1
|
Soltani S, Fallah T, Shafiei M, Shahraki AH, Iranbakhsh A. Investigating the prevalence of CRISPR-Cas system and their association with antibiotic resistance genes and virulence factors in Enterococcus faecalis and Enterococcus faecium strains isolated from hospitalized patients. J Glob Antimicrob Resist 2025:S2213-7165(25)00096-7. [PMID: 40311759 DOI: 10.1016/j.jgar.2025.04.022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2025] [Revised: 04/19/2025] [Accepted: 04/24/2025] [Indexed: 05/03/2025] Open
Abstract
OBJECTIVES Enterococcus faecalis and Enterococcus faecium are Gram-positive opportunistic pathogens that rank among the leading causes of nosocomial infections worldwide. This study investigates the prevalence and role of CRISPR-Cas systems in modulating antimicrobial resistance and virulence factors in clinical isolates of E. faecalis and E. faecium collected from patients in Tehran, Iran. METHODS A total of 75 clinical isolates of E. faecalis and E. faecium were collected from various hospitals in Tehran, Iran, between January and April 2023, from adult patients with urinary tract infections (n = 55), blood infections (n = 12), and wound infections (n = 8). Conventional bacteriology tests and PCR were used to isolate and identify Enterococcus species. Phenotypic antibiotic and genotypic resistance were assessed. CRISPR-Cas repeat-spacer array were screened using PCR, and the relationship between CRISPR-Cas systems and antibiotic resistance and virulence genes was statistically analyzed. Phylogenetic, structural, and conservation analyses were performed to assess the degree of conservation in CRISPR1-Cas csn1 and CRISPR3-Cas csn1 genes, identify potential mutations, and evaluate their possible impact on Cas9 protein function. RESULTS 86.6% of the isolates harbored CRISPR-Cas repeat-spacer array, with a significantly higher prevalence in E. faecalis than in E. faecium (100% vs. 66.6%, p = 0.0001). CRISPR1-Cas, CRISPR2, and CRISPR3-Cas loci were identified in 76%, 82.6%, and 64% of isolates, respectively. Notably, the prevalence of CRISPR-Cas systems was significantly reduced in extensively drug-resistant (XDR) isolates (32%) compared to multidrug-resistant (MDR) isolates (68%, p = 0.0001). Conservation analyses of CRISPR1-Cas csn1 and CRISPR3-Cas csn1 genes revealed conserved regions potentially linked to functional activity. Furthermore, CRISPR-Cas repeat-spacer array were correlated with specific antimicrobial resistance phenotypes and genotypes, as well as with virulence factors. CONCLUSIONS These findings suggest that CRISPR-Cas systems may influence the resistance and virulence profiles of clinical Enterococcus isolates, potentially impacting their pathogenicity and adaptability.
Collapse
Affiliation(s)
- Sepideh Soltani
- Department of Biology, Science and Research Branch, Islamic Azad University, Tehran, Iran; Department of Bacteriology, Pasteur Institute of Iran, Tehran, Iran
| | - Tina Fallah
- Department of Biology, Faculty of Science, Alzahra University, Tehran, Iran; Department of Bacteriology, Pasteur Institute of Iran, Tehran, Iran
| | - Morvarid Shafiei
- Department of Bacteriology, Pasteur Institute of Iran, Tehran, Iran.
| | - Abdolrazagh Hashemi Shahraki
- Country Division of Pulmonary, Critical Care and Sleep, College of Medicine-Jacksonville, University of Florida, Gainesville, Florida, United States
| | - Alireza Iranbakhsh
- Department of Biology, Science and Research Branch, Islamic Azad University, Tehran, Iran
| |
Collapse
|
2
|
Okesanya OJ, Ahmed MM, Ogaya JB, Amisu BO, Ukoaka BM, Adigun OA, Manirambona E, Adebusuyi O, Othman ZK, Oluwakemi OG, Ayando OD, Tan MIRS, Idris NB, Kayode HH, Oso TA, Ahmed M, Kouwenhoven MBN, Ibrahim AM, Lucero-Prisno DE. Reinvigorating AMR resilience: leveraging CRISPR-Cas technology potentials to combat the 2024 WHO bacterial priority pathogens for enhanced global health security-a systematic review. Trop Med Health 2025; 53:43. [PMID: 40176174 PMCID: PMC11963374 DOI: 10.1186/s41182-025-00728-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2025] [Accepted: 03/19/2025] [Indexed: 04/04/2025] Open
Abstract
BACKGROUND Antimicrobial resistance (AMR) poses a global health threat, particularly in low- and middle-income countries (LMICs). Clustered regularly interspaced short palindromic repeats (CRISPR)-Cas system technology offers a promising tool to combat AMR by targeting and disabling resistance genes in WHO bacterial priority pathogens. Thus, we systematically reviewed the potential of CRISPR-Cas technology to address AMR. METHODS This systematic review adhered to the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines. A comprehensive literature search was conducted using the Scopus and PubMed databases, focusing on publications from 2014 to June 2024. Keywords included "CRISPR/Cas," "antimicrobial resistance," and "pathogen." The eligibility criteria required original studies involving CRISPR/Cas systems that targeted AMR. Data were extracted from eligible studies, qualitatively synthesized, and assessed for bias using the Joanna Briggs Institute (JBI)-standardized tool. RESULTS Data from 48 eligible studies revealed diverse CRISPR-Cas systems, including CRISPR-Cas9, CRISPR-Cas12a, and CRISPR-Cas3, targeting various AMR genes, such as blaOXA-232, blaNDM, blaCTX-M, ermB, vanA, mecA, fosA3, blaKPC, and mcr-1, which are responsible for carbapenem, cephalosporin, methicillin, macrolide, vancomycin, colistin, and fosfomycin resistance. Some studies have explored the role of CRISPR in virulence gene suppression, including enterotoxin genes, tsst1, and iutA in Staphylococcus aureus and Klebsiella pneumoniae. Delivery mechanisms include bacteriophages, nanoparticles, electro-transformation, and conjugative plasmids, which demonstrate high efficiency in vitro and in vivo. CRISPR-based diagnostic applications have demonstrated high sensitivity and specificity, with detection limits as low as 2.7 × 102 CFU/mL, significantly outperforming conventional methods. Experimental studies have reported significant reductions in resistant bacterial populations and complete suppression of the targeted strains. Engineered phagemid particles and plasmid-curing systems have been shown to eliminate IncF plasmids, cured plasmids carrying vanA, mcr-1, and blaNDM with 94% efficiency, and restore antibiotic susceptibility. Gene re-sensitization strategies have been used to restore fosfomycin susceptibility in E. coli and eliminate blaKPC-2-mediated carbapenem resistance in MDR bacteria. Whole-genome sequencing and bioinformatics tools have provided deeper insights into CRISPR-mediated defense mechanisms. Optimization strategies have significantly enhanced gene-editing efficiencies, offering a promising approach for tackling AMR in high-priority WHO pathogens. CONCLUSIONS CRISPR-Cas technology has the potential to address AMR across priority WHO pathogens. While promising, challenges in optimizing in vivo delivery, mitigating potential resistance, and navigating ethical-regulatory barriers must be addressed to facilitate clinical translation.
