1
|
Yang Y, Sun X. Regulation of sharp wave-ripples by cholecystokinin-expressing interneurons and parvalbumin-expressing basket cells in the hippocampal CA3 region. Front Comput Neurosci 2025; 19:1591003. [PMID: 40492140 PMCID: PMC12146282 DOI: 10.3389/fncom.2025.1591003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2025] [Accepted: 05/05/2025] [Indexed: 06/11/2025] Open
Abstract
To explore the individual and interactive effects of the interneurons cholecystokinin-expressing interneurons (CCKs) and parvalbumin-expressing basket cells (BCs) on sharp wave-ripples (SWR) and the underlying mechanisms, we constructed a mathematical model of the hippocampal CA3 network. By modulating the activity of CCKs and BCs, it was verified that CCKs inhibit the generation of SWR, while the activity of BCs affects the occurrence of SWR. Additionally, it was postulated that CCKs exert an influence on SWR through a direct mechanism, wherein CCKs directly modulate pyramidal cells (PCs). It was also discovered that BCs control SWR mainly through mutual inhibition among BCs. Furthermore, by adjusting the strength of the interaction between BCs and CCKs at various levels, it was identified that the interaction between these two types of interneurons has a relatively symmetrical effect on the regulation of SWR, functioning through a mutual inhibition mechanism. Our findings not only offer a deeper understanding of how CCKs and BCs independently regulate the generation of SWR but also provide novel insights into how changes in the strength of their interaction affect network oscillations. The results emphasize the crucial role of inhibitory interneurons in maintaining normal hippocampal oscillations, which are essential for proper brain function, particularly in the domains of memory consolidation and cognitive processes.
Collapse
Affiliation(s)
- Yuchen Yang
- School of Mathematical Sciences, Beijing University of Posts and Telecommunications, Beijing, China
| | - Xiaojuan Sun
- School of Physical Science and Technology, Beijing University of Posts and Telecommunications, Beijing, China
- Key Laboratory of Mathematics and Information Networks (Beijing University of Posts and Telecommunications), Ministry of Education, Beijing, China
| |
Collapse
|
2
|
Arkhipov A, da Costa N, de Vries S, Bakken T, Bennett C, Bernard A, Berg J, Buice M, Collman F, Daigle T, Garrett M, Gouwens N, Groblewski PA, Harris J, Hawrylycz M, Hodge R, Jarsky T, Kalmbach B, Lecoq J, Lee B, Lein E, Levi B, Mihalas S, Ng L, Olsen S, Reid C, Siegle JH, Sorensen S, Tasic B, Thompson C, Ting JT, van Velthoven C, Yao S, Yao Z, Koch C, Zeng H. Integrating multimodal data to understand cortical circuit architecture and function. Nat Neurosci 2025; 28:717-730. [PMID: 40128391 DOI: 10.1038/s41593-025-01904-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Accepted: 01/21/2025] [Indexed: 03/26/2025]
Abstract
In recent years there has been a tremendous growth in new technologies that allow large-scale investigation of different characteristics of the nervous system at an unprecedented level of detail. There is a growing trend to use combinations of these new techniques to determine direct links between different modalities. In this Perspective, we focus on the mouse visual cortex, as this is one of the model systems in which much progress has been made in the integration of multimodal data to advance understanding. We review several approaches that allow integration of data regarding various properties of cortical cell types, connectivity at the level of brain areas, cell types and individual cells, and functional neural activity in vivo. The increasingly crucial contributions of computation and theory in analyzing and systematically modeling data are also highlighted. Together with open sharing of data, tools and models, integrative approaches are essential tools in modern neuroscience for improving our understanding of the brain architecture, mechanisms and function.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Jim Berg
- Allen Institute, Seattle, WA, USA
| | | | | | | | | | | | | | - Julie Harris
- Allen Institute, Seattle, WA, USA
- Cure Alzheimer's Fund, Wellesley Hills, MA, USA
| | | | | | | | | | | | | | - Ed Lein
- Allen Institute, Seattle, WA, USA
| | | | | | - Lydia Ng
- Allen Institute, Seattle, WA, USA
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
3
|
Sengupta S, Talidou A, Lefebvre J, Skinner FK. Cell-type-specific contributions to theta-gamma coupled rhythms in the hippocampus. Netw Neurosci 2025; 9:100-124. [PMID: 40161984 PMCID: PMC11949547 DOI: 10.1162/netn_a_00427] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Accepted: 10/29/2024] [Indexed: 04/02/2025] Open
Abstract
Distinct inhibitory cell types participate in cognitively relevant nested brain rhythms, and particular changes in such rhythms are known to occur in disease states. Specifically, the coexpression of theta and gamma rhythms in the hippocampus is believed to represent a general coding scheme, but cellular-based generation mechanisms for these coupled rhythms are currently unclear. We develop a population rate model of the CA1 hippocampus that encompasses circuits of three inhibitory cell types (bistratified cells and parvalbumin [PV]-expressing and cholecystokinin [CCK]-expressing basket cells) and pyramidal cells to examine this. We constrain parameters and perform numerical and theoretical analyses. The theory, in combination with the numerical explorations, predicts circuit motifs and specific cell-type mechanisms that are essential for the coexistence of theta and gamma oscillations. We find that CCK-expressing basket cells initiate the coupled rhythms and regularize theta, and PV-expressing basket cells enhance both theta and gamma rhythms. Pyramidal and bistratified cells govern the generation of theta rhythms, and PV-expressing basket and pyramidal cells play dominant roles in controlling theta frequencies. Our circuit motifs for the theta-gamma coupled rhythm generation could be applicable to other brain regions.
Collapse
Affiliation(s)
- Spandan Sengupta
- Krembil Brain Institute, Krembil Research Institute, University Health Network, Toronto, ON, Canada
| | - Afroditi Talidou
- Krembil Brain Institute, Krembil Research Institute, University Health Network, Toronto, ON, Canada
- Department of Biology, University of Ottawa, Ottawa, ON, Canada
| | - Jeremie Lefebvre
- Krembil Brain Institute, Krembil Research Institute, University Health Network, Toronto, ON, Canada
- Department of Biology, University of Ottawa, Ottawa, ON, Canada
- Department of Mathematics, University of Toronto, Toronto, ON, Canada
| | - Frances K. Skinner
- Krembil Brain Institute, Krembil Research Institute, University Health Network, Toronto, ON, Canada
- Department of Physiology, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
4
|
Sinha A, Gleeson P, Marin B, Dura-Bernal S, Panagiotou S, Crook S, Cantarelli M, Cannon RC, Davison AP, Gurnani H, Silver RA. The NeuroML ecosystem for standardized multi-scale modeling in neuroscience. eLife 2025; 13:RP95135. [PMID: 39792574 PMCID: PMC11723582 DOI: 10.7554/elife.95135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2025] Open
Abstract
Data-driven models of neurons and circuits are important for understanding how the properties of membrane conductances, synapses, dendrites, and the anatomical connectivity between neurons generate the complex dynamical behaviors of brain circuits in health and disease. However, the inherent complexity of these biological processes makes the construction and reuse of biologically detailed models challenging. A wide range of tools have been developed to aid their construction and simulation, but differences in design and internal representation act as technical barriers to those who wish to use data-driven models in their research workflows. NeuroML, a model description language for computational neuroscience, was developed to address this fragmentation in modeling tools. Since its inception, NeuroML has evolved into a mature community standard that encompasses a wide range of model types and approaches in computational neuroscience. It has enabled the development of a large ecosystem of interoperable open-source software tools for the creation, visualization, validation, and simulation of data-driven models. Here, we describe how the NeuroML ecosystem can be incorporated into research workflows to simplify the construction, testing, and analysis of standardized models of neural systems, and supports the FAIR (Findability, Accessibility, Interoperability, and Reusability) principles, thus promoting open, transparent and reproducible science.
Collapse
Affiliation(s)
- Ankur Sinha
- Department of Neuroscience, Physiology and Pharmacology, University College LondonLondonUnited Kingdom
| | - Padraig Gleeson
- Department of Neuroscience, Physiology and Pharmacology, University College LondonLondonUnited Kingdom
| | - Bóris Marin
- Universidade Federal do ABCSão Bernardo do CampoBrazil
| | - Salvador Dura-Bernal
- SUNY Downstate Medical CenterBrooklynUnited States
- Center for Biomedical Imaging and Neuromodulation, Nathan Kline Institute for Psychiatric ResearchOrangeburgUnited States
| | | | | | | | | | | | | | - Robin Angus Silver
- Department of Neuroscience, Physiology and Pharmacology, University College LondonLondonUnited Kingdom
| |
Collapse
|
5
|
Jiang YQ, Lee DK, Guo W, Li M, Sun Q. Hypothalamic regulation of hippocampal CA1 interneurons by the supramammillary nucleus. Cell Rep 2024; 43:114898. [PMID: 39446584 PMCID: PMC11644823 DOI: 10.1016/j.celrep.2024.114898] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Revised: 09/14/2024] [Accepted: 10/05/2024] [Indexed: 10/26/2024] Open
Abstract
The hypothalamic supramammillary nucleus (SuM) projects heavily to the hippocampus to regulate hippocampal activity and plasticity. Although the projections from the SuM to the dentate gyrus (DG) and CA2 have been extensively studied, whether the SuM projects to CA1, the main hippocampal output region, is unclear. Here, we report a glutamatergic pathway from the SuM that selectively excites CA1 interneurons in the border between the stratum radiatum (SR) and the stratum lacunosum-moleculare (SLM). We find that the SuM projects selectively to a narrow band in the CA1 SR/SLM and monosynaptically excites SR/SLM interneurons, including vasoactive intestinal peptide-expressing (VIP+) and neuron-derived neurotrophic factor-expressing (NDNF+) cells, but completely avoids making monosynaptic contacts with CA1 pyramidal neurons (PNs) or parvalbumin-expressing (PV+) or somatostatin-expressing (SOM+) cells. Moreover, SuM activation drives spikes in most SR/SLM interneurons to suppress CA1 PN excitability. Taken together, our findings reveal that the SuM can directly regulate hippocampal output region CA1, bypassing CA2, CA3, and the DG.
Collapse
Affiliation(s)
- Yu-Qiu Jiang
- Department of Neurosciences, School of Medicine, Case Western Reserve University, 10900 Euclid Avenue, Cleveland, OH 44106, USA
| | - Daniel K Lee
- Department of Neurosciences, School of Medicine, Case Western Reserve University, 10900 Euclid Avenue, Cleveland, OH 44106, USA
| | - Wanyi Guo
- Department of Neurosciences, School of Medicine, Case Western Reserve University, 10900 Euclid Avenue, Cleveland, OH 44106, USA
| | - Minghua Li
- Department of Neurosciences, School of Medicine, Case Western Reserve University, 10900 Euclid Avenue, Cleveland, OH 44106, USA
| | - Qian Sun
- Department of Neurosciences, School of Medicine, Case Western Reserve University, 10900 Euclid Avenue, Cleveland, OH 44106, USA.
| |
Collapse
|
6
|
Kopsick JD, Kilgore JA, Adam GC, Ascoli GA. Formation and retrieval of cell assemblies in a biologically realistic spiking neural network model of area CA3 in the mouse hippocampus. J Comput Neurosci 2024; 52:303-321. [PMID: 39285088 PMCID: PMC11470887 DOI: 10.1007/s10827-024-00881-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Revised: 08/05/2024] [Accepted: 09/06/2024] [Indexed: 09/25/2024]
Abstract
The hippocampal formation is critical for episodic memory, with area Cornu Ammonis 3 (CA3) a necessary substrate for auto-associative pattern completion. Recent theoretical and experimental evidence suggests that the formation and retrieval of cell assemblies enable these functions. Yet, how cell assemblies are formed and retrieved in a full-scale spiking neural network (SNN) of CA3 that incorporates the observed diversity of neurons and connections within this circuit is not well understood. Here, we demonstrate that a data-driven SNN model quantitatively reflecting the neuron type-specific population sizes, intrinsic electrophysiology, connectivity statistics, synaptic signaling, and long-term plasticity of the mouse CA3 is capable of robust auto-association and pattern completion via cell assemblies. Our results show that a broad range of assembly sizes could successfully and systematically retrieve patterns from heavily incomplete or corrupted cues after a limited number of presentations. Furthermore, performance was robust with respect to partial overlap of assemblies through shared cells, substantially enhancing memory capacity. These novel findings provide computational evidence that the specific biological properties of the CA3 circuit produce an effective neural substrate for associative learning in the mammalian brain.
Collapse
Affiliation(s)
- Jeffrey D Kopsick
- Center for Neural Informatics, Structures, & Plasticity, College of Engineering and Computing, George Mason University, Fairfax, VA, USA
- Interdisciplinary Program in Neuroscience, College of Science, George Mason University, Fairfax, VA, USA
| | - Joseph A Kilgore
- Department of Electrical and Computer Engineering, George Washington University, Washington, D.C., USA
| | - Gina C Adam
- Department of Electrical and Computer Engineering, George Washington University, Washington, D.C., USA
| | - Giorgio A Ascoli
- Center for Neural Informatics, Structures, & Plasticity, College of Engineering and Computing, George Mason University, Fairfax, VA, USA.
- Interdisciplinary Program in Neuroscience, College of Science, George Mason University, Fairfax, VA, USA.
- Bioengineering Department, College of Engineering and Computing, George Mason University, Fairfax, VA, USA.
| |
Collapse
|
7
|
Diamantaki M, Papoutsi A. Gather your neurons and model together: Community times ahead. PLoS Biol 2024; 22:e3002839. [PMID: 39504325 PMCID: PMC11540179 DOI: 10.1371/journal.pbio.3002839] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2024] Open
Abstract
Bottom-up, data-driven, large-scale models provide a mechanistic understanding of neuronal functions. A new study in PLOS Biology builds a biologically realistic model of the rodent CA1 region that aims to become an accessible tool for the whole hippocampal community.
Collapse
Affiliation(s)
- Maria Diamantaki
- Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology-Hellas, Heraklion, Greece
- School of Medicine, University of Crete, Heraklion, Greece
| | - Athanasia Papoutsi
- Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology-Hellas, Heraklion, Greece
- School of Medicine, University of Crete, Heraklion, Greece
| |
Collapse
|
8
|
Pronold J, van Meegen A, Shimoura RO, Vollenbröker H, Senden M, Hilgetag CC, Bakker R, van Albada SJ. Multi-scale spiking network model of human cerebral cortex. Cereb Cortex 2024; 34:bhae409. [PMID: 39428578 PMCID: PMC11491286 DOI: 10.1093/cercor/bhae409] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Revised: 09/15/2024] [Accepted: 09/24/2024] [Indexed: 10/22/2024] Open
Abstract
Although the structure of cortical networks provides the necessary substrate for their neuronal activity, the structure alone does not suffice to understand the activity. Leveraging the increasing availability of human data, we developed a multi-scale, spiking network model of human cortex to investigate the relationship between structure and dynamics. In this model, each area in one hemisphere of the Desikan-Killiany parcellation is represented by a $1\,\mathrm{mm^{2}}$ column with a layered structure. The model aggregates data across multiple modalities, including electron microscopy, electrophysiology, morphological reconstructions, and diffusion tensor imaging, into a coherent framework. It predicts activity on all scales from the single-neuron spiking activity to the area-level functional connectivity. We compared the model activity with human electrophysiological data and human resting-state functional magnetic resonance imaging (fMRI) data. This comparison reveals that the model can reproduce aspects of both spiking statistics and fMRI correlations if the inter-areal connections are sufficiently strong. Furthermore, we study the propagation of a single-spike perturbation and macroscopic fluctuations through the network. The open-source model serves as an integrative platform for further refinements and future in silico studies of human cortical structure, dynamics, and function.
