1
|
Mustra Rakic J, Pullinger CR, Van Blarigan EL, Movsesyan I, Stock EO, Malloy MJ, Kane JP. Increased prevalence of coronary heart disease among current smokers carrying APOL1 risk variants within the African American population. J Clin Lipidol 2025:S1933-2874(25)00264-8. [PMID: 40360375 DOI: 10.1016/j.jacl.2025.04.189] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2024] [Revised: 03/17/2025] [Accepted: 04/07/2025] [Indexed: 05/15/2025]
Abstract
BACKGROUND The apolipoprotein L1 (APOL1) G1 and G2 gene variants, highly prevalent among the African American population (rare in other racial groups), are linked to increased risk of kidney disease, sepsis, and potentially coronary heart disease (CHD). Their role in tobacco-related CHD remains unclear. OBJECTIVE To investigate the effect of APOL1 risk variants on the association between tobacco smoking and prevalent CHD in African American adults. METHODS We conducted a cross-sectional study involving 519 African American adults recruited through the University of California San Francisco Lipid Clinic. Using multivariable logistic regression, we assessed the association between tobacco smoking and CHD, overall and with its most severe subtype, myocardial infarction (MI), among all participants and APOL1 genotype subgroups. RESULTS Among participants, 41% were current (14%) or former (27%) smokers, 54% carried APOL1 risk variants (1 or 2 alleles), and 28% had CHD, including 16% having MI. Current smokers with APOL1 risk variants had 3.3 times higher odds of CHD compared to nonsmokers (95% CI: 1.6, 6.8), with the strongest effect observed in those with 2 risk alleles (odds ratio [OR]: 7.3, CI: 1.1, 48.6) and a substantial effect in carriers of a single risk allele (OR: 3.2, CI: 1.5, 7.2). Among non-carriers, current smoking was not significantly associated with CHD (OR: 1.3). A similar trend was observed for MI. Former smoking was associated with CHD (OR: 2.0), independent of APOL1 genotype. CONCLUSION African American smokers with APOL1 G1 and/or G2 risk variants may be at greater risk of CHD; this relationship appears to follow an additive model.
Collapse
Affiliation(s)
- Jelena Mustra Rakic
- Cardiovascular Research Institute, University of California San Francisco, San Francisco, CA (Drs Mustra Rakic, Pullinger, Movsesyan, Stock, Malloy, and Kane); Center for Tobacco Control Research and Education, University of California San Francisco, San Francisco, CA (Drs Mustra Rakic, and Kane).
| | - Clive R Pullinger
- Cardiovascular Research Institute, University of California San Francisco, San Francisco, CA (Drs Mustra Rakic, Pullinger, Movsesyan, Stock, Malloy, and Kane); Department of Physiological Nursing, University of California San Francisco, San Francisco, CA (Dr Pullinger)
| | - Erin L Van Blarigan
- Department of Epidemiology and Biostatistics, University of California San Francisco, San Francisco, CA (Dr Van Blarigan)
| | - Irina Movsesyan
- Cardiovascular Research Institute, University of California San Francisco, San Francisco, CA (Drs Mustra Rakic, Pullinger, Movsesyan, Stock, Malloy, and Kane)
| | - Eveline Oestreicher Stock
- Cardiovascular Research Institute, University of California San Francisco, San Francisco, CA (Drs Mustra Rakic, Pullinger, Movsesyan, Stock, Malloy, and Kane); Department of Medicine, University of California San Francisco, San Francisco, CA (Drs Stock, Malloy, and Kane)
| | - Mary J Malloy
- Cardiovascular Research Institute, University of California San Francisco, San Francisco, CA (Drs Mustra Rakic, Pullinger, Movsesyan, Stock, Malloy, and Kane); Department of Medicine, University of California San Francisco, San Francisco, CA (Drs Stock, Malloy, and Kane)
| | - John P Kane
- Cardiovascular Research Institute, University of California San Francisco, San Francisco, CA (Drs Mustra Rakic, Pullinger, Movsesyan, Stock, Malloy, and Kane); Center for Tobacco Control Research and Education, University of California San Francisco, San Francisco, CA (Drs Mustra Rakic, and Kane); Department of Medicine, University of California San Francisco, San Francisco, CA (Drs Stock, Malloy, and Kane); Department of Biochemistry and Biophysics, University of California San Francisco, San Francisco, CA (Dr Kane)
| |
Collapse
|
2
|
Wang QS, Huang J, Chan L, Haste N, Olsson N, Gaun A, McAllister F, Madhireddy D, Baruch A, Melamud E, Baryshnikova A. Platform-dependent effects of genetic variants on plasma APOL1 and their implications for kidney disease. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.01.30.635763. [PMID: 39975113 PMCID: PMC11838367 DOI: 10.1101/2025.01.30.635763] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/21/2025]
Abstract
Mutations in apolipoprotein L1 (APOL1) are strongly associated with an increased risk of kidney disease in individuals of African ancestry, yet the underlying mechanisms remain largely unknown. Plasma proteomics provides opportunities to elucidate mechanisms of disease by studying the effects of disease-associated variants on circulating protein levels. Here, we examine the genetic drivers of circulating APOL1 in individuals of African and European ancestry from four independent cohorts (UK Biobank, AASK, deCODE and Health ABC) employing three proteomic technologies (Olink, SomaLogic and mass spectrometry). We find that disease-associated APOL1 G1 and G2 variants are strong pQTLs for plasma APOL1 in Olink and SomaLogic, but the direction of their effects depends on the proteomic platform. We identify an additional APOL1 missense variant (rs2239785), common in Europeans, exhibiting the same platform-dependent directional discrepancy. Similarly, variants in the kallikrein-kinin pathway ( KLKB1 , F12 , KNG1 ) and their genetic interactions exhibit strong trans -pQTL effects for APOL1 measured by Olink, but not SomaLogic. To explain these discrepancies, we propose a model in which APOL1 mutations and the kallikrein-kinin pathway influence the relative abundance of two distinct APOL1 forms, corresponding to APOL1 bound to trypanolytic factors 1 and 2, which are differentially recognized by different proteomic platforms. We hypothesize that this shift in relative abundance of APOL1 forms may contribute to the development of kidney disease.
Collapse
|
3
|
Ben-Ruby D, Atias-Varon D, Kagan M, Chowers G, Shlomovitz O, Slabodnik-Kaner K, Mano N, Avayou S, Atsmony Y, Levin D, Dotan E, Calderon-Margalit R, Shnaider A, Haviv YS, Birk OS, Hadar N, Anikster Y, Berar Yanay N, Chernin G, Kruzel-Davila E, Beckerman P, Rozen-Zvi B, Doctor GT, Stanescu HC, Shemer R, Pras E, Reznik-Wolf H, Nahum AH, Dominissini D, Skorecki K, Vivante A. Multiethnic prevalence of the APOL1 G1 and G2 variants among the Israeli dialysis population. Clin Kidney J 2025; 18:sfae397. [PMID: 39927257 PMCID: PMC11803305 DOI: 10.1093/ckj/sfae397] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2024] [Indexed: 02/11/2025] Open
Abstract
Background and hypothesis The two apolipoprotein L1 (APOL1) variants, G1 and G2, are common in populations of sub-Saharan African ancestry. Individuals with two of these alleles (G1 or G2) have an increased risk for a spectrum of non-diabetic chronic kidney diseases. However, these variants are typically not observed outside of populations that self-identify as current continental Africans or having clear recent African ancestry such as, most notably, African Americans, and other large population groups in the Americas and several European countries. We hypothesized that the diverse ethnic groups within the Israeli population may exhibit varying levels of recent African ancestry. Therefore, it is plausible that APOL1 risk alleles might be present even in individuals who do not self-identify as being of sub-Saharan African descent. Methods We non-selectively screened people with kidney failure across Israel for APOL1 risk variants using restriction fragment length polymorphism. Results We recruited 1744 individuals from 38 dialysis units in Israel. We identified eight patients of Moroccan Jewish, Bedouin, or Muslim Arab ancestry, who carry at least one G1 or G2 allele. None of the eight patients carried the protective APOL1 p.N264K variant. Furthermore, despite all Bedouin individuals being G2 heterozygous, the G2 minor allele frequency was significantly enriched in kidney failure cases compared to ethnically matched controls (P = .006). Conclusions These findings show that APOL1 G1 and G2 allelic variants are present in populations previously not appreciated to possess recent sub-Saharan ancestry and suggest that a single G2 risk variant may confer increased risk for chronic kidney disease in certain population contexts.
Collapse
Affiliation(s)
- Dror Ben-Ruby
- Genetic Kidney Disease Research Laboratory, Sheba Medical Center, Tel-Hashomer, Ramat-Gan, Israel
- Faculty of Medical and Health Sciences, Tel-Aviv University, Tel-Aviv, Israel
| | - Danit Atias-Varon
- Genetic Kidney Disease Research Laboratory, Sheba Medical Center, Tel-Hashomer, Ramat-Gan, Israel
- Department of Pediatrics B, Edmond and Lily Safra Children's Hospital, Sheba Medical Center, Tel-Hashomer, Ramat-Gan, Israel
| | - Maayan Kagan
- Genetic Kidney Disease Research Laboratory, Sheba Medical Center, Tel-Hashomer, Ramat-Gan, Israel
- Faculty of Medical and Health Sciences, Tel-Aviv University, Tel-Aviv, Israel
- Department of Pediatrics B, Edmond and Lily Safra Children's Hospital, Sheba Medical Center, Tel-Hashomer, Ramat-Gan, Israel
| | - Guy Chowers
- Genetic Kidney Disease Research Laboratory, Sheba Medical Center, Tel-Hashomer, Ramat-Gan, Israel
- Faculty of Medical and Health Sciences, Tel-Aviv University, Tel-Aviv, Israel
- Department of Pediatrics B, Edmond and Lily Safra Children's Hospital, Sheba Medical Center, Tel-Hashomer, Ramat-Gan, Israel
| | - Omer Shlomovitz
- Genetic Kidney Disease Research Laboratory, Sheba Medical Center, Tel-Hashomer, Ramat-Gan, Israel
- Faculty of Medical and Health Sciences, Tel-Aviv University, Tel-Aviv, Israel
- Department of Pediatrics B, Edmond and Lily Safra Children's Hospital, Sheba Medical Center, Tel-Hashomer, Ramat-Gan, Israel
| | - Keren Slabodnik-Kaner
- Genetic Kidney Disease Research Laboratory, Sheba Medical Center, Tel-Hashomer, Ramat-Gan, Israel
- Department of Pediatrics B, Edmond and Lily Safra Children's Hospital, Sheba Medical Center, Tel-Hashomer, Ramat-Gan, Israel
| | - Neta Mano
- Genetic Kidney Disease Research Laboratory, Sheba Medical Center, Tel-Hashomer, Ramat-Gan, Israel
- Faculty of Medical and Health Sciences, Tel-Aviv University, Tel-Aviv, Israel
- Arrow Project, Sheba Medical Center, Tel-Hashomer, Ramat-Gan, Israel
| | - Shany Avayou
- Genetic Kidney Disease Research Laboratory, Sheba Medical Center, Tel-Hashomer, Ramat-Gan, Israel
| | - Yariv Atsmony
- Genetic Kidney Disease Research Laboratory, Sheba Medical Center, Tel-Hashomer, Ramat-Gan, Israel
- Faculty of Medical and Health Sciences, Tel-Aviv University, Tel-Aviv, Israel
- Department of Pediatrics B, Edmond and Lily Safra Children's Hospital, Sheba Medical Center, Tel-Hashomer, Ramat-Gan, Israel
| | - Dana Levin
- Genetic Kidney Disease Research Laboratory, Sheba Medical Center, Tel-Hashomer, Ramat-Gan, Israel
| | - Edo Dotan
- The George S. Wise Faculty of Life Sciences, Tel-Aviv University, Tel-Aviv, Israel
- The Taub Faculty of Computer Science, Technion Israel Institute of Technology, Haifa, Israel
| | - Ronit Calderon-Margalit
- Braun School of Public Health, Hadassah Medical Center, Faculty of Medicine, Hebrew University, Jerusalem, Israel
| | - Alla Shnaider
- Department of Nephrology, Soroka University Medical Center, Beer-Sheva, Israel
- Faculty of Health Sciences, Ben Gurion University, Beer-Sheva, Israel
| | - Yosef S Haviv
- Department of Nephrology, Soroka University Medical Center, Beer-Sheva, Israel
- Faculty of Health Sciences, Ben Gurion University, Beer-Sheva, Israel
| | - Ohad S Birk
- Faculty of Health Sciences, Ben Gurion University, Beer-Sheva, Israel
- Genetics Institute at Soroka Medical Center, Beer-Sheva, Israel
| | - Noam Hadar
- Faculty of Health Sciences, Ben Gurion University, Beer-Sheva, Israel
| | - Yair Anikster
- Faculty of Medical and Health Sciences, Tel-Aviv University, Tel-Aviv, Israel
- Metabolic Diseases Unit, Edmond and Lily Safra Children's Hospital, Sheba Medical Center, Tel-Hashomer, Ramat-Gan, Israel
| | - Noa Berar Yanay
- Nephrology Department, Hillel Yaffe Medical Center, Hadera, Israel
- The Ruth and Bruce Rappaport Faculty of Medicine, Technion Israel Institute of Technology, Haifa, Israel
| | - Gil Chernin
- Department of Nephrology and Hypertension, Kaplan Medical Center, Faculty of Medicine, Hebrew University of Jerusalem, Rehovot, Israel
| | - Etty Kruzel-Davila
- Nephrology Department, Galilee Medical Center, Nahariya, Israel
- The Azrieli Faculty of Medicine, Bar-Ilan University, Safed, Israel
| | - Pazit Beckerman
- Faculty of Medical and Health Sciences, Tel-Aviv University, Tel-Aviv, Israel
- Institute of Nephrology and Hypertension, Sheba Medical Center, Tel-Hashomer, Ramat-Gan, Israel
| | - Benaya Rozen-Zvi
- Faculty of Medical and Health Sciences, Tel-Aviv University, Tel-Aviv, Israel
- Department of Nephrology and Hypertension, Rabin Medical Center, Petah Tikva, Israel
| | - Gabriel T Doctor
- Centre for Genetics and Genomics, Department of Renal Medicine, UCL Division of Medicine, University College London, London, UK
| | - Horia C Stanescu
- Centre for Genetics and Genomics, Department of Renal Medicine, UCL Division of Medicine, University College London, London, UK
| | - Revital Shemer
- The Ruth and Bruce Rappaport Faculty of Medicine, Technion Israel Institute of Technology, Haifa, Israel
| | - Elon Pras
- Faculty of Medical and Health Sciences, Tel-Aviv University, Tel-Aviv, Israel
- The Danek Gertner Institute of Human Genetics, Sheba Medical Center, Tel-Hashomer, Ramat-Gan, Israel
| | - Haike Reznik-Wolf
- Faculty of Medical and Health Sciences, Tel-Aviv University, Tel-Aviv, Israel
- The Danek Gertner Institute of Human Genetics, Sheba Medical Center, Tel-Hashomer, Ramat-Gan, Israel
| | - Ayelet Hashahar Nahum
- The Danek Gertner Institute of Human Genetics, Sheba Medical Center, Tel-Hashomer, Ramat-Gan, Israel
| | - Dan Dominissini
- Faculty of Medical and Health Sciences, Tel-Aviv University, Tel-Aviv, Israel
- Institute of Hematology, Sheba Medical Center, Tel-Hashomer, Ramat-Gan, Israel
- Cancer Research Center, Sheba Medical Center, Tel-Hashomer, Ramat-Gan, Israel
| | - Karl Skorecki
- The Ruth and Bruce Rappaport Faculty of Medicine, Technion Israel Institute of Technology, Haifa, Israel
- The Azrieli Faculty of Medicine, Bar-Ilan University, Safed, Israel
- Rambam Health Care Campus, Haifa, Israel
| | - Asaf Vivante
- Genetic Kidney Disease Research Laboratory, Sheba Medical Center, Tel-Hashomer, Ramat-Gan, Israel
- Faculty of Medical and Health Sciences, Tel-Aviv University, Tel-Aviv, Israel
- Department of Pediatrics B, Edmond and Lily Safra Children's Hospital, Sheba Medical Center, Tel-Hashomer, Ramat-Gan, Israel
- Pediatric Nephrology Unit, Edmond and Lily Safra Children's Hospital, Sheba Medical Center, Tel-Hashomer, Ramat-Gan, Israel
| |
Collapse
|
4
|
Sanna-Cherchi S. APOL1 Kidney Disease Variants - Information from West Africa at Last. N Engl J Med 2025; 392:279-281. [PMID: 39813649 DOI: 10.1056/nejme2415599] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/18/2025]
Affiliation(s)
- Simone Sanna-Cherchi
- From the Division of Nephrology, Department of Medicine, Columbia University, New York
| |
Collapse
|
5
|
Ray PE, Li J, Das J, Xu L, Yu J, Han Z. Pathogenesis of HIV-associated nephropathy in children and adolescents: taking a hard look 40 years later in the era of gene-environment interactions. Am J Physiol Renal Physiol 2024; 327:F1049-F1066. [PMID: 39323389 PMCID: PMC11687833 DOI: 10.1152/ajprenal.00208.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Revised: 09/16/2024] [Accepted: 09/16/2024] [Indexed: 09/27/2024] Open
Abstract
HIV-associated nephropathy (HIVAN) is a kidney disease that affects mainly people of African ancestry with a high HIV-1 viral load. New antiretroviral therapies (ART) have been highly efficient in preventing and improving the outcome of HIVAN. However, providing chronic ART to children and adolescents living with HIV (CALWH) remains a significant challenge all over the world. More than 2.5 million CALWH, including those living in Sub-Saharan Africa, continue to be at high risk of developing HIVAN. Much of our understanding of the pathogenesis of HIVAN is based on studies conducted in transgenic mice and adults with HIVAN. However, CALWH may experience different health outcomes, risk factors, and susceptibilities to HIVAN in comparison to adults. This article reviews the progress made over the last 40 years in understanding the pathogenesis of HIVAN in CALWH, focusing on how the HIV virus, alongside genetic and environmental factors, contributes to the development of this disease. The landmark discovery that two risk alleles of the apolipoprotein-1 (APOL1) gene play a critical role in HIVAN has significantly advanced our understanding of the disease's pathogenesis. However, we still need to understand why renal inflammation persists despite ART and determine whether the kidney may harbor HIV reservoirs that need to be eliminated to cure HIV permanently. For these reasons, we emphasize reviewing how HIV-1 infects renal cells, affects their growth and regeneration, and discussing how inflammatory cytokines and APOL1 affect the outcome of childhood HIVAN.
