1
|
Hui X, Tian X, Ding S, Gao G, Cui J, Zhang C, Zhao T, Duan L, Wang H. A Review of Cross-Species Transmission Mechanisms of Influenza Viruses. Vet Sci 2025; 12:447. [PMID: 40431540 DOI: 10.3390/vetsci12050447] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2025] [Revised: 05/05/2025] [Accepted: 05/06/2025] [Indexed: 05/29/2025] Open
Abstract
The cross-species transmission of influenza viruses represents a critical link in the pandemic of zoonotic diseases. This mechanism involves multi-level interactions, including viral genetic adaptability, host-receptor compatibility, and ecological drivers. Recent studies have highlighted the essential role of mutations in hemagglutinin and neuraminidase in overcoming host barriers, while elucidating the differences in the distribution of host sialic acid receptors. Furthermore, the "mixer" function of intermediate hosts, such as pigs, plays a significant role in viral redistribution. Advances in high-throughput sequencing and structural biology technologies have gradually resolved key molecular markers and host restriction factors associated with these viruses. However, challenges remain in understanding the dynamic evolutionary patterns of virus-host interaction networks, developing real-time early warning capabilities for cross-species transmission, and formulating broad-spectrum prevention and control strategies. Moving forward, it is essential to integrate multidisciplinary approaches to establish a multi-level defense system, leveraging the 'One Health' monitoring network, artificial intelligence prediction models, and new vaccine research and development to address the ongoing threat of cross-species transmission of influenza viruses. This paper systematically reviews the research progress and discusses bottlenecks in this field, providing a theoretical foundation for optimizing future prevention and control strategies.
Collapse
Affiliation(s)
- Xianfeng Hui
- Department of Immunology, School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang 453003, China
- Henan Key Laboratory of Immunology and Targeted Drug, Xinxiang Medical University, Xinxiang 453003, China
- Xinxiang Engineering Technology Research Center of Immune Checkpoint Drug for Liver-Intestinal Tumors, Xinxiang Medical University, Xinxiang 453003, China
| | - Xiaowei Tian
- Department of Pathogenic Biology, School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang 453003, China
| | - Shihuan Ding
- Department of Immunology, School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang 453003, China
- Henan Key Laboratory of Immunology and Targeted Drug, Xinxiang Medical University, Xinxiang 453003, China
- Xinxiang Engineering Technology Research Center of Immune Checkpoint Drug for Liver-Intestinal Tumors, Xinxiang Medical University, Xinxiang 453003, China
| | - Ge Gao
- Henan Key Laboratory of Immunology and Targeted Drug, Xinxiang Medical University, Xinxiang 453003, China
| | - Jiyan Cui
- Department of Immunology, School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang 453003, China
- Henan Key Laboratory of Immunology and Targeted Drug, Xinxiang Medical University, Xinxiang 453003, China
- Xinxiang Engineering Technology Research Center of Immune Checkpoint Drug for Liver-Intestinal Tumors, Xinxiang Medical University, Xinxiang 453003, China
| | - Chengguang Zhang
- National Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, China
| | - Tiesuo Zhao
- Department of Immunology, School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang 453003, China
- Xinxiang Engineering Technology Research Center of Immune Checkpoint Drug for Liver-Intestinal Tumors, Xinxiang Medical University, Xinxiang 453003, China
| | - Liangwei Duan
- Henan Key Laboratory of Immunology and Targeted Drug, Xinxiang Medical University, Xinxiang 453003, China
- Henan Collaborative Innovation Center of Molecular Diagnosis and Laboratory Medicine, School of Medical Technology, Xinxiang Medical University, Xinxiang 453003, China
| | - Hui Wang
- Henan Key Laboratory of Immunology and Targeted Drug, Xinxiang Medical University, Xinxiang 453003, China
- Henan Collaborative Innovation Center of Molecular Diagnosis and Laboratory Medicine, School of Medical Technology, Xinxiang Medical University, Xinxiang 453003, China
| |
Collapse
|
2
|
Pekarek MJ, Petro-Turnquist EM, Jeanjaquet NE, Hoagstrom KV, LaMontia-Hankin E, Jahnke L, Madapong A, Weaver EA. Synthetic Neuraminidase Vaccine Induces Cross-Species and Multi-Subtype Protection. Vaccines (Basel) 2025; 13:364. [PMID: 40333263 PMCID: PMC12031341 DOI: 10.3390/vaccines13040364] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2025] [Revised: 03/19/2025] [Accepted: 03/26/2025] [Indexed: 05/09/2025] Open
Abstract
The genetic diversity of influenza A virus is a major obstacle that makes vaccine effectiveness variable and unpredictable. Objectives: Current vaccines induce strain-specific immunity that oftentimes fail to protect against divergent strains. Our previous research explored synthetic centralized consensus (CC) vaccines to minimize immunogen-strain divergence and focused on the viral glycoprotein hemagglutinin. Methods: Recently, emerging evidence of neuraminidase (NA)-mediated immunity has shifted vaccine strategies, prompting our development of a CC NA type 1 (N1CC) vaccine based on ancestral N1 sequences and delivered using a human adenovirus type 5 vector Results: The N1CC vaccine elicited antibody responses with NA inhibition activity and induced NA-specific T-cell responses. In lethal influenza challenge models, N1CC fully protected mice from death against human, swine, and avian influenza H1N1 and H5N1 strains. Conclusions: These findings support NA as a protective immunogen and demonstrate the power and efficacy of a centralized consensus NA design.
Collapse
Affiliation(s)
- Matthew J. Pekarek
- School of Biological Sciences, University of Nebraska-Lincoln, Lincoln, NE 68583, USA
- Nebraska Center for Virology, University of Nebraska-Lincoln, Lincoln, NE 68583, USA
| | - Erika M. Petro-Turnquist
- School of Biological Sciences, University of Nebraska-Lincoln, Lincoln, NE 68583, USA
- Nebraska Center for Virology, University of Nebraska-Lincoln, Lincoln, NE 68583, USA
| | - Nicholas E. Jeanjaquet
- School of Biological Sciences, University of Nebraska-Lincoln, Lincoln, NE 68583, USA
- Nebraska Center for Virology, University of Nebraska-Lincoln, Lincoln, NE 68583, USA
| | - Kristine V. Hoagstrom
- Department of Chemistry and Biochemistry, Nebraska Wesleyan University, Lincoln, NE 68504, USA
| | - Enzo LaMontia-Hankin
- College of Arts and Sciences, University of Nebraska-Lincoln, Lincoln, NE 68583, USA
| | - Leigh Jahnke
- College of Arts and Sciences, University of Nebraska-Lincoln, Lincoln, NE 68583, USA
| | - Adthakorn Madapong
- Nebraska Center for Virology, University of Nebraska-Lincoln, Lincoln, NE 68583, USA
| | - Eric A. Weaver
- School of Biological Sciences, University of Nebraska-Lincoln, Lincoln, NE 68583, USA
- Nebraska Center for Virology, University of Nebraska-Lincoln, Lincoln, NE 68583, USA
| |
Collapse
|
3
|
Somsen ED, Septer KM, Field CJ, Patel DR, Lowen AC, Sutton TC, Koelle K. Quantifying viral pandemic potential from experimental transmission studies. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.03.24.645081. [PMID: 40196651 PMCID: PMC11974881 DOI: 10.1101/2025.03.24.645081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 04/09/2025]
Abstract
In the past two decades, two pandemic respiratory viruses (H1N1 and SARS-CoV-2) have emerged via spillover from animal reservoirs. In an effort to avert future pandemics, surveillance studies aimed at identifying zoonotic viruses at high risk of spilling over into humans act to monitor the 'viral chatter' at the animal-human interface. These studies are hampered, however, by the diversity of zoonotic viruses and the limited tools available to assess pandemic risk. Methods currently in use include the characterization of candidate viruses using in vitro laboratory assays and experimental transmission studies in animal models. However, transmission experiments yield relatively low-resolution outputs that are not immediately translatable to projections of viral dynamics at the level of a host population. To address this gap, we present an analytical framework to extend the use of measurements from experimental transmission studies to generate more quantitative risk assessments. Specifically, we develop modeling approaches for estimating transmission parameters and gauging population-level emergence risk using within-host viral titer data from index and contact animals. To illustrate the use of these approaches, we apply them to two recently published influenza A virus (IAV) ferret transmission experiments: one using influenza A/California/07/2009 (H1N1pdm09) and one using influenza A/Hong Kong/1/1968 (H3N2). We find that, when controlling for viral titers, the H3N2 virus tends to be less transmissible than the H1N1 virus. Because of this difference in infectiousness and more robust replication of H1N1 in ferrets, we further find that the H1N1 virus has a higher projected reproduction number than the H3N2 virus and therefore more likely to cause an epidemic following introduction. Incorporating estimates of the generation interval for each virus, we find that the H1N1 virus has a higher projected epidemic growth rate than the H3N2 virus. The methods we present to assess relative pandemic risk across viral isolates can be used to improve quantitative risk assessment of other emerging viruses of pandemic concern.
Collapse
Affiliation(s)
- Elizabeth D Somsen
- Graduate Program in Population Biology, Ecology, and Evolution, Emory University, Atlanta, GA, USA
| | - Kayla M Septer
- Department of Veterinary and Biomedical Sciences, The Pennsylvania State University, State College, PA, USA
| | - Cassandra J Field
- Department of Veterinary and Biomedical Sciences, The Pennsylvania State University, State College, PA, USA
| | - Devanshi R Patel
- Department of Veterinary and Biomedical Sciences, The Pennsylvania State University, State College, PA, USA
| | - Anice C Lowen
- Department of Microbiology and Immunology, Emory University, Atlanta, GA, USA
- Emory Center of Excellence for Influenza Research and Response (Emory CEIRR), Atlanta GA, USA
| | - Troy C Sutton
- Department of Veterinary and Biomedical Sciences, The Pennsylvania State University, State College, PA, USA
- Emory Center of Excellence for Influenza Research and Response (Emory CEIRR), Atlanta GA, USA
| | - Katia Koelle
- Emory Center of Excellence for Influenza Research and Response (Emory CEIRR), Atlanta GA, USA
- Department of Biology, Emory University, Atlanta, GA, USA
| |
Collapse
|
4
|
Zou J, Jiang M, Xiao R, Sun H, Liu H, Peacock T, Tu S, Chen T, Guo J, Zhao Y, Barclay W, Xie S, Zhou H. GGCX promotes Eurasian avian-like H1N1 swine influenza virus adaption to interspecies receptor binding. Nat Commun 2025; 16:670. [PMID: 39809757 PMCID: PMC11733290 DOI: 10.1038/s41467-025-55903-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Accepted: 01/03/2025] [Indexed: 01/16/2025] Open
Abstract
The Eurasian avian-like (EA) H1N1 swine influenza virus (SIV) possesses the capacity to instigate the next influenza pandemic, owing to its heightened affinity for the human-type α-2,6 sialic acid (SA) receptor. Nevertheless, the molecular mechanisms underlying the switch in receptor binding preferences of EA H1N1 SIV remain elusive. In this study, we conduct a comprehensive genome-wide CRISPR/Cas9 knockout screen utilizing EA H1N1 SIV in porcine kidney cells. Knocking out the enzyme gamma glutamyl carboxylase (GGCX) reduces virus replication in vitro and in vivo by inhibiting the carboxylation modification of viral haemagglutinin (HA) and the adhesion of progeny viruses, ultimately impeding the replication of EA H1N1 SIV. Furthermore, GGCX is revealed to be the determinant of the D225E substitution of EA H1N1 SIV, and GGCX-medicated carboxylation modification of HA 225E contributes to the receptor binding adaption of EA H1N1 SIV to the α-2,6 SA receptor. Taken together, our CRISPR screen has elucidated a novel function of GGCX in the support of EA H1N1 SIV adaption for binding to α-2,6 SA receptor. Consequently, GGCX emerges as a prospective antiviral target against the infection and transmission of EA H1N1 SIV.
Collapse
Affiliation(s)
- Jiahui Zou
- National Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei, People's Republic of China
| | - Meijun Jiang
- National Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei, People's Republic of China
| | - Rong Xiao
- National Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei, People's Republic of China
| | - Huimin Sun
- National Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei, People's Republic of China
| | - Hailong Liu
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education & Key Lab of Swine Genetics and Breeding of Ministry of Agriculture and Rural Affairs, Huazhong Agricultural University, Wuhan, Hubei, People's Republic of China
| | - Thomas Peacock
- Department of Infectious Disease, Imperial College London, London, United Kingdom
- The Pirbright Institute, Pirbright, Woking, United Kingdom
| | - Shaoyu Tu
- National Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei, People's Republic of China
| | - Tong Chen
- National Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei, People's Republic of China
| | - Jinli Guo
- National Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei, People's Republic of China
| | - Yaxin Zhao
- National Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei, People's Republic of China
| | - Wendy Barclay
- Department of Infectious Disease, Imperial College London, London, United Kingdom.
| | - Shengsong Xie
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education & Key Lab of Swine Genetics and Breeding of Ministry of Agriculture and Rural Affairs, Huazhong Agricultural University, Wuhan, Hubei, People's Republic of China.
- Hubei Hongshan Laboratory, Wuhan, Hubei, People's Republic of China.
| | - Hongbo Zhou
- National Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei, People's Republic of China.
- Hubei Hongshan Laboratory, Wuhan, Hubei, People's Republic of China.
- Frontiers Science Center for Animal Breeding and Sustainable Production, Wuhan, Hubei, People's Republic of China.
- Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, Hubei, People's Republic of China.
| |
Collapse
|
5
|
Peacock TP, Moncla L, Dudas G, VanInsberghe D, Sukhova K, Lloyd-Smith JO, Worobey M, Lowen AC, Nelson MI. The global H5N1 influenza panzootic in mammals. Nature 2025; 637:304-313. [PMID: 39317240 DOI: 10.1038/s41586-024-08054-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Accepted: 09/16/2024] [Indexed: 09/26/2024]
Abstract
Influenza A viruses have caused more documented global pandemics in human history than any other pathogen1,2. High pathogenicity avian influenza viruses belonging to the H5N1 subtype are a leading pandemic risk. Two decades after H5N1 'bird flu' became established in poultry in Southeast Asia, its descendants have resurged3, setting off a H5N1 panzootic in wild birds that is fuelled by: (1) rapid intercontinental spread, reaching South America and Antarctica for the first time4,5; (2) fast evolution via genomic reassortment6; and (3) frequent spillover into terrestrial7,8 and marine mammals9. The virus has sustained mammal-to-mammal transmission in multiple settings, including European fur farms10,11, South American marine mammals12-15 and US dairy cattle16-19, raising questions about whether humans are next. Historically, swine are considered optimal intermediary hosts that help avian influenza viruses adapt to mammals before jumping to humans20. However, the altered ecology of H5N1 has opened the door to new evolutionary pathways. Dairy cattle, farmed mink or South American sea lions may have the potential to serve as new mammalian gateways for transmission of avian influenza viruses to humans. In this Perspective, we explore the molecular and ecological factors driving the sudden expansion in H5N1 host range and assess the likelihood of different zoonotic pathways leading to an H5N1 pandemic.