Collapse
Affiliation(s)
- Jari Pronold
- Institute for Advanced Simulation (IAS-6), Jülich Research Centre, D-52428 Jülich, Germany
- RWTH Aachen University, D-52062 Aachen, Germany
| | - Alexander van Meegen
- Institute for Advanced Simulation (IAS-6), Jülich Research Centre, D-52428 Jülich, Germany
- Institute of Zoology, University of Cologne, D-50674 Cologne, Germany
| | - Renan O Shimoura
- Institute for Advanced Simulation (IAS-6), Jülich Research Centre, D-52428 Jülich, Germany
| | - Hannah Vollenbröker
- Institute for Advanced Simulation (IAS-6), Jülich Research Centre, D-52428 Jülich, Germany
- Heinrich Heine University Düsseldorf, D-40225 Düsseldorf, Germany
| | - Mario Senden
- Faculty of Psychology and Neuroscience, Department of Cognitive Neuroscience, Maastricht University, NL-6229 ER Maastricht, The Netherlands
- Faculty of Psychology and Neuroscience, Maastricht Brain Imaging Centre, Maastricht University, NL-6229 ER Maastricht, The Netherlands
| | - Claus C Hilgetag
- Institute of Computational Neuroscience, University Medical Center Eppendorf, Hamburg University, D-20246 Hamburg, Germany
| | - Rembrandt Bakker
- Institute for Advanced Simulation (IAS-6), Jülich Research Centre, D-52428 Jülich, Germany
- Donders Institute for Brain, Cognition and Behavior, Radboud University Nijmegen, NL-6525 EN Nijmegen, The Netherlands
| | - Sacha J van Albada
- Institute for Advanced Simulation (IAS-6), Jülich Research Centre, D-52428 Jülich, Germany
- Institute of Zoology, University of Cologne, D-50674 Cologne, Germany
| |
Collapse
|
9
|
Liao Z, Terada S, Raikov IG, Hadjiabadi D, Szoboszlay M, Soltesz I, Losonczy A. Inhibitory plasticity supports replay generalization in the hippocampus. Nat Neurosci 2024; 27:1987-1998. [PMID: 39227715 PMCID: PMC11583836 DOI: 10.1038/s41593-024-01745-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2022] [Accepted: 07/31/2024] [Indexed: 09/05/2024]
Abstract
Memory consolidation assimilates recent experiences into long-term memory. This process requires the replay of learned sequences, although the content of these sequences remains controversial. Recent work has shown that the statistics of replay deviate from those of experience: stimuli that are experientially salient may be either recruited or suppressed from sharp-wave ripples. In this study, we found that this phenomenon can be explained parsimoniously and biologically plausibly by a Hebbian spike-time-dependent plasticity rule at inhibitory synapses. Using models at three levels of abstraction-leaky integrate-and-fire, biophysically detailed and abstract binary-we show that this rule enables efficient generalization, and we make specific predictions about the consequences of intact and perturbed inhibitory dynamics for network dynamics and cognition. Finally, we use optogenetics to artificially implant non-generalizable representations into the network in awake behaving mice, and we find that these representations also accumulate inhibition during sharp-wave ripples, experimentally validating a major prediction of our model. Our work outlines a potential direct link between the synaptic and cognitive levels of memory consolidation, with implications for both normal learning and neurological disease.
Collapse
Affiliation(s)
- Zhenrui Liao
- Department of Neuroscience, Columbia University, New York, NY, USA.
- Mortimer B. Zuckerman Mind Brain Behavior Institute, Columbia University, New York, NY, USA.
- Center for Theoretical Neuroscience, Columbia University, New York, NY, USA.
- Department of Neuroscience, University of Edinburgh, Edinburgh, UK.
| | - Satoshi Terada
- Department of Neuroscience, Columbia University, New York, NY, USA
- Mortimer B. Zuckerman Mind Brain Behavior Institute, Columbia University, New York, NY, USA
| | - Ivan Georgiev Raikov
- Kavli Institute for Brain Science, Columbia University, New York, NY, USA
- Department of Bioengineering, Stanford University, Stanford, CA, USA
| | - Darian Hadjiabadi
- Kavli Institute for Brain Science, Columbia University, New York, NY, USA
- Department of Bioengineering, Stanford University, Stanford, CA, USA
| | - Miklos Szoboszlay
- Department of Neuroscience, Columbia University, New York, NY, USA
- Mortimer B. Zuckerman Mind Brain Behavior Institute, Columbia University, New York, NY, USA
| | - Ivan Soltesz
- Department of Bioengineering, Stanford University, Stanford, CA, USA.
- Department of Neurosurgery, Stanford University, Stanford, CA, USA.
| | - Attila Losonczy
- Department of Neuroscience, Columbia University, New York, NY, USA.
- Mortimer B. Zuckerman Mind Brain Behavior Institute, Columbia University, New York, NY, USA.
| |
Collapse
|
10
|
Wei X, Campagna JJ, Jagodzinska B, Wi D, Cohn W, Lee JT, Zhu C, Huang CS, Molnár L, Houser CR, John V, Mody I. A therapeutic small molecule enhances γ-oscillations and improves cognition/memory in Alzheimer's disease model mice. Proc Natl Acad Sci U S A 2024; 121:e2400420121. [PMID: 39106304 PMCID: PMC11331084 DOI: 10.1073/pnas.2400420121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Accepted: 07/08/2024] [Indexed: 08/09/2024] Open
Abstract
Brain rhythms provide the timing for recruitment of brain activity required for linking together neuronal ensembles engaged in specific tasks. The γ-oscillations (30 to 120 Hz) orchestrate neuronal circuits underlying cognitive processes and working memory. These oscillations are reduced in numerous neurological and psychiatric disorders, including early cognitive decline in Alzheimer's disease (AD). Here, we report on a potent brain-permeable small molecule, DDL-920 that increases γ-oscillations and improves cognition/memory in a mouse model of AD, thus showing promise as a class of therapeutics for AD. We employed anatomical, in vitro and in vivo electrophysiological, and behavioral methods to examine the effects of our lead therapeutic candidate small molecule. As a novel in central nervous system pharmacotherapy, our lead molecule acts as a potent, efficacious, and selective negative allosteric modulator of the γ-aminobutyric acid type A receptors most likely assembled from α1β2δ subunits. These receptors, identified through anatomical and pharmacological means, underlie the tonic inhibition of parvalbumin (PV) expressing interneurons (PV+INs) critically involved in the generation of γ-oscillations. When orally administered twice daily for 2 wk, DDL-920 restored the cognitive/memory impairments of 3- to 4-mo-old AD model mice as measured by their performance in the Barnes maze. Our approach is unique as it is meant to enhance cognitive performance and working memory in a state-dependent manner by engaging and amplifying the brain's endogenous γ-oscillations through enhancing the function of PV+INs.
Collapse
Affiliation(s)
- Xiaofei Wei
- Department of Neurology, The David Geffen School of Medicine at University of California Los Angeles, Los Angeles, CA90095
- Department of Neurosurgery, The David Geffen School of Medicine at University of California Los Angeles, Los Angeles, CA90095
| | - Jesus J. Campagna
- Department of Neurology, Drug Development Laboratory, Mary S. Easton Center for Alzheimer’s Disease Research and Care, The David Geffen School of Medicine at University of California Los Angeles, Los Angeles, CA90095
| | - Barbara Jagodzinska
- Department of Neurology, Drug Development Laboratory, Mary S. Easton Center for Alzheimer’s Disease Research and Care, The David Geffen School of Medicine at University of California Los Angeles, Los Angeles, CA90095
| | - Dongwook Wi
- Department of Neurology, Drug Development Laboratory, Mary S. Easton Center for Alzheimer’s Disease Research and Care, The David Geffen School of Medicine at University of California Los Angeles, Los Angeles, CA90095
| | - Whitaker Cohn
- Department of Neurology, Drug Development Laboratory, Mary S. Easton Center for Alzheimer’s Disease Research and Care, The David Geffen School of Medicine at University of California Los Angeles, Los Angeles, CA90095
| | - Jessica T. Lee
- Department of Neurology, Drug Development Laboratory, Mary S. Easton Center for Alzheimer’s Disease Research and Care, The David Geffen School of Medicine at University of California Los Angeles, Los Angeles, CA90095
| | - Chunni Zhu
- Department of Neurology, Drug Development Laboratory, Mary S. Easton Center for Alzheimer’s Disease Research and Care, The David Geffen School of Medicine at University of California Los Angeles, Los Angeles, CA90095
| | - Christine S. Huang
- Department of Neurobiology, The David Geffen School of Medicine at University of California Los Angeles, Los Angeles, CA90095
| | - László Molnár
- Department of Electrical Engineering, Sapientia Hungarian University of Transylvania, Târgu Mureş540485, Romania
| | - Carolyn R. Houser
- Department of Neurobiology, The David Geffen School of Medicine at University of California Los Angeles, Los Angeles, CA90095
| | - Varghese John
- Department of Neurology, Drug Development Laboratory, Mary S. Easton Center for Alzheimer’s Disease Research and Care, The David Geffen School of Medicine at University of California Los Angeles, Los Angeles, CA90095
| | - Istvan Mody
- Department of Neurology, The David Geffen School of Medicine at University of California Los Angeles, Los Angeles, CA90095
- Department of Physiology, The David Geffen School of Medicine at University of California Los Angeles, Los Angeles, CA90095
| |
Collapse
|
11
|
Abstract
The hippocampus is critical for memory and spatial navigation. The ability to map novel environments, as well as more abstract conceptual relationships, is fundamental to the cognitive flexibility that humans and other animals require to survive in a dynamic world. In this review, we survey recent advances in our understanding of how this flexibility is implemented anatomically and functionally by hippocampal circuitry, during both active exploration (online) and rest (offline). We discuss the advantages and limitations of spike timing-dependent plasticity and the more recently discovered behavioral timescale synaptic plasticity in supporting distinct learning modes in the hippocampus. Finally, we suggest complementary roles for these plasticity types in explaining many-shot and single-shot learning in the hippocampus and discuss how these rules could work together to support the learning of cognitive maps.
Collapse
Affiliation(s)
- Zhenrui Liao
- Department of Neuroscience and Mortimer B. Zuckerman Mind Brain Behavior Institute, Columbia University, New York, NY, USA;
| | - Attila Losonczy
- Department of Neuroscience and Mortimer B. Zuckerman Mind Brain Behavior Institute, Columbia University, New York, NY, USA;
| |
Collapse
|
12
|
Young RA, Shin JD, Guo Z, Jadhav SP. Hippocampal-prefrontal communication subspaces align with behavioral and network patterns in a spatial memory task. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.07.08.601617. [PMID: 39026752 PMCID: PMC11257456 DOI: 10.1101/2024.07.08.601617] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/20/2024]
Abstract
Rhythmic network states have been theorized to facilitate communication between brain regions, but how these oscillations influence communication subspaces, i.e, the low-dimensional neural activity patterns that mediate inter-regional communication, and in turn how subspaces impact behavior remains unclear. Using a spatial memory task in rats, we simultaneously recorded ensembles from hippocampal CA1 and the prefrontal cortex (PFC) to address this question. We found that task behaviors best aligned with low-dimensional, shared subspaces between these regions, rather than local activity in either region. Critically, both network oscillations and speed modulated the structure and performance of this communication subspace. Contrary to expectations, theta coherence did not better predict CA1-PFC shared activity, while theta power played a more significant role. To understand the communication space, we visualized shared CA1-PFC communication geometry using manifold techniques and found ring-like structures. We hypothesize that these shared activity manifolds are utilized to mediate the task behavior. These findings suggest that memory-guided behaviors are driven by shared CA1-PFC interactions that are dynamically modulated by oscillatory states, offering a novel perspective on the interplay between rhythms and behaviorally relevant neural communication.
Collapse
|
13
|
Nanami T, Yamada D, Someya M, Hige T, Kazama H, Kohno T. A lightweight data-driven spiking neuronal network model of Drosophila olfactory nervous system with dedicated hardware support. Front Neurosci 2024; 18:1384336. [PMID: 38994271 PMCID: PMC11238178 DOI: 10.3389/fnins.2024.1384336] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Accepted: 06/05/2024] [Indexed: 07/13/2024] Open
Abstract
Data-driven spiking neuronal network (SNN) models enable in-silico analysis of the nervous system at the cellular and synaptic level. Therefore, they are a key tool for elucidating the information processing principles of the brain. While extensive research has focused on developing data-driven SNN models for mammalian brains, their complexity poses challenges in achieving precision. Network topology often relies on statistical inference, and the functions of specific brain regions and supporting neuronal activities remain unclear. Additionally, these models demand huge computing facilities and their simulation speed is considerably slower than real-time. Here, we propose a lightweight data-driven SNN model that strikes a balance between simplicity and reproducibility. The model is built using a qualitative modeling approach that can reproduce key dynamics of neuronal activity. We target the Drosophila olfactory nervous system, extracting its network topology from connectome data. The model was successfully implemented on a small entry-level field-programmable gate array and simulated the activity of a network in real-time. In addition, the model reproduced olfactory associative learning, the primary function of the olfactory system, and characteristic spiking activities of different neuron types. In sum, this paper propose a method for building data-driven SNN models from biological data. Our approach reproduces the function and neuronal activities of the nervous system and is lightweight, acceleratable with dedicated hardware, making it scalable to large-scale networks. Therefore, our approach is expected to play an important role in elucidating the brain's information processing at the cellular and synaptic level through an analysis-by-construction approach. In addition, it may be applicable to edge artificial intelligence systems in the future.