Collapse
Affiliation(s)
- Patricio E Ray
- Department of Pediatrics and Child Health Research Center, University of Virginia School of Medicine, Charlottesville, Virginia, United States
| | - Jinliang Li
- Children's National Hospital, Washington, District of Columbia, United States
| | - Jharna Das
- Children's National Hospital, Washington, District of Columbia, United States
| | - Lian Xu
- Children's National Hospital, Washington, District of Columbia, United States
| | - Jing Yu
- Department of Pediatrics and Child Health Research Center, University of Virginia School of Medicine, Charlottesville, Virginia, United States
| | - Zhe Han
- Center for Precision Disease Modeling, Department of Medicine, University of Maryland School of Medicine, Baltimore, Maryland, United States
| |
Collapse
|
6
|
Sula Karreci E, Jacas S, Donovan O, Pintye D, Wiley N, Zsengeller ZK, Schlondorff J, Alper SL, Friedman DJ, Pollak MR. Differing sensitivities to angiotensin converting enzyme inhibition of kidney disease mediated by APOL1 high-risk variants G1 and G2. Kidney Int 2024; 106:1072-1085. [PMID: 39181397 PMCID: PMC11585418 DOI: 10.1016/j.kint.2024.07.026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Revised: 07/10/2024] [Accepted: 07/26/2024] [Indexed: 08/27/2024]
Abstract
Apolipoprotein L1 (APOL1) variants G1 and G2 contribute to the excess risk of kidney disease in individuals of recent African ancestry. Since disease mechanisms and optimal treatments remain controversial, we study the effect of current standard-of-care drugs in mouse models of APOL1 kidney disease. Experiments were performed in APOL1 BAC-transgenic mice, which develop proteinuria and glomerulosclerosis following injection with a pCpG-free IFN-γ plasmid. Proteinuric, plasmid injected G1/G1 and G2/G2 mice were randomized to drug treatment or no treatment. Lisinopril, dapagliflozin, and hydralazine were administered in drinking water starting day seven. The urine albumin/creatinine ratio was measured twice weekly, and the kidneys examined histologically with the focal segmental glomerulosclerosis score computed from periodic acid-Shiff-stained sections. The angiotensin converting enzyme inhibitor lisinopril, at standard dose, reduced proteinuria by approximately 90-fold and reduced glomerulosclerosis in the APOL1 G1/G1 BAC-transgenic mice. These effects were independent of blood pressure. Dapagliflozin did not alter disease progression in either G1/G1 or G2/G2 mice. Proteinuria reduction and glomerulosclerosis in G2/G2 BAC-transgenic mice required lisinopril doses two times higher than were effective in G1/G1 mice but achieved a much smaller benefit. Therefore, in these BAC-transgenic mouse models of APOL1 disease, the anti-proteinuric and anti-glomerulosclerotic effects of standard dose lisinopril were markedly effective in G1/G1 compared with G2/G2 APOL1 mice. Comparable reduction in blood pressure by hydralazine treatment provided no such protection. Neither G1/G1 nor G2/G2 mice showed improvement with the sodium-glucose cotransporter-2 inhibition dapagliflozin. Thus, it remains to be determined if similar differences in ACE inhibitor responsiveness are observed in patients.
Collapse
Affiliation(s)
- Esilida Sula Karreci
- Division of Nephrology, Department of Medicine, Beth Israel Deaconess Medical Center, Boston, Massachusetts, USA; Department of Medicine, Harvard Medical School, Boston, Massachusetts; USA.
| | - Sonako Jacas
- Division of Nephrology, Department of Medicine, Beth Israel Deaconess Medical Center, Boston, Massachusetts, USA
| | - Olivia Donovan
- Division of Nephrology, Department of Medicine, Beth Israel Deaconess Medical Center, Boston, Massachusetts, USA
| | - Diana Pintye
- Division of Nephrology, Department of Medicine, Beth Israel Deaconess Medical Center, Boston, Massachusetts, USA
| | - Nicholas Wiley
- Division of Nephrology, Department of Medicine, Beth Israel Deaconess Medical Center, Boston, Massachusetts, USA
| | - Zsuzsanna K Zsengeller
- Division of Nephrology, Department of Medicine, Beth Israel Deaconess Medical Center, Boston, Massachusetts, USA
| | - Johannes Schlondorff
- Division of Nephrology, Department of Medicine, The Ohio State University, Wexner School of Medicine, Columbus, Ohio, USA
| | - Seth L Alper
- Division of Nephrology, Department of Medicine, Beth Israel Deaconess Medical Center, Boston, Massachusetts, USA; Department of Medicine, Harvard Medical School, Boston, Massachusetts; USA
| | - David J Friedman
- Division of Nephrology, Department of Medicine, Beth Israel Deaconess Medical Center, Boston, Massachusetts, USA; Department of Medicine, Harvard Medical School, Boston, Massachusetts; USA
| | - Martin R Pollak
- Division of Nephrology, Department of Medicine, Beth Israel Deaconess Medical Center, Boston, Massachusetts, USA; Department of Medicine, Harvard Medical School, Boston, Massachusetts; USA
| |
Collapse
|
7
|
Pays E. Apolipoprotein-L1 (APOL1): From Sleeping Sickness to Kidney Disease. Cells 2024; 13:1738. [PMID: 39451256 PMCID: PMC11506758 DOI: 10.3390/cells13201738] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Revised: 10/16/2024] [Accepted: 10/18/2024] [Indexed: 10/26/2024] Open
Abstract
Apolipoprotein-L1 (APOL1) is a membrane-interacting protein induced by inflammation, which confers human resistance to infection by African trypanosomes. APOL1 kills Trypanosoma brucei through induction of apoptotic-like parasite death, but two T. brucei clones acquired resistance to APOL1, allowing them to cause sleeping sickness. An APOL1 C-terminal sequence alteration, such as occurs in natural West African variants G1 and G2, restored human resistance to these clones. However, APOL1 unfolding induced by G1 or G2 mutations enhances protein hydrophobicity, resulting in kidney podocyte dysfunctions affecting renal filtration. The mechanism involved in these dysfunctions is debated. The ability of APOL1 to generate ion pores in trypanosome intracellular membranes or in synthetic membranes was provided as an explanation. However, transmembrane insertion of APOL1 strictly depends on acidic conditions, and podocyte cytopathology mainly results from secreted APOL1 activity on the plasma membrane, which occurs under non-acidic conditions. In this review, I argue that besides inactivation of APOL3 functions in membrane dynamics (fission and fusion), APOL1 variants induce inflammation-linked podocyte toxicity not through pore formation, but through plasma membrane disturbance resulting from increased interaction with cholesterol, which enhances cation channels activity. A natural mutation in the membrane-interacting domain (N264K) abrogates variant APOL1 toxicity at the expense of slightly increased sensitivity to trypanosomes, further illustrating the continuous mutual adaptation between host and parasite.
Collapse
Affiliation(s)
- Etienne Pays
- Laboratory of Molecular Parasitology, Institut de Biologie et de Médecine Moléculaires (IBMM), Université Libre de Bruxelles, 6041 Gosselies, Belgium
| |
Collapse
|
8
|
Bhale AS, Meilhac O, d'Hellencourt CL, Vijayalakshmi MA, Venkataraman K. Cholesterol transport and beyond: Illuminating the versatile functions of HDL apolipoproteins through structural insights and functional implications. Biofactors 2024; 50:922-956. [PMID: 38661230 DOI: 10.1002/biof.2057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Accepted: 04/02/2024] [Indexed: 04/26/2024]
Abstract
High-density lipoproteins (HDLs) play a vital role in lipid metabolism and cardiovascular health, as they are intricately involved in cholesterol transport and inflammation modulation. The proteome of HDL particles is indeed complex and distinct from other components in the bloodstream. Proteomics studies have identified nearly 285 different proteins associated with HDL; however, this review focuses more on the 15 or so traditionally named "apo" lipoproteins. Important lipid metabolizing enzymes closely working with the apolipoproteins are also discussed. Apolipoproteins stand out for their integral role in HDL stability, structure, function, and metabolism. The unique structure and functions of each apolipoprotein influence important processes such as inflammation regulation and lipid metabolism. These interactions also shape the stability and performance of HDL particles. HDLs apolipoproteins have multifaceted roles beyond cardiovascular diseases (CVDs) and are involved in various physiological processes and disease states. Therefore, a detailed exploration of these apolipoproteins can offer valuable insights into potential diagnostic markers and therapeutic targets. This comprehensive review article aims to provide an in-depth understanding of HDL apolipoproteins, highlighting their distinct structures, functions, and contributions to various physiological processes. Exploiting this knowledge holds great potential for improving HDL function, enhancing cholesterol efflux, and modulating inflammatory processes, ultimately benefiting individuals by limiting the risks associated with CVDs and other inflammation-based pathologies. Understanding the nature of all 15 apolipoproteins expands our knowledge of HDL metabolism, sheds light on their pathological implications, and paves the way for advancements in the diagnosis, prevention, and treatment of lipid and inflammatory-related disorders.
Collapse
Affiliation(s)
- Aishwarya Sudam Bhale
- Centre for Bio-Separation Technology, Vellore Institute of Technology, Vellore, Tamil Nadu, India
| | - Olivier Meilhac
- Inserm, UMR 1188 Diabète Athérothrombose Thérapies Réunion Océan Indien (DéTROI), Université de La Réunion, Saint-Pierre, France
| | - Christian Lefebvre d'Hellencourt
- Inserm, UMR 1188 Diabète Athérothrombose Thérapies Réunion Océan Indien (DéTROI), Université de La Réunion, Saint-Pierre, France
| | | | - Krishnan Venkataraman
- Centre for Bio-Separation Technology, Vellore Institute of Technology, Vellore, Tamil Nadu, India
| |
Collapse
|
9
|
Casanova JL, MacMicking JD, Nathan CF. Interferon- γ and infectious diseases: Lessons and prospects. Science 2024; 384:eadl2016. [PMID: 38635718 DOI: 10.1126/science.adl2016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Accepted: 03/13/2024] [Indexed: 04/20/2024]
Abstract
Infectious diseases continue to claim many lives. Prevention of morbidity and mortality from these diseases would benefit not just from new medicines and vaccines but also from a better understanding of what constitutes protective immunity. Among the major immune signals that mobilize host defense against infection is interferon-γ (IFN-γ), a protein secreted by lymphocytes. Forty years ago, IFN-γ was identified as a macrophage-activating factor, and, in recent years, there has been a resurgent interest in IFN-γ biology and its role in human defense. Here we assess the current understanding of IFN-γ, revisit its designation as an "interferon," and weigh its prospects as a therapeutic against globally pervasive microbial pathogens.
Collapse
Affiliation(s)
- Jean-Laurent Casanova
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY 10065, USA
- Howard Hughes Medical Institute, The Rockefeller University, New York, NY 10065, USA
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM, Necker Hospital for Sick Children, 75015 Paris, France
- Imagine Institute, Paris Cité University, 75015 Paris, France
- Department of Pediatrics, Necker Hospital for Sick Children, 75015 Paris, France
| | - John D MacMicking
- Department of Microbial Pathogenesis, Yale University School of Medicine, New Haven, CT 06510, USA
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT 06510, USA
- Yale Systems Biology Institute, Yale University, West Haven, CT 06477, USA
- Howard Hughes Medical Institute, Yale University School of Medicine, New Haven, CT 06510, USA
| | - Carl F Nathan
- Department of Microbiology and Immunology, Weill Cornell Medicine, New York, NY 10065, USA
| |
Collapse
|
10
|
McIntosh T, Walsh H, Baldwin K, Iltis A, Mohan S, Sawinski D, Goodman M, DuBois JM. Evaluating ApoL1 Genetic Testing Policy Options for Transplant Centers: A Delphi Consensus Panel Project with Stakeholders. Clin J Am Soc Nephrol 2024; 19:494-502. [PMID: 38190141 PMCID: PMC11020447 DOI: 10.2215/cjn.0000000000000397] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Accepted: 12/26/2023] [Indexed: 01/09/2024]
Abstract
BACKGROUND Apolipoprotein L1 (ApoL1) variants G1 and G2 are associated with a higher risk of kidney disease. ApoL1 risk variants are predominantly seen in individuals with sub-Saharan African ancestry. In most transplant centers, potential organ donors are being selectively genetically tested for ApoL1 risk variants. Transplant programs have highly variable ApoL1 testing practices and need guidance on essential ApoL1 clinical policy questions. METHODS We conducted a Delphi consensus panel focused on ApoL1 clinical policy questions, including who gets tested, who decides whether testing occurs, how test results are shared, who receives test results, and how test results are used. A total of 27 panelists across seven stakeholder groups participated: living kidney donors ( n =4), deceased donor family members ( n =3), recipients of a deceased donor kidney ( n =4), recipients of a living donor kidney ( n =4), nephrologists ( n =4), transplant surgeons ( n =4), and genetic counselors ( n =4). Nineteen panelists (70%) identified as Black. The Delphi panel process involved two rounds of educational webinars and three rounds of surveys administered to panelists, who were asked to indicate whether they support, could live with, or oppose each policy option. RESULTS The panel reached consensus on one or more acceptable policy options for each clinical policy question; panelists supported 18 policy options and opposed 15. Key elements of consensus include the following: ask potential donors about African ancestry rather than race; make testing decisions only after discussion with donors; encourage disclosure of test results to blood relatives and organ recipients but do not require it; use test results to inform decision making, but never for unilateral decisions by transplant programs. CONCLUSIONS The panel generally supported policy options involving discussion and shared decision making among patients, donors, and family stakeholders. There was general opposition to unilateral decision making and prohibiting donation altogether.
Collapse
Affiliation(s)
- Tristan McIntosh
- Bioethics Resaerch Center, Washington University School of Medicine, St. Louis, Missouri
| | - Heidi Walsh
- Bioethics Resaerch Center, Washington University School of Medicine, St. Louis, Missouri
| | - Kari Baldwin
- Bioethics Resaerch Center, Washington University School of Medicine, St. Louis, Missouri
| | - Ana Iltis
- Center for Bioethics, Health and Society, Wake Forest University, Winston-Salem, North Carolina
| | - Sumit Mohan
- Mailman School of Public Health, Columbia University, New York, New York
| | | | - Melody Goodman
- School of Global Public Health, New York University, New York, New York
| | - James M. DuBois
- Bioethics Resaerch Center, Washington University School of Medicine, St. Louis, Missouri
| |
Collapse
|
11
|
Pays E. The Janus-faced functions of Apolipoproteins L in membrane dynamics. Cell Mol Life Sci 2024; 81:134. [PMID: 38478101 PMCID: PMC10937811 DOI: 10.1007/s00018-024-05180-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 02/06/2024] [Accepted: 02/18/2024] [Indexed: 03/17/2024]
Abstract
The functions of human Apolipoproteins L (APOLs) are poorly understood, but involve diverse activities like lysis of bloodstream trypanosomes and intracellular bacteria, modulation of viral infection and induction of apoptosis, autophagy, and chronic kidney disease. Based on recent work, I propose that the basic function of APOLs is the control of membrane dynamics, at least in the Golgi and mitochondrion. Together with neuronal calcium sensor-1 (NCS1) and calneuron-1 (CALN1), APOL3 controls the activity of phosphatidylinositol-4-kinase-IIIB (PI4KB), involved in both Golgi and mitochondrion membrane fission. Whereas secreted APOL1 induces African trypanosome lysis through membrane permeabilization of the parasite mitochondrion, intracellular APOL1 conditions non-muscular myosin-2A (NM2A)-mediated transfer of PI4KB and APOL3 from the Golgi to the mitochondrion under conditions interfering with PI4KB-APOL3 interaction, such as APOL1 C-terminal variant expression or virus-induced inflammatory signalling. APOL3 controls mitophagy through complementary interactions with the membrane fission factor PI4KB and the membrane fusion factor vesicle-associated membrane protein-8 (VAMP8). In mice, the basic APOL1 and APOL3 activities could be exerted by mAPOL9 and mAPOL8, respectively. Perspectives regarding the mechanism and treatment of APOL1-related kidney disease are discussed, as well as speculations on additional APOLs functions, such as APOL6 involvement in adipocyte membrane dynamics through interaction with myosin-10 (MYH10).
Collapse
Affiliation(s)
- Etienne Pays
- Laboratory of Molecular Parasitology, IBMM, Université Libre de Bruxelles, 6041, Gosselies, Belgium.
| |
Collapse
|
12
|
Adamson WE, Noyes H, Johnson P, Cooper A, Monckton DG, Ogunsola J, Beckett-Hill G, Sullivan M, Mark P, Parekh RS, MacLeod A. Phenome-wide analysis reveals epistatic associations between APOL1 variants and chronic kidney disease and multiple other disorders. EBioMedicine 2024; 101:105000. [PMID: 38360481 PMCID: PMC10944146 DOI: 10.1016/j.ebiom.2024.105000] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Revised: 01/21/2024] [Accepted: 01/23/2024] [Indexed: 02/17/2024] Open
Abstract
BACKGROUND APOL1 variants G1 and G2 are common in populations with recent African ancestry. They are associated with protection from African sleeping sickness, however homozygosity or compound heterozygosity for these variants is associated with chronic kidney disease (CKD) and related conditions. What is not clear is the extent of associations with non-kidney-related disorders, and whether there are clusters of diseases associated with individual APOL1 genotypes. METHODS Using a cohort of 7462 UK Biobank participants with recent African ancestry, we conducted a phenome-wide association study investigating associations between individual APOL1 genotypes and conditions identified by the International Classification of Disease phenotypes. FINDINGS We identified 27 potential associations between individual APOL1 genotypes and a diverse range of conditions. G1/G2 compound heterozygotes were specifically associated with 26 of these conditions (all deleteriously), with an over-representation of infectious diseases (including hospitalisation and death resulting from COVID-19). The analysis also exposed complexities in the relationship between APOL1 and CKD that are not evident when risk variants are grouped together: G1 homozygosity, G2 homozygosity, and G1/G2 compound heterozygosity were each shown to be associated with distinct CKD phenotypes. The multi-locus nature of the G1/G2 genotype means that its associations would go undetected in a standard genome-wide association study. INTERPRETATION Our findings have implications for understanding health risks and better-targeted detection, intervention, and therapeutic strategies, particularly in populations where APOL1 G1 and G2 are common such as in sub-Saharan Africa and its diaspora. FUNDING This study was funded by the Wellcome Trust (209511/Z/17/Z) and H3Africa (H3A/18/004).