Collapse
Affiliation(s)
- Thomas P Peacock
- The Pirbright Institute, Pirbright, Woking, UK
- Department of Infectious Disease, St Mary's Medical School, Imperial College London, London, UK
| | - Louise Moncla
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Gytis Dudas
- Institute of Biotechnology, Life Sciences Center, Vilnius University, Vilnius, Lithuania
| | - David VanInsberghe
- Department of Microbiology and Immunology, Emory University School of Medicine, Atlanta, GA, USA
- Emory Center of Excellence for Influenza Research and Response (Emory-CEIRR), Atlanta, GA, USA
| | - Ksenia Sukhova
- Department of Infectious Disease, St Mary's Medical School, Imperial College London, London, UK
| | - James O Lloyd-Smith
- Department of Ecology and Evolutionary Biology, University of California Los Angeles, Los Angeles, CA, USA
- Department of Computational Medicine, University of California Los Angeles, Los Angeles, CA, USA
| | - Michael Worobey
- Department of Ecology and Evolutionary Biology, University of Arizona, Tucson, AZ, USA
| | - Anice C Lowen
- Department of Microbiology and Immunology, Emory University School of Medicine, Atlanta, GA, USA
- Emory Center of Excellence for Influenza Research and Response (Emory-CEIRR), Atlanta, GA, USA
| | - Martha I Nelson
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health (NIH), Bethesda, MD, USA.
| |
Collapse
|
6
|
Ding S, Zhou J, Xiong J, Du X, Yang W, Huang J, Liu Y, Huang L, Liao M, Zhang J, Qi W. Continued evolution of H10N3 influenza virus with adaptive mutations poses an increased threat to mammals. Virol Sin 2024; 39:546-555. [PMID: 38871182 PMCID: PMC11401466 DOI: 10.1016/j.virs.2024.06.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Accepted: 06/10/2024] [Indexed: 06/15/2024] Open
Abstract
The H10 subtype avian influenza virus (AIV) poses an ongoing threat to both birds and humans. Notably, fatal human cases of H10N3 and H10N8 infections have drawn public attention. In 2022, we isolated two H10N3 viruses (A/chicken/Shandong/0101/2022 and A/chicken/Shandong/0603/2022) from diseased chickens in China. Genome analysis revealed that these viruses were genetically associated with human-origin H10N3 virus, with internal genes originating from local H9N2 viruses. Compared to the H10N8 virus (A/chicken/Jiangxi/102/2013), the H10N3 viruses exhibited enhanced thermostability, increased viral release from erythrocytes, and accumulation of hemagglutinin (HA) protein. Additionally, we evaluated the pathogenicity of both H10N3 and H10N8 viruses in mice. We found that viral titers could be detected in the lungs and nasal turbinates of mice infected with the two H10N3 viruses, whereas H10N8 virus titers were detectable in the lungs and brains of mice. Notably, the proportion of double HA Q222R and G228S mutations in H10N3 viruses has increased since 2019. However, the functional roles of the Q222R and G228S double mutations in the HA gene of H10N3 viruses remain unknown and warrant further investigation. Our study highlights the potential public health risk posed by the H10N3 virus. A spillover event of AIV to humans could be a foretaste of a looming pandemic. Therefore, it is imperative to continuously monitor the evolution of the H10N3 influenza virus to ensure targeted prevention and control measures against influenza outbreaks.
Collapse
Affiliation(s)
- Shiping Ding
- State Key Laboratory for Animal Disease Control and Prevention, South China Agricultural University, Guangzhou, 510642, China; National Avian Influenza Para-Reference Laboratory, Guangzhou, 510642, China; Key Laboratory of Zoonoses, Ministry of Agriculture and Rural Affairs, Guangzhou, 510642, China; National and Regional Joint Engineering Laboratory for Medicament of Zoonoses Prevention and Control, Guangzhou, 510642, China
| | - Jiangtao Zhou
- State Key Laboratory for Animal Disease Control and Prevention, South China Agricultural University, Guangzhou, 510642, China; National Avian Influenza Para-Reference Laboratory, Guangzhou, 510642, China; Key Laboratory of Zoonoses, Ministry of Agriculture and Rural Affairs, Guangzhou, 510642, China; National and Regional Joint Engineering Laboratory for Medicament of Zoonoses Prevention and Control, Guangzhou, 510642, China
| | - Junlong Xiong
- State Key Laboratory for Animal Disease Control and Prevention, South China Agricultural University, Guangzhou, 510642, China; National Avian Influenza Para-Reference Laboratory, Guangzhou, 510642, China; Key Laboratory of Zoonoses, Ministry of Agriculture and Rural Affairs, Guangzhou, 510642, China; National and Regional Joint Engineering Laboratory for Medicament of Zoonoses Prevention and Control, Guangzhou, 510642, China
| | - Xiaowen Du
- College of Animal Science and Technology, Zhongkai University of Agriculture and Engineering, Guangzhou, 510550, China
| | - Wenzhuo Yang
- State Key Laboratory for Animal Disease Control and Prevention, South China Agricultural University, Guangzhou, 510642, China; National Avian Influenza Para-Reference Laboratory, Guangzhou, 510642, China; Key Laboratory of Zoonoses, Ministry of Agriculture and Rural Affairs, Guangzhou, 510642, China; National and Regional Joint Engineering Laboratory for Medicament of Zoonoses Prevention and Control, Guangzhou, 510642, China
| | - Jinyu Huang
- State Key Laboratory for Animal Disease Control and Prevention, South China Agricultural University, Guangzhou, 510642, China; National Avian Influenza Para-Reference Laboratory, Guangzhou, 510642, China; Key Laboratory of Zoonoses, Ministry of Agriculture and Rural Affairs, Guangzhou, 510642, China; National and Regional Joint Engineering Laboratory for Medicament of Zoonoses Prevention and Control, Guangzhou, 510642, China
| | - Yi Liu
- State Key Laboratory for Animal Disease Control and Prevention, South China Agricultural University, Guangzhou, 510642, China; National Avian Influenza Para-Reference Laboratory, Guangzhou, 510642, China; Key Laboratory of Zoonoses, Ministry of Agriculture and Rural Affairs, Guangzhou, 510642, China; National and Regional Joint Engineering Laboratory for Medicament of Zoonoses Prevention and Control, Guangzhou, 510642, China
| | - Lihong Huang
- State Key Laboratory for Animal Disease Control and Prevention, South China Agricultural University, Guangzhou, 510642, China; National Avian Influenza Para-Reference Laboratory, Guangzhou, 510642, China; Key Laboratory of Zoonoses, Ministry of Agriculture and Rural Affairs, Guangzhou, 510642, China; National and Regional Joint Engineering Laboratory for Medicament of Zoonoses Prevention and Control, Guangzhou, 510642, China
| | - Ming Liao
- National Avian Influenza Para-Reference Laboratory, Guangzhou, 510642, China; Key Laboratory of Zoonoses, Ministry of Agriculture and Rural Affairs, Guangzhou, 510642, China; National and Regional Joint Engineering Laboratory for Medicament of Zoonoses Prevention and Control, Guangzhou, 510642, China; Key Laboratory of Zoonoses Prevention and Control of Guangdong Province, Guangzhou, 510642, China; College of Animal Science and Technology, Zhongkai University of Agriculture and Engineering, Guangzhou, 510550, China
| | - Jiahao Zhang
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, China.
| | - Wenbao Qi
- State Key Laboratory for Animal Disease Control and Prevention, South China Agricultural University, Guangzhou, 510642, China; National Avian Influenza Para-Reference Laboratory, Guangzhou, 510642, China; Key Laboratory of Zoonoses, Ministry of Agriculture and Rural Affairs, Guangzhou, 510642, China; National and Regional Joint Engineering Laboratory for Medicament of Zoonoses Prevention and Control, Guangzhou, 510642, China; Key Laboratory of Zoonoses Prevention and Control of Guangdong Province, Guangzhou, 510642, China.
| |
Collapse
|
7
|
Kuchinski KS, Coombe M, Mansour SC, Cortez GAP, Kalhor M, Himsworth CG, Prystajecky NA. Targeted genomic sequencing of avian influenza viruses in wetland sediment from wild bird habitats. Appl Environ Microbiol 2024; 90:e0084223. [PMID: 38259077 PMCID: PMC10880596 DOI: 10.1128/aem.00842-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Accepted: 11/30/2023] [Indexed: 01/24/2024] Open
Abstract
Diverse influenza A viruses (IAVs) circulate in wild birds, including highly pathogenic strains that infect poultry and humans. Consequently, surveillance of IAVs in wild birds is a cornerstone of agricultural biosecurity and pandemic preparedness. Surveillance is traditionally done by testing wild birds directly, but obtaining these specimens is labor intensive, detection rates can be low, and sampling is often biased toward certain avian species. As a result, local incursions of dangerous IAVs are rarely detected before outbreaks begin. Testing environmental specimens from wild bird habitats has been proposed as an alternative surveillance strategy. These specimens are thought to contain diverse IAVs deposited by a broad range of avian hosts, including species that are not typically sampled by surveillance programs. To enable this surveillance strategy, we developed a targeted genomic sequencing method for characterizing IAVs in these challenging environmental specimens. It combines custom hybridization probes, unique molecular index-based library construction, and purpose-built bioinformatic tools, allowing IAV genomic material to be enriched and analyzed with single-fragment resolution. We demonstrated our method on 90 sediment specimens from wetlands around Vancouver, Canada. We recovered 2,312 IAV genome fragments originating from all eight IAV genome segments. Eleven hemagglutinin subtypes and nine neuraminidase subtypes were detected, including H5, the current global surveillance priority. Our results demonstrate that targeted genomic sequencing of environmental specimens from wild bird habitats could become a valuable complement to avian influenza surveillance programs.IMPORTANCEIn this study, we developed genome sequencing tools for characterizing avian influenza viruses in sediment from wild bird habitats. These tools enable an environment-based approach to avian influenza surveillance. This could improve early detection of dangerous strains in local wild birds, allowing poultry producers to better protect their flocks and prevent human exposures to potential pandemic threats. Furthermore, we purposefully developed these methods to contend with viral genomic material that is diluted, fragmented, incomplete, and derived from multiple strains and hosts. These challenges are common to many environmental specimens, making these methods broadly applicable for genomic pathogen surveillance in diverse contexts.
Collapse
Affiliation(s)
- Kevin S Kuchinski
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, British Columbia, Canada
| | - Michelle Coombe
- Animal Health Centre, Ministry of Agriculture and Food, Abbotsford, British Columbia, Canada
- School of Population and Public Health, University of British Columbia, Vancouver, British Columbia, Canada
- Canadian Wildlife Health Cooperative, Abbotsford, British Columbia, Canada
| | - Sarah C Mansour
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, British Columbia, Canada
| | - Gabrielle Angelo P Cortez
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, British Columbia, Canada
| | - Marzieh Kalhor
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, British Columbia, Canada
| | - Chelsea G Himsworth
- Animal Health Centre, Ministry of Agriculture and Food, Abbotsford, British Columbia, Canada
- School of Population and Public Health, University of British Columbia, Vancouver, British Columbia, Canada
- Canadian Wildlife Health Cooperative, Abbotsford, British Columbia, Canada
| | - Natalie A Prystajecky
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, British Columbia, Canada
- British Columbia Centre for Disease Control, Provincial Health Services Authority, Vancouver, British Columbia, Canada
| |
Collapse
|
8
|
Chen YM, Hu SJ, Lin XD, Tian JH, Lv JX, Wang MR, Luo XQ, Pei YY, Hu RX, Song ZG, Holmes EC, Zhang YZ. Host traits shape virome composition and virus transmission in wild small mammals. Cell 2023; 186:4662-4675.e12. [PMID: 37734372 DOI: 10.1016/j.cell.2023.08.029] [Citation(s) in RCA: 39] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2023] [Revised: 07/13/2023] [Accepted: 08/22/2023] [Indexed: 09/23/2023]
Abstract
Bats, rodents, and shrews are the most important animal sources of human infectious diseases. However, the evolution and transmission of viruses among them remain largely unexplored. Through the meta-transcriptomic sequencing of internal organ and fecal samples from 2,443 wild bats, rodents, and shrews sampled from four Chinese habitats, we identified 669 viruses, including 534 novel viruses, thereby greatly expanding the mammalian virome. Our analysis revealed high levels of phylogenetic diversity, identified cross-species virus transmission events, elucidated virus origins, and identified cases of invertebrate viruses in mammalian hosts. Host order and sample size were the most important factors impacting virome composition and patterns of virus spillover. Shrews harbored a high richness of viruses, including many invertebrate-associated viruses with multi-organ distributions, whereas rodents carried viruses with a greater capacity for host jumping. These data highlight the remarkable diversity of mammalian viruses in local habitats and their ability to emerge in new hosts.
Collapse
Affiliation(s)
- Yan-Mei Chen
- State Key Laboratory of Genetic Engineering, Greater Bay Area Institute of Precision Medicine (Guangzhou), School of Life Sciences and Human Phenome Institute, Fudan University, Shanghai 200438, China
| | - Shu-Jian Hu
- State Key Laboratory of Genetic Engineering, Greater Bay Area Institute of Precision Medicine (Guangzhou), School of Life Sciences and Human Phenome Institute, Fudan University, Shanghai 200438, China
| | - Xian-Dan Lin
- Wenzhou Center for Disease Control and Prevention, Wenzhou, Zhejiang 325002, China
| | - Jun-Hua Tian
- Wuhan Center for Disease Control and Prevention, Wuhan, Hubei 430022, China
| | - Jia-Xin Lv
- State Key Laboratory of Genetic Engineering, Greater Bay Area Institute of Precision Medicine (Guangzhou), School of Life Sciences and Human Phenome Institute, Fudan University, Shanghai 200438, China
| | - Miao-Ruo Wang
- Longquan Center for Disease Control and Prevention, Longquan, Zhejiang 323799, China
| | - Xiu-Qi Luo
- State Key Laboratory of Genetic Engineering, Greater Bay Area Institute of Precision Medicine (Guangzhou), School of Life Sciences and Human Phenome Institute, Fudan University, Shanghai 200438, China
| | - Yuan-Yuan Pei
- State Key Laboratory of Genetic Engineering, Greater Bay Area Institute of Precision Medicine (Guangzhou), School of Life Sciences and Human Phenome Institute, Fudan University, Shanghai 200438, China
| | - Rui-Xue Hu
- State Key Laboratory of Genetic Engineering, Greater Bay Area Institute of Precision Medicine (Guangzhou), School of Life Sciences and Human Phenome Institute, Fudan University, Shanghai 200438, China
| | - Zhi-Gang Song
- State Key Laboratory of Genetic Engineering, Greater Bay Area Institute of Precision Medicine (Guangzhou), School of Life Sciences and Human Phenome Institute, Fudan University, Shanghai 200438, China
| | - Edward C Holmes
- Sydney Institute for Infectious Diseases, School of Medical Sciences, The University of Sydney, Sydney, NSW 2006, Australia; Laboratory of Data Discovery for Health Limited, Hong Kong SAR, China
| | - Yong-Zhen Zhang
- State Key Laboratory of Genetic Engineering, Greater Bay Area Institute of Precision Medicine (Guangzhou), School of Life Sciences and Human Phenome Institute, Fudan University, Shanghai 200438, China.
| |
Collapse
|
9
|
Saavedra I, Rabadán-González J, Aragonés D, Figuerola J. Can Citizen Science Contribute to Avian Influenza Surveillance? Pathogens 2023; 12:1183. [PMID: 37764991 PMCID: PMC10535995 DOI: 10.3390/pathogens12091183] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 09/01/2023] [Accepted: 09/19/2023] [Indexed: 09/29/2023] Open
Abstract
Global change is an important driver of the increase in emerging infectious diseases in recent decades. In parallel, interest in nature has increased, and different citizen science platforms have been developed to record wildlife observations from the general public. Some of these platforms also allow registering the observations of dead or sick birds. Here, we test the utility of live, sick and dead observations of birds recorded on the platform Observation.org for the early detection of highly pathogenic avian influenza virus (HPAIV) outbreaks in the wild in Belgium and The Netherlands. There were no significant differences in the morbidity/mortality rate through Observation.org one to four weeks in advance. However, the results show that the HPAIV outbreaks officially reported by the World Organisation for Animal Health (WOAH) overlapped in time with sudden increases in the records of sick and dead birds in the wild. In addition, in two of the five main HPAIV outbreaks recorded between 2016 and 2021, wild Anseriformes mortality increased one to two months before outbreak declaration. Although we cannot exclude that this increase was related to other causes such as other infectious diseases, we propose that Observation.org is a useful nature platform to complement animal health surveillance in wild birds. We propose possible approaches to improve the utility of the platform for pathogen surveillance in wildlife and discuss the potential for HPAIV outbreak detection systems based on citizen science to complement current surveillance programs of health authorities.
