogotá, Colombia
| | - Philipp Schwabl
- Institute of Biodiversity, Animal Health & Comparative Medicine, University of Glasgow, Glasgow G12 8QQ, UK
| | - Gustavo A Vallejo
- Laboratorio de Investigación en Parasitología Tropical, Facultad de Ciencias, Universidad del Tolima, Ibagué, Colombia
| | - Julio C Carranza
- Laboratorio de Investigación en Parasitología Tropical, Facultad de Ciencias, Universidad del Tolima, Ibagué, Colombia
| | - Marina Muñoz
- Centro de Investigaciones en Microbiología y Biotecnología-UR (CIMBIUR), Facultad de Ciencias Naturales, Universidad del Rosario, Bogotá, Colombia
| | - Luz Helena Patino
- Centro de Investigaciones en Microbiología y Biotecnología-UR (CIMBIUR), Facultad de Ciencias Naturales, Universidad del Rosario, Bogotá, Colombia
| | - Alberto Paniz-Mondolfi
- Molecular Microbiology Laboratory, Department of Pathology, Molecular and Cell-Based Medicine, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Martin S Llewellyn
- Institute of Biodiversity, Animal Health & Comparative Medicine, University of Glasgow, Glasgow G12 8QQ, UK
| | - Juan David Ramírez
- Centro de Investigaciones en Microbiología y Biotecnología-UR (CIMBIUR), Facultad de Ciencias Naturales, Universidad del Rosario, Bogotá, Colombia.,Molecular Microbiology Laboratory, Department of Pathology, Molecular and Cell-Based Medicine, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| |
Collapse
|
14
|
African trypanosome strategies for conquering new hosts and territories: the end of monophyly? Trends Parasitol 2022; 38:724-736. [DOI: 10.1016/j.pt.2022.05.011] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2022] [Revised: 05/16/2022] [Accepted: 05/17/2022] [Indexed: 11/22/2022]
|
15
|
Contreras Garcia M, Walshe E, Steketee PC, Paxton E, Lopez-Vidal J, Pearce MC, Matthews KR, Ezzahra-Akki F, Evans A, Fairlie-Clark K, Matthews JB, Grey F, Morrison LJ. Comparative Sensitivity and Specificity of the 7SL sRNA Diagnostic Test for Animal Trypanosomiasis. Front Vet Sci 2022; 9:868912. [PMID: 35450136 PMCID: PMC9017285 DOI: 10.3389/fvets.2022.868912] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Accepted: 02/23/2022] [Indexed: 11/13/2022] Open
Abstract
Animal trypanosomiasis (AT) is a significant livestock disease, affecting millions of animals across Sub-Saharan Africa, Central and South America, and Asia, and is caused by the protozoan parasites Trypanosoma brucei, Trypanosoma vivax, and Trypanosoma congolense, with the largest economic impact in cattle. There is over-reliance on presumptive chemotherapy due to inadequate existing diagnostic tests, highlighting the need for improved AT diagnostics. A small RNA species, the 7SL sRNA, is excreted/secreted by trypanosomes in infected animals, and has been previously shown to reliably diagnose active infection. We sought to explore key properties of 7SL sRNA RT-qPCR assays; namely, assessing the potential for cross-reaction with the widespread and benign Trypanosoma theileri, directly comparing assay performance against currently available diagnostic methods, quantitatively assessing specificity and sensitivity, and assessing the rate of decay of 7SL sRNA post-treatment. Results showed that the 7SL sRNA RT-qPCR assays specific for T. brucei, T. vivax, and T. congolense performed better than microscopy and DNA PCR in detecting infection. The 7SL sRNA signal was undetectable or significantly reduced by 96-h post treatment; at 1 × curative dose there was no detectable signal in 5/5 cattle infected with T. congolense, and in 3/5 cattle infected with T. vivax, with the signal being reduced 14,630-fold in the remaining two T. vivax cattle. Additionally, the assays did not cross-react with T. theileri. Finally, by using a large panel of validated infected and uninfected samples, the species-specific assays are shown to be highly sensitive and specific by receiver operating characteristic (ROC) analysis, with 100% sensitivity (95% CI, 96.44-100%) and 100% specificity (95% CI, 96.53-100%), 96.73% (95% CI, 95.54-99.96%) and 99.19% specificity (95% CI, 92.58-99.60%), and 93.42% (95% CI, 85.51-97.16% %) and 82.43% specificity (95% CI, 72.23-89.44% %) for the T brucei, T. congolense and T. vivax assays, respectively, under the conditions used. These findings indicate that the 7SL sRNA has many attributes that would be required for a potential diagnostic marker of AT: no cross-reaction with T. theileri, high specificity and sensitivity, early infection detection, continued signal even in the absence of detectable parasitaemia in blood, and clear discrimination between infected and treated animals.
Collapse
Affiliation(s)
- Maria Contreras Garcia
- Roslin Institute, Royal (Dick) School of Veterinary Studies, University of Edinburgh, Edinburgh, United Kingdom
| | - Emily Walshe
- Roslin Technologies Limited, Roslin Innovation Centre, University of Edinburgh, Edinburgh, United Kingdom
| | - Pieter C Steketee
- Roslin Institute, Royal (Dick) School of Veterinary Studies, University of Edinburgh, Edinburgh, United Kingdom
| | - Edith Paxton
- Roslin Institute, Royal (Dick) School of Veterinary Studies, University of Edinburgh, Edinburgh, United Kingdom
| | - Javier Lopez-Vidal
- Ashworth Laboratories, Institute of Immunology and Infection Research, School of Biological Sciences, University of Edinburgh, Edinburgh, United Kingdom
| | - Michael C Pearce
- Global Alliance for Livestock Veterinary Medicines, Edinburgh, United Kingdom
| | - Keith R Matthews
- Ashworth Laboratories, Institute of Immunology and Infection Research, School of Biological Sciences, University of Edinburgh, Edinburgh, United Kingdom
| | | | | | - Karen Fairlie-Clark
- Roslin Technologies Limited, Roslin Innovation Centre, University of Edinburgh, Edinburgh, United Kingdom
| | - Jacqueline B Matthews
- Roslin Technologies Limited, Roslin Innovation Centre, University of Edinburgh, Edinburgh, United Kingdom
| | - Finn Grey
- Roslin Institute, Royal (Dick) School of Veterinary Studies, University of Edinburgh, Edinburgh, United Kingdom
| | - Liam J Morrison
- Roslin Institute, Royal (Dick) School of Veterinary Studies, University of Edinburgh, Edinburgh, United Kingdom
| |
Collapse
|
16
|
Angst P, Ebert D, Fields PD. Demographic history shapes genomic variation in an intracellular parasite with a wide geographic distribution. Mol Ecol 2022; 31:2528-2544. [DOI: 10.1111/mec.16419] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Revised: 02/14/2022] [Accepted: 02/28/2022] [Indexed: 11/27/2022]
Affiliation(s)
- Pascal Angst
- Department of Environmental Sciences, Zoology University of Basel Vesalgasse 1 4051 Basel Switzerland
| | - Dieter Ebert
- Department of Environmental Sciences, Zoology University of Basel Vesalgasse 1 4051 Basel Switzerland
| | - Peter D. Fields
- Department of Environmental Sciences, Zoology University of Basel Vesalgasse 1 4051 Basel Switzerland
| |
Collapse
|
17
|
Venter F, Matthews KR, Silvester E. Parasite co-infection: an ecological, molecular and experimental perspective. Proc Biol Sci 2022; 289:20212155. [PMID: 35042410 PMCID: PMC8767208 DOI: 10.1098/rspb.2021.2155] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Laboratory studies of pathogens aim to limit complexity in order to disentangle the important parameters contributing to an infection. However, pathogens rarely exist in isolation, and hosts may sustain co-infections with multiple disease agents. These interact with each other and with the host immune system dynamically, with disease outcomes affected by the composition of the community of infecting pathogens, their order of colonization, competition for niches and nutrients, and immune modulation. While pathogen-immune interactions have been detailed elsewhere, here we examine the use of ecological and experimental studies of trypanosome and malaria infections to discuss the interactions between pathogens in mammal hosts and arthropod vectors, including recently developed laboratory models for co-infection. The implications of pathogen co-infection for disease therapy are also discussed.
Collapse
Affiliation(s)
- Frank Venter
- Institute for Immunology and Infection Research, Ashworth Laboratories, School of Biological Sciences, University of Edinburgh, Scotland EH9 3FL, UK
| | - Keith R Matthews
- Institute for Immunology and Infection Research, Ashworth Laboratories, School of Biological Sciences, University of Edinburgh, Scotland EH9 3FL, UK
| | - Eleanor Silvester
- Institute for Immunology and Infection Research, Ashworth Laboratories, School of Biological Sciences, University of Edinburgh, Scotland EH9 3FL, UK.,Cambridge Institute for Medical Research, University of Cambridge, Cambridge Biomedical Campus, The Keith Peters Building, Hills Road, Cambridge CB2 0XY, UK
| |
Collapse
|
18
|
Single nucleotide polymorphisms and copy-number variations in the Trypanosoma brucei repeat (TBR) sequence can be used to enhance amplification and genotyping of Trypanozoon strains. PLoS One 2021; 16:e0258711. [PMID: 34695154 PMCID: PMC8544829 DOI: 10.1371/journal.pone.0258711] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Accepted: 10/04/2021] [Indexed: 11/19/2022] Open
Abstract
The Trypanosoma brucei repeat (TBR) is a tandem repeat sequence present on the Trypanozoon minichromosomes. Here, we report that the TBR sequence is not as homogenous as previously believed. BLAST analysis of the available T. brucei genomes reveals various TBR sequences of 177 bp and 176 bp in length, which can be sorted into two TBR groups based on a few key single nucleotide polymorphisms. Conventional and quantitative PCR with primers matched to consensus sequences that target either TBR group show substantial copy-number variations in the TBR repertoire within a collection of 77 Trypanozoon strains. We developed the qTBR, a novel PCR consisting of three primers and two probes, to simultaneously amplify target sequences from each of the two TBR groups into one single qPCR reaction. This dual probe setup offers increased analytical sensitivity for the molecular detection of all Trypanozoon taxa, in particular for T.b. gambiense and T. evansi, when compared to existing TBR PCRs. By combining the qTBR with 18S rDNA amplification as an internal standard, the relative copy-number of each TBR target sequence can be calculated and plotted, allowing for further classification of strains into TBR genotypes associated with East, West or Central Africa. Thus, the qTBR takes advantage of the single-nucleotide polymorphisms and copy number variations in the TBR sequences to enhance amplification and genotyping of all Trypanozoon strains, making it a promising tool for prevalence studies of African trypanosomiasis in both humans and animals.
Collapse
|
19
|
Cosentino RO, Brink BG, Siegel TN. Allele-specific assembly of a eukaryotic genome corrects apparent frameshifts and reveals a lack of nonsense-mediated mRNA decay. NAR Genom Bioinform 2021; 3:lqab082. [PMID: 34541528 PMCID: PMC8445201 DOI: 10.1093/nargab/lqab082] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Revised: 08/25/2021] [Accepted: 09/06/2021] [Indexed: 11/14/2022] Open
Abstract
To date, most reference genomes represent a mosaic consensus sequence in which the homologous chromosomes are collapsed into one sequence. This approach produces sequence artefacts and impedes analyses of allele-specific mechanisms. Here, we report an allele-specific genome assembly of the diploid parasite Trypanosoma brucei and reveal allelic variants affecting gene expression. Using long-read sequencing and chromosome conformation capture data, we could assign 99.5% of all heterozygote variants to a specific homologous chromosome and build a 66 Mb long allele-specific genome assembly. The phasing of haplotypes allowed us to resolve hundreds of artefacts present in the previous mosaic consensus assembly. In addition, it revealed allelic recombination events, visible as regions of low allelic heterozygosity, enabling the lineage tracing of T. brucei isolates. Interestingly, analyses of transcriptome and translatome data of genes with allele-specific premature termination codons point to the absence of a nonsense-mediated decay mechanism in trypanosomes. Taken together, this study delivers a reference quality allele-specific genome assembly of T. brucei and demonstrates the importance of such assemblies for the study of gene expression control. We expect the new genome assembly will increase the awareness of allele-specific phenomena and provide a platform to investigate them.
