1
|
Greber UF. Clicking viruses-with chemistry toward mechanisms in infection. J Virol 2025:e0047125. [PMID: 40366176 DOI: 10.1128/jvi.00471-25] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/15/2025] Open
Abstract
Viruses subvert cells and evade host defense. They emerge unpredictably and threaten humans and livestock through their genetic and phenotypic diversity. Despite more than 100 years since the discovery of viruses, the molecular underpinnings of virus infections are incompletely understood. The introduction of new methodologies into the field, such as that of click chemistry some 10 years ago, keeps uncovering new facets of viruses. Click chemistry uses bio-orthogonal reactions on chemical probes and couples nucleic acids, proteins, and lipids with tractable labels, such as fluorophores for single-cell and single-molecule imaging, or biotin for biochemical profiling of infections. Its applications in single cells often achieve single-molecule resolution and provide important insights into the widely known phenomenon of cell-to-cell infection variability. This review describes click chemistry advances to unravel infection mechanisms of a select set of enveloped and nonenveloped DNA and RNA viruses, including adenovirus, herpesvirus, and human immunodeficiency virus. It highlights recent click chemistry breakthroughs with viral DNA, viral RNA, protein, as well as host-derived lipid functions in both live and chemically fixed cells. It discusses new insights on specific processes including virus entry, uncoating, transcription, replication, packaging, and assembly and provides a perspective for click chemistry to explore viral cell biology, infection variability, and genome organization in the particle.
Collapse
Affiliation(s)
- Urs F Greber
- Department of Molecular Life Sciences, University of Zurich, Zurich, Switzerland
| |
Collapse
|
2
|
Riedelbauch S, Masser S, Fasching S, Lin SY, Salgania HK, Aarup M, Ebert A, Jeske M, Levine MT, Stelzl U, Andersen P. Recurrent innovation of protein-protein interactions in the Drosophila piRNA pathway. EMBO J 2025:10.1038/s44318-025-00439-8. [PMID: 40275032 DOI: 10.1038/s44318-025-00439-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2024] [Revised: 03/22/2025] [Accepted: 04/03/2025] [Indexed: 04/26/2025] Open
Abstract
Despite being essential for fertility, genome-defense-pathway genes often evolve rapidly. However, little is known about the molecular basis of this adaptation. Here, we characterized the evolution of a protein interaction network within the PIWI-interacting small RNA (piRNA) genome-defense pathway in Drosophila at unprecedented scale and evolutionary resolution. We uncovered the pervasive rapid evolution of a protein interaction network anchored at the heterochromatin protein 1 (HP1) paralog Rhino. Through cross-species high-throughput yeast-two-hybrid screening, we identified three distinct evolutionary protein interaction trajectories across ~40 million years of Drosophila evolution. While several protein interactions are fully conserved, indicating functional conservation despite rapid amino acid-sequence change, other interactions are preserved through coevolution and were detected only between proteins within or from closely related species. We also identified species-restricted protein interactions, revealing insight into the mechanistic diversity and ongoing molecular innovation in Drosophila piRNA production. In sum, our analyses reveal principles of interaction evolution in an adaptively evolving protein-protein interaction network, and support intermolecular interaction innovation as a central molecular mechanism of evolutionary adaptation in protein-coding genes.
Collapse
Affiliation(s)
- Sebastian Riedelbauch
- Department of Molecular Biology and Genetics, Aarhus University, 8000, Aarhus C, Denmark
| | - Sarah Masser
- Institute of Pharmaceutical Sciences, Pharmaceutical Chemistry, University of Graz, Graz, Austria
- BioTechMed-Graz, Graz, Austria
| | - Sandra Fasching
- Institute of Pharmaceutical Sciences, Pharmaceutical Chemistry, University of Graz, Graz, Austria
| | - Sung-Ya Lin
- Department of Biology, Epigenetics Institute, University of Pennsylvania, Philadelphia, PA, USA
| | | | - Mie Aarup
- Department of Molecular Biology and Genetics, Aarhus University, 8000, Aarhus C, Denmark
| | - Anja Ebert
- Department of Molecular Biology and Genetics, Aarhus University, 8000, Aarhus C, Denmark
| | - Mandy Jeske
- Heidelberg University Biochemistry Center (BZH), 69120, Heidelberg, Germany
| | - Mia T Levine
- Department of Biology, Epigenetics Institute, University of Pennsylvania, Philadelphia, PA, USA
| | - Ulrich Stelzl
- Institute of Pharmaceutical Sciences, Pharmaceutical Chemistry, University of Graz, Graz, Austria
- BioTechMed-Graz, Graz, Austria
- Field of Excellence BioHealth-University of Graz, Graz, Austria
| | - Peter Andersen
- Department of Molecular Biology and Genetics, Aarhus University, 8000, Aarhus C, Denmark.
| |
Collapse
|
3
|
Selberg A, Clark NL, Sackton TB, Muse SV, Lucaci AG, Weaver S, Nekrutenko A, Chikina M, Pond SLK. Minus the Error: Testing for Positive Selection in the Presence of Residual Alignment Errors. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2024.11.13.620707. [PMID: 39605407 PMCID: PMC11601313 DOI: 10.1101/2024.11.13.620707] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2024]
Abstract
Positive selection is an evolutionary process which increases the frequency of advantageous mutations because they confer a fitness benefit. Inferring the past action of positive selection on protein-coding sequences is fundamental for deciphering phenotypic diversity and the emergence of novel traits. With the advent of genome-wide comparative genomic datasets, researchers can analyze selection not only at the level of individual genes but also globally, delivering systems-level insights into evolutionary dynamics. However, genome-scale datasets are generated with automated pipelines and imperfect curation that does not eliminate all sequencing, annotation, and alignment errors. Positive selection inference methods are highly sensitive to such errors. We present BUSTED-E: a method designed to detect positive selection for amino acid diversification while concurrently identifying some alignment errors. This method builds on the flexible branch-site random effects model (BUSTED) for fitting distributions of dN/dS, with a critical modification: it incorporates an "error-sink" component to represent an abiological evolutionary regime. Using several genome-scale biological datasets that were extensively filtered using state-of-the art automated alignment tools, we show that BUSTED-E identifies pervasive residual alignment errors, produces more realistic estimates of positive selection, reduces bias, and improves biological interpretation. The BUSTED-E model promises to be a more stringent filter to identify positive selection in genome-wide contexts, thus enabling further characterization and validation of the most biologically relevant cases.
Collapse
Affiliation(s)
- Avery Selberg
- Institute for Genomics and Evolutionary Medicine, Temple University, Philadelphia, PA, USA
- Department of Biology, Temple University, Philadelphia, PA, USA
| | - Nathan L Clark
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA, USA
| | | | - Spencer V Muse
- Bioinformatics Research Center, North Carolina State University, Raleigh, NC, USA
| | - Alexander G Lucaci
- Department of Physiology and Biophysics, Weill Cornell Medicine, New York, NY, USA
- Weill Cornell Medicine, The HRH Prince Alwaleed Bin Talal Bin Abdulaziz Alsaud Institute for Computational Biomedicine, New York, NY, USA
| | - Steven Weaver
- Institute for Genomics and Evolutionary Medicine, Temple University, Philadelphia, PA, USA
- Department of Biology, Temple University, Philadelphia, PA, USA
| | - Anton Nekrutenko
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, PA, USA
| | - Maria Chikina
- Department of Computational and Systems Biology, University of Pittsburgh, Pittsburgh, PA, USA
| | - Sergei L. Kosakovsky Pond
- Institute for Genomics and Evolutionary Medicine, Temple University, Philadelphia, PA, USA
- Department of Biology, Temple University, Philadelphia, PA, USA
| |
Collapse
|
4
|
Su WC, Xia Y. Virus targeting as a dominant driver of interfacial evolution in the structurally resolved human-virus protein-protein interaction network. Cell Syst 2025; 16:101202. [PMID: 40023148 DOI: 10.1016/j.cels.2025.101202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Revised: 11/28/2024] [Accepted: 02/04/2025] [Indexed: 03/04/2025]
Abstract
Regions on a host protein that interact with virus proteins (exogenous interfaces) frequently overlap with those that interact with other host proteins (endogenous interfaces), resulting in competition between hosts and viruses for these shared interfaces (mimic-targeted interfaces). Yet, the evolutionary consequences of this competitive relationship on the host are not well understood. Here, we integrate experimentally determined structures and homology-based templates of protein complexes with protein-protein interaction networks to construct a high-resolution human-virus structural interaction network. We perform site-specific evolutionary rate analyses on this structural interaction network and find that exogenous-specific interfaces evolve faster than endogenous-specific interfaces. Mimic-targeted interfaces evolve as fast as exogenous-specific interfaces, despite being targeted by both human and virus proteins. Our findings suggest that virus targeting plays a dominant role in host interfacial evolution within the context of domain-domain interactions and that mimic-targeted interfaces on human proteins are the key battleground for a mammalian-specific host-virus evolutionary arms race.
Collapse
Affiliation(s)
- Wan-Chun Su
- Graduate Program in Quantitative Life Sciences, McGill University, Montréal, QC, Canada
| | - Yu Xia
- Graduate Program in Quantitative Life Sciences, McGill University, Montréal, QC, Canada; Department of Bioengineering, McGill University, Montréal, QC, Canada.
| |
Collapse
|
5
|
D'Oliviera A, Dai X, Mottaghinia S, Olson S, Geissler EP, Etienne L, Zhang Y, Mugridge JS. Recognition and cleavage of human tRNA methyltransferase TRMT1 by the SARS-CoV-2 main protease. eLife 2025; 12:RP91168. [PMID: 39773525 PMCID: PMC11706605 DOI: 10.7554/elife.91168] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2025] Open
Abstract
The SARS-CoV-2 main protease (Mpro or Nsp5) is critical for production of viral proteins during infection and, like many viral proteases, also targets host proteins to subvert their cellular functions. Here, we show that the human tRNA methyltransferase TRMT1 is recognized and cleaved by SARS-CoV-2 Mpro. TRMT1 installs the N2,N2-dimethylguanosine (m2,2G) modification on mammalian tRNAs, which promotes cellular protein synthesis and redox homeostasis. We find that Mpro can cleave endogenous TRMT1 in human cell lysate, resulting in removal of the TRMT1 zinc finger domain. Evolutionary analysis shows the TRMT1 cleavage site is highly conserved in mammals, except in Muroidea, where TRMT1 is likely resistant to cleavage. TRMT1 proteolysis results in reduced tRNA binding and elimination of tRNA methyltransferase activity. We also determined the structure of an Mpro-TRMT1 peptide complex that shows how TRMT1 engages the Mpro active site in an uncommon substrate binding conformation. Finally, enzymology and molecular dynamics simulations indicate that kinetic discrimination occurs during a later step of Mpro-mediated proteolysis following substrate binding. Together, these data provide new insights into substrate recognition by SARS-CoV-2 Mpro that could help guide future antiviral therapeutic development and show how proteolysis of TRMT1 during SARS-CoV-2 infection impairs both TRMT1 tRNA binding and tRNA modification activity to disrupt host translation and potentially impact COVID-19 pathogenesis or phenotypes.
Collapse
Affiliation(s)
- Angel D'Oliviera
- Department of Chemistry & Biochemistry, University of DelawareNewarkUnited States
| | - Xuhang Dai
- Department of Chemistry, New York UniversityNew YorkUnited States
| | - Saba Mottaghinia
- CIRI (Centre International de Recherche en Infectiologie), Univ Lyon, Inserm, U1111, Université Claude Bernard Lyon 1, CNRS, UMR5308, ENS de LyonLyonFrance
| | - Sophie Olson
- Department of Chemistry & Biochemistry, University of DelawareNewarkUnited States
| | - Evan P Geissler
- Department of Chemistry & Biochemistry, University of DelawareNewarkUnited States
| | - Lucie Etienne
- CIRI (Centre International de Recherche en Infectiologie), Univ Lyon, Inserm, U1111, Université Claude Bernard Lyon 1, CNRS, UMR5308, ENS de LyonLyonFrance
| | - Yingkai Zhang
- Department of Chemistry, New York UniversityNew YorkUnited States
- Simons Center for Computational Physical Chemistry at New York UniversityNew YorkUnited States
| | - Jeffrey S Mugridge
- Department of Chemistry & Biochemistry, University of DelawareNewarkUnited States
| |
Collapse
|
6
|
Nandakumar M, Lundberg M, Carlsson F, Råberg L. Positive Selection on Mammalian Immune Genes-Effects of Gene Function and Selective Constraint. Mol Biol Evol 2025; 42:msaf016. [PMID: 39834162 PMCID: PMC11783303 DOI: 10.1093/molbev/msaf016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Revised: 12/22/2024] [Accepted: 01/13/2025] [Indexed: 01/22/2025] Open
Abstract
Genome-wide analyses of various taxa have repeatedly shown that immune genes are important targets of positive selection. However, little is known about what factors determine which immune genes are under positive selection. To address this question, we here focus on the mammalian immune system and investigate the importance of gene function and other factors such as gene expression, protein-protein interactions, and overall selective constraint as determinants of positive selection. We compiled a list of >1,100 immune genes that were divided into six functional categories and analyzed using data from rodents. Genes encoding proteins that are in direct interactions with pathogens, such as pattern recognition receptors (PRRs), are often expected to be key targets of positive selection. We found that categories containing cytokines, cytokine receptors, and other cell surface proteins involved in, for example, cell-cell interactions were at least as important targets as PRRs, with three times higher rate of positive selection than nonimmune genes. The higher rate of positive selection on cytokines and cell surface proteins was partly an effect of these categories having lower selective constraint. Nonetheless, cytokines had a higher rate of positive selection than nonimmune genes even at a given level of selective constraint, indicating that gene function per se can also be a determinant of positive selection. These results have broad implications for understanding the causes of positive selection on immune genes, specifically the relative importance of host-pathogen coevolution versus other processes.
Collapse
Affiliation(s)
| | - Max Lundberg
- Department of Biology, Lund University, Lund 223 62, Sweden
| | | | - Lars Råberg
- Department of Biology, Lund University, Lund 223 62, Sweden
| |
Collapse
|
7
|
Pereira AB, Marano M, Bathala R, Zaragoza RA, Neira A, Samano A, Owoyemi A, Casola C. Orphan genes are not a distinct biological entity. Bioessays 2025; 47:e2400146. [PMID: 39491810 DOI: 10.1002/bies.202400146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2024] [Revised: 10/06/2024] [Accepted: 10/11/2024] [Indexed: 11/05/2024]
Abstract
The genome sequencing revolution has revealed that all species possess a large number of unique genes critical for trait variation, adaptation, and evolutionary innovation. One widely used approach to identify such genes consists of detecting protein-coding sequences with no homology in other genomes, termed orphan genes. These genes have been extensively studied, under the assumption that they represent valid proxies for species-specific genes. Here, we critically evaluate taxonomic, phylogenetic, and sequence evolution evidence showing that orphan genes belong to a range of evolutionary ages and thus cannot be assigned to a single lineage. Furthermore, we show that the processes generating orphan genes are substantially more diverse than generally thought and include horizontal gene transfer, transposable element domestication, and overprinting. Thus, orphan genes represent a heterogeneous collection of genes rather than a single biological entity, making them unsuitable as a subject for meaningful investigation of gene evolution and phenotypic innovation.
Collapse
Affiliation(s)
- Andres Barboza Pereira
- Interdisciplinary Graduate Program in Genetics & Genomics, Texas A&M University, College Station, Texas, USA
- Interdisciplinary Doctoral Program in Ecology and Evolutionary Biology, Texas A&M University, College Station, Texas, USA
| | - Matthew Marano
- Interdisciplinary Doctoral Program in Ecology and Evolutionary Biology, Texas A&M University, College Station, Texas, USA
| | - Ramya Bathala
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, Texas, USA
| | | | - Andres Neira
- School of Pharmacy, Texas A&M University, College Station, Texas, USA
| | - Alex Samano
- Department of Biology, Texas A&M University, College Station, Texas, USA
| | - Adekola Owoyemi
- Department of Ecology and Conservation Biology, Texas A&M University, College Station, Texas, USA
| | - Claudio Casola
- Interdisciplinary Graduate Program in Genetics & Genomics, Texas A&M University, College Station, Texas, USA
- Interdisciplinary Doctoral Program in Ecology and Evolutionary Biology, Texas A&M University, College Station, Texas, USA
- Department of Ecology and Conservation Biology, Texas A&M University, College Station, Texas, USA
| |
Collapse
|
8
|
Joshy D, Santpere G, Yi SV. Accelerated cell-type-specific regulatory evolution of the human brain. Proc Natl Acad Sci U S A 2024; 121:e2411918121. [PMID: 39680759 PMCID: PMC11670112 DOI: 10.1073/pnas.2411918121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Accepted: 10/30/2024] [Indexed: 12/18/2024] Open
Abstract
The molecular basis of human brain evolution is a key piece in understanding the evolution of human-specific cognitive and behavioral traits. Comparative studies have suggested that human brain evolution was accompanied by accelerated changes of gene expression (referred to as "regulatory evolution"), especially those leading to an increase of gene products involved in energy production and metabolism. However, the signals of accelerated regulatory evolution were not always consistent across studies. One confounding factor is the diversity of distinctive cell types in the human brain. Here, we leveraged single-cell human and nonhuman primate transcriptomic data to investigate regulatory evolution at cell-type resolution. We relied on six well-established major cell types: excitatory and inhibitory neurons, astrocytes, microglia, oligodendrocytes, and oligodendrocyte precursor cells. We found pervasive signatures of accelerated regulatory evolution in the human brains compared to the chimpanzee brains in the major six cell types, as well as across multiple neuronal subtypes. Moreover, regulatory evolution is highly cell type specific rather than shared between cell types and strongly associated with cellular-level epigenomic features. Evolutionarily differentially expressed genes (DEGs) exhibit greater cell-type specificity than other genes, suggesting their role in the functional specialization of individual cell types in the human brain. As we continue to unfold the cellular complexity of the brain, the actual scope of DEGs in the human brain appears to be much broader than previously estimated. Our study supports the acceleration of cell-type-specific functional programs as an important feature of human brain evolution.