Collapse
Affiliation(s)
- Irene Saavedra
- Consejo Superior de Investigaciones Científicas, Estación Biológica de Doñana, C/Américo Vespucio 26, E-41092 Sevilla, Spain;
| | | | - David Aragonés
- Remote Sensing and GIS Laboratory (LAST-EBD), Consejo Superior de Investigaciones Cientificas, Estación Biológica de Doñana, C/Américo Vespucio 26, E-41092 Sevilla, Spain;
| | - Jordi Figuerola
- Consejo Superior de Investigaciones Científicas, Estación Biológica de Doñana, C/Américo Vespucio 26, E-41092 Sevilla, Spain;
- CIBER Epidemiology and Public Health (CIBERESP), E-28028 Madrid, Spain
| |
Collapse
|
10
|
Pinto RM, Bakshi S, Lytras S, Zakaria MK, Swingler S, Worrell JC, Herder V, Hargrave KE, Varjak M, Cameron-Ruiz N, Collados Rodriguez M, Varela M, Wickenhagen A, Loney C, Pei Y, Hughes J, Valette E, Turnbull ML, Furnon W, Gu Q, Orr L, Taggart A, Diebold O, Davis C, Boutell C, Grey F, Hutchinson E, Digard P, Monne I, Wootton SK, MacLeod MKL, Wilson SJ, Palmarini M. BTN3A3 evasion promotes the zoonotic potential of influenza A viruses. Nature 2023; 619:338-347. [PMID: 37380775 DOI: 10.1038/s41586-023-06261-8] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Accepted: 05/25/2023] [Indexed: 06/30/2023]
Abstract
Spillover events of avian influenza A viruses (IAVs) to humans could represent the first step in a future pandemic1. Several factors that limit the transmission and replication of avian IAVs in mammals have been identified. There are several gaps in our understanding to predict which virus lineages are more likely to cross the species barrier and cause disease in humans1. Here, we identified human BTN3A3 (butyrophilin subfamily 3 member A3)2 as a potent inhibitor of avian IAVs but not human IAVs. We determined that BTN3A3 is expressed in human airways and its antiviral activity evolved in primates. We show that BTN3A3 restriction acts primarily at the early stages of the virus life cycle by inhibiting avian IAV RNA replication. We identified residue 313 in the viral nucleoprotein (NP) as the genetic determinant of BTN3A3 sensitivity (313F or, rarely, 313L in avian viruses) or evasion (313Y or 313V in human viruses). However, avian IAV serotypes, such as H7 and H9, that spilled over into humans also evade BTN3A3 restriction. In these cases, BTN3A3 evasion is due to substitutions (N, H or Q) in NP residue 52 that is adjacent to residue 313 in the NP structure3. Thus, sensitivity or resistance to BTN3A3 is another factor to consider in the risk assessment of the zoonotic potential of avian influenza viruses.
Collapse
Affiliation(s)
- Rute Maria Pinto
- MRC-University of Glasgow Centre for Virus Research, Glasgow, UK
- The Roslin Institute, University of Edinburgh, Edinburgh, UK
| | - Siddharth Bakshi
- MRC-University of Glasgow Centre for Virus Research, Glasgow, UK
| | - Spyros Lytras
- MRC-University of Glasgow Centre for Virus Research, Glasgow, UK
| | | | - Simon Swingler
- MRC-University of Glasgow Centre for Virus Research, Glasgow, UK
| | - Julie C Worrell
- School of Infection and Immunity, University of Glasgow, Glasgow, UK
| | - Vanessa Herder
- MRC-University of Glasgow Centre for Virus Research, Glasgow, UK
| | - Kerrie E Hargrave
- School of Infection and Immunity, University of Glasgow, Glasgow, UK
| | - Margus Varjak
- MRC-University of Glasgow Centre for Virus Research, Glasgow, UK
- Faculty of Science and Technology, Institute of Technology, University of Tartu, Tartu, Estonia
| | | | | | - Mariana Varela
- MRC-University of Glasgow Centre for Virus Research, Glasgow, UK
| | | | - Colin Loney
- MRC-University of Glasgow Centre for Virus Research, Glasgow, UK
| | - Yanlong Pei
- Department of Pathobiology, University of Guelph, Guelph, Ontario, Canada
| | - Joseph Hughes
- MRC-University of Glasgow Centre for Virus Research, Glasgow, UK
| | - Elise Valette
- MRC-University of Glasgow Centre for Virus Research, Glasgow, UK
| | | | - Wilhelm Furnon
- MRC-University of Glasgow Centre for Virus Research, Glasgow, UK
| | - Quan Gu
- MRC-University of Glasgow Centre for Virus Research, Glasgow, UK
| | - Lauren Orr
- MRC-University of Glasgow Centre for Virus Research, Glasgow, UK
| | - Aislynn Taggart
- MRC-University of Glasgow Centre for Virus Research, Glasgow, UK
| | - Ola Diebold
- The Roslin Institute, University of Edinburgh, Edinburgh, UK
| | - Chris Davis
- MRC-University of Glasgow Centre for Virus Research, Glasgow, UK
| | - Chris Boutell
- MRC-University of Glasgow Centre for Virus Research, Glasgow, UK
| | - Finn Grey
- The Roslin Institute, University of Edinburgh, Edinburgh, UK
| | | | - Paul Digard
- The Roslin Institute, University of Edinburgh, Edinburgh, UK
| | - Isabella Monne
- Istituto Zooprofilattico Sperimentale delle Venezie (IZSVe), Legnaro, Italy
| | - Sarah K Wootton
- Department of Pathobiology, University of Guelph, Guelph, Ontario, Canada
| | - Megan K L MacLeod
- School of Infection and Immunity, University of Glasgow, Glasgow, UK
| | - Sam J Wilson
- MRC-University of Glasgow Centre for Virus Research, Glasgow, UK
| | | |
Collapse
|
11
|
Barbachano-Guerrero A, Perez DR, Sawyer SL. How avian influenza viruses spill over to mammals. eLife 2023; 12:e86051. [PMID: 37039775 PMCID: PMC10089655 DOI: 10.7554/elife.86051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/12/2023] Open
Abstract
The H3N2 canine influenza virus - which originally came from birds - is evolving to become more transmissible between dogs.
Collapse
|
12
|
Braun KM, Haddock III LA, Crooks CM, Barry GL, Lalli J, Neumann G, Watanabe T, Imai M, Yamayoshi S, Ito M, Moncla LH, Koelle K, Kawaoka Y, Friedrich TC. Avian H7N9 influenza viruses are evolutionarily constrained by stochastic processes during replication and transmission in mammals. Virus Evol 2023; 9:vead004. [PMID: 36814938 PMCID: PMC9939568 DOI: 10.1093/ve/vead004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Revised: 01/05/2023] [Accepted: 01/17/2023] [Indexed: 01/20/2023] Open
Abstract
H7N9 avian influenza viruses (AIVs) have caused over 1,500 documented human infections since emerging in 2013. Although wild-type H7N9 AIVs can be transmitted by respiratory droplets in ferrets, they have not yet caused widespread outbreaks in humans. Previous studies have revealed molecular determinants of H7N9 AIV host switching, but little is known about potential evolutionary constraints on this process. Here, we compare patterns of sequence evolution for H7N9 AIV and mammalian H1N1 viruses during replication and transmission in ferrets. We show that three main factors-purifying selection, stochasticity, and very narrow transmission bottlenecks-combine to severely constrain the ability of H7N9 AIV to effectively adapt to mammalian hosts in isolated, acute spillover events. We find rare evidence of natural selection favoring new, potentially mammal-adapting mutations within ferrets but no evidence of natural selection acting during transmission. We conclude that human-adapted H7N9 viruses are unlikely to emerge during typical spillover infections. Our findings are instead consistent with a model in which the emergence of a human-transmissible virus would be a rare and unpredictable, though highly consequential, 'jackpot' event. Strategies to control the total number of spillover infections will limit opportunities for the virus to win this evolutionary lottery.
Collapse
Affiliation(s)
| | | | - Chelsea M Crooks
- AIDS Vaccine Research Institute, Department of Pathobiological Sciences, University of Wisconsin-Madison, 585 Science Dr. Madison, WI 53711, USA
| | - Gabrielle L Barry
- AIDS Vaccine Research Institute, Department of Pathobiological Sciences, University of Wisconsin-Madison, 585 Science Dr. Madison, WI 53711, USA
| | - Joseph Lalli
- Department of Genetics, University of Wisconsin-Madison, 425 Henry Mall Madison, WI 53706, US
| | - Gabriele Neumann
- Influenza Research Institute, Department of Pathobiological Sciences, University of Wisconsin-Madison, 575 Science Dr. Madison, WI 53711, USA
| | - Tokiko Watanabe
- Division of Virology, Institute of Medical Science, University of Tokyo, 4 Chome-6-1 Shirokanedai Minato City, Tokyo 108-0071, Japan,Department of Molecular Virology, Research Institute for Microbial Diseases, Osaka University, 3-1 Yamadaoka Suita City, Osaka 565-0871, Japan,Center for Infectious Disease Education and Research (CiDER), Osaka University, 2-8 Yamadaoka Suita City, Osaka 565-0871, Japan
| | - Masaki Imai
- Division of Virology, Institute of Medical Science, University of Tokyo, 4 Chome-6-1 Shirokanedai Minato City, Tokyo 108-0071, Japan,The Research Center for Global Viral Diseases, National Center for Global Health and Medicine Research Institute, 1 Chome-21-1 Toyama Shinjuku City, Tokyo 162-8655, Japan
| | | | - Mutsumi Ito
- Division of Virology, Institute of Medical Science, University of Tokyo, 4 Chome-6-1 Shirokanedai Minato City, Tokyo 108-0071, Japan
| | | | | | - Yoshihiro Kawaoka
- Influenza Research Institute, Department of Pathobiological Sciences, University of Wisconsin-Madison, 575 Science Dr. Madison, WI 53711, USA,Division of Virology, Institute of Medical Science, University of Tokyo, 4 Chome-6-1 Shirokanedai Minato City, Tokyo 108-0071, Japan,The Research Center for Global Viral Diseases, National Center for Global Health and Medicine Research Institute, 1 Chome-21-1 Toyama Shinjuku City, Tokyo 162-8655, Japan
| | | |
Collapse
|
13
|
Pulit-Penaloza JA, Brock N, Jones J, Belser JA, Jang Y, Sun X, Thor S, Pappas C, Zanders N, Tumpey TM, Davis CT, Maines TR. Pathogenesis and transmission of human seasonal and swine-origin A(H1) influenza viruses in the ferret model. Emerg Microbes Infect 2022; 11:1452-1459. [PMID: 35537045 PMCID: PMC9176692 DOI: 10.1080/22221751.2022.2076615] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Influenza A viruses (IAVs) in the swine reservoir constantly evolve, resulting in expanding genetic and antigenic diversity of strains that occasionally cause infections in humans and pose a threat of emerging as a strain capable of human-to-human transmission. For these reasons, there is an ongoing need for surveillance and characterization of newly emerging strains to aid pandemic preparedness efforts, particularly for the selection of candidate vaccine viruses and conducting risk assessments. Here, we performed a parallel comparison of the pathogenesis and transmission of genetically and antigenically diverse swine-origin A(H1N1) variant (v) and A(H1N2)v, and human seasonal A(H1N1)pdm09 IAVs using the ferret model. Both groups of viruses were capable of replication in the ferret upper respiratory tract; however, variant viruses were more frequently isolated from the lower respiratory tract as compared to the human-adapted viruses. Regardless of virus origin, observed clinical signs of infection differed greatly between strains, with some viruses causing nasal discharge, sneezing and, in some instances, diarrhea in ferrets. The most striking difference between the viruses was the ability to transmit through the air. Human-adapted viruses were capable of airborne transmission between all ferret pairs. In contrast, only one out of the four tested variant viruses was able to transmit via the air as efficiently as the human-adapted viruses. Overall, this work highlights the need for sustained monitoring of emerging swine IAVs to identify strains of concern such as those that are antigenically different from vaccine strains and that possess adaptations required for efficient respiratory droplet transmission in mammals.
Collapse
Affiliation(s)
- Joanna A Pulit-Penaloza
- Centers for Disease Control and Prevention, Influenza Division, National Center for Immunization and Respiratory Diseases, Atlanta, GA, USA
| | - Nicole Brock
- Centers for Disease Control and Prevention, Influenza Division, National Center for Immunization and Respiratory Diseases, Atlanta, GA, USA
| | - Joyce Jones
- Centers for Disease Control and Prevention, Influenza Division, National Center for Immunization and Respiratory Diseases, Atlanta, GA, USA
| | - Jessica A Belser
- Centers for Disease Control and Prevention, Influenza Division, National Center for Immunization and Respiratory Diseases, Atlanta, GA, USA
| | - Yunho Jang
- Centers for Disease Control and Prevention, Influenza Division, National Center for Immunization and Respiratory Diseases, Atlanta, GA, USA
| | - Xiangjie Sun
- Centers for Disease Control and Prevention, Influenza Division, National Center for Immunization and Respiratory Diseases, Atlanta, GA, USA
| | - Sharmi Thor
- Centers for Disease Control and Prevention, Influenza Division, National Center for Immunization and Respiratory Diseases, Atlanta, GA, USA
| | - Claudia Pappas
- Centers for Disease Control and Prevention, Influenza Division, National Center for Immunization and Respiratory Diseases, Atlanta, GA, USA
| | - Natosha Zanders
- Centers for Disease Control and Prevention, Influenza Division, National Center for Immunization and Respiratory Diseases, Atlanta, GA, USA
| | - Terrence M Tumpey
- Centers for Disease Control and Prevention, Influenza Division, National Center for Immunization and Respiratory Diseases, Atlanta, GA, USA
| | - C Todd Davis
- Centers for Disease Control and Prevention, Influenza Division, National Center for Immunization and Respiratory Diseases, Atlanta, GA, USA
| | - Taronna R Maines
- Centers for Disease Control and Prevention, Influenza Division, National Center for Immunization and Respiratory Diseases, Atlanta, GA, USA
| |
Collapse
|
14
|
Abstract
RNA viruses include respiratory viruses, such as coronaviruses and influenza viruses, as well as vector-borne viruses, like dengue and West Nile virus. RNA viruses like these encounter various environments when they copy themselves and spread from cell to cell or host to host. Ex vivo differences, such as geographical location and humidity, affect their stability and transmission, while in vivo differences, such as pH and host gene expression, impact viral receptor binding, viral replication, and the host immune response against the viral infection. A critical factor affecting RNA viruses both ex vivo and in vivo, and defining the outcome of viral infections and the direction of viral evolution, is temperature. In this minireview, we discuss the impact of temperature on viral replication, stability, transmission, and adaptation, as well as the host innate immune response. Improving our understanding of how RNA viruses function, survive, and spread at different temperatures will improve our models of viral replication and transmission risk analyses.