Collapse
Affiliation(s)
- Raúl O Cosentino
- Division of Experimental Parasitology, Faculty of Veterinary Medicine, Ludwig-Maximilians-Universität in Munich, Lena-Christ-Str. 48, Planegg-Martinsried 82152, Germany
| | - Benedikt G Brink
- Division of Experimental Parasitology, Faculty of Veterinary Medicine, Ludwig-Maximilians-Universität in Munich, Lena-Christ-Str. 48, Planegg-Martinsried 82152, Germany
| | - T Nicolai Siegel
- Division of Experimental Parasitology, Faculty of Veterinary Medicine, Ludwig-Maximilians-Universität in Munich, Lena-Christ-Str. 48, Planegg-Martinsried 82152, Germany
| |
Collapse
|
20
|
Brandt A, Tran Van P, Bluhm C, Anselmetti Y, Dumas Z, Figuet E, François CM, Galtier N, Heimburger B, Jaron KS, Labédan M, Maraun M, Parker DJ, Robinson-Rechavi M, Schaefer I, Simion P, Scheu S, Schwander T, Bast J. Haplotype divergence supports long-term asexuality in the oribatid mite Oppiella nova. Proc Natl Acad Sci U S A 2021; 118:e2101485118. [PMID: 34535550 PMCID: PMC8463897 DOI: 10.1073/pnas.2101485118] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/28/2021] [Indexed: 12/05/2022] Open
Abstract
Sex strongly impacts genome evolution via recombination and segregation. In the absence of these processes, haplotypes within lineages of diploid organisms are predicted to accumulate mutations independently of each other and diverge over time. This so-called "Meselson effect" is regarded as a strong indicator of the long-term evolution under obligate asexuality. Here, we present genomic and transcriptomic data of three populations of the asexual oribatid mite species Oppiella nova and its sexual relative Oppiella subpectinata We document strikingly different patterns of haplotype divergence between the two species, strongly supporting Meselson effect-like evolution and long-term asexuality in O. nova: I) variation within individuals exceeds variation between populations in O. nova but vice versa in O. subpectinata; II) two O. nova sublineages feature a high proportion of lineage-specific heterozygous single-nucleotide polymorphisms (SNPs), indicating that haplotypes continued to diverge after lineage separation; III) the deepest split in gene trees generally separates the two haplotypes in O. nova, but populations in O. subpectinata; and IV) the topologies of the two haplotype trees match each other. Our findings provide positive evidence for the absence of canonical sex over evolutionary time in O. nova and suggest that asexual oribatid mites can escape the dead-end fate usually associated with asexual lineages.
Collapse
Affiliation(s)
- Alexander Brandt
- Johann-Friedrich-Blumenbach Institute of Zoology and Anthropology, University of Goettingen, 37073 Goettingen, Germany;
- Department of Ecology and Evolution, University of Lausanne, 1015 Lausanne, Switzerland
| | - Patrick Tran Van
- Department of Ecology and Evolution, University of Lausanne, 1015 Lausanne, Switzerland
| | - Christian Bluhm
- Johann-Friedrich-Blumenbach Institute of Zoology and Anthropology, University of Goettingen, 37073 Goettingen, Germany
- Abteilung Boden und Umwelt, Forstliche Versuchs- und Forschungsanstalt Baden-Wuerttemberg, 79100 Freiburg, Germany
| | - Yoann Anselmetti
- Group Phylogeny and Molecular Evolution, Institut des Sciences de l'Evolution de Montpellier, 34090 Montpellier, France
- CoBIUS Lab, Department of Computer Science, University of Sherbrooke, Sherbrooke, QC J1K2R1, Canada
| | - Zoé Dumas
- Department of Ecology and Evolution, University of Lausanne, 1015 Lausanne, Switzerland
| | - Emeric Figuet
- Group Phylogeny and Molecular Evolution, Institut des Sciences de l'Evolution de Montpellier, 34090 Montpellier, France
| | - Clémentine M François
- Group Phylogeny and Molecular Evolution, Institut des Sciences de l'Evolution de Montpellier, 34090 Montpellier, France
- Laboratoire d'Ecologie des Hydrosystèmes Naturels et Anthropisés, École Nationale des Travaux Publics de l'État, Université Claude Bernard Lyon 1, 69622 Villeurbanne, France
| | - Nicolas Galtier
- Group Phylogeny and Molecular Evolution, Institut des Sciences de l'Evolution de Montpellier, 34090 Montpellier, France
| | - Bastian Heimburger
- Johann-Friedrich-Blumenbach Institute of Zoology and Anthropology, University of Goettingen, 37073 Goettingen, Germany
| | - Kamil S Jaron
- Department of Ecology and Evolution, University of Lausanne, 1015 Lausanne, Switzerland
- Group Evolutionary Bioinformatics, Swiss Institute of Bioinformatics, 1015 Lausanne, Switzerland
- Institute of Evolutionary Biology, School of Biological Sciences, University of Edinburgh, Edinburgh EH9 3FL, United Kingdom
| | - Marjorie Labédan
- Department of Ecology and Evolution, University of Lausanne, 1015 Lausanne, Switzerland
| | - Mark Maraun
- Johann-Friedrich-Blumenbach Institute of Zoology and Anthropology, University of Goettingen, 37073 Goettingen, Germany
| | - Darren J Parker
- Department of Ecology and Evolution, University of Lausanne, 1015 Lausanne, Switzerland
- Group Evolutionary Bioinformatics, Swiss Institute of Bioinformatics, 1015 Lausanne, Switzerland
| | - Marc Robinson-Rechavi
- Department of Ecology and Evolution, University of Lausanne, 1015 Lausanne, Switzerland
- Group Evolutionary Bioinformatics, Swiss Institute of Bioinformatics, 1015 Lausanne, Switzerland
| | - Ina Schaefer
- Johann-Friedrich-Blumenbach Institute of Zoology and Anthropology, University of Goettingen, 37073 Goettingen, Germany
| | - Paul Simion
- Group Phylogeny and Molecular Evolution, Institut des Sciences de l'Evolution de Montpellier, 34090 Montpellier, France
- Laboratory of Evolutionary Genetics and Ecology, Unit in Environmental and Evolutionary Biology, Université de Namur, 5000 Namur, Belgium
| | - Stefan Scheu
- Johann-Friedrich-Blumenbach Institute of Zoology and Anthropology, University of Goettingen, 37073 Goettingen, Germany
- Section Biodiversity and Ecology, Centre of Biodiversity and Sustainable Land Use, 37073 Goettingen, Germany
| | - Tanja Schwander
- Department of Ecology and Evolution, University of Lausanne, 1015 Lausanne, Switzerland
| | - Jens Bast
- Department of Ecology and Evolution, University of Lausanne, 1015 Lausanne, Switzerland
- Institute for Zoology, University of Cologne, 50674 Cologne, Germany
| |
Collapse
|
21
|
Oldrieve G, Verney M, Jaron KS, Hébert L, Matthews KR. Monomorphic Trypanozoon: towards reconciling phylogeny and pathologies. Microb Genom 2021; 7. [PMID: 34397347 PMCID: PMC8549356 DOI: 10.1099/mgen.0.000632] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Trypanosoma brucei evansi and T. brucei equiperdum are animal infective trypanosomes conventionally classified by their clinical disease presentation, mode of transmission, host range, kinetoplast DNA (kDNA) composition and geographical distribution. Unlike other members of the subgenus Trypanozoon, they are non-tsetse transmitted and predominantly morphologically uniform (monomorphic) in their mammalian host. Their classification as independent species or subspecies has been long debated and genomic studies have found that isolates within T. brucei evansi and T. brucei equiperdum have polyphyletic origins. Since current taxonomy does not fully acknowledge these polyphyletic relationships, we re-analysed publicly available genomic data to carefully define each clade of monomorphic trypanosome. This allowed us to identify, and account for, lineage-specific variation. We included a recently published isolate, IVM-t1, which was originally isolated from the genital mucosa of a horse with dourine and typed as T. equiperdum. Our analyses corroborate previous studies in identifying at least four distinct monomorphic T. brucei clades. We also found clear lineage-specific variation in the selection efficacy and heterozygosity of the monomorphic lineages, supporting their distinct evolutionary histories. The inferred evolutionary position of IVM-t1 suggests its reassignment to the T. brucei evansi type B clade, challenging the relationship between the Trypanozoon species, the infected host, mode of transmission and the associated pathological phenotype. The analysis of IVM-t1 also provides, to our knowledge, the first evidence of the expansion of T. brucei evansi type B, or a fifth monomorphic lineage represented by IVM-t1, outside of Africa, with important possible implications for disease diagnosis.
Collapse
Affiliation(s)
- Guy Oldrieve
- Institute for Immunology and Infection Research, School of Biological Sciences, University of Edinburgh, Edinburgh EH9 3FL, UK
| | - Mylène Verney
- Unité PhEED, Laboratoire de Santé Animale, Site de Normandie, ANSES, RD675, 1443012 Goustranville, France
| | - Kamil S Jaron
- Institute of Evolutionary Biology, Ashworth Laboratories, School of Biological Sciences, University of Edinburgh, Edinburgh EH9 3JT, UK
| | - Laurent Hébert
- Unité PhEED, Laboratoire de Santé Animale, Site de Normandie, ANSES, RD675, 1443012 Goustranville, France
| | - Keith R Matthews
- Institute for Immunology and Infection Research, School of Biological Sciences, University of Edinburgh, Edinburgh EH9 3FL, UK
| |
Collapse
|
22
|
Reynes L, Thibaut T, Mauger S, Blanfuné A, Holon F, Cruaud C, Couloux A, Valero M, Aurelle D. Genomic signatures of clonality in the deep water kelp Laminaria rodriguezii. Mol Ecol 2021; 30:1806-1822. [PMID: 33629449 DOI: 10.1111/mec.15860] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Revised: 02/18/2021] [Accepted: 02/19/2021] [Indexed: 12/17/2022]
Abstract
The development of population genomic approaches in non-model species allows for renewed studies of the impact of reproductive systems and genetic drift on population diversity. Here, we investigate the genomic signatures of partial clonality in the deep water kelp Laminaria rodriguezii, known to reproduce by both sexual and asexual means. We compared these results with the species Laminaria digitata, a closely related species that differs by different traits, in particular its reproductive mode (no clonal reproduction). We analysed genome-wide variation with dd-RAD sequencing using 4,077 SNPs in L. rodriguezii and 7,364 SNPs in L. digitata. As predicted for partially clonal populations, we show that the distribution of FIS within populations of L. rodriguezii is shifted toward negative values, with a high number of loci showing heterozygote excess. This finding is the opposite of what we observed within sexual populations of L. digitata, characterized by a generalized deficit in heterozygotes. Furthermore, we observed distinct distributions of FIS among populations of L. rodriguezii, which is congruent with the predictions of theoretical models for different levels of clonality and genetic drift. These findings highlight that the empirical distribution of FIS is a promising feature for the genomic study of asexuality in natural populations. Our results also show that the populations of L. rodriguezii analysed here are genetically differentiated and probably isolated. Our study provides a conceptual framework to investigate partial clonality on the basis of RAD-sequencing SNPs. These results could be obtained without any reference genome, and are therefore of interest for various non-model species.