Collapse
Affiliation(s)
- Walt E Adamson
- School of Biodiversity, One Health, and Veterinary Medicine, University of Glasgow, United Kingdom; Wellcome Centre for Integrative Parasitology, University of Glasgow, United Kingdom; TrypanoGEN+ Research Group, Uganda, Member of the H3Africa Consortium, South Africa.
| | - Harry Noyes
- TrypanoGEN+ Research Group, Uganda, Member of the H3Africa Consortium, South Africa; Centre for Genomic Research, University of Liverpool, United Kingdom
| | - Paul Johnson
- School of Biodiversity, One Health, and Veterinary Medicine, University of Glasgow, United Kingdom
| | - Anneli Cooper
- School of Biodiversity, One Health, and Veterinary Medicine, University of Glasgow, United Kingdom; Wellcome Centre for Integrative Parasitology, University of Glasgow, United Kingdom
| | - Darren G Monckton
- School of Molecular Biosciences, University of Glasgow, United Kingdom
| | - John Ogunsola
- School of Biodiversity, One Health, and Veterinary Medicine, University of Glasgow, United Kingdom; Wellcome Centre for Integrative Parasitology, University of Glasgow, United Kingdom
| | - Georgia Beckett-Hill
- School of Biodiversity, One Health, and Veterinary Medicine, University of Glasgow, United Kingdom
| | - Michael Sullivan
- School of Cardiovascular and Metabolic Health, University of Glasgow, United Kingdom
| | - Patrick Mark
- School of Cardiovascular and Metabolic Health, University of Glasgow, United Kingdom
| | - Rulan S Parekh
- Women's College Hospital, Hospital for Sick Children and University of Toronto, Canada
| | - Annette MacLeod
- School of Biodiversity, One Health, and Veterinary Medicine, University of Glasgow, United Kingdom; Wellcome Centre for Integrative Parasitology, University of Glasgow, United Kingdom; TrypanoGEN+ Research Group, Uganda, Member of the H3Africa Consortium, South Africa.
| |
Collapse
|
13
|
Gbadegesin R, Martinelli E, Gupta Y, Friedman DJ, Sampson MG, Pollak MR, Sanna-Cherchi S. APOL1 Genotyping Is Incomplete without Testing for the Protective M1 Modifier p.N264K Variant. GLOMERULAR DISEASES 2024; 4:43-48. [PMID: 38495868 PMCID: PMC10942791 DOI: 10.1159/000537948] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Accepted: 02/16/2024] [Indexed: 03/19/2024]
Affiliation(s)
- Rasheed Gbadegesin
- Division of Nephrology, Department of Pediatrics, Duke University School of Medicine, Durham, NC, USA
| | - Elena Martinelli
- Department of Medicine, Columbia University Irving Medical Center, New York, NY, USA
- Unità Operativa Nefrologia, Azienda Ospedaliero-Universitaria di Parma, Dipartimento di Medicina e Chirurgia, Università di Parma, Parma, Italy
| | - Yask Gupta
- Department of Medicine, Columbia University Irving Medical Center, New York, NY, USA
- Institute for Inflammation Medicine, University of Lübeck, Lübeck, Germany
| | - David J Friedman
- Nephrology Division, Department of Medicine, Beth Israel Deaconess Medical Center, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
| | - Matthew G Sampson
- Harvard Medical School, Boston, MA, USA
- Division of Pediatric Nephrology, Boston Children's Hospital, Boston, MA, USA
- Kidney Disease Initiative and Medical and Population Genetics Program, Broad Institute, Boston, MA, USA
- Division of Nephrology, Brigham and Women's Hospital, Boston, MA, USA
| | - Martin R Pollak
- Nephrology Division, Department of Medicine, Beth Israel Deaconess Medical Center, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
| | - Simone Sanna-Cherchi
- Department of Medicine, Columbia University Irving Medical Center, New York, NY, USA
| |
Collapse
|
14
|
Rakic JM, Pullinger CR, Van Blarigan EL, Movsesyan I, Stock EO, Malloy MJ, Kane JP. APOL1 Risk Variants Associate With the Prevalence of Stroke in African American Current and Past Smokers. J Am Heart Assoc 2023; 12:e030796. [PMID: 38084718 PMCID: PMC10863786 DOI: 10.1161/jaha.123.030796] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Accepted: 11/14/2023] [Indexed: 12/20/2023]
Abstract
BACKGROUND African American smokers have 2.5 times higher risk for stroke compared with nonsmokers (higher than other races). About 50% of the African American population carry 1 or 2 genetic variants (G1 and G2; rare in other races) of the apolipoprotein L1 gene (APOL1). Studies showed these variants may be associated with stroke. However, the role of the APOL1 risk variants in tobacco-related stroke is unknown. METHODS AND RESULTS In a cross-sectional study, we examined whether APOL1 risk variants modified the relationship between tobacco smoking and stroke prevalence in 513 African American adults recruited at University of California, San Francisco. Using DNA, plasma, and questionnaires we determined APOL1 variants, smoking status, and stroke prevalence. Using logistic regression models, we examined the association between smoking (ever versus never smokers) and stroke overall, and among carriers of APOL1 risk variants (1 or 2 risk alleles), and noncarriers, separately. Among participants, 41% were ever (current and past) smokers, 54% were carriers of the APOL1 risk variants, and 41 had a history of stroke. The association between smoking and stroke differed by APOL1 genotype (Pinteraction term=0.014). Among carriers, ever versus never smokers had odds ratio (OR) 2.46 (95% CI, 1.08-5.59) for stroke (P=0.034); OR 2.00 (95% CI, 0.81-4.96) among carriers of 1 risk allele, and OR 4.72 (95% CI, 0.62-36.02) for 2 risk alleles. Among noncarriers, smoking was not associated with a stroke. CONCLUSIONS Current and past smokers who carry APOL1 G1 and/or G2 risk variants may be more susceptible to stroke among the African American population.
Collapse
Affiliation(s)
- Jelena Mustra Rakic
- Cardiovascular Research InstituteUniversity of California, San FranciscoCAUSA
- Center for Tobacco Control Research and EducationUniversity of California, San FranciscoCAUSA
| | - Clive R. Pullinger
- Cardiovascular Research InstituteUniversity of California, San FranciscoCAUSA
- Department of Physiological NursingUniversity of California, San FranciscoCAUSA
| | - Erin L. Van Blarigan
- Department of Epidemiology and BiostatisticsUniversity of California, San FranciscoCAUSA
| | - Irina Movsesyan
- Cardiovascular Research InstituteUniversity of California, San FranciscoCAUSA
| | - Eveline Oestreicher Stock
- Cardiovascular Research InstituteUniversity of California, San FranciscoCAUSA
- Department of MedicineUniversity of California, San FranciscoCAUSA
| | - Mary J. Malloy
- Cardiovascular Research InstituteUniversity of California, San FranciscoCAUSA
- Department of MedicineUniversity of California, San FranciscoCAUSA
| | - John P. Kane
- Cardiovascular Research InstituteUniversity of California, San FranciscoCAUSA
- Department of MedicineUniversity of California, San FranciscoCAUSA
- Department of Biochemistry and BiophysicsUniversity of California, San FranciscoCAUSA
| |
Collapse
|
15
|
Zhu JY, Lee JG, Fu Y, van de Leemput J, Ray PE, Han Z. APOL1-G2 accelerates nephrocyte cell death by inhibiting the autophagy pathway. Dis Model Mech 2023; 16:dmm050223. [PMID: 37969018 PMCID: PMC10765414 DOI: 10.1242/dmm.050223] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Accepted: 10/30/2023] [Indexed: 11/17/2023] Open
Abstract
People of African ancestry who carry the APOL1 risk alleles G1 or G2 are at high risk of developing kidney diseases through not fully understood mechanisms that impair the function of podocytes. It is also not clear whether the APOL1-G1 and APOL1-G2 risk alleles affect these cells through similar mechanisms. Previously, we have developed transgenic Drosophila melanogaster lines expressing either the human APOL1 reference allele (G0) or APOL1-G1 specifically in nephrocytes, the cells homologous to mammalian podocytes. We have found that nephrocytes that expressed the APOL1-G1 risk allele display accelerated cell death, in a manner similar to that of cultured human podocytes and APOL1 transgenic mouse models. Here, to compare how the APOL1-G1 and APOL1-G2 risk alleles affect the structure and function of nephrocytes in vivo, we generated nephrocyte-specific transgenic flies that either expressed the APOL1-G2 or both G1 and G2 (G1G2) risk alleles on the same allele. We found that APOL1-G2- and APOL1-G1G2-expressing nephrocytes developed more severe changes in autophagic pathways, acidification of organelles and the structure of the slit diaphragm, compared to G1-expressing nephrocytes, leading to their premature death. We conclude that both risk alleles affect similar key cell trafficking pathways, leading to reduced autophagy and suggesting new therapeutic targets to prevent APOL1 kidney diseases.
Collapse
Affiliation(s)
- Jun-yi Zhu
- Center for Precision Disease Modeling, Department of Medicine, University of Maryland School of Medicine, Baltimore, MD 21201, USA
- Division of Endocrinology, Diabetes and Nutrition, Department of Medicine, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Jin-Gu Lee
- Center for Precision Disease Modeling, Department of Medicine, University of Maryland School of Medicine, Baltimore, MD 21201, USA
- Division of Endocrinology, Diabetes and Nutrition, Department of Medicine, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Yulong Fu
- Center for Precision Disease Modeling, Department of Medicine, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Joyce van de Leemput
- Center for Precision Disease Modeling, Department of Medicine, University of Maryland School of Medicine, Baltimore, MD 21201, USA
- Division of Endocrinology, Diabetes and Nutrition, Department of Medicine, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Patricio E. Ray
- Department of Pediatrics, Child Health Research Center, University of Virginia, Charlottesville, VA 22903, USA
| | - Zhe Han
- Center for Precision Disease Modeling, Department of Medicine, University of Maryland School of Medicine, Baltimore, MD 21201, USA
- Division of Endocrinology, Diabetes and Nutrition, Department of Medicine, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| |
Collapse
|
16
|
Gupta Y, Friedman DJ, McNulty MT, Khan A, Lane B, Wang C, Ke J, Jin G, Wooden B, Knob AL, Lim TY, Appel GB, Huggins K, Liu L, Mitrotti A, Stangl MC, Bomback A, Westland R, Bodria M, Marasa M, Shang N, Cohen DJ, Crew RJ, Morello W, Canetta P, Radhakrishnan J, Martino J, Liu Q, Chung WK, Espinoza A, Luo Y, Wei WQ, Feng Q, Weng C, Fang Y, Kullo IJ, Naderian M, Limdi N, Irvin MR, Tiwari H, Mohan S, Rao M, Dube GK, Chaudhary NS, Gutiérrez OM, Judd SE, Cushman M, Lange LA, Lange EM, Bivona DL, Verbitsky M, Winkler CA, Kopp JB, Santoriello D, Batal I, Pinheiro SVB, Oliveira EA, Simoes E Silva AC, Pisani I, Fiaccadori E, Lin F, Gesualdo L, Amoroso A, Ghiggeri GM, D'Agati VD, Magistroni R, Kenny EE, Loos RJF, Montini G, Hildebrandt F, Paul DS, Petrovski S, Goldstein DB, Kretzler M, Gbadegesin R, Gharavi AG, Kiryluk K, Sampson MG, Pollak MR, Sanna-Cherchi S. Strong protective effect of the APOL1 p.N264K variant against G2-associated focal segmental glomerulosclerosis and kidney disease. Nat Commun 2023; 14:7836. [PMID: 38036523 PMCID: PMC10689833 DOI: 10.1038/s41467-023-43020-9] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Accepted: 10/30/2023] [Indexed: 12/02/2023] Open
Abstract
African Americans have a significantly higher risk of developing chronic kidney disease, especially focal segmental glomerulosclerosis -, than European Americans. Two coding variants (G1 and G2) in the APOL1 gene play a major role in this disparity. While 13% of African Americans carry the high-risk recessive genotypes, only a fraction of these individuals develops FSGS or kidney failure, indicating the involvement of additional disease modifiers. Here, we show that the presence of the APOL1 p.N264K missense variant, when co-inherited with the G2 APOL1 risk allele, substantially reduces the penetrance of the G1G2 and G2G2 high-risk genotypes by rendering these genotypes low-risk. These results align with prior functional evidence showing that the p.N264K variant reduces the toxicity of the APOL1 high-risk alleles. These findings have important implications for our understanding of the mechanisms of APOL1-associated nephropathy, as well as for the clinical management of individuals with high-risk genotypes that include the G2 allele.
Collapse
Affiliation(s)
- Yask Gupta
- Department of Medicine, Columbia University Irving Medical Center, New York, NY, USA
- Institute for Inflammation Medicine, University of Lubeck, Lübeck, Germany
| | - David J Friedman
- Nephrology Division, Department of Medicine, Beth Israel Deaconess Medical Center, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
| | - Michelle T McNulty
- Division of Pediatric Nephrology, Boston Children's Hospital, Boston, MA, USA
- Kidney Disease Initiative and Medical and Population Genetics Program, Broad Institute, Boston, MA, USA
| | - Atlas Khan
- Department of Medicine, Columbia University Irving Medical Center, New York, NY, USA
| | - Brandon Lane
- Division of Nephrology, Department of Pediatrics, Duke University School of Medicine, Durham, NC, USA
| | - Chen Wang
- Department of Medicine, Columbia University Irving Medical Center, New York, NY, USA
| | - Juntao Ke
- Department of Medicine, Columbia University Irving Medical Center, New York, NY, USA
| | - Gina Jin
- Department of Medicine, Columbia University Irving Medical Center, New York, NY, USA
| | - Benjamin Wooden
- Department of Medicine, Columbia University Irving Medical Center, New York, NY, USA
| | - Andrea L Knob
- Nephrology Division, Department of Medicine, Beth Israel Deaconess Medical Center, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
| | - Tze Y Lim
- Department of Medicine, Columbia University Irving Medical Center, New York, NY, USA
- Unit of Genomic Variability and Complex Diseases, Department of Medical Sciences, University of Turin, Turin, Italy
| | - Gerald B Appel
- Department of Medicine, Columbia University Irving Medical Center, New York, NY, USA
| | - Kinsie Huggins
- Division of Nephrology, Department of Pediatrics, Duke University School of Medicine, Durham, NC, USA
| | - Lili Liu
- Department of Medicine, Columbia University Irving Medical Center, New York, NY, USA
| | - Adele Mitrotti
- Department of Precision and Regenerative Medicine and Ionian Area (DiMePre-J) Nephrology, Dialysis and Transplantation Unit, University of Bari Aldo Moro, Bari, Italy
| | - Megan C Stangl
- Division of Nephrology, Department of Pediatrics, Duke University School of Medicine, Durham, NC, USA
| | - Andrew Bomback
- Department of Medicine, Columbia University Irving Medical Center, New York, NY, USA
| | - Rik Westland
- Department of Pediatric Nephrology, Emma Children's Hospital, University of Amsterdam, Meibergdreef 9, Amsterdam, The Netherlands
| | - Monica Bodria
- Division of Nephrology and Renal Transplantation, IRCCS Istituto Giannina Gaslini, Genoa, Italy
- Laboratory on Molecular Nephrology, IRCCS Istituto Giannina Gaslini, Genoa, Italy
| | - Maddalena Marasa
- Department of Medicine, Columbia University Irving Medical Center, New York, NY, USA
| | - Ning Shang
- Department of Medicine, Columbia University Irving Medical Center, New York, NY, USA
| | - David J Cohen
- Department of Medicine, Columbia University Irving Medical Center, New York, NY, USA
| | - Russell J Crew
- Department of Medicine, Columbia University Irving Medical Center, New York, NY, USA
| | - William Morello
- Pediatric Nephrology, Dialysis and Transplant Unit, Fondazione IRCCS Ca' Granda-Ospedale Maggiore Policlinico, Milano, Italy
| | - Pietro Canetta
- Department of Medicine, Columbia University Irving Medical Center, New York, NY, USA
| | - Jai Radhakrishnan
- Department of Medicine, Columbia University Irving Medical Center, New York, NY, USA
| | - Jeremiah Martino
- Department of Medicine, Columbia University Irving Medical Center, New York, NY, USA
| | - Qingxue Liu
- Department of Medicine, Columbia University Irving Medical Center, New York, NY, USA
| | - Wendy K Chung
- Departments of Pediatrics and Medicine, Columbia University Irving Medical Center, New York, NY, USA
| | - Angelica Espinoza
- Center for Genetic Medicine, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Yuan Luo
- Center for Genetic Medicine, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Wei-Qi Wei
- Division of Clinical Pharmacology, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Qiping Feng
- Division of Clinical Pharmacology, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Chunhua Weng
- Department of Biomedical Informatics, Columbia University Irving Medical Center, New York, NY, USA
| | - Yilu Fang
- Department of Biomedical Informatics, Columbia University Irving Medical Center, New York, NY, USA
| | - Iftikhar J Kullo
- Atherosclerosis and Lipid Genomics Laboratory, Mayo Clinic, Rochester, MN, USA
| | | | - Nita Limdi
- Department of Neurology, Heersink School of Medicine, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Marguerite R Irvin
- Department of Epidemiology, School of Public Health, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Hemant Tiwari
- Department of Biostatistics, School of Public Health, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Sumit Mohan
- Department of Medicine, Columbia University Irving Medical Center, New York, NY, USA
- Department of Epidemiology, Mailman School of Public Health, Columbia University, New York, NY, USA
| | - Maya Rao
- Department of Medicine, Columbia University Irving Medical Center, New York, NY, USA
| | - Geoffrey K Dube
- Department of Medicine, Columbia University Irving Medical Center, New York, NY, USA
| | - Ninad S Chaudhary
- Department of Epidemiology, School of Public Health, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Orlando M Gutiérrez
- Department of Epidemiology, School of Public Health, University of Alabama at Birmingham, Birmingham, AL, USA
- Division of Nephrology, Department of Medicine, Heersink School of Medicine, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Suzanne E Judd
- Department of Biostatistics, School of Public Health, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Mary Cushman
- Department of Medicine and Pathology and Laboratory Medicine, University of Vermont, Burlington, VT, USA
| | - Leslie A Lange
- Department of Biomedical Informatics, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Ethan M Lange
- Department of Biomedical Informatics, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Daniel L Bivona
- Department of Medicine, Columbia University Irving Medical Center, New York, NY, USA
| | - Miguel Verbitsky
- Department of Medicine, Columbia University Irving Medical Center, New York, NY, USA
| | - Cheryl A Winkler
- Cancer Innovation Laboratory, Center for Cancer Research, National Cancer Institute, National Institutes of Health and Basic Research Program, Frederick National Laboratory, Frederick, MD, USA
| | - Jeffrey B Kopp
- Kidney Disease Section, National Institute of Diabetes and Digestive and Kidney Diseases (NIDDK), NIH, Bethesda, MD, USA
| | - Dominick Santoriello
- Department of Pathology and Cell Biology, Columbia University Irving Medical Center, New York, NY, USA
| | - Ibrahim Batal
- Department of Pathology and Cell Biology, Columbia University Irving Medical Center, New York, NY, USA
| | - Sérgio Veloso Brant Pinheiro
- Universidade Federal de Minas Gerais (UFMG), Faculdade de Medicina, Laboratório Interdisciplinar de Investigação Médica, Departamento de Pediatria, Unidade de Nefrologia Pediátrica, Belo Horizonte, MG, Brazil
| | - Eduardo Araújo Oliveira
- Universidade Federal de Minas Gerais (UFMG), Faculdade de Medicina, Laboratório Interdisciplinar de Investigação Médica, Departamento de Pediatria, Unidade de Nefrologia Pediátrica, Belo Horizonte, MG, Brazil
| | - Ana Cristina Simoes E Silva
- Universidade Federal de Minas Gerais (UFMG), Faculdade de Medicina, Laboratório Interdisciplinar de Investigação Médica, Departamento de Pediatria, Unidade de Nefrologia Pediátrica, Belo Horizonte, MG, Brazil
| | - Isabella Pisani
- Nephrology Unit, Parma University Hospital, and Department of Medicine and Surgery, University of Parma, Parma, Italy
| | - Enrico Fiaccadori
- Nephrology Unit, Parma University Hospital, and Department of Medicine and Surgery, University of Parma, Parma, Italy
| | - Fangming Lin
- Division of Pediatric Nephrology, Department of Pediatrics, Columbia University, New York, NY, USA
| | - Loreto Gesualdo
- Department of Precision and Regenerative Medicine and Ionian Area (DiMePre-J) Nephrology, Dialysis and Transplantation Unit, University of Bari Aldo Moro, Bari, Italy
| | - Antonio Amoroso
- Immunogenetics and Transplant Biology Service, University Hospital "Città della Salute e della Scienza di Torino", Department of Medical Sciences, University of Turin, Turin, Italy
| | - Gian Marco Ghiggeri
- Division of Nephrology and Renal Transplantation, IRCCS Istituto Giannina Gaslini, Genoa, Italy
- Laboratory on Molecular Nephrology, IRCCS Istituto Giannina Gaslini, Genoa, Italy
| | - Vivette D D'Agati
- Department of Pathology and Cell Biology, Columbia University Irving Medical Center, New York, NY, USA
| | - Riccardo Magistroni
- Surgical, Medical and Dental Department of Morphological Sciences, Section of Nephrology, University of Modena and Reggio Emilia, Modena, Italy
| | - Eimear E Kenny
- Institute for Genomic Health, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Center for Translational Genomics, Icahn School of Medicine, New York, NY, 10027, USA
- Division of Genomic Medicine, Department of Medicine, Icahn School of Medicine, New York, NY, 10027, USA
| | - Ruth J F Loos
- The Charles Bronfman Institute for Personalized Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Novo Nordisk Foundation Center for Basic Metabolic Research, University of Copenhagen, Copenhagen, Denmark
| | - Giovanni Montini
- Pediatric Nephrology, Dialysis and Transplant Unit, Fondazione IRCCS Ca' Granda-Ospedale Maggiore Policlinico, Milano, Italy
- Department of Clinical Sciences and Community Health, Giuliana and Bernardo Caprotti Chair of Pediatrics, University of Milano, Milano, Italy
| | - Friedhelm Hildebrandt
- Harvard Medical School, Boston, MA, USA
- Division of Pediatric Nephrology, Boston Children's Hospital, Boston, MA, USA
| | - Dirk S Paul
- Centre for Genomics Research, Discovery Sciences, BioPharmaceuticals R&D, AstraZeneca, Cambridge, UK
| | - Slavé Petrovski
- Centre for Genomics Research, Discovery Sciences, BioPharmaceuticals R&D, AstraZeneca, Cambridge, UK
| | - David B Goldstein
- Institute for Genomic Medicine, Columbia University Irving Medical Center, New York, NY, USA
| | - Matthias Kretzler
- Department of Internal Medicine, Division of Nephrology, University of Michigan, Ann Arbor, MI, USA
| | - Rasheed Gbadegesin
- Division of Nephrology, Department of Pediatrics, Duke University School of Medicine, Durham, NC, USA
| | - Ali G Gharavi
- Department of Medicine, Columbia University Irving Medical Center, New York, NY, USA
| | - Krzysztof Kiryluk
- Department of Medicine, Columbia University Irving Medical Center, New York, NY, USA
| | - Matthew G Sampson
- Harvard Medical School, Boston, MA, USA
- Division of Pediatric Nephrology, Boston Children's Hospital, Boston, MA, USA
- Kidney Disease Initiative and Medical and Population Genetics Program, Broad Institute, Boston, MA, USA
| | - Martin R Pollak
- Nephrology Division, Department of Medicine, Beth Israel Deaconess Medical Center, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
| | - Simone Sanna-Cherchi
- Department of Medicine, Columbia University Irving Medical Center, New York, NY, USA.