Collapse
Affiliation(s)
- Karishma Bisht
- Department of Molecular Biology, Princeton University, Princeton, New Jersey, USA
| | | |
Collapse
|
15
|
French H, Pitré E, Oade MS, Elshina E, Bisht K, King A, Bauer DL, te Velthuis AJ. Transient RNA structures cause aberrant influenza virus replication and innate immune activation. SCIENCE ADVANCES 2022; 8:eabp8655. [PMID: 36083899 PMCID: PMC9462681 DOI: 10.1126/sciadv.abp8655] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Accepted: 07/26/2022] [Indexed: 05/06/2023]
Abstract
During infection, the influenza A virus RNA polymerase produces both full-length and aberrant RNA molecules, such as defective viral genomes (DVGs) and mini viral RNAs (mvRNAs). Subsequent innate immune activation involves the binding of host pathogen receptor retinoic acid-inducible gene I (RIG-I) to viral RNAs. However, it is not clear what factors determine which influenza A virus RNAs are RIG-I agonists. Here, we provide evidence that RNA structures, called template loops (t-loops), stall the viral RNA polymerase and contribute to innate immune activation by mvRNAs during influenza A virus infection. Impairment of replication by t-loops depends on the formation of an RNA duplex near the template entry and exit channels of the RNA polymerase, and this effect is enhanced by mutation of the template exit path from the RNA polymerase active site. Overall, these findings are suggestive of a mechanism involving polymerase stalling that links aberrant viral replication to the activation of the innate immune response.
Collapse
Affiliation(s)
- Hollie French
- University of Cambridge, Department of Pathology, Addenbrooke’s Hospital, Cambridge CB2 2QQ, UK
| | - Emmanuelle Pitré
- University of Cambridge, Department of Pathology, Addenbrooke’s Hospital, Cambridge CB2 2QQ, UK
- Lewis Thomas Laboratory, Department of Molecular Biology, Princeton University, Princeton, NJ 08544, USA
| | - Michael S. Oade
- University of Cambridge, Department of Pathology, Addenbrooke’s Hospital, Cambridge CB2 2QQ, UK
- Lewis Thomas Laboratory, Department of Molecular Biology, Princeton University, Princeton, NJ 08544, USA
| | - Elizaveta Elshina
- University of Cambridge, Department of Pathology, Addenbrooke’s Hospital, Cambridge CB2 2QQ, UK
- Lewis Thomas Laboratory, Department of Molecular Biology, Princeton University, Princeton, NJ 08544, USA
| | - Karishma Bisht
- Lewis Thomas Laboratory, Department of Molecular Biology, Princeton University, Princeton, NJ 08544, USA
| | - Alannah King
- University of Cambridge, Department of Pathology, Addenbrooke’s Hospital, Cambridge CB2 2QQ, UK
| | - David L.V. Bauer
- RNA Virus Replication Laboratory, The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK
| | - Aartjan J.W. te Velthuis
- University of Cambridge, Department of Pathology, Addenbrooke’s Hospital, Cambridge CB2 2QQ, UK
- Lewis Thomas Laboratory, Department of Molecular Biology, Princeton University, Princeton, NJ 08544, USA
| |
Collapse
|
16
|
Cui J, Cui P, Shi J, Fan W, Xing X, Gu W, Zhang Y, Zhang Y, Zeng X, Jiang Y, Chen P, Yang H, Chen Y, Liu J, Liu L, Tian G, Lu Y, Chen H, Li C, Deng G. Continued evolution of H6 avian influenza viruses isolated from farms in China between 2014 and 2018. Transbound Emerg Dis 2022; 69:2156-2172. [PMID: 34192815 DOI: 10.1111/tbed.14212] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Revised: 06/04/2021] [Accepted: 06/27/2021] [Indexed: 12/22/2022]
Abstract
H6 avian influenza virus (AIV) is one of the most prevalent AIV subtypes in the world. Our previous studies have demonstrated that H6 AIVs isolated from live poultry markets pose a potential threat to human health. In recent years, increasing number of H6 AIVs has been constantly isolated from poultry farms. In order to understand the biological characteristics of H6 AIVs in the context of farms, here, we analyzed the phylogenetic relationships, antigenicity, replication in mice and receptor binding properties of H6 AIVs isolated from farms in China between 2014 and 2018. Phylogenetic analysis showed that 19 different genotypes were formed among 20 representative H6 viruses. Notably, the internal genes of these H6 viruses exhibited complicated relationships with different subtypes of AIVs worldwide, indicating that these viruses are the products of complex and frequent reassortment events. Antigenic analysis revealed that 13 viruses tested were divided into three antigenic groups. 10 viruses examined could all replicate in the respiratory organs of infected mice without prior adaptation. Receptor binding analysis demonstrated that some of the H6 AIVs bound to both α-2, 3-linked glycans (avian-type receptor) and α-2, 6-linked glycans (human-type receptor), thereby posing a potential threat to human health. Together, these findings revealed the prevalence, complicated genetic evolution, diverse antigenicity, and dual receptor binding specificity of H6 AIVs in the settings of poultry farms, which emphasize the importance to continuously monitor the evolution and biological properties of H6 AIVs in nature.
Collapse
Affiliation(s)
- Jiaqi Cui
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, CAAS, Harbin, P. R. China
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, P. R. China
| | - Pengfei Cui
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, CAAS, Harbin, P. R. China
| | - Jianzhong Shi
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, CAAS, Harbin, P. R. China
| | - Weifeng Fan
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, CAAS, Harbin, P. R. China
| | - Xin Xing
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, CAAS, Harbin, P. R. China
| | - Wenli Gu
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, CAAS, Harbin, P. R. China
| | - Yuancheng Zhang
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, CAAS, Harbin, P. R. China
| | - Yaping Zhang
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, CAAS, Harbin, P. R. China
| | - Xianying Zeng
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, CAAS, Harbin, P. R. China
| | - Yongping Jiang
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, CAAS, Harbin, P. R. China
| | - Pucheng Chen
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, CAAS, Harbin, P. R. China
| | - Huanliang Yang
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, CAAS, Harbin, P. R. China
| | - Yan Chen
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, CAAS, Harbin, P. R. China
| | - Jinxiong Liu
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, CAAS, Harbin, P. R. China
| | - Liling Liu
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, CAAS, Harbin, P. R. China
| | - Guobin Tian
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, CAAS, Harbin, P. R. China
| | - Yixin Lu
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, P. R. China
| | - Hualan Chen
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, CAAS, Harbin, P. R. China
| | - Chengjun Li
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, CAAS, Harbin, P. R. China
| | - Guohua Deng
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, CAAS, Harbin, P. R. China
| |
Collapse
|
17
|
Generation of Human Lung Organoid Cultures from Healthy and Tumor Tissue to Study Infectious Diseases. J Virol 2022; 96:e0009822. [DOI: 10.1128/jvi.00098-22] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Three-dimensional (3D) human lung organoids reflect the native cell composition of the lung as well as its physiological properties. Human 3D lung organoids offer ideal conditions, such as timely availability in large quantities and high physiological relevance for reassessment and prediction of disease outbreaks of respiratory pathogens and pathogens that use the lung as a primary entry portal.
Collapse
|
18
|
Swine H1N1 Influenza Virus Variants with Enhanced Polymerase Activity and HA Stability Promote Airborne Transmission in Ferrets. J Virol 2022; 96:e0010022. [DOI: 10.1128/jvi.00100-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Diverse IAVs circulate in animals, yet few acquire the viral traits needed to start a human pandemic. A stabilized HA and mammalian-adapted polymerase have been shown to promote the adaptation of IAVs to humans and ferrets (the gold-standard model for IAV replication, pathogenicity, and transmissibility).
Collapse
|
19
|
Michalski M, Setny P. Membrane-Bound Configuration and Lipid Perturbing Effects of Hemagglutinin Subunit 2 N-Terminus Investigated by Computer Simulations. Front Mol Biosci 2022; 9:826366. [PMID: 35155580 PMCID: PMC8830744 DOI: 10.3389/fmolb.2022.826366] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Accepted: 01/04/2022] [Indexed: 01/08/2023] Open
Abstract
Hemagglutinin (HA) mediated fusion of influenza virus envelope with host lipid membrane is a critical step warrantying virus entry to the cell. Despite tremendous advances in structural biology methods, the knowledge concerning the details of HA2 subunit insertion into the target membrane and its subsequent bilayer perturbing effect is still rather limited. Herein, based on a set of molecular dynamics simulations, we investigate the structure and interaction with lipid membrane of the N-terminal HA2 region comprising a trimer of fusion peptides (HAfps) tethered by flexible linkers to a fragment of coiled-coil stem structure. We find that, prior to insertion into the membrane, HAfps within the trimers do not sample space individually but rather associate into a compact hydrophobic aggregate. Once within the membrane, they fold into tight helical hairpins, which remain at the lipid-water interface. However, they can also assume stable, membrane-spanning configurations of significantly increased membrane-perturbing potential. In this latter case, HAfps trimers centre around the well-hydrated transmembrane channel-forming distinct, symmetric assemblies, whose wedge-like shape may play a role in promoting membrane curvature. We also demonstrate that, following HAfps insertion, the coiled-coil stem spontaneously tilts to almost membrane-parallel orientation, reflecting experimentally observed configuration adopted in the course of membrane fusion by complete HA2 units at the rim of membrane contact zones.
Collapse
|
20
|
Huntington MK. Epidemics and Pandemics. Fam Med 2022. [DOI: 10.1007/978-3-030-54441-6_189] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
21
|
Doelger J, Chakraborty AK, Kardar M. A simple model for how the risk of pandemics from different virus families depends on viral and human traits. Math Biosci 2022; 343:108732. [PMID: 34748882 PMCID: PMC8570818 DOI: 10.1016/j.mbs.2021.108732] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Revised: 09/14/2021] [Accepted: 10/08/2021] [Indexed: 11/29/2022]
Abstract
Different virus families, like influenza or corona viruses, exhibit characteristic traits such as typical modes of transmission and replication as well as specific animal reservoirs in which each family of viruses circulate. These traits of genetically related groups of viruses influence how easily an animal virus can adapt to infect humans, how well novel human variants can spread in the population, and the risk of causing a global pandemic. Relating the traits of virus families to their risk of causing future pandemics, and identification of the key time scales within which public health interventions can control the spread of a new virus that could cause a pandemic, are obviously significant. We address these issues using a minimal model whose parameters are related to characteristic traits of different virus families. A key trait of viruses that "spillover" from animal reservoirs to infect humans is their ability to propagate infection through the human population (fitness). We find that the risk of pandemics emerging from virus families characterized by a wide distribution of the fitness of spillover strains is much higher than if such strains were characterized by narrow fitness distributions around the same mean. The dependences of the risk of a pandemic on various model parameters exhibit inflection points. We find that these inflection points define informative thresholds. For example, the inflection point in variation of pandemic risk with time after the spillover represents a threshold time beyond which global interventions would likely be too late to prevent a pandemic.
Collapse
Affiliation(s)
- Julia Doelger
- Institute for Medical Engineering and Science, MIT, Cambridge, MA 02139, USA
| | - Arup K Chakraborty
- Institute for Medical Engineering and Science, MIT, Cambridge, MA 02139, USA; Department of Physics, MIT, Cambridge, MA 02139, USA; Department of Chemical Engineering, MIT, Cambridge, MA 02139, USA; Department of Chemistry, MIT, Cambridge, MA 02139, USA; Ragon Institute of MGH, MIT and Harvard, Cambridge, MA 02139, USA.
| | - Mehran Kardar
- Department of Physics, MIT, Cambridge, MA 02139, USA.
| |
Collapse
|
22
|
Lucas TM, Gupta C, Altman MO, Sanchez E, Naticchia MR, Gagneux P, Singharoy A, Godula K. Mucin-mimetic glycan arrays integrating machine learning for analyzing receptor pattern recognition by influenza A viruses. Chem 2021; 7:3393-3411. [PMID: 34993358 PMCID: PMC8726012 DOI: 10.1016/j.chempr.2021.09.015] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
Influenza A viruses (IAVs) exploit host glycans in airway mucosa for entry and infection. Detection of changes in IAV glycan-binding phenotype can provide early indication of transmissibility and infection potential. While zoonotic viruses are monitored for mutations, the influence of host glycan presentation on viral specificity remains obscured. Here, we describe an array platform which uses synthetic mimetics of mucin glycoproteins to model how receptor presentation and density in the mucinous glycocalyx may impact IAV recognition. H1N1 and H3N2 binding in arrays of α2,3- and α2,6-sialyllactose receptors confirmed their known sialic acid-binding specificities and revealed their different sensitivities to receptor presentation. Further, the transition of H1N1 from avian to mammalian cell culture improved the ability of the virus to recognize mucin-like displays of α2,6-sialic acid receptors. Support vector machine (SVM) learning efficiently characterized this shift in binding preference and may prove useful to study viral evolution to a new host.
Collapse
Affiliation(s)
- Taryn M. Lucas
- Department of Chemistry and Biochemistry, University of California San Diego, 9500 Gilman Drive, La Jolla, CA 92093
| | - Chitrak Gupta
- School of Molecular Sciences, Arizona State University, Tempe, AZ 85281
- Biodesign Institute, Arizona State University, Tempe, AZ 85281
| | - Meghan O. Altman
- Department of Pathology, Division of Comparative Pathology and Medicine, University of California San Diego, 9500 Gilman Drive, La Jolla, CA 92093
| | - Emi Sanchez
- Department of Chemistry and Biochemistry, University of California San Diego, 9500 Gilman Drive, La Jolla, CA 92093
| | - Matthew R. Naticchia
- Department of Chemistry and Biochemistry, University of California San Diego, 9500 Gilman Drive, La Jolla, CA 92093
| | - Pascal Gagneux
- Department of Pathology, Division of Comparative Pathology and Medicine, University of California San Diego, 9500 Gilman Drive, La Jolla, CA 92093
- Glycobiology Research and Training Center, University of California San Diego, 9500 Gilman Drive, La Jolla, CA 92093
| | - Abhishek Singharoy
- School of Molecular Sciences, Arizona State University, Tempe, AZ 85281
- Biodesign Institute, Arizona State University, Tempe, AZ 85281
| | - Kamil Godula
- Department of Chemistry and Biochemistry, University of California San Diego, 9500 Gilman Drive, La Jolla, CA 92093
- Glycobiology Research and Training Center, University of California San Diego, 9500 Gilman Drive, La Jolla, CA 92093
| |
Collapse
|
23
|
Tripathi A, Dhakal HC, Adhikari K, Chandra Timsina R, Wahl LM. Estimating the risk of pandemic avian influenza. JOURNAL OF BIOLOGICAL DYNAMICS 2021; 15:327-341. [PMID: 34142641 DOI: 10.1080/17513758.2021.1942570] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2019] [Accepted: 05/21/2021] [Indexed: 06/12/2023]
Abstract
Outbreaks of highly pathogenic strains of avian influenza (HPAI) cause high mortality in avian populations worldwide. When spread from avian reservoirs to humans, HPAI infections cause mortality in about 50% of human infections. Cases of human-to-human transmission of HPAI are relatively rare, and have, to date, only been reported in situations of close contact. These transmissions have resulted in isolated clusters of human HPAI infections, but have not yet caused a pandemic. Given the large number of human H5N1 HPAI infections to date, none of which has resulted in a pandemic, we estimate an upper bound on the probability of H5N1 pandemic emergence. We use this estimate to provide the likelihood of observing such a pandemic over the next decade. We then develop a more accurate parameter-based estimate of the emergence probability and predict the likelihood that, through rare mutations, an H5N1 influenza pandemic will emerge over the same time span.