Collapse
Affiliation(s)
- Lauric Reynes
- CNRS, IRD, MIO, Aix Marseille Université, Université de Toulon, Marseille, France
| | - Thierry Thibaut
- CNRS, IRD, MIO, Aix Marseille Université, Université de Toulon, Marseille, France
| | - Stéphane Mauger
- IRL 3614, Evolutionary Biology and Ecology of Algae, CNRS, UC, UACH, Sorbonne Université, Roscoff, France
| | - Aurélie Blanfuné
- CNRS, IRD, MIO, Aix Marseille Université, Université de Toulon, Marseille, France
| | | | - Corinne Cruaud
- Genoscope, Institut de Biologie François-Jacob, Commissariat à l'Energie Atomique (CEA), Université Paris-Saclay, Evry, France
| | - Arnaud Couloux
- Génomique Métabolique, Genoscope, Institut François Jacob, CEA, CNRS, Univ Evry, Université Paris-Saclay, Evry, France
| | - Myriam Valero
- IRL 3614, Evolutionary Biology and Ecology of Algae, CNRS, UC, UACH, Sorbonne Université, Roscoff, France
| | - Didier Aurelle
- CNRS, IRD, MIO, Aix Marseille Université, Université de Toulon, Marseille, France
- Institut de Systématique Évolution Biodiversité (ISYEB, UMR 7205), Muséum National d'Histoire Naturelle, CNRS, EPHE, Sorbonne Université, Paris, France
| |
Collapse
|
23
|
Jaron KS, Bast J, Nowell RW, Ranallo-Benavidez TR, Robinson-Rechavi M, Schwander T. Genomic Features of Parthenogenetic Animals. J Hered 2021; 112:19-33. [PMID: 32985658 PMCID: PMC7953838 DOI: 10.1093/jhered/esaa031] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2020] [Accepted: 08/17/2020] [Indexed: 12/21/2022] Open
Abstract
Evolution without sex is predicted to impact genomes in numerous ways. Case studies of individual parthenogenetic animals have reported peculiar genomic features that were suggested to be caused by their mode of reproduction, including high heterozygosity, a high abundance of horizontally acquired genes, a low transposable element load, or the presence of palindromes. We systematically characterized these genomic features in published genomes of 26 parthenogenetic animals representing at least 18 independent transitions to asexuality. Surprisingly, not a single feature was systematically replicated across a majority of these transitions, suggesting that previously reported patterns were lineage-specific rather than illustrating the general consequences of parthenogenesis. We found that only parthenogens of hybrid origin were characterized by high heterozygosity levels. Parthenogens that were not of hybrid origin appeared to be largely homozygous, independent of the cellular mechanism underlying parthenogenesis. Overall, despite the importance of recombination rate variation for the evolution of sexual animal genomes, the genome-wide absence of recombination does not appear to have had the dramatic effects which are expected from classical theoretical models. The reasons for this are probably a combination of lineage-specific patterns, the impact of the origin of parthenogenesis, and a survivorship bias of parthenogenetic lineages.
Collapse
Affiliation(s)
- Kamil S Jaron
- Department of Ecology and Evolution, University of Lausanne, Lausanne, Switzerland
- Swiss Institute of Bioinformatics, Lausanne, Switzerland
| | - Jens Bast
- Department of Ecology and Evolution, University of Lausanne, Lausanne, Switzerland
| | - Reuben W Nowell
- Department of Life Sciences, Imperial College London, Ascot, Berkshire, UK
- Reuben W. Nowell is now at the Department of Zoology, University of Oxford, Oxford, UK
| | | | - Marc Robinson-Rechavi
- Department of Ecology and Evolution, University of Lausanne, Lausanne, Switzerland
- Swiss Institute of Bioinformatics, Lausanne, Switzerland
| | - Tanja Schwander
- Department of Ecology and Evolution, University of Lausanne, Lausanne, Switzerland
| |
Collapse
|
24
|
Hartfield M. Approximating the Coalescent Under Facultative Sex. J Hered 2021; 112:145-154. [PMID: 33511984 DOI: 10.1093/jhered/esaa036] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2019] [Accepted: 09/01/2020] [Indexed: 11/14/2022] Open
Abstract
Genome studies of facultative sexual species, which can either reproduce sexually or asexually, are providing insight into the evolutionary consequences of mixed reproductive modes. It is currently unclear to what extent the evolutionary history of facultative sexuals' genomes can be approximated by the standard coalescent, and if a coalescent effective population size Ne exists. Here, I determine if and when these approximations can be made. When sex is frequent (occurring at a frequency much greater than 1/N per reproduction per generation, for N the actual population size), the underlying genealogy can be approximated by the standard coalescent, with a coalescent Ne≈N. When sex is very rare (at frequency much lower than 1/N), approximations for the pairwise coalescent time can be obtained, which is strongly influenced by the frequencies of sex and mitotic gene conversion, rather than N. However, these terms do not translate into a coalescent Ne. These results are used to discuss the best sampling strategies for investigating the evolutionary history of facultative sexual species.
Collapse
Affiliation(s)
- Matthew Hartfield
- Institute of Evolutionary Biology, The University of Edinburgh, Edinburgh, UK
| |
Collapse
|
25
|
Vakhrusheva OA, Mnatsakanova EA, Galimov YR, Neretina TV, Gerasimov ES, Naumenko SA, Ozerova SG, Zalevsky AO, Yushenova IA, Rodriguez F, Arkhipova IR, Penin AA, Logacheva MD, Bazykin GA, Kondrashov AS. Genomic signatures of recombination in a natural population of the bdelloid rotifer Adineta vaga. Nat Commun 2020; 11:6421. [PMID: 33339818 PMCID: PMC7749112 DOI: 10.1038/s41467-020-19614-y] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2019] [Accepted: 10/23/2020] [Indexed: 01/08/2023] Open
Abstract
Sexual reproduction is almost ubiquitous among extant eukaryotes. As most asexual lineages are short-lived, abandoning sex is commonly regarded as an evolutionary dead end. Still, putative anciently asexual lineages challenge this view. One of the most striking examples are bdelloid rotifers, microscopic freshwater invertebrates believed to have completely abandoned sexual reproduction tens of Myr ago. Here, we compare whole genomes of 11 wild-caught individuals of the bdelloid rotifer Adineta vaga and present evidence that some patterns in its genetic variation are incompatible with strict clonality and lack of genetic exchange. These patterns include genotype proportions close to Hardy-Weinberg expectations within loci, lack of linkage disequilibrium between distant loci, incongruent haplotype phylogenies across the genome, and evidence for hybridization between divergent lineages. Analysis of triallelic sites independently corroborates these findings. Our results provide evidence for interindividual genetic exchange and recombination in A. vaga, a species previously thought to be anciently asexual.
Collapse
Affiliation(s)
- Olga A Vakhrusheva
- Skolkovo Institute of Science and Technology, Moscow, 121205, Russian Federation.
| | - Elena A Mnatsakanova
- Department of General Ecology and Hydrobiology, Faculty of Biology, M. V. Lomonosov Moscow State University, Moscow, 119234, Russian Federation
| | - Yan R Galimov
- Koltzov Institute of Developmental Biology of the Russian Academy of Sciences, Moscow, 119334, Russian Federation
| | - Tatiana V Neretina
- Faculty of Biology, M. V. Lomonosov Moscow State University, Moscow, 119234, Russian Federation
- Institute for Information Transmission Problems of the Russian Academy of Sciences (Kharkevich Institute), Moscow, 127051, Russian Federation
- A. N. Belozersky Institute of Physico-Chemical Biology, M. V. Lomonosov Moscow State University, Moscow, 119992, Russian Federation
| | - Evgeny S Gerasimov
- Faculty of Biology, M. V. Lomonosov Moscow State University, Moscow, 119234, Russian Federation
- Institute for Information Transmission Problems of the Russian Academy of Sciences (Kharkevich Institute), Moscow, 127051, Russian Federation
- Martsinovsky Institute of Medical Parasitology, Tropical and Vector-Borne Diseases, Sechenov University, Moscow, 119435, Russian Federation
| | - Sergey A Naumenko
- Institute for Information Transmission Problems of the Russian Academy of Sciences (Kharkevich Institute), Moscow, 127051, Russian Federation
- Department of Biostatistics, Harvard Chan School of Public Health, Boston, MA, 02115, USA
| | - Svetlana G Ozerova
- Koltzov Institute of Developmental Biology of the Russian Academy of Sciences, Moscow, 119334, Russian Federation
- Medkvadrat, Moscow, 115409, Russian Federation
| | - Arthur O Zalevsky
- Faculty of Bioengineering and Bioinformatics, M. V. Lomonosov Moscow State University, Moscow, 119234, Russian Federation
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry of the Russian Academy of Sciences, Moscow, 117997, Russian Federation
| | - Irina A Yushenova
- Josephine Bay Paul Center for Comparative Molecular Biology and Evolution, Marine Biological Laboratory, Woods Hole, MA, 02543, USA
| | - Fernando Rodriguez
- Josephine Bay Paul Center for Comparative Molecular Biology and Evolution, Marine Biological Laboratory, Woods Hole, MA, 02543, USA
| | - Irina R Arkhipova
- Josephine Bay Paul Center for Comparative Molecular Biology and Evolution, Marine Biological Laboratory, Woods Hole, MA, 02543, USA
| | - Aleksey A Penin
- Institute for Information Transmission Problems of the Russian Academy of Sciences (Kharkevich Institute), Moscow, 127051, Russian Federation
| | - Maria D Logacheva
- Skolkovo Institute of Science and Technology, Moscow, 121205, Russian Federation
- Institute for Information Transmission Problems of the Russian Academy of Sciences (Kharkevich Institute), Moscow, 127051, Russian Federation
- A. N. Belozersky Institute of Physico-Chemical Biology, M. V. Lomonosov Moscow State University, Moscow, 119992, Russian Federation
| | - Georgii A Bazykin
- Skolkovo Institute of Science and Technology, Moscow, 121205, Russian Federation
- Institute for Information Transmission Problems of the Russian Academy of Sciences (Kharkevich Institute), Moscow, 127051, Russian Federation
| | - Alexey S Kondrashov
- A. N. Belozersky Institute of Physico-Chemical Biology, M. V. Lomonosov Moscow State University, Moscow, 119992, Russian Federation
- Department of Ecology and Evolutionary Biology, University of Michigan, Ann Arbor, MI, 48109, USA
| |
Collapse
|
26
|
Kay C, Williams TA, Gibson W. Mitochondrial DNAs provide insight into trypanosome phylogeny and molecular evolution. BMC Evol Biol 2020; 20:161. [PMID: 33297939 PMCID: PMC7724854 DOI: 10.1186/s12862-020-01701-9] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Accepted: 10/12/2020] [Indexed: 12/20/2022] Open
Abstract
Background Trypanosomes are single-celled eukaryotic parasites characterised by the unique biology of their mitochondrial DNA. African livestock trypanosomes impose a major burden on agriculture across sub-Saharan Africa, but are poorly understood compared to those that cause sleeping sickness and Chagas disease in humans. Here we explore the potential of the maxicircle, a component of trypanosome mitochondrial DNA to study the evolutionary history of trypanosomes. Results We used long-read sequencing to completely assemble maxicircle mitochondrial DNA from four previously uncharacterized African trypanosomes, and leveraged these assemblies to scaffold and assemble a further 103 trypanosome maxicircle gene coding regions from published short-read data. While synteny was largely conserved, there were repeated, independent losses of Complex I genes. Comparison of pre-edited and non-edited genes revealed the impact of RNA editing on nucleotide composition, with non-edited genes approaching the limits of GC loss. African tsetse-transmitted trypanosomes showed high levels of RNA editing compared to other trypanosomes. The gene coding regions of maxicircle mitochondrial DNAs were used to construct time-resolved phylogenetic trees, revealing deep divergence events among isolates of the pathogens Trypanosoma brucei and T. congolense. Conclusions Our data represents a new resource for experimental and evolutionary analyses of trypanosome phylogeny, molecular evolution and function. Molecular clock analyses yielded a timescale for trypanosome evolution congruent with major biogeographical events in Africa and revealed the recent emergence of Trypanosoma brucei gambiense and T. equiperdum, major human and animal pathogens.