Collapse
Affiliation(s)
- Takuya Nanami
- Institute of Industrial Science, The University of Tokyo, Meguro Ku, Tokyo, Japan
| | - Daichi Yamada
- Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Makoto Someya
- RIKEN Center for Brain Science, Wako, Saitama, Japan
| | - Toshihide Hige
- Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
- Department of Cell Biology and Physiology, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
- Integrative Program for Biological and Genome Sciences, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Hokto Kazama
- RIKEN Center for Brain Science, Wako, Saitama, Japan
| | - Takashi Kohno
- Institute of Industrial Science, The University of Tokyo, Meguro Ku, Tokyo, Japan
| |
Collapse
|
14
|
Guth TA, Brandt A, Reinacher PC, Schulze-Bonhage A, Jacobs J, Kunz L. Theta-phase locking of single neurons during human spatial memory. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.06.20.599841. [PMID: 38948829 PMCID: PMC11212943 DOI: 10.1101/2024.06.20.599841] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/02/2024]
Abstract
The precise timing of single-neuron activity in relation to local field potentials may support various cognitive functions. Extensive research in rodents, along with some evidence in humans, suggests that single-neuron activity at specific phases of theta oscillations plays a crucial role in memory processes. Our fundamental understanding of such theta-phase locking in humans and its dependency on basic electrophysiological properties of the local field potential is still limited, however. Here, using single-neuron recordings in epilepsy patients performing a spatial memory task, we thus aimed at improving our understanding of factors modulating theta-phase locking in the human brain. Combining a generalized-phase approach for frequency-adaptive theta-phase estimation with time-resolved spectral parameterization, our results show that theta-phase locking is a strong and prevalent phenomenon across human medial temporal lobe regions, both during spatial memory encoding and retrieval. Neuronal theta-phase locking increased during periods of elevated theta power, when clear theta oscillations were present, and when aperiodic activity exhibited steeper slopes. Theta-phase locking was similarly strong during successful and unsuccessful memory, and most neurons activated at similar theta phases between encoding and retrieval. Some neurons changed their preferred theta phases between encoding and retrieval, in line with the idea that different memory processes are separated within the theta cycle. Together, these results help disentangle how different properties of local field potentials and memory states influence theta-phase locking of human single neurons. This contributes to a better understanding of how interactions between single neurons and local field potentials may support human spatial memory.
Collapse
Affiliation(s)
- Tim A. Guth
- Department of Epileptology, University Hospital Bonn, Bonn, Germany
- Epilepsy Center, Medical Center – University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Armin Brandt
- Epilepsy Center, Medical Center – University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Peter C. Reinacher
- Department of Stereotactic and Functional Neurosurgery, Medical Center – University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
- Fraunhofer Institute for Laser Technology, Aachen, Germany
| | - Andreas Schulze-Bonhage
- Epilepsy Center, Medical Center – University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Joshua Jacobs
- Department of Biomedical Engineering, Columbia University, New York, NY, USA
- Department of Neurological Surgery, Columbia University Medical Center, New York, NY, USA
| | - Lukas Kunz
- Department of Epileptology, University Hospital Bonn, Bonn, Germany
| |
Collapse
|
15
|
Sutton NM, Gutiérrez-Guzmán BE, Dannenberg H, Ascoli GA. A Continuous Attractor Model with Realistic Neural and Synaptic Properties Quantitatively Reproduces Grid Cell Physiology. Int J Mol Sci 2024; 25:6059. [PMID: 38892248 PMCID: PMC11173171 DOI: 10.3390/ijms25116059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 05/25/2024] [Accepted: 05/26/2024] [Indexed: 06/21/2024] Open
Abstract
Computational simulations with data-driven physiological detail can foster a deeper understanding of the neural mechanisms involved in cognition. Here, we utilize the wealth of cellular properties from Hippocampome.org to study neural mechanisms of spatial coding with a spiking continuous attractor network model of medial entorhinal cortex circuit activity. The primary goal is to investigate if adding such realistic constraints could produce firing patterns similar to those measured in real neurons. Biological characteristics included in the work are excitability, connectivity, and synaptic signaling of neuron types defined primarily by their axonal and dendritic morphologies. We investigate the spiking dynamics in specific neuron types and the synaptic activities between groups of neurons. Modeling the rodent hippocampal formation keeps the simulations to a computationally reasonable scale while also anchoring the parameters and results to experimental measurements. Our model generates grid cell activity that well matches the spacing, size, and firing rates of grid fields recorded in live behaving animals from both published datasets and new experiments performed for this study. Our simulations also recreate different scales of those properties, e.g., small and large, as found along the dorsoventral axis of the medial entorhinal cortex. Computational exploration of neuronal and synaptic model parameters reveals that a broad range of neural properties produce grid fields in the simulation. These results demonstrate that the continuous attractor network model of grid cells is compatible with a spiking neural network implementation sourcing data-driven biophysical and anatomical parameters from Hippocampome.org. The software (version 1.0) is released as open source to enable broad community reuse and encourage novel applications.
Collapse
Affiliation(s)
- Nate M. Sutton
- Bioengineering Department, George Mason University, Fairfax, VA 22030, USA; (N.M.S.); (B.E.G.-G.); (H.D.)
| | - Blanca E. Gutiérrez-Guzmán
- Bioengineering Department, George Mason University, Fairfax, VA 22030, USA; (N.M.S.); (B.E.G.-G.); (H.D.)
| | - Holger Dannenberg
- Bioengineering Department, George Mason University, Fairfax, VA 22030, USA; (N.M.S.); (B.E.G.-G.); (H.D.)
- Interdisciplinary Program in Neuroscience, George Mason University, Fairfax, VA 22030, USA
| | - Giorgio A. Ascoli
- Bioengineering Department, George Mason University, Fairfax, VA 22030, USA; (N.M.S.); (B.E.G.-G.); (H.D.)
- Interdisciplinary Program in Neuroscience, George Mason University, Fairfax, VA 22030, USA
| |
Collapse
|
16
|
Sutton N, Gutiérrez-Guzmán B, Dannenberg H, Ascoli GA. A Continuous Attractor Model with Realistic Neural and Synaptic Properties Quantitatively Reproduces Grid Cell Physiology. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.04.29.591748. [PMID: 38746202 PMCID: PMC11092518 DOI: 10.1101/2024.04.29.591748] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 05/16/2024]
Abstract
Computational simulations with data-driven physiological detail can foster a deeper understanding of the neural mechanisms involved in cognition. Here, we utilize the wealth of cellular properties from Hippocampome.org to study neural mechanisms of spatial coding with a spiking continuous attractor network model of medial entorhinal cortex circuit activity. The primary goal was to investigate if adding such realistic constraints could produce firing patterns similar to those measured in real neurons. Biological characteristics included in the work are excitability, connectivity, and synaptic signaling of neuron types defined primarily by their axonal and dendritic morphologies. We investigate the spiking dynamics in specific neuron types and the synaptic activities between groups of neurons. Modeling the rodent hippocampal formation keeps the simulations to a computationally reasonable scale while also anchoring the parameters and results to experimental measurements. Our model generates grid cell activity that well matches the spacing, size, and firing rates of grid fields recorded in live behaving animals from both published datasets and new experiments performed for this study. Our simulations also recreate different scales of those properties, e.g., small and large, as found along the dorsoventral axis of the medial entorhinal cortex. Computational exploration of neuronal and synaptic model parameters reveals that a broad range of neural properties produce grid fields in the simulation. These results demonstrate that the continuous attractor network model of grid cells is compatible with a spiking neural network implementation sourcing data-driven biophysical and anatomical parameters from Hippocampome.org. The software is released as open source to enable broad community reuse and encourage novel applications.
Collapse
Affiliation(s)
- Nate Sutton
- Bioengineering Department, at George Mason University
| | | | - Holger Dannenberg
- Bioengineering Department, at George Mason University
- Interdisciplinary Program in Neuroscience at George Mason University
| | - Giorgio A. Ascoli
- Bioengineering Department, at George Mason University
- Interdisciplinary Program in Neuroscience at George Mason University
| |
Collapse
|
17
|
Ramaswamy S. Data-driven multiscale computational models of cortical and subcortical regions. Curr Opin Neurobiol 2024; 85:102842. [PMID: 38320453 DOI: 10.1016/j.conb.2024.102842] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 01/04/2024] [Accepted: 01/05/2024] [Indexed: 02/08/2024]
Abstract
Data-driven computational models of neurons, synapses, microcircuits, and mesocircuits have become essential tools in modern brain research. The goal of these multiscale models is to integrate and synthesize information from different levels of brain organization, from cellular properties, dendritic excitability, and synaptic dynamics to microcircuits, mesocircuits, and ultimately behavior. This article surveys recent advances in the genesis of data-driven computational models of mammalian neural networks in cortical and subcortical areas. I discuss the challenges and opportunities in developing data-driven multiscale models, including the need for interdisciplinary collaborations, the importance of model validation and comparison, and the potential impact on basic and translational neuroscience research. Finally, I highlight future directions and emerging technologies that will enable more comprehensive and predictive data-driven models of brain function and dysfunction.
Collapse
Affiliation(s)
- Srikanth Ramaswamy
- Neural Circuits Laboratory, Biosciences Institute, Newcastle University, Newcastle Upon Tyne, NE2 4HH, United Kingdom.
| |
Collapse
|
18
|
Hoffman C, Cheng J, Morales R, Ji D, Dabaghian Y. Altered patterning of neural activity in a tauopathy mouse model. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.03.23.586417. [PMID: 38585991 PMCID: PMC10996513 DOI: 10.1101/2024.03.23.586417] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/09/2024]
Abstract
Alzheimer's disease (AD) is a complex neurodegenerative condition that manifests at multiple levels and involves a spectrum of abnormalities ranging from the cellular to cognitive. Here, we investigate the impact of AD-related tau-pathology on hippocampal circuits in mice engaged in spatial navigation, and study changes of neuronal firing and dynamics of extracellular fields. While most studies are based on analyzing instantaneous or time-averaged characteristics of neuronal activity, we focus on intermediate timescales-spike trains and waveforms of oscillatory potentials, which we consider as single entities. We find that, in healthy mice, spike arrangements and wave patterns (series of crests or troughs) are coupled to the animal's location, speed, and acceleration. In contrast, in tau-mice, neural activity is structurally disarrayed: brainwave cadence is detached from locomotion, spatial selectivity is lost, the spike flow is scrambled. Importantly, these alterations start early and accumulate with age, which exposes progressive disinvolvement the hippocampus circuit in spatial navigation. These features highlight qualitatively different neurodynamics than the ones provided by conventional analyses, and are more salient, thus revealing a new level of the hippocampal circuit disruptions.
Collapse
Affiliation(s)
- C Hoffman
- Department of Neurology, The University of Texas McGovern Medical School, 6431 Fannin St, Houston, TX 77030
| | - J Cheng
- Department of Neuroscience, Baylor College of Medicine, Houston, TX 77030
| | - R Morales
- Department of Neurology, The University of Texas McGovern Medical School, 6431 Fannin St, Houston, TX 77030
| | - D Ji
- Department of Neuroscience, Baylor College of Medicine, Houston, TX 77030
| | - Y Dabaghian
- Department of Neurology, The University of Texas McGovern Medical School, 6431 Fannin St, Houston, TX 77030
| |
Collapse
|
19
|
Adaikkan C, Joseph J, Foustoukos G, Wang J, Polygalov D, Boehringer R, Middleton SJ, Huang AJY, Tsai LH, McHugh TJ. Silencing CA1 pyramidal cells output reveals the role of feedback inhibition in hippocampal oscillations. Nat Commun 2024; 15:2190. [PMID: 38467602 PMCID: PMC10928166 DOI: 10.1038/s41467-024-46478-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2023] [Accepted: 02/20/2024] [Indexed: 03/13/2024] Open
Abstract
The precise temporal coordination of neural activity is crucial for brain function. In the hippocampus, this precision is reflected in the oscillatory rhythms observed in CA1. While it is known that a balance between excitatory and inhibitory activity is necessary to generate and maintain these oscillations, the differential contribution of feedforward and feedback inhibition remains ambiguous. Here we use conditional genetics to chronically silence CA1 pyramidal cell transmission, ablating the ability of these neurons to recruit feedback inhibition in the local circuit, while recording physiological activity in mice. We find that this intervention leads to local pathophysiological events, with ripple amplitude and intrinsic frequency becoming significantly larger and spatially triggered local population spikes locked to the trough of the theta oscillation appearing during movement. These phenotypes demonstrate that feedback inhibition is crucial in maintaining local sparsity of activation and reveal the key role of lateral inhibition in CA1 in shaping circuit function.
Collapse
Affiliation(s)
| | - Justin Joseph
- Centre for Brain Research, Indian Institute of Science, Bengaluru, Karnataka, India
| | - Georgios Foustoukos
- Laboratory for Circuit and Behavioral Physiology, RIKEN Center for Brain Science, Wakoshi, Saitama, Japan
- Department of Fundamental Neurosciences, University of Lausanne, Lausanne, Switzerland
| | - Jun Wang
- Department of Brain and Cognitive Sciences, Picower Institute for Learning and Memory, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Denis Polygalov
- Laboratory for Circuit and Behavioral Physiology, RIKEN Center for Brain Science, Wakoshi, Saitama, Japan
| | - Roman Boehringer
- Laboratory for Circuit and Behavioral Physiology, RIKEN Center for Brain Science, Wakoshi, Saitama, Japan
| | - Steven J Middleton
- Laboratory for Circuit and Behavioral Physiology, RIKEN Center for Brain Science, Wakoshi, Saitama, Japan
| | - Arthur J Y Huang
- Laboratory for Circuit and Behavioral Physiology, RIKEN Center for Brain Science, Wakoshi, Saitama, Japan
| | - Li-Huei Tsai
- Department of Brain and Cognitive Sciences, Picower Institute for Learning and Memory, Massachusetts Institute of Technology, Cambridge, MA, USA
- Broad Institute of Harvard and Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Thomas J McHugh
- Laboratory for Circuit and Behavioral Physiology, RIKEN Center for Brain Science, Wakoshi, Saitama, Japan.
- Department of Life Sciences, Graduate School of Arts and Sciences, The University of Tokyo, Tokyo, Japan.
| |
Collapse
|
20
|
Upchurch CM, Knowlton CJ, Chamberland S, Canavier CC. Persistent Interruption in Parvalbumin Positive Inhibitory Interneurons: Biophysical and Mathematical Mechanisms. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.03.04.583352. [PMID: 38496528 PMCID: PMC10942299 DOI: 10.1101/2024.03.04.583352] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/19/2024]
Abstract
Persistent activity in principal cells is a putative mechanism for maintaining memory traces during working memory. We recently demonstrated persistent interruption of firing in fast-spiking parvalbumin-expressing interneurons (PV-INs), a phenomenon which could serve as a substrate for persistent activity in principal cells through disinhibition lasting hundreds of milliseconds. Here, we find that hippocampal CA1 PV-INs exhibit type 2 excitability, like striatal and neocortical PV-INs. Modelling and mathematical analysis showed that the slowly inactivating potassium current Kv1 contributes to type 2 excitability, enables the multiple firing regimes observed experimentally in PV-INs, and provides a mechanism for robust persistent interruption of firing. Using a fast/slow separation of times scales approach with the Kv1 inactivation variable as a bifurcation parameter shows that the initial inhibitory stimulus stops repetitive firing by moving the membrane potential trajectory onto a co-existing stable fixed point corresponding to a non-spiking quiescent state. As Kv1 inactivation decays, the trajectory follows the branch of stable fixed points until it crosses a subcritical Hopf bifurcation then spirals out into repetitive firing. In a model describing entorhinal cortical PV-INs without Kv1, interruption of firing could be achieved by taking advantage of the bistability inherent in type 2 excitability based on a subcritical Hopf bifurcation, but the interruption was not robust to noise. Persistent interruption of firing is therefore broadly applicable to PV-INs in different brain regions but is only made robust to noise in the presence of a slow variable.