Collapse
Affiliation(s)
- Dennis Joshy
- Department of Mechanical Engineering, University of California, Santa Barbara, CA93106
- Neuroscience Research Institute, University of California, Santa Barbara, CA93106
| | - Gabriel Santpere
- Hospital del Mar Research Institute, Parc de Recerca Biomèdica de Barcelona, Barcelona08003, Catalonia, Spain
| | - Soojin V. Yi
- Neuroscience Research Institute, University of California, Santa Barbara, CA93106
- Department of Ecology, Evolution, Marine Biology, University of California, Santa Barbara, CA93106
- Department of Molecular, Cellular, and Developmental Biology, University of California, Santa Barbara, CA93106
| |
Collapse
|
9
|
Peka M, Balatsky V. Bioinformatic approach to identifying causative missense polymorphisms in animal genomes. BMC Genomics 2024; 25:1226. [PMID: 39701989 DOI: 10.1186/s12864-024-11126-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Accepted: 12/05/2024] [Indexed: 12/21/2024] Open
Abstract
BACKGROUND Trends in the development of genetic markers for the purposes of genomic and marker-assisted selection primarily focus on identifying causative polymorphisms. Using these polymorphisms as markers enables a more accurate association between genotype and phenotype. Bioinformatic analysis allows calculating the impact of missense polymorphisms on the structural and functional characteristics of proteins, which makes it promising for identifying causative polymorphisms. In this study, a bioinformatic approach is applied to evaluate and differentiate polymorphisms based on their causality in genes that affect the production traits of pigs and cows, which are two important livestock species. RESULTS The influence of both known causative and candidate missense polymorphisms in the MC4R, NR6A1, PRKAG3, RYR1, and SYNGR2 genes of pigs, as well as the ABCG2, DGAT1, GHR, and MSTN genes of cows, was assessed. The study included an evaluation of the effect of polymorphisms on protein functions, considering the evolutionary and physicochemical characteristics of amino acids at polymorphic sites. Additionally, it examined the impact of polymorphisms on the stability of tertiary protein structures, including changes in folding, binding of protein monomers, and interaction with ligands. CONCLUSIONS The comprehensive bioinformatic analysis used in this study enables the differentiation of polymorphisms into neutral, where both amino acids in the polymorphic site do not significantly affect the structure and function of the protein, and causative, where one of the amino acids significantly impacts the protein's properties. This approach can be employed in future research to screen extensive sets of polymorphisms in animal genomes, identifying the most promising polymorphisms for further investigation in association studies.
Collapse
Affiliation(s)
- Mykyta Peka
- Institute of Pig Breeding and Agroindustrial Production, National Academy of Agrarian Sciences of Ukraine, 1 Shvedska Mohyla St, Poltava, 36013, Ukraine.
- V. N. Karazin Kharkiv National University, 4 Svobody Sq, Kharkiv, 61022, Ukraine.
| | - Viktor Balatsky
- Institute of Pig Breeding and Agroindustrial Production, National Academy of Agrarian Sciences of Ukraine, 1 Shvedska Mohyla St, Poltava, 36013, Ukraine
| |
Collapse
|
10
|
Holland M, Rutkowski R, C. Levin T. Evolutionary Dynamics of Proinflammatory Caspases in Primates and Rodents. Mol Biol Evol 2024; 41:msae220. [PMID: 39431598 PMCID: PMC11630849 DOI: 10.1093/molbev/msae220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Revised: 10/05/2024] [Accepted: 10/14/2024] [Indexed: 10/22/2024] Open
Abstract
Caspase-1 and related proteases are key players in inflammation and innate immunity. Here, we characterize the evolutionary history of caspase-1 and its close relatives across 19 primates and 21 rodents, focusing on differences that may cause discrepancies between humans and animal studies. While caspase-1 has been retained in all these taxa, other members of the caspase-1 subfamily (caspase-4, caspase-5, caspase-11, and caspase-12 and CARD16, 17, and 18) each have unique evolutionary trajectories. Caspase-4 is found across simian primates, whereas we identified multiple pseudogenization and gene loss events in caspase-5, caspase-11, and the CARDs. Because caspase-4 and caspase-11 are both key players in the noncanonical inflammasome pathway, we expected that these proteins would be likely to evolve rapidly. Instead, we found that these two proteins are largely conserved, whereas caspase-4's close paralog, caspase-5, showed significant indications of positive selection, as did primate caspase-1. Caspase-12 is a nonfunctional pseudogene in humans. We find this extends across most primates, although many rodents and some primates retain an intact, and likely functional, caspase-12. In mouse laboratory lines, we found that 50% of common strains carry nonsynonymous variants that may impact the functions of caspase-11 and caspase-12 and therefore recommend specific strains to be used (and avoided). Finally, unlike rodents, primate caspases have undergone repeated rounds of gene conversion, duplication, and loss leading to a highly dynamic proinflammatory caspase repertoire. Thus, we uncovered many differences in the evolution of primate and rodent proinflammatory caspases and discuss the potential implications of this history for caspase gene functions.
Collapse
Affiliation(s)
- Mische Holland
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA, USA
| | - Rachel Rutkowski
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA, USA
| | - Tera C. Levin
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA, USA
| |
Collapse
|
11
|
Latrille T, Joseph J, Hartasánchez DA, Salamin N. Estimating the proportion of beneficial mutations that are not adaptive in mammals. PLoS Genet 2024; 20:e1011536. [PMID: 39724093 PMCID: PMC11709321 DOI: 10.1371/journal.pgen.1011536] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 01/08/2025] [Accepted: 12/10/2024] [Indexed: 12/28/2024] Open
Abstract
Mutations can be beneficial by bringing innovation to their bearer, allowing them to adapt to environmental change. These mutations are typically unpredictable since they respond to an unforeseen change in the environment. However, mutations can also be beneficial because they are simply restoring a state of higher fitness that was lost due to genetic drift in a stable environment. In contrast to adaptive mutations, these beneficial non-adaptive mutations can be predicted if the underlying fitness landscape is stable and known. The contribution of such non-adaptive mutations to molecular evolution has been widely neglected mainly because their detection is very challenging. We have here reconstructed protein-coding gene fitness landscapes shared between mammals, using mutation-selection models and a multi-species alignments across 87 mammals. These fitness landscapes have allowed us to predict the fitness effect of polymorphisms found in 28 mammalian populations. Using methods that quantify selection at the population level, we have confirmed that beneficial non-adaptive mutations are indeed positively selected in extant populations. Our work confirms that deleterious substitutions are accumulating in mammals and are being reverted, generating a balance in which genomes are damaged and restored simultaneously at different loci. We observe that beneficial non-adaptive mutations represent between 15% and 45% of all beneficial mutations in 24 of 28 populations analyzed, suggesting that a substantial part of ongoing positive selection is not driven solely by adaptation to environmental change in mammals.
Collapse
Affiliation(s)
- Thibault Latrille
- Department of Computational Biology, Université de Lausanne, Lausanne, Switzerland
| | - Julien Joseph
- Laboratoire de Biométrie et Biologie Evolutive, UMR5558, Université Lyon 1, Villeurbanne, France
| | | | - Nicolas Salamin
- Department of Computational Biology, Université de Lausanne, Lausanne, Switzerland
| |
Collapse
|
12
|
Salvador-Martínez I, Murga-Moreno J, Nieto JC, Alsinet C, Enard D, Heyn H. Adaptation in human immune cells residing in tissues at the frontline of infections. Nat Commun 2024; 15:10329. [PMID: 39609395 PMCID: PMC11605006 DOI: 10.1038/s41467-024-54603-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Accepted: 11/14/2024] [Indexed: 11/30/2024] Open
Abstract
Human immune cells are under constant evolutionary pressure, primarily through their role as first line of defence against pathogens. Most studies on immune adaptation are, however, based on protein-coding genes without considering their cellular context. Here, using data from the Human Cell Atlas, we infer the gene adaptation rate of the human immune landscape at cellular resolution. We find abundant cell types, like progenitor cells during development and adult cells in barrier tissues, to harbour significantly increased adaptation rates. We confirm the adaptation of tissue-resident T and NK cells in the adult lung located in compartments directly facing external challenges, such as respiratory pathogens. Analysing human iPSC-derived macrophages responding to various challenges, we find adaptation in early immune responses. Together, our study suggests host benefits to control pathogen spread at early stages of infection, providing a retrospect of forces that shaped the complexity, architecture, and function of the human body.
Collapse
Affiliation(s)
| | - Jesus Murga-Moreno
- Department of Ecology and Evolutionary Biology, University of Arizona, Tucson, AZ, USA
| | - Juan C Nieto
- CNAG, Centro Nacional de Análisis Genómico, Barcelona, Spain
| | - Clara Alsinet
- CNAG, Centro Nacional de Análisis Genómico, Barcelona, Spain
| | - David Enard
- Department of Ecology and Evolutionary Biology, University of Arizona, Tucson, AZ, USA.
| | - Holger Heyn
- CNAG, Centro Nacional de Análisis Genómico, Barcelona, Spain.
- Universitat de Barcelona (UB), Barcelona, Spain.
- ICREA, Barcelona, Spain.
| |
Collapse
|
13
|
Vazquez JM, Lauterbur ME, Mottaghinia S, Bucci M, Fraser D, Gray-Sandoval G, Gaucherand L, Haidar ZR, Han M, Kohler W, Lama TM, Le Corf A, Loyer C, Maesen S, McMillan D, Li S, Lo J, Rey C, Capel SLR, Singer M, Slocum K, Thomas W, Tyburec JD, Villa S, Miller R, Buchalski M, Vazquez-Medina JP, Pfeffer S, Etienne L, Enard D, Sudmant PH. Extensive longevity and DNA virus-driven adaptation in nearctic Myotis bats. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.10.10.617725. [PMID: 39416019 PMCID: PMC11482938 DOI: 10.1101/2024.10.10.617725] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 10/19/2024]
Abstract
The genus Myotis is one of the largest clades of bats, and exhibits some of the most extreme variation in lifespans among mammals alongside unique adaptations to viral tolerance and immune defense. To study the evolution of longevity-associated traits and infectious disease, we generated near-complete genome assemblies and cell lines for 8 closely related species of Myotis. Using genome-wide screens of positive selection, analyses of structural variation, and functional experiments in primary cell lines, we identify new patterns of adaptation contributing to longevity, cancer resistance, and viral interactions in bats. We find that Myotis bats have some of the most significant variation in cancer risk across mammals and demonstrate a unique DNA damage response in primary cells of the long-lived M. lucifugus. We also find evidence of abundant adaptation in response to DNA viruses - but not RNA viruses - in Myotis and other bats in sharp contrast with other mammals, potentially contributing to the role of bats as reservoirs of zoonoses. Together, our results demonstrate how genomics and primary cells derived from diverse taxa uncover the molecular bases of extreme adaptations in non-model organisms.
Collapse
Affiliation(s)
- Juan M Vazquez
- Department of Integrative Biology, University of California, Berkeley, Berkeley, CA USA
- These authors contributed equally
| | - M. Elise Lauterbur
- Department of Ecology and Evolutionary Biology, University of Arizona, Tucson, AZ USA
- Current affiliation: Department of Biology, University of Vermont, Burlington, VT USA
- These authors contributed equally
| | - Saba Mottaghinia
- Centre International de Recherche en Infectiologie (CIRI), Inserm U1111, UCBL1, CNRS UMR5308, Ecole Normale Supérieure ENS de Lyon, Université de Lyon, Lyon, France
| | - Melanie Bucci
- Department of Ecology and Evolutionary Biology, University of Arizona, Tucson, AZ USA
| | - Devaughn Fraser
- Wildlife Genetics Research Unit, Wildlife Health Laboratory, California Department of Fish and Wildlife, Sacramento, CA, United States
- Current affiliation: Wildlife Diversity Program, Wildlife Division, Connecticut Department of Energy and Environmental Protection, Burlington, CT, United States
| | | | - Léa Gaucherand
- Université de Strasbourg, Architecture et Réactivité de l’ARN, Institut de Biologie Moléculaire et Cellulaire du CNRS, Strasbourg, France
| | - Zeinab R Haidar
- Department of Biology, California State Polytechnic University, Humboldt, Arcata, CA USA
- Current affiliation: Western EcoSystems Technology Inc, Cheyenne, WY USA
| | - Melissa Han
- Department of Pathology and Clinical Laboratories, University of Michigan, Ann Arbor, MI USA
| | - William Kohler
- Department of Pathology and Clinical Laboratories, University of Michigan, Ann Arbor, MI USA
| | - Tanya M. Lama
- Department of Biological Sciences, Smith College, Northampton, MA USA
| | - Amandine Le Corf
- Centre International de Recherche en Infectiologie (CIRI), Inserm U1111, UCBL1, CNRS UMR5308, Ecole Normale Supérieure ENS de Lyon, Université de Lyon, Lyon, France
| | - Clara Loyer
- Centre International de Recherche en Infectiologie (CIRI), Inserm U1111, UCBL1, CNRS UMR5308, Ecole Normale Supérieure ENS de Lyon, Université de Lyon, Lyon, France
| | - Sarah Maesen
- Centre International de Recherche en Infectiologie (CIRI), Inserm U1111, UCBL1, CNRS UMR5308, Ecole Normale Supérieure ENS de Lyon, Université de Lyon, Lyon, France
| | - Dakota McMillan
- Department of Integrative Biology, University of California, Berkeley, Berkeley, CA USA
- Department of Science and Biotechnology, Berkeley City College, Berkeley, CA USA
| | - Stacy Li
- Department of Integrative Biology, University of California, Berkeley, Berkeley, CA USA
- Center for Computational Biology, University of California, Berkeley, Berkeley, CA USA
| | - Johnathan Lo
- Center for Computational Biology, University of California, Berkeley, Berkeley, CA USA
| | - Carine Rey
- Centre International de Recherche en Infectiologie (CIRI), Inserm U1111, UCBL1, CNRS UMR5308, Ecole Normale Supérieure ENS de Lyon, Université de Lyon, Lyon, France
| | - Samantha LR Capel
- Current affiliation: Wildlife Diversity Program, Wildlife Division, Connecticut Department of Energy and Environmental Protection, Burlington, CT, United States
| | - Michael Singer
- Department of Molecular and Cellular Biology, University of California, Berkeley, Berkeley, CA USA
| | | | - William Thomas
- Department of Ecology and Evolution, Stony Brook University, Stony Brook NY USA
| | | | - Sarah Villa
- Department of Molecular and Cellular Biology, University of California, Berkeley, Berkeley, CA USA
| | - Richard Miller
- Department of Pathology and Clinical Laboratories, University of Michigan, Ann Arbor, MI USA
| | - Michael Buchalski
- Wildlife Genetics Research Unit, Wildlife Health Laboratory, California Department of Fish and Wildlife, Sacramento, CA, United States
| | | | - Sébastien Pfeffer
- Université de Strasbourg, Architecture et Réactivité de l’ARN, Institut de Biologie Moléculaire et Cellulaire du CNRS, Strasbourg, France
| | - Lucie Etienne
- Centre International de Recherche en Infectiologie (CIRI), Inserm U1111, UCBL1, CNRS UMR5308, Ecole Normale Supérieure ENS de Lyon, Université de Lyon, Lyon, France
- Senior author
| | - David Enard
- Department of Ecology and Evolutionary Biology, University of Arizona, Tucson, AZ USA
- Senior author
- These authors contributed equally
| | - Peter H Sudmant
- Department of Integrative Biology, University of California, Berkeley, Berkeley, CA USA
- Center for Computational Biology, University of California, Berkeley, Berkeley, CA USA
- Senior author
- These authors contributed equally
- Lead contact
| |
Collapse
|
14
|
D’Oliviera A, Dai X, Mottaghinia S, Olson S, Geissler EP, Etienne L, Zhang Y, Mugridge JS. Recognition and Cleavage of Human tRNA Methyltransferase TRMT1 by the SARS-CoV-2 Main Protease. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.02.20.529306. [PMID: 36865253 PMCID: PMC9980103 DOI: 10.1101/2023.02.20.529306] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/24/2023]
Abstract
The SARS-CoV-2 main protease (Mpro, or Nsp5) is critical for the production of functional viral proteins during infection and, like many viral proteases, can also target host proteins to subvert their cellular functions. Here, we show that the human tRNA methyltransferase TRMT1 can be recognized and cleaved by SARS-CoV-2 Mpro. TRMT1 installs the N 2,N 2-dimethylguanosine (m2,2G) modification on mammalian tRNAs, which promotes global protein synthesis and cellular redox homeostasis. We find that Mpro can cleave endogenous TRMT1 in human cell lysate, resulting in removal of the TRMT1 zinc finger domain. TRMT1 proteolysis results in elimination of TRMT1 tRNA methyltransferase activity and reduced tRNA binding affinity. Evolutionary analysis shows that the TRMT1 cleavage site is highly conserved in mammals, except in Muroidea, where TRMT1 is likely resistant to cleavage. In primates, regions outside the cleavage site with rapid evolution could indicate adaptation to ancient viral pathogens. Furthermore, we determined the structure of a TRMT1 peptide in complex with Mpro, revealing a substrate binding conformation distinct from the majority of available Mpro-peptide complexes. Kinetic parameters for peptide cleavage show that the TRMT1(526-536) sequence is cleaved with comparable efficiency to the Mpro-targeted nsp8/9 viral cleavage site. Mutagenesis studies and molecular dynamics simulations together indicate that kinetic discrimination occurs during a later step of Mpro-mediated proteolysis that follows substrate binding. Our results provide new information about the structural basis for Mpro substrate recognition and cleavage, the functional roles of the TRMT1 zinc finger domain in tRNA binding and modification, and the regulation of TRMT1 activity by SARS-CoV-2 Mpro. These studies could inform future therapeutic design targeting Mpro and raise the possibility that proteolysis of human TRMT1 during SARS-CoV-2 infection suppresses protein translation and oxidative stress response to impact viral pathogenesis. Significance Statement Viral proteases can strategically target human proteins to manipulate host biochemistry during infection. Here, we show that the SARS-CoV-2 main protease (Mpro) can specifically recognize and cleave the human tRNA methyltransferase enzyme TRMT1, and that cleavage of TRMT1 cripples its ability to install a key modification on human tRNAs that is critical for protein translation. Our structural and functional analysis of the Mpro-TRMT1 interaction shows how the flexible Mpro active site engages a conserved sequence in TRMT1 in an uncommon binding mode to catalyze its cleavage and inactivation. These studies provide new insights into substrate recognition by SARS-CoV-2 Mpro that could help guide future antiviral therapeutic development and show how proteolysis of TRMT1 during SARS-CoV-2 infection impairs both TRMT1 tRNA binding and tRNA modification activity to disrupt host translation and potentially impact COVID-19 pathogenesis or phenotypes.