| |
Collapse
|
17
|
Gupta Y, Friedman DJ, McNulty M, Khan A, Lane B, Wang C, Ke J, Jin G, Wooden B, Knob AL, Lim TY, Appel GB, Huggins K, Liu L, Mitrotti A, Stangl MC, Bomback A, Westland R, Bodria M, Marasa M, Shang N, Cohen DJ, Crew RJ, Morello W, Canetta P, Radhakrishnan J, Martino J, Liu Q, Chung WK, Espinoza A, Luo Y, Wei WQ, Feng Q, Weng C, Fang Y, Kullo IJ, Naderian M, Limdi N, Irvin MR, Tiwari H, Mohan S, Rao M, Dube G, Chaudhary NS, Gutiérrez OM, Judd SE, Cushman M, Lange LA, Lange EM, Bivona DL, Verbitsky M, Winkler CA, Kopp JB, Santoriello D, Batal I, Brant Pinheiro SV, Araújo Oliveira E, E Silva ACS, Pisani I, Fiaccadori E, Lin F, Gesualdo L, Amoroso A, Ghiggeri GM, D'Agati VD, Magistroni R, Kenny EE, Loos RJF, Montini G, Hildebrandt F, Paul DS, Petrovski S, Goldstein DB, Kretzler M, Gbadegesin R, Gharavi AG, Kiryluk K, Sampson MG, Pollak MR, Sanna-Cherchi S. Strong protective effect of the APOL1 p.N264K variant against G2-associated focal segmental glomerulosclerosis and kidney disease. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2023:2023.08.02.23293554. [PMID: 37577628 PMCID: PMC10418582 DOI: 10.1101/2023.08.02.23293554] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/15/2023]
Abstract
Black Americans have a significantly higher risk of developing chronic kidney disease (CKD), especially focal segmental glomerulosclerosis (FSGS), than European Americans. Two coding variants (G1 and G2) in the APOL1 gene play a major role in this disparity. While 13% of Black Americans carry the high-risk recessive genotypes, only a fraction of these individuals develops FSGS or kidney failure, indicating the involvement of additional disease modifiers. Here, we show that the presence of the APOL1 p.N264K missense variant, when co-inherited with the G2 APOL1 risk allele, substantially reduces the penetrance of the G1G2 and G2G2 high-risk genotypes by rendering these genotypes low-risk. These results align with prior functional evidence showing that the p.N264K variant reduces the toxicity of the APOL1 high-risk alleles. These findings have important implications for our understanding of the mechanisms of APOL1 -associated nephropathy, as well as for the clinical management of individuals with high-risk genotypes that include the G2 allele.
Collapse
|
18
|
Elliott MD, Marasa M, Cocchi E, Vena N, Zhang JY, Khan A, Krishna Murthy S, Bheda S, Milo Rasouly H, Povysil G, Kiryluk K, Gharavi AG. Clinical and Genetic Characteristics of CKD Patients with High-Risk APOL1 Genotypes. J Am Soc Nephrol 2023; 34:909-919. [PMID: 36758113 PMCID: PMC10125632 DOI: 10.1681/asn.0000000000000094] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Accepted: 01/04/2023] [Indexed: 02/11/2023] Open
Abstract
SIGNIFICANCE STATEMENT APOL1 high-risk genotypes confer a significant risk of kidney disease, but variability in patient outcomes suggests the presence of modifiers of the APOL1 effect. We show that a diverse population of CKD patients with high-risk APOL1 genotypes have an increased lifetime risk of kidney failure and higher eGFR decline rates, with a graded risk among specific high-risk genotypes. CKD patients with high-risk APOL1 genotypes have a lower diagnostic yield for monogenic kidney disease. Exome sequencing revealed enrichment of rare missense variants within the inflammasome pathway modifying the effect of APOL1 risk genotypes, which may explain some clinical heterogeneity. BACKGROUND APOL1 genotype has significant effects on kidney disease development and progression that vary among specific causes of kidney disease, suggesting the presence of effect modifiers. METHODS We assessed the risk of kidney failure and the eGFR decline rate in patients with CKD carrying high-risk ( N =239) and genetically matched low-risk ( N =1187) APOL1 genotypes. Exome sequencing revealed monogenic kidney diseases. Exome-wide association studies and gene-based and gene set-based collapsing analyses evaluated genetic modifiers of the effect of APOL1 genotype on CKD. RESULTS Compared with genetic ancestry-matched patients with CKD with low-risk APOL1 genotypes, those with high-risk APOL1 genotypes had a higher risk of kidney failure (Hazard Ratio [HR]=1.58), a higher decline in eGFR (6.55 versus 3.63 ml/min/1.73 m 2 /yr), and were younger at time of kidney failure (45.1 versus 53.6 years), with the G1/G1 genotype demonstrating the highest risk. The rate for monogenic kidney disorders was lower among patients with CKD with high-risk APOL1 genotypes (2.5%) compared with those with low-risk genotypes (6.7%). Gene set analysis identified an enrichment of rare missense variants in the inflammasome pathway in individuals with high-risk APOL1 genotypes and CKD (odds ratio=1.90). CONCLUSIONS In this genetically matched cohort, high-risk APOL1 genotypes were associated with an increased risk of kidney failure and eGFR decline rate, with a graded risk between specific high-risk genotypes and a lower rate of monogenic kidney disease. Rare missense variants in the inflammasome pathway may act as genetic modifiers of APOL1 effect on kidney disease.
Collapse
Affiliation(s)
- Mark D. Elliott
- Division of Nephrology, Department of Medicine, Columbia University Vagelos College of Physicians and Surgeons, New York, NY
- Department of Medicine, Center for Precision Medicine and Genomics, Columbia University Vagelos College of Physicians and Surgeons, New York, NY
- Columbia University Vagelos College of Physicians and Surgeons, Institute for Genomic Medicine, New York, NY
- Division of Nephrology, Department of Medicine, University of Calgary, Calgary, Canada
| | - Maddalena Marasa
- Division of Nephrology, Department of Medicine, Columbia University Vagelos College of Physicians and Surgeons, New York, NY
- Department of Medicine, Center for Precision Medicine and Genomics, Columbia University Vagelos College of Physicians and Surgeons, New York, NY
| | - Enrico Cocchi
- Division of Nephrology, Department of Medicine, Columbia University Vagelos College of Physicians and Surgeons, New York, NY
- Department of Medicine, Center for Precision Medicine and Genomics, Columbia University Vagelos College of Physicians and Surgeons, New York, NY
- Department of Pediatrics, Universita’ degli Studi di Torino, Torino Italy
| | - Natalie Vena
- Department of Medicine, Center for Precision Medicine and Genomics, Columbia University Vagelos College of Physicians and Surgeons, New York, NY
- Columbia University Vagelos College of Physicians and Surgeons, Institute for Genomic Medicine, New York, NY
| | - Jun Y. Zhang
- Division of Nephrology, Department of Medicine, Columbia University Vagelos College of Physicians and Surgeons, New York, NY
| | - Atlas Khan
- Division of Nephrology, Department of Medicine, Columbia University Vagelos College of Physicians and Surgeons, New York, NY
- Department of Medicine, Center for Precision Medicine and Genomics, Columbia University Vagelos College of Physicians and Surgeons, New York, NY
| | - Sarath Krishna Murthy
- Department of Medicine, Center for Precision Medicine and Genomics, Columbia University Vagelos College of Physicians and Surgeons, New York, NY
| | - Shiraz Bheda
- Department of Medicine, Center for Precision Medicine and Genomics, Columbia University Vagelos College of Physicians and Surgeons, New York, NY
| | - Hila Milo Rasouly
- Division of Nephrology, Department of Medicine, Columbia University Vagelos College of Physicians and Surgeons, New York, NY
- Department of Medicine, Center for Precision Medicine and Genomics, Columbia University Vagelos College of Physicians and Surgeons, New York, NY
| | - Gundula Povysil
- Columbia University Vagelos College of Physicians and Surgeons, Institute for Genomic Medicine, New York, NY
| | - Krzysztof Kiryluk
- Division of Nephrology, Department of Medicine, Columbia University Vagelos College of Physicians and Surgeons, New York, NY
- Department of Medicine, Center for Precision Medicine and Genomics, Columbia University Vagelos College of Physicians and Surgeons, New York, NY
- Columbia University Vagelos College of Physicians and Surgeons, Institute for Genomic Medicine, New York, NY
| | - Ali G. Gharavi
- Division of Nephrology, Department of Medicine, Columbia University Vagelos College of Physicians and Surgeons, New York, NY
- Department of Medicine, Center for Precision Medicine and Genomics, Columbia University Vagelos College of Physicians and Surgeons, New York, NY
- Columbia University Vagelos College of Physicians and Surgeons, Institute for Genomic Medicine, New York, NY
| |
Collapse
|
19
|
Hung RKY, Winkler CA, Post FA. Host factors predisposing to kidney disease in people with HIV. Curr Opin HIV AIDS 2023; 18:87-92. [PMID: 36722197 DOI: 10.1097/coh.0000000000000784] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
PURPOSE OF REVIEW To highlight advances in understanding of host factors, in particular host genetics, in the development of chronic kidney disease (CKD) in people with HIV. RECENT FINDINGS In Black populations, the G1 and G2 variants of the apolipoprotein L1 (APOL1) gene predispose to HIV-associated nephropathy (HIVAN). The risk of HIVAN is mostly confined to individuals with two APOL1 variants (kidney-risk genotypes). APOL1 kidney-risk genotypes are present in approximately 80% of patients with HIVAN and account for nearly half the burden of end-stage CKD in people of African ancestry with HIV. Progress has been made in elucidating the mechanisms of kidney injury in APOL1 nephropathy, and several targeted molecular therapies are being investigated in clinical trials. Genome- and epigenome-wide association studies are identifying additional genes and pathways that may be involved in the pathogenesis of CKD in people with HIV. SUMMARY Genetic variants of APOL1 are strongly associated with severe CKD and contribute to the high rates of CKD in Black populations with HIV. Most individuals with APOL1 kidney-risk genotypes, however, do not develop kidney disease and further studies are required to understand the role of additional genetic and environmental factors that may affect CKD risk in this population.
Collapse
Affiliation(s)
| | - Cheryl A Winkler
- Frederick National Laboratory for Cancer Research and the National Cancer Institute, Frederick, USA
| | - Frank A Post
- King's College London, London, UK
- King's College Hospital NHS Foundation Trust, London, UK
| |
Collapse
|
20
|
Abstract
Sickle cell disease (SCD) is the most-common monogenic recessive disease in humans, annually affecting almost 300,000 newborns worldwide, 75% of whom live in Africa. Genomics research can accelerate the development of curative therapies for SCD in three ways. First, research should explore the missing heritability of foetal haemoglobin (HbF) - the strongest known modifier of SCD clinical expression - among highly genetically heterogenous and understudied African populations, to provide novel therapeutics targets for HbF induction. Second, SCD research should invest in RNA therapies, either by using microRNA to target the production of HbF proteins by binding to the transcription machinery in a cell, or by directly mediating production of HbF or adult haemoglobin through injection of messenger RNA. Third, investigators should aim to identify currently unknown genetic risk factors for SCD cardiovascular complications, which will address mortality, particularly in adults. Now is the time for global research programs to uncover genomic keys to unlock SCD therapeutics.
Collapse
Affiliation(s)
- Ambroise Wonkam
- McKusick-Nathans Institute and Department of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| |
Collapse
|
21
|
Abstract
African trypanosomes are bloodstream protozoan parasites that infect mammals including humans, where they cause sleeping sickness. Long-lasting infection is required to favor parasite transmission between hosts. Therefore, trypanosomes have developed strategies to continuously escape innate and adaptive responses of the immune system, while also preventing premature death of the host. The pathology linked to infection mainly results from inflammation and includes anemia and brain dysfunction in addition to loss of specificity and memory of the antibody response. The serum of humans contains an efficient trypanolytic factor, the membrane pore-forming protein apolipoprotein L1 (APOL1). In the two human-infective trypanosomes, specific parasite resistance factors inhibit APOL1 activity. In turn, many African individuals express APOL1 variants that counteract these resistance factors, enabling them to avoid sleeping sickness. However, these variants are associated with chronic kidney disease, particularly in the context of virus-induced inflammation such as coronavirus disease 2019. Vaccination perspectives are discussed.
Collapse
Affiliation(s)
- Etienne Pays
- Laboratory of Molecular Parasitology, Université Libre de Bruxelles, Gosselies, Belgium;
| | - Magdalena Radwanska
- Laboratory for Biomedical Research, Ghent University Global Campus, Incheon, South Korea.,Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium;
| | - Stefan Magez
- Laboratory for Biomedical Research, Ghent University Global Campus, Incheon, South Korea.,Laboratory of Cellular and Molecular Immunology, Vrije Universiteit Brussel, Brussels, Belgium; .,Department of Biochemistry and Microbiology, Ghent University, Ghent, Belgium
| |
Collapse
|
22
|
Andrews M, Yoshida T, Henderson CM, Pflaum H, McGregor A, Lieberman JA, de Boer IH, Vaisar T, Himmelfarb J, Kestenbaum B, Chung JY, Hewitt SM, Santo BA, Ginley B, Sarder P, Rosenberg AZ, Murakami T, Kopp JB, Kuklenyik Z, Hoofnagle AN. Variant APOL1 protein in plasma associates with larger particles in humans and mouse models of kidney injury. PLoS One 2022; 17:e0276649. [PMID: 36279295 PMCID: PMC9591058 DOI: 10.1371/journal.pone.0276649] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Accepted: 10/11/2022] [Indexed: 11/29/2022] Open
Abstract
BACKGROUND Genetic variants in apolipoprotein L1 (APOL1), a protein that protects humans from infection with African trypanosomes, explain a substantial proportion of the excess risk of chronic kidney disease affecting individuals with sub-Saharan ancestry. The mechanisms by which risk variants damage kidney cells remain incompletely understood. In preclinical models, APOL1 expressed in podocytes can lead to significant kidney injury. In humans, studies in kidney transplant suggest that the effects of APOL1 variants are predominantly driven by donor genotype. Less attention has been paid to a possible role for circulating APOL1 in kidney injury. METHODS Using liquid chromatography-tandem mass spectrometry, the concentrations of APOL1 were measured in plasma and urine from participants in the Seattle Kidney Study. Asymmetric flow field-flow fractionation was used to evaluate the size of APOL1-containing lipoprotein particles in plasma. Transgenic mice that express wild-type or risk variant APOL1 from an albumin promoter were treated to cause kidney injury and evaluated for renal disease and pathology. RESULTS In human participants, urine concentrations of APOL1 were correlated with plasma concentrations and reduced kidney function. Risk variant APOL1 was enriched in larger particles. In mice, circulating risk variant APOL1-G1 promoted kidney damage and reduced podocyte density without renal expression of APOL1. CONCLUSIONS These results suggest that plasma APOL1 is dynamic and contributes to the progression of kidney disease in humans, which may have implications for treatment of APOL1-associated kidney disease and for kidney transplantation.