Collapse
Affiliation(s)
- Carol M Upchurch
- Department of Cell Biology and Anatomy, Louisiana State University Health Sciences Center, New Orleans, LA 70112
| | - Christopher J Knowlton
- Department of Cell Biology and Anatomy, Louisiana State University Health Sciences Center, New Orleans, LA 70112
| | - Simon Chamberland
- NYU Neuroscience Institute and Department of Neuroscience and Physiology, NYU Langone Medical Center, New York, NY 10016, USA
| | - Carmen C Canavier
- Department of Cell Biology and Anatomy, Louisiana State University Health Sciences Center, New Orleans, LA 70112
| |
Collapse
|
21
|
Vardalakis N, Aussel A, Rougier NP, Wagner FB. A dynamical computational model of theta generation in hippocampal circuits to study theta-gamma oscillations during neurostimulation. eLife 2024; 12:RP87356. [PMID: 38354040 PMCID: PMC10942594 DOI: 10.7554/elife.87356] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/16/2024] Open
Abstract
Neurostimulation of the hippocampal formation has shown promising results for modulating memory but the underlying mechanisms remain unclear. In particular, the effects on hippocampal theta-nested gamma oscillations and theta phase reset, which are both crucial for memory processes, are unknown. Moreover, these effects cannot be investigated using current computational models, which consider theta oscillations with a fixed amplitude and phase velocity. Here, we developed a novel computational model that includes the medial septum, represented as a set of abstract Kuramoto oscillators producing a dynamical theta rhythm with phase reset, and the hippocampal formation, composed of biophysically realistic neurons and able to generate theta-nested gamma oscillations under theta drive. We showed that, for theta inputs just below the threshold to induce self-sustained theta-nested gamma oscillations, a single stimulation pulse could switch the network behavior from non-oscillatory to a state producing sustained oscillations. Next, we demonstrated that, for a weaker theta input, pulse train stimulation at the theta frequency could transiently restore seemingly physiological oscillations. Importantly, the presence of phase reset influenced whether these two effects depended on the phase at which stimulation onset was delivered, which has practical implications for designing neurostimulation protocols that are triggered by the phase of ongoing theta oscillations. This novel model opens new avenues for studying the effects of neurostimulation on the hippocampal formation. Furthermore, our hybrid approach that combines different levels of abstraction could be extended in future work to other neural circuits that produce dynamical brain rhythms.
Collapse
Affiliation(s)
- Nikolaos Vardalakis
- University of Bordeaux, CNRS, IMNBordeauxFrance
- University of Bordeaux, INRIA, IMNBordeauxFrance
| | - Amélie Aussel
- University of Bordeaux, CNRS, IMNBordeauxFrance
- University of Bordeaux, INRIA, IMNBordeauxFrance
- University of Bordeaux, CNRS, Bordeaux INPTalenceFrance
| | - Nicolas P Rougier
- University of Bordeaux, CNRS, IMNBordeauxFrance
- University of Bordeaux, INRIA, IMNBordeauxFrance
- University of Bordeaux, CNRS, Bordeaux INPTalenceFrance
| | | |
Collapse
|
22
|
Wheeler DW, Kopsick JD, Sutton N, Tecuatl C, Komendantov AO, Nadella K, Ascoli GA. Hippocampome.org 2.0 is a knowledge base enabling data-driven spiking neural network simulations of rodent hippocampal circuits. eLife 2024; 12:RP90597. [PMID: 38345923 PMCID: PMC10942544 DOI: 10.7554/elife.90597] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/15/2024] Open
Abstract
Hippocampome.org is a mature open-access knowledge base of the rodent hippocampal formation focusing on neuron types and their properties. Previously, Hippocampome.org v1.0 established a foundational classification system identifying 122 hippocampal neuron types based on their axonal and dendritic morphologies, main neurotransmitter, membrane biophysics, and molecular expression (Wheeler et al., 2015). Releases v1.1 through v1.12 furthered the aggregation of literature-mined data, including among others neuron counts, spiking patterns, synaptic physiology, in vivo firing phases, and connection probabilities. Those additional properties increased the online information content of this public resource over 100-fold, enabling numerous independent discoveries by the scientific community. Hippocampome.org v2.0, introduced here, besides incorporating over 50 new neuron types, now recenters its focus on extending the functionality to build real-scale, biologically detailed, data-driven computational simulations. In all cases, the freely downloadable model parameters are directly linked to the specific peer-reviewed empirical evidence from which they were derived. Possible research applications include quantitative, multiscale analyses of circuit connectivity and spiking neural network simulations of activity dynamics. These advances can help generate precise, experimentally testable hypotheses and shed light on the neural mechanisms underlying associative memory and spatial navigation.
Collapse
Affiliation(s)
- Diek W Wheeler
- Center for Neural Informatics, Structures, & Plasticity, Krasnow Institute for Advanced Study, George Mason UniversityFairfaxUnited States
- Bioengineering Department and Center for Neural Informatics, Structures, & Plasticity, College of Engineering and Computing, George Mason UniversityFairfaxUnited States
| | - Jeffrey D Kopsick
- Center for Neural Informatics, Structures, & Plasticity, Krasnow Institute for Advanced Study, George Mason UniversityFairfaxUnited States
- Interdisciplinary Program in Neuroscience, College of Science, George Mason UniversityFairfaxUnited States
| | - Nate Sutton
- Center for Neural Informatics, Structures, & Plasticity, Krasnow Institute for Advanced Study, George Mason UniversityFairfaxUnited States
- Bioengineering Department and Center for Neural Informatics, Structures, & Plasticity, College of Engineering and Computing, George Mason UniversityFairfaxUnited States
| | - Carolina Tecuatl
- Center for Neural Informatics, Structures, & Plasticity, Krasnow Institute for Advanced Study, George Mason UniversityFairfaxUnited States
- Bioengineering Department and Center for Neural Informatics, Structures, & Plasticity, College of Engineering and Computing, George Mason UniversityFairfaxUnited States
| | - Alexander O Komendantov
- Center for Neural Informatics, Structures, & Plasticity, Krasnow Institute for Advanced Study, George Mason UniversityFairfaxUnited States
- Bioengineering Department and Center for Neural Informatics, Structures, & Plasticity, College of Engineering and Computing, George Mason UniversityFairfaxUnited States
| | - Kasturi Nadella
- Center for Neural Informatics, Structures, & Plasticity, Krasnow Institute for Advanced Study, George Mason UniversityFairfaxUnited States
- Bioengineering Department and Center for Neural Informatics, Structures, & Plasticity, College of Engineering and Computing, George Mason UniversityFairfaxUnited States
| | - Giorgio A Ascoli
- Center for Neural Informatics, Structures, & Plasticity, Krasnow Institute for Advanced Study, George Mason UniversityFairfaxUnited States
- Bioengineering Department and Center for Neural Informatics, Structures, & Plasticity, College of Engineering and Computing, George Mason UniversityFairfaxUnited States
- Interdisciplinary Program in Neuroscience, College of Science, George Mason UniversityFairfaxUnited States
| |
Collapse
|
23
|
Wheeler DW, Kopsick JD, Sutton N, Tecuatl C, Komendantov AO, Nadella K, Ascoli GA. Hippocampome.org v2.0: a knowledge base enabling data-driven spiking neural network simulations of rodent hippocampal circuits. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.05.12.540597. [PMID: 37425693 PMCID: PMC10327012 DOI: 10.1101/2023.05.12.540597] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/11/2023]
Abstract
Hippocampome.org is a mature open-access knowledge base of the rodent hippocampal formation focusing on neuron types and their properties. Hippocampome.org v1.0 established a foundational classification system identifying 122 hippocampal neuron types based on their axonal and dendritic morphologies, main neurotransmitter, membrane biophysics, and molecular expression. Releases v1.1 through v1.12 furthered the aggregation of literature-mined data, including among others neuron counts, spiking patterns, synaptic physiology, in vivo firing phases, and connection probabilities. Those additional properties increased the online information content of this public resource over 100-fold, enabling numerous independent discoveries by the scientific community. Hippocampome.org v2.0, introduced here, besides incorporating over 50 new neuron types, now recenters its focus on extending the functionality to build real-scale, biologically detailed, data-driven computational simulations. In all cases, the freely downloadable model parameters are directly linked to the specific peer-reviewed empirical evidence from which they were derived. Possible research applications include quantitative, multiscale analyses of circuit connectivity and spiking neural network simulations of activity dynamics. These advances can help generate precise, experimentally testable hypotheses and shed light on the neural mechanisms underlying associative memory and spatial navigation.
Collapse
Affiliation(s)
- Diek W. Wheeler
- Center for Neural Informatics, Structures, & Plasticity; Krasnow Institute for Advanced Study; George Mason University, Fairfax, VA, USA
- Bioengineering Department and Center for Neural Informatics, Structures, & Plasticity; College of Engineering and Computing; George Mason University, Fairfax, VA, USA
| | - Jeffrey D. Kopsick
- Center for Neural Informatics, Structures, & Plasticity; Krasnow Institute for Advanced Study; George Mason University, Fairfax, VA, USA
- Interdisciplinary Program in Neuroscience; College of Science; George Mason University, Fairfax, VA, USA
| | - Nate Sutton
- Center for Neural Informatics, Structures, & Plasticity; Krasnow Institute for Advanced Study; George Mason University, Fairfax, VA, USA
- Bioengineering Department and Center for Neural Informatics, Structures, & Plasticity; College of Engineering and Computing; George Mason University, Fairfax, VA, USA
| | - Carolina Tecuatl
- Center for Neural Informatics, Structures, & Plasticity; Krasnow Institute for Advanced Study; George Mason University, Fairfax, VA, USA
- Bioengineering Department and Center for Neural Informatics, Structures, & Plasticity; College of Engineering and Computing; George Mason University, Fairfax, VA, USA
| | - Alexander O. Komendantov
- Center for Neural Informatics, Structures, & Plasticity; Krasnow Institute for Advanced Study; George Mason University, Fairfax, VA, USA
- Bioengineering Department and Center for Neural Informatics, Structures, & Plasticity; College of Engineering and Computing; George Mason University, Fairfax, VA, USA
| | - Kasturi Nadella
- Center for Neural Informatics, Structures, & Plasticity; Krasnow Institute for Advanced Study; George Mason University, Fairfax, VA, USA
- Bioengineering Department and Center for Neural Informatics, Structures, & Plasticity; College of Engineering and Computing; George Mason University, Fairfax, VA, USA
| | - Giorgio A. Ascoli
- Center for Neural Informatics, Structures, & Plasticity; Krasnow Institute for Advanced Study; George Mason University, Fairfax, VA, USA
- Interdisciplinary Program in Neuroscience; College of Science; George Mason University, Fairfax, VA, USA
- Bioengineering Department and Center for Neural Informatics, Structures, & Plasticity; College of Engineering and Computing; George Mason University, Fairfax, VA, USA
| |
Collapse
|
24
|
Dainauskas JJ, Vitale P, Moreno S, Marie H, Migliore M, Saudargiene A. Altered synaptic plasticity at hippocampal CA1-CA3 synapses in Alzheimer's disease: integration of amyloid precursor protein intracellular domain and amyloid beta effects into computational models. Front Comput Neurosci 2023; 17:1305169. [PMID: 38130706 PMCID: PMC10733499 DOI: 10.3389/fncom.2023.1305169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2023] [Accepted: 11/07/2023] [Indexed: 12/23/2023] Open
Abstract
Alzheimer's disease (AD) is a progressive memory loss and cognitive dysfunction brain disorder brought on by the dysfunctional amyloid precursor protein (APP) processing and clearance of APP peptides. Increased APP levels lead to the production of AD-related peptides including the amyloid APP intracellular domain (AICD) and amyloid beta (Aβ), and consequently modify the intrinsic excitability of the hippocampal CA1 pyramidal neurons, synaptic protein activity, and impair synaptic plasticity at hippocampal CA1-CA3 synapses. The goal of the present study is to build computational models that incorporate the effect of AD-related peptides on CA1 pyramidal neuron and hippocampal synaptic plasticity under the AD conditions and investigate the potential pharmacological treatments that could normalize hippocampal synaptic plasticity and learning in AD. We employ a phenomenological N-methyl-D-aspartate (NMDA) receptor-based voltage-dependent synaptic plasticity model that includes the separate receptor contributions on long-term potentiation (LTP) and long-term depression (LTD) and embed it into the a detailed compartmental model of CA1 pyramidal neuron. Modeling results show that partial blockade of Glu2NB-NMDAR-gated channel restores intrinsic excitability of a CA1 pyramidal neuron and rescues LTP in AICD and Aβ conditions. The model provides insight into the complex interactions in AD pathophysiology and suggests the conditions under which the synchronous activation of a cluster of synaptic inputs targeting the dendritic tree of CA1 pyramidal neuron leads to restored synaptic plasticity.
Collapse
Affiliation(s)
- Justinas J. Dainauskas
- Neuroscience Institute, Lithuanian University of Health Sciences, Kaunas, Lithuania
- Department of Informatics, Vytautas Magnus University, Kaunas, Lithuania
| | - Paola Vitale
- Institute of Biophysics, National Research Council, Palermo, Italy
| | - Sebastien Moreno
- Université Côte d'Azur, Centre National de la Recherche Scientifique (CNRS), Institut de Pharmacologie Moléculaire et Cellulaire (IPMC), Valbonne, France
| | - Hélène Marie
- Université Côte d'Azur, Centre National de la Recherche Scientifique (CNRS), Institut de Pharmacologie Moléculaire et Cellulaire (IPMC), Valbonne, France
| | - Michele Migliore
- Institute of Biophysics, National Research Council, Palermo, Italy
| | - Ausra Saudargiene
- Neuroscience Institute, Lithuanian University of Health Sciences, Kaunas, Lithuania
- Department of Informatics, Vytautas Magnus University, Kaunas, Lithuania
| |
Collapse
|
25
|
Wei X, Campagna JJ, Jagodzinska B, Wi D, Cohn W, Lee J, Zhu C, Huang CS, Molnár L, Houser CR, John V, Mody I. A therapeutic small molecule lead enhances γ-oscillations and improves cognition/memory in Alzheimer's disease model mice. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.12.04.569994. [PMID: 38106006 PMCID: PMC10723366 DOI: 10.1101/2023.12.04.569994] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2023]
Abstract
Brain rhythms provide the timing and concurrence of brain activity required for linking together neuronal ensembles engaged in specific tasks. In particular, the γ-oscillations (30-120 Hz) orchestrate neuronal circuits underlying cognitive processes and working memory. These oscillations are reduced in numerous neurological and psychiatric disorders, including early cognitive decline in Alzheimer's disease (AD). Here we report on a potent brain permeable small molecule, DDL-920 that increases γ-oscillations and improves cognition/memory in a mouse model of AD, thus showing promise as a new class of therapeutics for AD. As a first in CNS pharmacotherapy, our lead candidate acts as a potent, efficacious, and selective negative allosteric modulator (NAM) of the γ-aminobutyric acid type A receptors (GABA A Rs) assembled from α1β2δ subunits. We identified these receptors through anatomical and pharmacological means to mediate the tonic inhibition of parvalbumin (PV) expressing interneurons (PV+INs) critically involved in the generation of γ-oscillations. Our approach is unique as it is meant to enhance cognitive performance and working memory in a state-dependent manner by engaging and amplifying the brain's endogenous γ-oscillations through enhancing the function of PV+INs.