Collapse
Affiliation(s)
- Olalekan John Okesanya
- Department of Public Health and Maritime Transport, University of Thessaly, Volos, Greece
- Department of Medical Laboratory Science, Neuropsychiatric Hospital, Aro, Abeokuta, Ogun State, Nigeria
- Department of Medical Laboratory Science, Chrisland University, Abeokuta, Nigeria
| | | | - Jerico Bautista Ogaya
- Department of Medical Technology, Institute of Health Sciences and Nursing, Far Eastern University, Manila, Philippines
- Center for University Research, University of Makati, Makati, Philippines
| | | | | | | | - Emery Manirambona
- College of Medicine and Health Sciences, University of Rwanda, Kigali, Rwanda
| | | | - Zhinya Kawa Othman
- Department of Pharmacy, Kurdistan Technical Institute, Sulaimani, Kurdistan Region, Iraq
| | | | | | - Maria Ivy Rochelle S Tan
- Department of Nursing, University of the Philippines School of Health Sciences, Manila, Philippines
| | - Nimat Bola Idris
- Department of Public Health, Al-Hikmah University, Ilorin, Nigeria
| | - Hassan Hakeem Kayode
- Department of Medical Laboratory Science, Oyo State Hospital Management Board, Oyo, Nigeria
| | - Tolutope Adebimpe Oso
- Department of Medical Laboratory Science, Neuropsychiatric Hospital, Aro, Abeokuta, Ogun State, Nigeria
| | - Musa Ahmed
- Department of Medical Laboratory Science, Federal Teaching Hospital, Ido-Ekiti, Nigeria
| | - M B N Kouwenhoven
- Department of Physics, Xi'an Jiaotong-Liverpool University, Suzhou, China
| | - Adamu Muhammad Ibrahim
- Department of Immunology, School of Medical Laboratory Science, Usmanu Danfodiyo University, Sokoto, Nigeria
| | - Don Eliseo Lucero-Prisno
- Department of Global Health and Development, London School of Hygiene and Tropical Medicine, London, UK
- Research and Development Office, Biliran Province State University, Naval, Leyte, Philippines
- Research and Innovation Office, Southern Leyte State University, Sogod, Southern Leyte, Philippines
| |
Collapse
|
3
|
Ratna TA, Sharon BM, Velin CAB, Buttaro BA, Palmer KL. Factors affecting CRISPR-Cas defense against antibiotic resistance plasmids harbored by Enterococcus faecalis laboratory model strains and clinical isolates. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.03.10.642232. [PMID: 40161755 PMCID: PMC11952401 DOI: 10.1101/2025.03.10.642232] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 04/02/2025]
Abstract
Enterococcus faecalis is a Gram-positive bacterium and opportunistic pathogen that acquires resistance to a wide range of antibiotics by horizontal gene transfer (HGT). The rapid increase of multidrug-resistant (MDR) bacteria including MDR E. faecalis necessitates the development of alternative therapies and a deeper understanding of the factors that impact HGT. CRISPR-Cas systems provide sequence-specific defense against HGT. From previous studies, we know that E. faecalis CRISPR-Cas provides sequence-specific anti-plasmid defense during agar plate biofilm mating and in the murine intestine. Those studies were mainly conducted using laboratory model strains with a single, CRISPR-targeted plasmid in the donor. MDR E. faecalis typically possess multiple plasmids that are diverse in sequence and may interact with each other to impact plasmid transfer and CRISPR-Cas efficacy. Here, we altered multiple parameters of our standard in vitro conjugation assays to assess CRISPR-Cas efficacy, including the number and genotype of plasmids in the donor; laboratory model strains as donor versus recent human isolates as donor; and the biofilm substrate utilized during conjugation. We found that the plasmids pTEF2 and pCF10, which are not targeted by CRISPR-Cas in our recipient, enhance the conjugative transfer of the CRISPR-targeted plasmid pTEF1 into both wild-type and CRISPR-Cas-deficient (via deletion of cas9) recipient cells. However, the effect of pTEF2 on pTEF1 transfer is much more pronounced, with a striking 6-log increase in pTEF1 conjugation frequency when pTEF2 is also present in the donor and recipients are deficient for CRISPR-Cas (compared to 4-log for pCF10). We also identified that E. faecalis Δcas9 has altered biofilm structure and thickness relative to the wild-type strain when cultured on a plastic substrate, but equivalent growth in the agar plate biofilms widely used for conjugation studies. Overall, this study provides insight about the interplay between plasmids and CRISPR-Cas defense, opening avenues for developing novel therapeutic strategies to curb HGT among bacterial pathogens, and highlighting pTEF2 as a plasmid for additional mechanistic study.