Collapse
Affiliation(s)
| | - Harish Chandra Dhakal
- Birendra Multiple Campus, Tribhuvan University, Bharatpur, Nepal
- Western University, London, Canada
| | | | | | | |
Collapse
|
24
|
Carlson CJ, Farrell MJ, Grange Z, Han BA, Mollentze N, Phelan AL, Rasmussen AL, Albery GF, Bett B, Brett-Major DM, Cohen LE, Dallas T, Eskew EA, Fagre AC, Forbes KM, Gibb R, Halabi S, Hammer CC, Katz R, Kindrachuk J, Muylaert RL, Nutter FB, Ogola J, Olival KJ, Rourke M, Ryan SJ, Ross N, Seifert SN, Sironen T, Standley CJ, Taylor K, Venter M, Webala PW. The future of zoonotic risk prediction. Philos Trans R Soc Lond B Biol Sci 2021; 376:20200358. [PMID: 34538140 PMCID: PMC8450624 DOI: 10.1098/rstb.2020.0358] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/15/2021] [Indexed: 01/26/2023] Open
Abstract
In the light of the urgency raised by the COVID-19 pandemic, global investment in wildlife virology is likely to increase, and new surveillance programmes will identify hundreds of novel viruses that might someday pose a threat to humans. To support the extensive task of laboratory characterization, scientists may increasingly rely on data-driven rubrics or machine learning models that learn from known zoonoses to identify which animal pathogens could someday pose a threat to global health. We synthesize the findings of an interdisciplinary workshop on zoonotic risk technologies to answer the following questions. What are the prerequisites, in terms of open data, equity and interdisciplinary collaboration, to the development and application of those tools? What effect could the technology have on global health? Who would control that technology, who would have access to it and who would benefit from it? Would it improve pandemic prevention? Could it create new challenges? This article is part of the theme issue 'Infectious disease macroecology: parasite diversity and dynamics across the globe'.
Collapse
Affiliation(s)
- Colin J. Carlson
- Center for Global Health Science and Security, Georgetown University Medical Center, Washington, DC 20007, USA
- Department of Microbiology and Immunology, Georgetown University Medical Center, Washington, DC 20007, USA
| | - Maxwell J. Farrell
- Department of Ecology and Evolutionary Biology, University of Toronto, Toronto, Ontario, Canada
| | - Zoe Grange
- Public Health Scotland, Glasgow G2 6QE, UK
| | - Barbara A. Han
- Cary Institute of Ecosystem Studies, Millbrook, NY 12545, USA
| | - Nardus Mollentze
- Medical Research Council, University of Glasgow Centre for Virus Research, Glasgow G61 1QH, UK
- Institute of Biodiversity, Animal Health and Comparative Medicine, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow G12 8QQ, UK
| | - Alexandra L. Phelan
- Center for Global Health Science and Security, Georgetown University Medical Center, Washington, DC 20007, USA
- O'Neill Institute for National and Global Health Law, Georgetown University Law Center, Washington, DC 20001, USA
| | - Angela L. Rasmussen
- Center for Global Health Science and Security, Georgetown University Medical Center, Washington, DC 20007, USA
| | - Gregory F. Albery
- Department of Biology, Georgetown University, Washington, DC 20007, USA
| | - Bernard Bett
- Animal and Human Health Program, International Livestock Research Institute, PO Box 30709-00100, Nairobi, Kenya
| | - David M. Brett-Major
- Department of Epidemiology, College of Public Health, University of Nebraska Medical Center, Omaha, NE, USA
| | - Lily E. Cohen
- Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Tad Dallas
- Department of Biological Sciences, Louisiana State University, Baton Rouge, LA 70806, USA
| | - Evan A. Eskew
- Department of Biology, Pacific Lutheran University, Tacoma, WA, USA
| | - Anna C. Fagre
- Department of Microbiology, Immunology, and Pathology, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, CO, USA
| | - Kristian M. Forbes
- Department of Biological Sciences, University of Arkansas, Fayetteville, AR 72701, USA
| | - Rory Gibb
- Centre on Climate Change and Planetary Health, London School of Hygiene and Tropical Medicine, London, UK
- Centre for Mathematical Modelling of Infectious Diseases, London School of Hygiene and Tropical Medicine, London, UK
| | - Sam Halabi
- O'Neill Institute for National and Global Health Law, Georgetown University Law Center, Washington, DC 20001, USA
| | - Charlotte C. Hammer
- Centre for the Study of Existential Risk, University of Cambridge, Cambridge, UK
| | - Rebecca Katz
- Center for Global Health Science and Security, Georgetown University Medical Center, Washington, DC 20007, USA
| | - Jason Kindrachuk
- Department of Medical Microbiology and Infectious Diseases, University of Manitoba, Winnipeg, Manitoba, Canada R3E 0J9
| | - Renata L. Muylaert
- Molecular Epidemiology and Public Health Laboratory, Hopkirk Research Institute, Massey University, Palmerston North, New Zealand
| | - Felicia B. Nutter
- Department of Infectious Disease and Global Health, Cummings School of Veterinary Medicine, Tufts University, North Grafton, MA 01536, USA
- Department of Public Health and Community Medicine, School of Medicine, Tufts University, Boston, MA 02111, USA
| | | | | | - Michelle Rourke
- Law Futures Centre, Griffith Law School, Griffith University, Nathan, Queensland 4111, Australia
| | - Sadie J. Ryan
- Department of Geography and Emerging Pathogens Institute, University of Florida, Gainesville, FL, USA
- School of Life Sciences, University of KwaZulu-Natal, Durban, South Africa
| | - Noam Ross
- EcoHealth Alliance, New York, NY 10018, USA
| | - Stephanie N. Seifert
- Paul G. Allen School for Global Health, Washington State University, Pullman, WA, USA
| | - Tarja Sironen
- Department of Virology, University of Helsinki, Helsinki, Finland
- Department of Veterinary Biosciences, University of Helsinki, Helsinki, Finland
| | - Claire J. Standley
- Center for Global Health Science and Security, Georgetown University Medical Center, Washington, DC 20007, USA
- Department of Microbiology and Immunology, Georgetown University Medical Center, Washington, DC 20007, USA
| | - Kishana Taylor
- Department of Chemical Engineering, Carnegie Mellon University, Pittsburgh, PA 15213, USA
| | - Marietjie Venter
- Zoonotic Arbo and Respiratory Virus Program, Centre for Viral Zoonoses, Department of Medical Virology, University of Pretoria, Pretoria, South Africa
| | - Paul W. Webala
- Department of Forestry and Wildlife Management, Maasai Mara University, Narok 20500, Kenya
| |
Collapse
|
25
|
Ancestral sequence reconstruction pinpoints adaptations that enable avian influenza virus transmission in pigs. Nat Microbiol 2021; 6:1455-1465. [PMID: 34702977 PMCID: PMC8557130 DOI: 10.1038/s41564-021-00976-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2021] [Accepted: 09/07/2021] [Indexed: 12/22/2022]
Abstract
Understanding the evolutionary adaptations that enable avian influenza viruses to transmit in mammalian hosts could allow better detection of zoonotic viruses with pandemic potential. We applied ancestral sequence reconstruction to gain viruses representing different adaptive stages of the European avian-like (EA) H1N1 swine influenza virus as it transitioned from avian to swine hosts since 1979. Ancestral viruses representing the avian-like precursor virus and EA swine viruses from 1979–1983, 1984–1987, and 1988–1992 were reconstructed and characterized. Glycan array analyses showed stepwise changes in the hemagglutinin receptor binding specificity from recognizing both alpha2,3- and alpha2,6-sialosides to alpha2,6-sialosides; however, efficient transmission in piglets was enabled by adaptive changes in the viral polymerase protein and nucleoprotein that have been fixed after 1983. PB1-Q621R and NP-R351K increased viral replication and transmission in piglets when introduced into the 1979–1983 ancestral virus that lacked efficient transmissibility. The stepwise adaptation of an avian influenza virus to a mammalian host suggests that there may be opportunities to intervene and prevent interspecies jump through strategic coordination of surveillance and risk assessment activities.
Collapse
|
26
|
Yang G, Ojha CR, Russell CJ. Relationship between hemagglutinin stability and influenza virus persistence after exposure to low pH or supraphysiological heating. PLoS Pathog 2021; 17:e1009910. [PMID: 34478484 PMCID: PMC8445419 DOI: 10.1371/journal.ppat.1009910] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Revised: 09/16/2021] [Accepted: 08/20/2021] [Indexed: 11/17/2022] Open
Abstract
The hemagglutinin (HA) surface glycoprotein is triggered by endosomal low pH to cause membrane fusion during influenza A virus (IAV) entry yet must remain sufficiently stable to avoid premature activation during virion transit between cells and hosts. HA activation pH and/or virion inactivation pH values less than pH 5.6 are thought to be required for IAV airborne transmissibility and human pandemic potential. To enable higher-throughput screening of emerging IAV strains for "humanized" stability, we developed a luciferase reporter assay that measures the threshold pH at which IAVs are inactivated. The reporter assay yielded results similar to TCID50 assay yet required one-fourth the time and one-tenth the virus. For four A/TN/09 (H1N1) HA mutants and 73 IAVs of varying subtype, virion inactivation pH was compared to HA activation pH and the rate of inactivation during 55°C heating. HA stability values correlated highly with virion acid and thermal stability values for isogenic viruses containing HA point mutations. HA stability also correlated with virion acid stability for human isolates but did not correlate with thermal stability at 55°C, raising doubt in the use of supraphysiological heating assays. Some animal isolates had virion inactivation pH values lower than HA activation pH, suggesting factors beyond HA stability can modulate virion stability. The coupling of HA activation pH and virion inactivation pH, and at a value below 5.6, was associated with human adaptation. This suggests that both virologic properties should be considered in risk assessment algorithms for pandemic potential.
Collapse
Affiliation(s)
- Guohua Yang
- Department of Infectious Diseases, St. Jude Children's Research Hospital, Memphis, Tennessee, United States of America
| | - Chet R Ojha
- Department of Infectious Diseases, St. Jude Children's Research Hospital, Memphis, Tennessee, United States of America
| | - Charles J Russell
- Department of Infectious Diseases, St. Jude Children's Research Hospital, Memphis, Tennessee, United States of America.,Department of Microbiology, Immunology & Biochemistry, College of Medicine, The University of Tennessee Health Science Center, Memphis, Tennessee, United States of America
| |
Collapse
|
27
|
A quantitative approach to assess influenza A virus fitness and transmission in guinea pigs. J Virol 2021; 95:JVI.02320-20. [PMID: 33731462 PMCID: PMC8139685 DOI: 10.1128/jvi.02320-20] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Efforts to estimate the risk posed by potentially pandemic influenza A viruses (IAV), and to understand the mechanisms governing interspecies transmission, have been hampered by a lack of animal models that yield relevant and statistically robust measures of viral fitness. To address this gap, we monitored several quantitative measures of fitness in a guinea pig model: infectivity, magnitude of replication, kinetics of replication, efficiency of transmission, and kinetics of transmission. With the goal of identifying metrics that distinguish human- and non-human-adapted IAV we compared strains derived from humans to those circulating in swine and canine populations. Influenza A/Panama/2007/99 (H3N2), A/Netherlands/602/2009 (H1N1), A/swine/Kansas/77778/2007 (H1N1), A/swine/Spain/53207/2004 [M1 P41A] (H1N1), and A/canine/Illinois/41915/2015 (H3N2) viruses were evaluated. Our results revealed higher infectivity and faster kinetics of viral replication and transmission for human and canine strains compared to the swine viruses. Conversely, peak viral titers and efficiency of transmission were higher for human strains relative to both swine and canine IAVs. Total viral loads were comparable among all strains tested. When analyzed together, data from all strains point to peak viral load as a key driver of transmission efficiency and replication kinetics as a key driver of transmission kinetics. While the dose initiating infection did not strongly impact peak viral load, dose was found to modulate kinetics of viral replication and, in turn, timing of transmission. Taken together, our results point to peak viral load and transmission efficiency as key metrics differentiating human and non-human IAVs and suggest that high peak viral load precipitates robust transmission.ImportanceInfluenza pandemics occur when an IAV from non-human hosts enters the human population and adapts to give rise to a lineage capable of sustained transmission among humans. Despite recurring zoonotic infections involving avian or swine adapted IAVs, influenza pandemics occur infrequently because IAVs typically exhibit low fitness in a new host species. Anticipating when a zoonosis might lead to a pandemic is both critical for public health preparedness and extremely challenging. The approach to characterizing IAVs reported here is designed to aid risk assessment efforts by generating rigorous and quantitative data on viral phenotypes relevant for emergence. Our data suggest that the ability to replicate to high titers and transmit efficiently irrespective of initial dose are key characteristics distinguishing IAVs that have established sustained circulation in the human population from IAVs that circulate in non-human mammalian hosts.
Collapse
|
28
|
Chua KH, Mohamed IN, Mohd Yunus MH, Shafinaz Md Nor N, Kamil K, Ugusman A, Kumar J. The Anti-Viral and Anti-Inflammatory Properties of Edible Bird's Nest in Influenza and Coronavirus Infections: From Pre-Clinical to Potential Clinical Application. Front Pharmacol 2021; 12:633292. [PMID: 34025406 PMCID: PMC8138174 DOI: 10.3389/fphar.2021.633292] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Accepted: 04/26/2021] [Indexed: 12/23/2022] Open
Abstract
Edible bird's nest (BN) is a Chinese traditional medicine with innumerable health benefits, including anti-viral, anti-inflammatory, neuroprotective, and immunomodulatory effects. A small number of studies have reported the anti-viral effects of EBN against influenza infections using in vitro and in vivo models, highlighting the importance of sialic acid and thymol derivatives in their therapeutic effects. At present, studies have reported that EBN suppresses the replicated virus from exiting the host cells, reduces the viral replication, endosomal trafficking of the virus, intracellular viral autophagy process, secretion of pro-inflammatory cytokines, reorient the actin cytoskeleton of the infected cells, and increase the lysosomal degradation of viral materials. In other models of disease, EBN attenuates oxidative stress-induced cellular apoptosis, enhances proliferation and activation of B-cells and their antibody secretion. Given the sum of its therapeutic actions, EBN appears to be a candidate that is worth further exploring for its protective effects against diseases transmitted through air droplets. At present, anti-viral drugs are employed as the first-line defense against respiratory viral infections, unless vaccines are available for the specific pathogens. In patients with severe symptoms due to exacerbated cytokine secretion, anti-inflammatory agents are applied. Treatment efficacy varies across the patients, and in times of a pandemic like COVID-19, many of the drugs are still at the experimental stage. In this review, we present a comprehensive overview of anti-viral and anti-inflammatory effects of EBN, chemical constituents from various EBN preparation techniques, and drugs currently used to treat influenza and novel coronavirus infections. We also aim to review the pathogenesis of influenza A and coronavirus, and the potential of EBN in their clinical application. We also describe the current literature in human consumption of EBN, known allergenic or contaminant presence, and the focus of future direction on how these can be addressed to further improve EBN for potential clinical application.