Collapse
Affiliation(s)
- C Kay
- School of Biological Sciences, University of Bristol, Bristol, UK.
| | - T A Williams
- School of Biological Sciences, University of Bristol, Bristol, UK
| | - W Gibson
- School of Biological Sciences, University of Bristol, Bristol, UK
| |
Collapse
|
27
|
Capewell P, Krumrie S, Katzer F, Alexander CL, Weir W. Molecular Epidemiology of Giardia Infections in the Genomic Era. Trends Parasitol 2020; 37:142-153. [PMID: 33067130 DOI: 10.1016/j.pt.2020.09.013] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Revised: 09/22/2020] [Accepted: 09/22/2020] [Indexed: 12/19/2022]
Abstract
Giardia duodenalis is a major gastrointestinal parasite of humans and animals across the globe. It is also of interest from an evolutionary perspective as it possesses many features that are unique among the eukaryotes, including its distinctive binucleate cell structure. While genomic analysis of a small number of isolates has provided valuable insights, efforts to understand the epidemiology of the disease and the population biology of the parasite have been limited by the molecular tools currently available. We review these tools and assess the impact of affordable and rapid genome sequencing systems increasingly being deployed in diagnostic settings. While these technologies have direct implications for public and veterinary health, they will also improve our understanding of the unique biology of this fascinating parasite.
Collapse
Affiliation(s)
- Paul Capewell
- Institute of Biodiversity, Animal Health and Comparative Medicine, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, G61 1QH, UK
| | - Sarah Krumrie
- School of Veterinary Medicine, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, G61 1QH, UK
| | - Frank Katzer
- Moredun Research Institute, Pentlands Science Park, Edinburgh, EH26 0PZ, UK
| | - Claire L Alexander
- Scottish Parasitology Diagnostic and Reference Laboratories, Glasgow, G31 2ER, UK
| | - William Weir
- School of Veterinary Medicine, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, G61 1QH, UK.
| |
Collapse
|
28
|
Genomic Organization and Generation of Genetic Variability in the RHS (Retrotransposon Hot Spot) Protein Multigene Family in Trypanosoma cruzi. Genes (Basel) 2020; 11:genes11091085. [PMID: 32957642 PMCID: PMC7563717 DOI: 10.3390/genes11091085] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Revised: 09/11/2020] [Accepted: 09/14/2020] [Indexed: 12/15/2022] Open
Abstract
Retrotransposon Hot Spot (RHS) is the most abundant gene family in Trypanosoma cruzi, with unknown function in this parasite. The aim of this work was to shed light on the organization and expression of RHS in T. cruzi. The diversity of the RHS protein family in T. cruzi was demonstrated by phylogenetic and recombination analyses. Transcribed sequences carrying the RHS domain were classified into ten distinct groups of monophyletic origin. We identified numerous recombination events among the RHS and traced the origins of the donors and target sequences. The transcribed RHS genes have a mosaic structure that may contain fragments of different RHS inserted in the target sequence. About 30% of RHS sequences are located in the subtelomere, a region very susceptible to recombination. The evolution of the RHS family has been marked by many events, including gene duplication by unequal mitotic crossing-over, homologous, as well as ectopic recombination, and gene conversion. The expression of RHS was analyzed by immunofluorescence and immunoblotting using anti-RHS antibodies. RHS proteins are evenly distributed in the nuclear region of T. cruzi replicative forms (amastigote and epimastigote), suggesting that they could be involved in the control of the chromatin structure and gene expression, as has been proposed for T. brucei.
Collapse
|
29
|
Blood of African Hedgehog Atelerix albiventris Contains 115-kDa Trypanolytic Protein that Kills Trypanosoma congolense. Acta Parasitol 2020; 65:733-742. [PMID: 32385812 DOI: 10.2478/s11686-020-00211-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2020] [Accepted: 04/01/2020] [Indexed: 11/20/2022]
Abstract
INTRODUCTION Protozoan parasites of the Order Trypanosomatida infect a wide range of multicellular plants and animals, causing devastating and potentially fatal diseases. Trypanosomes are the most relevant members of the order in sub-Saharan Africa because of mortalities and morbidities caused to humans and livestock. PURPOSE There are growing concerns that trypanosomes are expanding their reservoirs among wild animals, which habours the parasites, withstand the infection, and from which tsetse flies transmit the parasites back to humans and livestock. This study was designed to investigate the potentials of the African hedgehog serving as reservoir for African animal trypanosomes. METHODS Five adult hedgehogs alongside five laboratory mice were intraperitoneally inoculated with 106 and 104 of Trypanosoma congolense cells, respectively, and monitored for parasitemia and survival. Serum from twenty hedgehogs was subjected to trypanocidal activity-guided fractionation by successive ion-exchange and gel-filtration chromatographies, followed by characterization with Sodium Dodecyl Sulphate Polyacrylamide Gel Electrophoresis (SDS-PAGE). RESULTS Hedgehogs were resistant to the infection as no parasite was detected and none died even after 60 days, while all the mice died within 12 days. Both the serum and plasma prepared from hedgehogs demonstrated trypanocidal activity- rapidly killed trypanosomes even when diluted 1000 times. The trypanolytic factor was identified to be proteinaceous with an estimated molecular weight of 115-kDa. CONCLUSION For the first time, it is here demonstrated that hedgehog blood has significant trypanolytic activity against T. congolense. The potential application of the hedgehog protein for the breeding of trypanosomosis-resistant livestock in tsetse fly belt is discussed.
Collapse
|
30
|
Schwessinger B, Chen YJ, Tien R, Vogt JK, Sperschneider J, Nagar R, McMullan M, Sicheritz-Ponten T, Sørensen CK, Hovmøller MS, Rathjen JP, Justesen AF. Distinct Life Histories Impact Dikaryotic Genome Evolution in the Rust Fungus Puccinia striiformis Causing Stripe Rust in Wheat. Genome Biol Evol 2020; 12:597-617. [PMID: 32271913 DOI: 10.1101/859728] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/03/2020] [Indexed: 05/27/2023] Open
Abstract
Stripe rust of wheat, caused by the obligate biotrophic fungus Puccinia striiformis f.sp. tritici, is a major threat to wheat production worldwide with an estimated yearly loss of US $1 billion. The recent advances in long-read sequencing technologies and tailored-assembly algorithms enabled us to disentangle the two haploid genomes of Pst. This provides us with haplotype-specific information at a whole-genome level. Exploiting this novel information, we perform whole-genome comparative genomics of two P. striiformis f.sp. tritici isolates with contrasting life histories. We compare one isolate of the old European lineage (PstS0), which has been asexual for over 50 years, and a Warrior isolate (PstS7 lineage) from a novel incursion into Europe in 2011 from a sexual population in the Himalayan region. This comparison provides evidence that long-term asexual evolution leads to genome expansion, accumulation of transposable elements, and increased heterozygosity at the single nucleotide, structural, and allele levels. At the whole-genome level, candidate effectors are not compartmentalized and do not exhibit reduced levels of synteny. Yet we were able to identify two subsets of candidate effector populations. About 70% of candidate effectors are invariant between the two isolates, whereas 30% are hypervariable. The latter might be involved in host adaptation on wheat and explain the different phenotypes of the two isolates. Overall, this detailed comparative analysis of two haplotype-aware assemblies of P. striiformis f.sp. tritici is the first step in understanding the evolution of dikaryotic rust fungi at a whole-genome level.
Collapse
Affiliation(s)
- Benjamin Schwessinger
- Research School of Biology, The Australian National University, Acton, Canberra, Australian Capital Territory, Australia
| | - Yan-Jun Chen
- The GLOBE Institute, Faculty of Health and Medical Sciences, University of Copenhagen, Denmark
| | - Richard Tien
- School of Dentistry, The University of Western Australia, Nedlands, Western Australia, Australia
| | - Josef Korbinian Vogt
- Novo Nordisk Foundation Center for Basic Metabolic Research, University of Copenhagen, Denmark
| | - Jana Sperschneider
- Biological Data Science Institute, The Australian National University, Acton, Canberra, Australian Capital Territory, Australia
| | - Ramawatar Nagar
- Research School of Biology, The Australian National University, Acton, Canberra, Australian Capital Territory, Australia
| | - Mark McMullan
- Earlham Institute, Norwich Research Park, United Kingdom
| | - Thomas Sicheritz-Ponten
- The GLOBE Institute, Faculty of Health and Medical Sciences, University of Copenhagen, Denmark
| | - Chris K Sørensen
- Department of Agroecology, Faculty of Science and Technology, Aarhus University, Slagelse, Denmark
| | | | - John P Rathjen
- Research School of Biology, The Australian National University, Acton, Canberra, Australian Capital Territory, Australia
| | - Annemarie Fejer Justesen
- Department of Agroecology, Faculty of Science and Technology, Aarhus University, Slagelse, Denmark
| |
Collapse
|
31
|
Schwessinger B, Chen YJ, Tien R, Vogt JK, Sperschneider J, Nagar R, McMullan M, Sicheritz-Ponten T, Sørensen CK, Hovmøller MS, Rathjen JP, Justesen AF. Distinct Life Histories Impact Dikaryotic Genome Evolution in the Rust Fungus Puccinia striiformis Causing Stripe Rust in Wheat. Genome Biol Evol 2020; 12:597-617. [PMID: 32271913 PMCID: PMC7250506 DOI: 10.1093/gbe/evaa071] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/03/2020] [Indexed: 12/12/2022] Open
Abstract
Stripe rust of wheat, caused by the obligate biotrophic fungus Puccinia striiformis f.sp. tritici, is a major threat to wheat production worldwide with an estimated yearly loss of US $1 billion. The recent advances in long-read sequencing technologies and tailored-assembly algorithms enabled us to disentangle the two haploid genomes of Pst. This provides us with haplotype-specific information at a whole-genome level. Exploiting this novel information, we perform whole-genome comparative genomics of two P. striiformis f.sp. tritici isolates with contrasting life histories. We compare one isolate of the old European lineage (PstS0), which has been asexual for over 50 years, and a Warrior isolate (PstS7 lineage) from a novel incursion into Europe in 2011 from a sexual population in the Himalayan region. This comparison provides evidence that long-term asexual evolution leads to genome expansion, accumulation of transposable elements, and increased heterozygosity at the single nucleotide, structural, and allele levels. At the whole-genome level, candidate effectors are not compartmentalized and do not exhibit reduced levels of synteny. Yet we were able to identify two subsets of candidate effector populations. About 70% of candidate effectors are invariant between the two isolates, whereas 30% are hypervariable. The latter might be involved in host adaptation on wheat and explain the different phenotypes of the two isolates. Overall, this detailed comparative analysis of two haplotype-aware assemblies of P. striiformis f.sp. tritici is the first step in understanding the evolution of dikaryotic rust fungi at a whole-genome level.