Collapse
|
26
|
Dura-Bernal S, Griffith EY, Barczak A, O'Connell MN, McGinnis T, Moreira JVS, Schroeder CE, Lytton WW, Lakatos P, Neymotin SA. Data-driven multiscale model of macaque auditory thalamocortical circuits reproduces in vivo dynamics. Cell Rep 2023; 42:113378. [PMID: 37925640 PMCID: PMC10727489 DOI: 10.1016/j.celrep.2023.113378] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Revised: 09/05/2023] [Accepted: 10/19/2023] [Indexed: 11/07/2023] Open
Abstract
We developed a detailed model of macaque auditory thalamocortical circuits, including primary auditory cortex (A1), medial geniculate body (MGB), and thalamic reticular nucleus, utilizing the NEURON simulator and NetPyNE tool. The A1 model simulates a cortical column with over 12,000 neurons and 25 million synapses, incorporating data on cell-type-specific neuron densities, morphology, and connectivity across six cortical layers. It is reciprocally connected to the MGB thalamus, which includes interneurons and core and matrix-layer-specific projections to A1. The model simulates multiscale measures, including physiological firing rates, local field potentials (LFPs), current source densities (CSDs), and electroencephalography (EEG) signals. Laminar CSD patterns, during spontaneous activity and in response to broadband noise stimulus trains, mirror experimental findings. Physiological oscillations emerge spontaneously across frequency bands comparable to those recorded in vivo. We elucidate population-specific contributions to observed oscillation events and relate them to firing and presynaptic input patterns. The model offers a quantitative theoretical framework to integrate and interpret experimental data and predict its underlying cellular and circuit mechanisms.
Collapse
Affiliation(s)
- Salvador Dura-Bernal
- Department of Physiology and Pharmacology, State University of New York (SUNY) Downstate Health Sciences University, Brooklyn, NY, USA; Center for Biomedical Imaging and Neuromodulation, Nathan S. Kline Institute for Psychiatric Research, Orangeburg, NY, USA.
| | - Erica Y Griffith
- Department of Physiology and Pharmacology, State University of New York (SUNY) Downstate Health Sciences University, Brooklyn, NY, USA; Center for Biomedical Imaging and Neuromodulation, Nathan S. Kline Institute for Psychiatric Research, Orangeburg, NY, USA.
| | - Annamaria Barczak
- Center for Biomedical Imaging and Neuromodulation, Nathan S. Kline Institute for Psychiatric Research, Orangeburg, NY, USA
| | - Monica N O'Connell
- Center for Biomedical Imaging and Neuromodulation, Nathan S. Kline Institute for Psychiatric Research, Orangeburg, NY, USA
| | - Tammy McGinnis
- Center for Biomedical Imaging and Neuromodulation, Nathan S. Kline Institute for Psychiatric Research, Orangeburg, NY, USA
| | - Joao V S Moreira
- Department of Physiology and Pharmacology, State University of New York (SUNY) Downstate Health Sciences University, Brooklyn, NY, USA
| | - Charles E Schroeder
- Center for Biomedical Imaging and Neuromodulation, Nathan S. Kline Institute for Psychiatric Research, Orangeburg, NY, USA; Departments of Psychiatry and Neurology, Columbia University Medical Center, New York, NY, USA
| | - William W Lytton
- Department of Physiology and Pharmacology, State University of New York (SUNY) Downstate Health Sciences University, Brooklyn, NY, USA; Kings County Hospital Center, Brooklyn, NY, USA
| | - Peter Lakatos
- Center for Biomedical Imaging and Neuromodulation, Nathan S. Kline Institute for Psychiatric Research, Orangeburg, NY, USA; Department Psychiatry, NYU Grossman School of Medicine, New York, NY, USA
| | - Samuel A Neymotin
- Center for Biomedical Imaging and Neuromodulation, Nathan S. Kline Institute for Psychiatric Research, Orangeburg, NY, USA; Department Psychiatry, NYU Grossman School of Medicine, New York, NY, USA.
| |
Collapse
|
27
|
Ulyanova AV, Adam CD, Cottone C, Maheshwari N, Grovola MR, Fruchet OE, Alamar J, Koch PF, Johnson VE, Cullen DK, Wolf JA. Hippocampal interneuronal dysfunction and hyperexcitability in a porcine model of concussion. Commun Biol 2023; 6:1136. [PMID: 37945934 PMCID: PMC10636018 DOI: 10.1038/s42003-023-05491-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Accepted: 10/19/2023] [Indexed: 11/12/2023] Open
Abstract
Cognitive impairment is a common symptom following mild traumatic brain injury (mTBI or concussion) and can persist for years in some individuals. Hippocampal slice preparations following closed-head, rotational acceleration injury in swine have previously demonstrated reduced axonal function and hippocampal circuitry disruption. However, electrophysiological changes in hippocampal neurons and their subtypes in a large animal mTBI model have not been examined. Using in vivo electrophysiology techniques, we examined laminar oscillatory field potentials and single unit activity in the hippocampal network 7 days post-injury in anesthetized minipigs. Concussion altered the electrophysiological properties of pyramidal cells and interneurons differently in area CA1. While the firing rate, spike width and amplitude of CA1 interneurons were significantly decreased post-mTBI, these parameters were unchanged in CA1 pyramidal neurons. In addition, CA1 pyramidal neurons in TBI animals were less entrained to hippocampal gamma (40-80 Hz) oscillations. Stimulation of the Schaffer collaterals also revealed hyperexcitability across the CA1 lamina post-mTBI. Computational simulations suggest that reported changes in interneuronal physiology may be due to alterations in voltage-gated sodium channels. These data demonstrate that a single concussion can lead to significant neuronal and circuit level changes in the hippocampus, which may contribute to cognitive dysfunction following mTBI.
Collapse
Affiliation(s)
- Alexandra V Ulyanova
- Center for Brain Injury and Repair, Department of Neurosurgery, University of Pennsylvania, Philadelphia, USA
- Center for Neurotrauma, Neurodegeneration, and Restoration, Corporal Michael J. Crescenz Veterans Affairs Medical Center, Philadelphia, USA
| | - Christopher D Adam
- Center for Brain Injury and Repair, Department of Neurosurgery, University of Pennsylvania, Philadelphia, USA
| | - Carlo Cottone
- Center for Brain Injury and Repair, Department of Neurosurgery, University of Pennsylvania, Philadelphia, USA
| | - Nikhil Maheshwari
- Center for Brain Injury and Repair, Department of Neurosurgery, University of Pennsylvania, Philadelphia, USA
| | - Michael R Grovola
- Center for Brain Injury and Repair, Department of Neurosurgery, University of Pennsylvania, Philadelphia, USA
| | - Oceane E Fruchet
- Center for Brain Injury and Repair, Department of Neurosurgery, University of Pennsylvania, Philadelphia, USA
| | - Jami Alamar
- Center for Brain Injury and Repair, Department of Neurosurgery, University of Pennsylvania, Philadelphia, USA
| | - Paul F Koch
- Center for Brain Injury and Repair, Department of Neurosurgery, University of Pennsylvania, Philadelphia, USA
| | - Victoria E Johnson
- Center for Brain Injury and Repair, Department of Neurosurgery, University of Pennsylvania, Philadelphia, USA
| | - D Kacy Cullen
- Center for Brain Injury and Repair, Department of Neurosurgery, University of Pennsylvania, Philadelphia, USA
- Center for Neurotrauma, Neurodegeneration, and Restoration, Corporal Michael J. Crescenz Veterans Affairs Medical Center, Philadelphia, USA
| | - John A Wolf
- Center for Brain Injury and Repair, Department of Neurosurgery, University of Pennsylvania, Philadelphia, USA.
- Center for Neurotrauma, Neurodegeneration, and Restoration, Corporal Michael J. Crescenz Veterans Affairs Medical Center, Philadelphia, USA.
| |
Collapse
|
28
|
Hernández-Frausto M, Bilash OM, Masurkar AV, Basu J. Local and long-range GABAergic circuits in hippocampal area CA1 and their link to Alzheimer's disease. Front Neural Circuits 2023; 17:1223891. [PMID: 37841892 PMCID: PMC10570439 DOI: 10.3389/fncir.2023.1223891] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Accepted: 09/08/2023] [Indexed: 10/17/2023] Open
Abstract
GABAergic inhibitory neurons are the principal source of inhibition in the brain. Traditionally, their role in maintaining the balance of excitation-inhibition has been emphasized. Beyond homeostatic functions, recent circuit mapping and functional manipulation studies have revealed a wide range of specific roles that GABAergic circuits play in dynamically tilting excitation-inhibition coupling across spatio-temporal scales. These span from gating of compartment- and input-specific signaling, gain modulation, shaping input-output functions and synaptic plasticity, to generating signal-to-noise contrast, defining temporal windows for integration and rate codes, as well as organizing neural assemblies, and coordinating inter-regional synchrony. GABAergic circuits are thus instrumental in controlling single-neuron computations and behaviorally-linked network activity. The activity dependent modulation of sensory and mnemonic information processing by GABAergic circuits is pivotal for the formation and maintenance of episodic memories in the hippocampus. Here, we present an overview of the local and long-range GABAergic circuits that modulate the dynamics of excitation-inhibition and disinhibition in the main output area of the hippocampus CA1, which is crucial for episodic memory. Specifically, we link recent findings pertaining to GABAergic neuron molecular markers, electrophysiological properties, and synaptic wiring with their function at the circuit level. Lastly, given that area CA1 is particularly impaired during early stages of Alzheimer's disease, we emphasize how these GABAergic circuits may contribute to and be involved in the pathophysiology.
Collapse
Affiliation(s)
- Melissa Hernández-Frausto
- Neuroscience Institute, New York University Langone Health, New York, NY, United States
- Department of Neuroscience and Physiology, New York University Grossman School of Medicine, New York, NY, United States
| | - Olesia M. Bilash
- Neuroscience Institute, New York University Langone Health, New York, NY, United States
- Meinig School of Biomedical Engineering, Cornell University, Ithaca, NY, United States
| | - Arjun V. Masurkar
- Neuroscience Institute, New York University Langone Health, New York, NY, United States
- Department of Neuroscience and Physiology, New York University Grossman School of Medicine, New York, NY, United States
- Center for Cognitive Neurology, Department of Neurology, New York University Grossman School of Medicine, New York, NY, United States
| | - Jayeeta Basu
- Neuroscience Institute, New York University Langone Health, New York, NY, United States
- Department of Neuroscience and Physiology, New York University Grossman School of Medicine, New York, NY, United States
- Department of Psychiatry, New York University Grossman School of Medicine, New York, NY, United States
- Center for Neural Science, New York University, New York, NY, United States
| |
Collapse
|
29
|
Milstein AD, Tran S, Ng G, Soltesz I. Offline memory replay in recurrent neuronal networks emerges from constraints on online dynamics. J Physiol 2023; 601:3241-3264. [PMID: 35907087 PMCID: PMC9885000 DOI: 10.1113/jp283216] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Accepted: 07/22/2022] [Indexed: 02/01/2023] Open
Abstract
During spatial exploration, neural circuits in the hippocampus store memories of sequences of sensory events encountered in the environment. When sensory information is absent during 'offline' resting periods, brief neuronal population bursts can 'replay' sequences of activity that resemble bouts of sensory experience. These sequences can occur in either forward or reverse order, and can even include spatial trajectories that have not been experienced, but are consistent with the topology of the environment. The neural circuit mechanisms underlying this variable and flexible sequence generation are unknown. Here we demonstrate in a recurrent spiking network model of hippocampal area CA3 that experimental constraints on network dynamics such as population sparsity, stimulus selectivity, rhythmicity and spike rate adaptation, as well as associative synaptic connectivity, enable additional emergent properties, including variable offline memory replay. In an online stimulus-driven state, we observed the emergence of neuronal sequences that swept from representations of past to future stimuli on the timescale of the theta rhythm. In an offline state driven only by noise, the network generated both forward and reverse neuronal sequences, and recapitulated the experimental observation that offline memory replay events tend to include salient locations like the site of a reward. These results demonstrate that biological constraints on the dynamics of recurrent neural circuits are sufficient to enable memories of sensory events stored in the strengths of synaptic connections to be flexibly read out during rest and sleep, which is thought to be important for memory consolidation and planning of future behaviour. KEY POINTS: A recurrent spiking network model of hippocampal area CA3 was optimized to recapitulate experimentally observed network dynamics during simulated spatial exploration. During simulated offline rest, the network exhibited the emergent property of generating flexible forward, reverse and mixed direction memory replay events. Network perturbations and analysis of model diversity and degeneracy identified associative synaptic connectivity and key features of network dynamics as important for offline sequence generation. Network simulations demonstrate that population over-representation of salient positions like the site of reward results in biased memory replay.
Collapse
Affiliation(s)
- Aaron D. Milstein
- Department of Neurosurgery, Stanford University School of Medicine, Stanford CA
- Department of Neuroscience and Cell Biology, Robert Wood Johnson Medical School and Center for Advanced Biotechnology and Medicine, Rutgers University, Piscataway, NJ
| | - Sarah Tran
- Department of Neurosurgery, Stanford University School of Medicine, Stanford CA
| | - Grace Ng
- Department of Neurosurgery, Stanford University School of Medicine, Stanford CA
| | - Ivan Soltesz
- Department of Neurosurgery, Stanford University School of Medicine, Stanford CA
| |
Collapse
|
30
|
Osanai H, Nair IR, Kitamura T. Dissecting cell-type-specific pathways in medial entorhinal cortical-hippocampal network for episodic memory. J Neurochem 2023; 166:172-188. [PMID: 37248771 PMCID: PMC10538947 DOI: 10.1111/jnc.15850] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 05/07/2023] [Accepted: 05/10/2023] [Indexed: 05/31/2023]
Abstract
Episodic memory, which refers to our ability to encode and recall past events, is essential to our daily lives. Previous research has established that both the entorhinal cortex (EC) and hippocampus (HPC) play a crucial role in the formation and retrieval of episodic memories. However, to understand neural circuit mechanisms behind these processes, it has become necessary to monitor and manipulate the neural activity in a cell-type-specific manner with high temporal precision during memory formation, consolidation, and retrieval in the EC-HPC networks. Recent studies using cell-type-specific labeling, monitoring, and manipulation have demonstrated that medial EC (MEC) contains multiple excitatory neurons that have differential molecular markers, physiological properties, and anatomical features. In this review, we will comprehensively examine the complementary roles of superficial layers of neurons (II and III) and the roles of deeper layers (V and VI) in episodic memory formation and recall based on these recent findings.