Collapse
Affiliation(s)
- Kien Hui Chua
- Department of Physiology, Faculty of Medicine, Universiti Kebangsaan Malaysia, Cheras, Malaysia
| | - Isa Naina Mohamed
- Department of Pharmacology, Faculty of Medicine, Universiti Kebangsaan Malaysia, Cheras, Malaysia
| | - Mohd Heikal Mohd Yunus
- Department of Physiology, Faculty of Medicine, Universiti Kebangsaan Malaysia, Cheras, Malaysia
| | - Norefrina Shafinaz Md Nor
- Department of Biological Sciences and Biotechnology, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, Bangi, Malaysia
| | - Khidhir Kamil
- Department of Physiology, Faculty of Medicine, Universiti Kebangsaan Malaysia, Cheras, Malaysia
| | - Azizah Ugusman
- Department of Physiology, Faculty of Medicine, Universiti Kebangsaan Malaysia, Cheras, Malaysia
| | - Jaya Kumar
- Department of Physiology, Faculty of Medicine, Universiti Kebangsaan Malaysia, Cheras, Malaysia
| |
Collapse
|
29
|
Harrington WN, Kackos CM, Webby RJ. The evolution and future of influenza pandemic preparedness. Exp Mol Med 2021; 53:737-749. [PMID: 33953324 PMCID: PMC8099712 DOI: 10.1038/s12276-021-00603-0] [Citation(s) in RCA: 118] [Impact Index Per Article: 29.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Revised: 12/29/2020] [Accepted: 12/31/2020] [Indexed: 12/17/2022] Open
Abstract
The influenza virus is a global threat to human health causing unpredictable yet recurring pandemics, the last four emerging over the course of a hundred years. As our knowledge of influenza virus evolution, distribution, and transmission has increased, paths to pandemic preparedness have become apparent. In the 1950s, the World Health Organization (WHO) established a global influenza surveillance network that is now composed of institutions in 122 member states. This and other surveillance networks monitor circulating influenza strains in humans and animal reservoirs and are primed to detect influenza strains with pandemic potential. Both the United States Centers for Disease Control and Prevention and the WHO have also developed pandemic risk assessment tools that evaluate specific aspects of emerging influenza strains to develop a systematic process of determining research and funding priorities according to the risk of emergence and potential impact. Here, we review the history of influenza pandemic preparedness and the current state of preparedness, and we propose additional measures for improvement. We also comment on the intersection between the influenza pandemic preparedness network and the current SARS-CoV-2 crisis. We must continually evaluate and revise our risk assessment and pandemic preparedness plans and incorporate new information gathered from research and global crises.
Collapse
Affiliation(s)
- Walter N Harrington
- Department of Infectious Diseases, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Christina M Kackos
- Department of Infectious Diseases, St. Jude Children's Research Hospital, Memphis, TN, USA
- St. Jude Children's Research Hospital, Graduate School of Biomedical Sciences, Memphis, TN, USA
| | - Richard J Webby
- Department of Infectious Diseases, St. Jude Children's Research Hospital, Memphis, TN, USA.
| |
Collapse
|
30
|
Russell CJ. Hemagglutinin Stability and Its Impact on Influenza A Virus Infectivity, Pathogenicity, and Transmissibility in Avians, Mice, Swine, Seals, Ferrets, and Humans. Viruses 2021; 13:746. [PMID: 33923198 PMCID: PMC8145662 DOI: 10.3390/v13050746] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2021] [Revised: 04/21/2021] [Accepted: 04/23/2021] [Indexed: 12/13/2022] Open
Abstract
Genetically diverse influenza A viruses (IAVs) circulate in wild aquatic birds. From this reservoir, IAVs sporadically cause outbreaks, epidemics, and pandemics in wild and domestic avians, wild land and sea mammals, horses, canines, felines, swine, humans, and other species. One molecular trait shown to modulate IAV host range is the stability of the hemagglutinin (HA) surface glycoprotein. The HA protein is the major antigen and during virus entry, this trimeric envelope glycoprotein binds sialic acid-containing receptors before being triggered by endosomal low pH to undergo irreversible structural changes that cause membrane fusion. The HA proteins from different IAV isolates can vary in the pH at which HA protein structural changes are triggered, the protein causes membrane fusion, or outside the cell the virion becomes inactivated. HA activation pH values generally range from pH 4.8 to 6.2. Human-adapted HA proteins tend to have relatively stable HA proteins activated at pH 5.5 or below. Here, studies are reviewed that report HA stability values and investigate the biological impact of variations in HA stability on replication, pathogenicity, and transmissibility in experimental animal models. Overall, a stabilized HA protein appears to be necessary for human pandemic potential and should be considered when assessing human pandemic risk.
Collapse
Affiliation(s)
- Charles J Russell
- Department of Infectious Diseases, St. Jude Children's Research Hospital, 262 Danny Thomas Place, Memphis, TN 38105-3678, USA
| |
Collapse
|
31
|
Schreiber SJ, Ke R, Loverdo C, Park M, Ahsan P, Lloyd-Smith JO. Cross-scale dynamics and the evolutionary emergence of infectious diseases. Virus Evol 2021; 7:veaa105. [PMID: 35186322 PMCID: PMC8087961 DOI: 10.1093/ve/veaa105] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2023] Open
Abstract
When emerging pathogens encounter new host species for which they are poorly adapted, they must evolve to escape extinction. Pathogens experience selection on traits at multiple scales, including replication rates within host individuals and transmissibility between hosts. We analyze a stochastic model linking pathogen growth and competition within individuals to transmission between individuals. Our analysis reveals a new factor, the cross-scale reproductive number of a mutant virion, that quantifies how quickly mutant strains increase in frequency when they initially appear in the infected host population. This cross-scale reproductive number combines with viral mutation rates, single-strain reproductive numbers, and transmission bottleneck width to determine the likelihood of evolutionary emergence, and whether evolution occurs swiftly or gradually within chains of transmission. We find that wider transmission bottlenecks facilitate emergence of pathogens with short-term infections, but hinder emergence of pathogens exhibiting cross-scale selective conflict and long-term infections. Our results provide a framework to advance the integration of laboratory, clinical, and field data in the context of evolutionary theory, laying the foundation for a new generation of evidence-based risk assessment of emergence threats.
Collapse
Affiliation(s)
| | - Ruian Ke
- T-6: Theoretical Biology and Biophysics, Los Alamos National Laboratory, Los Alamos, NM 87545, USA
| | - Claude Loverdo
- Laboratoire Jean Perrin, Sorbonne Université, CNRS, Paris 75005, France
| | - Miran Park
- Department of Ecology & Evolution, University of California, Los Angeles, CA 90095, USA
| | - Prianna Ahsan
- Department of Ecology & Evolution, University of California, Los Angeles, CA 90095, USA
| | - James O Lloyd-Smith
- Department of Ecology & Evolution, University of California, Los Angeles, CA 90095, USA
| |
Collapse
|
32
|
Huntington MK. Epidemics and Pandemics. Fam Med 2021. [DOI: 10.1007/978-1-4939-0779-3_189-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
33
|
Johnson KEE, Ghedin E. Quantifying between-Host Transmission in Influenza Virus Infections. Cold Spring Harb Perspect Med 2020; 10:cshperspect.a038422. [PMID: 31871239 DOI: 10.1101/cshperspect.a038422] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
The error-prone replication and life cycle of influenza virus generate a diverse set of genetic variants. Transmission between hosts strictly limits both the number of virus particles and the genetic diversity of virus variants that reach a new host and establish an infection. This sharp reduction in the virus population at transmission--the transmission bottleneck--is significant to the evolution of influenza virus and to its epidemic and pandemic potential. This review describes transmission bottlenecks and their effect on the diversity and evolution of influenza virus. It also reviews the methods for calculating and predicting bottleneck sizes and highlights the host and viral determinants of influenza transmissibility.
Collapse
Affiliation(s)
- Katherine E E Johnson
- Center for Genomics and Systems Biology, Department of Biology, New York University, New York, New York 10003, USA
| | - Elodie Ghedin
- Center for Genomics and Systems Biology, Department of Biology, and Department of Epidemiology, College of Global Public Health, New York University, New York, New York 10003, USA
| |
Collapse
|
34
|
Belser JA, Pulit-Penaloza JA, Maines TR. Ferreting Out Influenza Virus Pathogenicity and Transmissibility: Past and Future Risk Assessments in the Ferret Model. Cold Spring Harb Perspect Med 2020; 10:cshperspect.a038323. [PMID: 31871233 DOI: 10.1101/cshperspect.a038323] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
As influenza A viruses continue to jump species barriers, data generated in the ferret model to assess influenza virus pathogenicity, transmissibility, and tropism of these novel strains continues to inform an increasing scope of public health-based applications. This review presents the suitability of ferrets as a small mammalian model for influenza viruses and describes the breadth of pathogenicity and transmissibility profiles possible in this species following inoculation with a diverse range of viruses. Adaptation of aerobiology-based techniques and analyses have furthered our understanding of data obtained from this model and provide insight into the capacity of novel and emerging influenza viruses to cause human infection and disease.
Collapse
Affiliation(s)
- Jessica A Belser
- Influenza Division, National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, Atlanta, Georgia 30329, USA
| | - Joanna A Pulit-Penaloza
- Influenza Division, National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, Atlanta, Georgia 30329, USA
| | - Taronna R Maines
- Influenza Division, National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, Atlanta, Georgia 30329, USA
| |
Collapse
|
35
|
Hu M, Yang G, DeBeauchamp J, Crumpton JC, Kim H, Li L, Wan XF, Kercher L, Bowman AS, Webster RG, Webby RJ, Russell CJ. HA stabilization promotes replication and transmission of swine H1N1 gamma influenza viruses in ferrets. eLife 2020; 9:56236. [PMID: 32602461 PMCID: PMC7326494 DOI: 10.7554/elife.56236] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2020] [Accepted: 06/13/2020] [Indexed: 01/01/2023] Open
Abstract
Pandemic influenza A viruses can emerge from swine, an intermediate host that supports adaptation of human-preferred receptor-binding specificity by the hemagglutinin (HA) surface antigen. Other HA traits necessary for pandemic potential are poorly understood. For swine influenza viruses isolated in 2009–2016, gamma-clade viruses had less stable HA proteins (activation pH 5.5–5.9) than pandemic clade (pH 5.0–5.5). Gamma-clade viruses replicated to higher levels in mammalian cells than pandemic clade. In ferrets, a model for human adaptation, a relatively stable HA protein (pH 5.5–5.6) was necessary for efficient replication and airborne transmission. The overall airborne transmission frequency in ferrets for four isolates tested was 42%, and isolate G15 airborne transmitted 100% after selection of a variant with a stabilized HA. The results suggest swine influenza viruses containing both a stabilized HA and alpha-2,6 receptor binding in tandem pose greater pandemic risk. Increasing evidence supports adding HA stability to pre-pandemic risk assessment algorithms.
Collapse
Affiliation(s)
- Meng Hu
- Department of Infectious Diseases, St. Jude Children's Research Hospital, Memphis, United States
| | - Guohua Yang
- Department of Infectious Diseases, St. Jude Children's Research Hospital, Memphis, United States
| | - Jennifer DeBeauchamp
- Department of Infectious Diseases, St. Jude Children's Research Hospital, Memphis, United States
| | - Jeri Carol Crumpton
- Department of Infectious Diseases, St. Jude Children's Research Hospital, Memphis, United States
| | - Hyunsuh Kim
- Department of Infectious Diseases, St. Jude Children's Research Hospital, Memphis, United States
| | - Lei Li
- Department of Basic Sciences, College of Veterinary Medicine, Mississippi State University, Mississippi State, United States
| | - Xiu-Feng Wan
- Department of Basic Sciences, College of Veterinary Medicine, Mississippi State University, Mississippi State, United States.,Missouri University Center for Research on Influenza Systems Biology (CRISB), University of Missouri, Columbia, United States.,Department of Molecular Microbiology and Immunology, School of Medicine, University of Missouri, Columbia, United States.,Bond Life Sciences Center, University of Missouri, Columbia, United States.,Department of Electrical Engineering Computer Science, College of Engineering, University of Missouri, Columbia, United States.,MU Informatics Institute, University of Missouri, Columbia, United States
| | - Lisa Kercher
- Department of Infectious Diseases, St. Jude Children's Research Hospital, Memphis, United States
| | - Andrew S Bowman
- Department of Veterinary Preventive Medicine, The Ohio State University, Columbus, United States
| | - Robert G Webster
- Department of Infectious Diseases, St. Jude Children's Research Hospital, Memphis, United States
| | - Richard J Webby
- Department of Infectious Diseases, St. Jude Children's Research Hospital, Memphis, United States.,Department of Microbiology, Immunology & Biochemistry, College of Medicine, The University of Tennessee Health Science Center, Memphis, United States
| | - Charles J Russell
- Department of Infectious Diseases, St. Jude Children's Research Hospital, Memphis, United States.,Department of Microbiology, Immunology & Biochemistry, College of Medicine, The University of Tennessee Health Science Center, Memphis, United States
| |
Collapse
|
36
|
Zhu Y, Wang R, Yu L, Sun H, Tian S, Li P, Jin M, Chen H, Ma W, Zhou H. Human TRA2A determines influenza A virus host adaptation by regulating viral mRNA splicing. SCIENCE ADVANCES 2020; 6:eaaz5764. [PMID: 32596447 PMCID: PMC7304988 DOI: 10.1126/sciadv.aaz5764] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2019] [Accepted: 04/28/2020] [Indexed: 05/24/2023]
Abstract
Several avian influenza A viruses (IAVs) have adapted to mammalian species, including humans. To date, the mechanisms enabling these host shifts remain incompletely understood. Here, we show that a host factor, human TRA2A (huTRA2A), inhibits avian IAV replication, but benefits human IAV replication by altered regulation of viral messenger RNA (mRNA) splicing. huTRA2A depresses mRNA splicing by binding to the intronic splicing silencer motif in the M mRNA of representative avian YS/H5N1 or in the NS mRNA of representative human PR8/H1N1 virus, leading to completely opposite effects on replication of the human and avian viruses in vitro and in vivo. We also confirm that the M-334 site and NS-234/236 sites are critical for TRA2A binding, mRNA splicing, viral replication, and pathogenicity. Our results reveal the underlying mechanisms of adaptation of avian influenza virus to human hosts, and suggest rational strategies to protect public health.