Collapse
Affiliation(s)
- Angel D’Oliviera
- Department of Chemistry & Biochemistry, University of Delaware, Newark, DE 19716
| | - Xuhang Dai
- Department of Chemistry, New York University, New York, NY 10003
| | - Saba Mottaghinia
- CIRI (Centre International de Recherche en Infectiologie), Univ Lyon, Inserm, U1111, Université Claude Bernard Lyon 1, CNRS, UMR5308, ENS de Lyon, F-69007 Lyon, France
| | - Sophie Olson
- Department of Chemistry & Biochemistry, University of Delaware, Newark, DE 19716
| | - Evan P. Geissler
- Department of Chemistry & Biochemistry, University of Delaware, Newark, DE 19716
| | - Lucie Etienne
- CIRI (Centre International de Recherche en Infectiologie), Univ Lyon, Inserm, U1111, Université Claude Bernard Lyon 1, CNRS, UMR5308, ENS de Lyon, F-69007 Lyon, France
| | - Yingkai Zhang
- Department of Chemistry, New York University, New York, NY 10003
- Simons Center for Computational Physical Chemistry at New York University, New York, NY 10003
| | - Jeffrey S. Mugridge
- Department of Chemistry & Biochemistry, University of Delaware, Newark, DE 19716
| |
Collapse
|
15
|
Mendel BM, Asselin AK, Johnson KN, McGuigan K. Effects of spontaneous mutations on survival and reproduction of Drosophila serrata infected with Drosophila C virus. Evolution 2024; 78:1661-1672. [PMID: 38934580 DOI: 10.1093/evolut/qpae101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2024] [Revised: 06/13/2024] [Accepted: 06/25/2024] [Indexed: 06/28/2024]
Abstract
The impact of selection on host immune function genes has been widely documented. However, it remains essentially unknown how mutation influences the quantitative immune traits that selection acts on. Applying a classical mutation accumulation (MA) experimental design in Drosophila serrata, we found the mutational variation in susceptibility (median time of death, LT50) to Drosophila C virus (DCV) was of similar magnitude to that reported for intrinsic survival traits. Mean LT50 did not change as mutations accumulated, suggesting no directional bias in mutational effects. Maintenance of genetic variance in immune function is hypothesized to be influenced by pleiotropic effects on immunity and other traits that contribute to fitness. To investigate this, we assayed female reproductive output for a subset of MA lines with relatively long or short survival times under DCV infection. Longer survival time tended to be associated with lower reproductive output, suggesting that mutations affecting susceptibility to DCV had pleiotropic effects on investment in reproductive fitness. Further studies are needed to uncover the general patterns of mutational effect on immune responses and other fitness traits, and to determine how selection might typically act on new mutations via their direct and pleiotropic effects.
Collapse
Affiliation(s)
- Bonita M Mendel
- School of the Environment, The University of Queensland, Brisbane, QLD, Australia
| | - Angelique K Asselin
- School of the Environment, The University of Queensland, Brisbane, QLD, Australia
| | - Karyn N Johnson
- School of the Environment, The University of Queensland, Brisbane, QLD, Australia
| | - Katrina McGuigan
- School of the Environment, The University of Queensland, Brisbane, QLD, Australia
| |
Collapse
|
16
|
Cury J, Haudiquet M, Hernandez Trejo V, Mordret E, Hanouna A, Rotival M, Tesson F, Bonhomme D, Ofir G, Quintana-Murci L, Benaroch P, Poirier EZ, Bernheim A. Conservation of antiviral systems across domains of life reveals immune genes in humans. Cell Host Microbe 2024; 32:1594-1607.e5. [PMID: 39208803 DOI: 10.1016/j.chom.2024.08.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 06/27/2024] [Accepted: 08/01/2024] [Indexed: 09/04/2024]
Abstract
Deciphering the immune organization of eukaryotes is important for human health and for understanding ecosystems. The recent discovery of antiphage systems revealed that various eukaryotic immune proteins originate from prokaryotic antiphage systems. However, whether bacterial antiphage proteins can illuminate immune organization in eukaryotes remains unexplored. Here, we use a phylogeny-driven approach to uncover eukaryotic immune proteins by searching for homologs of bacterial antiphage systems. We demonstrate that proteins displaying sequence similarity with recently discovered antiphage systems are widespread in eukaryotes and maintain a role in human immunity. Two eukaryotic proteins of the anti-transposon piRNA pathway are evolutionarily linked to the antiphage system Mokosh. Additionally, human GTPases of immunity-associated proteins (GIMAPs) as well as two genes encoded in microsynteny, FHAD1 and CTRC, are respectively related to the Eleos and Lamassu prokaryotic systems and exhibit antiviral activity. Our work illustrates how comparative genomics of immune mechanisms can uncover defense genes in eukaryotes.
Collapse
Affiliation(s)
- Jean Cury
- Molecular Diversity of Microbes, Institut Pasteur, CNRS UMR3525, INSERM U1284, Université Paris-Cité, 75015 Paris, France
| | - Matthieu Haudiquet
- Molecular Diversity of Microbes, Institut Pasteur, CNRS UMR3525, INSERM U1284, Université Paris-Cité, 75015 Paris, France; Innate Immunity in Physiology and Cancer Team, Institut Curie, PSL Research University, INSERM U932, 75005 Paris, France
| | - Veronica Hernandez Trejo
- Innate Immunity in Physiology and Cancer Team, Institut Curie, PSL Research University, INSERM U932, 75005 Paris, France
| | - Ernest Mordret
- Molecular Diversity of Microbes, Institut Pasteur, CNRS UMR3525, INSERM U1284, Université Paris-Cité, 75015 Paris, France
| | - Anael Hanouna
- Myeloid Cells and Immunity Team, Institut Curie, PSL Research University, INSERM U932, 75005 Paris, France
| | - Maxime Rotival
- Human Evolutionary Genetics Unit, Institut Pasteur, Université Paris Cité, CNRS UMR2000, 75015 Paris, France
| | - Florian Tesson
- Molecular Diversity of Microbes, Institut Pasteur, CNRS UMR3525, INSERM U1284, Université Paris-Cité, 75015 Paris, France
| | - Delphine Bonhomme
- Innate Immunity in Physiology and Cancer Team, Institut Curie, PSL Research University, INSERM U932, 75005 Paris, France
| | - Gal Ofir
- Department of Molecular Biology, Max Planck Institute for Biology Tübingen, 72076 Tübingen, Germany
| | - Lluis Quintana-Murci
- Human Evolutionary Genetics Unit, Institut Pasteur, Université Paris Cité, CNRS UMR2000, 75015 Paris, France; Human Genomics and Evolution, Collège de France, 75005 Paris, France
| | - Philippe Benaroch
- Myeloid Cells and Immunity Team, Institut Curie, PSL Research University, INSERM U932, 75005 Paris, France
| | - Enzo Z Poirier
- Innate Immunity in Physiology and Cancer Team, Institut Curie, PSL Research University, INSERM U932, 75005 Paris, France.
| | - Aude Bernheim
- Molecular Diversity of Microbes, Institut Pasteur, CNRS UMR3525, INSERM U1284, Université Paris-Cité, 75015 Paris, France.
| |
Collapse
|
17
|
Rives N, Lamba V, Cheng CHC, Zhuang X. Diverse Origins of Near-Identical Antifreeze Proteins in Unrelated Fish Lineages Provide Insights Into Evolutionary Mechanisms of New Gene Birth and Protein Sequence Convergence. Mol Biol Evol 2024; 41:msae182. [PMID: 39213383 PMCID: PMC11403476 DOI: 10.1093/molbev/msae182] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Revised: 07/04/2024] [Accepted: 08/13/2024] [Indexed: 09/04/2024] Open
Abstract
Determining the origins of novel genes and the mechanisms driving the emergence of new functions is challenging yet crucial for understanding evolutionary innovations. Recently evolved fish antifreeze proteins (AFPs) offer a unique opportunity to explore these processes, particularly the near-identical type I AFP (AFPI) found in four phylogenetically divergent fish taxa. This study tested the hypothesis of protein sequence convergence beyond functional convergence in three unrelated AFPI-bearing fish lineages. Through comprehensive comparative analyses of newly sequenced genomes of winter flounder and grubby sculpin, along with available high-quality genomes of cunner and 14 other related species, the study revealed that near-identical AFPI proteins originated from distinct genetic precursors in each lineage. Each lineage independently evolved a de novo coding region for the novel ice-binding protein while repurposing fragments from their respective ancestors into potential regulatory regions, representing partial de novo origination-a process that bridges de novo gene formation and the neofunctionalization of duplicated genes. The study supports existing models of new gene origination and introduces new ones: the innovation-amplification-divergence model, where novel changes precede gene duplication; the newly proposed duplication-degeneration-divergence model, which describes new functions arising from degenerated pseudogenes; and the duplication-degeneration-divergence gene fission model, where each new sibling gene differentially degenerates and renovates distinct functional domains from their parental gene. These findings highlight the diverse evolutionary pathways through which a novel functional gene with convergent sequences at the protein level can evolve across divergent species, advancing our understanding of the mechanistic intricacies in new gene formation.
Collapse
Affiliation(s)
- Nathan Rives
- Department of Biological Sciences, University of Arkansas, Fayetteville, AR, USA
| | - Vinita Lamba
- Department of Biological Sciences, University of Arkansas, Fayetteville, AR, USA
| | - C H Christina Cheng
- Department of Evolution, Ecology and Behavior, University of Illinois, Urbana-Champaign, IL, USA
| | - Xuan Zhuang
- Department of Biological Sciences, University of Arkansas, Fayetteville, AR, USA
| |
Collapse
|
18
|
Holland M, Rutkowski R, Levin TC. Evolutionary dynamics of pro-inflammatory caspases in primates and rodents. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.06.19.599744. [PMID: 39253439 PMCID: PMC11383037 DOI: 10.1101/2024.06.19.599744] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/11/2024]
Abstract
Caspase-1 and related proteases are key players in inflammation and innate immunity. Here, we characterize the evolutionary history of caspase-1 and its close relatives across 19 primates and 21 rodents, focusing on differences that may cause discrepancies between humans and animal studies. While caspase-1 has been retained in all these taxa, other members of the caspase-1 subfamily (caspase-4, -5, -11, -12, and CARD16, 17, and 18) each have unique evolutionary trajectories. Caspase-4 is found across simian primates, whereas we identified multiple pseudogenization and gene loss events in caspase-5, caspase-11, and the CARDs. Because caspases-4 and -11 are both key players in the non-canonical inflammasome pathway, we expected that these proteins would be likely to evolve rapidly. Instead, we found that these two proteins are largely conserved, whereas caspase-4's close paralog, caspase-5, showed significant indications of positive selection, as did primate caspase-1. Caspase-12 is a non-functional pseudogene in humans. We find this extends across most primates, although many rodents and some primates retain an intact, and likely functional, caspase-12. In mouse laboratory lines, we found that 50% of common strains carry non-synonymous variants that may impact the functions of caspase-11 and -12, and therefore recommend specific strains to be used (and avoided). Finally, unlike rodents, primate caspases have undergone repeated rounds of gene conversion, duplication, and loss leading to a highly dynamic pro-inflammatory caspase repertoire. Thus we uncovered many differences in the evolution of primate and rodent pro-inflammatory caspases, and discuss the potential implications of this history for caspase gene functions.
Collapse
Affiliation(s)
- Mische Holland
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA, USA
| | - Rachel Rutkowski
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA, USA
| | - Tera C. Levin
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA, USA
| |
Collapse
|
19
|
Gautam D, Sindhu A, Vats A, Rajput S, Rana C, De S. Evolutionary insights of interferon lambda genes in tetrapods. J Evol Biol 2024; 37:1101-1112. [PMID: 39066611 DOI: 10.1093/jeb/voae094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Revised: 07/07/2024] [Accepted: 07/25/2024] [Indexed: 07/28/2024]
Abstract
Type III interferon (IFN), also known as IFN-λ, is an innate antiviral protein. We retrieved the sequences of IFN-λ and their receptors from 42 tetrapod species and conducted a computational evolutionary analysis to understand the diversity of these genes. The copy number variation (CNV) of IFN-λ was determined through qPCR in Indian cattle and buffalo. The tetrapod species feature intron-containing type III IFN genes. Some reptiles and placental mammals have 2 IFN-λ loci, while marsupials, monotremes, and birds have a single IFN-λ locus. Some placental mammals and amphibians exhibit multiple IFN-λ genes, including both intron-less and intron-containing forms. Placental mammals typically possess 3-4 functional IFN-λ genes, some of them lack signal peptides. IFN-λ of these tetrapod species formed 3 major clades. Mammalian IFN-λ4 appears as an ancestral form, with syntenic conservation in most mammalian species. The intron-less IFN-λ1 and both type III IFN receptors have conserved synteny in tetrapod. Purifying selection was noted in their evolutionary analysis that plays a crucial role in minimizing genetic diversity and maintaining the integrity of biological function. This indicates that these proteins have successfully retained their biological function and indispensability, even in the presence of the type I IFNs. The expansion of IFN-λ genes in amphibians and camels have led to the evolution of multiple IFN-λ. The CNV can arise from gene duplication and conversion events. The qPCR-based absolute quantification revealed that IFN-λ3 and IFN-λ4 have more than 1 copy in buffalo (Murrah) and 6 cattle breeds (Sahiwal, Tharparkar, Kankrej, Red Sindhi, Jersey, and Holstein Friesian). Overall, these findings highlight the evolutionary diversity and functional significance of IFN-λ in tetrapod species.
Collapse
Affiliation(s)
- Devika Gautam
- Animal Genomics Lab, Animal Biotechnology Centre, ICAR-National Dairy Research Institute (NDRI), Karnal, Haryana, India
- Department of Biotechnology, Deenbandhu Chhotu Ram University of Science and Technology, Murthal, Sonipat, Haryana, India
| | - Anil Sindhu
- Department of Biotechnology, Deenbandhu Chhotu Ram University of Science and Technology, Murthal, Sonipat, Haryana, India
| | - Ashutosh Vats
- Animal Genomics Lab, Animal Biotechnology Centre, ICAR-National Dairy Research Institute (NDRI), Karnal, Haryana, India
| | - Shiveeli Rajput
- Animal Genomics Lab, Animal Biotechnology Centre, ICAR-National Dairy Research Institute (NDRI), Karnal, Haryana, India
| | - Chanchal Rana
- Animal Genomics Lab, Animal Biotechnology Centre, ICAR-National Dairy Research Institute (NDRI), Karnal, Haryana, India
| | - Sachinandan De
- Animal Genomics Lab, Animal Biotechnology Centre, ICAR-National Dairy Research Institute (NDRI), Karnal, Haryana, India
| |
Collapse
|
20
|
Dubovik T, Lukačišin M, Starosvetsky E, LeRoy B, Normand R, Admon Y, Alpert A, Ofran Y, G'Sell M, Shen-Orr SS. Interactions between immune cell types facilitate the evolution of immune traits. Nature 2024; 632:350-356. [PMID: 38866051 PMCID: PMC11306095 DOI: 10.1038/s41586-024-07661-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Accepted: 06/04/2024] [Indexed: 06/14/2024]
Abstract
An essential prerequisite for evolution by natural selection is variation among individuals in traits that affect fitness1. The ability of a system to produce selectable variation, known as evolvability2, thus markedly affects the rate of evolution. Although the immune system is among the fastest-evolving components in mammals3, the sources of variation in immune traits remain largely unknown4,5. Here we show that an important determinant of the immune system's evolvability is its organization into interacting modules represented by different immune cell types. By profiling immune cell variation in bone marrow of 54 genetically diverse mouse strains from the Collaborative Cross6, we found that variation in immune cell frequencies is polygenic and that many associated genes are involved in homeostatic balance through cell-intrinsic functions of proliferation, migration and cell death. However, we also found genes associated with the frequency of a particular cell type that are expressed in a different cell type, exerting their effect in what we term cyto-trans. The vertebrate evolutionary record shows that genes associated in cyto-trans have faced weaker negative selection, thus increasing the robustness and hence evolvability2,7,8 of the immune system. This phenomenon is similarly observable in human blood. Our findings suggest that interactions between different components of the immune system provide a phenotypic space in which mutations can produce variation with little detriment, underscoring the role of modularity in the evolution of complex systems9.