Collapse
Affiliation(s)
- Hisayuki Osanai
- Department of Psychiatry, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Indrajith R Nair
- Department of Psychiatry, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Takashi Kitamura
- Department of Psychiatry, University of Texas Southwestern Medical Center, Dallas, Texas, USA
- Department of Neuroscience, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| |
Collapse
|
31
|
Kopsick JD, Tecuatl C, Moradi K, Attili SM, Kashyap HJ, Xing J, Chen K, Krichmar JL, Ascoli GA. Robust Resting-State Dynamics in a Large-Scale Spiking Neural Network Model of Area CA3 in the Mouse Hippocampus. Cognit Comput 2023; 15:1190-1210. [PMID: 37663748 PMCID: PMC10473858 DOI: 10.1007/s12559-021-09954-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2021] [Accepted: 10/10/2021] [Indexed: 12/19/2022]
Abstract
Hippocampal area CA3 performs the critical auto-associative function underlying pattern completion in episodic memory. Without external inputs, the electrical activity of this neural circuit reflects the spontaneous spiking interplay among glutamatergic pyramidal neurons and GABAergic interneurons. However, the network mechanisms underlying these resting-state firing patterns are poorly understood. Leveraging the Hippocampome.org knowledge base, we developed a data-driven, large-scale spiking neural network (SNN) model of mouse CA3 with 8 neuron types, 90,000 neurons, 51 neuron-type specific connections, and 250,000,000 synapses. We instantiated the SNN in the CARLsim4 multi-GPU simulation environment using the Izhikevich and Tsodyks-Markram formalisms for neuronal and synaptic dynamics, respectively. We analyzed the resultant population activity upon transient activation. The SNN settled into stable oscillations with a biologically plausible grand-average firing frequency, which was robust relative to a wide range of transient activation. The diverse firing patterns of individual neuron types were consistent with existing knowledge of cell type-specific activity in vivo. Altered network structures that lacked neuron- or connection-type specificity were neither stable nor robust, highlighting the importance of neuron type circuitry. Additionally, external inputs reflecting dentate mossy fibers shifted the observed rhythms to the gamma band. We freely released the CARLsim4-Hippocampome framework on GitHub to test hippocampal hypotheses. Our SNN may be useful to investigate the circuit mechanisms underlying the computational functions of CA3. Moreover, our approach can be scaled to the whole hippocampal formation, which may contribute to elucidating how the unique neuronal architecture of this system subserves its crucial cognitive roles.
Collapse
Affiliation(s)
- Jeffrey D. Kopsick
- Interdepartmental Program in Neuroscience, George Mason University, Fairfax, VA, USA
| | - Carolina Tecuatl
- Bioengineering Department, Volgenau School of Engineering, George Mason University, Fairfax, VA, USA
| | - Keivan Moradi
- Interdepartmental Program in Neuroscience, George Mason University, Fairfax, VA, USA
| | - Sarojini M. Attili
- Interdepartmental Program in Neuroscience, George Mason University, Fairfax, VA, USA
| | - Hirak J. Kashyap
- Department of Computer Science, University of California, Irvine, Irvine, CA, USA
| | - Jinwei Xing
- Department of Cognitive Sciences, University of California, Irvine, Irvine, CA, USA
| | - Kexin Chen
- Department of Cognitive Sciences, University of California, Irvine, Irvine, CA, USA
| | - Jeffrey L. Krichmar
- Department of Cognitive Sciences, University of California, Irvine, Irvine, CA, USA
- Department of Computer Science, University of California, Irvine, Irvine, CA, USA
| | - Giorgio A. Ascoli
- Interdepartmental Program in Neuroscience, George Mason University, Fairfax, VA, USA
- Bioengineering Department, Volgenau School of Engineering, George Mason University, Fairfax, VA, USA
| |
Collapse
|
32
|
Ren X, Bok I, Vareberg A, Hai A. Stimulation-mediated reverse engineering of silent neural networks. J Neurophysiol 2023; 129:1505-1514. [PMID: 37222450 PMCID: PMC10311990 DOI: 10.1152/jn.00100.2023] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Revised: 05/16/2023] [Accepted: 05/23/2023] [Indexed: 05/25/2023] Open
Abstract
Reconstructing connectivity of neuronal networks from single-cell activity is essential to understanding brain function, but the challenge of deciphering connections from populations of silent neurons has been largely unmet. We demonstrate a protocol for deriving connectivity of simulated silent neuronal networks using stimulation combined with a supervised learning algorithm, which enables inferring connection weights with high fidelity and predicting spike trains at the single-spike and single-cell levels with high accuracy. We apply our method on rat cortical recordings fed through a circuit of heterogeneously connected leaky integrate-and-fire neurons firing at typical lognormal distributions and demonstrate improved performance during stimulation for multiple subpopulations. These testable predictions about the number and protocol of the required stimulations are expected to enhance future efforts for deriving neuronal connectivity and drive new experiments to better understand brain function.NEW & NOTEWORTHY We introduce a new concept for reverse engineering silent neuronal networks using a supervised learning algorithm combined with stimulation. We quantify the performance of the algorithm and the precision of deriving synaptic weights in inhibitory and excitatory subpopulations. We then show that stimulation enables deciphering connectivity of heterogeneous circuits fed with real electrode array recordings, which could extend in the future to deciphering connectivity in broad biological and artificial neural networks.
Collapse
Affiliation(s)
- Xiaoxuan Ren
- Department of Biomedical Engineering, University of Wisconsin-Madison, Madison, Wisconsin, United States
- Department of Electrical and Computer Engineering, University of Wisconsin-Madison, Madison, Wisconsin, United States
| | - Ilhan Bok
- Department of Electrical and Computer Engineering, University of Wisconsin-Madison, Madison, Wisconsin, United States
| | - Adam Vareberg
- Department of Biomedical Engineering, University of Wisconsin-Madison, Madison, Wisconsin, United States
| | - Aviad Hai
- Department of Biomedical Engineering, University of Wisconsin-Madison, Madison, Wisconsin, United States
- Department of Electrical and Computer Engineering, University of Wisconsin-Madison, Madison, Wisconsin, United States
- Wisconsin Institute for Translational Neuroengineering (WITNe), Madison, Wisconsin, United States
| |
Collapse
|
33
|
Stöber TM, Batulin D, Triesch J, Narayanan R, Jedlicka P. Degeneracy in epilepsy: multiple routes to hyperexcitable brain circuits and their repair. Commun Biol 2023; 6:479. [PMID: 37137938 PMCID: PMC10156698 DOI: 10.1038/s42003-023-04823-0] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Accepted: 04/06/2023] [Indexed: 05/05/2023] Open
Abstract
Due to its complex and multifaceted nature, developing effective treatments for epilepsy is still a major challenge. To deal with this complexity we introduce the concept of degeneracy to the field of epilepsy research: the ability of disparate elements to cause an analogous function or malfunction. Here, we review examples of epilepsy-related degeneracy at multiple levels of brain organisation, ranging from the cellular to the network and systems level. Based on these insights, we outline new multiscale and population modelling approaches to disentangle the complex web of interactions underlying epilepsy and to design personalised multitarget therapies.
Collapse
Affiliation(s)
- Tristan Manfred Stöber
- Frankfurt Institute for Advanced Studies, 60438, Frankfurt am Main, Germany
- Institute for Neural Computation, Faculty of Computer Science, Ruhr University Bochum, 44801, Bochum, Germany
- Epilepsy Center Frankfurt Rhine-Main, Department of Neurology, Goethe University, 60590, Frankfurt, Germany
| | - Danylo Batulin
- Frankfurt Institute for Advanced Studies, 60438, Frankfurt am Main, Germany
- CePTER - Center for Personalized Translational Epilepsy Research, Goethe University, 60590, Frankfurt, Germany
- Faculty of Computer Science and Mathematics, Goethe University, 60486, Frankfurt, Germany
| | - Jochen Triesch
- Frankfurt Institute for Advanced Studies, 60438, Frankfurt am Main, Germany
| | - Rishikesh Narayanan
- Cellular Neurophysiology Laboratory, Molecular Biophysics Unit, Indian Institute of Science, Bangalore, 560012, India
| | - Peter Jedlicka
- ICAR3R - Interdisciplinary Centre for 3Rs in Animal Research, Faculty of Medicine, Justus Liebig University Giessen, 35390, Giessen, Germany.
- Institute of Clinical Neuroanatomy, Neuroscience Center, Goethe University, 60590, Frankfurt am Main, Germany.
| |
Collapse
|
34
|
Latimer B, Dopp D, Perumal MB, Sah P, Nair SS. A Novel Biophysical Model for the Generation of Sharp Wave Ripples in CA1 Hippocampus. IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS. II, EXPRESS BRIEFS : A PUBLICATION OF THE IEEE CIRCUITS AND SYSTEMS SOCIETY 2023; 70:1784-1788. [PMID: 38045871 PMCID: PMC10688809 DOI: 10.1109/tcsii.2023.3262207] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/05/2023]
Abstract
Synchronous activities among neurons in the brain generate emergent network oscillations such as the hippocampal Sharp-wave ripples (SPWRs) that facilitate information processing during memory formation. However, how neurons and circuits are functionally organized to generate oscillations remains unresolved. Biophysical models of neuronal networks can shed light on how thousands of neurons interact in intricate circuits to generate such emergent SPWR network events. Here we developed a large-scale biophysically realistic neural network model of CA1 hippocampus with functionally organized circuit modules containing distinct types of neurons. Model simulations reproduced synaptic, cellular and network aspects of physiological SPWRs. The model provided insights into the role of neuronal types and their microcircuit motifs in generating SPWRs in the CA1 region. The model also suggests experimentally testable predictions including the role of specific neuron types in the genesis of hippocampal SPWRs.
Collapse
Affiliation(s)
- Benjamin Latimer
- Electrical Engineering and Computer Science Department, University of Missouri, Columbia, MO 65211 USA
| | - Dan Dopp
- Electrical Engineering and Computer Science Department, University of Missouri, Columbia, MO 65211 USA
| | - Madhusoothanan B Perumal
- Eccles Institute of Neuroscience, John Curtin School of Medical Research, Australian National University, Canberra 2601 AU
| | | | - Satish S Nair
- Electrical Engineering and Computer Science Department, University of Missouri, Columbia, MO 65211 USA
| |
Collapse
|
35
|
Noguchi A, Yamashiro K, Matsumoto N, Ikegaya Y. Theta oscillations represent collective dynamics of multineuronal membrane potentials of murine hippocampal pyramidal cells. Commun Biol 2023; 6:398. [PMID: 37045975 PMCID: PMC10097823 DOI: 10.1038/s42003-023-04719-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Accepted: 03/16/2023] [Indexed: 04/14/2023] Open
Abstract
Theta (θ) oscillations are one of the characteristic local field potentials (LFPs) in the hippocampus that emerge during spatial navigation, exploratory sniffing, and rapid eye movement sleep. LFPs are thought to summarize multineuronal events, including synaptic currents and action potentials. However, no in vivo study to date has directly interrelated θ oscillations with the membrane potentials (Vm) of multiple neurons, and it remains unclear whether LFPs can be predicted from multineuronal Vms. Here, we simultaneously patch-clamp up to three CA1 pyramidal neurons in awake or anesthetized mice and find that the temporal evolution of the power and frequency of θ oscillations in Vms (θVms) are weakly but significantly correlate with LFP θ oscillations (θLFP) such that a deep neural network could predict the θLFP waveforms based on the θVm traces of three neurons. Therefore, individual neurons are loosely interdependent to ensure freedom of activity, but they partially share information to collectively produce θLFP.
Collapse
Affiliation(s)
- Asako Noguchi
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo, 113-0033, Japan.
| | - Kotaro Yamashiro
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo, 113-0033, Japan
| | - Nobuyoshi Matsumoto
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo, 113-0033, Japan
- Institute for AI and Beyond, The University of Tokyo, Tokyo, 113-0033, Japan
| | - Yuji Ikegaya
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo, 113-0033, Japan
- Institute for AI and Beyond, The University of Tokyo, Tokyo, 113-0033, Japan
- Center for Information and Neural Networks, National Institute of Information and Communications Technology, Suita City, Osaka, 565-0871, Japan
| |
Collapse
|
36
|
Wu T, Cai Y, Zhang R, Wang Z, Tao L, Xiao ZC. Multi-band oscillations emerge from a simple spiking network. CHAOS (WOODBURY, N.Y.) 2023; 33:043121. [PMID: 37097932 DOI: 10.1063/5.0106884] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Accepted: 03/14/2023] [Indexed: 06/19/2023]
Abstract
In the brain, coherent neuronal activities often appear simultaneously in multiple frequency bands, e.g., as combinations of alpha (8-12 Hz), beta (12.5-30 Hz), and gamma (30-120 Hz) oscillations, among others. These rhythms are believed to underlie information processing and cognitive functions and have been subjected to intense experimental and theoretical scrutiny. Computational modeling has provided a framework for the emergence of network-level oscillatory behavior from the interaction of spiking neurons. However, due to the strong nonlinear interactions between highly recurrent spiking populations, the interplay between cortical rhythms in multiple frequency bands has rarely been theoretically investigated. Many studies invoke multiple physiological timescales (e.g., various ion channels or multiple types of inhibitory neurons) or oscillatory inputs to produce rhythms in multi-bands. Here, we demonstrate the emergence of multi-band oscillations in a simple network consisting of one excitatory and one inhibitory neuronal population driven by constant input. First, we construct a data-driven, Poincaré section theory for robust numerical observations of single-frequency oscillations bifurcating into multiple bands. Then, we develop model reductions of the stochastic, nonlinear, high-dimensional neuronal network to capture the appearance of multi-band dynamics and the underlying bifurcations theoretically. Furthermore, when viewed within the reduced state space, our analysis reveals conserved geometrical features of the bifurcations on low-dimensional dynamical manifolds. These results suggest a simple geometric mechanism behind the emergence of multi-band oscillations without appealing to oscillatory inputs or multiple synaptic or neuronal timescales. Thus, our work points to unexplored regimes of stochastic competition between excitation and inhibition behind the generation of dynamic, patterned neuronal activities.