Collapse
Affiliation(s)
- Tahira Amdid Ratna
- Department of Biological Sciences, The University of Texas at Dallas, Richardson, Texas, USA, 75080
| | - Belle M. Sharon
- Department of Biological Sciences, The University of Texas at Dallas, Richardson, Texas, USA, 75080
| | | | - Bettina A Buttaro
- Sol Sherry Thrombosis Research Center, Lewis Katz School of Medicine, Temple University, Philadelphia, Pennsylvania, USA, 19122
| | - Kelli L. Palmer
- Department of Biological Sciences, The University of Texas at Dallas, Richardson, Texas, USA, 75080
| |
Collapse
|
4
|
Cabral AS, Lacerda FDF, Leite VLM, de Miranda FM, da Silva AB, Dos Santos BA, Lima JLDC, Teixeira LM, Neves FPG. CRISPR-Cas systems in enterococci. Braz J Microbiol 2024; 55:3945-3957. [PMID: 39438415 PMCID: PMC11711564 DOI: 10.1007/s42770-024-01549-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Accepted: 10/01/2024] [Indexed: 10/25/2024] Open
Abstract
Enterococci are members of the microbiota of humans and other animals. They can also be found in the environment, associated with food, healthcare infections, and hospital settings. Due to their wide distribution, they are inserted in the One Health context. The selective pressure caused by the extensive use of antimicrobial agents in humans, animals, and agriculture has increased the frequency of resistance to various drugs among enterococcal species. CRISPR-Cas system, an important prokaryotic defense mechanism against the entry of mobile genetic elements, may prevent the acquisition of genes involved in antimicrobial resistance and virulence. This system has been increasingly used as a gene editing tool, which can be used as a way to recognize and inactivate genes of interest. Here, we conduct a review on CRISPR systems found in enterococci, considering their occurrence, structure and organization, mechanisms of action and use as a genetic engineering technology. Type II-A CRISPR-Cas systems were shown to be the most frequent among enterococcal species, and the orphan CRISPR2 was the most commonly found system (54.1%) among enterococcal species, especially in Enterococcus faecalis. Distribution of CRISPR systems varied among species. CRISPR systems had 1 to 20 spacers, with size between 23 and 37 bp and direct repeat sequences from 25 to 37 bp. Several applications of the CRISPR-Cas biotechnology have been described in enterococci, mostly in vitro, using this editing tool to target resistance- and virulence-related genes.
Collapse
Affiliation(s)
- Amanda Seabra Cabral
- Instituto Biomédico, Universidade Federal Fluminense, Alameda Barros Terra, S/N, São Domingos, Niterói, RJ, 24020-150, Brazil
| | - Fernanda de Freitas Lacerda
- Instituto Biomédico, Universidade Federal Fluminense, Alameda Barros Terra, S/N, São Domingos, Niterói, RJ, 24020-150, Brazil
| | - Vitor Luis Macena Leite
- Instituto de Microbiologia, Universidade Federal Do Rio de Janeiro, Av. Carlos Chagas Filho, 373, Rio de Janeiro, RJ, 21941-590, Brazil
| | - Filipe Martire de Miranda
- Instituto Biomédico, Universidade Federal Fluminense, Alameda Barros Terra, S/N, São Domingos, Niterói, RJ, 24020-150, Brazil
| | - Amanda Beiral da Silva
- Instituto Biomédico, Universidade Federal Fluminense, Alameda Barros Terra, S/N, São Domingos, Niterói, RJ, 24020-150, Brazil
| | - Bárbara Araújo Dos Santos
- Instituto Biomédico, Universidade Federal Fluminense, Alameda Barros Terra, S/N, São Domingos, Niterói, RJ, 24020-150, Brazil
| | - Jailton Lobo da Costa Lima
- Instituto Biomédico, Universidade Federal Fluminense, Alameda Barros Terra, S/N, São Domingos, Niterói, RJ, 24020-150, Brazil
| | - Lúcia Martins Teixeira
- Instituto de Microbiologia, Universidade Federal Do Rio de Janeiro, Av. Carlos Chagas Filho, 373, Rio de Janeiro, RJ, 21941-590, Brazil
| | - Felipe Piedade Gonçalves Neves
- Instituto Biomédico, Universidade Federal Fluminense, Alameda Barros Terra, S/N, São Domingos, Niterói, RJ, 24020-150, Brazil.
| |
Collapse
|
5
|
Tadesse BT, Gu L, Solem C, Mijakovic I, Jers C. The Probiotic Enterococcus Lactis SF68 as a Potential Food Fermentation Microorganism for Safe Food Production. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:18089-18099. [PMID: 39102436 DOI: 10.1021/acs.jafc.4c03644] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/07/2024]
Abstract
Due to the reports describing virulent and multidrug resistant enterococci, their use has become a topic of controversy despite most of them being safe and commonly used in traditionally fermented foods worldwide. We have characterized Enterococcus lactis SF68, a probiotic strain approved by the European Food Safety Authority (EFSA) for use in food and feed, and find that it has a remarkable potential in food fermentations. Genome analysis revealed the potential of SF68 to metabolize a multitude of carbohydrates, including lactose and sucrose, which was substantiated experimentally. Bacteriocin biosynthesis clusters were identified and SF68 was found to display a strong inhibitory effect against Listeria monocytogenes. Fermentation-wise, E. lactis SF68 was remarkably like Lactococcus lactis and displayed a clear mixed-acid shift on slowly fermented sugars. SF68 could produce the butter aroma compounds, acetoin and diacetyl, the production of which was enhanced under aerated conditions in a strain deficient in lactate dehydrogenase activity. Overall, E. lactis SF68 was found to be versatile, with a broad carbohydrate utilization capacity, a capacity for producing bacteriocins, and an ability to grow at elevated temperatures. This is key to eliminating pathogenic and spoilage microorganisms that are frequently associated with fermented foods.