Collapse
Affiliation(s)
- Tania Dubovik
- Department of Immunology, Faculty of Medicine, Technion - Israel Institute of Technology, Haifa, Israel
- CytoReason, Tel-Aviv, Israel
| | - Martin Lukačišin
- Department of Immunology, Faculty of Medicine, Technion - Israel Institute of Technology, Haifa, Israel
| | - Elina Starosvetsky
- Department of Immunology, Faculty of Medicine, Technion - Israel Institute of Technology, Haifa, Israel
- CytoReason, Tel-Aviv, Israel
| | - Benjamin LeRoy
- Department of Statistics, Carnegie Mellon University, Pittsburgh, PA, USA
- Nike, Beaverton, OR, USA
| | - Rachelly Normand
- Department of Immunology, Faculty of Medicine, Technion - Israel Institute of Technology, Haifa, Israel
- Massachusetts General Hospital, Boston, MA, USA
| | - Yasmin Admon
- Department of Immunology, Faculty of Medicine, Technion - Israel Institute of Technology, Haifa, Israel
- CytoReason, Tel-Aviv, Israel
| | - Ayelet Alpert
- Department of Immunology, Faculty of Medicine, Technion - Israel Institute of Technology, Haifa, Israel
- Department of Oncology, Rambam Health Care Campus, Haifa, Israel
| | - Yishai Ofran
- Department of Immunology, Faculty of Medicine, Technion - Israel Institute of Technology, Haifa, Israel
- Department of Haematology and Bone Marrow Transplantation, Rambam Health Care Campus, Haifa, Israel
- Haematology and Bone Marrow Transplantation Department and the Eisenberg R&D Authority, Shaare Zedek Medical Centre, Faculty of Medicine, Hebrew University, Jerusalem, Israel
| | - Max G'Sell
- Department of Statistics, Carnegie Mellon University, Pittsburgh, PA, USA
| | - Shai S Shen-Orr
- Department of Immunology, Faculty of Medicine, Technion - Israel Institute of Technology, Haifa, Israel.
| |
Collapse
|
21
|
Rives N, Lamba V, Cheng CHC, Zhuang X. Diverse origins of near-identical antifreeze proteins in unrelated fish lineages provide insights into evolutionary mechanisms of new gene birth and protein sequence convergence. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.03.12.584730. [PMID: 38559027 PMCID: PMC10980009 DOI: 10.1101/2024.03.12.584730] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/04/2024]
Abstract
Determining the origins of novel genes and the genetic mechanisms underlying the emergence of new functions is challenging yet crucial for understanding evolutionary innovations. The convergently evolved fish antifreeze proteins provide excellent opportunities to investigate evolutionary origins and pathways of new genes. Particularly notable is the near-identical type I antifreeze proteins (AFPI) in four phylogenetically divergent fish taxa. This study tested the hypothesis of protein sequence convergence beyond functional convergence in three unrelated AFPI-bearing fish lineages, revealing different paths by which a similar protein arose from diverse genomic resources. Comprehensive comparative analyses of de novo sequenced genome of the winter flounder and grubby sculpin, available high-quality genome of the cunner and 14 other relevant species found that the near-identical AFPI originated from a distinct genetic precursor in each lineage. Each independently evolved a coding region for the novel ice-binding protein while retaining sequence identity in the regulatory regions with their respective ancestor. The deduced evolutionary processes and molecular mechanisms are consistent with the Innovation-Amplification-Divergence (IAD) model applicable to AFPI formation in all three lineages, a new Duplication-Degeneration-Divergence (DDD) model we propose for the sculpin lineage, and a DDD model with gene fission for the cunner lineage. This investigation illustrates the multiple ways by which a novel functional gene with sequence convergence at the protein level could evolve across divergent species, advancing our understanding of the mechanistic intricacies in new gene formation.
Collapse
|
22
|
Carrasco JL, Ambrós S, Gutiérrez PA, Elena SF. Adaptation of turnip mosaic virus to Arabidopsis thaliana involves rewiring of VPg-host proteome interactions. Virus Evol 2024; 10:veae055. [PMID: 39091990 PMCID: PMC11291303 DOI: 10.1093/ve/veae055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Revised: 05/23/2024] [Accepted: 07/16/2024] [Indexed: 08/04/2024] Open
Abstract
The outcome of a viral infection depends on a complex interplay between the host physiology and the virus, mediated through numerous protein-protein interactions. In a previous study, we used high-throughput yeast two-hybrid (HT-Y2H) to identify proteins in Arabidopsis thaliana that bind to the proteins encoded by the turnip mosaic virus (TuMV) genome. Furthermore, after experimental evolution of TuMV lineages in plants with mutations in defense-related or proviral genes, most mutations observed in the evolved viruses affected the VPg cistron. Among these mutations, D113G was a convergent mutation selected in many lineages across different plant genotypes, including cpr5-2 with constitutive expression of systemic acquired resistance. In contrast, mutation R118H specifically emerged in the jin1 mutant with affected jasmonate signaling. Using the HT-Y2H system, we analyzed the impact of these two mutations on VPg's interaction with plant proteins. Interestingly, both mutations severely compromised the interaction of VPg with the translation initiation factor eIF(iso)4E, a crucial interactor for potyvirus infection. Moreover, mutation D113G, but not R118H, adversely affected the interaction with RHD1, a zinc-finger homeodomain transcription factor involved in regulating DNA demethylation. Our results suggest that RHD1 enhances plant tolerance to TuMV infection. We also discuss our findings in a broad virus evolution context.
Collapse
Affiliation(s)
- José L Carrasco
- Instituto de Biología Integrativa de Sistemas (CSIC—Universitat de València), Catedratico Agustin Escardino 9, Paterna, València 46182, Spain
| | - Silvia Ambrós
- Instituto de Biología Integrativa de Sistemas (CSIC—Universitat de València), Catedratico Agustin Escardino 9, Paterna, València 46182, Spain
| | - Pablo A Gutiérrez
- Laboratorio de Microbiología Industrial, Facultad de Ciencias, Universidad Nacional de Colombia, Carrera 65 Nro. 59A - 110, Medellín, Antioquia 050034, Colombia
| | - Santiago F Elena
- Instituto de Biología Integrativa de Sistemas (CSIC—Universitat de València), Catedratico Agustin Escardino 9, Paterna, València 46182, Spain
- The Santa Fe Institute, 1399 Hyde Park Rd, Santa Fe, NM 87501, United States
| |
Collapse
|
23
|
Ostridge HJ, Fontsere C, Lizano E, Soto DC, Schmidt JM, Saxena V, Alvarez-Estape M, Barratt CD, Gratton P, Bocksberger G, Lester JD, Dieguez P, Agbor A, Angedakin S, Assumang AK, Bailey E, Barubiyo D, Bessone M, Brazzola G, Chancellor R, Cohen H, Coupland C, Danquah E, Deschner T, Dotras L, Dupain J, Egbe VE, Granjon AC, Head J, Hedwig D, Hermans V, Hernandez-Aguilar RA, Jeffery KJ, Jones S, Junker J, Kadam P, Kaiser M, Kalan AK, Kambere M, Kienast I, Kujirakwinja D, Langergraber KE, Lapuente J, Larson B, Laudisoit A, Lee KC, Llana M, Maretti G, Martín R, Meier A, Morgan D, Neil E, Nicholl S, Nixon S, Normand E, Orbell C, Ormsby LJ, Orume R, Pacheco L, Preece J, Regnaut S, Robbins MM, Rundus A, Sanz C, Sciaky L, Sommer V, Stewart FA, Tagg N, Tédonzong LR, van Schijndel J, Vendras E, Wessling EG, Willie J, Wittig RM, Yuh YG, Yurkiw K, Vigilant L, Piel A, Boesch C, Kühl HS, Dennis MY, Marques-Bonet T, Arandjelovic M, Andrés AM. Local genetic adaptation to habitat in wild chimpanzees. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.07.09.601734. [PMID: 39026872 PMCID: PMC11257515 DOI: 10.1101/2024.07.09.601734] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/20/2024]
Abstract
How populations adapt to their environment is a fundamental question in biology. Yet we know surprisingly little about this process, especially for endangered species such as non-human great apes. Chimpanzees, our closest living relatives, are particularly interesting because they inhabit diverse habitats, from rainforest to woodland-savannah. Whether genetic adaptation facilitates such habitat diversity remains unknown, despite having wide implications for evolutionary biology and conservation. Using 828 newly generated exomes from wild chimpanzees, we find evidence of fine-scale genetic adaptation to habitat. Notably, adaptation to malaria in forest chimpanzees is mediated by the same genes underlying adaptation to malaria in humans. This work demonstrates the power of non-invasive samples to reveal genetic adaptations in endangered populations and highlights the importance of adaptive genetic diversity for chimpanzees.
Collapse
Affiliation(s)
- Harrison J Ostridge
- UCL Genetics Institute, Department of Genetics, Evolution and Environment, University College London, London, United Kingdom
| | - Claudia Fontsere
- Center for Evolutionary Hologenomics, The Globe Institute, University of Copenhagen, Copenhagen, Denmark
| | - Esther Lizano
- Institute of Evolutionary Biology (UPF-CSIC), PRBB, Dr. Aiguader 88, 08003 Barcelona, Spain
| | - Daniela C Soto
- University of California, Davis, Genome Center, MIND Institute, Department of Biochemistry & Molecular Medicine, One Shields Drive, Davis, CA, 95616, USA
| | - Joshua M Schmidt
- Flinders Health and Medical Research Institute (FHMRI), Department of Ophthalmology, Flinders University Sturt Rd, Bedford Park South Australia 5042 Australia
| | - Vrishti Saxena
- UCL Genetics Institute, Department of Genetics, Evolution and Environment, University College London, London, United Kingdom
| | - Marina Alvarez-Estape
- University of California, Davis, Genome Center, MIND Institute, Department of Biochemistry & Molecular Medicine, One Shields Drive, Davis, CA, 95616, USA
| | - Christopher D Barratt
- Naturalis Biodiversity Center, Darwinweg 2, 2333 CR Leiden, the Netherlands
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Leipzig-Jena, Puschstrasse 4, 04103 Leipzig, Germany
| | - Paolo Gratton
- University of Rome "Tor Vergata" Department of Biology Via Cracovia, 1, Roma, Italia
| | - Gaëlle Bocksberger
- Senckenberg Biodiversity and Climate Research Centre (SBiK-F), Senckenberganlage, 60325 Frankfurt am Main, Germany
| | - Jack D Lester
- Max Planck Institute for Evolutionary Anthropology (MPI EVAN), Deutscher Platz 6, 04103 Leipzig
| | - Paula Dieguez
- Max Planck Institute for Evolutionary Anthropology (MPI EVAN), Deutscher Platz 6, 04103 Leipzig
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Leipzig-Jena, Puschstrasse 4, 04103 Leipzig, Germany
| | - Anthony Agbor
- Max Planck Institute for Evolutionary Anthropology (MPI EVAN), Deutscher Platz 6, 04103 Leipzig
| | - Samuel Angedakin
- Max Planck Institute for Evolutionary Anthropology (MPI EVAN), Deutscher Platz 6, 04103 Leipzig
| | - Alfred Kwabena Assumang
- Department of Wildlife and Range Management, Faculty of Renewable Natural Resources, Kwame Nkrumah University of Science and Technology, Kumasi, Ghana
| | - Emma Bailey
- Max Planck Institute for Evolutionary Anthropology (MPI EVAN), Deutscher Platz 6, 04103 Leipzig
| | - Donatienne Barubiyo
- Max Planck Institute for Evolutionary Anthropology (MPI EVAN), Deutscher Platz 6, 04103 Leipzig
| | - Mattia Bessone
- Max Planck Institute for Evolutionary Anthropology (MPI EVAN), Deutscher Platz 6, 04103 Leipzig
- University of Konstanz, Centre for the Advanced Study of Collective Behaviour, Universitätsstraße 10, 78464, Konstanz, Germany
| | - Gregory Brazzola
- Max Planck Institute for Evolutionary Anthropology (MPI EVAN), Deutscher Platz 6, 04103 Leipzig
| | - Rebecca Chancellor
- West Chester University, Depts of Anthropology & Sociology and Psychology, West Chester, PA, 19382 USA
| | - Heather Cohen
- Max Planck Institute for Evolutionary Anthropology (MPI EVAN), Deutscher Platz 6, 04103 Leipzig
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Leipzig-Jena, Puschstrasse 4, 04103 Leipzig, Germany
| | - Charlotte Coupland
- Max Planck Institute for Evolutionary Anthropology (MPI EVAN), Deutscher Platz 6, 04103 Leipzig
| | - Emmanuel Danquah
- Department of Wildlife and Range Management, Faculty of Renewable Natural Resources, Kwame Nkrumah University of Science and Technology, Kumasi, Ghana
| | - Tobias Deschner
- Institute of Cognitive Science, University of Osnabrück, Artilleriestrasse 34, 49076 Osnabrück, Germany
| | - Laia Dotras
- Jane Goodall Institute Spain and Senegal, Dindefelo Biological Station, Dindefelo, Kedougou, Senegal
- Department of Social Psychology and Quantitative Psychology, Serra Hunter Programme, University of Barcelona, Barcelona, Spain
| | - Jef Dupain
- Antwerp Zoo Foundation, RZSA, Kon.Astridplein 26, 2018 Antwerp, Belgium
| | - Villard Ebot Egbe
- Max Planck Institute for Evolutionary Anthropology (MPI EVAN), Deutscher Platz 6, 04103 Leipzig
| | - Anne-Céline Granjon
- Max Planck Institute for Evolutionary Anthropology (MPI EVAN), Deutscher Platz 6, 04103 Leipzig
| | - Josephine Head
- The Biodiversity Consultancy, 3E Kings Parade, Cambridge, CB2 1SJ, UK
| | - Daniela Hedwig
- Elephant Listening Project, K. Lisa Yang Center for Conservation Bioacoustics, Cornell Lab of Ornithology, Cornell University, 159 Sapsucker Woods Road, Ithaca, NY 14850, USA
| | - Veerle Hermans
- KMDA, Centre for Research and Conservation, Royal Zoological Society of Antwerp, Koningin Astridplein 20-26, B-2018 Antwerp, Belgium
| | - R Adriana Hernandez-Aguilar
- Jane Goodall Institute Spain and Senegal, Dindefelo Biological Station, Dindefelo, Kedougou, Senegal
- Department of Social Psychology and Quantitative Psychology, Serra Hunter Programme, University of Barcelona, Barcelona, Spain
| | - Kathryn J Jeffery
- School of Natural Sciences, University of Stirling, UK
- Agence National des Parcs Nationaux (ANPN) Batterie 4, BP20379, Libreville, Gabon
| | - Sorrel Jones
- Max Planck Institute for Evolutionary Anthropology (MPI EVAN), Deutscher Platz 6, 04103 Leipzig
| | - Jessica Junker
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Leipzig-Jena, Puschstrasse 4, 04103 Leipzig, Germany
| | - Parag Kadam
- Greater Mahale Ecosystem Research and Conservation Project
| | - Michael Kaiser
- Max Planck Institute for Evolutionary Anthropology (MPI EVAN), Deutscher Platz 6, 04103 Leipzig
| | - Ammie K Kalan
- Department of Anthropology, University of Victoria, 3800 Finnerty Rd, Victoria, BC V8P 5C2, Canada
| | - Mbangi Kambere
- Max Planck Institute for Evolutionary Anthropology (MPI EVAN), Deutscher Platz 6, 04103 Leipzig
| | - Ivonne Kienast
- Department of Natural Resources and the Environment, Cornell University, Ithaca, NY 14850, USA
- K. Lisa Yang Center for Conservation Bioacoustics, Cornell Lab of Ornithology, Cornell University, Ithaca, NY 14850, USA
| | - Deo Kujirakwinja
- Wildlife Conservation Society (WCS), 2300 Southern Boulevard. Bronx, New York 10460, USA
| | - Kevin E Langergraber
- School of Human Evolution and Social Change, Institute of Human Origins, Arizona State University, 777 East University Drive, Tempe, AZ 85287 Arizona State University, PO Box 872402, Tempe, AZ 85287-2402 USA
- Institute of Human Origins, Arizona State University, 900 Cady Mall, Tempe, AZ 85287 Arizona State University, PO Box 872402, Tempe, AZ 85287-2402 USA
| | - Juan Lapuente
- Max Planck Institute for Evolutionary Anthropology (MPI EVAN), Deutscher Platz 6, 04103 Leipzig
| | | | | | - Kevin C Lee
- Max Planck Institute for Evolutionary Anthropology (MPI EVAN), Deutscher Platz 6, 04103 Leipzig
- K. Lisa Yang Center for Conservation Bioacoustics, Cornell Lab of Ornithology, Cornell University, Ithaca, NY 14850, USA