Collapse
Affiliation(s)
- Benjamin Schwessinger
- Research School of Biology, The Australian National University, Acton, Canberra, Australian Capital Territory, Australia
| | - Yan-Jun Chen
- The GLOBE Institute, Faculty of Health and Medical Sciences, University of Copenhagen, Denmark
| | - Richard Tien
- School of Dentistry, The University of Western Australia, Nedlands, Western Australia, Australia
| | - Josef Korbinian Vogt
- Novo Nordisk Foundation Center for Basic Metabolic Research, University of Copenhagen, Denmark
| | - Jana Sperschneider
- Biological Data Science Institute, The Australian National University, Acton, Canberra, Australian Capital Territory, Australia
| | - Ramawatar Nagar
- Research School of Biology, The Australian National University, Acton, Canberra, Australian Capital Territory, Australia
| | - Mark McMullan
- Earlham Institute, Norwich Research Park, United Kingdom
| | - Thomas Sicheritz-Ponten
- The GLOBE Institute, Faculty of Health and Medical Sciences, University of Copenhagen, Denmark
| | - Chris K Sørensen
- Department of Agroecology, Faculty of Science and Technology, Aarhus University, Slagelse, Denmark
| | | | - John P Rathjen
- Research School of Biology, The Australian National University, Acton, Canberra, Australian Capital Territory, Australia
| | - Annemarie Fejer Justesen
- Department of Agroecology, Faculty of Science and Technology, Aarhus University, Slagelse, Denmark
| |
Collapse
|
32
|
Franssen SU, Durrant C, Stark O, Moser B, Downing T, Imamura H, Dujardin JC, Sanders MJ, Mauricio I, Miles MA, Schnur LF, Jaffe CL, Nasereddin A, Schallig H, Yeo M, Bhattacharyya T, Alam MZ, Berriman M, Wirth T, Schönian G, Cotton JA. Global genome diversity of the Leishmania donovani complex. eLife 2020; 9:e51243. [PMID: 32209228 PMCID: PMC7105377 DOI: 10.7554/elife.51243] [Citation(s) in RCA: 67] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2019] [Accepted: 02/27/2020] [Indexed: 12/30/2022] Open
Abstract
Protozoan parasites of the Leishmania donovani complex - L. donovani and L. infantum - cause the fatal disease visceral leishmaniasis. We present the first comprehensive genome-wide global study, with 151 cultured field isolates representing most of the geographical distribution. L. donovani isolates separated into five groups that largely coincide with geographical origin but vary greatly in diversity. In contrast, the majority of L. infantum samples fell into one globally-distributed group with little diversity. This picture is complicated by several hybrid lineages. Identified genetic groups vary in heterozygosity and levels of linkage, suggesting different recombination histories. We characterise chromosome-specific patterns of aneuploidy and identified extensive structural variation, including known and suspected drug resistance loci. This study reveals greater genetic diversity than suggested by geographically-focused studies, provides a resource of genomic variation for future work and sets the scene for a new understanding of the evolution and genetics of the Leishmania donovani complex.
Collapse
Affiliation(s)
| | - Caroline Durrant
- Wellcome Sanger Institute, Wellcome Genome CampusHinxtonUnited Kingdom
| | | | | | - Tim Downing
- Wellcome Sanger Institute, Wellcome Genome CampusHinxtonUnited Kingdom
- Dublin City UniversityDublinIreland
| | | | - Jean-Claude Dujardin
- Institute of Tropical MedicineAntwerpBelgium
- Department of Biomedical Sciences, University of AntwerpAntwerpBelgium
| | - Mandy J Sanders
- Wellcome Sanger Institute, Wellcome Genome CampusHinxtonUnited Kingdom
| | - Isabel Mauricio
- Universidade Nova de Lisboa Instituto de Higiene e MedicinaLisboaPortugal
| | - Michael A Miles
- London School of Hygiene and Tropical MedicineLondonUnited Kingdom
| | - Lionel F Schnur
- Kuvin Centre for the Study of Infectious and Tropical Diseases, IMRIC, Hebrew University-Hadassah, Medical SchoolJerusalemIsrael
| | - Charles L Jaffe
- Kuvin Centre for the Study of Infectious and Tropical Diseases, IMRIC, Hebrew University-Hadassah, Medical SchoolJerusalemIsrael
| | - Abdelmajeed Nasereddin
- Kuvin Centre for the Study of Infectious and Tropical Diseases, IMRIC, Hebrew University-Hadassah, Medical SchoolJerusalemIsrael
| | - Henk Schallig
- Amsterdam University Medical Centres – Academic Medical Centre at the University of Amsterdam, Department of Medical Microbiology – Experimental ParasitologyAmsterdamNetherlands
| | - Matthew Yeo
- London School of Hygiene and Tropical MedicineLondonUnited Kingdom
| | | | - Mohammad Z Alam
- Department of Parasitology, Bangladesh Agricultural UniversityMymensinghBangladesh
| | - Matthew Berriman
- Wellcome Sanger Institute, Wellcome Genome CampusHinxtonUnited Kingdom
| | - Thierry Wirth
- Institut de Systématique, Evolution, Biodiversité, ISYEB, Muséum national d'Histoire naturelle, CNRS, Sorbonne Université, EPHE, Université des AntillesParisFrance
- École Pratique des Hautes Études (EPHE)Paris Sciences & Lettres (PSL)ParisFrance
| | | | - James A Cotton
- Wellcome Sanger Institute, Wellcome Genome CampusHinxtonUnited Kingdom
| |
Collapse
|
33
|
Domagalska MA, Dujardin JC. Next-Generation Molecular Surveillance of TriTryp Diseases. Trends Parasitol 2020; 36:356-367. [PMID: 32191850 DOI: 10.1016/j.pt.2020.01.008] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2019] [Revised: 01/24/2020] [Accepted: 01/27/2020] [Indexed: 12/20/2022]
Abstract
Elimination programs targeting TriTryp diseases (Leishmaniasis, Chagas' disease, human African trypanosomiasis) significantly reduced the number of cases. Continued surveillance is crucial to sustain this progress, but parasite molecular surveillance by genotyping is currently lacking. We explain here which epidemiological questions of public health and clinical relevance could be answered by means of molecular surveillance. Whole-genome sequencing (WGS) for molecular surveillance will be an important added value, where we advocate that preference should be given to direct sequencing of the parasite's genome in host tissues instead of analysis of cultivated isolates. The main challenges here, and recent technological advances, are discussed. We conclude with a series of recommendations for implementing whole-genome sequencing for molecular surveillance.
Collapse
Affiliation(s)
- Malgorzata Anna Domagalska
- Molecular Parasitology Unit, Department of Biomedical Sciences, Institute of Tropical Medicine, Nationalestraat 155, B-2000 Antwerp, Belgium.
| | - Jean-Claude Dujardin
- Molecular Parasitology Unit, Department of Biomedical Sciences, Institute of Tropical Medicine, Nationalestraat 155, B-2000 Antwerp, Belgium
| |
Collapse
|
34
|
Silva Pereira S, de Almeida Castilho Neto KJG, Duffy CW, Richards P, Noyes H, Ogugo M, Rogério André M, Bengaly Z, Kemp S, Teixeira MMG, Machado RZ, Jackson AP. Variant antigen diversity in Trypanosoma vivax is not driven by recombination. Nat Commun 2020; 11:844. [PMID: 32051413 PMCID: PMC7015903 DOI: 10.1038/s41467-020-14575-8] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2019] [Accepted: 01/18/2020] [Indexed: 11/09/2022] Open
Abstract
African trypanosomes (Trypanosoma) are vector-borne haemoparasites that survive in the vertebrate bloodstream through antigenic variation of their Variant Surface Glycoprotein (VSG). Recombination, or rather segmented gene conversion, is fundamental in Trypanosoma brucei for both VSG gene switching and for generating antigenic diversity during infections. Trypanosoma vivax is a related, livestock pathogen whose VSG lack structures that facilitate gene conversion in T. brucei and mechanisms underlying its antigenic diversity are poorly understood. Here we show that species-wide VSG repertoire is broadly conserved across diverse T. vivax clinical strains and has limited antigenic repertoire. We use variant antigen profiling, coalescent approaches and experimental infections to show that recombination plays little role in diversifying T. vivax VSG sequences. These results have immediate consequences for both the current mechanistic model of antigenic variation in African trypanosomes and species differences in virulence and transmission, requiring reconsideration of the wider epidemiology of animal African trypanosomiasis.
Collapse
Affiliation(s)
- Sara Silva Pereira
- Department of Infection Biology, Institute of Infection and Global Health, University of Liverpool, 146 Brownlow Hill, Liverpool, L3 5RF, UK
| | - Kayo J G de Almeida Castilho Neto
- Department of Veterinary Pathology, Faculty of Agrarian and Veterinary Sciences, São Paulo State University (UNESP), Jaboticabal, SP, Brazil
| | - Craig W Duffy
- Department of Infection Biology, Institute of Infection and Global Health, University of Liverpool, 146 Brownlow Hill, Liverpool, L3 5RF, UK
| | - Peter Richards
- Department of Infection Biology, Institute of Infection and Global Health, University of Liverpool, 146 Brownlow Hill, Liverpool, L3 5RF, UK
| | - Harry Noyes
- Institute of Integrative Biology, University of Liverpool, Biosciences Building, Crown Street, Liverpool, L69 7ZB, UK
| | - Moses Ogugo
- Livestock Genetic Programme, International Livestock Research Institute, 30709 Naivasha Road, Nairobi, Kenya
| | - Marcos Rogério André
- Department of Veterinary Pathology, Faculty of Agrarian and Veterinary Sciences, São Paulo State University (UNESP), Jaboticabal, SP, Brazil
| | - Zakaria Bengaly
- International Research Centre for Livestock Development in the Sub-humid Zone (CIRDES), No. 559, rue 5-31 angle, Avenue du Gouverneur Louveau, Bobo-Dioulasso, Burkina Faso
| | - Steve Kemp
- Livestock Genetic Programme, International Livestock Research Institute, 30709 Naivasha Road, Nairobi, Kenya
| | - Marta M G Teixeira
- Department of Parasitology, Institute of Biomedical Sciences, University of Sao Paulo, Avenue Professor Lineu Prestes, 1374 Cidade Universitaria, Sao Paulo, SP, 05508-000, Brazil
| | - Rosangela Z Machado
- Department of Veterinary Pathology, Faculty of Agrarian and Veterinary Sciences, São Paulo State University (UNESP), Jaboticabal, SP, Brazil
| | - Andrew P Jackson
- Department of Infection Biology, Institute of Infection and Global Health, University of Liverpool, 146 Brownlow Hill, Liverpool, L3 5RF, UK.
| |
Collapse
|
35
|
Trypanosoma brucei gambiense Group 2: The Unusual Suspect. Trends Parasitol 2019; 35:983-995. [DOI: 10.1016/j.pt.2019.09.002] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2019] [Revised: 08/31/2019] [Accepted: 09/08/2019] [Indexed: 11/23/2022]
|
36
|
Abstract
In diverse parasite taxa, from scale insects to root-knot nematodes, asexual lineages have exceptionally large host ranges, larger than those of their sexual relatives. Phylogenetic comparative studies of parasite taxa indicate that increases in host range and geographic range increase the probability of establishment of asexual lineages. At first pass, this convergence of traits appears counter-intuitive: intimate, antagonistic association with an enormous range of host taxa correlates with asexual reproduction, which should limit genetic variation within populations. Why would narrow host ranges favor sexual parasites and large host ranges favor asexual parasites? To take on this problem I link theory on ecological specialization to the two predominant hypotheses for the evolution of sex. I argue that both hypotheses predict a positive association between host range and the probability of invasion of asexual parasites, mediated either by variation in population size or in the strength of antagonistic coevolution. I also review hypotheses on colonization and the evolution of niche breadth in asexual lineages. I emphasize parasite taxa, with their diversity of reproductive modes and ecological strategies, as valuable assets in the hunt for solutions to the classic problems of the evolution of sex and geographic parthenogenesis.