Collapse
Affiliation(s)
- Belay Tilahun Tadesse
- National Food Institute, Research Group for Microbial Biotechnology and Biorefining, Technical University of Denmark, Lyngby 2800, Denmark
- Novo Nordisk Foundation Center for Biosustainability, Lyngby 2800, Denmark
| | - Liuyan Gu
- Department of Bio- and Chemical Engineering, Aarhus University, Gustav Wieds vej 10, Aarhus 8000, Denmark
| | - Christian Solem
- National Food Institute, Research Group for Microbial Biotechnology and Biorefining, Technical University of Denmark, Lyngby 2800, Denmark
| | - Ivan Mijakovic
- Novo Nordisk Foundation Center for Biosustainability, Lyngby 2800, Denmark
- Systems and Synthetic Biology Division, Department of Biology and Biological Engineering, Chalmers University of Technology, Gothenburg 412 96, Sweden
| | - Carsten Jers
- Novo Nordisk Foundation Center for Biosustainability, Lyngby 2800, Denmark
| |
Collapse
|
6
|
Kadkhoda H, Gholizadeh P, Ghotaslou R, Pirzadeh T, Ahangarzadeh Rezaee M, Nabizadeh E, Feizi H, Samadi Kafil H, Aghazadeh M. Prevalence of the CRISPR-cas system and its association with antibiotic resistance in clinical Klebsiella pneumoniae isolates. BMC Infect Dis 2024; 24:554. [PMID: 38831286 PMCID: PMC11149351 DOI: 10.1186/s12879-024-09451-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2024] [Accepted: 05/30/2024] [Indexed: 06/05/2024] Open
Abstract
BACKGROUND AND OBJECTIVE(S) CRISPR-Cas is a prokaryotic adaptive immune system that protects bacteria and archaea against mobile genetic elements (MGEs) such as bacteriophages plasmids, and transposons. In this study, we aimed to assess the prevalence of the CRISPR-Cas systems and their association with antibiotic resistance in one of the most challenging bacterial pathogens, Klebsiella pneumoniae. MATERIALS AND METHODS A total of 105 K. pneumoniae isolates were collected from various clinical infections. Extended-spectrum β-lactamases (ESBLs) phenotypically were detected and the presence of ESBL, aminoglycoside-modifying enzymes (AME), and CRISPR-Cas system subtype genes were identified using PCR. Moreover, the diversity of the isolates was determined by enterobacterial repetitive intergenic consensus (ERIC)-PCR. RESULTS Phenotypically, 41.9% (44/105) of the isolates were found to be ESBL producers. A significant inverse correlation existed between the subtype I-E CRISPR-Cas system's presence and ESBL production in K. pneumoniae isolates. Additionally, the frequency of the ESBL genes blaCTX-M1 (3%), blaCTX-M9 (12.1%), blaSHV (51.5%), and blaTEM (33.3%), as well as some AME genes such as aac(3)-Iva (21.2%) and ant(2'')-Ia (3%) was significantly lower in the isolates with the subtype I-E CRISPR-Cas system in comparison to CRISPR-negative isolates. There was a significant inverse correlation between the presence of ESBL and some AME genes with subtype I-E CRISPR-Cas system. CONCLUSION The presence of the subtype I-E CRISPR-Cas system was correlated with the antibiotic-resistant gene (ARGs). The isolates with subtype I-E CRISPR-Cas system had a lower frequency of ESBL genes and some AME genes than CRISPR-negative isolates.
Collapse
Affiliation(s)
- Hiva Kadkhoda
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
- Department of Medical Microbiology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Pourya Gholizadeh
- Digestive Disease Research Center, Ardabil University of Medical Sciences, Ardabil, Iran
- Zoonoses Research Center, Ardabil University of Medical Sciences, Ardabil, Iran
| | - Reza Ghotaslou
- Department of Medical Microbiology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
- Infectious and Tropical Diseases Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Tahereh Pirzadeh
- Department of Medical Microbiology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
- Infectious and Tropical Diseases Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | | | - Edris Nabizadeh
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
- Department of Medical Microbiology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Hadi Feizi
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
- Department of Medical Microbiology, Aalinasab Hospital, Social Security Organization, Tabriz, Iran
| | - Hossein Samadi Kafil
- Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
| | - Mohammad Aghazadeh
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
7
|
Rafiq MS, Shabbir MA, Raza A, Irshad S, Asghar A, Maan MK, Gondal MA, Hao H. CRISPR-Cas System: A New Dawn to Combat Antibiotic Resistance. BioDrugs 2024; 38:387-404. [PMID: 38605260 DOI: 10.1007/s40259-024-00656-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/08/2024] [Indexed: 04/13/2024]
Abstract
Antimicrobial resistance (AMR) can potentially harm global public health. Horizontal gene transfer (HGT), which speeds up the emergence of AMR and increases the burden of drug resistance in mobile genetic elements (MGEs), is the primary method by which AMR genes are transferred across bacterial pathogens. New approaches are urgently needed to halt the spread of bacterial diseases and antibiotic resistance. Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR), an RNA-guided adaptive immune system, protects prokaryotes from foreign DNA like plasmids and phages. This approach may be essential in limiting horizontal gene transfer and halting the spread of antibiotic resistance. The CRISPR-Cas system has been crucial in identifying and understanding resistance mechanisms and developing novel therapeutic approaches. This review article investigates the CRISPR-Cas system's potential as a tool to combat bacterial AMR. Antibiotic-resistant bacteria can be targeted and eliminated by the CRISPR-Cas system. It has been proven to be an efficient method for removing carbapenem-resistant plasmids and regaining antibiotic susceptibility. The CRISPR-Cas system has enormous potential as a weapon against bacterial AMR. It precisely targets and eliminates antibiotic-resistant bacteria, facilitates resistance mechanism identification, and offers new possibilities in diagnostics and therapeutics.