| | - Manuel Llana
- Jane Goodall Institute Spain and Senegal, Dindefelo Biological Station, Dindefelo, Kedougou, Senegal
| | - Giovanna Maretti
- Max Planck Institute for Evolutionary Anthropology (MPI EVAN), Deutscher Platz 6, 04103 Leipzig
| | - Rumen Martín
- Max Planck Institute for Evolutionary Anthropology (MPI EVAN), Deutscher Platz 6, 04103 Leipzig
| | - Amelia Meier
- Max Planck Institute for Evolutionary Anthropology (MPI EVAN), Deutscher Platz 6, 04103 Leipzig
- Hawai'i Insititute of Marine Biology, University of Hawai'i at Manoa, 46-007 Lilipuna Place, Kaneohe, HI, 96744, USA
| | - David Morgan
- Lester E. Fisher Center for the Study and Conservation of Apes, Lincoln Park Zoo, 2001 North Clark Street, Chicago, Illinois 60614 USA
| | - Emily Neil
- Max Planck Institute for Evolutionary Anthropology (MPI EVAN), Deutscher Platz 6, 04103 Leipzig
| | - Sonia Nicholl
- Max Planck Institute for Evolutionary Anthropology (MPI EVAN), Deutscher Platz 6, 04103 Leipzig
| | - Stuart Nixon
- North of England Zoological Society, Chester Zoo, Upton by Chester, CH2 1LH, United Kingdom
| | | | - Christopher Orbell
- Panthera, 8 W 40TH ST, New York, NY 10018, USA
- School of Natural Sciences, University of Stirling, UK
| | - Lucy Jayne Ormsby
- Max Planck Institute for Evolutionary Anthropology (MPI EVAN), Deutscher Platz 6, 04103 Leipzig
| | - Robinson Orume
- Korup Rainforest Conservation Society, c/o Korup National Park, P.O. Box 36 Mundemba, South West Region, Cameroon
| | - Liliana Pacheco
- Save the Dogs and Other Animals, DJ 223 Km 3, 905200 Cernavoda CT, Romania
| | - Jodie Preece
- Max Planck Institute for Evolutionary Anthropology (MPI EVAN), Deutscher Platz 6, 04103 Leipzig
| | | | - Martha M Robbins
- Max Planck Institute for Evolutionary Anthropology, Department of Primate Behavior and Evolution, Deutscher Platz 6, 04103 Leipzig
| | - Aaron Rundus
- West Chester University, Depts of Anthropology & Sociology and Psychology, West Chester, PA, 19382 USA
| | - Crickette Sanz
- Washington University in Saint Louis, Department of Anthropology, One Brookings Drive, St. Louis, MO 63130, USA
- Congo Program, Wildlife Conservation Society, 151 Avenue Charles de Gaulle, Brazzaville, Republic of Congo
| | - Lilah Sciaky
- Max Planck Institute for Evolutionary Anthropology (MPI EVAN), Deutscher Platz 6, 04103 Leipzig
| | - Volker Sommer
- University College London, Department of Anthropology, 14 Taviton Street, London WC1H 0BW, UK
| | - Fiona A Stewart
- University College London, Department of Anthropology, 14 Taviton Street, London WC1H 0BW, UK
- Department of Human Origins, Max Planck Institute for Evolutionary Anthropology (MPI EVAN), Deutscher Platz 6, 04103 Leipzig
| | - Nikki Tagg
- KMDA, Centre for Research and Conservation, Royal Zoological Society of Antwerp, Koningin Astridplein 20-26, B-2018 Antwerp, Belgium
- Born Free Foundation, Floor 2 Frazer House, 14 Carfax, Horsham, RH12 1ER, UK
| | - Luc Roscelin Tédonzong
- KMDA, Centre for Research and Conservation, Royal Zoological Society of Antwerp, Koningin Astridplein 20-26, B-2018 Antwerp, Belgium
| | - Joost van Schijndel
- Max Planck Institute for Evolutionary Anthropology (MPI EVAN), Deutscher Platz 6, 04103 Leipzig
| | - Elleni Vendras
- Frankfurt Zoological Society, Bernhard-Grzimek-Allee 1, 60316 Frankfurt, Germany
| | - Erin G Wessling
- Johann-Friedrich-Blumenbach Institute for Zoology and Anthropology, Georg-August-University Göttingen,Göttingen, Germany
- German Primate Center, Leibniz Institute for Primate Research, Göttingen, Germany
| | - Jacob Willie
- KMDA, Centre for Research and Conservation, Royal Zoological Society of Antwerp, Koningin Astridplein 20-26, B-2018 Antwerp, Belgium
- Terrestrial Ecology Unit (TEREC), Department of Biology, Ghent University (UGent), K.L. Ledeganckstraat 35, 9000 Ghent, Belgium
| | - Roman M Wittig
- Ape Social Mind Lab, Institute for Cognitive Sciences Marc Jeannerod, CNRS UMR 5229 CNRS, 67 bd Pinel, 69675 Bron CEDEX, France
- Taï Chimpanzee Project, Centre Suisse de Recherches Scientifiques, BP 1301, Abidjan 01, CI
| | - Yisa Ginath Yuh
- Max Planck Institute for Evolutionary Anthropology (MPI EVAN), Deutscher Platz 6, 04103 Leipzig
| | - Kyle Yurkiw
- Max Planck Institute for Evolutionary Anthropology (MPI EVAN), Deutscher Platz 6, 04103 Leipzig
| | - Linda Vigilant
- Max Planck Institute for Evolutionary Anthropology (MPI EVAN), Deutscher Platz 6, 04103 Leipzig
| | - Alex Piel
- University College London, Department of Anthropology, 14 Taviton Street, London WC1H 0BW, UK
| | | | - Hjalmar S Kühl
- Senckenberg Museum for Natural History Görlitz, Senckenberg - Member of the Leibniz Association Am Museum 1, 02826 Görlitz, Germany
- International Institute Zittau, Technische Universität Dresden, Markt 23, 02763 Zittau, Germany
| | - Megan Y Dennis
- University of California, Davis, Genome Center, MIND Institute, Department of Biochemistry & Molecular Medicine, One Shields Drive, Davis, CA, 95616, USA
| | - Tomas Marques-Bonet
- Institute of Evolutionary Biology (UPF-CSIC), PRBB, Dr. Aiguader 88, 08003 Barcelona, Spain
- Catalan Institution of Research and Advanced Studies (ICREA), Passeig de Lluís Companys, 23, 08010, Barcelona, Spain
- CNAG-CRG, Centre for Genomic Regulation (CRG), Barcelona Institute of Science and Technology (BIST), Baldiri i Reixac 4, 08028 Barcelona, Spain
- Institut Català de Paleontologia Miquel Crusafont, Universitat Autònoma de Barcelona, Edifici ICTA-ICP, c/ Columnes s/n, 08193 Cerdanyola del Vallès, Barcelona, Spain
| | - Mimi Arandjelovic
- Max Planck Institute for Evolutionary Anthropology, Department of Primate Behavior and Evolution, Deutscher Platz 6, 04103 Leipzig
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Puschstrasse 4, 04103
| | - Aida M Andrés
- UCL Genetics Institute, Department of Genetics, Evolution and Environment, University College London, London, United Kingdom
| |
Collapse
|
24
|
Legrand A, Dahoui C, De La Myre Mory C, Noy K, Guiguettaz L, Versapuech M, Loyer C, Pillon M, Wcislo M, Guéguen L, Berlioz-Torrent C, Cimarelli A, Mateo M, Fiorini F, Ricci EP, Etienne L. SAMD9L acts as an antiviral factor against HIV-1 and primate lentiviruses by restricting viral and cellular translation. PLoS Biol 2024; 22:e3002696. [PMID: 38959200 PMCID: PMC11221667 DOI: 10.1371/journal.pbio.3002696] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Accepted: 05/31/2024] [Indexed: 07/05/2024] Open
Abstract
Sterile alpha motif domain-containing proteins 9 and 9-like (SAMD9/9L) are associated with life-threatening genetic diseases in humans and are restriction factors of poxviruses. Yet, their cellular function and the extent of their antiviral role are poorly known. Here, we found that interferon-stimulated human SAMD9L restricts HIV-1 in the late phases of replication, at the posttranscriptional and prematuration steps, impacting viral translation and, possibly, endosomal trafficking. Surprisingly, the paralog SAMD9 exerted an opposite effect, enhancing HIV-1. More broadly, we showed that SAMD9L restricts primate lentiviruses, but not a gammaretrovirus (MLV), nor 2 RNA viruses (arenavirus MOPV and rhabdovirus VSV). Using structural modeling and mutagenesis of SAMD9L, we identified a conserved Schlafen-like active site necessary for HIV-1 restriction by human and a rodent SAMD9L. By testing a gain-of-function constitutively active variant from patients with SAMD9L-associated autoinflammatory disease, we determined that SAMD9L pathogenic functions also depend on the Schlafen-like active site. Finally, we found that the constitutively active SAMD9L strongly inhibited HIV, MLV, and, to a lesser extent, MOPV. This suggests that the virus-specific effect of SAMD9L may involve its differential activation/sensing and the virus ability to evade from SAMD9L restriction. Overall, our study identifies SAMD9L as an HIV-1 antiviral factor from the cell autonomous immunity and deciphers host determinants underlying the translational repression. This provides novel links and therapeutic avenues against viral infections and genetic diseases.
Collapse
Affiliation(s)
- Alexandre Legrand
- Centre International de Recherche en Infectiologie (CIRI), Inserm U1111, UCBL1, CNRS UMR 5308, ENS de Lyon, Université de Lyon, Lyon, France
| | - Clara Dahoui
- Centre International de Recherche en Infectiologie (CIRI), Inserm U1111, UCBL1, CNRS UMR 5308, ENS de Lyon, Université de Lyon, Lyon, France
| | - Clément De La Myre Mory
- Centre International de Recherche en Infectiologie (CIRI), Inserm U1111, UCBL1, CNRS UMR 5308, ENS de Lyon, Université de Lyon, Lyon, France
| | - Kodie Noy
- Centre International de Recherche en Infectiologie (CIRI), Inserm U1111, UCBL1, CNRS UMR 5308, ENS de Lyon, Université de Lyon, Lyon, France
- Unité de Biologie des Infections Virales Émergentes, Institut Pasteur, Lyon, Université Paris Cité, Paris, France
| | - Laura Guiguettaz
- Laboratoire de Biologie et Modélisation de la Cellule (LBMC), Université de Lyon, INSERM U1293, CNRS UMR 5239, ENS de Lyon, UCBL1, Lyon, France
| | - Margaux Versapuech
- Université Paris Cité, CNRS, Inserm, Institut Cochin, INSERM, CNRS, Paris, France
| | - Clara Loyer
- Centre International de Recherche en Infectiologie (CIRI), Inserm U1111, UCBL1, CNRS UMR 5308, ENS de Lyon, Université de Lyon, Lyon, France
| | - Margaux Pillon
- Centre International de Recherche en Infectiologie (CIRI), Inserm U1111, UCBL1, CNRS UMR 5308, ENS de Lyon, Université de Lyon, Lyon, France
| | - Mégane Wcislo
- Centre International de Recherche en Infectiologie (CIRI), Inserm U1111, UCBL1, CNRS UMR 5308, ENS de Lyon, Université de Lyon, Lyon, France
| | - Laurent Guéguen
- Laboratoire de Biologie et Biométrie Évolutive (LBBE), CNRS UMR 5558, UCBL1, Villeurbanne, France
| | | | - Andrea Cimarelli
- Centre International de Recherche en Infectiologie (CIRI), Inserm U1111, UCBL1, CNRS UMR 5308, ENS de Lyon, Université de Lyon, Lyon, France
| | - Mathieu Mateo
- Centre International de Recherche en Infectiologie (CIRI), Inserm U1111, UCBL1, CNRS UMR 5308, ENS de Lyon, Université de Lyon, Lyon, France
- Unité de Biologie des Infections Virales Émergentes, Institut Pasteur, Lyon, Université Paris Cité, Paris, France
| | - Francesca Fiorini
- Retroviruses and structural biochemistry, Molecular Microbiology and Structural Biochemistry (MMSB), IBCP, CNRS UMR 5086, University of Lyon, Lyon, France
| | - Emiliano P. Ricci
- Laboratoire de Biologie et Modélisation de la Cellule (LBMC), Université de Lyon, INSERM U1293, CNRS UMR 5239, ENS de Lyon, UCBL1, Lyon, France
| | - Lucie Etienne
- Centre International de Recherche en Infectiologie (CIRI), Inserm U1111, UCBL1, CNRS UMR 5308, ENS de Lyon, Université de Lyon, Lyon, France
| |
Collapse
|
25
|
Imler JL, Cai H, Meignin C, Martins N. Evolutionary immunology to explore original antiviral strategies. Philos Trans R Soc Lond B Biol Sci 2024; 379:20230068. [PMID: 38497262 PMCID: PMC10945398 DOI: 10.1098/rstb.2023.0068] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Accepted: 09/25/2023] [Indexed: 03/19/2024] Open
Abstract
Over the past 25 years, the field of evolutionary developmental biology (evo-devo) has used genomics and genetics to gain insight on the developmental mechanisms underlying the evolution of morphological diversity of animals. Evo-devo exploits the key insight that conserved toolkits of development (e.g. Hox genes) are used in animals to produce genetic novelties that provide adaptation to a new environment. Like development, immunity is forged by interactions with the environment, namely the microbial world. Yet, when it comes to the study of immune defence mechanisms in invertebrates, interest primarily focuses on evolutionarily conserved molecules also present in humans. Here, focusing on antiviral immunity, we argue that immune genes not conserved in humans represent an unexplored resource for the discovery of new antiviral strategies. We review recent findings on the cGAS-STING pathway and explain how cyclic dinucleotides produced by cGAS-like receptors may be used to investigate the portfolio of antiviral genes in a broad range of species. This will set the stage for evo-immuno approaches, exploiting the investment in antiviral defences made by metazoans over hundreds of millions of years of evolution. This article is part of the theme issue 'Sculpting the microbiome: how host factors determine and respond to microbial colonization'.
Collapse
Affiliation(s)
- Jean-Luc Imler
- Institut de Biologie Moléculaire et Cellulaire, Université de Strasbourg, CNRS UPR9022, Strasbourg 67070, France
- Sino-French Hoffmann Institute, School of Basic Medical Science, Guangzhou Medical University, Guangzhou 511436, People's Republic of China
| | - Hua Cai
- Sino-French Hoffmann Institute, School of Basic Medical Science, Guangzhou Medical University, Guangzhou 511436, People's Republic of China
| | - Carine Meignin
- Institut de Biologie Moléculaire et Cellulaire, Université de Strasbourg, CNRS UPR9022, Strasbourg 67070, France
| | - Nelson Martins
- Institut de Biologie Moléculaire et Cellulaire, Université de Strasbourg, CNRS UPR9022, Strasbourg 67070, France
| |
Collapse
|
26
|
Lin TD, Rubinstein ND, Fong NL, Smith M, Craft W, Martin-McNulty B, Perry R, Delaney MA, Roy MA, Buffenstein R. Evolution of T cells in the cancer-resistant naked mole-rat. Nat Commun 2024; 15:3145. [PMID: 38605005 PMCID: PMC11009300 DOI: 10.1038/s41467-024-47264-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Accepted: 03/26/2024] [Indexed: 04/13/2024] Open
Abstract
Naked mole-rats (NMRs) are best known for their extreme longevity and cancer resistance, suggesting that their immune system might have evolved to facilitate these phenotypes. Natural killer (NK) and T cells have evolved to detect and destroy cells infected with pathogens and to provide an early response to malignancies. While it is known that NMRs lack NK cells, likely lost during evolution, little is known about their T-cell subsets in terms of the evolution of the genes that regulate their function, their clonotypic diversity, and the thymus where they mature. Here we find, using single-cell transcriptomics, that NMRs have a large circulating population of γδT cells, which in mice and humans mostly reside in peripheral tissues and induce anti-cancer cytotoxicity. Using single-cell-T-cell-receptor sequencing, we find that a cytotoxic γδT-cell subset of NMRs harbors a dominant clonotype, and that their conventional CD8 αβT cells exhibit modest clonotypic diversity. Consistently, perinatal NMR thymuses are considerably smaller than those of mice yet follow similar involution progression. Our findings suggest that NMRs have evolved under a relaxed intracellular pathogenic selective pressure that may have allowed cancer resistance and longevity to become stronger targets of selection to which the immune system has responded by utilizing γδT cells.
Collapse
Affiliation(s)
- Tzuhua D Lin
- Calico Life Sciences LLC, South San Francisco, California, CA, USA
| | | | - Nicole L Fong
- Calico Life Sciences LLC, South San Francisco, California, CA, USA
| | - Megan Smith
- Calico Life Sciences LLC, South San Francisco, California, CA, USA
| | - Wendy Craft
- Calico Life Sciences LLC, South San Francisco, California, CA, USA
| | | | - Rebecca Perry
- Department of Biological Science, University of Illinois at Chicago, Illinois, IL, USA
| | | | - Margaret A Roy
- Calico Life Sciences LLC, South San Francisco, California, CA, USA
| | - Rochelle Buffenstein
- Calico Life Sciences LLC, South San Francisco, California, CA, USA.