Collapse
Affiliation(s)
- Amanda K Gibson
- Wissenschaftskolleg zu Berlin, Berlin, Germany.,Department of Biology, University of Virginia, Charlottesville, VA, USA
| |
Collapse
|
37
|
Hollister JD, Greiner S, Johnson MTJ, Wright SI. Hybridization and a loss of sex shape genome-wide diversity and the origin of species in the evening primroses (Oenothera, Onagraceae). THE NEW PHYTOLOGIST 2019; 224:1372-1380. [PMID: 31309571 DOI: 10.1111/nph.16053] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2019] [Accepted: 07/02/2019] [Indexed: 06/10/2023]
Abstract
Hybridization is thought to promote speciation in at least two ways - by fixation of heterozygosity from diploid progenitors in allopolyploids, and by generation of transgressive phenotypes and shifting fitness optima during homoploid hybrid speciation. While recent studies support a hybrid origin for a growing number of species, the extent to which hybrid origins shape patterns of diversity in asexual species remains underexplored. Here we employed transcriptome sequencing and population genomic analysis to describe patterns of genomic variation in the 13 species belonging to Oenothera subsection Oenothera. Eight of these species are functionally asexual and arose by hybrid speciation from parents spanning a range of phylogenetic divergence. We showed that genomic divergence between parents has been retained as heterozygosity in functionally asexual species, and that genome-wide levels of heterozygosity in these asexuals largely reflects the divergence of parental haplotypes coupled with a breakdown in recombination and segregation across the genome. These results show that divergence between parental species and loss of sex in hybrids shape patterns of whole-genome diversity and the origin of asexual species.
Collapse
Affiliation(s)
- Jesse D Hollister
- Department of Ecology and Evolution, Stony Brook University, Stony Brook, NY, 11794, USA
| | - Stephan Greiner
- Max Planck Institute of Molecular Plant Physiology, Potsdam-Golm, 14476, Germany
| | - Marc T J Johnson
- Department of Biology, University of Toronto Mississauga, Mississauga, ON, L5L 1C6, Canada
| | - Stephen I Wright
- Department of Ecology and Evolutionary Biology, University of Toronto, Toronto, ON, M5S 1A1, Canada
| |
Collapse
|
38
|
Abstract
In this study, we sequenced and analyzed the genomes of 40 strains, in addition to the already-reported two type strains, of two Crithidia species infecting bumblebees in Alaska and Central Europe and demonstrated that different strains of Crithidia bombi and C. expoeki vary considerably in terms of single nucleotide polymorphisms and gene copy number. Based on the genomic structure, phylogenetic analyses, and the pattern of copy number variation, we confirmed the status of C. expoeki as a separate species. The Alaskan populations appear to be clearly separated from those of Central Europe. This pattern fits a scenario of rapid host-parasite coevolution, where the selective advantage of a given parasite strain is only temporary. This study provides helpful insights into possible scenarios of selection and diversification of trypanosomatid parasites.IMPORTANCE A group of trypanosomatid flagellates includes several well-studied medically and economically important parasites of vertebrates and plants. Nevertheless, the vast majority of trypanosomatids infect only insects (mostly flies and true bugs) and, because of that, has attracted little research attention in the past. Of several hundred trypanosomatid species, only four can infect bees (honeybees and bumblebees). Because of such scarcity, these parasites are severely understudied. We analyzed whole-genome information for a total of 42 representatives of bee-infecting trypanosomatids collected in Central Europe and Alaska from a population genetics point of view. Our data shed light on the evolution, selection, and diversification in this important group of trypanosomatid parasites.
Collapse
|
39
|
Schwabl P, Imamura H, Van den Broeck F, Costales JA, Maiguashca-Sánchez J, Miles MA, Andersson B, Grijalva MJ, Llewellyn MS. Meiotic sex in Chagas disease parasite Trypanosoma cruzi. Nat Commun 2019; 10:3972. [PMID: 31481692 PMCID: PMC6722143 DOI: 10.1038/s41467-019-11771-z] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2018] [Accepted: 07/27/2019] [Indexed: 12/11/2022] Open
Abstract
Genetic exchange enables parasites to rapidly transform disease phenotypes and exploit new host populations. Trypanosoma cruzi, the parasitic agent of Chagas disease and a public health concern throughout Latin America, has for decades been presumed to exchange genetic material rarely and without classic meiotic sex. We present compelling evidence from 45 genomes sequenced from southern Ecuador that T. cruzi in fact maintains truly sexual, panmictic groups that can occur alongside others that remain highly clonal after past hybridization events. These groups with divergent reproductive strategies appear genetically isolated despite possible co-occurrence in vectors and hosts. We propose biological explanations for the fine-scale disconnectivity we observe and discuss the epidemiological consequences of flexible reproductive modes. Our study reinvigorates the hunt for the site of genetic exchange in the T. cruzi life cycle, provides tools to define the genetic determinants of parasite virulence, and reforms longstanding theory on clonality in trypanosomatid parasites.
Collapse
Affiliation(s)
- Philipp Schwabl
- Institute of Biodiversity, Animal Health & Comparative Medicine, University of Glasgow, Glasgow, G12 8QQ, UK
| | - Hideo Imamura
- Unit of Molecular Parasitology, Institute of Tropical Medicine Antwerp, 155 Nationalestraat, 2000, Antwerp, Belgium
| | - Frederik Van den Broeck
- Unit of Molecular Parasitology, Institute of Tropical Medicine Antwerp, 155 Nationalestraat, 2000, Antwerp, Belgium
| | - Jaime A Costales
- Center for Research on Health in Latin America, School of Biological Sciences, Pontifical Catholic University of Ecuador, Quito, Ecuador
| | - Jalil Maiguashca-Sánchez
- Center for Research on Health in Latin America, School of Biological Sciences, Pontifical Catholic University of Ecuador, Quito, Ecuador
| | - Michael A Miles
- London School of Hygiene & Tropical Medicine, Keppel Street, London, WC1E 7HT, UK
| | - Bjorn Andersson
- Department of Cell and Molecular Biology, Science for Life Laboratory, Karolinska Institutet, Biomedicum 9C, 171 77, Stockholm, Sweden
| | - Mario J Grijalva
- Center for Research on Health in Latin America, School of Biological Sciences, Pontifical Catholic University of Ecuador, Quito, Ecuador
- Infectious and Tropical Disease Institute, Biomedical Sciences Department, Heritage College of Osteopathic Medicine, Ohio University, 45701, Athens, OH, USA
| | - Martin S Llewellyn
- Institute of Biodiversity, Animal Health & Comparative Medicine, University of Glasgow, Glasgow, G12 8QQ, UK.
| |
Collapse
|
40
|
Espinosa A, Paz-Y-Miño-C G. Discrimination Experiments in Entamoeba and Evidence from Other Protists Suggest Pathogenic Amebas Cooperate with Kin to Colonize Hosts and Deter Rivals. J Eukaryot Microbiol 2019; 66:354-368. [PMID: 30055104 PMCID: PMC6349510 DOI: 10.1111/jeu.12673] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2018] [Revised: 06/27/2018] [Accepted: 07/25/2018] [Indexed: 01/06/2023]
Abstract
Entamoeba histolytica is one of the least understood protists in terms of taxa, clone, and kin discrimination/recognition ability. However, the capacity to tell apart same or self (clone/kin) from different or nonself (nonclone/nonkin) has long been demonstrated in pathogenic eukaryotes like Trypanosoma and Plasmodium, free-living social amebas (Dictyostelium, Polysphondylium), budding yeast (Saccharomyces), and in numerous bacteria and archaea (prokaryotes). Kin discrimination/recognition is explained under inclusive fitness theory; that is, the reproductive advantage that genetically closely related organisms (kin) can gain by cooperating preferably with one another (rather than with distantly related or unrelated individuals), minimizing antagonism and competition with kin, and excluding genetic strangers (or cheaters = noncooperators that benefit from others' investments in altruistic cooperation). In this review, we rely on the outcomes of in vitro pairwise discrimination/recognition encounters between seven Entamoeba lineages to discuss the biological significance of taxa, clone, and kin discrimination/recognition in a range of generalist and specialist species (close or distantly related phylogenetically). We then focus our discussion on the importance of these laboratory observations for E. histolytica's life cycle, host infestation, and implications of these features of the amebas' natural history for human health (including mitigation of amebiasis).
Collapse
Affiliation(s)
- Avelina Espinosa
- Department of Biology, Roger Williams University, Bristol, Rhode Island
- New England Center for the Public Understanding of Science, Roger Williams University, Bristol, Rhode Island
| | - Guillermo Paz-Y-Miño-C
- New England Center for the Public Understanding of Science, Roger Williams University, Bristol, Rhode Island
| |
Collapse
|
41
|
Abstract
A major current molecular evolution challenge is to link comparative genomic patterns to species' biology and ecology. Breeding systems are pivotal because they affect many population genetic processes and thus genome evolution. We review theoretical predictions and empirical evidence about molecular evolutionary processes under three distinct breeding systems-outcrossing, selfing, and asexuality. Breeding systems may have a profound impact on genome evolution, including molecular evolutionary rates, base composition, genomic conflict, and possibly genome size. We present and discuss the similarities and differences between the effects of selfing and clonality. In reverse, comparative and population genomic data and approaches help revisiting old questions on the long-term evolution of breeding systems.
Collapse
Affiliation(s)
- Sylvain Glémin
- Institut des Sciences de l'Evolution, UMR5554, Université Montpellier II, Montpellier, France
| | - Clémentine M François
- Institut des Sciences de l'Evolution, UMR5554, Université Montpellier II, Montpellier, France
| | - Nicolas Galtier
- Institut des Sciences de l'Evolution, UMR5554, Université Montpellier II, Montpellier, France.
| |
Collapse
|
42
|
Chen ECH, Mathieu S, Hoffrichter A, Sedzielewska-Toro K, Peart M, Pelin A, Ndikumana S, Ropars J, Dreissig S, Fuchs J, Brachmann A, Corradi N. Single nucleus sequencing reveals evidence of inter-nucleus recombination in arbuscular mycorrhizal fungi. eLife 2018; 7:e39813. [PMID: 30516133 PMCID: PMC6281316 DOI: 10.7554/elife.39813] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2018] [Accepted: 11/16/2018] [Indexed: 12/18/2022] Open
Abstract
Eukaryotes thought to have evolved clonally for millions of years are referred to as ancient asexuals. The oldest group among these are the arbuscular mycorrhizal fungi (AMF), which are plant symbionts harboring hundreds of nuclei within one continuous cytoplasm. Some AMF strains (dikaryons) harbor two co-existing nucleotypes but there is no direct evidence that such nuclei recombine in this life-stage, as is expected for sexual fungi. Here, we show that AMF nuclei with distinct genotypes can undergo recombination. Inter-nuclear genetic exchange varies in frequency among strains, and despite recombination all nuclear genomes have an average similarity of at least 99.8%. The present study demonstrates that AMF can generate genetic diversity via meiotic-like processes in the absence of observable mating. The AMF dikaryotic life-stage is a primary source of nuclear variability in these organisms, highlighting its potential for strain enhancement of these symbionts.