Collapse
Affiliation(s)
- Michael Andrews
- Centers for Disease Control and Prevention, Atlanta, Georgia, United States of America
| | - Teruhiko Yoshida
- Kidney Disease Section, Kidney Diseases Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Clark M. Henderson
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, Washington, United States of America
| | - Hannah Pflaum
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, Washington, United States of America
| | - Ayako McGregor
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, Washington, United States of America
| | - Joshua A. Lieberman
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, Washington, United States of America
| | - Ian H. de Boer
- Department of Medicine, University of Washington, Seattle, Washington, United States of America
- Kidney Research Institute, University of Washington, Seattle, Washington, United States of America
| | - Tomas Vaisar
- Department of Medicine, University of Washington, Seattle, Washington, United States of America
| | - Jonathan Himmelfarb
- Department of Medicine, University of Washington, Seattle, Washington, United States of America
- Kidney Research Institute, University of Washington, Seattle, Washington, United States of America
| | - Bryan Kestenbaum
- Department of Medicine, University of Washington, Seattle, Washington, United States of America
- Kidney Research Institute, University of Washington, Seattle, Washington, United States of America
| | - Joon-Yong Chung
- Center for Cancer Research, NCI, NIH, Bethesda, Maryland, United States of America
| | - Stephen M. Hewitt
- Center for Cancer Research, NCI, NIH, Bethesda, Maryland, United States of America
| | - Briana A. Santo
- Department of Pathology and Anatomical Sciences, Jacobs School of Medicine & Biomedical Sciences, University at Buffalo, Buffalo, New York, United States of America
| | - Brandon Ginley
- Department of Pathology and Anatomical Sciences, Jacobs School of Medicine & Biomedical Sciences, University at Buffalo, Buffalo, New York, United States of America
| | - Pinaki Sarder
- Department of Pathology and Anatomical Sciences, Jacobs School of Medicine & Biomedical Sciences, University at Buffalo, Buffalo, New York, United States of America
| | - Avi Z. Rosenberg
- Department of Pathology, Johns Hopkins Medical Institutions, Baltimore, Maryland, United States of America
| | - Taichi Murakami
- Kidney Disease Section, Kidney Diseases Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland, United States of America
- Department of Nephrology, Ehime Prefectural Central Hospital, Ehime, Japan
| | - Jeffrey B. Kopp
- Kidney Disease Section, Kidney Diseases Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Zsuzsanna Kuklenyik
- Centers for Disease Control and Prevention, Atlanta, Georgia, United States of America
| | - Andrew N. Hoofnagle
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, Washington, United States of America
- Department of Medicine, University of Washington, Seattle, Washington, United States of America
- Kidney Research Institute, University of Washington, Seattle, Washington, United States of America
| |
Collapse
|
23
|
Nambala P, Mulindwa J, Chammudzi P, Senga E, Lemelani M, Zgambo D, Matovu E, MacLeod A, Musaya J. Persistently High Incidences of Trypanosoma brucei rhodesiense Sleeping Sickness With Contrasting Focus-Dependent Clinical Phenotypes in Malawi. FRONTIERS IN TROPICAL DISEASES 2022. [DOI: 10.3389/fitd.2022.824484] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
BackgroundHuman African trypanosomiasis (HAT) has caused social–economic burden in remote rural communities mostly in sub-Saharan Africa for over a century. The World Health Organization had targeted the year 2020 for the elimination of HAT caused by Trypanosoma brucei rhodesiense, which is mainly endemic in Malawi, Uganda, Tanzania, and Zambia. Significant progress has been made in reducing reported HAT cases in some countries. Area-specific updated epidemiological and clinical data may facilitate in understanding the progress of such efforts as well as the development of new intervention strategies.MethodsWe analyzed HAT prevalence and demographics from epidemiological surveys carried out from 2012 to 2020 obtained from the Ministry of Health, Malawi. In addition, we analyzed blood samples and clinical profiles of HAT patients surveyed between 2016 and 2020 from Rumphi and Nkhotakota districts. From the blood samples, parasite observations and speciation were carried out, whereas disease staging and severity were ascertained from the clinical profiles.ResultsMalawi reported 315 HAT cases from 2012 to 2020. The majority of HAT cases were men (70.2%), and the mean age was 29.9 ± 15.3 with all HAT fatalities resulting from stage 2 disease. Clinical symptoms were not significantly associated with disease outcome; however, swollen lymph nodes (p = 0.004), weight loss (p = 0.010), headache (p = 0.019), and sleep disturbance (p = 0.032) were significantly associated with the HAT stage of patients. About 50% of all HAT patients were reported within 2 years from 2019 to 2020, suggesting a HAT outbreak in Malawi.ConclusionThis study has highlighted the current epidemiological insights of the rHAT trend in Malawi. We have shown that rHAT clinical phenotypes in Malawi are focus-dependent and that there has been a steady increase in rHAT cases compared to all countries with incidences of rHAT. We have also highlighted an outbreak of rHAT that occurred in Malawi from 2019 to 2020 with almost 50% of the total rHAT cases that we have presented in this study reported within 2 years of the outbreak. These should call for a review of Malawi’s rHAT control and elimination strategies. A One-Health approach with the inclusion of key stakeholders such as the department of parks and wildlife may also be considered.
Collapse
|
24
|
Yalcouyé A, Esoh K, Guida L, Wonkam A. Current profile of Charcot-Marie-Tooth disease in Africa: A systematic review. J Peripher Nerv Syst 2022; 27:100-112. [PMID: 35383421 PMCID: PMC9322329 DOI: 10.1111/jns.12489] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Revised: 01/17/2022] [Accepted: 02/25/2022] [Indexed: 12/21/2022]
Abstract
BACKGROUND AND AIMS Charcot-Marie-Tooth disease (CMT) is the most common inherited peripheral neuropathy characterised by a high clinical and genetic heterogeneity. While most cases were described in populations with Caucasian ancestry, genetic research on CMT in Africa is scant. Only a few cases of CMT have been reported, mainly from North Africa. The current study aimed to summarise available data on CMT in Africa, with emphasis on the epidemiological, clinical, and genetic features. METHODS We searched PubMed, Scopus, Web of Sciences, and the African Journal Online for articles published from the database inception until April 2021 using specific keywords. A total of 398 articles were screened, and 28 fulfilled our selection criteria. RESULTS A total of 107 families totalling 185 patients were reported. Most studies were reported from North Africa (n = 22). The demyelinating form of CMT was the commonest subtype, and the phenotype varied greatly between families, and one family (1%) of CMT associated with hearing impairment was reported. The inheritance pattern was autosomal recessive in 91.2% (n = 97/107) of families. CMT-associated variants were reported in 11 genes: LMNA, GDAP1, GJB1, MPZ, MTMR13, MTMR2, PRX, FGD4/FRABIN, PMP22, SH3TC2, and GARS. The most common genes reported are LMNA, GDAP1, and SH3TC2 and have been found mostly in Northern African populations. INTERPRETATION This study reveals that CMT is not rare in Africa, and describes the current clinical and genetic profile. The review emphasised the urgent need to invest in genetic research to inform counselling, prevention, and care for CMT in numerous settings on the continent.
Collapse
Affiliation(s)
- Abdoulaye Yalcouyé
- Faculté de Médecine et d'Odontostomatologie, USTTB, Bamako, Mali.,Division of Human Genetics, Department of Pathology, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
| | - Kevin Esoh
- Division of Human Genetics, Department of Pathology, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
| | - Landouré Guida
- Faculté de Médecine et d'Odontostomatologie, USTTB, Bamako, Mali.,Neurogenetics Branch, National Institute of Neurological Disorders and Stroke, Bethesda, Maryland, USA.,Service de Neurologie, Centre Hospitalier Universitaire du Point "G", Bamako, Mali
| | - Ambroise Wonkam
- Division of Human Genetics, Department of Pathology, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa.,McKusick-Nathans Institute, and Department of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| |
Collapse
|
25
|
Wonkam A, Munung NS, Dandara C, Esoh KK, Hanchard NA, Landoure G. Five Priorities of African Genomics Research: The Next Frontier. Annu Rev Genomics Hum Genet 2022; 23:499-521. [PMID: 35576571 DOI: 10.1146/annurev-genom-111521-102452] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
To embrace the prospects of accurately diagnosing thousands of monogenic conditions, predicting disease risks for complex traits or diseases, tailoring treatment to individuals' pharmacogenetic profiles, and potentially curing some diseases, research into African genomic variation is a scientific imperative. African genomes harbor millions of uncaptured variants accumulated over 300,000 years of modern humans' evolutionary history, with successive waves of admixture, migration, and natural selection combining with extensive ecological diversity to create a broad and exceptional genomic complexity. Harnessing African genomic complexity, therefore, will require sustained commitment and equitable collaboration from the scientific community and funding agencies. African governments must support academic public research and industrial partnerships that build the necessary genetic medicine workforce, utilize the emerging genomic big data to develop expertise in computer science and bioinformatics, and evolve national and global governance frameworks that recognize the ethical implications of data-driven genomic research and empower its application in African social, cultural, economic, and religious contexts. Expected final online publication date for the Annual Review of Genomics and Human Genetics, Volume 23 is October 2022. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.
Collapse
Affiliation(s)
- Ambroise Wonkam
- Division of Human Genetics, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa; , , .,Current affiliation: McKusick-Nathans Institute of Genetic Medicine and Department of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA;
| | - Nchangwi S Munung
- Division of Human Genetics, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa; , ,
| | - Collet Dandara
- Division of Human Genetics, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa; , ,
| | - Kevin K Esoh
- Division of Human Genetics, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa; , ,
| | - Neil A Hanchard
- Center for Precision Health Research, National Human Genome Research Institute, National Institutes of Health, Bethesda, Maryland, USA;
| | - Guida Landoure
- Faculty of Medicine and Odontostomatology, University of Sciences, Techniques, and Technology of Bamako, Bamako, Mali;
| |
Collapse
|
26
|
Kruzel-Davila E, Madhavan SM. APOL1, Sickle Cell Trait, and Glutathione S-Transferase 1-More Complicated Than It Seems. Kidney Int Rep 2022; 7:368-370. [PMID: 35258513 PMCID: PMC8897679 DOI: 10.1016/j.ekir.2021.12.036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Affiliation(s)
| | - Sethu M. Madhavan
- Department of Medicine, The Ohio State University, Columbus, Ohio, USA
| |
Collapse
|
27
|
Kabore NF, Cournil A, Poda A, Ciaffi L, Binns-Roemer E, David V, Eymard-Duvernay S, Zoungrana J, Semde A, Sawadogo AB, Koulla-Shiro S, Kouanfack C, Ngom-Gueye NF, Meda N, Winkler C, Limou S. APOL1 Renal Risk Variants and Kidney Function in HIV-1–Infected People From Sub-Saharan Africa. Kidney Int Rep 2022; 7:483-493. [PMID: 35257061 PMCID: PMC8897309 DOI: 10.1016/j.ekir.2021.10.009] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Revised: 09/22/2021] [Accepted: 10/06/2021] [Indexed: 11/04/2022] Open
Abstract
Introduction APOL1 G1 and G2 alleles have been associated with kidney-related outcomes in people living with HIV (PLHIV) of Black African origin. No APOL1-related kidney risk data have yet been reported in PLHIV in West Africa, where high APOL1 allele frequencies have been observed. Methods We collected clinical data from PLHIV followed in Burkina Faso (N = 413) and in the ANRS-12169/2LADY trial (Cameroon, Senegal, Burkina Faso, N = 369). APOL1 G1 and G2 risk variants were genotyped using TaqMan assays, and APOL1 high-risk (HR) genotype was defined by the carriage of 2 risk alleles. Results In West Africa (Burkina Faso and Senegal), the G1 and G2 allele frequencies were 13.3% and 10.7%, respectively. In Cameroon (Central Africa), G1 and G2 frequencies were 8.7% and 8.9%, respectively. APOL1 HR prevalence was 4.9% in West Africa and 3.4% in Cameroon. We found no direct association between APOL1 HR and estimated glomerular filtration rate (eGFR) change over time. Nevertheless, among the 2LADY cohort participants, those with both APOL1 HR and high baseline viral load had a faster eGFR progression (β = −3.9[−7.7 to −0.1] ml/min per 1.73 m2 per year, P < 0.05) than those with low-risk (LR) genotype and low viral load. Conclusion Overall, the APOL1 risk allele frequencies in PLHIV were higher in the West African countries than in Cameroon, but much lower than previously reported in some Nigeria ethnic groups, which strongly advocates for further investigation in the African continent. This study suggested that the virological status could modulate the APOL1 impact on kidney function, hence reinforcing the need for early therapeutic interventions.
Collapse
|
28
|
Daneshpajouhnejad P, Kopp JB, Winkler CA, Rosenberg AZ. The evolving story of apolipoprotein L1 nephropathy: the end of the beginning. Nat Rev Nephrol 2022; 18:307-320. [PMID: 35217848 PMCID: PMC8877744 DOI: 10.1038/s41581-022-00538-3] [Citation(s) in RCA: 56] [Impact Index Per Article: 18.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/14/2022] [Indexed: 01/13/2023]
Abstract
Genetic coding variants in APOL1, which encodes apolipoprotein L1 (APOL1), were identified in 2010 and are relatively common among individuals of sub-Saharan African ancestry. Approximately 13% of African Americans carry two APOL1 risk alleles. These variants, termed G1 and G2, are a frequent cause of kidney disease — termed APOL1 nephropathy — that typically manifests as focal segmental glomerulosclerosis and the clinical syndrome of hypertension and arterionephrosclerosis. Cell culture studies suggest that APOL1 variants cause cell dysfunction through several processes, including alterations in cation channel activity, inflammasome activation, increased endoplasmic reticulum stress, activation of protein kinase R, mitochondrial dysfunction and disruption of APOL1 ubiquitinylation. Risk of APOL1 nephropathy is mostly confined to individuals with two APOL1 risk variants. However, only a minority of individuals with two APOL1 risk alleles develop kidney disease, suggesting the need for a ‘second hit’. The best recognized factor responsible for this ‘second hit’ is a chronic viral infection, particularly HIV-1, resulting in interferon-mediated activation of the APOL1 promoter, although most individuals with APOL1 nephropathy do not have an obvious cofactor. Current therapies for APOL1 nephropathies are not adequate to halt progression of chronic kidney disease, and new targeted molecular therapies are in clinical trials. This Review summarizes current understanding of the role of APOL1 variants in kidney disease. The authors discuss the genetics, protein structure and biological functions of APOL1 variants and provide an overview of promising therapeutic strategies. In contrast to other APOL family members, which are primarily intracellular, APOL1 contains a unique secretory signal peptide, resulting in its secretion into plasma. APOL1 renal risk alleles provide protection from African human trypanosomiasis but are a risk factor for progressive kidney disease in those carrying two risk alleles. APOL1 risk allele frequency is ~35% in the African American population in the United States, with ~13% of individuals having two risk alleles; the highest allele frequencies are found in West African populations and their descendants. Cell and mouse models implicate endolysosomal and mitochondrial dysfunction, altered ion channel activity, altered autophagy, and activation of protein kinase R in the pathogenesis of APOL1-associated kidney disease; however, the relevance of these injury pathways to human disease has not been resolved. APOL1 kidney disease tends to be progressive, and current standard therapies are generally ineffective; targeted therapeutic strategies hold the most promise.
Collapse
Affiliation(s)
- Parnaz Daneshpajouhnejad
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD, USA.,Department of Pathology, University of Pennsylvania Hospital, Philadelphia, PA, USA
| | | | - Cheryl A Winkler
- Basic Research Program, Frederick National Laboratory for Cancer Research, Frederick, MD, USA
| | - Avi Z Rosenberg
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
| |
Collapse
|
29
|
Muehlig AK, Gies S, Huber TB, Braun F. Collapsing Focal Segmental Glomerulosclerosis in Viral Infections. Front Immunol 2022; 12:800074. [PMID: 35095882 PMCID: PMC8792967 DOI: 10.3389/fimmu.2021.800074] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Accepted: 12/20/2021] [Indexed: 01/10/2023] Open
Abstract
Collapsing glomerulopathy represents a special variant of the proteinuric kidney disease focal segmental glomerulosclerosis (FSGS). Histologically, the collapsing form of FSGS (cFSGS) is characterized by segmental or global condensation and obliteration of glomerular capillaries, the appearance of hyperplastic and hypertrophic podocytes and severe tubulointerstitial damage. Clinically, cFSGS patients present with acute kidney injury, nephrotic-range proteinuria and are at a high risk of rapid progression to irreversible kidney failure. cFSGS can be attributed to numerous etiologies, namely, viral infections like HIV, cytomegalovirus, Epstein-Barr-Virus, and parvovirus B19 and also drugs and severe ischemia. Risk variants of the APOL1 gene, predominantly found in people of African descent, increase the risk of developing cFSGS. Patients infected with the new Corona-Virus SARS-CoV-2 display an increased rate of acute kidney injury (AKI) in severe cases of COVID-19. Besides hemodynamic instability, cytokine mediated injury and direct viral entry and infection of renal epithelial cells contributing to AKI, there are emerging reports of cFSGS associated with SARS-CoV-2 infection in patients of mainly African ethnicity. The pathogenesis of cFSGS is proposed to be linked with direct viral infection of podocytes, as described for HIV-associated glomerulopathy. Nevertheless, there is growing evidence that the systemic inflammatory cascade, activated in acute viral infections like COVID-19, is a major contributor to the impairment of basic cellular functions in podocytes. This mini review will summarize the current knowledge on cFSGS associated with viral infections with a special focus on the influence of systemic immune responses and potential mechanisms propagating the development of cFSGS.
Collapse
Affiliation(s)
- Anne K Muehlig
- III. Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany.,University Children's Hospital, University Medical Center Hamburg-Eppendorf, Hamburg, Germany.,University Children's Research@Kinder-UKE, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Sydney Gies
- III. Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Tobias B Huber
- III. Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Fabian Braun
- III. Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| |
Collapse
|
30
|
Dandara C, Ndadza A, Soko N. The importance of including African populations in pharmacogenetics studies of warfarin response. Pharmacogenomics 2021; 23:1-4. [PMID: 34821506 DOI: 10.2217/pgs-2021-0142] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Tweetable abstract Warfarin will remain in use for a long time to come, thus inclusion of African populations in pharmacogenomics is essential to be able to identify all possible biomarkers that are potential predictors for warfarin drug response.