- Department of Biological Science, University of Illinois at Chicago, Illinois, IL, USA.
| |
Collapse
|
27
|
Murga-Moreno J, Casillas S, Barbadilla A, Uricchio L, Enard D. An efficient and robust ABC approach to infer the rate and strength of adaptation. G3 (BETHESDA, MD.) 2024; 14:jkae031. [PMID: 38365205 PMCID: PMC11090462 DOI: 10.1093/g3journal/jkae031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 10/10/2023] [Accepted: 01/29/2024] [Indexed: 02/18/2024]
Abstract
Inferring the effects of positive selection on genomes remains a critical step in characterizing the ultimate and proximate causes of adaptation across species, and quantifying positive selection remains a challenge due to the confounding effects of many other evolutionary processes. Robust and efficient approaches for adaptation inference could help characterize the rate and strength of adaptation in nonmodel species for which demographic history, mutational processes, and recombination patterns are not currently well-described. Here, we introduce an efficient and user-friendly extension of the McDonald-Kreitman test (ABC-MK) for quantifying long-term protein adaptation in specific lineages of interest. We characterize the performance of our approach with forward simulations and find that it is robust to many demographic perturbations and positive selection configurations, demonstrating its suitability for applications to nonmodel genomes. We apply ABC-MK to the human proteome and a set of known virus interacting proteins (VIPs) to test the long-term adaptation in genes interacting with viruses. We find substantially stronger signatures of positive selection on RNA-VIPs than DNA-VIPs, suggesting that RNA viruses may be an important driver of human adaptation over deep evolutionary time scales.
Collapse
Affiliation(s)
- Jesús Murga-Moreno
- Department of Ecology and Evolutionary Biology, University of Arizona, Tucson, AZ 85719, USA
| | - Sònia Casillas
- Department of Genetics and Microbiology, Universitat Autònoma de Barcelona, Bellaterra, Barcelona 08193, Spain
- Institute of Biotechnology and Biomedicine, Universitat Autònoma de Barcelona, Bellaterra, Barcelona 08193, Spain
| | - Antonio Barbadilla
- Department of Genetics and Microbiology, Universitat Autònoma de Barcelona, Bellaterra, Barcelona 08193, Spain
- Institute of Biotechnology and Biomedicine, Universitat Autònoma de Barcelona, Bellaterra, Barcelona 08193, Spain
| | | | - David Enard
- Department of Ecology and Evolutionary Biology, University of Arizona, Tucson, AZ 85719, USA
| |
Collapse
|
28
|
Walker LR, Vu HL, Montooth KL, Ciobanu DC. Functional and evolutionary analysis of host Synaptogyrin-2 in porcine circovirus type 2 susceptibility. PLoS Genet 2023; 19:e1011029. [PMID: 38011217 PMCID: PMC10703400 DOI: 10.1371/journal.pgen.1011029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Revised: 12/07/2023] [Accepted: 10/24/2023] [Indexed: 11/29/2023] Open
Abstract
Mammalian evolution has been influenced by viruses for millions of years, leaving signatures of adaptive evolution within genes encoding for viral interacting proteins. Synaptogyrin-2 (SYNGR2) is a transmembrane protein implicated in promoting bacterial and viral infections. A genome-wide association study of pigs experimentally infected with porcine circovirus type 2b (PCV2b) uncovered a missense mutation (SYNGR2 p.Arg63Cys) associated with viral load. In this study, CRISPR/Cas9-mediated gene editing of the porcine kidney 15 (PK15, wtSYNGR2+p.63Arg) cell line generated clones homozygous for the favorable SYNGR2 p.63Cys allele (emSYNGR2+p.63Cys). Infection of edited clones resulted in decreased PCV2 replication compared to wildtype PK15 (P<0.05), with consistent effects across genetically distinct PCV2b and PCV2d isolates. Sequence analyses of wild and domestic pigs (n>700) revealed the favorable SYNGR2 p.63Cys allele is unique to domestic pigs and more predominant in European than Asian breeds. A haplotype defined by the SYNGR2 p.63Cys allele was likely derived from an ancestral haplotype nearly fixed within European (0.977) but absent from Asian wild boar. We hypothesize that the SYNGR2 p.63Cys allele arose post-domestication in ancestral European swine. Decreased genetic diversity in homozygotes for the SYNGR2 p.63Cys allele compared to SYNGR2 p.63Arg, corroborates a rapid increase in frequency of SYGNR2 p.63Cys via positive selection. Signatures of adaptive evolution across mammalian species were also identified within SYNGR2 intraluminal loop domains, coinciding with the location of SYNGR2 p.Arg63Cys. Therefore, SYNGR2 may reflect a novel component of the host-virus evolutionary arms race across mammals with SYNGR2 p.Arg63Cys representing a species-specific example of putative adaptive evolution.
Collapse
Affiliation(s)
- Lianna R. Walker
- Animal Science Department, University of Nebraska-Lincoln, Lincoln, Nebraska, United States of America
- School of Biological Sciences, University of Nebraska-Lincoln, Lincoln, Nebraska, United States of America
| | - Hiep L. Vu
- Animal Science Department, University of Nebraska-Lincoln, Lincoln, Nebraska, United States of America
- Nebraska Center for Virology, University of Nebraska-Lincoln, Lincoln, Nebraska, United States of America
| | - Kristi L. Montooth
- School of Biological Sciences, University of Nebraska-Lincoln, Lincoln, Nebraska, United States of America
| | - Daniel C. Ciobanu
- Animal Science Department, University of Nebraska-Lincoln, Lincoln, Nebraska, United States of America
- School of Biological Sciences, University of Nebraska-Lincoln, Lincoln, Nebraska, United States of America
- Nebraska Center for Virology, University of Nebraska-Lincoln, Lincoln, Nebraska, United States of America
| |
Collapse
|
29
|
Salazar-Tortosa DF, Huang YF, Enard D. Assessing the Presence of Recent Adaptation in the Human Genome With Mixture Density Regression. Genome Biol Evol 2023; 15:evad170. [PMID: 37713622 PMCID: PMC10563788 DOI: 10.1093/gbe/evad170] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2023] [Revised: 08/30/2023] [Accepted: 09/04/2023] [Indexed: 09/17/2023] Open
Abstract
How much genome differences between species reflect neutral or adaptive evolution is a central question in evolutionary genomics. In humans and other mammals, the presence of adaptive versus neutral genomic evolution has proven particularly difficult to quantify. The difficulty notably stems from the highly heterogeneous organization of mammalian genomes at multiple levels (functional sequence density, recombination, etc.) which complicates the interpretation and distinction of adaptive versus neutral evolution signals. In this study, we introduce mixture density regressions (MDRs) for the study of the determinants of recent adaptation in the human genome. MDRs provide a flexible regression model based on multiple Gaussian distributions. We use MDRs to model the association between recent selection signals and multiple genomic factors likely to affect the occurrence/detection of positive selection, if the latter was present in the first place to generate these associations. We find that an MDR model with two Gaussian distributions provides an excellent fit to the genome-wide distribution of a common sweep summary statistic (integrated haplotype score), with one of the two distributions likely enriched in positive selection. We further find several factors associated with signals of recent adaptation, including the recombination rate, the density of regulatory elements in immune cells, GC content, gene expression in immune cells, the density of mammal-wide conserved elements, and the distance to the nearest virus-interacting gene. These results support the presence of strong positive selection in recent human evolution and highlight MDRs as a powerful tool to make sense of signals of recent genomic adaptation.
Collapse
Affiliation(s)
- Diego F Salazar-Tortosa
- Department of Ecology and Evolutionary Biology, University of Arizona, Tucson, Arizona, USA
- Department of Ecology, University of Granada, Granada, Spain
| | - Yi-Fei Huang
- Department of Biology, Pennsylvania State University, University Park, State College, Pennsylvania, PA 16801, USA
- Huck Institutes of the Life Sciences, Pennsylvania State University, University Park, State College, Pennsylvania, PA 16801, USA
| | - David Enard
- Department of Ecology and Evolutionary Biology, University of Arizona, Tucson, Arizona, USA
| |
Collapse
|
30
|
Murga-Moreno J, Casillas S, Barbadilla A, Uricchio L, Enard D. An efficient and robust ABC approach to infer the rate and strength of adaptation. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.08.29.555322. [PMID: 37693550 PMCID: PMC10491248 DOI: 10.1101/2023.08.29.555322] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/12/2023]
Abstract
Inferring the effects of positive selection on genomes remains a critical step in characterizing the ultimate and proximate causes of adaptation across species, and quantifying positive selection remains a challenge due to the confounding effects of many other evolutionary processes. Robust and efficient approaches for adaptation inference could help characterize the rate and strength of adaptation in non-model species for which demographic history, mutational processes, and recombination patterns are not currently well-described. Here, we introduce an efficient and user-friendly extension of the McDonald-Kreitman test (ABC-MK) for quantifying long-term protein adaptation in specific lineages of interest. We characterize the performance of our approach with forward simulations and find that it is robust to many demographic perturbations and positive selection configurations, demonstrating its suitability for applications to non-model genomes. We apply ABC-MK to the human proteome and a set of known Virus Interacting Proteins (VIPs) to test the long-term adaptation in genes interacting with viruses. We find substantially stronger signatures of positive selection on RNA-VIPs than DNA-VIPs, suggesting that RNA viruses may be an important driver of human adaptation over deep evolutionary time scales.
Collapse
Affiliation(s)
- Jesús Murga-Moreno
- University of Arizona Department of Ecology and Evolutionary Biology, Tucson, USA
| | - Sònia Casillas
- Department of Genetics and Microbiology, Universitat Autònoma de Barcelona, Bellaterra, Barcelona 08193, Spain
- Institute of Biotechnology and Biomedicine, Universitat Autònoma de Barcelona, Bellaterra, Barcelona 08193, Spain
| | - Antonio Barbadilla
- Department of Genetics and Microbiology, Universitat Autònoma de Barcelona, Bellaterra, Barcelona 08193, Spain
- Institute of Biotechnology and Biomedicine, Universitat Autònoma de Barcelona, Bellaterra, Barcelona 08193, Spain
| | | | - David Enard
- University of Arizona Department of Ecology and Evolutionary Biology, Tucson, USA
| |
Collapse
|
31
|
Rajendran M, Ferran MC, Mouli L, Babbitt GA, Lynch ML. Evolution of drug resistance drives destabilization of flap region dynamics in HIV-1 protease. BIOPHYSICAL REPORTS 2023; 3:100121. [PMID: 37662576 PMCID: PMC10469570 DOI: 10.1016/j.bpr.2023.100121] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/19/2023] [Accepted: 08/07/2023] [Indexed: 09/05/2023]
Abstract
The HIV-1 protease is one of several common key targets of combination drug therapies for human immunodeficiency virus infection and acquired immunodeficiency syndrome. During the progression of the disease, some individual patients acquire drug resistance due to mutational hotspots on the viral proteins targeted by combination drug therapies. It has recently been discovered that drug-resistant mutations accumulate on the "flap region" of the HIV-1 protease, which is a critical dynamic region involved in nonspecific polypeptide binding during invasion and infection of the host cell. In this study, we utilize machine learning-assisted comparative molecular dynamics, conducted at single amino acid site resolution, to investigate the dynamic changes that occur during functional dimerization and drug binding of wild-type and common drug-resistant versions of the main protease. We also use a multiagent machine learning model to identify conserved dynamics of the HIV-1 main protease that are preserved across simian and feline protease orthologs. We find that a key conserved functional site in the flap region, a solvent-exposed isoleucine (Ile50) that controls flap dynamics is functionally targeted by drug resistance mutations, leading to amplified molecular dynamics affecting the functional ability of the flap region to hold the drugs. We conclude that better long-term patient outcomes may be achieved by designing drugs that target protease regions that are less dependent upon single sites with large functional binding effects.
Collapse
Affiliation(s)
- Madhusudan Rajendran
- Thomas H. Gosnell School of Life Sciences, Rochester Institute of Technology, Rochester, New York
| | - Maureen C. Ferran
- Thomas H. Gosnell School of Life Sciences, Rochester Institute of Technology, Rochester, New York
| | - Leora Mouli
- Thomas H. Gosnell School of Life Sciences, Rochester Institute of Technology, Rochester, New York
| | - Gregory A. Babbitt
- Thomas H. Gosnell School of Life Sciences, Rochester Institute of Technology, Rochester, New York
| | | |
Collapse
|
32
|
Scheben A, Mendivil Ramos O, Kramer M, Goodwin S, Oppenheim S, Becker DJ, Schatz MC, Simmons NB, Siepel A, McCombie WR. Long-Read Sequencing Reveals Rapid Evolution of Immunity- and Cancer-Related Genes in Bats. Genome Biol Evol 2023; 15:evad148. [PMID: 37728212 PMCID: PMC10510315 DOI: 10.1093/gbe/evad148] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/03/2023] [Indexed: 09/21/2023] Open
Abstract
Bats are exceptional among mammals for their powered flight, extended lifespans, and robust immune systems and therefore have been of particular interest in comparative genomics. Using the Oxford Nanopore Technologies long-read platform, we sequenced the genomes of two bat species with key phylogenetic positions, the Jamaican fruit bat (Artibeus jamaicensis) and the Mesoamerican mustached bat (Pteronotus mesoamericanus), and carried out a comprehensive comparative genomic analysis with a diverse collection of bats and other mammals. The high-quality, long-read genome assemblies revealed a contraction of interferon (IFN)-α at the immunity-related type I IFN locus in bats, resulting in a shift in relative IFN-ω and IFN-α copy numbers. Contradicting previous hypotheses of constitutive expression of IFN-α being a feature of the bat immune system, three bat species lost all IFN-α genes. This shift to IFN-ω could contribute to the increased viral tolerance that has made bats a common reservoir for viruses that can be transmitted to humans. Antiviral genes stimulated by type I IFNs also showed evidence of rapid evolution, including a lineage-specific duplication of IFN-induced transmembrane genes and positive selection in IFIT2. In addition, 33 tumor suppressors and 6 DNA-repair genes showed signs of positive selection, perhaps contributing to increased longevity and reduced cancer rates in bats. The robust immune systems of bats rely on both bat-wide and lineage-specific evolution in the immune gene repertoire, suggesting diverse immune strategies. Our study provides new genomic resources for bats and sheds new light on the extraordinary molecular evolution in this critically important group of mammals.
Collapse
Affiliation(s)
- Armin Scheben
- Simons Center for Quantitative Biology, Cold Spring Harbor Laboratory, Cold Spring Harbor, New York, USA
| | | | - Melissa Kramer
- Cold Spring Harbor Laboratory, Cold Spring Harbor, New York, USA
| | - Sara Goodwin
- Cold Spring Harbor Laboratory, Cold Spring Harbor, New York, USA
| | - Sara Oppenheim
- American Museum of Natural History, Institute for Comparative Genomics, New York, New York, USA
| | - Daniel J Becker
- School of Biological Sciences, University of Oklahoma, Norman, Oklahoma, USA
| | - Michael C Schatz
- Simons Center for Quantitative Biology, Cold Spring Harbor Laboratory, Cold Spring Harbor, New York, USA
- Departments of Computer Science and Biology, Johns Hopkins University, Baltimore, Maryland, USA
| | - Nancy B Simmons
- Department of Mammalogy, Division of Vertebrate Zoology, American Museum of Natural History, New York, New York, USA
| | - Adam Siepel
- Simons Center for Quantitative Biology, Cold Spring Harbor Laboratory, Cold Spring Harbor, New York, USA
| | | |
Collapse
|
33
|
Prosdocimi F, Cortines JR, José MV, Farias ST. Decoding viruses: An alternative perspective on their history, origins and role in nature. Biosystems 2023; 231:104960. [PMID: 37437771 DOI: 10.1016/j.biosystems.2023.104960] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Revised: 06/16/2023] [Accepted: 06/17/2023] [Indexed: 07/14/2023]
Abstract
This article provides an alternative perspective on viruses, exploring their origins, ecology, and evolution. Viruses are recognized as the most prevalent biological entities on Earth, permeating nearly all environments and forming the virosphere-a significant biological layer. They play a crucial role in regulating bacterial populations within ecosystems and holobionts, influencing microbial communities and nutrient recycling. Viruses are also key drivers of molecular evolution, actively participating in the maintenance and regulation of ecosystems and cellular organisms. Many eukaryotic genomes contain genomic elements with viral origins, which contribute to organismal equilibrium and fitness. Viruses are involved in the generation of species-specific orphan genes, facilitating adaptation and the development of unique traits in biological lineages. They have been implicated in the formation of vital structures like the eukaryotic nucleus and the mammalian placenta. The presence of virus-specific genes absent in cellular organisms suggests that viruses may pre-date cellular life. Like progenotes, viruses are ribonucleoprotein entities with simpler capsid architectures compared to proteolipidic membranes. This article presents a comprehensive scenario describing major transitions in prebiotic evolution and proposes that viruses emerged prior to the Last Universal Common Ancestor (LUCA) during the progenote era. However, it is important to note that viruses do not form a monophyletic clade, and many viral taxonomic groups originated more recently as reductions of cellular structures. Thus, viral architecture should be seen as an ancient and evolutionarily stable strategy adopted by biological systems. The goal of this article is to reshape perceptions of viruses, highlighting their multifaceted significance in the complex tapestry of life and fostering a deeper understanding of their origins, ecological impact, and evolutionary dynamics.