Collapse
Affiliation(s)
- Muhammad Shahzad Rafiq
- MOA Laboratory for Risk Assessment of Quality and Safety of Livestock and Poultry Products, Huazhong Agricultural University, Wuhan, 430070, China
| | | | - Ahmed Raza
- Livestock and Dairy Development Department, Punjab, Pakistan
| | - Shoaib Irshad
- Livestock and Dairy Development Department, Punjab, Pakistan
| | - Andleeb Asghar
- Institute of Pharmaceutical Sciences, University of Veterinary and Animal Sciences, Lahore, Pakistan
| | - Muhammad Kashif Maan
- Department of Veterinary Surgery and Pet Sciences, University of Veterinary and Animal Sciences, Lahore, Pakistan
| | - Mushtaq Ahmed Gondal
- Institute of Continuing Education and Extension, Cholistan University of Veterinary and Animal Sciences, Bahawalpur, Pakistan
| | - Haihong Hao
- MOA Laboratory for Risk Assessment of Quality and Safety of Livestock and Poultry Products, Huazhong Agricultural University, Wuhan, 430070, China.
| |
Collapse
|
8
|
Gager C, Flores-Mireles AL. Blunted blades: new CRISPR-derived technologies to dissect microbial multi-drug resistance and biofilm formation. mSphere 2024; 9:e0064223. [PMID: 38511958 PMCID: PMC11036814 DOI: 10.1128/msphere.00642-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/22/2024] Open
Abstract
The spread of multi-drug-resistant (MDR) pathogens has rapidly outpaced the development of effective treatments. Diverse resistance mechanisms further limit the effectiveness of our best treatments, including multi-drug regimens and last line-of-defense antimicrobials. Biofilm formation is a powerful component of microbial pathogenesis, providing a scaffold for efficient colonization and shielding against anti-microbials, which further complicates drug resistance studies. Early genetic knockout tools didn't allow the study of essential genes, but clustered regularly interspaced palindromic repeat inference (CRISPRi) technologies have overcome this challenge via genetic silencing. These tools rapidly evolved to meet new demands and exploit native CRISPR systems. Modern tools range from the creation of massive CRISPRi libraries to tunable modulation of gene expression with CRISPR activation (CRISPRa). This review discusses the rapid expansion of CRISPRi/a-based technologies, their use in investigating MDR and biofilm formation, and how this drives further development of a potent tool to comprehensively examine multi-drug resistance.
Collapse
Affiliation(s)
- Christopher Gager
- Department of Biological Sciences, University of Notre Dame, Notre Dame, Indiana, USA
| | - Ana L. Flores-Mireles
- Department of Biological Sciences, University of Notre Dame, Notre Dame, Indiana, USA
- W. M. Keck Center for Transgene Research, University of Notre Dame, Notre Dame, Indiana, USA
| |
Collapse
|
9
|
Huo W, Price VJ, Sharifi A, Zhang MQ, Palmer KL. Enterococcus faecalis Strains with Compromised CRISPR-Cas Defense Emerge under Antibiotic Selection for a CRISPR-Targeted Plasmid. Appl Environ Microbiol 2023; 89:e0012423. [PMID: 37278656 PMCID: PMC10304774 DOI: 10.1128/aem.00124-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Accepted: 05/12/2023] [Indexed: 06/07/2023] Open
Abstract
Enterococcus faecalis is a Gram-positive bacterium that natively colonizes the human gastrointestinal tract and opportunistically causes life-threatening infections. Multidrug-resistant (MDR) E. faecalis strains have emerged that are replete with mobile genetic elements (MGEs). Non-MDR E. faecalis strains frequently possess CRISPR-Cas systems, which reduce the frequency of MGE acquisition. We demonstrated in previous studies that E. faecalis populations can transiently maintain both a functional CRISPR-Cas system and a CRISPR-Cas target. In this study, we used serial passage and deep sequencing to analyze these populations. In the presence of antibiotic selection for the plasmid, mutants with compromised CRISPR-Cas defense and enhanced ability to acquire a second antibiotic resistance plasmid emerged. Conversely, in the absence of selection, the plasmid was lost from wild-type E. faecalis populations but not E. faecalis populations that lacked the cas9 gene. Our results indicate that E. faecalis CRISPR-Cas can become compromised under antibiotic selection, generating populations with enhanced abilities to undergo horizontal gene transfer. IMPORTANCE Enterococcus faecalis is a leading cause of hospital-acquired infections and disseminator of antibiotic resistance plasmids among Gram-positive bacteria. We have previously shown that E. faecalis strains with an active CRISPR-Cas system can prevent plasmid acquisition and thus limit the transmission of antibiotic resistance determinants. However, CRISPR-Cas is not a perfect barrier. In this study, we observed populations of E. faecalis with transient coexistence of CRISPR-Cas and one of its plasmid targets. Our experimental data demonstrate that antibiotic selection results in compromised E. faecalis CRISPR-Cas function, thereby facilitating the acquisition of additional resistance plasmids by E. faecalis.
Collapse
Affiliation(s)
- Wenwen Huo
- Department of Biological Sciences, The University of Texas at Dallas, Richardson, Texas, USA
| | - Valerie J. Price
- Department of Biological Sciences, The University of Texas at Dallas, Richardson, Texas, USA
| | - Ardalan Sharifi
- Department of Biological Sciences, The University of Texas at Dallas, Richardson, Texas, USA
| | - Michael Q. Zhang
- Department of Biological Sciences, The University of Texas at Dallas, Richardson, Texas, USA
| | - Kelli L. Palmer
- Department of Biological Sciences, The University of Texas at Dallas, Richardson, Texas, USA
| |
Collapse
|
10
|
Junaid M, Thirapanmethee K, Khuntayaporn P, Chomnawang MT. CRISPR-Based Gene Editing in Acinetobacter baumannii to Combat Antimicrobial Resistance. Pharmaceuticals (Basel) 2023; 16:920. [PMID: 37513832 PMCID: PMC10384873 DOI: 10.3390/ph16070920] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Revised: 06/19/2023] [Accepted: 06/20/2023] [Indexed: 07/30/2023] Open
Abstract
Antimicrobial resistance (AMR) poses a significant threat to the health, social, environment, and economic sectors on a global scale and requires serious attention to addressing this issue. Acinetobacter baumannii was given top priority among infectious bacteria because of its extensive resistance to nearly all antibiotic classes and treatment options. Carbapenem-resistant A. baumannii is classified as one of the critical-priority pathogens on the World Health Organization (WHO) priority list of antibiotic-resistant bacteria for effective drug development. Although available genetic manipulation approaches are successful in A. baumannii laboratory strains, they are limited when employed on newly acquired clinical strains since such strains have higher levels of AMR than those used to select them for genetic manipulation. Recently, the CRISPR-Cas (Clustered regularly interspaced short palindromic repeats/CRISPR-associated protein) system has emerged as one of the most effective, efficient, and precise methods of genome editing and offers target-specific gene editing of AMR genes in a specific bacterial strain. CRISPR-based genome editing has been successfully applied in various bacterial strains to combat AMR; however, this strategy has not yet been extensively explored in A. baumannii. This review provides detailed insight into the progress, current scenario, and future potential of CRISPR-Cas usage for AMR-related gene manipulation in A. baumannii.