Collapse
Affiliation(s)
- Tianyi Wu
- School of Mathematical Sciences, Peking University, Beijing 100871, China
- Center for Bioinformatics, National Laboratory of Protein Engineering and Plant Genetic Engineering, School of Life Sciences, Peking University, Beijing 100871, China
- Courant Institute of Mathematical Sciences, New York University, New York, New York 10003, USA
| | - Yuhang Cai
- Department of Mathematics, University of California, Berkeley, Berkeley, California 94720, USA
| | - Ruilin Zhang
- Center for Bioinformatics, National Laboratory of Protein Engineering and Plant Genetic Engineering, School of Life Sciences, Peking University, Beijing 100871, China
- Yuanpei College, Peking University, Beijing 100871, China
| | - Zhongyi Wang
- School of Mathematical Sciences, Peking University, Beijing 100871, China
- Center for Bioinformatics, National Laboratory of Protein Engineering and Plant Genetic Engineering, School of Life Sciences, Peking University, Beijing 100871, China
| | - Louis Tao
- Center for Bioinformatics, National Laboratory of Protein Engineering and Plant Genetic Engineering, School of Life Sciences, Peking University, Beijing 100871, China
- Center for Quantitative Biology, Peking University, Beijing 100871, China
| | - Zhuo-Cheng Xiao
- Courant Institute of Mathematical Sciences, New York University, New York, New York 10003, USA
| |
Collapse
|
37
|
Ponzi A, Dura-Bernal S, Migliore M. Theta-gamma phase amplitude coupling in a hippocampal CA1 microcircuit. PLoS Comput Biol 2023; 19:e1010942. [PMID: 36952558 PMCID: PMC10072417 DOI: 10.1371/journal.pcbi.1010942] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Revised: 04/04/2023] [Accepted: 02/13/2023] [Indexed: 03/25/2023] Open
Abstract
Phase amplitude coupling (PAC) between slow and fast oscillations is found throughout the brain and plays important functional roles. Its neural origin remains unclear. Experimental findings are often puzzling and sometimes contradictory. Most computational models rely on pairs of pacemaker neurons or neural populations tuned at different frequencies to produce PAC. Here, using a data-driven model of a hippocampal microcircuit, we demonstrate that PAC can naturally emerge from a single feedback mechanism involving an inhibitory and excitatory neuron population, which interplay to generate theta frequency periodic bursts of higher frequency gamma. The model suggests the conditions under which a CA1 microcircuit can operate to elicit theta-gamma PAC, and highlights the modulatory role of OLM and PVBC cells, recurrent connectivity, and short term synaptic plasticity. Surprisingly, the results suggest the experimentally testable prediction that the generation of the slow population oscillation requires the fast one and cannot occur without it.
Collapse
Affiliation(s)
- Adam Ponzi
- Institute of Biophysics, National Research Council, Palermo, Italy
| | - Salvador Dura-Bernal
- Department of Physiology and Pharmacology, SUNY Downstate Health Sciences University, Brooklyn, New York, United States of America
| | - Michele Migliore
- Institute of Biophysics, National Research Council, Palermo, Italy
| |
Collapse
|
38
|
Dainauskas JJ, Marie H, Migliore M, Saudargiene A. GluN2B-NMDAR subunit contribution on synaptic plasticity: A phenomenological model for CA3-CA1 synapses. Front Synaptic Neurosci 2023; 15:1113957. [PMID: 37008680 PMCID: PMC10050887 DOI: 10.3389/fnsyn.2023.1113957] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Accepted: 02/13/2023] [Indexed: 03/17/2023] Open
Abstract
Synaptic plasticity is believed to be a key mechanism underlying learning and memory. We developed a phenomenological N-methyl-D-aspartate (NMDA) receptor-based voltage-dependent synaptic plasticity model for synaptic modifications at hippocampal CA3-CA1 synapses on a hippocampal CA1 pyramidal neuron. The model incorporates the GluN2A-NMDA and GluN2B-NMDA receptor subunit-based functions and accounts for the synaptic strength dependence on the postsynaptic NMDA receptor composition and functioning without explicitly modeling the NMDA receptor-mediated intracellular calcium, a local trigger of synaptic plasticity. We embedded the model into a two-compartmental model of a hippocampal CA1 pyramidal cell and validated it against experimental data of spike-timing-dependent synaptic plasticity (STDP), high and low-frequency stimulation. The developed model predicts altered learning rules in synapses formed on the apical dendrites of the detailed compartmental model of CA1 pyramidal neuron in the presence of the GluN2B-NMDA receptor hypofunction and can be used in hippocampal networks to model learning in health and disease.
Collapse
Affiliation(s)
- Justinas J. Dainauskas
- Laboratory of Biophysics and Bioinformatics, Neuroscience Institute, Lithuanian University of Health Sciences, Kaunas, Lithuania
- Department of Informatics, Vytautas Magnus University, Kaunas, Lithuania
| | - Hélène Marie
- Université Côte d'Azur, Centre National de la Recherche Scientifique (CNRS) UMR 7275, Institut de Pharmacologie Moléculaire et Cellulaire (IPMC), Valbonne, France
| | - Michele Migliore
- Institute of Biophysics, National Research Council, Palermo, Italy
| | - Ausra Saudargiene
- Laboratory of Biophysics and Bioinformatics, Neuroscience Institute, Lithuanian University of Health Sciences, Kaunas, Lithuania
- *Correspondence: Ausra Saudargiene
| |
Collapse
|
39
|
Birgiolas J, Haynes V, Gleeson P, Gerkin RC, Dietrich SW, Crook S. NeuroML-DB: Sharing and characterizing data-driven neuroscience models described in NeuroML. PLoS Comput Biol 2023; 19:e1010941. [PMID: 36867658 PMCID: PMC10016719 DOI: 10.1371/journal.pcbi.1010941] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 03/15/2023] [Accepted: 02/12/2023] [Indexed: 03/04/2023] Open
Abstract
As researchers develop computational models of neural systems with increasing sophistication and scale, it is often the case that fully de novo model development is impractical and inefficient. Thus arises a critical need to quickly find, evaluate, re-use, and build upon models and model components developed by other researchers. We introduce the NeuroML Database (NeuroML-DB.org), which has been developed to address this need and to complement other model sharing resources. NeuroML-DB stores over 1,500 previously published models of ion channels, cells, and networks that have been translated to the modular NeuroML model description language. The database also provides reciprocal links to other neuroscience model databases (ModelDB, Open Source Brain) as well as access to the original model publications (PubMed). These links along with Neuroscience Information Framework (NIF) search functionality provide deep integration with other neuroscience community modeling resources and greatly facilitate the task of finding suitable models for reuse. Serving as an intermediate language, NeuroML and its tooling ecosystem enable efficient translation of models to other popular simulator formats. The modular nature also enables efficient analysis of a large number of models and inspection of their properties. Search capabilities of the database, together with web-based, programmable online interfaces, allow the community of researchers to rapidly assess stored model electrophysiology, morphology, and computational complexity properties. We use these capabilities to perform a database-scale analysis of neuron and ion channel models and describe a novel tetrahedral structure formed by cell model clusters in the space of model properties and features. This analysis provides further information about model similarity to enrich database search.
Collapse
Affiliation(s)
- Justas Birgiolas
- Ronin Institute, Montclair, New Jersey, United States of America
| | - Vergil Haynes
- School of Mathematical and Statistical Sciences, Arizona State University, Tempe, Arizona, United States of America
- College of Health Solutions, Arizona State University, Phoenix, Arizona, United States of America
| | - Padraig Gleeson
- Department of Neuroscience, Physiology, and Pharmacology, University College London, London, United Kingdom
| | - Richard C. Gerkin
- School of Life Sciences, Arizona State University, Tempe, Arizona, United States of America
| | - Suzanne W. Dietrich
- School of Mathematical and Natural Sciences, Arizona State University, Tempe, Arizona, United States of America
| | - Sharon Crook
- School of Mathematical and Statistical Sciences, Arizona State University, Tempe, Arizona, United States of America
| |
Collapse
|
40
|
Gandolfi D, Mapelli J, Solinas SMG, Triebkorn P, D'Angelo E, Jirsa V, Migliore M. Full-scale scaffold model of the human hippocampus CA1 area. NATURE COMPUTATIONAL SCIENCE 2023; 3:264-276. [PMID: 38177882 PMCID: PMC10766517 DOI: 10.1038/s43588-023-00417-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Accepted: 02/09/2023] [Indexed: 01/06/2024]
Abstract
The increasing availability of quantitative data on the human brain is opening new avenues to study neural function and dysfunction, thus bringing us closer and closer to the implementation of digital twin applications for personalized medicine. Here we provide a resource to the neuroscience community: a computational method to generate full-scale scaffold model of human brain regions starting from microscopy images. We have benchmarked the method to reconstruct the CA1 region of a right human hippocampus, which accounts for about half of the entire right hippocampal formation. Together with 3D soma positioning we provide a connectivity matrix generated using a morpho-anatomical connection strategy based on axonal and dendritic probability density functions accounting for morphological properties of hippocampal neurons. The data and algorithms are supplied in a ready-to-use format, suited to implement computational models at different scales and detail.
Collapse
Affiliation(s)
- Daniela Gandolfi
- Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, Modena, Italy.
- Department of Brain and Behavioral Sciences, University of Pavia, Pavia, Italy.
| | - Jonathan Mapelli
- Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, Modena, Italy.
- Center for Neuroscience and Neurotechnology, University of Modena and Reggio Emilia, Modena, Italy.
| | - Sergio M G Solinas
- Department of Biomedical Science, University of Sassari, Sassari, Italy
- Institute of Neuroinformatics, University of Zurich and ETH Zurich, Zurich, Switzerland
| | - Paul Triebkorn
- Institut de Neurosciences des Systèmes, Aix-Marseille University, Marseille, France
| | - Egidio D'Angelo
- Department of Brain and Behavioral Sciences, University of Pavia, Pavia, Italy
- IRCCS Mondino Foundation, Pavia, Italy
| | - Viktor Jirsa
- Institut de Neurosciences des Systèmes, Aix-Marseille University, Marseille, France
| | - Michele Migliore
- Institute of Biophysics, National Research Council, Palermo, Italy.
| |
Collapse
|
41
|
Wick ZC, Philipsberg PA, Lamsifer SI, Kohler C, Katanov E, Feng Y, Humphrey C, Shuman T. Manipulating single-unit theta phase-locking with PhaSER: An open-source tool for real-time phase estimation and manipulation. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.02.21.529420. [PMID: 36865324 PMCID: PMC9980125 DOI: 10.1101/2023.02.21.529420] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/24/2023]
Abstract
The precise timing of neuronal spiking relative to the brain's endogenous oscillations (i.e., phase-locking or spike-phase coupling) has long been hypothesized to coordinate cognitive processes and maintain excitatory-inhibitory homeostasis. Indeed, disruptions in theta phase-locking have been described in models of neurological diseases with associated cognitive deficits and seizures, such as Alzheimer's disease, temporal lobe epilepsy, and autism spectrum disorders. However, due to technical limitations, determining if phase-locking causally contributes to these disease phenotypes has not been possible until recently. To fill this gap and allow for the flexible manipulation of single-unit phase-locking to on-going endogenous oscillations, we developed PhaSER, an open-source tool that allows for phase-specific manipulations. PhaSER can deliver optogenetic stimulation at defined phases of theta in order to shift the preferred firing phase of neurons relative to theta in real-time. Here, we describe and validate this tool in a subpopulation of inhibitory neurons that express somatostatin (SOM) in the CA1 and dentate gyrus (DG) regions of the dorsal hippocampus. We show that PhaSER is able to accurately deliver a photo-manipulation that activates opsin+ SOM neurons at specified phases of theta in real-time in awake, behaving mice. Further, we show that this manipulation is sufficient to alter the preferred firing phase of opsin+ SOM neurons without altering the referenced theta power or phase. All software and hardware requirements to implement real-time phase manipulations during behavior are available online (https://github.com/ShumanLab/PhaSER).
Collapse
Affiliation(s)
| | | | | | - Cassidy Kohler
- Icahn School of Medicine at Mount Sinai, New York NY
- New York University, New York NY
| | - Elizabeth Katanov
- Icahn School of Medicine at Mount Sinai, New York NY
- Hunter College, CUNY, New York NY
| | - Yu Feng
- Icahn School of Medicine at Mount Sinai, New York NY
| | - Corin Humphrey
- Icahn School of Medicine at Mount Sinai, New York NY
- Hunter College, CUNY, New York NY
| | | |
Collapse
|
42
|
Bilash OM, Chavlis S, Johnson CD, Poirazi P, Basu J. Lateral entorhinal cortex inputs modulate hippocampal dendritic excitability by recruiting a local disinhibitory microcircuit. Cell Rep 2023; 42:111962. [PMID: 36640337 DOI: 10.1016/j.celrep.2022.111962] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Revised: 10/31/2022] [Accepted: 12/20/2022] [Indexed: 01/06/2023] Open
Abstract
The lateral entorhinal cortex (LEC) provides multisensory information to the hippocampus, directly to the distal dendrites of CA1 pyramidal neurons. LEC neurons perform important functions for episodic memory processing, coding for contextually salient elements of an environment or experience. However, we know little about the functional circuit interactions between the LEC and the hippocampus. We combine functional circuit mapping and computational modeling to examine how long-range glutamatergic LEC projections modulate compartment-specific excitation-inhibition dynamics in hippocampal area CA1. We demonstrate that glutamatergic LEC inputs can drive local dendritic spikes in CA1 pyramidal neurons, aided by the recruitment of a disinhibitory VIP interneuron microcircuit. Our circuit mapping and modeling further reveal that LEC inputs also recruit CCK interneurons that may act as strong suppressors of dendritic spikes. These results highlight a cortically driven GABAergic microcircuit mechanism that gates nonlinear dendritic computations, which may support compartment-specific coding of multisensory contextual features within the hippocampus.