Collapse
Affiliation(s)
- Francisco Prosdocimi
- Laboratório de Biologia Teórica e de Sistemas, Instituto de Bioquímica Médica Leopoldo de Meis, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil.
| | - Juliana Reis Cortines
- Departamento de Virologia, Instituto de Microbiologia Paulo de Góes, Universidade Federal do Rio de Janeiro, Brazil
| | - Marco V José
- Theoretical Biology Group, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Ciudad Universitaria, 04510, CDMX, Mexico
| | - Sávio Torres Farias
- Laboratório de Genética Evolutiva Paulo Leminsk, Departamento de Biologia Molecular, Universidade Federal da Paraíba, João Pessoa, Paraíba, Brazil; Network of Researchers on the Chemical Evolution of Life (NoRCEL), Leeds, LS7 3RB, UK
| |
Collapse
|
34
|
Castro LK, Daugherty MD. Tripping the wire: sensing of viral protease activity by CARD8 and NLRP1 inflammasomes. Curr Opin Immunol 2023; 83:102354. [PMID: 37311351 PMCID: PMC10528193 DOI: 10.1016/j.coi.2023.102354] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Revised: 05/11/2023] [Accepted: 05/14/2023] [Indexed: 06/15/2023]
Abstract
Host innate immune sensors are vital for the initial detection of pathogen infection. Such sensors thus need to constantly adapt in escalating evolutionary arms races with pathogens. Recently, two inflammasome-forming proteins, CARD8 and NLRP1, have emerged as innate immune sensors for the enzymatic activity of virus-encoded proteases. When cleaved within a rapidly evolving 'tripwire' region, CARD8 and NLRP1 assemble into inflammasomes that initiate pyroptotic cell death and pro-inflammatory cytokine release as a form of effector-triggered immunity. Short motifs in the CARD8 and NLRP1 tripwires mimic the protease-specific cleavage sites of picornaviruses, coronaviruses, and HIV-1, providing virus-specific sensing that can rapidly change between closely related hosts and within the human population. Recent work highlights the evolutionary arms races between viral proteases and NLRP1 and CARD8, including insights into the mechanisms of inflammasome activation, host diversity of viral sensing, and means that viruses have evolved to avoid tripping the wire.
Collapse
Affiliation(s)
- Lennice K Castro
- Department of Molecular Biology, School of Biological Sciences, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093, USA
| | - Matthew D Daugherty
- Department of Molecular Biology, School of Biological Sciences, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093, USA.
| |
Collapse
|
35
|
Trubl G, Stedman KM, Bywaters KF, Matula EE, Sommers P, Roux S, Merino N, Yin J, Kaelber JT, Avila-Herrera A, Johnson PA, Johnson JC, Borges S, Weber PK, Pett-Ridge J, Boston PJ. Astrovirology: how viruses enhance our understanding of life in the Universe. INTERNATIONAL JOURNAL OF ASTROBIOLOGY 2023; 22:247-271. [PMID: 38046673 PMCID: PMC10691837 DOI: 10.1017/s1473550423000058] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/05/2023]
Abstract
Viruses are the most numerically abundant biological entities on Earth. As ubiquitous replicators of molecular information and agents of community change, viruses have potent effects on the life on Earth, and may play a critical role in human spaceflight, for life-detection missions to other planetary bodies and planetary protection. However, major knowledge gaps constrain our understanding of the Earth's virosphere: (1) the role viruses play in biogeochemical cycles, (2) the origin(s) of viruses and (3) the involvement of viruses in the evolution, distribution and persistence of life. As viruses are the only replicators that span all known types of nucleic acids, an expanded experimental and theoretical toolbox built for Earth's viruses will be pivotal for detecting and understanding life on Earth and beyond. Only by filling in these knowledge and technical gaps we will obtain an inclusive assessment of how to distinguish and detect life on other planetary surfaces. Meanwhile, space exploration requires life-support systems for the needs of humans, plants and their microbial inhabitants. Viral effects on microbes and plants are essential for Earth's biosphere and human health, but virus-host interactions in spaceflight are poorly understood. Viral relationships with their hosts respond to environmental changes in complex ways which are difficult to predict by extrapolating from Earth-based proxies. These relationships should be studied in space to fully understand how spaceflight will modulate viral impacts on human health and life-support systems, including microbiomes. In this review, we address key questions that must be examined to incorporate viruses into Earth system models, life-support systems and life detection. Tackling these questions will benefit our efforts to develop planetary protection protocols and further our understanding of viruses in astrobiology.
Collapse
Affiliation(s)
- Gareth Trubl
- Physical and Life Sciences Directorate, Lawrence Livermore National Laboratory, Livermore, CA, USA
| | - Kenneth M. Stedman
- Center for Life in Extreme Environments, Department of Biology, Portland State University, Portland, OR, USA
| | | | | | | | - Simon Roux
- DOE Joint Genome Institute, Berkeley, CA, USA
| | - Nancy Merino
- Physical and Life Sciences Directorate, Lawrence Livermore National Laboratory, Livermore, CA, USA
| | - John Yin
- Chemical and Biological Engineering, Wisconsin Institute for Discovery, University of Wisconsin-Madison, Madison, WI, USA
| | - Jason T. Kaelber
- Institute for Quantitative Biomedicine, Rutgers, the State University of New Jersey, Piscataway, NJ, USA
| | - Aram Avila-Herrera
- Computing Directorate, Lawrence Livermore National Laboratory, Livermore, CA, USA
| | - Peter Anto Johnson
- Faculty of Medicine & Dentistry, University of Alberta, Edmonton, AB, Canada
| | | | | | - Peter K. Weber
- Physical and Life Sciences Directorate, Lawrence Livermore National Laboratory, Livermore, CA, USA
| | - Jennifer Pett-Ridge
- Physical and Life Sciences Directorate, Lawrence Livermore National Laboratory, Livermore, CA, USA
- Life & Environmental Sciences Department, University of California Merced, Merced, CA, USA
| | | |
Collapse
|
36
|
Lucaci AG, Zehr JD, Enard D, Thornton JW, Kosakovsky Pond SL. Evolutionary Shortcuts via Multinucleotide Substitutions and Their Impact on Natural Selection Analyses. Mol Biol Evol 2023; 40:msad150. [PMID: 37395787 PMCID: PMC10336034 DOI: 10.1093/molbev/msad150] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 06/15/2023] [Accepted: 06/26/2023] [Indexed: 07/04/2023] Open
Abstract
Inference and interpretation of evolutionary processes, in particular of the types and targets of natural selection affecting coding sequences, are critically influenced by the assumptions built into statistical models and tests. If certain aspects of the substitution process (even when they are not of direct interest) are presumed absent or are modeled with too crude of a simplification, estimates of key model parameters can become biased, often systematically, and lead to poor statistical performance. Previous work established that failing to accommodate multinucleotide (or multihit, MH) substitutions strongly biases dN/dS-based inference towards false-positive inferences of diversifying episodic selection, as does failing to model variation in the rate of synonymous substitution (SRV) among sites. Here, we develop an integrated analytical framework and software tools to simultaneously incorporate these sources of evolutionary complexity into selection analyses. We found that both MH and SRV are ubiquitous in empirical alignments, and incorporating them has a strong effect on whether or not positive selection is detected (1.4-fold reduction) and on the distributions of inferred evolutionary rates. With simulation studies, we show that this effect is not attributable to reduced statistical power caused by using a more complex model. After a detailed examination of 21 benchmark alignments and a new high-resolution analysis showing which parts of the alignment provide support for positive selection, we show that MH substitutions occurring along shorter branches in the tree explain a significant fraction of discrepant results in selection detection. Our results add to the growing body of literature which examines decades-old modeling assumptions (including MH) and finds them to be problematic for comparative genomic data analysis. Because multinucleotide substitutions have a significant impact on natural selection detection even at the level of an entire gene, we recommend that selection analyses of this type consider their inclusion as a matter of routine. To facilitate this procedure, we developed, implemented, and benchmarked a simple and well-performing model testing selection detection framework able to screen an alignment for positive selection with two biologically important confounding processes: site-to-site synonymous rate variation, and multinucleotide instantaneous substitutions.
Collapse
Affiliation(s)
- Alexander G Lucaci
- Institute for Genomics and Evolutionary Medicine, Temple University, Philadelphia, PA, USA
| | - Jordan D Zehr
- Institute for Genomics and Evolutionary Medicine, Temple University, Philadelphia, PA, USA
| | - David Enard
- Department of Ecology and Evolutionary Biology, University of Arizona, Tucson, Arizona
| | - Joseph W Thornton
- Department of Human Genetics, University of Chicago, Chicago, Illinois
- Department of Ecology & Evolution, University of Chicago, Chicago, Illinois
| | | |
Collapse
|
37
|
Colbran LL, Ramos-Almodovar FC, Mathieson I. A gene-level test for directional selection on gene expression. Genetics 2023; 224:iyad060. [PMID: 37036411 PMCID: PMC10213495 DOI: 10.1093/genetics/iyad060] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Revised: 01/11/2023] [Accepted: 03/31/2023] [Indexed: 04/11/2023] Open
Abstract
Most variants identified in human genome-wide association studies and scans for selection are noncoding. Interpretation of their effects and the way in which they contribute to phenotypic variation and adaptation in human populations is therefore limited by our understanding of gene regulation and the difficulty of confidently linking noncoding variants to genes. To overcome this, we developed a gene-wise test for population-specific selection based on combinations of regulatory variants. Specifically, we use the QX statistic to test for polygenic selection on cis-regulatory variants based on whether the variance across populations in the predicted expression of a particular gene is higher than expected under neutrality. We then applied this approach to human data, testing for selection on 17,388 protein-coding genes in 26 populations from the Thousand Genomes Project. We identified 45 genes with significant evidence (FDR<0.1) for selection, including FADS1, KHK, SULT1A2, ITGAM, and several genes in the HLA region. We further confirm that these signals correspond to plausible population-level differences in predicted expression. While the small number of significant genes (0.2%) is consistent with most cis-regulatory variation evolving under genetic drift or stabilizing selection, it remains possible that there are effects not captured in this study. Our gene-level QX score is independent of standard genomic tests for selection, and may therefore be useful in combination with traditional selection scans to specifically identify selection on regulatory variation. Overall, our results demonstrate the utility of combining population-level genomic data with functional data to understand the evolution of gene expression.
Collapse
Affiliation(s)
- Laura L Colbran
- Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | | | - Iain Mathieson
- Corresponding author: Department of Genetics, Perelman School of Medicine, University of Pennsylvania, 405B Clinical Research Building, 415 Curie Blvd, Philadelphia, PA 19104, USA. ; *Corresponding author: Department of Genetics, Perelman School of Medicine, University of Pennsylvania, 405B Clinical Research Building, 415 Curie Blvd, Philadelphia, PA 19104, USA.
| |
Collapse
|
38
|
Gu L, Xia C, Yang S, Yang G. The adaptive evolution of cancer driver genes. BMC Genomics 2023; 24:215. [PMID: 37098512 PMCID: PMC10131384 DOI: 10.1186/s12864-023-09301-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Accepted: 04/08/2023] [Indexed: 04/27/2023] Open
Abstract
BACKGROUND Cancer is a life-threatening disease in humans; yet, cancer genes are frequently reported to be under positive selection. This suggests an evolutionary-genetic paradox in which cancer evolves as a secondary product of selection in human beings. However, systematic investigation of the evolution of cancer driver genes is sparse. RESULTS Using comparative genomics analysis, population genetics analysis and computational molecular evolutionary analysis, the evolution of 568 cancer driver genes of 66 cancer types were evaluated at two levels, selection on the early evolution of humans (long timescale selection in the human lineage during primate evolution, i.e., millions of years), and recent selection in modern human populations (~ 100,000 years). Results showed that eight cancer genes covering 11 cancer types were under positive selection in the human lineage (long timescale selection). And 35 cancer genes covering 47 cancer types were under positive selection in modern human populations (recent selection). Moreover, SNPs associated with thyroid cancer in three thyroid cancer driver genes (CUX1, HERC2 and RGPD3) were under positive selection in East Asian and European populations, consistent with the high incidence of thyroid cancer in these populations. CONCLUSIONS These findings suggest that cancer can be evolved, in part, as a by-product of adaptive changes in humans. Different SNPs at the same locus can be under different selection pressures in different populations, and thus should be under consideration during precision medicine, especially for targeted medicine in specific populations.
Collapse
Affiliation(s)
- Langyu Gu
- State Key Laboratory for Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, Guangdong, 510275, China.
| | - Canwei Xia
- Ministry of Education Key Laboratory for Biodiversity and Ecological Engineering, College of Life Sciences, Beijing Normal University, Beijing, 100875, China
| | - Shiyu Yang
- The Affiliated Brain Hospital, Guangzhou Medical University, Guangzhou, 510180, Guangdong, China
| | - Guofen Yang
- Department of Gynecology, First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, 510060, Guangdong, China.
| |
Collapse
|
39
|
Hagen EH, Blackwell AD, Lightner AD, Sullivan RJ. Homo medicus: The transition to meat eating increased pathogen pressure and the use of pharmacological plants in Homo. AMERICAN JOURNAL OF BIOLOGICAL ANTHROPOLOGY 2023; 180:589-617. [PMID: 36815505 DOI: 10.1002/ajpa.24718] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Revised: 01/31/2023] [Accepted: 02/08/2023] [Indexed: 02/24/2023]
Abstract
The human lineage transitioned to a more carnivorous niche 2.6 mya and evolved a large body size and slower life history, which likely increased zoonotic pathogen pressure. Evidence for this increase includes increased zoonotic infections in modern hunter-gatherers and bushmeat hunters, exceptionally low stomach pH compared to other primates, and divergence in immune-related genes. These all point to change, and probably intensification, in the infectious disease environment of Homo compared to earlier hominins and other apes. At the same time, the brain, an organ in which immune responses are constrained, began to triple in size. We propose that the combination of increased zoonotic pathogen pressure and the challenges of defending a large brain and body from pathogens in a long-lived mammal, selected for intensification of the plant-based self-medication strategies already in place in apes and other primates. In support, there is evidence of medicinal plant use by hominins in the middle Paleolithic, and all cultures today have sophisticated, plant-based medical systems, add spices to food, and regularly consume psychoactive plant substances that are harmful to helminths and other pathogens. We propose that the computational challenges of discovering effective plant-based treatments, the consequent ability to consume more energy-rich animal foods, and the reduced reliance on energetically-costly immune responses helped select for increased cognitive abilities and unique exchange relationships in Homo. In the story of human evolution, which has long emphasized hunting skills, medical skills had an equal role to play.
Collapse
Affiliation(s)
- Edward H Hagen
- Department of Anthropology, Washington State University, Pullman, Washington, USA
| | - Aaron D Blackwell
- Department of Anthropology, Washington State University, Pullman, Washington, USA
| | - Aaron D Lightner
- Department of Anthropology, Washington State University, Pullman, Washington, USA
- Department of the Study of Religion, Aarhus University, Aarhus, Denmark
| | - Roger J Sullivan
- Department of Anthropology, California State University, Sacramento, California, USA
| |
Collapse
|
40
|
Latrille T, Rodrigue N, Lartillot N. Genes and sites under adaptation at the phylogenetic scale also exhibit adaptation at the population-genetic scale. Proc Natl Acad Sci U S A 2023; 120:e2214977120. [PMID: 36897968 PMCID: PMC10089192 DOI: 10.1073/pnas.2214977120] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Accepted: 02/11/2023] [Indexed: 03/12/2023] Open
Abstract
Adaptation in protein-coding sequences can be detected from multiple sequence alignments across species or alternatively by leveraging polymorphism data within a population. Across species, quantification of the adaptive rate relies on phylogenetic codon models, classically formulated in terms of the ratio of nonsynonymous over synonymous substitution rates. Evidence of an accelerated nonsynonymous substitution rate is considered a signature of pervasive adaptation. However, because of the background of purifying selection, these models are potentially limited in their sensitivity. Recent developments have led to more sophisticated mutation-selection codon models aimed at making a more detailed quantitative assessment of the interplay between mutation, purifying, and positive selection. In this study, we conducted a large-scale exome-wide analysis of placental mammals with mutation-selection models, assessing their performance at detecting proteins and sites under adaptation. Importantly, mutation-selection codon models are based on a population-genetic formalism and thus are directly comparable to the McDonald and Kreitman test at the population level to quantify adaptation. Taking advantage of this relationship between phylogenetic and population genetics analyses, we integrated divergence and polymorphism data across the entire exome for 29 populations across 7 genera and showed that proteins and sites detected to be under adaptation at the phylogenetic scale are also under adaptation at the population-genetic scale. Altogether, our exome-wide analysis shows that phylogenetic mutation-selection codon models and the population-genetic test of adaptation can be reconciled and are congruent, paving the way for integrative models and analyses across individuals and populations.