Collapse
Affiliation(s)
- Eric CH Chen
- Department of BiologyUniversity of OttawaOttawaCanada
| | | | - Anne Hoffrichter
- Institute of Genetics, Faculty of BiologyLudwig Maximilian University of MunichMunichGermany
| | - Kinga Sedzielewska-Toro
- Institute of Genetics, Faculty of BiologyLudwig Maximilian University of MunichMunichGermany
| | - Max Peart
- Department of BiologyUniversity of OttawaOttawaCanada
| | - Adrian Pelin
- Department of BiologyUniversity of OttawaOttawaCanada
| | | | - Jeanne Ropars
- Department of BiologyUniversity of OttawaOttawaCanada
| | - Steven Dreissig
- Leibniz Institute of Plant Genetics and Crop Plant ResearchGaterslebenGermany
| | - Jorg Fuchs
- Leibniz Institute of Plant Genetics and Crop Plant ResearchGaterslebenGermany
| | - Andreas Brachmann
- Institute of Genetics, Faculty of BiologyLudwig Maximilian University of MunichMunichGermany
| | | |
Collapse
|
43
|
Reis-Cunha JL, Baptista RP, Rodrigues-Luiz GF, Coqueiro-Dos-Santos A, Valdivia HO, de Almeida LV, Cardoso MS, D'Ávila DA, Dias FHC, Fujiwara RT, Galvão LMC, Chiari E, Cerqueira GC, Bartholomeu DC. Whole genome sequencing of Trypanosoma cruzi field isolates reveals extensive genomic variability and complex aneuploidy patterns within TcII DTU. BMC Genomics 2018; 19:816. [PMID: 30424726 PMCID: PMC6234542 DOI: 10.1186/s12864-018-5198-4] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2017] [Accepted: 10/23/2018] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Trypanosoma cruzi, the etiologic agent of Chagas disease, is currently divided into six discrete typing units (DTUs), named TcI-TcVI. TcII is among the major DTUs enrolled in human infections in South America southern cone, where it is associated with severe cardiac and digestive symptoms. Despite the importance of TcII in Chagas disease epidemiology and pathology, so far, no genome-wide comparisons of the mitochondrial and nuclear genomes of TcII field isolates have been performed to track the variability and evolution of this DTU in endemic regions. RESULTS In the present work, we have sequenced and compared the whole nuclear and mitochondrial genomes of seven TcII strains isolated from chagasic patients from the central and northeastern regions of Minas Gerais, Brazil, revealing an extensive genetic variability within this DTU. A comparison of the phylogeny based on the nuclear or mitochondrial genomes revealed that the majority of branches were shared by both sequences. The subtle divergences in the branches are probably consequence of mitochondrial introgression events between TcII strains. Two T. cruzi strains isolated from patients living in the central region of Minas Gerais, S15 and S162a, were clustered in the nuclear and mitochondrial phylogeny analysis. These two strains were isolated from the other five by the Espinhaço Mountains, a geographic barrier that could have restricted the traffic of insect vectors during T. cruzi evolution in the Minas Gerais state. Finally, the presence of aneuploidies was evaluated, revealing that all seven TcII strains have a different pattern of chromosomal duplication/loss. CONCLUSIONS Analysis of genomic variability and aneuploidies suggests that there is significant genomic variability within Minas Gerais TcII strains, which could be exploited by the parasite to allow rapid selection of favorable phenotypes. Also, the aneuploidy patterns vary among T. cruzi strains and does not correlate with the nuclear phylogeny, suggesting that chromosomal duplication/loss are recent and frequent events in the parasite evolution.
Collapse
Affiliation(s)
- João Luís Reis-Cunha
- Departamento de Parasitologia, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Rodrigo P Baptista
- Departamento de Parasitologia, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil.,The University of Georgia, Athens, USA
| | - Gabriela F Rodrigues-Luiz
- Departamento de Parasitologia, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil.,Departamento de Microbiologia, Imunologia e Parasitologia, Universidade Federal de Santa Catarina, Florianópolis, Brazil
| | | | - Hugo O Valdivia
- Departamento de Parasitologia, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil.,U.S. Naval Medical Research, Lima, Peru
| | - Laila Viana de Almeida
- Departamento de Parasitologia, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Mariana Santos Cardoso
- Departamento de Parasitologia, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | | | | | | | - Lúcia M C Galvão
- Departamento de Parasitologia, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Egler Chiari
- Departamento de Parasitologia, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | | | - Daniella C Bartholomeu
- Departamento de Parasitologia, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil.
| |
Collapse
|
44
|
Vieira A, Silva DN, Várzea V, Paulo OS, Batista D. Novel insights on colonization routes and evolutionary potential of Colletotrichum kahawae, a severe pathogen of Coffea arabica. MOLECULAR PLANT PATHOLOGY 2018; 19:2488-2501. [PMID: 30073748 PMCID: PMC6638157 DOI: 10.1111/mpp.12726] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/11/2018] [Revised: 05/25/2018] [Accepted: 06/28/2018] [Indexed: 05/19/2023]
Abstract
Pathogenic fungi are emerging at an increasing rate on a wide range of host plants, leading to tremendous threats to the global economy and food safety. Several plant pathogens have been considered to be invasive species, rendering large-scale population genomic analyses crucial to better understand their demographic history and evolutionary potential. Colletotrichum kahawae (Ck) is a highly aggressive and specialized pathogen, causing coffee berry disease in Arabica coffee in Africa. This pathogen leads to severe production losses and its dissemination out of Africa is greatly feared. To address this issue, a population genomic approach using thousands of single nucleotide polymorphisms (SNPs) spaced throughout the genome was used to unveil its demographic history and evolutionary potential. The current study confirms that Ck is a true clonal pathogen, perfectly adapted to green coffee berries, with three completely differentiated populations (Angolan, Cameroonian and East African). Two independent clonal lineages were found within the Angolan population as opposed to the remaining single clonal populations. The most probable colonization scenario suggests that this pathogen emerged in Angola and immediately dispersed to East Africa, where these two populations began to differentiate, followed by the introduction in Cameroon from an Angolan population. However, the differentiation between the two Angolan clonal lineages masks the mechanism for the emergence of the Cameroonian population. Our results suggest that Ck is completely differentiated from the ancestral lineage, has a low evolutionary potential and a low dispersion ability, with human transport the most likely scenario for its potential dispersion, which makes the fulfilment of the quarantine measures and management practices implemented crucial.
Collapse
Affiliation(s)
- Ana Vieira
- CIFC—Centro de Investigação das Ferrugens do CafeeiroInstituto Superior de Agronomia, Universidade de LisboaOeiras2784‐505Portugal
- CoBiG—Computational Biology and Population Genomics Group, cE3c—Centre for Ecology, Evolution and Environmental Changes, Faculdade de CiênciasUniversidade de LisboaLisboa1749‐016Portugal
- LEAF—Linking Landscape, Environment, Agriculture and FoodInstituto Superior de Agronomia, Universidade de LisboaLisboa1349‐017Portugal
| | - Diogo Nuno Silva
- CIFC—Centro de Investigação das Ferrugens do CafeeiroInstituto Superior de Agronomia, Universidade de LisboaOeiras2784‐505Portugal
- CoBiG—Computational Biology and Population Genomics Group, cE3c—Centre for Ecology, Evolution and Environmental Changes, Faculdade de CiênciasUniversidade de LisboaLisboa1749‐016Portugal
- LEAF—Linking Landscape, Environment, Agriculture and FoodInstituto Superior de Agronomia, Universidade de LisboaLisboa1349‐017Portugal
| | - Victor Várzea
- CIFC—Centro de Investigação das Ferrugens do CafeeiroInstituto Superior de Agronomia, Universidade de LisboaOeiras2784‐505Portugal
- LEAF—Linking Landscape, Environment, Agriculture and FoodInstituto Superior de Agronomia, Universidade de LisboaLisboa1349‐017Portugal
| | - Octávio Salgueiro Paulo
- CoBiG—Computational Biology and Population Genomics Group, cE3c—Centre for Ecology, Evolution and Environmental Changes, Faculdade de CiênciasUniversidade de LisboaLisboa1749‐016Portugal
| | - Dora Batista
- CIFC—Centro de Investigação das Ferrugens do CafeeiroInstituto Superior de Agronomia, Universidade de LisboaOeiras2784‐505Portugal
- CoBiG—Computational Biology and Population Genomics Group, cE3c—Centre for Ecology, Evolution and Environmental Changes, Faculdade de CiênciasUniversidade de LisboaLisboa1749‐016Portugal
- LEAF—Linking Landscape, Environment, Agriculture and FoodInstituto Superior de Agronomia, Universidade de LisboaLisboa1349‐017Portugal
| |
Collapse
|
45
|
Baker CH, Welburn SC. The Long Wait for a New Drug for Human African Trypanosomiasis. Trends Parasitol 2018; 34:818-827. [DOI: 10.1016/j.pt.2018.08.006] [Citation(s) in RCA: 51] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2018] [Revised: 08/07/2018] [Accepted: 08/08/2018] [Indexed: 12/22/2022]
|
46
|
Almeida LV, Coqueiro-Dos-Santos A, Rodriguez-Luiz GF, McCulloch R, Bartholomeu DC, Reis-Cunha JL. Chromosomal copy number variation analysis by next generation sequencing confirms ploidy stability in Trypanosoma brucei subspecies. Microb Genom 2018; 4. [PMID: 30256189 PMCID: PMC6249438 DOI: 10.1099/mgen.0.000223] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Although aneuploidy usually results in severe abnormalities in multicellular eukaryotes, recent data suggest that it could be beneficial for unicellular eukaryotes, such as yeast and trypanosomatid parasites, providing increased survival under stressful conditions. Among characterized trypanosomatids, Trypanosoma cruzi, Trypanosoma brucei and species from the genus Leishmania stand out due to their importance in public health, infecting around 20 million people worldwide. The presence of aneuploidies in T. cruzi and Leishmania was recently confirmed by analysis based on next generation sequencing (NGS) and fluorescence in situ hybridization, where they have been associated with adaptation during transmission between their insect vectors and mammalian hosts and in promoting drug resistance. Although chromosomal copy number variations (CCNVs) are present in the aforementioned species, PFGE and fluorescence cytophotometry analyses suggest that aneuploidies are absent from T. brucei. A re-evaluation of CCNV in T. b gambiense based on NGS reads confirmed the absence of aneuploidies in this subspecies. However, the presence of aneuploidies in the other two T. brucei subspecies, T. b. brucei and T. b. rhodesiense, has not been evaluated using NGS approaches. In the present work, we tested for aneuploidies in 26 T. brucei isolates, including samples from the three T. brucei subspecies, by both allele frequency and read depth coverage analyses. These analyses showed that none of the T. brucei subspecies presents aneuploidies, which could be related to differences in the mechanisms of DNA replication and recombination in these parasites when compared with Leishmania.
