1
|
Sangavi P, Shri GR, Singh SK, Langeswaran K. A computational perception of BBOX1-IP3R3 interaction uncovers inhibitors for dysregulated calcium signalling in triple negative breast cancer. SAR AND QSAR IN ENVIRONMENTAL RESEARCH 2025:1-28. [PMID: 40366709 DOI: 10.1080/1062936x.2025.2497380] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2025] [Accepted: 04/18/2025] [Indexed: 05/15/2025]
Abstract
Triple Negative Breast Cancer (TNBC) is the most aggressive type of breast cancer unveiling negative expression on oestrogen receptors, progesterone receptors, and HER2. The anomalous activation of signalling pathways and specific types of mutations characterize the progression of TNBC. Protein-protein interaction in the tumour microenvironment plays a crucial role in tumour aggressiveness. Disrupting the signalling pathways that promote cell progression, migration, and survival opens up a promising avenue for targeting the aggressive form of TNBC. The present study emphasizes the molecular interaction mechanism driving the aggressive and recalcitrant TNBC between BBOX1-IP3R3. The BBOX1-IP3R3 complex destabilization was accomplished using compounds obtained from various databases through virtual screening, molecular, and essential dynamics. The interaction study revealed that the four hits bound at the interface and facilitated better binding affinity with the highest docking score and optimal binding free energy. In addition, the molecular dynamics simulation, PCA/FEL, and MM/PBSA analysis conclusively evaluate the binding potential of the compounds and unequivocally stabilize specific conformations or deception of the complexes in high-energy states. Thus, the identified compounds lead to the disruption of BBOX1-IP3R3 interaction, which aids in the therapeutic option of TNBC.
Collapse
Affiliation(s)
- P Sangavi
- Department of Bioinformatics, Alagappa University, Karaikudi, India
- Center for Bioinformatics, Karpagam Academy of Higher Education, Coimbatore, India
| | - G R Shri
- Computer Aided Drug Design and Molecular Modeling Lab, Department of Bioinformatics, Alagappa University, Karaikudi, India
| | - S K Singh
- Computer Aided Drug Design and Molecular Modeling Lab, Department of Bioinformatics, Alagappa University, Karaikudi, India
| | - K Langeswaran
- Department of Biomedical Science, Alagappa University, Karaikudi, India
| |
Collapse
|
2
|
Diokmetzidou A, Scorrano L. Mitochondria-membranous organelle contacts at a glance. J Cell Sci 2025; 138:jcs263895. [PMID: 40357586 DOI: 10.1242/jcs.263895] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/15/2025] Open
Abstract
Mitochondrial contact sites are specialized interfaces where mitochondria physically interact with other organelles. Stabilized by molecular tethers and defined by unique proteomic and lipidomic profiles, these sites enable direct interorganellar communication and functional coordination, playing crucial roles in cellular physiology and homeostasis. Recent advances have expanded our knowledge of contact site-resident proteins, illuminated the dynamic and adaptive nature of these interfaces, and clarified their contribution to pathophysiology. In this Cell Science at a Glance article and the accompanying poster, we summarize the mitochondrial contacts that have been characterized in mammals, the molecular mechanisms underlying their formation, and their principal functions.
Collapse
Affiliation(s)
- Antigoni Diokmetzidou
- Department of Biology, University of Padova, 35121 Padova, Italy
- Veneto Institute of Molecular Medicine (VIMM), 35129 Padova, Italy
| | - Luca Scorrano
- Department of Biology, University of Padova, 35121 Padova, Italy
- Veneto Institute of Molecular Medicine (VIMM), 35129 Padova, Italy
| |
Collapse
|
3
|
Gui T, Liu Y, Fu M, Wu H, Su P, Feng X, Zheng M, Huang Z, Luo X, Boron WF, Chen LM. Redox state of NAD modulates the activation of Na-bicarbonate cotransporter NBCe1-B via IRBIT and L-IRBIT. SCIENCE CHINA. LIFE SCIENCES 2025; 68:1452-1462. [PMID: 39985648 PMCID: PMC12097937 DOI: 10.1007/s11427-024-2750-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Accepted: 09/29/2024] [Indexed: 02/24/2025]
Abstract
Nicotinamide adenine dinucleotide (NAD) is well known as a coenzyme involved in many redox reactions in cellular energy metabolism, or as a substrate for many NAD+-consuming enzymes, including those that generate the second messenger cyclic ADP-ribose or deacetylate proteins (e.g., histones). The role of NAD in non-catalytic proteins is poorly understood. IRBIT and L-IRBIT (the IRBITs) are two cytosolic proteins that are structurally related to dehydrogenases but lack catalytic activity. Instead, by interacting directly with their targets, the IRBITs modulate the function of numerous proteins with important roles, ranging from Ca2+ signaling and intracellular pH (pHi) regulation to DNA metabolism to autophagy. Among the targets of the IRBITs is the Na+-HCO3- cotransporter NBCe1-B, which plays a central role in intracellular pH (pHi) regulation and epithelial electrolyte transport. Here, we demonstrate that NAD modulates NBCe1-B activation by serving as a cofactor of IRBIT or L-IRBIT. Blocking NAD salvage pathway greatly decreases NBCe1-B activation by the IRBITs. Administration of the oxidized form NAD+ enhances, whereas the reduced form NADH decreases NBCe1-B activity. Our study represents the first example in which the redox state of NAD, via IRBIT or L-IRBIT, modulates the function of a membrane transport protein. Our findings reveal a new role of NAD and greatly expand our understanding of NAD biology. Because the NAD redox state fluctuates greatly with metabolic status, our work provides insight into how, via the IRBITs, energy metabolism could affect pHi regulation and many other IRBIT-dependent processes.
Collapse
Affiliation(s)
- Tianxiang Gui
- Key Laboratory of Molecular Biophysics of Ministry of Education, College of Life Science & Technology, Huazhong University of Science & Technology, Wuhan, 430074, China
| | - Ying Liu
- Key Laboratory of Molecular Biophysics of Ministry of Education, College of Life Science & Technology, Huazhong University of Science & Technology, Wuhan, 430074, China.
| | - Mingfeng Fu
- Key Laboratory of Molecular Biophysics of Ministry of Education, College of Life Science & Technology, Huazhong University of Science & Technology, Wuhan, 430074, China
| | - Han Wu
- Key Laboratory of Molecular Biophysics of Ministry of Education, College of Life Science & Technology, Huazhong University of Science & Technology, Wuhan, 430074, China
| | - Pan Su
- Key Laboratory of Molecular Biophysics of Ministry of Education, College of Life Science & Technology, Huazhong University of Science & Technology, Wuhan, 430074, China
| | - Xuhui Feng
- Key Laboratory of Molecular Biophysics of Ministry of Education, College of Life Science & Technology, Huazhong University of Science & Technology, Wuhan, 430074, China
| | - Mengmeng Zheng
- Key Laboratory of Molecular Biophysics of Ministry of Education, College of Life Science & Technology, Huazhong University of Science & Technology, Wuhan, 430074, China
| | - Zixuan Huang
- Key Laboratory of Molecular Biophysics of Ministry of Education, College of Life Science & Technology, Huazhong University of Science & Technology, Wuhan, 430074, China
| | - Xudong Luo
- Institute of Biomedicine and Hubei Key Laboratory of Embryonic Stem Cell Research, College of Basic Medicine, Hubei University of Medicine, Shiyan, 442000, China
| | - Walter F Boron
- Department of Physiology and Biophysics, Case Western Reserve University School of Medicine, Cleveland, OH, 44106, USA
| | - Li-Ming Chen
- Key Laboratory of Molecular Biophysics of Ministry of Education, College of Life Science & Technology, Huazhong University of Science & Technology, Wuhan, 430074, China.
- Research Institute of Huazhong University of Science and Technology in Shenzhen, Shenzhen, 518063, China.
| |
Collapse
|
4
|
Vogler M, Braun Y, Smith VM, Westhoff MA, Pereira RS, Pieper NM, Anders M, Callens M, Vervliet T, Abbas M, Macip S, Schmid R, Bultynck G, Dyer MJ. The BCL2 family: from apoptosis mechanisms to new advances in targeted therapy. Signal Transduct Target Ther 2025; 10:91. [PMID: 40113751 PMCID: PMC11926181 DOI: 10.1038/s41392-025-02176-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2024] [Revised: 12/21/2024] [Accepted: 02/10/2025] [Indexed: 03/22/2025] Open
Abstract
The B cell lymphoma 2 (BCL2) protein family critically controls apoptosis by regulating the release of cytochrome c from mitochondria. In this cutting-edge review, we summarize the basic biology regulating the BCL2 family including canonical and non-canonical functions, and highlight milestones from basic research to clinical applications in cancer and other pathophysiological conditions. We review laboratory and clinical development of BH3-mimetics as well as more recent approaches including proteolysis targeting chimeras (PROTACs), antibody-drug conjugates (ADCs) and tools targeting the BH4 domain of BCL2. The first BCL2-selective BH3-mimetic, venetoclax, showed remarkable efficacy with manageable toxicities and has transformed the treatment of several hematologic malignancies. Following its success, several chemically similar BCL2 inhibitors such as sonrotoclax and lisaftoclax are currently under clinical evaluation, alone and in combination. Genetic analysis highlights the importance of BCL-XL and MCL1 across different cancer types and the possible utility of BH3-mimetics targeting these proteins. However, the development of BH3-mimetics targeting BCL-XL or MCL1 has been more challenging, with on-target toxicities including thrombocytopenia for BCL-XL and cardiac toxicities for MCL1 inhibitors precluding clinical development. Tumor-specific BCL-XL or MCL1 inhibition may be achieved by novel targeting approaches using PROTACs or selective drug delivery strategies and would be transformational in many subtypes of malignancy. Taken together, we envision that the targeting of BCL2 proteins, while already a success story of translational research, may in the foreseeable future have broader clinical applicability and improve the treatment of multiple diseases.
Collapse
Affiliation(s)
- Meike Vogler
- Goethe University Frankfurt, Institute for Experimental Pediatric Hematology and Oncology, Frankfurt am Main, Germany.
- German Cancer Consortium (DKTK) partner site Frankfurt/Mainz, a partnership between DKFZ and University Hospital Frankfurt, Frankfurt am Main, Germany.
- University Cancer Center Frankfurt (UCT), University Hospital Frankfurt, Goethe University Frankfurt, Frankfurt am Main, Germany.
| | - Yannick Braun
- Goethe University Frankfurt, Institute for Experimental Pediatric Hematology and Oncology, Frankfurt am Main, Germany
- Department of Pediatric Surgery, University Hospital Frankfurt, Goethe University Frankfurt, Frankfurt am Main, Germany
| | - Victoria M Smith
- The Ernest and Helen Scott Haematological Research Institute, Leicester Cancer Research Centre, University of Leicester, Leicester, UK
| | - Mike-Andrew Westhoff
- Department of Pediatrics and Adolescent Medicine, University Medical Center Ulm, Ulm, Germany
| | - Raquel S Pereira
- Goethe University Frankfurt, Institute for Experimental Pediatric Hematology and Oncology, Frankfurt am Main, Germany
| | - Nadja M Pieper
- Goethe University Frankfurt, Institute for Experimental Pediatric Hematology and Oncology, Frankfurt am Main, Germany
| | - Marius Anders
- Goethe University Frankfurt, Institute for Experimental Pediatric Hematology and Oncology, Frankfurt am Main, Germany
| | - Manon Callens
- KU Leuven, Lab. Molecular & Cellular Signaling, Dep. Cellular & Molecular Medicine, and Leuven Kankerinstituut (LKI), Leuven, Belgium
| | - Tim Vervliet
- KU Leuven, Lab. Molecular & Cellular Signaling, Dep. Cellular & Molecular Medicine, and Leuven Kankerinstituut (LKI), Leuven, Belgium
| | - Maha Abbas
- Mechanisms of Cancer and Ageing Laboratory, Department of Molecular and Cell Biology, University of Leicester, Leicester, UK
| | - Salvador Macip
- The Ernest and Helen Scott Haematological Research Institute, Leicester Cancer Research Centre, University of Leicester, Leicester, UK
- Mechanisms of Cancer and Ageing Laboratory, Department of Molecular and Cell Biology, University of Leicester, Leicester, UK
- Josep Carreras Leukaemia Research Institute, Badalona, Spain
- FoodLab, Faculty of Health Sciences, Universitat Oberta de Catalunya, Barcelona, Spain
| | - Ralf Schmid
- Department of Molecular and Cell Biology, University of Leicester, Leicester, UK
- Institute for Structural and Chemical Biology, University of Leicester, Leicester, UK
| | - Geert Bultynck
- KU Leuven, Lab. Molecular & Cellular Signaling, Dep. Cellular & Molecular Medicine, and Leuven Kankerinstituut (LKI), Leuven, Belgium
| | - Martin Js Dyer
- The Ernest and Helen Scott Haematological Research Institute, Leicester Cancer Research Centre, University of Leicester, Leicester, UK
| |
Collapse
|
5
|
Bonzerato CG, Keller KR, Wojcikiewicz RJH. Phosphorylation of Bok at Ser-8 blocks its ability to suppress IP 3R-mediated calcium mobilization. Cell Commun Signal 2025; 23:27. [PMID: 39810210 PMCID: PMC11730779 DOI: 10.1186/s12964-024-02008-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2024] [Accepted: 12/21/2024] [Indexed: 01/30/2025] Open
Abstract
BACKGROUND Bok is a poorly characterized Bcl-2 protein family member with roles yet to be clearly defined. It is clear, however, that Bok binds strongly to inositol 1,4,5-trisphosphate (IP3) receptors (IP3Rs), which govern the mobilization of Ca2+ from the endoplasmic reticulum, a signaling pathway required for many cellular processes. Also known is that Bok has a highly conserved phosphorylation site for cAMP-dependent protein kinase at serine-8 (Ser-8). Whether Bok, or phosphorylated Bok, has any direct impact on the Ca2+ mobilizing function of IP3Rs remains to be established. METHODS Bok Ser-8 phosphorylation was characterized using purified proteins, G-protein coupled receptor agonists that increase cAMP levels in intact cells, mass spectrometry, and immunoreactivity changes. Also, using mammalian cells that exclusively or predominately express IP3R1, to which Bok binds strongly, and a fluorescent Ca2+-sensitive dye or a genetically-encoded Ca2+ sensor, we explored how endogenous and exogenous Bok controls the Ca2+ mobilizing function of IP3R1, and whether Bok phosphorylation at Ser-8, or replacement of Ser-8 with a phosphomimetic amino acid, is regulatory. RESULTS Our results confirm that Ser-8 of Bok is phosphorylated by cAMP-dependent protein kinase, and remarkably that phosphorylation can be detected with Bok specific antibodies. Also, we find that Bok has suppressive effects on IP3R-mediated Ca2+ mobilization in a variety of cell types. Specifically, Bok accelerated the post-maximal decline in G-protein coupled receptor-induced cytosolic Ca2+ concentration, via a mechanism that involves suppression of IP3R-dependent Ca2+ release from the endoplasmic reticulum. These effects were dependent on the Bok-IP3R interaction, as they are only seen with IP3Rs that can bind Bok (e.g., IP3R1). Surprisingly, Bok phosphorylation at Ser-8 weakened the interaction between Bok and IP3R1 and reversed the ability of Bok to suppress IP3R1-mediated Ca2+ mobilization. CONCLUSIONS For the first time, Bok was shown to directly suppress IP3R1 activity, which was reversed by Ser-8 phosphorylation. We hypothesize that this suppression of IP3R1 activity is due to Bok regulation of the conformational changes in IP3R1 that mediate channel opening. This study provides new insights on the role of Bok, its interaction with IP3Rs, and the impact it has on IP3R-mediated Ca2+ mobilization.