Collapse
Affiliation(s)
- Thibault Latrille
- Université de Lyon, Université Lyon 1, CNRS, VetAgro Sup, Laboratoire de Biométrie et Biologie Evolutive, UMR5558, 69100Villeurbanne, France
- École Normale Supérieure de Lyon, Université de Lyon, 69342Lyon, France
- Department of Computational Biology, Université de Lausanne, 1015Lausanne, Switzerland
| | - Nicolas Rodrigue
- Department of Biology, Institute of Biochemistry, and School of Mathematics and Statistics, Carleton University, K1S 5B6Ottawa, Canada
| | - Nicolas Lartillot
- Université de Lyon, Université Lyon 1, CNRS, VetAgro Sup, Laboratoire de Biométrie et Biologie Evolutive, UMR5558, 69100Villeurbanne, France
| |
Collapse
|
41
|
Karamveer, Tiwary BK. Genomic coevolution of papillomavirus and immune system in placental mammals indicates the role of IFN-γ in the emergence of new variants. Carcinogenesis 2023:bgad007. [PMID: 36827464 DOI: 10.1093/carcin/bgad007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Indexed: 02/26/2023] Open
Abstract
Papillomaviruses (PVs) are causative agents for warts and cancers in different parts of the body in the mammalian lineage. Therefore, these viruses are proposed as model organisms to study host immune responses to pathogens causing chronic infections. The virus-associated cancer progression depends on two integral processes namely angiogenesis and immune response (AIR). The angiogenesis process aids in tumour progression through vessel formation and maturation but the host immune response, in contrast, makes every attempt to eliminate pathogens and thereby maintain healthy tissues. However, the evolutionary contribution of individual viral genes and host AIR genes in carcinogenesis is yet to be explored. Here, we applied the evolutionary genomics approach to find correlated evolution between six PV genes and 23 host AIR-related genes. We estimated that IFN-γ is the only host gene evolving in a correlated manner with all six PV genes under study. Furthermore, three papillomavirus genes, L2, E6, and E7, are found to interact with two third of host AIR-related genes. Moreover, a combined differential gene expression analysis and network analysis showed that inflammatory cytokine IFN-γ is the key regulator of hub genes in the PPI network of the differentially expressed genes. Functional enrichment of these hub genes is consistent with their established role in different cancers and viral infections. Overall, we conclude that IFN-γ maintains selective pressure on mammalian PV genes and seems to be a potential biomarker for PV-related cancers. This study demonstrates the evolutionary importance of IFN-γ in deciding the fate of carcinogenic PV variants.
Collapse
Affiliation(s)
- Karamveer
- Department of Bioinformatics, School of Life Sciences Pondicherry University Pondicherry-605 014 India
| | - Basant K Tiwary
- Department of Bioinformatics, School of Life Sciences Pondicherry University Pondicherry-605 014 India
| |
Collapse
|
42
|
Mann JT, Riley BA, Baker SF. All differential on the splicing front: Host alternative splicing alters the landscape of virus-host conflict. Semin Cell Dev Biol 2023; 146:40-56. [PMID: 36737258 DOI: 10.1016/j.semcdb.2023.01.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Revised: 01/24/2023] [Accepted: 01/25/2023] [Indexed: 02/05/2023]
Abstract
Alternative RNA splicing is a co-transcriptional process that richly increases proteome diversity, and is dynamically regulated based on cell species, lineage, and activation state. Virus infection in vertebrate hosts results in rapid host transcriptome-wide changes, and regulation of alternative splicing can direct a combinatorial effect on the host transcriptome. There has been a recent increase in genome-wide studies evaluating host alternative splicing during viral infection, which integrates well with prior knowledge on viral interactions with host splicing proteins. A critical challenge remains in linking how these individual events direct global changes, and whether alternative splicing is an overall favorable pathway for fending off or supporting viral infection. Here, we introduce the process of alternative splicing, discuss how to analyze splice regulation, and detail studies on genome-wide and splice factor changes during viral infection. We seek to highlight where the field can focus on moving forward, and how incorporation of a virus-host co-evolutionary perspective can benefit this burgeoning subject.
Collapse
Affiliation(s)
- Joshua T Mann
- Infectious Disease Program, Lovelace Biomedical Research Institute, Albuquerque, NM, USA
| | - Brent A Riley
- Infectious Disease Program, Lovelace Biomedical Research Institute, Albuquerque, NM, USA
| | - Steven F Baker
- Infectious Disease Program, Lovelace Biomedical Research Institute, Albuquerque, NM, USA.
| |
Collapse
|
43
|
Singh K, Mehta D, Dumka S, Chauhan AS, Kumar S. Quasispecies Nature of RNA Viruses: Lessons from the Past. Vaccines (Basel) 2023; 11:308. [PMID: 36851186 PMCID: PMC9963406 DOI: 10.3390/vaccines11020308] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Revised: 01/22/2023] [Accepted: 01/23/2023] [Indexed: 01/31/2023] Open
Abstract
Viral quasispecies are distinct but closely related mutants formed by the disparity in viral genomes due to recombination, mutations, competition, and selection pressure. Theoretical derivation for the origin of a quasispecies is owed to the error-prone replication by polymerase and mutants of RNA replicators. Here, we briefly addressed the theoretical and mathematical origin of quasispecies and their dynamics. The impact of quasispecies for major salient human pathogens is reviewed. In the current global scenario, rapid changes in geographical landscapes favor the origin and selection of mutants. It comes as no surprise that a cauldron of mutants poses a significant risk to public health, capable of causing pandemics. Mutation rates in RNA viruses are magnitudes higher than in DNA organisms, explaining their enhanced virulence and evolvability. RNA viruses cause the most devastating pandemics; for example, members of the Orthomyxoviridae family caused the great influenza pandemic (1918 flu or Spanish flu), the SARS (severe acute respiratory syndrome) and MERS (Middle East respiratory syndrome) outbreak, and the human immunodeficiency viruses (HIV), lentiviruses of the Retroviridae family, caused worldwide devastation. Rapidly evolving RNA virus populations are a daunting challenge for the designing of effective control measures like vaccines. Developing awareness of the evolutionary dispositions of RNA viral mutant spectra and what influences their adaptation and virulence will help curtail outbreaks of past and future pathogens.
Collapse
Affiliation(s)
| | | | | | | | - Sachin Kumar
- Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati 781039, India
| |
Collapse
|
44
|
A binary interaction map between turnip mosaic virus and Arabidopsis thaliana proteomes. Commun Biol 2023; 6:28. [PMID: 36631662 PMCID: PMC9834402 DOI: 10.1038/s42003-023-04427-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Accepted: 01/05/2023] [Indexed: 01/13/2023] Open
Abstract
Viruses are obligate intracellular parasites that have co-evolved with their hosts to establish an intricate network of protein-protein interactions. Here, we followed a high-throughput yeast two-hybrid screening to identify 378 novel protein-protein interactions between turnip mosaic virus (TuMV) and its natural host Arabidopsis thaliana. We identified the RNA-dependent RNA polymerase NIb as the viral protein with the largest number of contacts, including key salicylic acid-dependent transcription regulators. We verified a subset of 25 interactions in planta by bimolecular fluorescence complementation assays. We then constructed and analyzed a network comprising 399 TuMV-A. thaliana interactions together with intravirus and intrahost connections. In particular, we found that the host proteins targeted by TuMV are enriched in different aspects of plant responses to infections, are more connected and have an increased capacity to spread information throughout the cell proteome, display higher expression levels, and have been subject to stronger purifying selection than expected by chance. The proviral or antiviral role of ten host proteins was validated by characterizing the infection dynamics in the corresponding mutant plants, supporting a proviral role for the transcriptional regulator TGA1. Comparison with similar studies with animal viruses, highlights shared fundamental features in their mode of action.
Collapse
|
45
|
Carvalho PPD, Alves NA. Featuring ACE2 binding SARS-CoV and SARS-CoV-2 through a conserved evolutionary pattern of amino acid residues. J Biomol Struct Dyn 2022; 40:11719-11728. [PMID: 34486937 PMCID: PMC8425439 DOI: 10.1080/07391102.2021.1965028] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Spike (S) glycoproteins mediate the coronavirus entry into the host cell. The S1 subunit of S-proteins contains the receptor-binding domain (RBD) that is able to recognize different host receptors, highlighting its remarkable capacity to adapt to their hosts along the viral evolution. While RBD in spike proteins is determinant for the virus-receptor interaction, the active residues lie at the receptor-binding motif (RBM), a region located in RBD that plays a fundamental role binding the outer surface of their receptors. Here, we address the hypothesis that SARS-CoV and SARS-CoV-2 strains able to use angiotensin-converting enzyme 2 (ACE2) proteins have adapted their RBM along the viral evolution to explore specific conformational topology driven by the residues YGF to infect host cells. We also speculate that this YGF-based mechanism can act as a protein signature located at the RBM to distinguish coronaviruses able to use ACE2 as a cell entry receptor.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Patrícia P. D. Carvalho
- Departamento de Física, FFCLRP, Universidade de São Paulo, Ribeirão Preto, SP, Brazil,CONTACT Patrícia P. D. Carvalho ;
| | - Nelson A. Alves
- Departamento de Física, FFCLRP, Universidade de São Paulo, Ribeirão Preto, SP, Brazil,Nelson Alves
| |
Collapse
|
46
|
Lidsky PV, Yuan J, Rulison JM, Andino-Pavlovsky R. Is Aging an Inevitable Characteristic of Organic Life or an Evolutionary Adaptation? BIOCHEMISTRY. BIOKHIMIIA 2022; 87:1413-1445. [PMID: 36717438 PMCID: PMC9839256 DOI: 10.1134/s0006297922120021] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Revised: 09/27/2022] [Accepted: 11/04/2022] [Indexed: 01/15/2023]
Abstract
Aging is an evolutionary paradox. Several hypotheses have been proposed to explain it, but none fully explains all the biochemical and ecologic data accumulated over decades of research. We suggest that senescence is a primitive immune strategy which acts to protect an individual's kin from chronic infections. Older organisms are exposed to pathogens for a longer period of time and have a higher likelihood of acquiring infectious diseases. Accordingly, the parasitic load in aged individuals is higher than in younger ones. Given that the probability of pathogen transmission is higher within the kin, the inclusive fitness cost of infection might exceed the benefit of living longer. In this case, programmed lifespan termination might be an evolutionarily stable strategy. Here, we discuss the classical evolutionary hypotheses of aging and compare them with the pathogen control hypothesis, discuss the consistency of these hypotheses with existing empirical data, and present a revised conceptual framework to understand the evolution of aging.
Collapse
Affiliation(s)
- Peter V Lidsky
- Department of Microbiology and Immunology, University of California San Francisco, CA, USA.
| | - Jing Yuan
- Department of Microbiology and Immunology, University of California San Francisco, CA, USA
| | - Jacob M Rulison
- Department of Microbiology and Immunology, University of California San Francisco, CA, USA
- University of California Berkeley, CA, USA
| | - Raul Andino-Pavlovsky
- Department of Microbiology and Immunology, University of California San Francisco, CA, USA.
| |
Collapse
|
47
|
Could aging evolve as a pathogen control strategy? Trends Ecol Evol 2022; 37:1046-1057. [PMID: 36096982 DOI: 10.1016/j.tree.2022.08.003] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Revised: 08/04/2022] [Accepted: 08/09/2022] [Indexed: 01/12/2023]
Abstract
Aging is often attributed to the detrimental side effects of beneficial traits but not a programmed adaptive process. Alternatively, the pathogen control hypothesis posits that defense against infectious diseases may provide a strong selection force for restriction of lifespan. Aging might have evolved to remove older individuals who carry chronic diseases that may transmit to their younger kin. Thus, selection for shorter lifespans may benefit kin's fitness. The pathogen control hypothesis addresses arguments typically raised against adaptive aging concepts: it explains the benefit of shorter lifespan and the absence of mutant variants that do not age. We discuss the consistency and explanatory power of this hypothesis and compare it with classic hypotheses of aging.
Collapse
|
48
|
Positive selection-driven fixation of a hominin-specific amino acid mutation related to dephosphorylation in IRF9. BMC Ecol Evol 2022; 22:132. [PMID: 36357830 PMCID: PMC9650800 DOI: 10.1186/s12862-022-02088-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Accepted: 10/29/2022] [Indexed: 11/12/2022] Open
Abstract
The arms race between humans and pathogens drives the evolution of the human genome. It is thus expected that genes from the interferon-regulatory factors family (IRFs), a critical family for anti-viral immune response, should be undergoing episodes of positive selection. Herein, we tested this hypothesis and found multiple lines of evidence for positive selection on the amino acid site Val129 (NP_006075.3:p.Ser129Val) of human IRF9. Interestingly, the ancestral reconstruction and population distribution analyses revealed that the ancestral state (Ser129) is conserved among mammals, while the derived positively selected state (Val129) was fixed before the “out-of-Africa” event ~ 500,000 years ago. The motif analysis revealed that this young amino acid (Val129) may serve as a dephosphorylation site of IRF9. Structural parallelism between homologous genes further suggested the functional effects underlying the dephosphorylation that may affect the immune activity of IRF9. This study provides a model in which a strong positive Darwinian selection drives a recent fixation of a hominin-specific amino acid leading to molecular adaptation involving dephosphorylation in an immune-responsive gene.
Collapse
|
49
|
Teekas L, Sharma S, Vijay N. Lineage-specific protein repeat expansions and contractions reveal malleable regions of immune genes. Genes Immun 2022; 23:218-234. [PMID: 36203090 DOI: 10.1038/s41435-022-00186-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Revised: 09/21/2022] [Accepted: 09/22/2022] [Indexed: 01/07/2023]
Abstract
Functional diversification, a higher evolutionary rate, and intense positive selection help a limited number of immune genes interact with many pathogens. Repeats in protein-coding regions are a well-known source of functional diversification, adaptive variation, and evolutionary novelty in a short time. Repeats play a crucial role in biochemical functions like functional diversification of transcription regulation, protein kinases, cell adhesion, signaling pathways, morphogenesis, DNA repair, recombination, and RNA processing. Repeat length variation can change the associated protein's interaction, efficacy, and overall protein network. Repeats have an intrinsic unstable nature and can potentially evolve rapidly and expedite the acquisition of complex phenotypic traits and functions. Because of their ability to generate rapid, adaptive variations over short evolutionary distances, repeats are considered "tuning knobs." Repeat length variation in specific genes, like RUNX2 and ALX4, is associated with morphological and physiological changes across vertebrates. Here we study repeat length variation as a potent source of species-specific immune diversification across several clades of tetrapods. Moreover, we provide a clade-wise comprehensive list of immune genes with repeat types for future studies of morphological/evolutionary changes within species groups. We observe significant repeat length variation of FASLG and C1QC in Rodentia and Primates' contrasting species groups, respectively.
Collapse
Affiliation(s)
- Lokdeep Teekas
- Department of Biological Sciences, Computational Evolutionary Genomics Lab, IISER Bhopal, Bhauri, Madhya Pradesh, India
| | - Sandhya Sharma
- Department of Biological Sciences, Computational Evolutionary Genomics Lab, IISER Bhopal, Bhauri, Madhya Pradesh, India
| | - Nagarjun Vijay
- Department of Biological Sciences, Computational Evolutionary Genomics Lab, IISER Bhopal, Bhauri, Madhya Pradesh, India.
| |
Collapse
|
50
|
Stevens DA, Beierschmitt C, Mahesula S, Corley MR, Salogiannis J, Tsu BV, Cao B, Ryan AP, Hakozawki H, Reck-Peterson SL, Daugherty MD. Antiviral function and viral antagonism of the rapidly evolving dynein activating adaptor NINL. eLife 2022; 11:e81606. [PMID: 36222652 PMCID: PMC9651953 DOI: 10.7554/elife.81606] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Accepted: 10/11/2022] [Indexed: 11/13/2022] Open
Abstract
Viruses interact with the intracellular transport machinery to promote viral replication. Such host-virus interactions can drive host gene adaptation, leaving signatures of pathogen-driven evolution in host genomes. Here, we leverage these genetic signatures to identify the dynein activating adaptor, ninein-like (NINL), as a critical component in the antiviral innate immune response and as a target of viral antagonism. Unique among genes encoding components of active dynein complexes, NINL has evolved under recurrent positive (diversifying) selection, particularly in its carboxy-terminal cargo-binding region. Consistent with a role for NINL in host immunity, we demonstrate that NINL knockout cells exhibit an impaired response to interferon, resulting in increased permissiveness to viral replication. Moreover, we show that proteases encoded by diverse picornaviruses and coronaviruses cleave and disrupt NINL function in a host- and virus-specific manner. Our work reveals the importance of NINL in the antiviral response and the utility of using signatures of host-virus genetic conflicts to uncover new components of antiviral immunity and targets of viral antagonism.
Collapse
Affiliation(s)
- Donté Alexander Stevens
- Department of Cellular and Molecular Medicine, University of California, San DiegoLa JollaUnited States
| | | | - Swetha Mahesula
- Department of Cellular and Molecular Medicine, University of California, San DiegoLa JollaUnited States
- Howard Hughes Medical InstituteChevy ChaseUnited States
| | - Miles R Corley
- Department of Molecular Biology, University of California, San DiegoLa JollaUnited States
| | - John Salogiannis
- Department of Cellular and Molecular Medicine, University of California, San DiegoLa JollaUnited States
| | - Brian V Tsu
- Department of Molecular Biology, University of California, San DiegoLa JollaUnited States
| | - Bryant Cao
- Department of Molecular Biology, University of California, San DiegoLa JollaUnited States
| | - Andrew P Ryan
- Department of Molecular Biology, University of California, San DiegoLa JollaUnited States
| | - Hiroyuki Hakozawki
- Nikon Imaging Center at UC San Diego, University of California, San DiegoSan DiegoUnited States
| | - Samara L Reck-Peterson
- Department of Cellular and Molecular Medicine, University of California, San DiegoLa JollaUnited States
- Howard Hughes Medical InstituteChevy ChaseUnited States
- Department of Cell and Developmental Biology, University of California, San DiegoLa JollaUnited States
| | - Matthew D Daugherty
- Department of Molecular Biology, University of California, San DiegoLa JollaUnited States
| |
Collapse
|