Collapse
Affiliation(s)
- Collet Dandara
- Department of Pathology & Institute of Infectious Diseases & Molecular Medicine, Pharmacogenomics & Drug Metabolism Research Group, Division of Human Genetics, Faculty of Health Sciences, University of Cape Town, Observatory 7925, South Africa
| | - Arinao Ndadza
- Department of Pathology & Institute of Infectious Diseases & Molecular Medicine, Pharmacogenomics & Drug Metabolism Research Group, Division of Human Genetics, Faculty of Health Sciences, University of Cape Town, Observatory 7925, South Africa
| | - Nyarai Soko
- Department of Pathology & Institute of Infectious Diseases & Molecular Medicine, Pharmacogenomics & Drug Metabolism Research Group, Division of Human Genetics, Faculty of Health Sciences, University of Cape Town, Observatory 7925, South Africa
| |
Collapse
|
31
|
Müller D, Schmitz J, Fischer K, Granado D, Groh AC, Krausel V, Lüttgenau SM, Amelung TM, Pavenstädt H, Weide T. Evolution of Renal-Disease Factor APOL1 Results in Cis and Trans Orientations at the Endoplasmic Reticulum That Both Show Cytotoxic Effects. Mol Biol Evol 2021; 38:4962-4976. [PMID: 34323996 PMCID: PMC8557400 DOI: 10.1093/molbev/msab220] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
The recent and exclusively in humans and a few other higher primates expressed APOL1 (apolipoprotein L1) gene is linked to African human trypanosomiasis (also known as African sleeping sickness) as well as to different forms of kidney diseases. Whereas APOL1's role as a trypanolytic factor is well established, pathobiological mechanisms explaining its cytotoxicity in renal cells remain unclear. In this study, we compared the APOL family members using a combination of evolutionary studies and cell biological experiments to detect unique features causal for APOL1 nephrotoxic effects. We investigated available primate and mouse genome and transcriptome data to apply comparative phylogenetic and maximum likelihood selection analyses. We suggest that the APOL gene family evolved early in vertebrates and initial splitting occurred in ancestral mammals. Diversification and differentiation of functional domains continued in primates, including developing the two members APOL1 and APOL2. Their close relationship could be diagnosed by sequence similarity and a shared ancestral insertion of an AluY transposable element. Live-cell imaging analyses showed that both expressed proteins show a strong preference to localize at the endoplasmic reticulum (ER). However, glycosylation and secretion assays revealed that-unlike APOL2-APOL1 membrane insertion or association occurs in different orientations at the ER, with the disease-associated mutants facing either the luminal (cis) or cytoplasmic (trans) side of the ER. The various pools of APOL1 at the ER offer a novel perspective in explaining the broad spectrum of its observed toxic effects.
Collapse
Affiliation(s)
- Daria Müller
- Internal Medicine D (MedD), Molecular Nephrology, University Hospital of Münster (UKM), Münster, Germany
| | - Jürgen Schmitz
- Institute of Experimental Pathology, ZMBE, University of Münster, Münster, Germany
| | - Katharina Fischer
- Internal Medicine D (MedD), Molecular Nephrology, University Hospital of Münster (UKM), Münster, Germany
| | - Daniel Granado
- Internal Medicine D (MedD), Molecular Nephrology, University Hospital of Münster (UKM), Münster, Germany
| | - Ann-Christin Groh
- Internal Medicine D (MedD), Molecular Nephrology, University Hospital of Münster (UKM), Münster, Germany
| | - Vanessa Krausel
- Internal Medicine D (MedD), Molecular Nephrology, University Hospital of Münster (UKM), Münster, Germany
| | - Simona Mareike Lüttgenau
- Internal Medicine D (MedD), Molecular Nephrology, University Hospital of Münster (UKM), Münster, Germany
| | - Till Maximilian Amelung
- Internal Medicine D (MedD), Molecular Nephrology, University Hospital of Münster (UKM), Münster, Germany
| | - Hermann Pavenstädt
- Internal Medicine D (MedD), Molecular Nephrology, University Hospital of Münster (UKM), Münster, Germany
| | - Thomas Weide
- Internal Medicine D (MedD), Molecular Nephrology, University Hospital of Münster (UKM), Münster, Germany
| |
Collapse
|
32
|
Guha A, Wang X, Harris RA, Nelson AG, Stepp D, Klaassen Z, Raval P, Cortes J, Coughlin SS, Bogdanov VY, Moore JX, Desai N, Miller DD, Lu XY, Kim HW, Weintraub NL. Obesity and the Bidirectional Risk of Cancer and Cardiovascular Diseases in African Americans: Disparity vs. Ancestry. Front Cardiovasc Med 2021; 8:761488. [PMID: 34733899 PMCID: PMC8558482 DOI: 10.3389/fcvm.2021.761488] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Accepted: 09/21/2021] [Indexed: 12/28/2022] Open
Abstract
Cardiovascular disease (CVD) and cancer often occur in the same individuals, in part due to the shared risk factors such as obesity. Obesity promotes adipose inflammation, which is pathogenically linked to both cardiovascular disease and cancer. Compared with Caucasians, the prevalence of obesity is significantly higher in African Americans (AA), who exhibit more pronounced inflammation and, in turn, suffer from a higher burden of CVD and cancer-related mortality. The mechanisms that underlie this association among obesity, inflammation, and the bidirectional risk of CVD and cancer, particularly in AA, remain to be determined. Socio-economic disparities such as lack of access to healthy and affordable food may promote obesity and exacerbate hypertension and other CVD risk factors in AA. In turn, the resulting pro-inflammatory milieu contributes to the higher burden of CVD and cancer in AA. Additionally, biological factors that regulate systemic inflammation may be contributory. Mutations in atypical chemokine receptor 1 (ACKR1), otherwise known as the Duffy antigen receptor for chemokines (DARC), confer protection against malaria. Many AAs carry a mutation in the gene encoding this receptor, resulting in loss of its expression. ACKR1 functions as a decoy chemokine receptor, thus dampening chemokine receptor activation and inflammation. Published and preliminary data in humans and mice genetically deficient in ACKR1 suggest that this common gene mutation may contribute to ethnic susceptibility to obesity-related disease, CVD, and cancer. In this narrative review, we present the evidence regarding obesity-related disparities in the bidirectional risk of CVD and cancer and also discuss the potential association of gene polymorphisms in AAs with emphasis on ACKR1.
Collapse
Affiliation(s)
- Avirup Guha
- Harrington Heart and Vascular Institute, Case Western Reserve University, Cleveland, OH, United States
- Division of Cardiology, Department of Medicine, Medical College of Georgia at Augusta University, Augusta, GA, United States
| | - Xiaoling Wang
- Georgia Prevention Institute, Augusta University, Augusta, GA, United States
| | - Ryan A. Harris
- Georgia Prevention Institute, Augusta University, Augusta, GA, United States
| | - Anna-Gay Nelson
- Department of Chemistry, Paine College, Augusta, GA, United States
| | - David Stepp
- Vascular Biology Center, Medical College of Georgia at Augusta University, Augusta, GA, United States
| | - Zachary Klaassen
- Section of Urology, Department of Surgery, Medical College of Georgia at Augusta University, Georgia Cancer Center, Augusta, GA, United States
| | - Priyanka Raval
- Georgia Cancer Center, Augusta University, Augusta, GA, United States
| | - Jorge Cortes
- Georgia Cancer Center, Augusta University, Augusta, GA, United States
| | - Steven S. Coughlin
- Department of Population Health Sciences, Medical College of Georgia at Augusta University, Augusta, GA, United States
| | | | - Justin X. Moore
- Cancer Prevention, Control, and Population Health Program, Georgia Cancer Center, Medical College of Georgia, Augusta University, Augusta, GA, United States
| | - Nihar Desai
- Section of Cardiovascular Medicine, Department of Internal Medicine, Yale University School of Medicine, New Haven, CT, United States
- Center for Outcomes Research and Evaluation, New Haven, CT, United States
| | - D. Douglas Miller
- Medical College of Georgia at Augusta University, Augusta, GA, United States
| | - Xin-Yun Lu
- Department of Neuroscience & Regenerative Medicine, Medical College of Georgia at Augusta University, Augusta, GA, United States
| | - Ha Won Kim
- Division of Cardiology, Department of Medicine, Medical College of Georgia at Augusta University, Augusta, GA, United States
- Vascular Biology Center, Medical College of Georgia at Augusta University, Augusta, GA, United States
| | - Neal L. Weintraub
- Division of Cardiology, Department of Medicine, Medical College of Georgia at Augusta University, Augusta, GA, United States
- Vascular Biology Center, Medical College of Georgia at Augusta University, Augusta, GA, United States
| |
Collapse
|
33
|
Esoh K, Wonkam-Tingang E, Wonkam A. Sickle cell disease in sub-Saharan Africa: transferable strategies for prevention and care. Lancet Haematol 2021; 8:e744-e755. [PMID: 34481550 DOI: 10.1016/s2352-3026(21)00191-5] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2020] [Revised: 05/27/2021] [Accepted: 06/10/2021] [Indexed: 12/22/2022]
Abstract
Sickle cell disease can be life-threatening or chronically debilitating for both children and adults. Worldwide, more than 300 000 children are born with sickle cell disease every year, over 75% of whom in sub-Saharan Africa. Increased awareness and early interventions, such as neonate screening and comprehensive care, have led to considerable reductions in mortality in children younger than 5 years in high-income countries. However, sickle cell disease prevention and care have largely been neglected in Africa. Without intervention, 50-90% of affected children in many sub-Saharan African countries die before their fifth birthday. Fortunately, increasing initiatives in sub-Saharan Africa are piloting interventions such as neonate screening and comprehensive care, and as mortality declines, quality of life and increased life expectancy become major targets for interventions. Hydroxyurea (hydroxycarbamide) and haematopoietic stem-cell transplantation have already been shown to be effective therapies in high-income countries, but are either not widely accessible or too expensive for most African populations. These challenges are being alleviated by numerous networks evolving through international collaborations that are positively changing the outlook of sickle cell disease management in sub-Saharan Africa. In this Series paper, we describe the epidemiology, pathophysiology, clinicobiological profile, and psychosocial effects of sickle cell disease in sub-Saharan Africa. We highlight transferable strategies already used for the successful management of the condition and key strategies and recommendations for affordable and comprehensive care on the continent. TRANSLATION: For the French translation of the abstract see Supplementary Materials section.
Collapse
Affiliation(s)
- Kevin Esoh
- Division of Human Genetics, Department of Pathology, University of Cape Town, Cape Town, South Africa
| | - Edmond Wonkam-Tingang
- Division of Human Genetics, Department of Pathology, University of Cape Town, Cape Town, South Africa
| | - Ambroise Wonkam
- Division of Human Genetics, Department of Pathology, University of Cape Town, Cape Town, South Africa; Department of Medicine, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa.
| |
Collapse
|
34
|
Kruzel-Davila E, Sankofi BM, Kubi Amos-Abanyie E, Ghansah A, Nyarko A, Agyemang S, Awandare GA, Szwarcwort-Cohen M, Reiner-Benaim A, Hijazi B, Ulasi I, Raji YR, Boima V, Osafo C, May Adabayeri V, Matekole M, Olanrewaju TO, Ajayi S, Mamven M, Antwi S, Ademola AD, Plange-Rhule J, Arogundade F, Akyaw PA, Winkler CA, Salako BL, Ojo A, Skorecki K, Adu D. HIV Viremia Is Associated With APOL1 Variants and Reduced JC-Viruria. Front Med (Lausanne) 2021; 8:718300. [PMID: 34513880 PMCID: PMC8429812 DOI: 10.3389/fmed.2021.718300] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Accepted: 08/05/2021] [Indexed: 11/23/2022] Open
Abstract
Variants in the Apolipoprotein L1 (APOL1) gene (G1-rs60910145, rs73885319, G2-rs71785313) are common in Africans and in individuals of recent African ancestry and are associated with an increased risk of non-diabetic chronic kidney disease (CKD) and in particular of HIV associated nephropathy (HIVAN). In light of the significantly increased risk of HIVAN in carriers of two APOL1 risk alleles, a role in HIV infectivity has been postulated in the mechanism of APOL1 associated kidney disease. Herein, we aim to explore the association between HIV viremia and APOL1 genotype. In addition, we investigated interaction between BK and JC viruria, CKD and HIV viremia. A total of 199 persons living with HIV/AIDS (comprising 82 CKD cases and 117 controls) from among the participants in the ongoing Human Heredity and Health in Africa (H3Africa) Kidney Disease Research Network case control study have been recruited. The two APOL1 renal risk alleles (RRA) genotypes were associated with a higher risk of CKD (OR 12.6, 95% CI 3.89-40.8, p < 0.0001). Even a single APOL1 RRA was associated with CKD risk (OR 4.42, 95% CI 1.49-13.15, p = 0.007). The 2 APOL1 RRA genotypes were associated with an increased probability of having HIV viremia (OR 2.37 95% CI 1.0-5.63, p = 0.05). HIV viremia was associated with increased CKD risk (OR 7.45, 95% CI 1.66-33.35, P = 0.009) and with a significant reduction of JC virus urine shedding (OR 0.35, 95% CI 0.12-0.98, p = 0.046). In contrast to prior studies, JC viruria was not associated with CKD but was restricted in patients with HIV viremia, regardless of CKD status. These findings suggest a role of APOL1 variants in HIV infectivity and emphasize that JC viruria can serve as biomarker for innate immune system activation.
Collapse
Affiliation(s)
- Etty Kruzel-Davila
- Rappaport Faculty of Medicine, Technion Israel Institute of Technology, Haifa, Israel
- Nephrology Department, Rambam Health Care Campus, Haifa, Israel
| | - Barbara Mensah Sankofi
- College of Health Sciences, Noguchi Memorial Institute for Medical Research, University of Ghana, Accra, Ghana
- West African Centre for Cell Biology of Infectious Pathogens, College of Basic and Applied Sciences, University of Ghana, Accra, Ghana
| | - Ernestine Kubi Amos-Abanyie
- College of Health Sciences, Noguchi Memorial Institute for Medical Research, University of Ghana, Accra, Ghana
| | - Anita Ghansah
- College of Health Sciences, Noguchi Memorial Institute for Medical Research, University of Ghana, Accra, Ghana
| | - Alexander Nyarko
- College of Health Sciences, Noguchi Memorial Institute for Medical Research, University of Ghana, Accra, Ghana
| | - Seth Agyemang
- West African Centre for Cell Biology of Infectious Pathogens, College of Basic and Applied Sciences, University of Ghana, Accra, Ghana
- University of Ghana Medical School, College of Health Sciences, University of Ghana, Accra, Ghana
| | - Gordon A. Awandare
- West African Centre for Cell Biology of Infectious Pathogens, College of Basic and Applied Sciences, University of Ghana, Accra, Ghana
| | | | | | - Basem Hijazi
- Azrieli Faculty of Medicine, Bar-Ilan University, Safed, Israel
| | - Ifeoma Ulasi
- Department of Medicine, College of Health Sciences University of Nigeria, Enugu, Nigeria
| | | | - Vincent Boima
- University of Ghana Medical School, College of Health Sciences, University of Ghana, Accra, Ghana
| | - Charlotte Osafo
- University of Ghana Medical School, College of Health Sciences, University of Ghana, Accra, Ghana
| | - Victoria May Adabayeri
- University of Ghana Medical School, College of Health Sciences, University of Ghana, Accra, Ghana
| | - Michael Matekole
- University of Ghana Medical School, College of Health Sciences, University of Ghana, Accra, Ghana
| | - Timothy O. Olanrewaju
- Department of Medicine, Kwame Nkrumah University of Science and Technology, Kumasi, Ghana
| | - Samuel Ajayi
- Department of Medicine, University of Ibadan, Ibadan, Nigeria
| | - Manmak Mamven
- Department of Medicine, University of Abuja, Abuja, Nigeria
| | - Sampson Antwi
- Department of Medicine, Kwame Nkrumah University of Science and Technology, Kumasi, Ghana
| | | | - Jacob Plange-Rhule
- Department of Medicine, Kwame Nkrumah University of Science and Technology, Kumasi, Ghana
| | | | - Priscilla Abena Akyaw
- College of Health Sciences, Noguchi Memorial Institute for Medical Research, University of Ghana, Accra, Ghana
| | - Cheryl A. Winkler
- Department of Medicine, Frederick National Laboratory for Cancer Research (NIH), Frederick, MD, United States
| | | | - Akinlolu Ojo
- School of Medicine, University of Kansas Medical Center, Kansas City, KS, United States
| | - Karl Skorecki
- Rappaport Faculty of Medicine, Technion Israel Institute of Technology, Haifa, Israel
- Rambam Health Care Campus, Haifa, Israel
- Azrieli Faculty of Medicine, Bar-Ilan University, Safed, Israel
| | - Dwomoa Adu
- University of Ghana Medical School, College of Health Sciences, University of Ghana, Accra, Ghana
| |
Collapse
|
35
|
McCarthy GM, Blasio A, Donovan OG, Schaller LB, Bock-Hughes A, Magraner JM, Suh JH, Tattersfield CF, Stillman IE, Shah SS, Zsengeller ZK, Subramanian B, Friedman DJ, Pollak MR. Recessive, gain-of-function toxicity in an APOL1 BAC transgenic mouse model mirrors human APOL1 kidney disease. Dis Model Mech 2021; 14:dmm048952. [PMID: 34350953 PMCID: PMC8353097 DOI: 10.1242/dmm.048952] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Accepted: 06/21/2021] [Indexed: 12/26/2022] Open
Abstract
People of recent sub-Saharan African ancestry develop kidney failure much more frequently than other groups. A large fraction of this disparity is due to two coding sequence variants in the APOL1 gene. Inheriting two copies of these APOL1 risk variants, known as G1 and G2, causes high rates of focal segmental glomerulosclerosis (FSGS), HIV-associated nephropathy and hypertension-associated end-stage kidney disease. Disease risk follows a recessive mode of inheritance, which is puzzling given the considerable data that G1 and G2 are toxic gain-of-function variants. We developed coisogenic bacterial artificial chromosome (BAC) transgenic mice harboring either the wild-type (G0), G1 or G2 forms of human APOL1. Expression of interferon gamma (IFN-γ) via plasmid tail vein injection results in upregulation of APOL1 protein levels together with robust induction of heavy proteinuria and glomerulosclerosis in G1/G1 and G2/G2 but not G0/G0 mice. The disease phenotype was greater in G2/G2 mice. Neither heterozygous (G1/G0 or G2/G0) risk variant mice nor hemizygous (G1/-, G2/-) mice had significant kidney injury in response to IFN-γ, although the heterozygous mice had a greater proteinuric response than the hemizygous mice, suggesting that the lack of significant disease in humans heterozygous for G1 or G2 is not due to G0 rescue of G1 or G2 toxicity. Studies using additional mice (multicopy G2 and a non-isogenic G0 mouse) supported the notion that disease is largely a function of the level of risk variant APOL1 expression. Together, these findings shed light on the recessive nature of APOL1-nephropathy and present an important model for future studies.