Collapse
Affiliation(s)
- Caden G Bonzerato
- Department of Pharmacology, SUNY Upstate Medical University, Syracuse, NY, 13210, USA.
| | - Katherine R Keller
- Department of Pharmacology, SUNY Upstate Medical University, Syracuse, NY, 13210, USA
| | | |
Collapse
|
6
|
Loncke J, de Ridder I, Kale J, Wagner L, Kaasik A, Parys JB, Kerkhofs M, Andrews DW, Yule D, Vervliet T, Bultynck G. CISD2 counteracts the inhibition of ER-mitochondrial calcium transfer by anti-apoptotic BCL-2. BIOCHIMICA ET BIOPHYSICA ACTA. MOLECULAR CELL RESEARCH 2025; 1872:119857. [PMID: 39370046 DOI: 10.1016/j.bbamcr.2024.119857] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Revised: 09/19/2024] [Accepted: 09/27/2024] [Indexed: 10/08/2024]
Abstract
CISD2, a 2Fe2S cluster domain-containing protein, is implicated in Wolfram syndrome type 2, longevity and cancer. CISD2 is part of a ternary complex with IP3 receptors (IP3Rs) and anti-apoptotic BCL-2 proteins and enhances BCL-2's anti-autophagic function. Here, we examined how CISD2 impacted the function of BCL-2 in apoptosis and in controlling IP3R-mediated Ca2+ signaling. Using purified proteins, we found a direct interaction between the cytosolic region of CISD2 and BCL-2's BH4 domain with a submicromolar affinity. At the functional level, the cytosolic region of CISD2, as a purified protein, did not affect the ability of BCL-2 to inhibit BAX-pore formation. In a cellular context, loss of CISD2 did not impede the suppression of apoptosis by BCL-2. Also, in Ca2+-signaling assays, absence of CISD2 did not affect the inhibition of IP3R-mediated Ca2+ release by BCL-2. Combined, these experiments indicate that CISD2 is not essential for BCL-2 function in apoptosis and cytosolic Ca2+ signaling. Instead, CISD2 overexpression enhanced BCL-2-mediated suppression of cytosolic IP3R-mediated Ca2+ release. However, consistent with the presence of CISD2 and BCL-2 at mitochondria-associated ER membranes (MAMs), the most striking effect was observed at the level of ER-mitochondrial Ca2+ transfer. While BCL-2 overexpression inhibited ER-mitochondrial Ca2+ transfer, overexpression of CISD2 together with BCL-2 abrogated the effect of BCL-2. The underlying mechanism is linked to ER-mitochondrial contact sites, since BCL-2 reduced ER-mitochondrial contact sites while co-expression of CISD2 together with BCL-2 abolished this effect. These findings reveal a unique interplay between BCL-2 and CISD2 at Ca2+-signaling nanodomains between ER and mitochondria.
Collapse
Affiliation(s)
- Jens Loncke
- KU Leuven, Laboratory for Molecular and Cellular Signaling, Department of Cellular and Molecular Medicine, Leuven Kanker Instituut, Campus Gasthuisberg O/N-1 B-802, Herestraat 49, BE-3000 Leuven, Belgium
| | - Ian de Ridder
- KU Leuven, Laboratory for Molecular and Cellular Signaling, Department of Cellular and Molecular Medicine, Leuven Kanker Instituut, Campus Gasthuisberg O/N-1 B-802, Herestraat 49, BE-3000 Leuven, Belgium
| | - Justin Kale
- University of Toronto, Biological Sciences, Sunnybrook Research Institute, Toronto, ON M4N 3M5, Canada
| | - Larry Wagner
- University of Rochester, Department of Pharmacology and Physiology, School of Medicine and Dentistry, 601 Elmwood Avenue, Box 711, Rochester, NY 14642, USA
| | - Allen Kaasik
- University of Tartu, Department of Pharmacology, Institute of Biomedicine and Translational Medicine, Tartu, Estonia
| | - Jan B Parys
- KU Leuven, Laboratory for Molecular and Cellular Signaling, Department of Cellular and Molecular Medicine, Leuven Kanker Instituut, Campus Gasthuisberg O/N-1 B-802, Herestraat 49, BE-3000 Leuven, Belgium
| | - Martijn Kerkhofs
- KU Leuven, Laboratory for Molecular and Cellular Signaling, Department of Cellular and Molecular Medicine, Leuven Kanker Instituut, Campus Gasthuisberg O/N-1 B-802, Herestraat 49, BE-3000 Leuven, Belgium; Univ Lyon, Université Claude Bernard Lyon 1, CNRS, Inserm, Physiopathologie et Génétique du Neurone et du Muscle, UMR5261, U1315, Institut NeuroMyoGène, 69008 Lyon, France
| | - David W Andrews
- University of Toronto, Biological Sciences, Sunnybrook Research Institute, Toronto, ON M4N 3M5, Canada
| | - David Yule
- University of Rochester, Department of Pharmacology and Physiology, School of Medicine and Dentistry, 601 Elmwood Avenue, Box 711, Rochester, NY 14642, USA
| | - Tim Vervliet
- KU Leuven, Laboratory for Molecular and Cellular Signaling, Department of Cellular and Molecular Medicine, Leuven Kanker Instituut, Campus Gasthuisberg O/N-1 B-802, Herestraat 49, BE-3000 Leuven, Belgium
| | - Geert Bultynck
- KU Leuven, Laboratory for Molecular and Cellular Signaling, Department of Cellular and Molecular Medicine, Leuven Kanker Instituut, Campus Gasthuisberg O/N-1 B-802, Herestraat 49, BE-3000 Leuven, Belgium.
| |
Collapse
|
7
|
Budnik N, Leroux AE, Cooke M, Kazanietz MG, Vigliano C, Kobayashi K, Perez-Castro C. The role of S-adenosylhomocysteine hydrolase-like 1 in cancer. BIOCHIMICA ET BIOPHYSICA ACTA. MOLECULAR CELL RESEARCH 2024; 1871:119819. [PMID: 39154900 DOI: 10.1016/j.bbamcr.2024.119819] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Revised: 08/03/2024] [Accepted: 08/13/2024] [Indexed: 08/20/2024]
Abstract
This integrative review aims to highlight the importance of investigating the functional role of AHCYL1, also known as IRBIT, in cancer cells. It has recently been suggested that AHCYL1 regulates cell survival/death, stemness capacity, and the host adaptive response to the tumor microenvironment. Despite this knowledge, the role of AHCYL1 in cancer is still controversial, probably due to its ability to interact with multiple factors in a tissue-specific manner. Understanding the mechanisms regulating the functional interplay between the tumor and the tumor microenvironment that controls the expression of AHCYL1 could provide a deeper comprehension of the regulation of tumor development. Addressing how AHCYL1 modulates cellular plasticity processes in a tumoral context is potentially relevant to developing translational approaches in cancer biology.
Collapse
Affiliation(s)
- Nicolás Budnik
- Instituto de Investigación en Biomedicina de Buenos Aires (IBioBA) - CONICET -Partner Institute of the Max Planck Society, Buenos Aires, Argentina
| | - Alejandro E Leroux
- Instituto de Investigación en Biomedicina de Buenos Aires (IBioBA) - CONICET -Partner Institute of the Max Planck Society, Buenos Aires, Argentina
| | - Mariana Cooke
- Department of Molecular and Cellular Pharmacology, Miller School of Medicine, University of Miami, Miami, FL, USA
| | - Marcelo G Kazanietz
- Department of Molecular and Cellular Pharmacology, Miller School of Medicine, University of Miami, Miami, FL, USA
| | - Carlos Vigliano
- Instituto de Medicina Traslacional, Trasplante y Bioingeniería (IMeTTyB), Universidad Favaloro-CONICET, Solís 453, C1078AAI Buenos Aires, Argentina; Servicio de Anatomía Patológica, Hospital Universitario de la Fundación Favaloro, Av. Belgrano 1746, C1093AAS Buenos Aires, Argentina
| | - Ken Kobayashi
- Departamento de Fisiología, Biología Molecular y Celular, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Intendente Güiraldes 2160, C1428EGA Buenos Aires, Argentina; Laboratorio de Agrobiotecnología, Instituto de Biodiversidad y Biología Experimental Aplicada (IBBEA-CONICET-UBA), Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Carolina Perez-Castro
- Instituto de Investigación en Biomedicina de Buenos Aires (IBioBA) - CONICET -Partner Institute of the Max Planck Society, Buenos Aires, Argentina.
| |
Collapse
|
8
|
Tanaka YK, Ogra Y. Single-Cell Analysis of Elemental Contents by Laser Ablation-Inductively Coupled Plasma Mass Spectrometry. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2024; 35:2082-2089. [PMID: 39141521 DOI: 10.1021/jasms.4c00136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/16/2024]
Abstract
Elemental analysis at the single-cell level is an emerging technique in the field of inductively coupled plasma mass spectrometry (ICP-MS). In comparison to the analysis of cell suspensions by fast time-resolved analysis, single-cell sampling by laser ablation (LA) allows the discriminatory analysis of single cells according to their size and morphology. In this study, we evaluated the changes in elemental contents in a single cell through differentiation of rat adrenal pheochromocytoma into neuron-like cells by LA-ICP-MS. The contents of seven essential minerals were increased about 2-3 times after the differentiation. In addition, we evaluated the degree of differentiation at the single-cell level by means of imaging cytometry after immunofluorescence staining of microtubule-associated protein 2 (Map2), a neuron-specific protein. The fluorescence intensities of Alexa Fluor 488-conjugated secondary antibody against the anti-Map2 primary antibody showed large variations among the cells after the onset of differentiation. Although the average fluorescence intensity was increased through the differentiation, there were still less-matured neuron-like cells that exhibited a lower fluorescence intensity after 5 days of differentiation. Since a positive correlation between the fluorescence intensity and the cell size in area was found, we separately measured the elemental contents in the less-matured smaller cells and well-matured larger cells by LA-ICP-MS. The larger cells had higher elemental contents than the smaller cells, indicating that the essential minerals are highly required at a later stage of differentiation.
Collapse
Affiliation(s)
- Yu-Ki Tanaka
- Graduate School of Pharmaceutical Sciences, Chiba University, 1-8-1 Inohana, Chuo, Chiba 260-8675, Japan
| | - Yasumitsu Ogra
- Graduate School of Pharmaceutical Sciences, Chiba University, 1-8-1 Inohana, Chuo, Chiba 260-8675, Japan
| |
Collapse
|
9
|
Caracausi M, Ramacieri G, Catapano F, Cicilloni M, Lajin B, Pelleri MC, Piovesan A, Vitale L, Locatelli C, Pirazzoli GL, Strippoli P, Antonaros F, Vione B. The functional roles of S-adenosyl-methionine and S-adenosyl-homocysteine and their involvement in trisomy 21. Biofactors 2024; 50:709-724. [PMID: 38353465 DOI: 10.1002/biof.2044] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Accepted: 01/03/2024] [Indexed: 08/09/2024]
Abstract
The one-carbon metabolism pathway is involved in critical human cellular functions such as cell proliferation, mitochondrial respiration, and epigenetic regulation. In the homocysteine-methionine cycle S-adenosyl-methionine (SAM) and S-adenosyl-homocysteine (SAH) are synthetized, and their levels are finely regulated to ensure proper functioning of key enzymes which control cellular growth and differentiation. Here we review the main biological mechanisms involving SAM and SAH and the known related human diseases. It was recently demonstrated that SAM and SAH levels are altered in plasma of subjects with trisomy 21 (T21) but how this metabolic dysregulation influences the clinical manifestation of T21 phenotype has not been previously described. This review aims at providing an overview of the biological mechanisms which are altered in response to changes in the levels of SAM and SAH observed in DS.
Collapse
Affiliation(s)
- Maria Caracausi
- Unit of Histology, Embryology and Applied Biology, Department of Biomedical and Neuromotor Sciences (DIBINEM), University of Bologna, Bologna, Italy
| | - Giuseppe Ramacieri
- Department of Medical and Surgical Sciences (DIMEC), University of Bologna, Bologna, Italy
- Speciality School of Child Neuropsychiatry-Alma Mater Studiorum, University of Bologna, Bologna, Italy
| | - Francesca Catapano
- Department of Medical and Surgical Sciences (DIMEC), University of Bologna, Bologna, Italy
| | - Michela Cicilloni
- Unit of Histology, Embryology and Applied Biology, Department of Biomedical and Neuromotor Sciences (DIBINEM), University of Bologna, Bologna, Italy
| | - Bassam Lajin
- Institute of Chemistry, ChromICP, University of Graz, Graz, Austria
| | - Maria Chiara Pelleri
- Unit of Histology, Embryology and Applied Biology, Department of Biomedical and Neuromotor Sciences (DIBINEM), University of Bologna, Bologna, Italy
| | - Allison Piovesan
- Unit of Histology, Embryology and Applied Biology, Department of Biomedical and Neuromotor Sciences (DIBINEM), University of Bologna, Bologna, Italy
| | - Lorenza Vitale
- Unit of Histology, Embryology and Applied Biology, Department of Biomedical and Neuromotor Sciences (DIBINEM), University of Bologna, Bologna, Italy
| | - Chiara Locatelli
- Neonatology Unit, St. Orsola-Malpighi Polyclinic, Bologna, Italy
| | | | - Pierluigi Strippoli
- Unit of Histology, Embryology and Applied Biology, Department of Biomedical and Neuromotor Sciences (DIBINEM), University of Bologna, Bologna, Italy
| | - Francesca Antonaros
- Unit of Histology, Embryology and Applied Biology, Department of Biomedical and Neuromotor Sciences (DIBINEM), University of Bologna, Bologna, Italy
| | - Beatrice Vione
- Unit of Histology, Embryology and Applied Biology, Department of Biomedical and Neuromotor Sciences (DIBINEM), University of Bologna, Bologna, Italy
- Department of Medical and Surgical Sciences (DIMEC), University of Bologna, Bologna, Italy
| |
Collapse
|
10
|
Pervushin NV, Kopeina GS, Zhivotovsky B. Bcl-B: an "unknown" protein of the Bcl-2 family. Biol Direct 2023; 18:69. [PMID: 37899453 PMCID: PMC10614328 DOI: 10.1186/s13062-023-00431-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Accepted: 10/23/2023] [Indexed: 10/31/2023] Open
Abstract
Bcl-B is a poorly understood protein of the Bcl-2 family that is highly expressed in many healthy tissues and tumor types. Bcl-B is considered an antiapoptotic protein, but many reports have revealed its contradictory roles in different cancer types. In this mini-review, we elucidate the functions of Bcl-B in normal conditions and various pathologies, its regulation of programmed cell death, its oncogene/oncosuppressor activity in tumorigenesis, its impact on drug-acquired resistance, and possible approaches to inhibit Bcl-B.
Collapse
Affiliation(s)
- N V Pervushin
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, 119991, Russia
- Faculty of Medicine, MV Lomonosov Moscow State University, Moscow, 119991, Russia
| | - G S Kopeina
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, 119991, Russia.
- Faculty of Medicine, MV Lomonosov Moscow State University, Moscow, 119991, Russia.
| | - B Zhivotovsky
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, 119991, Russia.
- Faculty of Medicine, MV Lomonosov Moscow State University, Moscow, 119991, Russia.