Collapse
Affiliation(s)
- Muhammad Junaid
- Department of Microbiology, Faculty of Pharmacy, Mahidol University, Bangkok 10400, Thailand
- Antimicrobial Resistance Interdisciplinary Group (AmRIG), Faculty of Pharmacy, Mahidol University, Bangkok 10400, Thailand
| | - Krit Thirapanmethee
- Department of Microbiology, Faculty of Pharmacy, Mahidol University, Bangkok 10400, Thailand
- Antimicrobial Resistance Interdisciplinary Group (AmRIG), Faculty of Pharmacy, Mahidol University, Bangkok 10400, Thailand
| | - Piyatip Khuntayaporn
- Department of Microbiology, Faculty of Pharmacy, Mahidol University, Bangkok 10400, Thailand
- Antimicrobial Resistance Interdisciplinary Group (AmRIG), Faculty of Pharmacy, Mahidol University, Bangkok 10400, Thailand
| | - Mullika Traidej Chomnawang
- Department of Microbiology, Faculty of Pharmacy, Mahidol University, Bangkok 10400, Thailand
- Antimicrobial Resistance Interdisciplinary Group (AmRIG), Faculty of Pharmacy, Mahidol University, Bangkok 10400, Thailand
| |
Collapse
|
11
|
Zhang Y, Zhang C, Huo W, Wang X, Zhang M, Palmer K, Chen M. An expectation-maximization algorithm for estimating proportions of deletions among bacterial populations with application to study antibiotic resistance gene transfer in Enterococcus faecalis. MARINE LIFE SCIENCE & TECHNOLOGY 2023; 5:28-43. [PMID: 36744155 PMCID: PMC9888353 DOI: 10.1007/s42995-022-00144-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/22/2022] [Accepted: 08/25/2022] [Indexed: 06/18/2023]
Abstract
The emergence of antibiotic resistance in bacteria limits the availability of antibiotic choices for treatment and infection control, thereby representing a major threat to human health. The de novo mutation of bacterial genomes is an essential mechanism by which bacteria acquire antibiotic resistance. Previously, deletion mutations within bacterial immune systems, ranging from dozens to thousands of base pairs (bps) in length, have been associated with the spread of antibiotic resistance. Most current methods for evaluating genomic structural variations (SVs) have concentrated on detecting them, rather than estimating the proportions of populations that carry distinct SVs. A better understanding of the distribution of mutations and subpopulations dynamics in bacterial populations is needed to appreciate antibiotic resistance evolution and movement of resistance genes through populations. Here, we propose a statistical model to estimate the proportions of genomic deletions in a mixed population based on Expectation-Maximization (EM) algorithms and next-generation sequencing (NGS) data. The method integrates both insert size and split-read mapping information to iteratively update estimated distributions. The proposed method was evaluated with three simulations that demonstrated the production of accurate estimations. The proposed method was then applied to investigate the horizontal transfers of antibiotic resistance genes in concert with changes in the CRISPR-Cas system of E. faecalis. Supplementary Information The online version contains supplementary material available at 10.1007/s42995-022-00144-z.
Collapse
Affiliation(s)
- Yu Zhang
- School of Mathematical Sciences, Ocean University of China, Qingdao, 266000 China
- Department of Mathematical Sciences, University of Texas at Dallas, Richardson, TX 75080 USA
| | - Cong Zhang
- Department of Mathematical Sciences, University of Texas at Dallas, Richardson, TX 75080 USA
| | - Wenwen Huo
- Department of Biological Sciences, University of Texas at Dallas, Richardson, TX 75080 USA
| | - Xinlei Wang
- Department of Statistical Science, Southern Methodist University, Dallas, TX 75205 USA
| | - Michael Zhang
- Department of Biological Sciences, University of Texas at Dallas, Richardson, TX 75080 USA
- MOE Key Laboratory of Bioinformatics, Tsinghua University, Beijing, 100084 China
| | - Kelli Palmer
- Department of Biological Sciences, University of Texas at Dallas, Richardson, TX 75080 USA
| | - Min Chen
- Department of Mathematical Sciences, University of Texas at Dallas, Richardson, TX 75080 USA
- Department of Population and Data Sciences, UT Southwestern Medical Center, Dallas, TX 75390 USA
| |
Collapse
|
12
|
Tao S, Zhou D, Chen H, Li N, Zheng L, Fang Y, Xu Y, Jiang Q, Liang W. Analysis of genetic structure and function of clustered regularly interspaced short palindromic repeats loci in 110 Enterococcus strains. Front Microbiol 2023; 14:1177841. [PMID: 37168121 PMCID: PMC10165109 DOI: 10.3389/fmicb.2023.1177841] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Accepted: 04/05/2023] [Indexed: 05/13/2023] Open
Abstract
Clustered regularly interspaced short palindromic repeats (CRISPR) and their CRISPR-associated proteins (Cas) are an adaptive immune system involved in specific defenses against the invasion of foreign mobile genetic elements, such as plasmids and phages. This study aims to analyze the gene structure and to explore the function of the CRISPR system in the Enterococcus genome, especially with regard to drug resistance. The whole genome information of 110 enterococci was downloaded from the NCBI database to analyze the distribution and the structure of the CRISPR-Cas system including the Cas gene, repeat sequences, and spacer sequence of the CRISPR-Cas system by bioinformatics methods, and to find drug resistance-related genes and analyze the relationship between them and the CRISPR-Cas system. Multilocus sequence typing (MLST) of enterococci was performed against the reference MLST database. Information on the drug resistance of Enterococcus was retrieved from the CARD database, and its relationship to the presence or absence of CRISPR was statistically analyzed. Among the 110 Enterococcus strains, 39 strains (35.45%) contained a complete CRISPR-Cas system, 87 CRISPR arrays were identified, and 62 strains contained Cas gene clusters. The CRISPR system in the Enterococcus genome was mainly type II-A (59.68%), followed by type II-C (33.87%). The phylogenetic analysis of the cas1 gene sequence was basically consistent with the typing of the CRISPR-Cas system. Of the 74 strains included in the study for MLST typing, only 19 (25.68%) were related to CRISPR-Cas typing, while the majority of the strains (74.32%) of MLST typing were associated with the untyped CRISPR system. Additionally, the CRISPR-Cas system may only be related to the carrying rate of some drug-resistant genes and the drug-resistant phenotype. In conclusion, the distribution of the enterococcus CRISPR-Cas system varies greatly among different species and the presence of CRISPR loci reduces the horizontal transfer of some drug resistance genes.