Collapse
Affiliation(s)
- Gizelle M. McCarthy
- Nephrology Division, Department of Medicine, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA 02215, USA
| | - Angelo Blasio
- Nephrology Division, Department of Medicine, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA 02215, USA
| | - Olivia G. Donovan
- Nephrology Division, Department of Medicine, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA 02215, USA
| | - Lena B. Schaller
- Nephrology Division, Department of Medicine, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA 02215, USA
| | - Althea Bock-Hughes
- Nephrology Division, Department of Medicine, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA 02215, USA
| | - Jose M. Magraner
- Nephrology Division, Department of Medicine, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA 02215, USA
| | - Jung Hee Suh
- Nephrology Division, Department of Medicine, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA 02215, USA
| | - Calum F. Tattersfield
- Nephrology Division, Department of Medicine, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA 02215, USA
| | - Isaac E. Stillman
- Dept. of Pathology, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA 02215, USA
| | - Shrijal S. Shah
- Nephrology Division, Department of Medicine, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA 02215, USA
| | - Zsuzsanna K. Zsengeller
- Nephrology Division, Department of Medicine, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA 02215, USA
| | - Balajikarthick Subramanian
- Nephrology Division, Department of Medicine, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA 02215, USA
| | - David J. Friedman
- Nephrology Division, Department of Medicine, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA 02215, USA
| | - Martin R. Pollak
- Nephrology Division, Department of Medicine, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA 02215, USA
| |
Collapse
|
36
|
Schaub C, Lee P, Racho-Jansen A, Giovinazzo J, Terra N, Raper J, Thomson R. Coiled-coil binding of the leucine zipper domains of APOL1 is necessary for the open cation channel conformation. J Biol Chem 2021; 297:101009. [PMID: 34331942 PMCID: PMC8446801 DOI: 10.1016/j.jbc.2021.101009] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Revised: 07/12/2021] [Accepted: 07/23/2021] [Indexed: 11/17/2022] Open
Abstract
Apolipoprotein L-I (APOL1) is a channel-forming effector of innate immunity. The common human APOL1 variant G0 provides protection against infection with certain Trypanosoma and Leishmania parasite species, but it cannot protect against the trypanosomes responsible for human African trypanosomiasis. Human APOL1 variants G1 and G2 protect against human-infective trypanosomes but also confer a higher risk of developing chronic kidney disease. Trypanosome-killing activity is dependent on the ability of APOL1 to insert into membranes at acidic pH and form pH-gated cation channels. We previously mapped the channel’s pore-lining region to the C-terminal domain (residues 332–398) and identified a membrane-insertion domain (MID, residues 177–228) that facilitates acidic pH-dependent membrane insertion. In this article, we further investigate structural determinants of cation channel formation by APOL1. Using a combination of site-directed mutagenesis and targeted chemical modification, our data indicate that the C-terminal heptad-repeat sequence (residues 368–395) is a bona fide leucine zipper domain (ZIP) that is required for cation channel formation as well as lysis of trypanosomes and mammalian cells. Using protein-wide cysteine-scanning mutagenesis, coupled with the substituted cysteine accessibility method, we determined that, in the open channel state, both the N-terminal domain and the C-terminal ZIP domain are exposed on the intralumenal/extracellular side of the membrane and provide evidence that each APOL1 monomer contributes four transmembrane domains to the open cation channel conformation. Based on these data, we propose an oligomeric topology model in which the open APOL1 cation channel is assembled from the coiled-coil association of C-terminal ZIP domains.
Collapse
Affiliation(s)
- Charles Schaub
- Department of Biological sciences, Hunter College, City University of New York, USA; The Ph.D. Program in Biochemistry, The Graduate Center of the City University of New York; Vanderbilt University, Nashville, Tennessee, USA
| | - Penny Lee
- Department of Biological sciences, Hunter College, City University of New York, USA; John Jay College, City University of New York, USA
| | - Alisha Racho-Jansen
- Department of Biological sciences, Hunter College, City University of New York, USA
| | - Joe Giovinazzo
- Department of Biological sciences, Hunter College, City University of New York, USA; University of Colorado School of Medicine, Aurora, Colorado, USA
| | - Nada Terra
- Department of Biological sciences, Hunter College, City University of New York, USA; Icahn School of Medicine at Mount Sinai, New York, USA
| | - Jayne Raper
- Department of Biological sciences, Hunter College, City University of New York, USA; The Ph.D. Program in Biochemistry, The Graduate Center of the City University of New York.
| | - Russell Thomson
- Department of Biological sciences, Hunter College, City University of New York, USA.
| |
Collapse
|
37
|
Ultsch M, Holliday MJ, Gerhardy S, Moran P, Scales SJ, Gupta N, Oltrabella F, Chiu C, Fairbrother W, Eigenbrot C, Kirchhofer D. Structures of the ApoL1 and ApoL2 N-terminal domains reveal a non-classical four-helix bundle motif. Commun Biol 2021; 4:916. [PMID: 34316015 PMCID: PMC8316464 DOI: 10.1038/s42003-021-02387-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Accepted: 06/23/2021] [Indexed: 02/07/2023] Open
Abstract
Apolipoprotein L1 (ApoL1) is a circulating innate immunity protein protecting against trypanosome infection. However, two ApoL1 coding variants are associated with a highly increased risk of chronic kidney disease. Here we present X-ray and NMR structures of the N-terminal domain (NTD) of ApoL1 and of its closest relative ApoL2. In both proteins, four of the five NTD helices form a four-helix core structure which is different from the classical four-helix bundle and from the pore-forming domain of colicin A. The reactivity with a conformation-specific antibody and structural models predict that this four-helix motif is also present in the NTDs of ApoL3 and ApoL4, suggesting related functions within the small ApoL family. The long helix 5 of ApoL1 is conformationally flexible and contains the BH3-like region. This BH3-like α-helix resembles true BH3 domains only in sequence and structure but not in function, since it does not bind to the pro-survival members of the Bcl-2 family, suggesting a Bcl-2-independent role in cytotoxicity. These findings should expedite a more comprehensive structural and functional understanding of the ApoL immune protein family.
Collapse
Affiliation(s)
- Mark Ultsch
- Department of Structural Biology, Genentech Inc., South San Francisco, CA, USA
| | - Michael J Holliday
- Department of Early Discovery Biochemistry, Genentech Inc., South San Francisco, CA, USA
| | - Stefan Gerhardy
- Department of Early Discovery Biochemistry, Genentech Inc., South San Francisco, CA, USA
| | - Paul Moran
- Department of Early Discovery Biochemistry, Genentech Inc., South San Francisco, CA, USA
| | - Suzie J Scales
- Department of Immunology, Genentech Inc., South San Francisco, CA, USA
| | - Nidhi Gupta
- Department of Immunology, Genentech Inc., South San Francisco, CA, USA
| | | | - Cecilia Chiu
- Department of Antibody Engineering, Genentech Inc., South San Francisco, CA, USA
| | - Wayne Fairbrother
- Department of Early Discovery Biochemistry, Genentech Inc., South San Francisco, CA, USA
| | - Charles Eigenbrot
- Department of Structural Biology, Genentech Inc., South San Francisco, CA, USA
| | - Daniel Kirchhofer
- Department of Early Discovery Biochemistry, Genentech Inc., South San Francisco, CA, USA.
| |
Collapse
|
38
|
Abstract
In recognition that evolutionary theory is critical for understanding modern human health, eLife is publishing a special issue on evolutionary medicine to showcase recent research in this growing and increasingly interdisciplinary field.
Collapse
Affiliation(s)
- George H Perry
- Departments of Anthropology and Biology, and the Huck Institutes of the Life Sciences, Pennsylvania State University, University Park, United States
| |
Collapse
|
39
|
Olawoye O, Chuka-Okosa C, Akpa O, Realini T, Hauser M, Ashaye A. Eyes of Africa: The Genetics of Blindness: Study Design and Methodology. BMC Ophthalmol 2021; 21:272. [PMID: 34243759 PMCID: PMC8267233 DOI: 10.1186/s12886-021-02029-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Accepted: 06/25/2021] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND This report describes the design and methodology of the "Eyes of Africa: The Genetics of Blindness," a collaborative study funded through the Human Heredity and Health in Africa (H3Africa) program of the National Institute of Health. METHODS This is a case control study that is collecting a large well phenotyped data set among glaucoma patients and controls for a genome wide association study. (GWAS). Multiplex families segregating Mendelian forms of early-onset glaucoma will also be collected for exome sequencing. DISCUSSION A total of 4500 cases/controls have been recruited into the study at the end of the 3rd funded year of the study. All these participants have been appropriately phenotyped and blood samples have been received from these participants. Recent GWAS of POAG in African individuals demonstrated genome-wide significant association with the APBB2 locus which is an association that is unique to individuals of African ancestry. This study will add to the existing knowledge and understanding of POAG in the African population.
Collapse
Affiliation(s)
- Olusola Olawoye
- Department of Ophthalmology, College of Medicine, University of Ibadan, Ibadan, Nigeria
| | - Chimdi Chuka-Okosa
- Department of Ophthalmology, College of Medicine, University of Nigeria, Enugu Campus, Enugu, Nigeria
| | - Onoja Akpa
- Department of Epidemiology and Medical Statistics, College of Medicine, University of Ibadan, Ibadan, Nigeria
| | - Tony Realini
- Department of Ophthalmology and Visual Sciences, West Virginia University, Morgantown, USA
| | - Michael Hauser
- Department of Medicine, Duke University, NC Durham, USA
- Department of Ophthalmology, Duke University, NC Durham, USA
| | - Adeyinka Ashaye
- Department of Ophthalmology, College of Medicine, University of Ibadan, Ibadan, Nigeria
| |
Collapse
|
40
|
African genetic diversity and adaptation inform a precision medicine agenda. Nat Rev Genet 2021; 22:284-306. [PMID: 33432191 DOI: 10.1038/s41576-020-00306-8] [Citation(s) in RCA: 88] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/02/2020] [Indexed: 01/29/2023]
Abstract
The deep evolutionary history of African populations, since the emergence of modern humans more than 300,000 years ago, has resulted in high genetic diversity and considerable population structure. Selected genetic variants have increased in frequency due to environmental adaptation, but recent exposures to novel pathogens and changes in lifestyle render some of them with properties leading to present health liabilities. The unique discoverability potential from African genomic studies promises invaluable contributions to understanding the genomic and molecular basis of health and disease. Globally, African populations are understudied, and precision medicine approaches are largely based on data from European and Asian-ancestry populations, which limits the transferability of findings to the continent of Africa. Africa needs innovative precision medicine solutions based on African data that use knowledge and implementation strategies aligned to its climatic, cultural, economic and genomic diversity.
Collapse
|
41
|
Yusuf AA, Govender MA, Brandenburg JT, Winkler CA. Kidney disease and APOL1. Hum Mol Genet 2021; 30:R129-R137. [PMID: 33744923 PMCID: PMC8117447 DOI: 10.1093/hmg/ddab024] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2020] [Revised: 01/12/2021] [Accepted: 01/12/2021] [Indexed: 01/03/2023] Open
Affiliation(s)
- Aminu Abba Yusuf
- Department of Haematology, Bayero University Kano and Aminu Kano Teaching Hospital, Kano, Nigeria
| | - Melanie A Govender
- Faculty of Health Sciences, Sydney Brenner Institute for Molecular Bioscience, University of the Witwatersrand, Johannesburg, South Africa
| | - Jean-Tristan Brandenburg
- Faculty of Health Sciences, Sydney Brenner Institute for Molecular Bioscience, University of the Witwatersrand, Johannesburg, South Africa
| | - Cheryl A Winkler
- Molecular Genetic Epidemiology Section, Basic Research Laboratory, Frederick National Laboratory for Cancer Research, NCI, Frederick, MD 21701, USA
| |
Collapse
|
42
|
Esoh K, Wonkam A. Evolutionary history of sickle-cell mutation: implications for global genetic medicine. Hum Mol Genet 2021; 30:R119-R128. [PMID: 33461216 PMCID: PMC8117455 DOI: 10.1093/hmg/ddab004] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Revised: 01/04/2021] [Accepted: 01/05/2021] [Indexed: 12/25/2022] Open
Abstract
Resistance afforded by the sickle-cell trait against severe malaria has led to high frequencies of the sickle-cell mutation [HBB; c.20T>A, p.Glu6Val; OMIM: 141900 (HBB-βS)] in most parts of Africa. High-coverage sequencing and genotype data have now confirmed the single African origin of the sickle-cell gene variant [HBB; c.20T>A, p.Glu6Val; OMIM: 141900 (HBB-βS)]. Nevertheless, the classical HBB-like genes cluster haplotypes remain a rich source of HBB-βS evolutionary information. The overlapping distribution of HBB-βS and other disease-associated variants means that their evolutionary genetics must be investigated concurrently. In this review: (1) we explore the evolutionary history of HBB-βS and its implications in understanding human migration within and out of Africa: e.g. HBB haplotypes and recent migration paths of the Bantu expansion, occurrence of ~7% of the Senegal haplotype in Angola reflecting changes in population/SCD dynamics, and existence of all five classical HBB haplotype in Cameroon and Egypt suggesting a much longer presence of HBB-βS in these regions; (2) we discuss the time estimates of the emergence of HBB-βS in Africa and finally, (3) we discuss implications for genetic medicine in understanding complex epistatic interactions between HBB-βS and other gene variants selected under environmental pressure in Africa e.g. variants in HBB, HBA, G6PD, APOL1, APOE, OSBPL10 and RXRA.
Collapse
Affiliation(s)
- Kevin Esoh
- Division of Human Genetics, Department of Pathology, University of Cape Town, Cape Town, South Africa
| | - Ambroise Wonkam
- Division of Human Genetics, Department of Pathology, University of Cape Town, Cape Town, South Africa
- Department of Medicine, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
| |
Collapse
|
43
|
An P, Sezgin E, Kirk GD, Duggal P, Binns-Roemer E, Nelson G, Limou S, Van Natta ML, Jabs DA, Estrella M, Kopp JB, Winkler CA. APOL1 variant alleles associate with reduced risk for opportunistic infections in HIV infection. Commun Biol 2021; 4:284. [PMID: 33674766 PMCID: PMC7977062 DOI: 10.1038/s42003-021-01812-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Accepted: 02/08/2021] [Indexed: 11/10/2022] Open
Abstract
Apolipoprotein L1 (APOL1), an innate immune factor against African trypanosoma brucei, inhibits HIV-1 in vitro. The impact of APOL1 G1-G2 variants on HIV-1-associated opportunistic infections (OIs) is unknown. Here, we report findings from a metaanalysis of four HIV/AIDS prospective cohorts (ALIVE, LSOCA, MACS, and WIHS) including 2066 African American participants. Using a global test combining all four cohorts, carriage of two APOL1 variant alleles is associated with a 50% reduction in odds of OI (combined OR 0.50, 95% CI 0.33-0.76). Subgroup analysis of OI etiological categories (viral, parasitic, fungal and Mycobacterial) suggests the possibility of specific protection from fungal infections (OR 0.54. 95% CI 0.32-0.93; PBonferroni corrected = 0.08). We observe an association of APOL1 variant alleles with host protection against OI in HIV-positive individuals. The study suggests a broader role of APOL1 variant alleles in innate immunity in vivo.
Collapse
Affiliation(s)
- Ping An
- Basic Research Laboratory, Molecular Genetic Epidemiology Section, Basic Science Program, Frederick National Laboratory for Cancer Research, Frederick, MD, USA.
| | - Efe Sezgin
- Basic Research Laboratory, Molecular Genetic Epidemiology Section, Basic Science Program, Frederick National Laboratory for Cancer Research, Frederick, MD, USA
- Department of Epidemiology, the Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
- Laboratory of Nutrigenomics and Epidemiology, Izmir Institute of Technology, Izmir, Turkey
| | - Gregory D Kirk
- Department of Epidemiology, the Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
- Department of Medicine, the Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Priya Duggal
- Department of Epidemiology, the Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
| | - Elizabeth Binns-Roemer
- Basic Research Laboratory, Molecular Genetic Epidemiology Section, Basic Science Program, Frederick National Laboratory for Cancer Research, Frederick, MD, USA
| | - George Nelson
- Center for Cancer Research Informatics Core, Leidos Biomedical Research, Inc., Frederick National Laboratory for Cancer Research, Frederick, MD, USA
| | - Sophie Limou
- Basic Research Laboratory, Molecular Genetic Epidemiology Section, Basic Science Program, Frederick National Laboratory for Cancer Research, Frederick, MD, USA
- CRTI UMR1064, Inserm, Université de Nantes & ITUN, CHU Nantes, Nantes, France
- Ecole Centrale de Nantes, Nantes, France
| | - Mark L Van Natta
- Department of Epidemiology, the Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
| | - Douglas A Jabs
- Department of Epidemiology, the Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
- Department of Ophthalmology, the Wilmer Eye Institute, the Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Michelle Estrella
- Kidney Health Research Collaborative, Department of Medicine, University of California San Francisco, San Francisco, CA, USA
- San Francisco VA Health Care System, San Francisco, CA, USA
| | - Jeffrey B Kopp
- Kidney Disease Section, National Institute of Diabetes and Digestive and Kidney Diseases, NIH, Bethesda, MD, USA
| | - Cheryl A Winkler
- Basic Research Laboratory, Molecular Genetic Epidemiology Section, Basic Science Program, Frederick National Laboratory for Cancer Research, Frederick, MD, USA.
| |
Collapse
|
44
|
Ge M, Molina J, Ducasa GM, Mallela SK, Varona Santos J, Mitrofanova A, Kim JJ, Liu X, Sloan A, Mendez AJ, Banerjee S, Liu S, Szeto HH, Shin MK, Hoek M, Kopp JB, Fontanesi F, Merscher S, Fornoni A. APOL1 risk variants affect podocyte lipid homeostasis and energy production in focal segmental glomerulosclerosis. Hum Mol Genet 2021; 30:182-197. [PMID: 33517446 DOI: 10.1093/hmg/ddab022] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2020] [Revised: 12/09/2020] [Accepted: 01/12/2021] [Indexed: 12/14/2022] Open
Abstract
Lipotoxicity was recently reported in several forms of kidney disease, including focal segmental glomerulosclerosis (FSGS). Susceptibility to FSGS in African Americans is associated with the presence of genetic variants of the Apolipoprotein L1 gene (APOL1) named G1 and G2. If and how endogenous APOL1 may alter mitochondrial function by the modifying cellular lipid metabolism is unknown. Using transgenic mice expressing the APOL1 variants (G0, G1 or G2) under endogenous promoter, we show that APOL1 risk variant expression in transgenic mice does not impair kidney function at baseline. However, APOL1 G1 expression worsens proteinuria and kidney function in mice characterized by the podocyte inducible expression of nuclear factor of activated T-cells (NFAT), which we have found to cause FSGS. APOL1 G1 expression in this FSGS-model also results in increased triglyceride and cholesterol ester contents in kidney cortices, where lipid accumulation correlated with loss of renal function. In vitro, we show that the expression of endogenous APOL1 G1/G2 in human urinary podocytes is associated with increased cellular triglyceride content and is accompanied by mitochondrial dysfunction in the presence of compensatory oxidative phosphorylation (OXPHOS) complexes elevation. Our findings indicate that APOL1 risk variant expression increases the susceptibility to lipid-dependent podocyte injury, ultimately leading to mitochondrial dysfunction.