- Division of Toxicology, Institute of Environmental Medicine, Karolinska Institute, Box 210, Stockholm, 17177, Sweden.
| |
Collapse
|
11
|
de Ridder I, Kerkhofs M, Lemos FO, Loncke J, Bultynck G, Parys JB. The ER-mitochondria interface, where Ca 2+ and cell death meet. Cell Calcium 2023; 112:102743. [PMID: 37126911 DOI: 10.1016/j.ceca.2023.102743] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2023] [Revised: 04/20/2023] [Accepted: 04/24/2023] [Indexed: 05/03/2023]
Abstract
Endoplasmic reticulum (ER)-mitochondria contact sites are crucial to allow Ca2+ flux between them and a plethora of proteins participate in tethering both organelles together. Inositol 1,4,5-trisphosphate receptors (IP3Rs) play a pivotal role at such contact sites, participating in both ER-mitochondria tethering and as Ca2+-transport system that delivers Ca2+ from the ER towards mitochondria. At the ER-mitochondria contact sites, the IP3Rs function as a multi-protein complex linked to the voltage-dependent anion channel 1 (VDAC1) in the outer mitochondrial membrane, via the chaperone glucose-regulated protein 75 (GRP75). This IP3R-GRP75-VDAC1 complex supports the efficient transfer of Ca2+ from the ER into the mitochondrial intermembrane space, from which the Ca2+ ions can reach the mitochondrial matrix through the mitochondrial calcium uniporter. Under physiological conditions, basal Ca2+ oscillations deliver Ca2+ to the mitochondrial matrix, thereby stimulating mitochondrial oxidative metabolism. However, when mitochondrial Ca2+ overload occurs, the increase in [Ca2+] will induce the opening of the mitochondrial permeability transition pore, thereby provoking cell death. The IP3R-GRP75-VDAC1 complex forms a hub for several other proteins that stabilize the complex and/or regulate the complex's ability to channel Ca2+ into the mitochondria. These proteins and their mechanisms of action are discussed in the present review with special attention for their role in pathological conditions and potential implication for therapeutic strategies.
Collapse
Affiliation(s)
- Ian de Ridder
- KU Leuven, Laboratory for Molecular and Cellular Signaling, Department of Cellular and Molecular Medicine & Leuven Kanker Instituut, Campus Gasthuisberg O/N-1 B-802, Herestraat 49, Leuven BE-3000, Belgium
| | - Martijn Kerkhofs
- KU Leuven, Laboratory for Molecular and Cellular Signaling, Department of Cellular and Molecular Medicine & Leuven Kanker Instituut, Campus Gasthuisberg O/N-1 B-802, Herestraat 49, Leuven BE-3000, Belgium
| | - Fernanda O Lemos
- KU Leuven, Laboratory for Molecular and Cellular Signaling, Department of Cellular and Molecular Medicine & Leuven Kanker Instituut, Campus Gasthuisberg O/N-1 B-802, Herestraat 49, Leuven BE-3000, Belgium
| | - Jens Loncke
- KU Leuven, Laboratory for Molecular and Cellular Signaling, Department of Cellular and Molecular Medicine & Leuven Kanker Instituut, Campus Gasthuisberg O/N-1 B-802, Herestraat 49, Leuven BE-3000, Belgium
| | - Geert Bultynck
- KU Leuven, Laboratory for Molecular and Cellular Signaling, Department of Cellular and Molecular Medicine & Leuven Kanker Instituut, Campus Gasthuisberg O/N-1 B-802, Herestraat 49, Leuven BE-3000, Belgium.
| | - Jan B Parys
- KU Leuven, Laboratory for Molecular and Cellular Signaling, Department of Cellular and Molecular Medicine & Leuven Kanker Instituut, Campus Gasthuisberg O/N-1 B-802, Herestraat 49, Leuven BE-3000, Belgium.
| |
Collapse
|
12
|
Muñoz-Bernart M, Budnick N, Castro A, Manzi M, Monge ME, Pioli J, Defranchi S, Parrilla G, Santilli JP, Davies K, Espinosa JM, Kobayashi K, Vigliano C, Perez-Castro C. S-adenosylhomocysteine hydrolase-like protein 1 (AHCYL1) inhibits lung cancer tumorigenesis by regulating cell plasticity. Biol Direct 2023; 18:8. [PMID: 36872327 PMCID: PMC9985837 DOI: 10.1186/s13062-023-00364-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Accepted: 02/21/2023] [Indexed: 03/07/2023] Open
Abstract
BACKGROUND Lung cancer is one of the most frequently diagnosed cancers characterized by high mortality, metastatic potential, and recurrence. Deregulated gene expression of lung cancer, likewise in many other solid tumors, accounts for their cell heterogeneity and plasticity. S-adenosylhomocysteine hydrolase-like protein 1 (AHCYL1), also known as Inositol triphosphate (IP(3)) receptor-binding protein released with IP(3) (IRBIT), plays roles in many cellular functions, including autophagy and apoptosis but AHCYL1 role in lung cancer is largely unknown. RESULTS Here, we analyzed the expression of AHCYL1 in Non-Small Cell Lung Cancer (NSCLC) cells from RNA-seq public data and surgical specimens, which revealed that AHCYL1 expression is downregulated in tumors and inverse correlated to proliferation marker Ki67 and the stemness signature expression. AHCYL1-silenced NSCLC cells showed enhanced stem-like properties in vitro, which correlated with higher expression levels of stem markers POU5F1 and CD133. Also, the lack of AHCYL1 enhanced tumorigenicity and angiogenesis in mouse xenograft models highlighting stemness features. CONCLUSIONS These findings indicate that AHCYL1 is a negative regulator in NSCLC tumorigenesis by modulating cell differentiation state and highlighting AHCYL1 as a potential prognostic biomarker for lung cancer.
Collapse
Affiliation(s)
- Melina Muñoz-Bernart
- Instituto de Investigación en Biomedicina de Buenos Aires (IBioBA) - CONICET, Partner Institute of the Max Planck Society, Buenos Aires, Argentina
| | - Nicolás Budnick
- Instituto de Investigación en Biomedicina de Buenos Aires (IBioBA) - CONICET, Partner Institute of the Max Planck Society, Buenos Aires, Argentina
| | - Araceli Castro
- Instituto de Medicina Traslacional, Trasplante y Bioingeniería (IMeTTyB), Universidad Favaloro-CONICET, Solís 453, C1078AAI, Buenos Aires, Argentina
| | - Malena Manzi
- Centro de Investigaciones en Bionanociencias (CIBION), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Godoy Cruz 2390, C1425FQD, Ciudad de Buenos Aires, Argentina.,Departamento de Fisiología, Biología Molecular y Celular, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Intendente Güiraldes, 2160 C1428EGA, Buenos Aires, Argentina.,Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Departamento de Desarrollo Analítico y Control de Procesos, Instituto Nacional de Tecnología Industrial, Av. General Paz 5445, B1650WAB, Buenos Aires, Argentina
| | - María Eugenia Monge
- Centro de Investigaciones en Bionanociencias (CIBION), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Godoy Cruz 2390, C1425FQD, Ciudad de Buenos Aires, Argentina
| | - Julieta Pioli
- Instituto de Investigación en Biomedicina de Buenos Aires (IBioBA) - CONICET, Partner Institute of the Max Planck Society, Buenos Aires, Argentina
| | - Sebastián Defranchi
- Servicio de Cirugía Torácica, Hospital Universitario de la Fundación Favaloro, Av. Belgrano 1746, C1093AAS, Buenos Aires, Argentina
| | - Gustavo Parrilla
- Servicio de Cirugía Torácica, Hospital Universitario de la Fundación Favaloro, Av. Belgrano 1746, C1093AAS, Buenos Aires, Argentina
| | - Juan Pablo Santilli
- Servicio de Anatomía Patológica, Hospital Universitario de la Fundación Favaloro, Av. Belgrano 1746, C1093AAS, Buenos Aires, Argentina
| | - Kevin Davies
- Servicio de Anatomía Patológica, Hospital Universitario de la Fundación Favaloro, Av. Belgrano 1746, C1093AAS, Buenos Aires, Argentina
| | - Joaquín M Espinosa
- Linda Crnic Institute for Down Syndrome, University of Colorado Anschutz Medical Campus, Aurora, CO, USA.,Department of Pharmacology, University of Colorado Anschutz Medical Campus, Aurora, CO, USA.,Department of Molecular, Cellular and Developmental Biology, University of Colorado Boulder, Boulder, CO, USA
| | - Ken Kobayashi
- Departamento de Fisiología, Biología Molecular y Celular, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Intendente Güiraldes, 2160 C1428EGA, Buenos Aires, Argentina.,Laboratorio de Agrobiotecnología, Instituto de Biodiversidad y Biología Experimental Aplicada (IBBEA-CONICET-UBA), Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Carlos Vigliano
- Instituto de Medicina Traslacional, Trasplante y Bioingeniería (IMeTTyB), Universidad Favaloro-CONICET, Solís 453, C1078AAI, Buenos Aires, Argentina.,Servicio de Anatomía Patológica, Hospital Universitario de la Fundación Favaloro, Av. Belgrano 1746, C1093AAS, Buenos Aires, Argentina
| | - Carolina Perez-Castro
- Instituto de Investigación en Biomedicina de Buenos Aires (IBioBA) - CONICET, Partner Institute of the Max Planck Society, Buenos Aires, Argentina.
| |
Collapse
|
13
|
Hu Z, Shi S, Ou Y, Hu F, Long D. Mitochondria-associated endoplasmic reticulum membranes: A promising toxicity regulation target. Acta Histochem 2023; 125:152000. [PMID: 36696877 DOI: 10.1016/j.acthis.2023.152000] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 01/15/2023] [Accepted: 01/16/2023] [Indexed: 01/24/2023]
Abstract
Mitochondria-associated endoplasmic reticulum membranes (MAMs) are dynamic suborganelle membranes that physically couple endoplasmic reticulum (ER) and mitochondria to provide a platform for exchange of intracellular molecules and crosstalk between the two organelles. Dysfunctions of mitochondria and ER and imbalance of intracellular homeostasis have been discovered in the research of toxics. Cellular activities such as oxidative stress, ER stress, Ca2+ transport, autophagy, mitochondrial fusion and fission, and apoptosis mediated by MAMs are closely related to the toxicological effects of various toxicants. These cellular activities mediated by MAMs crosstalk with each other. Regulating the structure and function of MAMs can alleviate the damage caused by toxicants to some extent. In this review, we discuss the relationships between MAMs and the mechanisms of toxicological effects, and highlight MAMs as a potential target for protection against toxicants.
Collapse
Affiliation(s)
- Zehui Hu
- Hunan Province Key Laboratory of Typical Environmental Pollution and Health Hazards, School of Public Health, Hengyang Medical School, University of South China, Hengyang 421001, PR China
| | - Shengyuan Shi
- Hunan Province Key Laboratory of Typical Environmental Pollution and Health Hazards, School of Public Health, Hengyang Medical School, University of South China, Hengyang 421001, PR China
| | - Yiquan Ou
- Hunan Province Key Laboratory of Typical Environmental Pollution and Health Hazards, School of Public Health, Hengyang Medical School, University of South China, Hengyang 421001, PR China
| | - Fangyan Hu
- Hunan Province Key Laboratory of Typical Environmental Pollution and Health Hazards, School of Public Health, Hengyang Medical School, University of South China, Hengyang 421001, PR China
| | - Dingxin Long
- Hunan Province Key Laboratory of Typical Environmental Pollution and Health Hazards, School of Public Health, Hengyang Medical School, University of South China, Hengyang 421001, PR China.
| |
Collapse
|
14
|
Jiang T, Wang Q, Lv J, Lin L. Mitochondria-endoplasmic reticulum contacts in sepsis-induced myocardial dysfunction. Front Cell Dev Biol 2022; 10:1036225. [PMID: 36506093 PMCID: PMC9730255 DOI: 10.3389/fcell.2022.1036225] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2022] [Accepted: 11/14/2022] [Indexed: 11/25/2022] Open
Abstract
Mitochondrial and endoplasmic reticulum (ER) are important intracellular organelles. The sites that mitochondrial and ER are closely related in structure and function are called Mitochondria-ER contacts (MERCs). MERCs are involved in a variety of biological processes, including calcium signaling, lipid synthesis and transport, autophagy, mitochondrial dynamics, ER stress, and inflammation. Sepsis-induced myocardial dysfunction (SIMD) is a vital organ damage caused by sepsis, which is closely associated with mitochondrial and ER dysfunction. Growing evidence strongly supports the role of MERCs in the pathogenesis of SIMD. In this review, we summarize the biological functions of MERCs and the roles of MERCs proteins in SIMD.
Collapse
Affiliation(s)
- Tao Jiang
- Department of Geriatrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China,Division of Cardiology, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Qian Wang
- Division of Cardiology, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jiagao Lv
- Division of Cardiology, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China,*Correspondence: Jiagao Lv, ; Li Lin, ,
| | - Li Lin
- Division of Cardiology, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China,*Correspondence: Jiagao Lv, ; Li Lin, ,
| |
Collapse
|
15
|
Means RE, Katz SG. Balancing life and death: BCL-2 family members at diverse ER-mitochondrial contact sites. FEBS J 2022; 289:7075-7112. [PMID: 34668625 DOI: 10.1111/febs.16241] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Revised: 10/11/2021] [Accepted: 10/19/2021] [Indexed: 01/13/2023]
Abstract
The outer mitochondrial membrane is a busy place. One essential activity for cellular survival is the regulation of membrane integrity by the BCL-2 family of proteins. Another critical facet of the outer mitochondrial membrane is its close approximation with the endoplasmic reticulum. These mitochondrial-associated membranes (MAMs) occupy a significant fraction of the mitochondrial surface and serve as key signaling hubs for multiple cellular processes. Each of these pathways may be considered as forming their own specialized MAM subtype. Interestingly, like membrane permeabilization, most of these pathways play critical roles in regulating cellular survival and death. Recently, the pro-apoptotic BCL-2 family member BOK has been found within MAMs where it plays important roles in their structure and function. This has led to a greater appreciation that multiple BCL-2 family proteins, which are known to participate in numerous functions throughout the cell, also have roles within MAMs. In this review, we evaluate several MAM subsets, their role in cellular homeostasis, and the contribution of BCL-2 family members to their functions.
Collapse
Affiliation(s)
- Robert E Means
- Department of Pathology, Yale University School of Medicine, New Haven, CT, USA
| | - Samuel G Katz
- Department of Pathology, Yale University School of Medicine, New Haven, CT, USA
| |
Collapse
|
16
|
Resende R, Fernandes T, Pereira AC, Marques AP, Pereira CF. Endoplasmic Reticulum-Mitochondria Contacts Modulate Reactive Oxygen Species-Mediated Signaling and Oxidative Stress in Brain Disorders: The Key Role of Sigma-1 Receptor. Antioxid Redox Signal 2022; 37:758-780. [PMID: 35369731 DOI: 10.1089/ars.2020.8231] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Significance: Mitochondria-Associated Membranes (MAMs) are highly dynamic endoplasmic reticulum (ER)-mitochondria contact sites that, due to the transfer of lipids and Ca2+ between these organelles, modulate several physiologic processes, such as ER stress response, mitochondrial bioenergetics and fission/fusion events, autophagy, and inflammation. In addition, these contacts are implicated in the modulation of the cellular redox status since several MAMs-resident proteins are involved in the generation of reactive oxygen species (ROS), which can act as both signaling mediators and deleterious molecules, depending on their intracellular levels. Recent Advances: In the past few years, structural and functional alterations of MAMs have been associated with the pathophysiology of several neurodegenerative diseases that are closely associated with the impairment of several MAMs-associated events, including perturbation of the redox state on the accumulation of high ROS levels. Critical Issues: Inter-organelle contacts must be tightly regulated to preserve cellular functioning by maintaining Ca2+ and protein homeostasis, lipid metabolism, mitochondrial dynamics and energy production, as well as ROS signaling. Simultaneously, these contacts should avoid mitochondrial Ca2+ overload, which might lead to energetic deficits and deleterious ROS accumulation, culminating in oxidative stress-induced activation of apoptotic cell death pathways, which are common features of many neurodegenerative diseases. Future Directions: Given that Sig-1R is an ER resident chaperone that is highly enriched at the MAMs and that controls ER to mitochondria Ca2+ flux, as well as oxidative and ER stress responses, its potential as a therapeutic target for neurodegenerative diseases such as Amyotrophic Lateral Sclerosis, Alzheimer, Parkinson, and Huntington diseases should be further explored. Antioxid. Redox Signal. 37, 758-780.