Collapse
Affiliation(s)
- Shuan Tao
- School of Medicine, Jiangsu University, Zhenjiang, China
- Department of Clinical Laboratory, Ningbo First Hospital, Ningbo, China
| | - Dongdong Zhou
- Department of General Medicine, Ningbo First Hospital, Ningbo, China
| | - Huimin Chen
- School of Medicine, Jiangsu University, Zhenjiang, China
| | - Na Li
- Bengbu Medical College, Bengbu, China
| | - Lin Zheng
- Department of Clinical Laboratory, Ningbo First Hospital, Ningbo, China
| | - Yewei Fang
- Department of Clinical Laboratory, Ningbo First Hospital, Ningbo, China
| | - Yao Xu
- School of Medicine, Ningbo University, Ningbo, China
| | - Qi Jiang
- Department of Gastroenterology, Ningbo First Hospital, Ningbo, China
- *Correspondence: Qi Jiang,
| | - Wei Liang
- Department of Clinical Laboratory, Ningbo First Hospital, Ningbo, China
- Wei Liang,
| |
Collapse
|
13
|
CRISPR in Modulating Antibiotic Resistance of ESKAPE Pathogens. Mol Biotechnol 2023; 65:1-16. [PMID: 35939207 DOI: 10.1007/s12033-022-00543-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2021] [Accepted: 07/13/2022] [Indexed: 01/11/2023]
Abstract
The ESKAPE (Enterococcus spp., Staphylococcus aureus, Klebsiella pneumoniae, Acinetobacter baumannii, Pseudomonas aeruginosa, and Enterobacter spp.) isolates both from the clinical settings and food products are demonstrated to gain resistance to multiple antimicrobials. Therefore, the ESKAPE pathogens pose a serious threat to public health, which warrants specific attention to developing alternative novel therapeutics. The clustered regularly interspaced short palindromic repeats associated (CRISPR-Cas) system is one of the novel methods for managing antibiotic-resistant strains. Specific Cas nucleases can be programmed against bacterial genomic sequences to decrease bacterial resistance to antibiotics. Moreover, a few CRISPR-Cas nucleases have the ability to the sequence-specific killing of bacterial strains. However, some pathogens acquire antibiotic resistance due to the presence of the CRISPR-Cas system. In brief, there is a wide range of functional diversity of CRISPR-Cas systems in bacterial pathogens. Hence, to be an effective and safe infection treatment strategy, a comprehensive understanding of the role of CRISPR-Cas systems in modulating antibiotic resistance in ESKAPE pathogens is essential. The present review summarizes all the mechanisms by which CRISPR confers and prevents antibiotic resistance in ESKAPE. The review also emphasizes the relationship between CRISPR-Cas systems, biofilm formation, and antibiotic resistance in ESKAPE.
Collapse
|
14
|
Li G, Walker MJ, De Oliveira DMP. Vancomycin Resistance in Enterococcus and Staphylococcus aureus. Microorganisms 2022; 11:microorganisms11010024. [PMID: 36677316 PMCID: PMC9866002 DOI: 10.3390/microorganisms11010024] [Citation(s) in RCA: 44] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Revised: 12/19/2022] [Accepted: 12/19/2022] [Indexed: 12/24/2022] Open
Abstract
Enterococcus faecalis, Enterococcus faecium and Staphylococcus aureus are both common commensals and major opportunistic human pathogens. In recent decades, these bacteria have acquired broad resistance to several major classes of antibiotics, including commonly employed glycopeptides. Exemplified by resistance to vancomycin, glycopeptide resistance is mediated through intrinsic gene mutations, and/or transferrable van resistance gene cassette-carrying mobile genetic elements. Here, this review will discuss the epidemiology of vancomycin-resistant Enterococcus and S. aureus in healthcare, community, and agricultural settings, explore vancomycin resistance in the context of van and non-van mediated resistance development and provide insights into alternative therapeutic approaches aimed at treating drug-resistant Enterococcus and S. aureus infections.