Collapse
Affiliation(s)
- Yinxing Zhu
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China
- Key Laboratory of Preventive Veterinary Medicine in Hubei Province, Cooperative Innovation Center for Sustainable Pig Production, Wuhan 430070, China
| | - Ruifang Wang
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China
- Key Laboratory of Preventive Veterinary Medicine in Hubei Province, Cooperative Innovation Center for Sustainable Pig Production, Wuhan 430070, China
| | - Luyao Yu
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China
- Key Laboratory of Preventive Veterinary Medicine in Hubei Province, Cooperative Innovation Center for Sustainable Pig Production, Wuhan 430070, China
| | - Huimin Sun
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China
- Key Laboratory of Preventive Veterinary Medicine in Hubei Province, Cooperative Innovation Center for Sustainable Pig Production, Wuhan 430070, China
| | - Shan Tian
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China
- Key Laboratory of Preventive Veterinary Medicine in Hubei Province, Cooperative Innovation Center for Sustainable Pig Production, Wuhan 430070, China
| | - Peng Li
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China
- Key Laboratory of Preventive Veterinary Medicine in Hubei Province, Cooperative Innovation Center for Sustainable Pig Production, Wuhan 430070, China
| | - Meilin Jin
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China
- Key Laboratory of Preventive Veterinary Medicine in Hubei Province, Cooperative Innovation Center for Sustainable Pig Production, Wuhan 430070, China
| | - Huanchun Chen
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China
- Key Laboratory of Preventive Veterinary Medicine in Hubei Province, Cooperative Innovation Center for Sustainable Pig Production, Wuhan 430070, China
| | - Wenjun Ma
- Department of Diagnostic Medicine/Pathobiology, Kansas State University, Manhattan, KS, USA
| | - Hongbo Zhou
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China
- Key Laboratory of Preventive Veterinary Medicine in Hubei Province, Cooperative Innovation Center for Sustainable Pig Production, Wuhan 430070, China
| |
Collapse
|
37
|
Scarafoni D, Telfer BA, Ricke DO, Thornton JR, Comolli J. Predicting Influenza A Tropism with End-to-End Learning of Deep Networks. Health Secur 2020; 17:468-476. [PMID: 31859569 DOI: 10.1089/hs.2019.0055] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
The type of host that a virus can infect, referred to as host specificity or tropism, influences infectivity and thus is important for disease diagnosis, epidemic response, and prevention. Advances in DNA sequencing technology have enabled rapid metagenomic analyses of viruses, but the prediction of virus phenotype from genome sequences is an active area of research. As such, automatic prediction of host tropism from analysis of genomic information is of considerable utility. Previous research has applied machine learning methods to accomplish this task, although deep learning (particularly deep convolutional neural network, CNN) techniques have not yet been applied. These techniques have the ability to learn how to recognize critical hierarchical structures within the genome in a data-driven manner. We designed deep CNN models to identify host tropism for human and avian influenza A viruses based on protein sequences and performed a detailed analysis of the results. Our findings show that deep CNN techniques work as well as existing approaches (with 99% mean accuracy on the binary prediction task) while performing end-to-end learning of the prediction model (without the need to specify handcrafted features). The findings also show that these models, combined with standard principal component analysis, can be used to quantify and visualize viral strain similarity.
Collapse
Affiliation(s)
- Dan Scarafoni
- Dan Scarafoni, MS, is a graduate student, Lab for Computational Behavior Analysis, Georgia Institute of Technology, Atlanta, GA
| | - Brian A Telfer
- Brian A. Telfer, PhD, is a Senior Staff Member, Human Health and Performance Systems Group
| | - Darrell O Ricke
- Darrell O. Ricke, PhD, is on the Technical Staff, Biological and Chemical Technologies
| | - Jason R Thornton
- Jason R. Thornton, PhD, is Associate Group Leader, Informatics and Decision Support Group
| | - James Comolli
- James Comolli, PhD, is on the Technical Staff, Biological and Chemical Technologies Group; all at the MIT Lincoln Laboratory, Lexington MA
| |
Collapse
|
38
|
Ghabeshi S, Ebrahimie E, Salimi V, Ghanizadeh A, Khodakhah F, Yavarian J, Norouzbabaei Z, Sasani F, Rezaie F, Azad TM. Experimental direct-contact transmission of influenza A/H9N2 virus in the guinea pig model in Iran. Future Virol 2020. [DOI: 10.2217/fvl-2019-0141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Aim: The present study aims to evaluate risk factors for the transmission of A/H9N2 viruses in guinea pig model. Materials & methods: Lung tissue samples were collected from the chicken clinically infected with influenza A/H9N2 virus in 2018. Next, virus isolation and titration, as well as reverse transcription PCR were performed. Then, hemagglutnation and neuraminidase genes was sequenced to identify different positions (hotspots) involved in transmission and host adaptation. Results: Influenza A/H9N2 virus could replicate in low titers in the nasal turbinate and transmit from infected to noninfected guinea pigs. Conclusion: Hotspots on the surface glycoproteins had the potential to alter transmission properties in the new host.
Collapse
Affiliation(s)
- Soad Ghabeshi
- Virology Department, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Esmaeil Ebrahimie
- School of Animal and VeterinarySciences, The University of Adelaide, South Australia, Adelaide, Australia
- Genomics Research Platform, Schoolof Life Sciences, La Trobe University, Melbourne, Victoria, Australia
| | - Vahid Salimi
- Virology Department, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Arash Ghanizadeh
- Department of Biotechnology, Razi Vaccine & Serum Research Institute, Karaj, Alborz, Iran
| | - Farshad Khodakhah
- Virology Department, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Jila Yavarian
- Virology Department, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Zahra Norouzbabaei
- Virology Department, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Farhang Sasani
- Department of Pathology, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran
| | - Farhad Rezaie
- Virology Department, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Talat Mokhtari Azad
- Virology Department, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
39
|
Hemagglutinin Stability Regulates H1N1 Influenza Virus Replication and Pathogenicity in Mice by Modulating Type I Interferon Responses in Dendritic Cells. J Virol 2020; 94:JVI.01423-19. [PMID: 31694942 DOI: 10.1128/jvi.01423-19] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2019] [Accepted: 11/03/2019] [Indexed: 01/29/2023] Open
Abstract
Hemagglutinin (HA) stability, or the pH at which HA is activated to cause membrane fusion, has been associated with the replication, pathogenicity, transmissibility, and interspecies adaptation of influenza A viruses. Here, we investigated the mechanisms by which a destabilizing HA mutation, Y17H (activation pH, 6.0), attenuates virus replication and pathogenicity in DBA/2 mice compared to wild-type (WT) virus (activation pH, 5.5). The extracellular lung pH was measured to be near neutral (pH 6.9 to 7.5). WT and Y17H viruses had similar environmental stability at pH 7.0; thus, extracellular inactivation was unlikely to attenuate the Y17H virus. The Y17H virus had accelerated replication kinetics in MDCK, A549, and RAW 264.7 cells when inoculated at a multiplicity of infection (MOI) of 3 PFU/cell. The destabilizing mutation also increased early infectivity and type I interferon (IFN) responses in mouse bone marrow-derived dendritic cells (DCs). In contrast, the HA-Y17H mutation reduced virus replication in murine airway murine nasal epithelial cell and murine tracheal epithelial cell cultures and attenuated virus replication, virus spread, the severity of infection, and cellular infiltration in the lungs of mice. Normalizing virus infection and weight loss in mice by inoculating them with Y17H virus at a dose 500-fold higher than that of WT virus revealed that the destabilized mutant virus triggered the upregulation of more host genes and increased type I IFN responses and cytokine expression in DBA/2 mouse lungs. Overall, HA destabilization decreased virulence in mice by boosting early infection in DCs, resulting in the greater activation of antiviral responses, including the type I IFN response. These studies reveal that HA stability may regulate pathogenicity by modulating IFN responses.IMPORTANCE Diverse influenza A viruses circulate in wild aquatic birds, occasionally infecting farm animals. Rarely, an avian- or swine-origin influenza virus adapts to humans and starts a pandemic. Seasonal and many universal influenza vaccines target the HA surface protein, which is a key component of pandemic influenza viruses. Understanding the HA properties needed for replication and pathogenicity in mammals may guide response efforts to control influenza. Some antiviral drugs and broadly reactive influenza vaccines that target the HA protein have suffered resistance due to destabilizing HA mutations that do not compromise replicative fitness in cell culture. Here, we show that despite not compromising fitness in standard cell cultures, a destabilizing H1N1 HA stalk mutation greatly diminishes viral replication and pathogenicity in vivo by modulating type I IFN responses. This encourages targeting the HA stalk with antiviral drugs and vaccines as well as reevaluating previous candidates that were susceptible to destabilizing resistance mutations.
Collapse
|
40
|
Long JS, Mistry B, Haslam SM, Barclay WS. Host and viral determinants of influenza A virus species specificity. Nat Rev Microbiol 2020; 17:67-81. [PMID: 30487536 DOI: 10.1038/s41579-018-0115-z] [Citation(s) in RCA: 392] [Impact Index Per Article: 78.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Influenza A viruses cause pandemics when they cross between species and an antigenically novel virus acquires the ability to infect and transmit between these new hosts. The timing of pandemics is currently unpredictable but depends on ecological and virological factors. The host range of an influenza A virus is determined by species-specific interactions between virus and host cell factors. These include the ability to bind and enter cells, to replicate the viral RNA genome within the host cell nucleus, to evade host restriction factors and innate immune responses and to transmit between individuals. In this Review, we examine the host barriers that influenza A viruses of animals, especially birds, must overcome to initiate a pandemic in humans and describe how, on crossing the species barrier, the virus mutates to establish new interactions with the human host. This knowledge is used to inform risk assessments for future pandemics and to identify virus-host interactions that could be targeted by novel intervention strategies.
Collapse
Affiliation(s)
- Jason S Long
- Department of Medicine, Imperial College London, London, UK
| | - Bhakti Mistry
- Department of Medicine, Imperial College London, London, UK
| | - Stuart M Haslam
- Department of Life Sciences, Imperial College London, London, UK
| | - Wendy S Barclay
- Department of Medicine, Imperial College London, London, UK.
| |
Collapse
|
41
|
Georgieva M, Buckee CO, Lipsitch M. Models of immune selection for multi-locus antigenic diversity of pathogens. Nat Rev Immunol 2019; 19:55-62. [PMID: 30479379 DOI: 10.1038/s41577-018-0092-5] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
It is well accepted that pathogens can evade recognition and elimination by the host immune system by varying their antigenic targets. Thus, it has become a truism that host immunity is a major driver and determinant of the antigenic diversity of pathogens. However, it remains puzzling how host immunity selects for antigenic diversity at the level of the pathogen population, given that hosts have acquired immune responses to multiple antigens of most pathogens - sometimes through multiple effectors of both humoral and cellular immunity. In this Opinion article, we address this puzzle and the related question of why pathogens often have diversity at multiple antigenic loci. Here, we describe five hypotheses to explain the polymorphism of multiple antigens in a single pathogen species and highlight research relevant to our current models of thinking about multi-locus antigenic diversity.
Collapse
Affiliation(s)
- Maria Georgieva
- Center for Communicable Disease Dynamics, Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA, USA. .,Department of Physiology, University of Lausanne, Lausanne, Switzerland.
| | - Caroline O Buckee
- Center for Communicable Disease Dynamics, Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Marc Lipsitch
- Center for Communicable Disease Dynamics, Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA, USA.,Department of Immunology and Infectious Diseases, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| |
Collapse
|
42
|
Population Genomics of GII.4 Noroviruses Reveal Complex Diversification and New Antigenic Sites Involved in the Emergence of Pandemic Strains. mBio 2019; 10:mBio.02202-19. [PMID: 31551337 PMCID: PMC6759766 DOI: 10.1128/mbio.02202-19] [Citation(s) in RCA: 63] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Noroviruses are an important cause of viral gastroenteritis around the world. An obstacle delaying the development of norovirus vaccines is inadequate understanding of the role of norovirus diversity in immunity. Using a population genomics approach, we identified new residues on the viral capsid protein (VP1) from GII.4 noroviruses, the predominant genotype, that appear to be involved in the emergence and antigenic topology of GII.4 variants. Careful monitoring of the substitutions in those residues involved in the diversification and emergence of new viruses could help in the early detection of future novel variants with pandemic potential. Therefore, this novel information on the antigenic diversification could facilitate GII.4 norovirus vaccine design. GII.4 noroviruses are a major cause of acute gastroenteritis. Their dominance has been partially explained by the continuous emergence of antigenically distinct variants. To gain insights into the mechanisms of viral emergence and population dynamics of GII.4 noroviruses, we performed large-scale genomics, structural, and mutational analyses of the viral capsid protein (VP1). GII.4 noroviruses exhibited a periodic replacement of predominant variants with accumulation of amino acid substitutions. Genomic analyses revealed (i) a large proportion (87%) of conserved residues; (ii) variable residues that map on the previously determined antigenic sites; and (iii) variable residues that map outside the antigenic sites. Residues in the third pattern category formed motifs on the surface of VP1, which suggested extensions of previously predicted and new uncharacterized antigenic sites. The role of two motifs (C and G) in the antigenic makeup of the GII.4 capsid protein was confirmed with monoclonal antibodies and carbohydrate blocking assays. Amino acid profiles from antigenic sites (A, C, D, E, and G) correlated with the circulation patterns of GII.4 variants, with three of them (A, C, and G) containing residues (352, 357, 368, and 378) linked with the diversifying selective pressure on the emergence of new GII.4 variants. Notably, the emergence of each variant was followed by stochastic diversification with minimal changes that did not progress toward the next variant. This report provides a methodological framework for antigenic characterization of viruses and expands our understanding of the dynamics of GII.4 noroviruses and could facilitate the design of cross-reactive vaccines.
Collapse
|
43
|
Lee RTC, Chang HH, Russell CA, Lipsitch M, Maurer-Stroh S. Influenza A Hemagglutinin Passage Bias Sites and Host Specificity Mutations. Cells 2019; 8:E958. [PMID: 31443542 PMCID: PMC6770435 DOI: 10.3390/cells8090958] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2019] [Revised: 08/03/2019] [Accepted: 08/20/2019] [Indexed: 11/17/2022] Open
Abstract
Animal studies aimed at understanding influenza virus mutations that change host specificity to adapt to replication in mammalian hosts are necessarily limited in sample numbers due to high cost and safety requirements. As a safe, higher-throughput alternative, we explore the possibility of using readily available passage bias data obtained mostly from seasonal H1 and H3 influenza strains that were differentially grown in mammalian (MDCK) and avian cells (eggs). Using a statistical approach over 80,000 influenza hemagglutinin sequences with passage information, we found that passage bias sites are most commonly found in three regions: (i) the globular head domain around the receptor binding site, (ii) the region that undergoes pH-dependent structural changes and (iii) the unstructured N-terminal region harbouring the signal peptide. Passage bias sites were consistent among different passage cell types as well as between influenza A subtypes. We also find epistatic interactions of site pairs supporting the notion of host-specific dependency of mutations on virus genomic background. The sites identified from our large-scale sequence analysis substantially overlap with known host adaptation sites in the WHO H5N1 genetic changes inventory suggesting information from passage bias can provide candidate sites for host specificity changes to aid in risk assessment for emerging strains.
Collapse
Affiliation(s)
- Raphael T C Lee
- Bioinformatics Institute, Agency for Science Technology and Research, Singapore 138671, Singapore
| | - Hsiao-Han Chang
- Department of Epidemiology, Center for Communicable Disease Dynamics, Harvard TH Chan School of Public Health, Boston, MA 02115, USA
| | - Colin A Russell
- Department of Medical Microbiology, Academic Medical Center, University of Amsterdam, 1105 AZ Amsterdam, The Netherlands
| | - Marc Lipsitch
- Department of Epidemiology, Center for Communicable Disease Dynamics, Harvard TH Chan School of Public Health, Boston, MA 02115, USA
| | - Sebastian Maurer-Stroh
- Bioinformatics Institute, Agency for Science Technology and Research, Singapore 138671, Singapore.