Collapse
Affiliation(s)
- Rosa Resende
- Center for Neuroscience and Cell Biology, Centre for Innovative Biomedicine and Biotechnology, University of Coimbra, Coimbra, Portugal
- Institute for Interdisciplinary Research, University of Coimbra, Coimbra, Portugal
| | - Tânia Fernandes
- Center for Neuroscience and Cell Biology, Centre for Innovative Biomedicine and Biotechnology, University of Coimbra, Coimbra, Portugal
- Faculty of Medicine, University of Coimbra, Coimbra, Portugal
| | - Ana Catarina Pereira
- Center for Neuroscience and Cell Biology, Centre for Innovative Biomedicine and Biotechnology, University of Coimbra, Coimbra, Portugal
- Faculty of Medicine, University of Coimbra, Coimbra, Portugal
| | - Ana Patrícia Marques
- Center for Neuroscience and Cell Biology, Centre for Innovative Biomedicine and Biotechnology, University of Coimbra, Coimbra, Portugal
- Institute for Interdisciplinary Research, University of Coimbra, Coimbra, Portugal
| | - Cláudia Fragão Pereira
- Center for Neuroscience and Cell Biology, Centre for Innovative Biomedicine and Biotechnology, University of Coimbra, Coimbra, Portugal
- Faculty of Medicine, University of Coimbra, Coimbra, Portugal
| |
Collapse
|
17
|
Zhao YX, Tang YX, Sun XH, Zhu SY, Dai XY, Li XN, Li JL. Gap Junction Protein Connexin 43 as a Target Is Internalized in Astrocyte Neurotoxicity Caused by Di-(2-ethylhexyl) Phthalate. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:5921-5931. [PMID: 35446567 DOI: 10.1021/acs.jafc.2c01635] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Di-(2-ethylhexyl) phthalate (DEHP) is widely used as a plasticizer in plastic products, consumer products, and packaging materials. It is of great health concern in both animals and humans as it released into the environment and entered into the body from plastic products over time, thereby resulting in neurotoxicity. As a pivotal regulator of the central nervous system (CNS), astrocytes, are crucial for maintaining brain homeostasis. Nevertheless, the underlying reason for astrocyte neurotoxicity due to DEHP exposure remains incompletely understood. Here, using an in vivo model of neurotoxicity in quail, this study summarizes that Cx43 is internalized by phosphorylation and translocated to the nucleus as a consequence of DEHP exposure in astrocytes. This study further demonstrated that astrocytes transformed to pro-inflammatory status and induced the formation of autophagosomes. Of note, integrated immunofluorescent codetection approaches revealed an overexpression of the glial fibrillary acidic protein (GFAP) and down-expression of Cx43 in astrocytes. Therefore, in terms of neurotoxicity, this experiment in vivo models directly linked Cx43 internalization to autophagy and neuroinflammation and ultimately locked these changes to the astrocytes of the brain. These findings unveil a potential approach targeting Cx43 internalization for the treatment of neurodegeneration caused by DEHP exposure in astrocytes.
Collapse
Affiliation(s)
- Ying-Xin Zhao
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, P. R. China
| | - Yi-Xi Tang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, P. R. China
| | - Xiao-Han Sun
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, P. R. China
| | - Shi-Yong Zhu
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, P. R. China
| | - Xue-Yan Dai
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, P. R. China
| | - Xue-Nan Li
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, P. R. China
- Key Laboratory of the Provincial Education Department of Heilongjiang for Common Animal Disease Prevention and Treatment, Northeast Agricultural University, Harbin 150030, P. R. China
- Heilongjiang Key Laboratory for Laboratory Animals and Comparative Medicine, Northeast Agricultural University, Harbin 150030, P. R. China
| | - Jin-Long Li
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, P. R. China
- Key Laboratory of the Provincial Education Department of Heilongjiang for Common Animal Disease Prevention and Treatment, Northeast Agricultural University, Harbin 150030, P. R. China
- Heilongjiang Key Laboratory for Laboratory Animals and Comparative Medicine, Northeast Agricultural University, Harbin 150030, P. R. China
| |
Collapse
|
18
|
Harvey KE, LaVigne EK, Dar MS, Salyer AE, Pratt EPS, Sample PA, Aryal UK, Gowher H, Hockerman GH. RyR2/IRBIT regulates insulin gene transcript, insulin content, and secretion in the insulinoma cell line INS-1. Sci Rep 2022; 12:7713. [PMID: 35562179 PMCID: PMC9095623 DOI: 10.1038/s41598-022-11276-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Accepted: 03/31/2022] [Indexed: 12/01/2022] Open
Abstract
The role of ER Ca2+ release via ryanodine receptors (RyR) in pancreatic β-cell function is not well defined. Deletion of RyR2 from the rat insulinoma INS-1 (RyR2KO) enhanced IP3 receptor activity stimulated by 7.5 mM glucose, coincident with reduced levels of the protein IP3 Receptor Binding protein released with Inositol 1,4,5 Trisphosphate (IRBIT). Insulin content, basal (2.5 mM glucose) and 7.5 mM glucose-stimulated insulin secretion were reduced in RyR2KO and IRBITKO cells compared to controls. INS2 mRNA levels were reduced in both RyR2KO and IRBITKO cells, but INS1 mRNA levels were specifically decreased in RyR2KO cells. Nuclear localization of S-adenosylhomocysteinase (AHCY) was increased in RyR2KO and IRBITKO cells. DNA methylation of the INS1 and INS2 gene promotor regions was very low, and not different among RyR2KO, IRBITKO, and controls, but exon 2 of the INS1 and INS2 genes was more extensively methylated in RyR2KO and IRBITKO cells. Exploratory proteomic analysis revealed that deletion of RyR2 or IRBIT resulted in differential regulation of 314 and 137 proteins, respectively, with 41 in common. These results suggest that RyR2 regulates IRBIT levels and activity in INS-1 cells, and together maintain insulin content and secretion, and regulate the proteome, perhaps via DNA methylation.
Collapse
Affiliation(s)
- Kyle E Harvey
- Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University, West Lafayette, IN, USA
| | - Emily K LaVigne
- Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University, West Lafayette, IN, USA
- Interdisciplinary Life Sciences Program, Purdue University, West Lafayette, IN, USA
| | - Mohd Saleem Dar
- Department of Biochemistry, Purdue University, West Lafayette, IN, USA
| | - Amy E Salyer
- Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University, West Lafayette, IN, USA
| | - Evan P S Pratt
- Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University, West Lafayette, IN, USA
- Interdisciplinary Life Sciences Program, Purdue University, West Lafayette, IN, USA
| | - Paxton A Sample
- Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University, West Lafayette, IN, USA
| | - Uma K Aryal
- Proteomics Facility, Bindley Bioscience Center, Purdue University, West Lafayette, IN, USA
| | - Humaira Gowher
- Department of Biochemistry, Purdue University, West Lafayette, IN, USA
| | - Gregory H Hockerman
- Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University, West Lafayette, IN, USA.
| |
Collapse
|
19
|
Inoue H, Shiozaki A, Kosuga T, Shimizu H, Kudou M, Ohashi T, Arita T, Konishi H, Komatsu S, Kubota T, Fujiwara H, Okamoto K, Kishimoto M, Konishi E, Otsuji E. Functions and Clinical Significance of CACNA2D1 in Gastric Cancer. Ann Surg Oncol 2022; 29:10.1245/s10434-022-11752-5. [PMID: 35445337 DOI: 10.1245/s10434-022-11752-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Accepted: 03/01/2022] [Indexed: 12/12/2022]
Abstract
BACKGROUND Voltage-gated calcium channels form as a complex of several subunits, among which the function of CACNA2D1, one of the genes encoding the α2δ subunit, remains unclear. The aim of our study was to investigate the role of CACNA2D1 and evaluate the efficacy of amlodipine, a blocker of CACNA2D1, in the treatment of gastric cancer (GC). METHODS Knockdown experiments were performed on the human GC cell lines MKN7 and HGC27 using CACNA2D1 small interfering RNA (siRNA), and changes in cell proliferation, the cell cycle, apoptosis, migration, and invasion were assessed. The gene expression profiles of cells were examined using a microarray analysis. An immunohistochemical (IHC) analysis was conducted on samples obtained from 196 GC patients who underwent curative gastrectomy. In addition, the antitumor effects of amlodipine were investigated using a xenograft model. RESULTS Cell proliferation, migration, and invasion were suppressed in CACNA2D1-depleted cells, and apoptosis was induced. The results of the microarray analysis showed that the apoptosis signaling pathway was enhanced via p53, BAX, and caspase 3 in CACNA2D1-depleted cells. A multivariate analysis identified high CACNA2D1 expression levels, confirmed by IHC, as an independent poor prognostic factor in GC patients. Moreover, subcutaneous tumor volumes were significantly smaller in a xenograft nude mouse model treated with a combination of amlodipine and cisplatin than in a model treated with cisplatin alone. CONCLUSIONS The present study indicates that CACNA2D1 regulates the apoptosis signaling pathway and may have potential as a biomarker for cancer growth and as a therapeutic target for GC.
Collapse
Affiliation(s)
- Hiroyuki Inoue
- Division of Digestive Surgery, Department of Surgery, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Atsushi Shiozaki
- Division of Digestive Surgery, Department of Surgery, Kyoto Prefectural University of Medicine, Kyoto, Japan.
| | - Toshiyuki Kosuga
- Division of Digestive Surgery, Department of Surgery, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Hiroki Shimizu
- Division of Digestive Surgery, Department of Surgery, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Michihiro Kudou
- Division of Digestive Surgery, Department of Surgery, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Takuma Ohashi
- Division of Digestive Surgery, Department of Surgery, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Tomohiro Arita
- Division of Digestive Surgery, Department of Surgery, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Hirotaka Konishi
- Division of Digestive Surgery, Department of Surgery, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Shuhei Komatsu
- Division of Digestive Surgery, Department of Surgery, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Takeshi Kubota
- Division of Digestive Surgery, Department of Surgery, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Hitoshi Fujiwara
- Division of Digestive Surgery, Department of Surgery, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Kazuma Okamoto
- Division of Digestive Surgery, Department of Surgery, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Mitsuo Kishimoto
- Department of Surgical Pathology, Kyoto City Hospital, Kyoto, Japan
| | - Eiichi Konishi
- Department of Surgical Pathology, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Eigo Otsuji
- Division of Digestive Surgery, Department of Surgery, Kyoto Prefectural University of Medicine, Kyoto, Japan
| |
Collapse
|
20
|
Wischhof L, Adhikari A, Mondal M, Marsal-Cots A, Biernat J, Mandelkow EM, Mandelkow E, Ehninger D, Nicotera P, Bano D. Unbiased proteomic profiling reveals the IP3R modulator AHCYL1/IRBIT as a novel interactor of microtubule-associated protein tau. J Biol Chem 2022; 298:101774. [PMID: 35218773 PMCID: PMC8956953 DOI: 10.1016/j.jbc.2022.101774] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2022] [Revised: 02/16/2022] [Accepted: 02/17/2022] [Indexed: 11/25/2022] Open
Abstract
Microtubule-associated protein tau is a naturally unfolded protein that can modulate a vast array of physiological processes through direct or indirect binding with molecular partners. Aberrant tau homeostasis has been implicated in the pathogenesis of several neurodegenerative disorders, including Alzheimer's disease. In this study, we performed an unbiased high-content protein profiling assay by incubating recombinant human tau on microarrays containing thousands of human polypeptides. Among the putative tau-binding partners, we identify SAH hydrolase-like protein 1/inositol 1,4,5-trisphosphate receptor (IP3R)-binding protein (AHCYL1/IRBIT), a member of the SAH hydrolase family and a previously described modulator of IP3R activity. Using coimmunoprecipitation assays, we show that endogenous as well as overexpressed tau can physically interact with AHCYL1/IRBIT in brain tissues and cultured cells. Proximity ligation assay experiments demonstrate that tau overexpression may modify the close localization of AHCYL1/IRBIT to IP3R at the endoplasmic reticulum. Together, our experimental evidence indicates that tau interacts with AHCYL1/IRBIT and potentially modulates AHCYL1/IRBIT function.
Collapse
Affiliation(s)
- Lena Wischhof
- German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany
| | - Aasha Adhikari
- German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany
| | | | | | - Jacek Biernat
- German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany; CAESAR Research Center, Bonn, Germany
| | - Eva Maria Mandelkow
- German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany; CAESAR Research Center, Bonn, Germany
| | - Eckhard Mandelkow
- German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany; CAESAR Research Center, Bonn, Germany; Department of Neurodegenerative Diseases and Geriatric Psychiatry, University of Bonn, Bonn, Germany
| | - Dan Ehninger
- German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany
| | | | - Daniele Bano
- German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany.
| |
Collapse
|
21
|
Markovinovic A, Greig J, Martín-Guerrero SM, Salam S, Paillusson S. Endoplasmic reticulum-mitochondria signaling in neurons and neurodegenerative diseases. J Cell Sci 2022; 135:274270. [PMID: 35129196 DOI: 10.1242/jcs.248534] [Citation(s) in RCA: 60] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Recent advances have revealed common pathological changes in neurodegenerative diseases, such as Alzheimer's disease, Parkinson's disease and amyotrophic lateral sclerosis with related frontotemporal dementia (ALS/FTD). Many of these changes can be linked to alterations in endoplasmic reticulum (ER)-mitochondria signaling, including dysregulation of Ca2+ signaling, autophagy, lipid metabolism, ATP production, axonal transport, ER stress responses and synaptic dysfunction. ER-mitochondria signaling involves specialized regions of ER, called mitochondria-associated membranes (MAMs). Owing to their role in neurodegenerative processes, MAMs have gained attention as they appear to be associated with all the major neurodegenerative diseases. Furthermore, their specific role within neuronal maintenance is being revealed as mutant genes linked to major neurodegenerative diseases have been associated with damage to these specialized contacts. Several studies have now demonstrated that these specialized contacts regulate neuronal health and synaptic transmission, and that MAMs are damaged in patients with neurodegenerative diseases. This Review will focus on the role of MAMs and ER-mitochondria signaling within neurons and how damage of the ER-mitochondria axis leads to a disruption of vital processes causing eventual neurodegeneration.
Collapse
Affiliation(s)
- Andrea Markovinovic
- Department of Basic and Clinical Neuroscience. Institute of Psychiatry, Psychology and Neuroscience, King's College London, London SE5 9RX, UK
| | - Jenny Greig
- Department of Basic and Clinical Neuroscience. Institute of Psychiatry, Psychology and Neuroscience, King's College London, London SE5 9RX, UK.,Inserm, Centre de Recherche en Transplantation et Immunologie, UMR 1064, ITUN, 44093, Nantes, France
| | - Sandra María Martín-Guerrero
- Department of Basic and Clinical Neuroscience. Institute of Psychiatry, Psychology and Neuroscience, King's College London, London SE5 9RX, UK
| | - Shaakir Salam
- Department of Basic and Clinical Neuroscience. Institute of Psychiatry, Psychology and Neuroscience, King's College London, London SE5 9RX, UK
| | - Sebastien Paillusson
- Department of Basic and Clinical Neuroscience. Institute of Psychiatry, Psychology and Neuroscience, King's College London, London SE5 9RX, UK.,Université de Nantes, Inserm, TENS, The Enteric Nervous System in Gut and Brain Diseases, IMAD, Nantes, 1 rue Gaston Veil, 44035, Nantes, France
| |
Collapse
|
22
|
Long MJC, Ly P, Aye Y. Still no Rest for the Reductases: Ribonucleotide Reductase (RNR) Structure and Function: An Update. Subcell Biochem 2022; 99:155-197. [PMID: 36151376 DOI: 10.1007/978-3-031-00793-4_5] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Herein we present a multidisciplinary discussion of ribonucleotide reductase (RNR), the essential enzyme uniquely responsible for conversion of ribonucleotides to deoxyribonucleotides. This chapter primarily presents an overview of this multifaceted and complex enzyme, covering RNR's role in enzymology, biochemistry, medicinal chemistry, and cell biology. It further focuses on RNR from mammals, whose interesting and often conflicting roles in health and disease are coming more into focus. We present pitfalls that we think have not always been dealt with by researchers in each area and further seek to unite some of the field-specific observations surrounding this enzyme. Our work is thus not intended to cover any one topic in extreme detail, but rather give what we consider to be the necessary broad grounding to understand this critical enzyme holistically. Although this is an approach we have advocated in many different areas of scientific research, there is arguably no other single enzyme that embodies the need for such broad study than RNR. Thus, we submit that RNR itself is a paradigm of interdisciplinary research that is of interest from the perspective of the generalist and the specialist alike. We hope that the discussions herein will thus be helpful to not only those wanting to tackle RNR-specific problems, but also those working on similar interdisciplinary projects centering around other enzymes.