Collapse
Affiliation(s)
- Mengyuan Ge
- Katz Family Division of Nephrology and Hypertension, Department of Medicine, University of Miami Miller School of Medicine, Miami, Florida 33136, USA
- Peggy and Harold Katz Family Drug Discovery Center, University of Miami Miller School of Medicine, Miami, Florida 33136, USA
| | - Judith Molina
- Katz Family Division of Nephrology and Hypertension, Department of Medicine, University of Miami Miller School of Medicine, Miami, Florida 33136, USA
- Peggy and Harold Katz Family Drug Discovery Center, University of Miami Miller School of Medicine, Miami, Florida 33136, USA
| | - G Michelle Ducasa
- Katz Family Division of Nephrology and Hypertension, Department of Medicine, University of Miami Miller School of Medicine, Miami, Florida 33136, USA
- Peggy and Harold Katz Family Drug Discovery Center, University of Miami Miller School of Medicine, Miami, Florida 33136, USA
| | - Shamroop K Mallela
- Katz Family Division of Nephrology and Hypertension, Department of Medicine, University of Miami Miller School of Medicine, Miami, Florida 33136, USA
- Peggy and Harold Katz Family Drug Discovery Center, University of Miami Miller School of Medicine, Miami, Florida 33136, USA
| | - Javier Varona Santos
- Katz Family Division of Nephrology and Hypertension, Department of Medicine, University of Miami Miller School of Medicine, Miami, Florida 33136, USA
- Peggy and Harold Katz Family Drug Discovery Center, University of Miami Miller School of Medicine, Miami, Florida 33136, USA
| | - Alla Mitrofanova
- Katz Family Division of Nephrology and Hypertension, Department of Medicine, University of Miami Miller School of Medicine, Miami, Florida 33136, USA
- Peggy and Harold Katz Family Drug Discovery Center, University of Miami Miller School of Medicine, Miami, Florida 33136, USA
- Department of Surgery, University of Miami Miller School of Medicine, Miami, Florida 33136, USA
| | - Jin-Ju Kim
- Katz Family Division of Nephrology and Hypertension, Department of Medicine, University of Miami Miller School of Medicine, Miami, Florida 33136, USA
- Peggy and Harold Katz Family Drug Discovery Center, University of Miami Miller School of Medicine, Miami, Florida 33136, USA
| | - Xiaochen Liu
- Katz Family Division of Nephrology and Hypertension, Department of Medicine, University of Miami Miller School of Medicine, Miami, Florida 33136, USA
- Peggy and Harold Katz Family Drug Discovery Center, University of Miami Miller School of Medicine, Miami, Florida 33136, USA
| | - Alexis Sloan
- Katz Family Division of Nephrology and Hypertension, Department of Medicine, University of Miami Miller School of Medicine, Miami, Florida 33136, USA
- Peggy and Harold Katz Family Drug Discovery Center, University of Miami Miller School of Medicine, Miami, Florida 33136, USA
| | - Armando J Mendez
- Diabetes Research Institute, University of Miami Miller School of Medicine, Miami, Florida 33136, USA
| | - Santanu Banerjee
- Department of Surgery, University of Miami Miller School of Medicine, Miami, Florida 33136, USA
| | - Shaoyi Liu
- Social Profit Network Research Lab, Alexandria Launch Labs, New York, New York 10016, USA
| | - Hazel H Szeto
- Social Profit Network Research Lab, Alexandria Launch Labs, New York, New York 10016, USA
| | - Myung K Shin
- Merck & Company, Inc., Kennilworth, New Jersey 07033, USA
| | - Maarten Hoek
- Merck & Company, Inc., Kennilworth, New Jersey 07033, USA
| | - Jeffrey B Kopp
- Kidney Disease Section, NIDDK, NIH, Bethesda, Maryland 20892, USA
| | - Flavia Fontanesi
- Department of Biochemistry and Molecular Biology, University of Miami Miller School of Medicine, Miami, Florida 33136, USA
| | - Sandra Merscher
- Katz Family Division of Nephrology and Hypertension, Department of Medicine, University of Miami Miller School of Medicine, Miami, Florida 33136, USA
- Peggy and Harold Katz Family Drug Discovery Center, University of Miami Miller School of Medicine, Miami, Florida 33136, USA
| | - Alessia Fornoni
- Katz Family Division of Nephrology and Hypertension, Department of Medicine, University of Miami Miller School of Medicine, Miami, Florida 33136, USA
- Peggy and Harold Katz Family Drug Discovery Center, University of Miami Miller School of Medicine, Miami, Florida 33136, USA
| |
Collapse
|
45
|
|
46
|
Abstract
Evolutionary processes, including mutation, migration and natural selection, have influenced the prevalence and distribution of various disorders in humans. However, despite a few well-known examples, such as the APOL1 variants - which have undergone positive genetic selection for their ability to confer resistance to Trypanosoma brucei infection but confer a higher risk of chronic kidney disease - little is known about the effects of evolutionary processes that have shaped genetic variation on kidney disease. An understanding of basic concepts in evolutionary genetics provides an opportunity to consider how findings from ancient and archaic genomes could inform our knowledge of evolution and provide insights into how population migration and genetic admixture have shaped the current distribution and landscape of human kidney-associated diseases. Differences in exposures to infectious agents, environmental toxins, dietary components and climate also have the potential to influence the evolutionary genetics of kidneys. Of note, selective pressure on loci associated with kidney disease is often from non-kidney diseases, and thus it is important to understand how the link between genome-wide selected loci and kidney disease occurs in relation to secondary nephropathies.
Collapse
|
47
|
Zhang C, Fang X, Zhang H, Gao W, Hsu HJ, Roman RJ, Fan F. Genetic susceptibility of hypertension-induced kidney disease. Physiol Rep 2021; 9:e14688. [PMID: 33377622 PMCID: PMC7772938 DOI: 10.14814/phy2.14688] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Revised: 11/22/2020] [Accepted: 11/27/2020] [Indexed: 02/06/2023] Open
Abstract
Hypertension is the second leading cause of end-stage renal disease (ESRD) after diabetes mellitus. The significant differences in the incidence of hypertensive ESRD between different patient populations worldwide and patients with and without family history indicate that genetic determinants play an important role in the onset and progression of this disease. Recent studies have identified genetic variants and pathways that may contribute to the alteration of renal function. Mechanisms involved include affecting renal hemodynamics (the myogenic and tubuloglomerular feedback responses); increasing the production of reactive oxygen species in the tubules; altering immune cell function; changing the number, structure, and function of podocytes that directly cause glomerular damage. Studies with hypertensive animal models using substitution mapping and gene knockout strategies have identified multiple candidate genes associated with the development of hypertension and subsequent renal injury. Genome-wide association studies have implicated genetic variants in UMOD, MYH9, APOL-1, SHROOM3, RAB38, and DAB2 have a higher risk for ESRD in hypertensive patients. These findings provide genetic evidence of potential novel targets for drug development and gene therapy to design individualized treatment of hypertension and related renal injury.
Collapse
Affiliation(s)
- Chao Zhang
- Department of Pharmacology and ToxicologyUniversity of Mississippi Medical CenterJacksonMississippiUSA
- Department of UrologyZhongshan HospitalFudan UniversityShanghaiChina
| | - Xing Fang
- Department of Pharmacology and ToxicologyUniversity of Mississippi Medical CenterJacksonMississippiUSA
| | - Huawei Zhang
- Department of Pharmacology and ToxicologyUniversity of Mississippi Medical CenterJacksonMississippiUSA
| | - Wenjun Gao
- Department of Pharmacology and ToxicologyUniversity of Mississippi Medical CenterJacksonMississippiUSA
- Department of UrologyZhongshan HospitalFudan UniversityShanghaiChina
| | - Han Jen Hsu
- Department of UrologyZhongshan HospitalFudan UniversityShanghaiChina
| | - Richard J. Roman
- Department of Pharmacology and ToxicologyUniversity of Mississippi Medical CenterJacksonMississippiUSA
| | - Fan Fan
- Department of Pharmacology and ToxicologyUniversity of Mississippi Medical CenterJacksonMississippiUSA
| |
Collapse
|
48
|
Mulindwa J, Noyes H, Ilboudo H, Pagani L, Nyangiri O, Kimuda MP, Ahouty B, Asina OF, Ofon E, Kamoto K, Kabore JW, Koffi M, Ngoyi DM, Simo G, Chisi J, Sidibe I, Enyaru J, Simuunza M, Alibu P, Jamonneau V, Camara M, Tait A, Hall N, Bucheton B, MacLeod A, Hertz-Fowler C, Matovu E, Matovu E, Sidibe I, Mumba D, Koffi M, Simo G, Chisi J, Alibu VP, Macleod A, Bucheton B, Hertzfowler C, Elliot A, Camara M, Bishop O, Mulindwa J, Nyangiri O, Kimuda MP, Ofon E, Ahouty B, Kabore J. High Levels of Genetic Diversity within Nilo-Saharan Populations: Implications for Human Adaptation. Am J Hum Genet 2020; 107:473-486. [PMID: 32781046 PMCID: PMC7477016 DOI: 10.1016/j.ajhg.2020.07.007] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2020] [Accepted: 07/13/2020] [Indexed: 12/23/2022] Open
Abstract
Africa contains more human genetic variation than any other continent, but the majority of the population-scale analyses of the African peoples have focused on just two of the four major linguistic groups, the Niger-Congo and Afro-Asiatic, leaving the Nilo-Saharan and Khoisan populations under-represented. In order to assess genetic variation and signatures of selection within a Nilo-Saharan population and between the Nilo-Saharan and Niger-Congo and Afro-Asiatic, we sequenced 50 genomes from the Nilo-Saharan Lugbara population of North-West Uganda and 250 genomes from 6 previously unsequenced Niger-Congo populations. We compared these data to data from a further 16 Eurasian and African populations including the Gumuz, another putative Nilo-Saharan population from Ethiopia. Of the 21 million variants identified in the Nilo-Saharan population, 3.57 million (17%) were not represented in dbSNP and included predicted non-synonymous mutations with possible phenotypic effects. We found greater genetic differentiation between the Nilo-Saharan Lugbara and Gumuz populations than between any two Afro-Asiatic or Niger-Congo populations. F3 tests showed that Gumuz contributed a genetic component to most Niger-Congo B populations whereas Lugabara did not. We scanned the genomes of the Lugbara for evidence of selective sweeps. We found selective sweeps at four loci (SLC24A5, SNX13, TYRP1, and UVRAG) associated with skin pigmentation, three of which already have been reported to be under selection. These selective sweeps point toward adaptations to the intense UV radiation of the Sahel.
Collapse
|
49
|
Gupta N, Wang X, Wen X, Moran P, Paluch M, Hass PE, Heidersbach A, Haley B, Kirchhofer D, Brezski RJ, Peterson AS, Scales SJ. Domain-Specific Antibodies Reveal Differences in the Membrane Topologies of Apolipoprotein L1 in Serum and Podocytes. J Am Soc Nephrol 2020; 31:2065-2082. [PMID: 32764138 DOI: 10.1681/asn.2019080830] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2019] [Accepted: 05/10/2020] [Indexed: 01/13/2023] Open
Abstract
BACKGROUND Circulating APOL1 lyses trypanosomes, protecting against human sleeping sickness. Two common African gene variants of APOL1, G1 and G2, protect against infection by species of trypanosomes that resist wild-type APOL1. At the same time, the protection predisposes humans to CKD, an elegant example of balanced polymorphism. However, the exact mechanism of APOL1-mediated podocyte damage is not clear, including APOL1's subcellular localization, topology, and whether the damage is related to trypanolysis. METHODS APOL1 topology in serum (HDL particles) and in kidney podocytes was mapped with flow cytometry, immunoprecipitation, and trypanolysis assays that tracked 170 APOL1 domain-specific monoclonal antibodies. APOL1 knockout podocytes confirmed antibody specificity. RESULTS APOL1 localizes to the surface of podocytes, with most of the pore-forming domain (PFD) and C terminus of the Serum Resistance Associated-interacting domain (SRA-ID), but not the membrane-addressing domain (MAD), being exposed. In contrast, differential trypanolytic blocking activity reveals that the MAD is exposed in serum APOL1, with less of the PFD accessible. Low pH did not detectably alter the gross topology of APOL1, as determined by antibody accessibility, in serum or on podocytes. CONCLUSIONS Our antibodies highlighted different conformations of native APOL1 topology in serum (HDL particles) and at the podocyte surface. Our findings support the surface ion channel model for APOL1 risk variant-mediated podocyte injury, as well as providing domain accessibility information for designing APOL1-targeted therapeutics.
Collapse
Affiliation(s)
- Nidhi Gupta
- Department of Molecular Biology, Genentech, South San Francisco, California.,Department of Immunology, Genentech, South San Francisco, California
| | - Xinhua Wang
- Department of Antibody Engineering, Genentech, South San Francisco, California
| | - Xiaohui Wen
- Department of Molecular Biology, Genentech, South San Francisco, California
| | - Paul Moran
- Department of Early Discovery Biochemistry, Genentech, South San Francisco, California
| | - Maciej Paluch
- Department of Protein Chemistry, Genentech, South San Francisco, California
| | - Philip E Hass
- Department of Protein Chemistry, Genentech, South San Francisco, California
| | - Amy Heidersbach
- Department of Molecular Biology, Genentech, South San Francisco, California
| | - Benjamin Haley
- Department of Molecular Biology, Genentech, South San Francisco, California
| | - Daniel Kirchhofer
- Department of Early Discovery Biochemistry, Genentech, South San Francisco, California
| | - Randall J Brezski
- Department of Antibody Engineering, Genentech, South San Francisco, California
| | - Andrew S Peterson
- Department of Molecular Biology, Genentech, South San Francisco, California
| | - Suzie J Scales
- Department of Molecular Biology, Genentech, South San Francisco, California .,Department of Immunology, Genentech, South San Francisco, California
| |
Collapse
|
50
|
Fataki Asina O, Noyes H, Bucheton B, Ilboudo H, MacLeod A, Mumba Ngoyi D. SNPs in IL4 and IFNG show no protective associations with human African trypanosomiasis in the Democratic Republic of the Congo: a case-control study. AAS Open Res 2020; 3:35. [PMID: 32964195 PMCID: PMC7481849 DOI: 10.12688/aasopenres.12999.1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/10/2020] [Indexed: 11/20/2022] Open
Abstract
Background: Human African trypanosomiasis (HAT) is a protozoal disease transmitted by tsetse flies. Infection with trypanosomes can lead directly to active HAT or latent infection with no detectable parasites, which may progress to active HAT or to spontaneous self-cure. Genetic variation could explain these differences in the outcome of infection. To test this hypothesis, polymorphisms in 17 candidate genes were tested ( APOL1 [ G1 and G2], CFH, HLA-A, HPR, HP, IL1B, IL12B, IL12RB1, IL10, IL4R, MIF, TNFA , IL6, IL4, IL8, IFNG, and HLA-G). Methods: Samples were collected in Democratic Republic of the Congo. 233 samples were genotyped: 100 active HAT cases, 33 from subjects with latent infections and 100 negative controls. Commercial service providers genotyped polymorphisms at 96 single nucleotide polymorphisms (SNPs) on 17 genes. Data were analyzed using Plink V1.9 software and R. Loci, with suggestive associations (uncorrected p < 0.05) validated using an additional 594 individuals, including 164 cases and 430 controls. Results: After quality control, 87 SNPs remained in the analysis. Two SNPs in IL4 and two in IFNG were suggestively associated (uncorrected p<0.05) with a differential risk of developing a Trypanosoma brucei gambiense infection in the Congolese population. The IFNG minor allele (rs2430561, rs2069718) SNPs were protective in comparison between latent infections and controls. Carriers of the rs2243258_T and rs2243279_A alleles of IL4 and the rs2069728_T allele of IFNG had a reduced risk of developing illness or latent infection, respectively. None of these associations were significant after Bonferroni correction for multiple testing. A validation study using more samples was run to determine if the absence of significant association was due to lack of power. Conclusions: This study showed no evidence of an association of HAT with IL4 and IFNG SNPs or with APOL1 G1 and G2 alleles, which have been found to be protective in other studies.
Collapse
Affiliation(s)
- Olivier Fataki Asina
- National Institute of Biomedical Research (INRB), Kinshasa, Democratic Republic of the Congo
- School of Medicine, University of Uele, Isiro, Democratic Republic of the Congo
| | - Harry Noyes
- Center for Genomic Research, University of Liverpool, Liverpool, L69 7ZB, UK
| | | | - Hamidou Ilboudo
- Centre International de Recherche-Développement sur l'Elevage en zones Subhumides (CIRDES), Bobo-Dioulasso, Burkina Faso
- Institut de Recherche en Sciences de la santé ( IRSS)-Unite de Recherche Clinique de Nanoro( URCN), Nanoro, Burkina Faso
| | - Annette MacLeod
- Wellcome Centre for Molecular Parasitology, University of Glasgow, Glasgow, G12 8TA, UK
| | - Dieudonné Mumba Ngoyi
- National Institute of Biomedical Research (INRB), Kinshasa, Democratic Republic of the Congo
- School of Medicine, University of Kinshasa, Kinshasa, Democratic Republic of the Congo
| | - TrypanoGEN Group, as members of The H3Africa Consortium
- National Institute of Biomedical Research (INRB), Kinshasa, Democratic Republic of the Congo
- School of Medicine, University of Uele, Isiro, Democratic Republic of the Congo
- Center for Genomic Research, University of Liverpool, Liverpool, L69 7ZB, UK
- IRD-CIRAD 177, Montpellier, 34398, France
- Centre International de Recherche-Développement sur l'Elevage en zones Subhumides (CIRDES), Bobo-Dioulasso, Burkina Faso
- Institut de Recherche en Sciences de la santé ( IRSS)-Unite de Recherche Clinique de Nanoro( URCN), Nanoro, Burkina Faso
- Wellcome Centre for Molecular Parasitology, University of Glasgow, Glasgow, G12 8TA, UK
- School of Medicine, University of Kinshasa, Kinshasa, Democratic Republic of the Congo
| |
Collapse
|