- Department of Biological Sciences, National University of Singapore, Singapore 117558, Singapore.
- National Public Health Laboratory, National Centre for Infectious Diseases, Ministry of Health, Singapore 308442, Singapore.
| |
Collapse
|
44
|
Abstract
Highly transmissible influenza viruses (IV) must remain stable and infectious under a wide range of environmental conditions following release from the respiratory tract into the air. Understanding how expelled IV persist in the environment is critical to limiting the spread of these viruses. Little is known about how the stability of different IV in expelled aerosols is impacted by exposure to environmental stressors, such as relative humidity (RH). Given that not all IV are equally capable of efficient airborne transmission in people, we anticipated that not all IV would respond uniformly to ambient RH. Therefore, we have examined the stability of human-pathogenic seasonal and avian IV in suspended aerosols and stationary droplets under a range of RH conditions. H3N2 and influenza B virus (IBV) isolates are resistant to RH-dependent decay in aerosols in the presence of human airway surface liquid, but we observed strain-dependent variations in the longevities of H1N1, H3N2, and IBV in droplets. Surprisingly, low-pathogenicity avian influenza H6N1 and H9N2 viruses, which cause sporadic infections in humans but are unable to transmit person to person, demonstrated a trend toward increased sensitivity at midrange to high-range RH. Taken together, our observations suggest that the levels of vulnerability to decay at midrange RH differ with virus type and host origin.IMPORTANCE The rapid spread of influenza viruses (IV) from person to person during seasonal epidemics causes acute respiratory infections that can lead to hospitalizations and life-threatening illness. Atmospheric conditions such as relative humidity (RH) can impact the viability of IV released into the air. To understand how different IV are affected by their environment, we compared the levels of stability of human-pathogenic seasonal and avian IV under a range of RH conditions and found that highly transmissible seasonal IV were less sensitive to decay under midrange RH conditions in droplets. We observed that certain RH conditions can support the persistence of infectious viruses on surfaces and in the air for extended periods of time. Together, our findings will facilitate understanding of factors affecting the persistence and spread of IV in our environment.
Collapse
|
45
|
Wasik BR, de Wit E, Munster V, Lloyd-Smith JO, Martinez-Sobrido L, Parrish CR. Onward transmission of viruses: how do viruses emerge to cause epidemics after spillover? Philos Trans R Soc Lond B Biol Sci 2019; 374:20190017. [PMID: 31401954 PMCID: PMC6711314 DOI: 10.1098/rstb.2019.0017] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
The critical step in the emergence of a new epidemic or pandemic viral pathogen occurs after it infects the initial spillover host and then is successfully transmitted onwards, causing an outbreak chain of transmission within that new host population. Crossing these choke points sets a pathogen on the pathway to epidemic emergence. While many viruses spill over to infect new or alternative hosts, only a few accomplish this transition—and the reasons for the success of those pathogens are still unclear. Here, we consider this issue related to the emergence of animal viruses, where factors involved likely include the ability to efficiently infect the new animal host, the demographic features of the initial population that favour onward transmission, the level of shedding and degree of susceptibility of individuals of that population, along with pathogen evolution favouring increased replication and more efficient transmission among the new host individuals. A related form of emergence involves mutations that increased spread or virulence of an already-known virus within its usual host. In all of these cases, emergence may be due to altered viral properties, changes in the size or structure of the host populations, ease of transport, climate change or, in the case of arboviruses, to the expansion of the arthropod vectors. Here, we focus on three examples of viruses that have gained efficient onward transmission after spillover: influenza A viruses that are respiratory transmitted, HIV, a retrovirus, that is mostly blood or mucosal transmitted, and canine parvovirus that is faecal:oral transmitted. We describe our current understanding of the changes in the viruses that allowed them to overcome the barriers that prevented efficient replication and spread in their new hosts. We also briefly outline how we could gain a better understanding of the mechanisms and variability in order to better anticipate these events in the future. This article is part of the theme issue ‘Dynamic and integrative approaches to understanding pathogen spillover’.
Collapse
Affiliation(s)
- Brian R Wasik
- Baker Institute for Animal Health, Department of Microbiology and Immunology, College of Veterinary Medicine, Cornell University, Ithaca, NY 14853, USA
| | - Emmie de Wit
- Laboratory of Virology, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT 59840, USA
| | - Vincent Munster
- Laboratory of Virology, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT 59840, USA
| | - James O Lloyd-Smith
- Department of Ecology and Evolutionary Biology, University of California, Los Angeles, Los Angeles, CA 9095-7239, USA.,Fogarty International Center, National Institutes of Health, Bethesda, MD 20892, USA
| | - Luis Martinez-Sobrido
- Department of Microbiology and Immunology, University of Rochester, Rochester, NY 14642, USA
| | - Colin R Parrish
- Baker Institute for Animal Health, Department of Microbiology and Immunology, College of Veterinary Medicine, Cornell University, Ithaca, NY 14853, USA
| |
Collapse
|
46
|
Soh YS, Moncla LH, Eguia R, Bedford T, Bloom JD. Comprehensive mapping of adaptation of the avian influenza polymerase protein PB2 to humans. eLife 2019; 8:45079. [PMID: 31038123 PMCID: PMC6491042 DOI: 10.7554/elife.45079] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2019] [Accepted: 03/31/2019] [Indexed: 12/11/2022] Open
Abstract
Viruses like influenza are infamous for their ability to adapt to new hosts. Retrospective studies of natural zoonoses and passaging in the lab have identified a modest number of host-adaptive mutations. However, it is unclear if these mutations represent all ways that influenza can adapt to a new host. Here we take a prospective approach to this question by completely mapping amino-acid mutations to the avian influenza virus polymerase protein PB2 that enhance growth in human cells. We identify numerous previously uncharacterized human-adaptive mutations. These mutations cluster on PB2’s surface, highlighting potential interfaces with host factors. Some previously uncharacterized adaptive mutations occur in avian-to-human transmission of H7N9 influenza, showing their importance for natural virus evolution. But other adaptive mutations do not occur in nature because they are inaccessible via single-nucleotide mutations. Overall, our work shows how selection at key molecular surfaces combines with evolutionary accessibility to shape viral host adaptation. Viruses copy themselves by hijacking the cells of an infected host, but this comes with some limitations. Cells from different species have different molecular machinery and so viruses often have to specialize to a narrow group of species. This specialization consists largely of fine-tuning the way that viral proteins interact with host proteins. For instance, in bird flu viruses, a protein known as PB2 does not interact well with the machinery in human cells. Because PB2 proteins form part of the viral polymerase (the structure that copies the viral genome), this prevents bird flu viruses from replicating efficiently in humans. Sometimes however, changes in the PB2 protein allow bird flu viruses to better replicate in humans, potentially leading to deadly flu pandemics. To understand exactly how this happens, researchers have previously used two approaches: examining the changes that have happened in past flu viruses, and monitoring the evolution of bird flu viruses grown in human cells in the lab. However, these approaches can only look at a small number of the many possible genetic changes to the virus. This makes it hard to anticipate the new ways that flu might adapt to human cells in the future. To overcome this problem, Soh et al. systematically created all of the single changes to the bird flu PB2, altering every element of the protein sequence one-by-one. They then tested which of the changes to PB2 helped the virus grow better in human cells. The modifications that made the viruses thrive were on the surface of the protein, suggesting that they might improve interaction with the cell machinery of the host. Some changes have been found in bird flu viruses that have recently jumped into humans in nature, although fortunately none of these viruses have yet spread widely to cause a pandemic. Many factors affect the evolution of viruses, and their ability to infect new species. Understanding which changes in proteins help these microbes adapt to new hosts is an important element that scientists could consider to assess future risks of pandemics.
Collapse
Affiliation(s)
- Yq Shirleen Soh
- Basic Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, United States.,Computational Biology Program, Fred Hutchinson Cancer Research Center, Seattle, United States
| | - Louise H Moncla
- Computational Biology Program, Fred Hutchinson Cancer Research Center, Seattle, United States.,Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, United States
| | - Rachel Eguia
- Basic Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, United States
| | - Trevor Bedford
- Computational Biology Program, Fred Hutchinson Cancer Research Center, Seattle, United States.,Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, United States
| | - Jesse D Bloom
- Basic Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, United States.,Computational Biology Program, Fred Hutchinson Cancer Research Center, Seattle, United States.,Howard Hughes Medical Institute, Seattle, United States
| |
Collapse
|
47
|
Abstract
Viruses of wild and domestic animals can infect humans in a process called zoonosis, and these events can give rise to explosive epidemics such as those caused by the HIV and Ebola viruses. While humans are constantly exposed to animal viruses, those that can successfully infect and transmit between humans are exceedingly rare. The key event in zoonosis is when an animal virus begins to replicate (one virion making many) in the first human subject. Only at this point will the animal virus first experience the selective environment of the human body, rendering possible viral adaptation and refinement for humans. In addition, appreciable viral titers in this first human may enable infection of a second, thus initiating selection for viral variants with increased capacity for spread. We assert that host genetics plays a critical role in defining which animal viruses in nature will achieve this key event of replication in a first human host. This is because animal viruses that pose the greatest risk to humans will have few (or no) genetic barriers to replicating themselves in human cells, thus requiring minimal mutations to make this jump. Only experimental virology provides a path to identifying animal viruses with the potential to replicate themselves in humans because this information will not be evident from viral sequencing data alone.
Collapse
Affiliation(s)
- Cody J. Warren
- BioFrontiers Institute and Department of Molecular, Cellular, and Developmental Biology, University of Colorado Boulder, Boulder, Colorado, United States of America
| | - Sara L. Sawyer
- BioFrontiers Institute and Department of Molecular, Cellular, and Developmental Biology, University of Colorado Boulder, Boulder, Colorado, United States of America
| |
Collapse
|
48
|
Belser JA, Barclay W, Barr I, Fouchier RAM, Matsuyama R, Nishiura H, Peiris M, Russell CJ, Subbarao K, Zhu H, Yen HL. Ferrets as Models for Influenza Virus Transmission Studies and Pandemic Risk Assessments. Emerg Infect Dis 2019; 24:965-971. [PMID: 29774862 PMCID: PMC6004870 DOI: 10.3201/eid2406.172114] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/04/2022] Open
Abstract
The ferret transmission model is extensively used to assess the pandemic potential of emerging influenza viruses, yet experimental conditions and reported results vary among laboratories. Such variation can be a critical consideration when contextualizing results from independent risk-assessment studies of novel and emerging influenza viruses. To streamline interpretation of data generated in different laboratories, we provide a consensus on experimental parameters that define risk-assessment experiments of influenza virus transmissibility, including disclosure of variables known or suspected to contribute to experimental variability in this model, and advocate adoption of more standardized practices. We also discuss current limitations of the ferret transmission model and highlight continued refinements and advances to this model ongoing in laboratories. Understanding, disclosing, and standardizing the critical parameters of ferret transmission studies will improve the comparability and reproducibility of pandemic influenza risk assessment and increase the statistical power and, perhaps, accuracy of this model.
Collapse
|
49
|
Fogarty International Center collaborative networks in infectious disease modeling: Lessons learnt in research and capacity building. Epidemics 2019; 26:116-127. [PMID: 30446431 PMCID: PMC7105018 DOI: 10.1016/j.epidem.2018.10.004] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2018] [Revised: 08/06/2018] [Accepted: 10/17/2018] [Indexed: 12/24/2022] Open
Abstract
Due to a combination of ecological, political, and demographic factors, the emergence of novel pathogens has been increasingly observed in animals and humans in recent decades. Enhancing global capacity to study and interpret infectious disease surveillance data, and to develop data-driven computational models to guide policy, represents one of the most cost-effective, and yet overlooked, ways to prepare for the next pandemic. Epidemiological and behavioral data from recent pandemics and historic scourges have provided rich opportunities for validation of computational models, while new sequencing technologies and the 'big data' revolution present new tools for studying the epidemiology of outbreaks in real time. For the past two decades, the Division of International Epidemiology and Population Studies (DIEPS) of the NIH Fogarty International Center has spearheaded two synergistic programs to better understand and devise control strategies for global infectious disease threats. The Multinational Influenza Seasonal Mortality Study (MISMS) has strengthened global capacity to study the epidemiology and evolutionary dynamics of influenza viruses in 80 countries by organizing international research activities and training workshops. The Research and Policy in Infectious Disease Dynamics (RAPIDD) program and its precursor activities has established a network of global experts in infectious disease modeling operating at the research-policy interface, with collaborators in 78 countries. These activities have provided evidence-based recommendations for disease control, including during large-scale outbreaks of pandemic influenza, Ebola and Zika virus. Together, these programs have coordinated international collaborative networks to advance the study of emerging disease threats and the field of computational epidemic modeling. A global community of researchers and policy-makers have used the tools and trainings developed by these programs to interpret infectious disease patterns in their countries, understand modeling concepts, and inform control policies. Here we reflect on the scientific achievements and lessons learnt from these programs (h-index = 106 for RAPIDD and 79 for MISMS), including the identification of outstanding researchers and fellows; funding flexibility for timely research workshops and working groups (particularly relative to more traditional investigator-based grant programs); emphasis on group activities such as large-scale modeling reviews, model comparisons, forecasting challenges and special journal issues; strong quality control with a light touch on outputs; and prominence of training, data-sharing, and joint publications.
Collapse
|
50
|
Pulit-Penaloza JA, Belser JA, Tumpey TM, Maines TR. Sowing the Seeds of a Pandemic? Mammalian Pathogenicity and Transmissibility of H1 Variant Influenza Viruses from the Swine Reservoir. Trop Med Infect Dis 2019; 4:E41. [PMID: 30818793 PMCID: PMC6473686 DOI: 10.3390/tropicalmed4010041] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2019] [Revised: 02/02/2019] [Accepted: 02/20/2019] [Indexed: 01/01/2023] Open
Abstract
Emergence of genetically and antigenically diverse strains of influenza to which the human population has no or limited immunity necessitates continuous risk assessments to determine the likelihood of these viruses acquiring adaptations that facilitate sustained human-to-human transmission. As the North American swine H1 virus population has diversified over the last century by means of both antigenic drift and shift, in vivo assessments to study multifactorial traits like mammalian pathogenicity and transmissibility of these emerging influenza viruses are critical. In this review, we examine genetic, molecular, and pathogenicity and transmissibility data from a panel of contemporary North American H1 subtype swine-origin viruses isolated from humans, as compared to H1N1 seasonal and pandemic viruses, including the reconstructed 1918 virus. We present side-by-side analyses of experiments performed in the mouse and ferret models using consistent experimental protocols to facilitate enhanced interpretation of in vivo data. Contextualizing these analyses in a broader context permits a greater appreciation of the role that in vivo risk assessment experiments play in pandemic preparedness. Collectively, we find that despite strain-specific heterogeneity among swine-origin H1 viruses, contemporary swine viruses isolated from humans possess many attributes shared by prior pandemic strains, warranting heightened surveillance and evaluation of these zoonotic viruses.
Collapse
Affiliation(s)
- Joanna A Pulit-Penaloza
- Influenza Division, National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, Atlanta, GA 30329, USA.
| | - Jessica A Belser
- Influenza Division, National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, Atlanta, GA 30329, USA.
| | - Terrence M Tumpey
- Influenza Division, National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, Atlanta, GA 30329, USA.
| | - Taronna R Maines
- Influenza Division, National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, Atlanta, GA 30329, USA.
| |
Collapse
|