Collapse
Affiliation(s)
- Marcus J C Long
- University of Lausanne (UNIL), Lausanne, Switzerland
- Department of Biochemistry, UNIL, Epalinges, Switzerland
| | - Phillippe Ly
- Swiss Federal Institute of Technology Lausanne (EPFL), Lausanne, Switzerland
- EPFL SB ISIC LEAGO, Lausanne, Switzerland
| | - Yimon Aye
- Swiss Federal Institute of Technology Lausanne (EPFL), Lausanne, Switzerland.
- EPFL SB ISIC LEAGO, Lausanne, Switzerland.
| |
Collapse
|
23
|
Wang Y, Zhang X, Wen Y, Li S, Lu X, Xu R, Li C. Endoplasmic Reticulum-Mitochondria Contacts: A Potential Therapy Target for Cardiovascular Remodeling-Associated Diseases. Front Cell Dev Biol 2021; 9:774989. [PMID: 34858991 PMCID: PMC8631538 DOI: 10.3389/fcell.2021.774989] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Accepted: 10/08/2021] [Indexed: 12/14/2022] Open
Abstract
Cardiovascular remodeling occurs in cardiomyocytes, collagen meshes, and vascular beds in the progress of cardiac insufficiency caused by a variety of cardiac diseases such as chronic ischemic heart disease, chronic overload heart disease, myocarditis, and myocardial infarction. The morphological changes that occur as a result of remodeling are the critical pathological basis for the occurrence and development of serious diseases and also determine morbidity and mortality. Therefore, the inhibition of remodeling is an important approach to prevent and treat heart failure and other related diseases. The endoplasmic reticulum (ER) and mitochondria are tightly linked by ER-mitochondria contacts (ERMCs). ERMCs play a vital role in different signaling pathways and provide a satisfactory structural platform for the ER and mitochondria to interact and maintain the normal function of cells, mainly by involving various cellular life processes such as lipid metabolism, calcium homeostasis, mitochondrial function, ER stress, and autophagy. Studies have shown that abnormal ERMCs may promote the occurrence and development of remodeling and participate in the formation of a variety of cardiovascular remodeling-associated diseases. This review focuses on the structure and function of the ERMCs, and the potential mechanism of ERMCs involved in cardiovascular remodeling, indicating that ERMCs may be a potential target for new therapeutic strategies against cardiovascular remodeling-induced diseases.
Collapse
Affiliation(s)
- Yu Wang
- Innovation Research Institute of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China.,Emergency Department, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Xinrong Zhang
- Innovation Research Institute of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Ya Wen
- Innovation Research Institute of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Sixuan Li
- Innovation Research Institute of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Xiaohui Lu
- Emergency Department, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Ran Xu
- Jinan Tianqiao People's Hospital, Jinan, China
| | - Chao Li
- Innovation Research Institute of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China
| |
Collapse
|
24
|
Popgeorgiev N, Gillet G. Bcl-xL and IP3R interaction: Intimate relationship with an uncertain outcome. Cell Calcium 2021; 101:102504. [PMID: 34823105 DOI: 10.1016/j.ceca.2021.102504] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Accepted: 11/17/2021] [Indexed: 01/25/2023]
Abstract
Bcl-2 family proteins are major apoptosis regulators. They control a key step in apoptosis execution referred to as the mitochondrial outer membrane permeabilization. Several Bcl-2 homologs were also reported to act at the level of the endoplasmic reticulum (ER) where they control intracellular Ca2+ trafficking. There is an increasing body of evidence that, in addition to their conventional role as MOMP regulators, several Bcl-2 family members, including Bcl-xL, are linked to Ca2+ -dependent processes, independent of cell death. Among them Bcl-xL has been proposed to promote IP3R1 channel opening and sustain mitochondrial bioenergetics. A recent article by Rosa and colleagues in Cell Death & Differentiation challenges this model and support the notion that Bcl-xL acts more as a repressor than as a sensitizer of IP3R1 opening. They suggest the existence of intrafamilial competition among the Bcl-2 family of protein with respect to their effect on IP3R Ca2+ permeability, which might be important regarding their respective non-canonical functions. In this regard, the results by Rosa and colleagues open exciting avenues regarding the biological process by which Bcl-xL affects Ca2+ trafficking through IP 3 R channels.
Collapse
Affiliation(s)
- Nikolay Popgeorgiev
- Université de Lyon, Centre de recherche en cancérologie de Lyon, U1052 INSERM, UMR CNRS 5286, Université Lyon I, Centre Léon Bérard, 28 rue Laennec, 69008 Lyon, France.
| | - Germain Gillet
- Université de Lyon, Centre de recherche en cancérologie de Lyon, U1052 INSERM, UMR CNRS 5286, Université Lyon I, Centre Léon Bérard, 28 rue Laennec, 69008 Lyon, France; Hospices civils de Lyon, Centre de Biologie Sud, Centre Hospitalier Lyon Sud, chemin du Grand Revoyet, 69495 Pierre Bénite, France.
| |
Collapse
|
25
|
Communications between Mitochondria and Endoplasmic Reticulum in the Regulation of Metabolic Homeostasis. Cells 2021; 10:cells10092195. [PMID: 34571844 PMCID: PMC8468463 DOI: 10.3390/cells10092195] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Revised: 08/12/2021] [Accepted: 08/16/2021] [Indexed: 12/18/2022] Open
Abstract
Mitochondria associated membranes (MAM), which are the contact sites between endoplasmic reticulum (ER) and mitochondria, have emerged as an important hub for signaling molecules to integrate the cellular and organelle homeostasis, thus facilitating the adaptation of energy metabolism to nutrient status. This review explores the dynamic structural and functional features of the MAM and summarizes the various abnormalities leading to the impaired insulin sensitivity and metabolic diseases.
Collapse
|
26
|
Sodium bicarbonate transporter NBCe1 regulates proliferation and viability of human prostate cancer cells LNCaP and PC3. Oncol Rep 2021; 46:129. [PMID: 34013380 PMCID: PMC8144930 DOI: 10.3892/or.2021.8080] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Accepted: 03/29/2021] [Indexed: 12/16/2022] Open
Abstract
Studies on cultured cancer cells or cell lines have revealed multiple acid extrusion mechanisms and their involvement in cancer cell growth and progression. In the present study, the role of the sodium bicarbonate transporters (NBCs) in prostate cancer cell proliferation and viability was examined. qPCR revealed heterogeneous expression of five NBC isoforms in human prostate cancer cell lines LNCaP, PC3, 22RV1, C4-2, DU145, and the prostate cell line RWPE-1. In fluorescence pH measurement of LNCaP cells, which predominantly express NBCe1, Na+ and HCO3–-mediated acid extrusion was identified by bath ion replacement and sensitivity to the NBC inhibitor S0859. NBCe1 knockdown using siRNA oligonucleotides decreased the number of viable cells, and pharmacological inhibition with S0859 (50 µM) resulted in a similar decrease. NBCe1 knockdown and inhibition also increased cell death, but this effect was small and slow. In PC3 cells, which express all NBC isoforms, NBCe1 knockdown decreased viable cell number and increased cell death. The effects of NBCe1 knockdown were comparable to those by S0859, indicating that NBCe1 among NBCs primarily contributes to PC3 cell proliferation and viability. S0859 inhibition also decreased the formation of cell spheres in 3D cultures. Immunohistochemistry of human prostate cancer tissue microarrays revealed NBCe1 localization to the glandular epithelial cells in prostate tissue and robust expression in acinar and duct adenocarcinoma. In conclusion, our study demonstrates that NBCe1 regulates acid extrusion in prostate cancer cells and inhibiting or abolishing this transporter decreases cancer cell proliferation.
Collapse
|
27
|
Bcl-2 Family of Proteins in the Control of Mitochondrial Calcium Signalling: An Old Chap with New Roles. Int J Mol Sci 2021; 22:ijms22073730. [PMID: 33918511 PMCID: PMC8038216 DOI: 10.3390/ijms22073730] [Citation(s) in RCA: 55] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Revised: 03/29/2021] [Accepted: 03/31/2021] [Indexed: 12/12/2022] Open
Abstract
Bcl-2 family proteins are considered as one of the major regulators of apoptosis. Indeed, this family is known to control the mitochondrial outer membrane permeabilization (MOMP): a central step in the mitochondrial pathway of apoptosis. However, in recent years Bcl-2 family members began to emerge as a new class of intracellular calcium (Ca2+) regulators. At mitochondria-ER contacts (MERCs) these proteins are able to interact with major Ca2+ transporters, thus controlling mitochondrial Ca2+ homeostasis and downstream Ca2+ signalling pathways. Beyond the regulation of cell survival, this Bcl-2-dependent control over the mitochondrial Ca2+ dynamics has far-reaching consequences on the physiology of the cell. Here, we review how the Bcl-2 family of proteins mechanistically regulate mitochondrial Ca2+ homeostasis and how this regulation orchestrates cell death/survival decisions as well as the non-apoptotic process of cell migration.
Collapse
|
28
|
Balancing ER-Mitochondrial Ca 2+ Fluxes in Health and Disease. Trends Cell Biol 2021; 31:598-612. [PMID: 33678551 DOI: 10.1016/j.tcb.2021.02.003] [Citation(s) in RCA: 80] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2020] [Revised: 01/29/2021] [Accepted: 02/02/2021] [Indexed: 02/08/2023]
Abstract
Organelles cooperate with each other to control cellular homeostasis and cell functions by forming close connections through membrane contact sites. Important contacts are present between the endoplasmic reticulum (ER), the main intracellular Ca2+-storage organelle, and the mitochondria, the organelle responsible not only for the majority of cellular ATP production but also for switching on cell death processes. Several Ca2+-transport systems focalize at these contact sites, thereby enabling the efficient transmission of Ca2+ signals from the ER toward mitochondria. This provides tight control of mitochondrial functions at the microdomain level. Here, we discuss how ER-mitochondrial Ca2+ transfers support cell function and how their dysregulation underlies, drives, or contributes to pathogenesis and pathophysiology, with a major focus on cancer and neurodegeneration but also with attention to other diseases such as diabetes and rare genetic diseases.
Collapse
|
29
|
Ahumada-Castro U, Bustos G, Silva-Pavez E, Puebla-Huerta A, Lovy A, Cárdenas C. In the Right Place at the Right Time: Regulation of Cell Metabolism by IP3R-Mediated Inter-Organelle Ca 2+ Fluxes. Front Cell Dev Biol 2021; 9:629522. [PMID: 33738285 PMCID: PMC7960657 DOI: 10.3389/fcell.2021.629522] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2020] [Accepted: 01/19/2021] [Indexed: 12/18/2022] Open
Abstract
In the last few years, metabolism has been shown to be controlled by cross-organelle communication. The relationship between the endoplasmic reticulum and mitochondria/lysosomes is the most studied; here, inositol 1,4,5-triphosphate (IP3) receptor (IP3R)-mediated calcium (Ca2+) release plays a central role. Recent evidence suggests that IP3R isoforms participate in synthesis and degradation pathways. This minireview will summarize the current findings in this area, emphasizing the critical role of Ca2+ communication on organelle function as well as catabolism and anabolism, particularly in cancer.
Collapse
Affiliation(s)
- Ulises Ahumada-Castro
- Geroscience Center for Brain Health and Metabolism, Center for Integrative Biology, Faculty of Sciences, Universidad Mayor, Santiago, Chile
| | - Galdo Bustos
- Geroscience Center for Brain Health and Metabolism, Center for Integrative Biology, Faculty of Sciences, Universidad Mayor, Santiago, Chile
| | - Eduardo Silva-Pavez
- Geroscience Center for Brain Health and Metabolism, Center for Integrative Biology, Faculty of Sciences, Universidad Mayor, Santiago, Chile
| | - Andrea Puebla-Huerta
- Geroscience Center for Brain Health and Metabolism, Center for Integrative Biology, Faculty of Sciences, Universidad Mayor, Santiago, Chile
| | - Alenka Lovy
- Geroscience Center for Brain Health and Metabolism, Center for Integrative Biology, Faculty of Sciences, Universidad Mayor, Santiago, Chile.,Department of Neuroscience, Center for Neuroscience Research, Tufts University School of Medicine, Boston, MA, United States
| | - César Cárdenas
- Geroscience Center for Brain Health and Metabolism, Center for Integrative Biology, Faculty of Sciences, Universidad Mayor, Santiago, Chile.,Buck Institute for Research on Aging, Novato, CA, United States.,Department of Chemistry and Biochemistry, University of California, Santa Barbara, Santa Barbara, CA, United States
| |
Collapse
|
30
|
Gambardella J, Morelli MB, Wang X, Castellanos V, Mone P, Santulli G. The discovery and development of IP3 receptor modulators: an update. Expert Opin Drug Discov 2021; 16:709-718. [PMID: 33356639 DOI: 10.1080/17460441.2021.1858792] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Introduction: Inositol 1,4,5-trisphosphate receptors (IP3Rs) are intracellular calcium (Ca2+) release channels located on the endoplasmic/sarcoplasmic reticulum. The availability of the structure of the ligand-binding domain of IP3Rs has enabled the design of compatible ligands, but the limiting step remains their actual effectiveness in a biological context.Areas covered: This article summarizes the compelling literature on both agonists and antagonists targeting IP3Rs, emphasizing their strengths and limitations. The main challenges toward the discovery and development of IP3 receptor modulators are also described.Expert opinion: Despite significant progress in recent years, the pharmacology of IP3R still has major drawbacks, especially concerning the availability of specific antag onists. Moreover, drugs specifically targeting the three different subtypes of IP3R are especially needed.