Collapse
Affiliation(s)
- Laila Viana Almeida
- 1Departamento de Parasitologia, Universidade Federal de Minas Gerais - Instituto de Ciências Biológicas, Belo Horizonte, Brazil
| | - Anderson Coqueiro-Dos-Santos
- 1Departamento de Parasitologia, Universidade Federal de Minas Gerais - Instituto de Ciências Biológicas, Belo Horizonte, Brazil
| | - Gabriela F Rodriguez-Luiz
- 1Departamento de Parasitologia, Universidade Federal de Minas Gerais - Instituto de Ciências Biológicas, Belo Horizonte, Brazil
| | - Richard McCulloch
- 2University of Glasgow, Wellcome Centre for Molecular Parasitology, Glasgow, UK
| | - Daniella Castanheira Bartholomeu
- 1Departamento de Parasitologia, Universidade Federal de Minas Gerais - Instituto de Ciências Biológicas, Belo Horizonte, Brazil
| | | |
Collapse
|
47
|
Kaboré J, Camara O, Koffi M, Sanou D, Ilboudo H, Sakandé H, Camara M, De Meeûs T, Ravel S, Belem AMG, MacLeod A, Bucheton B, Jamonneau V, Thévenon S. Differences in pathogenicity and virulence of Trypanosoma brucei gambiense field isolates in experimentally infected Balb/C mice. INFECTION, GENETICS AND EVOLUTION : JOURNAL OF MOLECULAR EPIDEMIOLOGY AND EVOLUTIONARY GENETICS IN INFECTIOUS DISEASES 2018; 63:269-276. [PMID: 29807131 DOI: 10.1016/j.meegid.2018.05.018] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2017] [Revised: 05/21/2018] [Accepted: 05/22/2018] [Indexed: 11/29/2022]
Abstract
Trypanosoma brucei gambiense (T. b. gambiense) is the major causative agent of human African trypanosomiasis (HAT). A great variety of clinical outcomes have been observed in West African foci, probably due to complex host-parasite interactions. In order to separate the roles of parasite genetic diversity and host variability, we have chosen to precisely characterize the pathogenicity and virulence of T. b. gambiense field isolates in a mouse model. Thirteen T. b. gambiense strains were studied in experimental infections, with 20 Balb/C infected mice per isolate. Mice were monitored for 30 days, in which mortality, parasitemia, anemia, and weight were recorded. Mortality rate, prepatent period, and maximum parasitemia were estimated, and a survival analysis was performed to compare strain pathogenicity. Mixed models were used to assess parasitemia dynamics, weight, and changes in Packed Cell Volume (PCV). Finally, a multivariate analysis was performed to infer relationships between all variables. A large phenotypic diversity was observed. Pathogenicity was highly variable, ranging from strains that kill their host within 9 days to a non-pathogenic strain (no deaths during the experiment). Virulence was also variable, with maximum parasitemia values ranging from 42 million to 1 billion trypanosomes/ml. Reduced PCV and weight occurred in the first two weeks of the infection, with the exception of two strains. Finally, the global analysis highlighted three groups of strains: a first group with highly pathogenic strains showing an early mortality associated with a short prepatent period; a second group of highly virulent strains with intermediate pathogenicity; and a third group of isolates characterized by low pathogenicity and virulence patterns. Such biological differences could be related to the observed clinical diversity in HAT. A better understanding of the biological pathways underlying the observed phenotypic diversity could thus help to clarify the complex nature of the host-parasite interactions that determine the resistance/susceptibility status to T. brucei gambiense.
Collapse
Affiliation(s)
- Jacques Kaboré
- Centre International de Recherche-Développement sur l'Elevage en zone Subhumide (CIRDES), 01 BP 454, Bobo-Dioulasso 01, Burkina Faso; Université NAZI BONI de Bobo-Dioulasso, UFR Sciences et Techniques, 01 BP 1091, Bobo-Dioulasso 01, Burkina Faso.
| | - Oumou Camara
- Programme National de Lutte contre la THA, BP 851, Conakry, Guinea.
| | - Mathurin Koffi
- Université Jean Lorougnon Guédé, UFR Environnement, BP 150, Daloa, Côte d'Ivoire.
| | - Djénéba Sanou
- Université NAZI BONI de Bobo-Dioulasso, UFR Sciences et Techniques, 01 BP 1091, Bobo-Dioulasso 01, Burkina Faso.
| | - Hamidou Ilboudo
- Programme National de Lutte contre la THA, BP 851, Conakry, Guinea.
| | - Hassane Sakandé
- Centre International de Recherche-Développement sur l'Elevage en zone Subhumide (CIRDES), 01 BP 454, Bobo-Dioulasso 01, Burkina Faso.
| | - Mamadou Camara
- Programme National de Lutte contre la THA, BP 851, Conakry, Guinea.
| | | | - Sophie Ravel
- INTERTRYP, Univ Montpellier, CIRAD, IRD, Montpellier, France.
| | - Adrien Marie Gaston Belem
- Université NAZI BONI de Bobo-Dioulasso, UFR Sciences et Techniques, 01 BP 1091, Bobo-Dioulasso 01, Burkina Faso.
| | - Annette MacLeod
- Wellcome Center for Molecular Parasitology, University of Glasgow, 464 Bearsden Road, Glasgow G60 1QH, UK.
| | - Bruno Bucheton
- INTERTRYP, Univ Montpellier, CIRAD, IRD, Montpellier, France.
| | | | | |
Collapse
|
48
|
de Araujo CB, Calderano SG, Elias MC. The Dynamics of Replication in Trypanosoma cruzi Parasites by Single-Molecule Analysis. J Eukaryot Microbiol 2018; 66:514-518. [PMID: 30076751 DOI: 10.1111/jeu.12676] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2018] [Revised: 07/03/2018] [Accepted: 07/20/2018] [Indexed: 12/12/2022]
Abstract
Here, we investigated the features of replication in Trypanosoma cruzi epimastigotes based on fork speed progression, which is influenced by distinct features such as DNA polymerase rate, susceptibility to DNA damage and repair, secondary structures, transcription and chromatin state. Although T. cruzi exhibits a mean fork speed (2.05 ± 0.10 kb/min) very similar to other trypanosomatids, we found that the majority of DNA molecules replicated more slowly, with a frequency distribution approximately 1 kb/min. This frequency distribution analysis provides more information about the replication profile of this organism.
Collapse
Affiliation(s)
- Christiane B de Araujo
- Laboratorio Especial de Ciclo celular, Instituto Butantan, Av Vital Brasil, 1500, São Paulo, 05503-900, Brazil.,Center of Toxins, Immune Response and Cell Signaling (CeTICS), Instituto Butantan, Av Vital Brasil, 1500, São Paulo, 05503-900, Brazil
| | - Simone G Calderano
- Center of Toxins, Immune Response and Cell Signaling (CeTICS), Instituto Butantan, Av Vital Brasil, 1500, São Paulo, 05503-900, Brazil.,Laboratório de Parasitologia, Instituto Butantan, Av Vital Brasil, 1500, São Paulo, 05503-900, Brazil
| | - Maria Carolina Elias
- Laboratorio Especial de Ciclo celular, Instituto Butantan, Av Vital Brasil, 1500, São Paulo, 05503-900, Brazil.,Center of Toxins, Immune Response and Cell Signaling (CeTICS), Instituto Butantan, Av Vital Brasil, 1500, São Paulo, 05503-900, Brazil
| |
Collapse
|
49
|
Van den Broeck F, Tavernier LJM, Vermeiren L, Dujardin JC, Van Den Abbeele J. Mitonuclear genomics challenges the theory of clonality in Trypanosoma congolense: Reply to Tibayrenc and Ayala. Mol Ecol 2018; 27:3425-3431. [PMID: 30142241 DOI: 10.1111/mec.14809] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2018] [Revised: 07/06/2018] [Accepted: 07/11/2018] [Indexed: 12/11/2022]
Abstract
We recently published the first genomic diversity study of Trypanosoma congolense, a major aetiological agent of Animal African Trypanosomiasis. We demonstrated striking levels of SNP and indel diversity in the Eastern province of Zambia as a consequence of hybridization between divergent trypanosome lineages. We concluded that these and earlier findings in T. congolense challenge the predominant clonal evolution (PCE) model. In a recent comment, Tibayrenc and Ayala claim that there are many features in T. congolense supporting their theory of clonality. While we can follow the reasoning of the authors, we also identify major limitations in their theory and interpretations that resulted in incorrect conclusions. First, we argue that each T. congolense subgroup should be analysed independently as they may represent different (sub)species rather than "near-clades". Second, the authors neglect major findings of two robust population genetic studies on Savannah T. congolense that provide clear evidence of frequent recombination. Third, we reveal additional events of introgressive hybridization in T. congolense by analysing the maxicircle coding region using next-generation sequencing analyses. At last, we pinpoint two important misinterpretations by the authors and show that there are no spatially and temporally widespread clones in T. congolense. We stand by our earlier conclusions that the clonal framework is unlikely to accurately model the population structure of T. congolense. Other theoretical frameworks such as Maynard Smith's epidemic model may better represent the complex ancestry seen in T. congolense, where clones delimited in space and time arise against a background of recombination.
Collapse
Affiliation(s)
| | | | - Lieve Vermeiren
- Biomedical Sciences, Institute of Tropical Medicine, Antwerp, Belgium
| | | | | |
Collapse
|
50
|
Silva Pereira S, Casas-Sánchez A, Haines LR, Ogugo M, Absolomon K, Sanders M, Kemp S, Acosta-Serrano Á, Noyes H, Berriman M, Jackson AP. Variant antigen repertoires in Trypanosoma congolense populations and experimental infections can be profiled from deep sequence data using universal protein motifs. Genome Res 2018; 28:1383-1394. [PMID: 30006414 PMCID: PMC6120623 DOI: 10.1101/gr.234146.118] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2018] [Accepted: 07/12/2018] [Indexed: 11/25/2022]
Abstract
African trypanosomes are vector-borne hemoparasites of humans and animals. In the mammal, parasites evade the immune response through antigenic variation. Periodic switching of the variant surface glycoprotein (VSG) coat covering their cell surface allows sequential expansion of serologically distinct parasite clones. Trypanosome genomes contain many hundreds of VSG genes, subject to rapid changes in nucleotide sequence, copy number, and chromosomal position. Thus, analyzing, or even quantifying, VSG diversity over space and time presents an enormous challenge to conventional techniques. Indeed, previous population genomic studies have overlooked this vital aspect of pathogen biology for lack of analytical tools. Here we present a method for analyzing population-scale VSG diversity in Trypanosoma congolense from deep sequencing data. Previously, we suggested that T. congolense VSGs segregate into defined “phylotypes” that do not recombine. In our data set comprising 41 T. congolense genome sequences from across Africa, these phylotypes are universal and exhaustive. Screening sequence contigs with diagnostic protein motifs accurately quantifies relative phylotype frequencies, providing a metric of VSG diversity, called the “variant antigen profile.” We applied our metric to VSG expression in the tsetse fly, showing that certain, rare VSG phylotypes may be preferentially expressed in infective, metacyclic-stage parasites. Hence, variant antigen profiling accurately and rapidly determines the T. congolense VSG gene and transcript repertoire from sequence data, without need for manual curation or highly contiguous sequences. It offers a tractable approach to measuring VSG diversity across strains and during infections, which is imperative to understanding the host–parasite interaction at population and individual scales.
Collapse
Affiliation(s)
- Sara Silva Pereira
- Department of Infection Biology, Institute of Infection and Global Health, University of Liverpool, Liverpool L3 5RF, United Kingdom
| | - Aitor Casas-Sánchez
- Department of Parasitology, Liverpool School of Tropical Medicine, Liverpool L3 5QA, United Kingdom
| | - Lee R Haines
- Department of Vector Biology, Liverpool School of Tropical Medicine, Liverpool L3 5QA, United Kingdom
| | - Moses Ogugo
- International Livestock Research Institute, Nairobi 00100, Kenya
| | - Kihara Absolomon
- International Livestock Research Institute, Nairobi 00100, Kenya
| | - Mandy Sanders
- Wellcome Trust Sanger Institute, Wellcome Genome Campus, Hinxton CB10 1SA, United Kingdom
| | - Steve Kemp
- International Livestock Research Institute, Nairobi 00100, Kenya
| | - Álvaro Acosta-Serrano
- Department of Parasitology, Liverpool School of Tropical Medicine, Liverpool L3 5QA, United Kingdom.,Department of Vector Biology, Liverpool School of Tropical Medicine, Liverpool L3 5QA, United Kingdom
| | - Harry Noyes
- Institute of Integrative Biology, University of Liverpool, Liverpool L69 7ZB, United Kingdom
| | - Matthew Berriman
- Wellcome Trust Sanger Institute, Wellcome Genome Campus, Hinxton CB10 1SA, United Kingdom
| | - Andrew P Jackson
- Department of Infection Biology, Institute of Infection and Global Health, University of Liverpool, Liverpool L3 5RF, United Kingdom
| |
Collapse
|