Collapse
Affiliation(s)
- Olesia M Bilash
- Neuroscience Institute, Department of Neuroscience and Physiology, New York University Grossman School of Medicine, NYU Langone Health, New York, NY 10016, USA
| | - Spyridon Chavlis
- Institute of Molecular Biology and Biotechnology (IMBB), Foundation for Research and Technology-Hellas (FORTH), Heraklion, Crete 70013, Greece
| | - Cara D Johnson
- Neuroscience Institute, Department of Neuroscience and Physiology, New York University Grossman School of Medicine, NYU Langone Health, New York, NY 10016, USA
| | - Panayiota Poirazi
- Institute of Molecular Biology and Biotechnology (IMBB), Foundation for Research and Technology-Hellas (FORTH), Heraklion, Crete 70013, Greece.
| | - Jayeeta Basu
- Neuroscience Institute, Department of Neuroscience and Physiology, New York University Grossman School of Medicine, NYU Langone Health, New York, NY 10016, USA; Center for Neural Science, New York University, New York, NY 10003, USA; Department of Psychiatry, New York University Grossman School of Medicine, NYU Langone Health, New York, NY 10016, USA.
| |
Collapse
|
43
|
Nanami T, Kohno T. Piecewise quadratic neuron model: A tool for close-to-biology spiking neuronal network simulation on dedicated hardware. Front Neurosci 2023; 16:1069133. [PMID: 36699524 PMCID: PMC9870328 DOI: 10.3389/fnins.2022.1069133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Accepted: 11/17/2022] [Indexed: 01/12/2023] Open
Abstract
Spiking neuron models simulate neuronal activities and allow us to analyze and reproduce the information processing of the nervous system. However, ionic-conductance models, which can faithfully reproduce neuronal activities, require a huge computational cost, while integral-firing models, which are computationally inexpensive, have some difficulties in reproducing neuronal activities. Here we propose a Piecewise Quadratic Neuron (PQN) model based on a qualitative modeling approach that aims to reproduce only the key dynamics behind neuronal activities. We demonstrate that PQN models can accurately reproduce the responses of ionic-conductance models of major neuronal classes to stimulus inputs of various magnitudes. In addition, the PQN model is designed to support the efficient implementation on digital arithmetic circuits for use as silicon neurons, and we confirm that the PQN model consumes much fewer circuit resources than the ionic-conductance models. This model intends to serve as a tool for building a large-scale closer-to-biology spiking neural network.
Collapse
Affiliation(s)
- Takuya Nanami
- Institute of Industrial Science, The University of Tokyo, Tokyo, Japan
| | - Takashi Kohno
- Institute of Industrial Science, The University of Tokyo, Tokyo, Japan
| |
Collapse
|
44
|
The potential role of the cholecystokinin system in declarative memory. Neurochem Int 2023; 162:105440. [PMID: 36375634 DOI: 10.1016/j.neuint.2022.105440] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Revised: 10/24/2022] [Accepted: 11/06/2022] [Indexed: 11/13/2022]
Abstract
As one of the most abundant neuropeptides in the central nervous system, cholecystokinin (CCK) has been suggested to be associated with higher brain functions, including learning and memory. In this review, we examined the potential role of the CCK system in declarative memory. First, we summarized behavioral studies that provide evidence for an important role of CCK in two forms of declarative memory-fear memory and spatial memory. Subsequently, we examined the electrophysiological studies that support the diverse roles of CCK-2 receptor activation in neocortical and hippocampal synaptic plasticity, and discussed the potential mechanisms that may be involved. Last but not least, we discussed whether the reported CCK-mediated synaptic plasticity can explain the strong influence of the CCK signaling system in neocortex and hippocampus dependent declarative memory. The available research supports the role of CCK-mediated synaptic plasticity in neocortex dependent declarative memory acquisition, but further study on the association between CCK-mediated synaptic plasticity and neocortex dependent declarative memory consolidation and retrieval is necessary. Although a direct link between CCK-mediated synaptic plasticity and hippocampus dependent declarative memory is missing, noticeable evidence from morphological, behavioral, and electrophysiological studies encourages further investigation regarding the potential role of CCK-dependent synaptic plasticity in hippocampus dependent declarative memory.
Collapse
|
45
|
Graf J, Rahmati V, Majoros M, Witte OW, Geis C, Kiebel SJ, Holthoff K, Kirmse K. Network instability dynamics drive a transient bursting period in the developing hippocampus in vivo. eLife 2022; 11:e82756. [PMID: 36534089 PMCID: PMC9762703 DOI: 10.7554/elife.82756] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Accepted: 12/05/2022] [Indexed: 12/23/2022] Open
Abstract
Spontaneous correlated activity is a universal hallmark of immature neural circuits. However, the cellular dynamics and intrinsic mechanisms underlying network burstiness in the intact developing brain are largely unknown. Here, we use two-photon Ca2+ imaging to comprehensively map the developmental trajectories of spontaneous network activity in the hippocampal area CA1 of mice in vivo. We unexpectedly find that network burstiness peaks after the developmental emergence of effective synaptic inhibition in the second postnatal week. We demonstrate that the enhanced network burstiness reflects an increased functional coupling of individual neurons to local population activity. However, pairwise neuronal correlations are low, and network bursts (NBs) recruit CA1 pyramidal cells in a virtually random manner. Using a dynamic systems modeling approach, we reconcile these experimental findings and identify network bi-stability as a potential regime underlying network burstiness at this age. Our analyses reveal an important role of synaptic input characteristics and network instability dynamics for NB generation. Collectively, our data suggest a mechanism, whereby developing CA1 performs extensive input-discrimination learning prior to the onset of environmental exploration.
Collapse
Affiliation(s)
- Jürgen Graf
- Department of Neurology, Jena University HospitalJenaGermany
| | - Vahid Rahmati
- Department of Neurology, Jena University HospitalJenaGermany
- Section Translational Neuroimmunology, Jena University HospitalJenaGermany
- Department of Psychology, Technical University DresdenDresdenGermany
| | - Myrtill Majoros
- Department of Neurology, Jena University HospitalJenaGermany
| | - Otto W Witte
- Department of Neurology, Jena University HospitalJenaGermany
| | - Christian Geis
- Department of Neurology, Jena University HospitalJenaGermany
- Section Translational Neuroimmunology, Jena University HospitalJenaGermany
| | - Stefan J Kiebel
- Department of Psychology, Technical University DresdenDresdenGermany
| | - Knut Holthoff
- Department of Neurology, Jena University HospitalJenaGermany
| | - Knut Kirmse
- Department of Neurology, Jena University HospitalJenaGermany
- Department of Neurophysiology, Institute of Physiology, University of WürzburgWürzburgGermany
| |
Collapse
|
46
|
Schumm SN, Gabrieli D, Meaney DF. Plasticity impairment alters community structure but permits successful pattern separation in a hippocampal network model. Front Cell Neurosci 2022; 16:977769. [PMID: 36505514 PMCID: PMC9729278 DOI: 10.3389/fncel.2022.977769] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Accepted: 10/25/2022] [Indexed: 11/25/2022] Open
Abstract
Patients who suffer from traumatic brain injury (TBI) often complain of learning and memory problems. Their symptoms are principally mediated by the hippocampus and the ability to adapt to stimulus, also known as neural plasticity. Therefore, one plausible injury mechanism is plasticity impairment, which currently lacks comprehensive investigation across TBI research. For these studies, we used a computational network model of the hippocampus that includes the dentate gyrus, CA3, and CA1 with neuron-scale resolution. We simulated mild injury through weakened spike-timing-dependent plasticity (STDP), which modulates synaptic weights according to causal spike timing. In preliminary work, we found functional deficits consisting of decreased firing rate and broadband power in areas CA3 and CA1 after STDP impairment. To address structural changes with these studies, we applied modularity analysis to evaluate how STDP impairment modifies community structure in the hippocampal network. We also studied the emergent function of network-based learning and found that impaired networks could acquire conditioned responses after training, but the magnitude of the response was significantly lower. Furthermore, we examined pattern separation, a prerequisite of learning, by entraining two overlapping patterns. Contrary to our initial hypothesis, impaired networks did not exhibit deficits in pattern separation with either population- or rate-based coding. Collectively, these results demonstrate how a mechanism of injury that operates at the synapse regulates circuit function.
Collapse
Affiliation(s)
- Samantha N. Schumm
- Department of Bioengineering, School of Engineering and Applied Sciences, University of Pennsylvania, Philadelphia, PA, United States
| | - David Gabrieli
- Department of Bioengineering, School of Engineering and Applied Sciences, University of Pennsylvania, Philadelphia, PA, United States
| | - David F. Meaney
- Department of Bioengineering, School of Engineering and Applied Sciences, University of Pennsylvania, Philadelphia, PA, United States
- Department of Neurosurgery, Penn Center for Brain Injury and Repair, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
| |
Collapse
|
47
|
Oláh VJ, Pedersen NP, Rowan MJM. Ultrafast simulation of large-scale neocortical microcircuitry with biophysically realistic neurons. eLife 2022; 11:e79535. [PMID: 36341568 PMCID: PMC9640191 DOI: 10.7554/elife.79535] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2022] [Accepted: 10/23/2022] [Indexed: 11/09/2022] Open
Abstract
Understanding the activity of the mammalian brain requires an integrative knowledge of circuits at distinct scales, ranging from ion channel gating to circuit connectomics. Computational models are regularly employed to understand how multiple parameters contribute synergistically to circuit behavior. However, traditional models of anatomically and biophysically realistic neurons are computationally demanding, especially when scaled to model local circuits. To overcome this limitation, we trained several artificial neural network (ANN) architectures to model the activity of realistic multicompartmental cortical neurons. We identified an ANN architecture that accurately predicted subthreshold activity and action potential firing. The ANN could correctly generalize to previously unobserved synaptic input, including in models containing nonlinear dendritic properties. When scaled, processing times were orders of magnitude faster compared with traditional approaches, allowing for rapid parameter-space mapping in a circuit model of Rett syndrome. Thus, we present a novel ANN approach allowing for rapid, detailed network experiments using inexpensive and commonly available computational resources.
Collapse
Affiliation(s)
- Viktor J Oláh
- Department of Cell Biology, Emory University School of MedicineAtlantaUnited States
| | - Nigel P Pedersen
- Department of Neurology, Emory University School of MedicineAtlantaUnited States
| | - Matthew JM Rowan
- Department of Cell Biology, Emory University School of MedicineAtlantaUnited States
| |
Collapse
|
48
|
Lee JH, Liu Q, Dadgar-Kiani E. Solving brain circuit function and dysfunction with computational modeling and optogenetic fMRI. Science 2022; 378:493-499. [PMID: 36327349 PMCID: PMC10543742 DOI: 10.1126/science.abq3868] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/31/2023]
Abstract
Can we construct a model of brain function that enables an understanding of whole-brain circuit mechanisms underlying neurological disease and use it to predict the outcome of therapeutic interventions? How are pathologies in neurological disease, some of which are observed to have spatial spreading mechanisms, associated with circuits and brain function? In this review, we discuss approaches that have been used to date and future directions that can be explored to answer these questions. By combining optogenetic functional magnetic resonance imaging (fMRI) with computational modeling, cell type-specific, large-scale brain circuit function and dysfunction are beginning to be quantitatively parameterized. We envision that these developments will pave the path for future therapeutics developments based on a systems engineering approach aimed at directly restoring brain function.
Collapse
Affiliation(s)
- Jin Hyung Lee
- Department of Neurology and Neurological Sciences, Stanford University, Stanford, CA 94305, USA
- Department of Bioengineering, Stanford University, Stanford, CA 94305, USA
- Department of Neurosurgery, Stanford University, Stanford, CA 94305, USA
- Department of Electrical Engineering, Stanford University, CA 94305, USA
| | - Qin Liu
- Department of Neurology and Neurological Sciences, Stanford University, Stanford, CA 94305, USA
| | - Ehsan Dadgar-Kiani
- Department of Neurology and Neurological Sciences, Stanford University, Stanford, CA 94305, USA
- Department of Bioengineering, Stanford University, Stanford, CA 94305, USA
| |
Collapse
|
49
|
The antidepressant effect of nucleus accumbens deep brain stimulation is mediated by parvalbumin-positive interneurons in the dorsal dentate gyrus. Neurobiol Stress 2022; 21:100492. [DOI: 10.1016/j.ynstr.2022.100492] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Revised: 09/02/2022] [Accepted: 09/21/2022] [Indexed: 11/17/2022] Open
|
50
|
Rübel O, Tritt A, Ly R, Dichter BK, Ghosh S, Niu L, Baker P, Soltesz I, Ng L, Svoboda K, Frank L, Bouchard KE. The Neurodata Without Borders ecosystem for neurophysiological data science. eLife 2022; 11:e78362. [PMID: 36193886 PMCID: PMC9531949 DOI: 10.7554/elife.78362] [Citation(s) in RCA: 51] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Accepted: 05/13/2022] [Indexed: 01/21/2023] Open
Abstract
The neurophysiology of cells and tissues are monitored electrophysiologically and optically in diverse experiments and species, ranging from flies to humans. Understanding the brain requires integration of data across this diversity, and thus these data must be findable, accessible, interoperable, and reusable (FAIR). This requires a standard language for data and metadata that can coevolve with neuroscience. We describe design and implementation principles for a language for neurophysiology data. Our open-source software (Neurodata Without Borders, NWB) defines and modularizes the interdependent, yet separable, components of a data language. We demonstrate NWB's impact through unified description of neurophysiology data across diverse modalities and species. NWB exists in an ecosystem, which includes data management, analysis, visualization, and archive tools. Thus, the NWB data language enables reproduction, interchange, and reuse of diverse neurophysiology data. More broadly, the design principles of NWB are generally applicable to enhance discovery across biology through data FAIRness.
Collapse
Affiliation(s)
- Oliver Rübel
- Scientific Data Division, Lawrence Berkeley National LaboratoryBerkeleyUnited States
| | - Andrew Tritt
- Applied Mathematics and Computational Research Division, Lawrence Berkeley National LaboratoryBerkeleyUnited States
| | - Ryan Ly
- Scientific Data Division, Lawrence Berkeley National LaboratoryBerkeleyUnited States
| | | | - Satrajit Ghosh
- McGovern Institute for Brain Research, Massachusetts Institute of TechnologyCambridgeUnited States
- Department of Otolaryngology - Head and Neck Surgery, Harvard Medical SchoolBostonUnited States
| | | | - Pamela Baker
- Allen Institute for Brain ScienceSeattleUnited States
| | - Ivan Soltesz
- Department of Neurosurgery, Stanford UniversityStanfordUnited States
| | - Lydia Ng
- Allen Institute for Brain ScienceSeattleUnited States
| | - Karel Svoboda
- Allen Institute for Brain ScienceSeattleUnited States
- Janelia Research Campus, Howard Hughes Medical InstituteAshburnUnited States
| | - Loren Frank
- Janelia Research Campus, Howard Hughes Medical InstituteAshburnUnited States
- Kavli Institute for Fundamental NeuroscienceSan FranciscoUnited States
- Departments of Physiology and Psychiatry University of California, San FranciscoSan FranciscoUnited States
| | - Kristofer E Bouchard
- Scientific Data Division, Lawrence Berkeley National LaboratoryBerkeleyUnited States
- Kavli Institute for Fundamental NeuroscienceSan FranciscoUnited States
- Biological Systems and Engineering Division, Lawrence Berkeley National LaboratoryBerkeleyUnited States
- Helen Wills Neuroscience Institute and Redwood Center for Theoretical Neuroscience, University of California, BerkeleyBerkeleyUnited States
- Weill NeurohubBerkeleyUnited States
| |
Collapse
|