Collapse
Affiliation(s)
- Jessica Gambardella
- Department of Medicine (Division of Cardiology), Wilf Family Cardiovascular Research Institute, Einstein Institute for Aging Research, Albert Einstein College of Medicine, Montefiore University Hospital, New York City, USA.,Department of Molecular Pharmacology, Fleischer Institute for Diabetes and Metabolism, Einstein-Sinai Diabetes Research Center (ES-DRC), Albert Einstein College of Medicine, New York City, USA.,Department of Advanced Biomedical Sciences, "Federico II" University, Naples, Italy.,International Translational Research and Medical Education (ITME), Naples, Italy
| | - Marco B Morelli
- Department of Medicine (Division of Cardiology), Wilf Family Cardiovascular Research Institute, Einstein Institute for Aging Research, Albert Einstein College of Medicine, Montefiore University Hospital, New York City, USA.,Department of Molecular Pharmacology, Fleischer Institute for Diabetes and Metabolism, Einstein-Sinai Diabetes Research Center (ES-DRC), Albert Einstein College of Medicine, New York City, USA
| | - Xujun Wang
- Department of Medicine (Division of Cardiology), Wilf Family Cardiovascular Research Institute, Einstein Institute for Aging Research, Albert Einstein College of Medicine, Montefiore University Hospital, New York City, USA
| | - Vanessa Castellanos
- Department of Medicine (Division of Cardiology), Wilf Family Cardiovascular Research Institute, Einstein Institute for Aging Research, Albert Einstein College of Medicine, Montefiore University Hospital, New York City, USA
| | - Pasquale Mone
- University of Campania "Luigi Vanvitelli", Naples, Italy
| | - Gaetano Santulli
- Department of Medicine (Division of Cardiology), Wilf Family Cardiovascular Research Institute, Einstein Institute for Aging Research, Albert Einstein College of Medicine, Montefiore University Hospital, New York City, USA.,Department of Molecular Pharmacology, Fleischer Institute for Diabetes and Metabolism, Einstein-Sinai Diabetes Research Center (ES-DRC), Albert Einstein College of Medicine, New York City, USA.,Department of Advanced Biomedical Sciences, "Federico II" University, Naples, Italy.,International Translational Research and Medical Education (ITME), Naples, Italy
| |
Collapse
|
31
|
Lin S, Meng T, Huang H, Zhuang H, He Z, Yang H, Feng D. Molecular machineries and physiological relevance of ER-mediated membrane contacts. Theranostics 2021; 11:974-995. [PMID: 33391516 PMCID: PMC7738843 DOI: 10.7150/thno.51871] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2020] [Accepted: 10/22/2020] [Indexed: 02/06/2023] Open
Abstract
Membrane contact sites (MCSs) are defined as regions where two organelles are closely apposed, and most MCSs associated with each other via protein-protein or protein-lipid interactions. A number of key molecular machinery systems participate in mediating substance exchange and signal transduction, both of which are essential processes in terms of cellular physiology and pathophysiology. The endoplasmic reticulum (ER) is the largest reticulum network within the cell and has extensive communication with other cellular organelles, including the plasma membrane (PM), mitochondria, Golgi, endosomes and lipid droplets (LDs). The contacts and reactions between them are largely mediated by various protein tethers and lipids. Ions, lipids and even proteins can be transported between the ER and neighboring organelles or recruited to the contact site to exert their functions. This review focuses on the key molecules involved in the formation of different contact sites as well as their biological functions.
Collapse
Affiliation(s)
- Shiyin Lin
- Affiliated Cancer Hospital and Institute of Guangzhou Medical University, Guangzhou Municipal and Guangdong Provincial Key Laboratory of Protein Modification and Degradation, School of Basic Medical Sciences, Guangzhou Medical University, 511436, Guangzhou, China
- State Key Laboratory of Respiratory Disease, Guangzhou Medical University, 511436, Guangzhou, China
| | - Tian Meng
- Affiliated Cancer Hospital and Institute of Guangzhou Medical University, Guangzhou Municipal and Guangdong Provincial Key Laboratory of Protein Modification and Degradation, School of Basic Medical Sciences, Guangzhou Medical University, 511436, Guangzhou, China
- State Key Laboratory of Respiratory Disease, Guangzhou Medical University, 511436, Guangzhou, China
| | - Haofeng Huang
- Affiliated Cancer Hospital and Institute of Guangzhou Medical University, Guangzhou Municipal and Guangdong Provincial Key Laboratory of Protein Modification and Degradation, School of Basic Medical Sciences, Guangzhou Medical University, 511436, Guangzhou, China
| | - Haixia Zhuang
- Affiliated Cancer Hospital and Institute of Guangzhou Medical University, Guangzhou Municipal and Guangdong Provincial Key Laboratory of Protein Modification and Degradation, School of Basic Medical Sciences, Guangzhou Medical University, 511436, Guangzhou, China
| | - Zhengjie He
- Affiliated Cancer Hospital and Institute of Guangzhou Medical University, Guangzhou Municipal and Guangdong Provincial Key Laboratory of Protein Modification and Degradation, School of Basic Medical Sciences, Guangzhou Medical University, 511436, Guangzhou, China
- State Key Laboratory of Respiratory Disease, Guangzhou Medical University, 511436, Guangzhou, China
| | - Huan Yang
- Department of Pulmonary and Critical Care Medicine, Hunan Provincial People's Hospital, The First Affiliated Hospital of Hunan Normal University, Changsha 410021, China
| | - Du Feng
- Affiliated Cancer Hospital and Institute of Guangzhou Medical University, Guangzhou Municipal and Guangdong Provincial Key Laboratory of Protein Modification and Degradation, School of Basic Medical Sciences, Guangzhou Medical University, 511436, Guangzhou, China
- State Key Laboratory of Respiratory Disease, Guangzhou Medical University, 511436, Guangzhou, China
| |
Collapse
|
32
|
Su P, Wu H, Wang M, Cai L, Liu Y, Chen LM. IRBIT activates NBCe1-B by releasing the auto-inhibition module from the transmembrane domain. J Physiol 2020; 599:1151-1172. [PMID: 33237573 PMCID: PMC7898672 DOI: 10.1113/jp280578] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2020] [Accepted: 11/18/2020] [Indexed: 12/16/2022] Open
Abstract
Key points The electrogenic Na+/HCO3−cotransporter NBCe1‐B is widely expressed in many tissues, including pancreas, submandibular gland, brain, heart, etc. NBCe1‐B has very low activity under basal condition due to auto‐inhibition, but can be fully activated by protein interaction with the IP3R‐binding protein released with inositol 1,4,5‐trisphosphate (IRBIT). The structural components of the auto‐inhibition domain and the IRBIT‐binding domain of NBCe1‐B are finely characterized based on systematic mutations in the present study and data from previous studies. Reducing negative charges on the cytosol side of the transmembrane domain greatly decreases the magnitude of the auto‐inhibition of NBCe1‐B. We propose that the auto‐inhibition domain functions as a brake module that inactivates NBCe1‐B by binding to, via electrostatic attraction, the transmembrane domain; IRBIT activates NBCe1‐B by releasing the brake from the transmembrane domain via competitive binding to the auto‐inhibition domain.
Abstract The electrogenic Na+/HCO3− cotransporter NBCe1‐B is widely expressed in many tissues in the body. NBCe1‐B exhibits only basal activity due to the action of the auto‐inhibition domain (AID) in its unique amino‐terminus. However, NBCe1‐B can be activated by interaction with the IP3R‐binding protein released with inositol 1,4,5‐trisphosphate (IRBIT). Here, we investigate the molecular mechanism underlying the auto‐inhibition of NBCe1‐B and its activation by IRBIT. The IRBIT‐binding domain (IBD) of NBCe1‐B spans residues 1−52, essentially consisting of two arms, one negatively charged (residues 1−24) and the other positively charged (residues 40−52). The AID mainly spans residues 40−85, overlapping with the IBD in the positively charged arm. The magnitude of auto‐inhibition of NBCe1‐B is greatly decreased by manipulating the positively charged residues in the AID or by replacing a set of negatively charged residues with neutral ones in the transmembrane domain. The interaction between IRBIT and NBCe1‐B is abolished by mutating a set of negatively charged Asp/Glu residues (to Asn/Gln) plus a set of Ser/Thr residues (to Ala) in the PEST domain of IRBIT. However, this interaction is not affected by replacing the same set of Ser/Thr residues in the PEST domain with Asp. We propose that: (1) the AID, acting as a brake, binds to the transmembrane domain via electrostatic interaction to slow down NBCe1‐B; (2) IRBIT activates NBCe1‐B by releasing the brake from the transmembrane domain. The electrogenic Na+/HCO3−cotransporter NBCe1‐B is widely expressed in many tissues, including pancreas, submandibular gland, brain, heart, etc. NBCe1‐B has very low activity under basal condition due to auto‐inhibition, but can be fully activated by protein interaction with the IP3R‐binding protein released with inositol 1,4,5‐trisphosphate (IRBIT). The structural components of the auto‐inhibition domain and the IRBIT‐binding domain of NBCe1‐B are finely characterized based on systematic mutations in the present study and data from previous studies. Reducing negative charges on the cytosol side of the transmembrane domain greatly decreases the magnitude of the auto‐inhibition of NBCe1‐B. We propose that the auto‐inhibition domain functions as a brake module that inactivates NBCe1‐B by binding to, via electrostatic attraction, the transmembrane domain; IRBIT activates NBCe1‐B by releasing the brake from the transmembrane domain via competitive binding to the auto‐inhibition domain.
Collapse
Affiliation(s)
- Pan Su
- Key Laboratory of Molecular Biophysics of Ministry of Education, School of Life Science & Technology, Huazhong University of Science & Technology, Wuhan, Hubei, China
| | - Han Wu
- Key Laboratory of Molecular Biophysics of Ministry of Education, School of Life Science & Technology, Huazhong University of Science & Technology, Wuhan, Hubei, China
| | - Meng Wang
- Key Laboratory of Molecular Biophysics of Ministry of Education, School of Life Science & Technology, Huazhong University of Science & Technology, Wuhan, Hubei, China
| | - Lu Cai
- Key Laboratory of Molecular Biophysics of Ministry of Education, School of Life Science & Technology, Huazhong University of Science & Technology, Wuhan, Hubei, China
| | - Ying Liu
- Key Laboratory of Molecular Biophysics of Ministry of Education, School of Life Science & Technology, Huazhong University of Science & Technology, Wuhan, Hubei, China
| | - Li-Ming Chen
- Key Laboratory of Molecular Biophysics of Ministry of Education, School of Life Science & Technology, Huazhong University of Science & Technology, Wuhan, Hubei, China
| |
Collapse
|
33
|
Voronkov AV, Pozdnyakov DI. Neuroprotective Effect of L-carnitine. Focus on Changing Mitochondrial Function. RESEARCH RESULTS IN PHARMACOLOGY 2020. [DOI: 10.3897/rrpharmacology.6.57419] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Introduction: In this study, the neuroprotective effect of L-carnitine administeredper osin a dose of 25 mg/kg – 800 mg/kg was evaluated. The effects of L-carnitine on changes in mitochondrial function were also studied.Materials and Methods: The neuroprotective effect and mitochondrial function were evaluated in a model of permanent focal ischemia in Wistar-line rats. L-carnitine was administered to rats orally for 72 hours from the moment of modeling ischemia. On the 4thday after the ischemia simulation, the change in the respiratory function of the mitochondria, the opening time of the mitochondrial permeability transition pore, the mitochondrial membrane potential, the concentration of intracellular calcium and the size of the cerebral necrosis zone were determined in rats’ brain supernatant.Results: As a result, it was found that the administration of L-carnitine contributed to the restoration of mitochondrial function and a decrease in the size of the brain necrosis zone. At the same time, the administration of L-carnitine in low doses (25 mg/kg – 100 mg/kg) did not have a significant effect on the change in the concentration of intracellular calcium. It should be noted that an increase in the dose of L-carnitine from 200 mg/kg to 800 mg/kg was not accompanied by a significant increase in the therapeutic effect.Discussion: L-carnitine is one of the key biomolecules that directly affect metabolic processes. It is known that L-carnitine acts as a ”shuttle” for long-chain fatty acids and thus can affect the alteration of mitochondrial function. However, the detailed nature of the mitochondriotropic action of L-carnitine has not been yet established. This was the focus of this study, which showed that the mitochondrion-oriented effect of L-carnitine is dose-dependent and expressed in the form of restoring the respiratory function of mitochondria, restoring the mitochondrial potential and increasing the latent opening time of the mitochondrial permeability transition pore, reducing the level of intracellular calcium.Conclusion: The study allowed us to expand our understanding of the L-carnitine neuroprotective effect and the effect of this compound on changes in mitochondrial function.Graphical abstract
Collapse
|
34
|
Loncke J, Kerkhofs M, Kaasik A, Bezprozvanny I, Bultynck G. Recent advances in understanding IP3R function with focus on ER-mitochondrial Ca2+ transfers. CURRENT OPINION IN PHYSIOLOGY 2020. [DOI: 10.1016/j.cophys.2020.07.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
35
|
Liu JN, Ma ZL, Su RJ, Huang KQ. [Effect of enhancer of zeste homolog 2 inhibitor GSK126 on the proliferation and apoptosis of tongue squamous cell carcinoma]. HUA XI KOU QIANG YI XUE ZA ZHI = HUAXI KOUQIANG YIXUE ZAZHI = WEST CHINA JOURNAL OF STOMATOLOGY 2020; 38:495-501. [PMID: 33085231 DOI: 10.7518/hxkq.2020.05.004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
OBJECTIVE This study aims to study the effect of the enhancer of zeste homolog 2 (EZH2) inhibitor GSK126 on the proliferation and apoptosis of human tongue squamous cell carcinoma cells in vitro and explore its related mechanisms in order to obtain insights into the clinical treatment of tongue squamous cell carcinoma. METHODS Different concentrations of GSK126 were applied to CAL-27 cells of tongue squamous cell carcinoma, and the effects of drugs on cell proliferation were detected through methyl thiazolyl tetrazolium (MTT) assay, colony formation assay, and 5-ethynyl-2'-deoxyuridine (EdU) fluorescence staining. Hoechst33342 fluorescence staining and the JC-1 method were used in observing apoptosis. The expression levels of extracellular regulated protein kinases (ERK), phospho-extracellular regulated protein kinases (p-ERK), Bax, Bcl-2, and Cleaved caspase-9 in Cal-27 cells were detected through Western blot. RESULTS GSK126 inhibited CAL-27 cell proliferation and promoted apoptosis. GSK126 down-regulated the expression of p-ERK and Bcl-2 and increased the expression of Bax and Cleaved caspase-9 (P<0.05). CONCLUSIONS GSK126 can inhibit the proliferation of CAL-27 cells in tongue squamous cell carcinoma and promote its apoptosis, and the related mechanism may be associated with the inhibition of the MEK/ERK signaling pathway and activation of the Bax/Bcl-2 pathway.
Collapse
Affiliation(s)
- Jia-Nan Liu
- Second Affiliated Hospital of Jinzhou Medical University and School of Stomatology, Jinzhou 121004, China
| | - Zhao-Lei Ma
- Second Affiliated Hospital of Jinzhou Medical University and School of Stomatology, Jinzhou 121004, China
| | - Rong-Jian Su
- Life Science Institute of Jinzhou Medical University, Jinzhou 121000, China
| | - Ke-Qiang Huang
- Second Affiliated Hospital of Jinzhou Medical University and School of Stomatology, Jinzhou 121004, China
| |
Collapse
|
36
|
Tanaka Y, Iida R, Takada S, Kubota T, Yamanaka M, Sugiyama N, Abdelnour Y, Ogra Y. Quantitative Elemental Analysis of a Single Cell by Using Inductively Coupled Plasma‐Mass Spectrometry in Fast Time‐Resolved Analysis Mode. Chembiochem 2020; 21:3266-3272. [DOI: 10.1002/cbic.202000358] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2020] [Revised: 07/13/2020] [Indexed: 01/07/2023]
Affiliation(s)
- Yu‐ki Tanaka
- Graduate School of Pharmaceutical Sciences Chiba University 1-8-1 Inohana Chuo Chiba 260-8675 Japan
| | - Risako Iida
- Graduate School of Pharmaceutical Sciences Chiba University 1-8-1 Inohana Chuo Chiba 260-8675 Japan
| | - Shohei Takada
- Graduate School of Pharmaceutical Sciences Chiba University 1-8-1 Inohana Chuo Chiba 260-8675 Japan
| | - Tetsuo Kubota
- Agilent Technologies International Japan, Ltd. 9-1 Takakura-machi Hachioji Tokyo 192-0033 Japan
| | - Michiko Yamanaka
- Agilent Technologies International Japan, Ltd. 9-1 Takakura-machi Hachioji Tokyo 192-0033 Japan
| | - Naoki Sugiyama
- Agilent Technologies International Japan, Ltd. 9-1 Takakura-machi Hachioji Tokyo 192-0033 Japan
| | - Yolande Abdelnour
- Agilent Technologies, France Parc Technopolis, Bâtiment Olympe 3 avenue du Canada 91940 Les Ulis France
| | - Yasumitsu Ogra
- Graduate School of Pharmaceutical Sciences Chiba University 1-8-1 Inohana Chuo Chiba 260-8675 Japan
| |
Collapse
|
37
|
Zung N, Schuldiner M. New horizons in mitochondrial contact site research. Biol Chem 2020; 401:793-809. [PMID: 32324151 DOI: 10.1515/hsz-2020-0133] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2020] [Accepted: 04/14/2020] [Indexed: 12/18/2022]
Abstract
Contact sites, areas where two organelles are held in close proximity through the action of molecular tethers, enable non-vesicular communication between compartments. Mitochondria have been center stage in the contact site field since the discovery of the first contact between mitochondria and the endoplasmic reticulum (ER) over 60 years ago. However, only now, in the last decade, has there been a burst of discoveries regarding contact site biology in general and mitochondrial contacts specifically. The number and types of characterized contacts increased dramatically, new molecular mechanisms enabling contact formation were discovered, additional unexpected functions for contacts were shown, and their roles in cellular and organismal physiology were emphasized. Here, we focus on mitochondria as we highlight the most recent developments, future goals and unresolved questions in the field.
Collapse
Affiliation(s)
- Naama Zung
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot, 7610001, Israel
| | - Maya Schuldiner
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot, 7610001, Israel
| |
Collapse
|
38
|
Ivanova H, Vervliet T, Monaco G, Terry LE, Rosa N, Baker MR, Parys JB, Serysheva II, Yule DI, Bultynck G. Bcl-2-Protein Family as Modulators of IP 3 Receptors and Other Organellar Ca 2+ Channels. Cold Spring Harb Perspect Biol 2020; 12:cshperspect.a035089. [PMID: 31501195 DOI: 10.1101/cshperspect.a035089] [Citation(s) in RCA: 64] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The pro- and antiapoptotic proteins belonging to the B-cell lymphoma-2 (Bcl-2) family exert a critical control over cell-death processes by enabling or counteracting mitochondrial outer membrane permeabilization. Beyond this mitochondrial function, several Bcl-2 family members have emerged as critical modulators of intracellular Ca2+ homeostasis and dynamics, showing proapoptotic and antiapoptotic functions. Bcl-2 family proteins specifically target several intracellular Ca2+-transport systems, including organellar Ca2+ channels: inositol 1,4,5-trisphosphate receptors (IP3Rs) and ryanodine receptors (RyRs), Ca2+-release channels mediating Ca2+ flux from the endoplasmic reticulum, as well as voltage-dependent anion channels (VDACs), which mediate Ca2+ flux across the mitochondrial outer membrane into the mitochondria. Although the formation of protein complexes between Bcl-2 proteins and these channels has been extensively studied, a major advance during recent years has been elucidating the complex interaction of Bcl-2 proteins with IP3Rs. Distinct interaction sites for different Bcl-2 family members were identified in the primary structure of IP3Rs. The unique molecular profiles of these Bcl-2 proteins may account for their distinct functional outcomes when bound to IP3Rs. Furthermore, Bcl-2 inhibitors used in cancer therapy may affect IP3R function as part of their proapoptotic effect and/or as an adverse effect in healthy cells.
Collapse
Affiliation(s)
- Hristina Ivanova
- Laboratory of Molecular and Cellular Signaling, Department of Cellular and Molecular Medicine, KU Leuven, B-3000 Leuven, Belgium
| | - Tim Vervliet
- Laboratory of Molecular and Cellular Signaling, Department of Cellular and Molecular Medicine, KU Leuven, B-3000 Leuven, Belgium
| | - Giovanni Monaco
- Laboratory of Molecular and Cellular Signaling, Department of Cellular and Molecular Medicine, KU Leuven, B-3000 Leuven, Belgium
| | - Lara E Terry
- Department of Pharmacology and Physiology, School of Medicine and Dentistry, University of Rochester, Rochester, New York 14642
| | - Nicolas Rosa
- Laboratory of Molecular and Cellular Signaling, Department of Cellular and Molecular Medicine, KU Leuven, B-3000 Leuven, Belgium
| | - Mariah R Baker
- Department of Biochemistry and Molecular Biology, McGovern Medical School at The University of Texas Health Science Center at Houston, Structural Biology Imaging Center, Houston, Texas 77030
| | - Jan B Parys
- Laboratory of Molecular and Cellular Signaling, Department of Cellular and Molecular Medicine, KU Leuven, B-3000 Leuven, Belgium
| | - Irina I Serysheva
- Department of Biochemistry and Molecular Biology, McGovern Medical School at The University of Texas Health Science Center at Houston, Structural Biology Imaging Center, Houston, Texas 77030
| | - David I Yule
- Department of Pharmacology and Physiology, School of Medicine and Dentistry, University of Rochester, Rochester, New York 14642
| | - Geert Bultynck
- Laboratory of Molecular and Cellular Signaling, Department of Cellular and Molecular Medicine, KU Leuven, B-3000 Leuven, Belgium
| |
Collapse
|
39
|
New Insights in the IP 3 Receptor and Its Regulation. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2020; 1131:243-270. [PMID: 31646513 DOI: 10.1007/978-3-030-12457-1_10] [Citation(s) in RCA: 56] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The inositol 1,4,5-trisphosphate (IP3) receptor (IP3R) is a Ca2+-release channel mainly located in the endoplasmic reticulum (ER). Three IP3R isoforms are responsible for the generation of intracellular Ca2+ signals that may spread across the entire cell or occur locally in so-called microdomains. Because of their ubiquitous expression, these channels are involved in the regulation of a plethora of cellular processes, including cell survival and cell death. To exert their proper function a fine regulation of their activity is of paramount importance. In this review, we will highlight the recent advances in the structural analysis of the IP3R and try to link these data with the newest information concerning IP3R activation and regulation. A special focus of this review will be directed towards the regulation of the IP3R by protein-protein interaction. Especially the protein family formed by calmodulin and related Ca2+-binding proteins and the pro- and anti-apoptotic/autophagic Bcl-2-family members will be highlighted. Finally, recently identified and novel IP3R regulatory proteins will be discussed. A number of these interactions are involved in cancer development, illustrating the potential importance of modulating IP3R-mediated Ca2+ signaling in cancer treatment.
Collapse
|
40
|
Abstract
In the body, extracellular stimuli produce inositol 1,4,5-trisphosphate (IP3), an intracellular chemical signal that binds to the IP3 receptor (IP3R) to release calcium ions (Ca2+) from the endoplasmic reticulum. In the past 40 years, the wide-ranging functions mediated by IP3R and its genetic defects causing a variety of disorders have been unveiled. Recent cryo-electron microscopy and X-ray crystallography have resolved IP3R structures and begun to integrate with concurrent functional studies, which can explicate IP3-dependent opening of Ca2+-conducting gates placed ∼90 Å away from IP3-binding sites and its regulation by Ca2+. This review highlights recent research progress on the IP3R structure and function. We also propose how protein plasticity within IP3R, which involves allosteric gating and assembly transformations accompanied by rapid and chronic structural changes, would enable it to regulate diverse functions at cellular microdomains in pathophysiological states.
Collapse
Affiliation(s)
- Kozo Hamada
- Laboratory of Cell Calcium Signaling, Shanghai Institute for Advanced Immunochemical Studies (SIAIS), ShanghaiTech University, Shanghai, 201210, China; ,
| | - Katsuhiko Mikoshiba
- Laboratory of Cell Calcium Signaling, Shanghai Institute for Advanced Immunochemical Studies (SIAIS), ShanghaiTech University, Shanghai, 201210, China; ,
| |
Collapse
|
41
|
Filadi R, Pizzo P. ER-mitochondria tethering and Ca 2+ crosstalk: The IP 3R team takes the field. Cell Calcium 2019; 84:102101. [PMID: 31622942 DOI: 10.1016/j.ceca.2019.102101] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Revised: 10/06/2019] [Accepted: 10/07/2019] [Indexed: 12/21/2022]
Abstract
Inter-organelle communication represents a booming topic in cell biology research, with endoplasmic reticulum (ER)-mitochondria coupling playing the lion's share. In a recent work, Bartok and colleagues found that inositol trisphosphates receptors (IP3Rs), in addition to their well-known involvement in ER-mitochondria Ca2+ transfer, are endowed with structural properties at organelles' interface.
Collapse
Affiliation(s)
- Riccardo Filadi
- Department of Biomedical Sciences, University of Padua, Via U. Bassi 58/B, 35121, Padua, Italy; Neuroscience Institute - Italian National Research Council (CNR), Padua, 35121, Italy
| | - Paola Pizzo
- Department of Biomedical Sciences, University of Padua, Via U. Bassi 58/B, 35121, Padua, Italy; Neuroscience Institute - Italian National Research Council (CNR), Padua, 35121, Italy.
| |
Collapse
|
42
|
Ivanova H, Wagner LE, Tanimura A, Vandermarliere E, Luyten T, Welkenhuyzen K, Alzayady KJ, Wang L, Hamada K, Mikoshiba K, De Smedt H, Martens L, Yule DI, Parys JB, Bultynck G. Bcl-2 and IP 3 compete for the ligand-binding domain of IP 3Rs modulating Ca 2+ signaling output. Cell Mol Life Sci 2019; 76:3843-3859. [PMID: 30989245 PMCID: PMC11105292 DOI: 10.1007/s00018-019-03091-8] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2018] [Revised: 03/21/2019] [Accepted: 04/01/2019] [Indexed: 12/27/2022]
Abstract
Bcl-2 proteins have emerged as critical regulators of intracellular Ca2+ dynamics by directly targeting and inhibiting the IP3 receptor (IP3R), a major intracellular Ca2+-release channel. Here, we demonstrate that such inhibition occurs under conditions of basal, but not high IP3R activity, since overexpressed and purified Bcl-2 (or its BH4 domain) can inhibit IP3R function provoked by low concentration of agonist or IP3, while fails to attenuate against high concentration of agonist or IP3. Surprisingly, Bcl-2 remained capable of inhibiting IP3R1 channels lacking the residues encompassing the previously identified Bcl-2-binding site (a.a. 1380-1408) located in the ARM2 domain, part of the modulatory region. Using a plethora of computational, biochemical and biophysical methods, we demonstrate that Bcl-2 and more particularly its BH4 domain bind to the ligand-binding domain (LBD) of IP3R1. In line with this finding, the interaction between the LBD and Bcl-2 (or its BH4 domain) was sensitive to IP3 and adenophostin A, ligands of the IP3R. Vice versa, the BH4 domain of Bcl-2 counteracted the binding of IP3 to the LBD. Collectively, our work reveals a novel mechanism by which Bcl-2 influences IP3R activity at the level of the LBD. This allows for exquisite modulation of Bcl-2's inhibitory properties on IP3Rs that is tunable to the level of IP3 signaling in cells.
Collapse
MESH Headings
- Adenosine/analogs & derivatives
- Adenosine/metabolism
- Amino Acid Sequence
- Animals
- Binding, Competitive
- COS Cells
- Calcium Signaling
- Cells, Cultured
- Chlorocebus aethiops
- Inositol 1,4,5-Trisphosphate/metabolism
- Inositol 1,4,5-Trisphosphate Receptors/agonists
- Inositol 1,4,5-Trisphosphate Receptors/antagonists & inhibitors
- Inositol 1,4,5-Trisphosphate Receptors/chemistry
- Inositol 1,4,5-Trisphosphate Receptors/genetics
- Ligands
- Mice
- Molecular Docking Simulation
- Protein Domains
- Proto-Oncogene Proteins c-bcl-2/chemistry
- Proto-Oncogene Proteins c-bcl-2/metabolism
- Sequence Deletion
Collapse
Affiliation(s)
- Hristina Ivanova
- Laboratory of Molecular and Cellular Signaling, Department of Cellular and Molecular Medicine, Leuven Cancer Institute (LKI), KU Leuven, Campus Gasthuisberg O/N-1 Bus 802, Herestraat 49, 3000, Leuven, Belgium
| | - Larry E Wagner
- University of Rochester Medical Center School of Medicine and Dentistry, 601 Elmwood Ave, Box 711, Rochester, NY, 14642, USA
| | - Akihiko Tanimura
- Department of Pharmacology, School of Dentistry, Health Sciences University of Hokkaido, Kita-121757 Kanazawa, Ishikari-Tobetsu, Hokkaido, 061-0293, Japan
| | - Elien Vandermarliere
- Center for Medical Biotechnology, VIB-UGent, 9000, Ghent, Belgium
- Department of Biochemistry, Ghent University, 9000, Ghent, Belgium
- Bioinformatics Institute Ghent, Ghent University, 9000, Ghent, Belgium
| | - Tomas Luyten
- Laboratory of Molecular and Cellular Signaling, Department of Cellular and Molecular Medicine, Leuven Cancer Institute (LKI), KU Leuven, Campus Gasthuisberg O/N-1 Bus 802, Herestraat 49, 3000, Leuven, Belgium
| | - Kirsten Welkenhuyzen
- Laboratory of Molecular and Cellular Signaling, Department of Cellular and Molecular Medicine, Leuven Cancer Institute (LKI), KU Leuven, Campus Gasthuisberg O/N-1 Bus 802, Herestraat 49, 3000, Leuven, Belgium
| | - Kamil J Alzayady
- University of Rochester Medical Center School of Medicine and Dentistry, 601 Elmwood Ave, Box 711, Rochester, NY, 14642, USA
| | - Liwei Wang
- University of Rochester Medical Center School of Medicine and Dentistry, 601 Elmwood Ave, Box 711, Rochester, NY, 14642, USA
| | - Kozo Hamada
- Lab Developmental Neurobiology, RIKEN Brain Science Institute, 2-1 Hirosawa Wako-Shi, 351-0198, Saitama, Japan
- SIAIS (Shanghai Institute for Advanced Immunochemical Studies), ShanghaiTech University, 393 Middle Huaxia Road, 201210, Shanghai, China
| | - Katsuhiko Mikoshiba
- Lab Developmental Neurobiology, RIKEN Brain Science Institute, 2-1 Hirosawa Wako-Shi, 351-0198, Saitama, Japan
- SIAIS (Shanghai Institute for Advanced Immunochemical Studies), ShanghaiTech University, 393 Middle Huaxia Road, 201210, Shanghai, China
| | - Humbert De Smedt
- Laboratory of Molecular and Cellular Signaling, Department of Cellular and Molecular Medicine, Leuven Cancer Institute (LKI), KU Leuven, Campus Gasthuisberg O/N-1 Bus 802, Herestraat 49, 3000, Leuven, Belgium
| | - Lennart Martens
- Center for Medical Biotechnology, VIB-UGent, 9000, Ghent, Belgium
- Department of Biochemistry, Ghent University, 9000, Ghent, Belgium
- Bioinformatics Institute Ghent, Ghent University, 9000, Ghent, Belgium
| | - David I Yule
- University of Rochester Medical Center School of Medicine and Dentistry, 601 Elmwood Ave, Box 711, Rochester, NY, 14642, USA
| | - Jan B Parys
- Laboratory of Molecular and Cellular Signaling, Department of Cellular and Molecular Medicine, Leuven Cancer Institute (LKI), KU Leuven, Campus Gasthuisberg O/N-1 Bus 802, Herestraat 49, 3000, Leuven, Belgium
| | - Geert Bultynck
- Laboratory of Molecular and Cellular Signaling, Department of Cellular and Molecular Medicine, Leuven Cancer Institute (LKI), KU Leuven, Campus Gasthuisberg O/N-1 Bus 802, Herestraat 49, 3000, Leuven, Belgium.
| |
Collapse
|
43
|
Doghman-Bouguerra M, Lalli E. ER-mitochondria interactions: Both strength and weakness within cancer cells. BIOCHIMICA ET BIOPHYSICA ACTA. MOLECULAR CELL RESEARCH 2019; 1866:650-662. [PMID: 30668969 DOI: 10.1016/j.bbamcr.2019.01.009] [Citation(s) in RCA: 63] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2018] [Revised: 01/10/2019] [Accepted: 01/17/2019] [Indexed: 12/22/2022]
Abstract
ER-mitochondria contact sites represent hubs for signaling that control mitochondrial biology related to several aspects of cellular survival, metabolism, cell death sensitivity and metastasis, which all contribute to tumorigenesis. Altered ER-mitochondria contacts can deregulate Ca2+ homeostasis, phospholipid metabolism, mitochondrial morphology and dynamics. MAM represent both a hot spot in cancer onset and progression and an Achilles' heel of cancer cells that can be exploited for therapeutic perspectives. Over the past years, an increasing number of cancer-related proteins, including oncogenes and tumor suppressors, have been localized in MAM and exert their pro- or antiapoptotic functions through the regulation of Ca2+ transfer and signaling between the two organelles. In this review, we highlight the central role of ER-mitochondria contact sites in tumorigenesis and focus on chemotherapeutic drugs or potential targets that act on MAM properties for new therapeutic approaches in cancer.
Collapse
Affiliation(s)
- Mabrouka Doghman-Bouguerra
- Université Côte d'Azur, Valbonne 06560, France; CNRS UMR 7275, Sophia Antipolis, Valbonne 06560, France; EXPOGEN-CANCER CNRS International Associated Laboratory, Valbonne 06560, France; Institut de Pharmacologie Moléculaire et Cellulaire, Valbonne 06560, France.
| | - Enzo Lalli
- Université Côte d'Azur, Valbonne 06560, France; CNRS UMR 7275, Sophia Antipolis, Valbonne 06560, France; EXPOGEN-CANCER CNRS International Associated Laboratory, Valbonne 06560, France; Institut de Pharmacologie Moléculaire et Cellulaire, Valbonne 06560, France.
| |
Collapse
|
44
|
Xia M, Zhang Y, Jin K, Lu Z, Zeng Z, Xiong W. Communication between mitochondria and other organelles: a brand-new perspective on mitochondria in cancer. Cell Biosci 2019; 9:27. [PMID: 30931098 PMCID: PMC6425566 DOI: 10.1186/s13578-019-0289-8] [Citation(s) in RCA: 139] [Impact Index Per Article: 23.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2019] [Accepted: 03/09/2019] [Indexed: 12/24/2022] Open
Abstract
Mitochondria are energy factories of cells and are important pivots for intracellular interactions with other organelles. They interact with the endoplasmic reticulum, peroxisomes, and nucleus through signal transduction, vesicle transport, and membrane contact sites to regulate energy metabolism, biosynthesis, immune response, and cell turnover. However, when the communication between organelles fails and the mitochondria are dysfunctional, it may induce tumorigenesis. In this review, we elaborate on how mitochondria interact with the endoplasmic reticulum, peroxisomes, and cell nuclei, as well as the relation between organelle communication and tumor development .
Collapse
Affiliation(s)
- MengFang Xia
- 1NHC Key Laboratory of Carcinogenesis, Xiangya Hospital, Central South University, Changsha, Hunan China.,2The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, Hunan China.,3Hunan Key Laboratory of Non Resolving Inflammation and Cancer, Disease Genome Research Center, The Third Xiangya Hospital, Central South University, Changsha, Hunan China
| | - YaZhuo Zhang
- 1NHC Key Laboratory of Carcinogenesis, Xiangya Hospital, Central South University, Changsha, Hunan China.,2The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, Hunan China.,3Hunan Key Laboratory of Non Resolving Inflammation and Cancer, Disease Genome Research Center, The Third Xiangya Hospital, Central South University, Changsha, Hunan China
| | - Ke Jin
- 2The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, Hunan China
| | - ZiTong Lu
- 2The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, Hunan China
| | - Zhaoyang Zeng
- 1NHC Key Laboratory of Carcinogenesis, Xiangya Hospital, Central South University, Changsha, Hunan China.,2The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, Hunan China.,3Hunan Key Laboratory of Non Resolving Inflammation and Cancer, Disease Genome Research Center, The Third Xiangya Hospital, Central South University, Changsha, Hunan China
| | - Wei Xiong
- 1NHC Key Laboratory of Carcinogenesis, Xiangya Hospital, Central South University, Changsha, Hunan China.,2The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, Hunan China.,3Hunan Key Laboratory of Non Resolving Inflammation and Cancer, Disease Genome Research Center, The Third Xiangya Hospital, Central South University, Changsha, Hunan China
| |
Collapse
|
45
|
Abstract
BCL-2 family proteins interact in a network that regulates apoptosis. The BH3 amino acid sequence motif serves to bind together this conglomerate protein family, both literally and figuratively. BH3 motifs are present in antiapoptotic and proapoptotic BCL-2 homologs, and in a separate group of unrelated BH3-only proteins often appended to the BCL-2 family. BH3-containing helices mediate many of their physical interactions to determine cell death versus survival, leading to the development of BH3 mimetics as therapeutics. Here we provide an overview of BCL-2 family interactions, their relevance in health and disease, and the progress toward regulating their interactions therapeutically.
Collapse
Affiliation(s)
- Jason D Huska
- Department of Molecular Microbiology and Immunology, Johns Hopkins University Bloomberg School of Public Health, Baltimore, MD, USA
| | - Heather M Lamb
- Department of Molecular Microbiology and Immunology, Johns Hopkins University Bloomberg School of Public Health, Baltimore, MD, USA
| | - J Marie Hardwick
- Department of Molecular Microbiology and Immunology, Johns Hopkins University Bloomberg School of Public Health, Baltimore, MD, USA.
| |
Collapse
|
46
|
Wang X, Lu J, Cao J, Ma B, Gao C, Qi F. MicroRNA-18a promotes hepatocellular carcinoma proliferation, migration, and invasion by targeting Bcl2L10. Onco Targets Ther 2018; 11:7919-7934. [PMID: 30519035 PMCID: PMC6235330 DOI: 10.2147/ott.s180971] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND Hepatocellular carcinoma (HCC) is known to feature several microRNA dysregulations. This study aimed to determine and investigate the prognostic value of microRNA (miRNA/miR)-18a and its role in regulating the progression of HCC. METHODS miR-18a expressions in human HCC tissues, pair-matched adjacent normal liver tissues as well as in HCC cell lines were determined by quantitative real-time PCR. The prognostic value of miR-18a was determined using Kaplan-Meier survival analysis and multivariable Cox regression assay. The ability of miR-18a in promoting HCC progression was verified in vitro. RESULTS miR-18a expressions in HCC tissues and cells were more than twice those of the normal control group (P<0.05). miR-18a expression was associated with the alpha-fetoprotein (AFP) level, TNM stage, tumor size, and intrahepatic vascular invasion (P<0.05). Kaplan- Meier survival analysis revealed that HCC patients with high expression of miR-18a possessed a more unfavorable prognosis (log-rank P<0.001). Overexpression of miR-18a promoted cell apoptosis and proliferation, induced S phase transition, as well as enhanced the migration and invasion ability of HCC cells. miR-18a was found to directly target the downstream molecule Bcl2L10. Furthermore, overexpressing Bcl2L10 was able to partly reverse the promoting effects of miR-18a on HCC cell progression. CONCLUSION miR-18a may serve as a prognostic biomarker of HCC as it is demonstrated to carry out a decisive role in HCC progression by promoting HCC cell invasion, migration, and proliferation through targeting Bcl2L10.
Collapse
Affiliation(s)
- Xiaodong Wang
- Department of General Surgery, Tianjin Medical University General Hospital, Tianjin, China,
| | - Jian Lu
- Department of General Surgery, Tianjin Medical University General Hospital, Tianjin, China,
| | - Jisen Cao
- Department of Hepatobiliary Surgery, Tianjin Third Center Hospital, Tianjin, China
| | - Bozhao Ma
- Department of General Surgery, Tianjin Medical University General Hospital, Tianjin, China,
| | - Chao Gao
- Department of General Surgery, Tianjin Medical University General Hospital, Tianjin, China,
| | - Feng Qi
- Department of General Surgery, Tianjin Medical University General Hospital, Tianjin, China,
| |
Collapse
|
47
|
Carbone M, Amelio I, Affar EB, Brugarolas J, Cannon-Albright LA, Cantley LC, Cavenee WK, Chen Z, Croce CM, Andrea AD, Gandara D, Giorgi C, Jia W, Lan Q, Mak TW, Manley JL, Mikoshiba K, Onuchic JN, Pass HI, Pinton P, Prives C, Rothman N, Sebti SM, Turkson J, Wu X, Yang H, Yu H, Melino G. Consensus report of the 8 and 9th Weinman Symposia on Gene x Environment Interaction in carcinogenesis: novel opportunities for precision medicine. Cell Death Differ 2018; 25:1885-1904. [PMID: 30323273 PMCID: PMC6219489 DOI: 10.1038/s41418-018-0213-5] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2018] [Accepted: 08/06/2018] [Indexed: 12/13/2022] Open
Abstract
The relative contribution of intrinsic genetic factors and extrinsic environmental ones to cancer aetiology and natural history is a lengthy and debated issue. Gene-environment interactions (G x E) arise when the combined presence of both a germline genetic variant and a known environmental factor modulates the risk of disease more than either one alone. A panel of experts discussed our current understanding of cancer aetiology, known examples of G × E interactions in cancer, and the expanded concept of G × E interactions to include somatic cancer mutations and iatrogenic environmental factors such as anti-cancer treatment. Specific genetic polymorphisms and genetic mutations increase susceptibility to certain carcinogens and may be targeted in the near future for prevention and treatment of cancer patients with novel molecularly based therapies. There was general consensus that a better understanding of the complexity and numerosity of G × E interactions, supported by adequate technological, epidemiological, modelling and statistical resources, will further promote our understanding of cancer and lead to novel preventive and therapeutic approaches.
Collapse
Affiliation(s)
| | | | - El Bachir Affar
- Department of Medicine, Maisonneuve-Rosemont Hospital Research Center, University of Montréal, Montréal, Quebec, H1T 2M4, Canada
| | - James Brugarolas
- Department of Internal Medicine, Hematology-Oncology Division, Kidney Cancer Program, Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA
| | - Lisa A Cannon-Albright
- Genetic Epidemiology, Department of Internal Medicine, University of Utah School of Medicine, Huntsman Cancer Institute, Salt Lake City, UT, USA
- George E. Wahlen Department of Veterans Affairs Medical Center, Salt Lake City, UT, USA
| | - Lewis C Cantley
- Meyer Cancer Center, Weill Cornell Medical College, 413 E. 69(th) Street, New York, NY, 10021, USA
| | - Webster K Cavenee
- Ludwig Institute for Cancer Research, University of California San Diego, La Jolla, CA, 92093, USA
| | - Zhijian Chen
- Department of Molecular Biology and Howard Hughes Medical Institute, University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA
| | - Carlo M Croce
- Department of Molecular Virology, Immunology, and Medical Genetics, Comprehensive Cancer Center, The Ohio State University, Columbus, OH, USA
| | - Alan D' Andrea
- Department of Radiation Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, 02215, USA
| | - David Gandara
- Thoracic Oncology, UC Davis, Sacramento, CA, 96817, USA
| | - Carlotta Giorgi
- Department of Morphology, Surgery and Experimental Medicine, Section of Pathology, Oncology and Experimental Biology, Laboratory for Technologies of Advanced Therapies (LTTA), University of Ferrara, Ferrara, Italy
| | - Wei Jia
- Hawaii Cancer Center, Honolulu, HI, USA
| | - Qing Lan
- Occupational & Environmental Epidemiology Branch Division of Cancer Epidemiology & Genetics National Cancer Institute NIH, Bethesda, MD, USA
| | - Tak Wah Mak
- The Campbell Family Institute for Breast Cancer Research, Princess Margaret Cancer Centre, Toronto, ON, M5G 2M9, Canada
| | - James L Manley
- Department of Biological Sciences, Columbia University, New York, NY, USA
| | - Katsuhiko Mikoshiba
- Laboratory for Developmental Neurobiology, RIKEN Brain Science Institute, Wako, Saitama, 351-0198, Japan
| | - Jose N Onuchic
- Center for Theoretical Biological Physics, Rice University, Houston, TX, 77005, USA
| | - Harvey I Pass
- Division of General Thoracic Surgery, Department of Cardiothoracic Surgery, NYU Langone Medical Center, New York, NY, USA
| | - Paolo Pinton
- Department of Morphology, Surgery and Experimental Medicine, Section of Pathology, Oncology and Experimental Biology, Laboratory for Technologies of Advanced Therapies (LTTA), University of Ferrara, Ferrara, Italy
| | - Carol Prives
- Department of Biological Sciences, Columbia University, New York, New York, 10027, USA
| | - Nathaniel Rothman
- Occupational & Environmental Epidemiology Branch Division of Cancer Epidemiology & Genetics National Cancer Institute NIH, Bethesda, MD, USA
| | - Said M Sebti
- Drug Discovery Department, Moffitt Cancer Center, and Department of Oncologic Sciences, University of South Florida, Tampa, FL, 33612, USA
| | | | - Xifeng Wu
- The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | | | | | - Gerry Melino
- MRC Toxicology Unit, Leicester, UK.
- Department of Experimental Medicine and Surgery, University of Rome Tor Vergata, Rome, Italy.
| |
Collapse
|
48
|
APD-Containing Cyclolipodepsipeptides Target Mitochondrial Function in Hypoxic Cancer Cells. Cell Chem Biol 2018; 25:1337-1349.e12. [DOI: 10.1016/j.chembiol.2018.07.010] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2018] [Revised: 06/12/2018] [Accepted: 07/24/2018] [Indexed: 12/11/2022]
|
49
|
Csordás G, Weaver D, Hajnóczky G. Endoplasmic Reticulum-Mitochondrial Contactology: Structure and Signaling Functions. Trends Cell Biol 2018; 28:523-540. [PMID: 29588129 DOI: 10.1016/j.tcb.2018.02.009] [Citation(s) in RCA: 426] [Impact Index Per Article: 60.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2017] [Revised: 02/23/2018] [Accepted: 02/23/2018] [Indexed: 02/08/2023]
Abstract
Interorganellar contacts are increasingly recognized as central to the control of cellular behavior. These contacts, which typically involve a small fraction of the endomembrane surface, are local communication hubs that resemble synapses. We propose the term contactology to denote the analysis of interorganellar contacts. Endoplasmic reticulum (ER) contacts with mitochondria were recognized several decades ago; major roles in ion and lipid transfer, signaling, and membrane dynamics have been established, while others continue to emerge. The functional diversity of ER-mitochondrial (ER-mito) contacts is mirrored in their structural heterogeneity, with subspecialization likely supported by multiple, different linker-forming protein structures. The nanoscale size of the contacts has made studying their structure, function, and dynamics difficult. This review focuses on the structure of the ER-mito contacts, methods for studying them, and the roles of contacts in Ca2+ and reactive oxygen species (ROS) signaling.
Collapse
Affiliation(s)
- György Csordás
- MitoCare Center for Mitochondrial Imaging Research and Diagnostics, Department of Pathology, Anatomy and Cell Biology, Thomas Jefferson University, Philadelphia, PA 19107, USA.
| | - David Weaver
- MitoCare Center for Mitochondrial Imaging Research and Diagnostics, Department of Pathology, Anatomy and Cell Biology, Thomas Jefferson University, Philadelphia, PA 19107, USA.
| | - György Hajnóczky
- MitoCare Center for Mitochondrial Imaging Research and Diagnostics, Department of Pathology, Anatomy and Cell Biology, Thomas Jefferson University, Philadelphia, PA 19107, USA.
| |
Collapse
|
50
|
Bcl-2 inhibitors as anti-cancer therapeutics: The impact of and on calcium signaling. Cell Calcium 2018; 70:102-116. [DOI: 10.1016/j.ceca.2017.05.014] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2017] [Revised: 05/24/2017] [Accepted: 05/24/2017] [Indexed: 01/08/2023]
|