Collapse
|
15
|
Tao S, Chen H, Li N, Fang Y, Xu Y, Liang W. Association of CRISPR-Cas System with the Antibiotic Resistance and Virulence Genes in Nosocomial Isolates of Enterococcus. Infect Drug Resist 2022; 15:6939-6949. [PMID: 36474907 PMCID: PMC9719680 DOI: 10.2147/idr.s388354] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Accepted: 10/26/2022] [Indexed: 04/07/2024] Open
Abstract
Purpose This study aimed to investigate the prevalence of the CRISPR-Cas system in nosocomial isolates of Enterococcus and their possible association with antibiotic resistance and virulence genes. Materials and Methods Identification and antimicrobial susceptibility of the microorganism were performed by the automatized VITEK 2 Compact system (bioMerieux, France). A total of 100 Enterococcus isolates were collected and identified by VITEK 2 Compact automatic microbial identification drug susceptibility analyzer. The prevalence of various CRISPR-Cas systems, antibiotic resistance genes and virulence genes were investigated by polymerase chain reaction (PCR). The prevalence of CRISPR-Cas systems associated with antibiotic resistance and virulence genes was performed by appropriate statistical tests. Results A total of 100 isolates of Enterococcus were identified and there were 62/100(62.0%) Enterococcus faecalis isolates and 38/100(38.0%) Enterococcus faecalis isolates. In total, 46 (46.0%) of 100 isolates had at least one CRISPR-Cas locus. CRISPR elements were more prevalent in Enterococcus faecalis isolates. The results of PCR demonstrated that CRISPR1-Cas, orphan CRISPR2, and CRISPR3-Cas were present in 23 (23.0%), 42 (42.0%) and 5 (5.0%) Enterococcus isolates, respectively. Compared with CRISPR-Casnegative isolates, the CRISPR-Cas positive isolates showed significant lower resistance rates against ampicillin, erythromycin, levofloxacin, tetracycline, vancomycin, gentamicin, streptomycin, and rifampicin. Presumably consistent with drug susceptibility, fewer CRISPR loci were identified in vanA, tetM, ermB, aac6'-aph(2"), aadE, and ant(6) positive isolates. There was a significant negative correlation between the CRISPR-Cas locus and the enterococcal virulence factors enterococcal surface protein (esp) gene. Conclusion In conclusion, the results indicated that the absence of the CRISPR-Cas system was negatively associated with some antibiotic resistance in clinical isolates of Enterococcus faecalis and Enterococcus faecium. Also, there was a negative correlation with the carriage of antibiotic resistance genes. Furthermore, CRISPR-Cas may prevent some isolates from acquiring certain virulence factors.
Collapse
Affiliation(s)
- Shuan Tao
- School of Medicine, Jiangsu University, Zhenjiang, People’s Republic of China
- Department of Clinical Laboratory, Ningbo First Hospital, Ningbo, People’s Republic of China
| | - Huimin Chen
- School of Medicine, Jiangsu University, Zhenjiang, People’s Republic of China
| | - Na Li
- Bengbu Medical College, Bengbu, People’s Republic of China
| | - Yewei Fang
- Department of Clinical Laboratory, Ningbo First Hospital, Ningbo, People’s Republic of China
| | - Yao Xu
- School of Medicine, Ningbo University, Ningbo, People’s Republic of China
| | - Wei Liang
- Department of Clinical Laboratory, Ningbo First Hospital, Ningbo, People’s Republic of China
| |
Collapse
|
16
|
Elokil AA, Chen W, Mahrose K, Elattrouny MM, Abouelezz KFM, Ahmad HI, Liu HZ, Elolimy AA, Mandouh MI, Abdelatty AM, Li S. Early life microbiota transplantation from highly feed-efficient broiler improved weight gain by reshaping the gut microbiota in laying chicken. Front Microbiol 2022; 13:1022783. [PMID: 36466637 PMCID: PMC9715608 DOI: 10.3389/fmicb.2022.1022783] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Accepted: 10/10/2022] [Indexed: 08/27/2023] Open
Abstract
Starting phase of laying chicken life is the building stone for rearing and production stages. Since, fecal microbial transplantation (FMT) regulates the gut microbial diversity and affects the productive performance of the bird. The aim of this study is to evaluate the effect of FMT from feed-efficient broiler chicken could program the diversity of gut microbiota and growth of recipient native slow growing egg-laying chicks. For this, a total of 150 (one-day-old) Jing Hong chicks were randomly assigned into two groups, each group consisted of 5 replicates (n = 15 bird/ replicate). The control group (CON) and FMT recipient birds (FMT) fed on basal diet, the FMT group received an oral daily dose of FMT prepared from Cobb-500 chickens. The FMT performed from the 1d to 28d of age, through the experimental period, feed intake and body weight were recorded weekly. At the end of a 28-day trial, carcass traits were assessed and cecal samples were collected for microbiome assessment via 16S rRNA-based metagenomic analysis to characterize the diversity and functions of microbial communities. The data were statistically analyzed using R software. Body weight and body weight gain increased, and FCR decreased (p = 0.01) in FMT group. The relative abundance of Firmicutes and the Firmicutes/Bacteroidetes (F/B) ratio were increased due to FMT administration (p = 0.01). A higher relative abundance of Lactobacillus, Lactococcus, and Bifidobacterium were presented in the FMT group. Meanwhile, Enterococcus, Helicobacter, and Bacteroides were more abundant in the CON group (p < 0.01). Kyoto encyclopedia of genes and genomes (KEGG) pathways for microbial functions regarding amino acid metabolism, secondary metabolites biosynthesis, carbohydrate metabolism, energy metabolism, and enzyme families, cofactors, and vitamins were significantly annotated in the FMT group. Overall, FMT administration from the donor of highly feed-efficient broilers improved weight gain by reshaping a distinct gut microbiome, which may be related to the metabolism and health in the recipients laying chicks, providing new insight on the application of the FMT technique for early life programming of laying chickens.
Collapse
Affiliation(s)
- Abdelmotaleb A. Elokil
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction, Ministry of Education, College of Animal Science and Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei, China
- Animal Production Department, Faculty of Agriculture, Moshtohor, Benha University, Mushthar, Egypt
| | - Wei Chen
- Institute of Animal Science, Guangdong Academy of Agricultural Sciences, State Key Laboratory of Livestock and Poultry Breeding, Key Laboratory of Animal Nutrition and Feed Science in South China, Ministry of Agriculture, Key Laboratory of Poultry Genetics and Breeding, Ministry of Agriculture, Guangdong Key Laboratory of Animal Breeding and Nutrition, Guangdong Public Laboratory of Animal Breeding and Nutrition, Guangzhou, China
| | - Khalid Mahrose
- Animal and Poultry Production Department, Faculty of Technology and Development, Zagazig University, Zagazig, Egypt
| | - Mahmoud M. Elattrouny
- Animal Production Department, Faculty of Agriculture, Moshtohor, Benha University, Mushthar, Egypt
| | - Khaled F. M. Abouelezz
- Department of Poultry Production, Faculty of Agriculture, Assiut University, Assiut, Egypt
| | - Hafiz Ishfaq Ahmad
- Department of Animal Breeding and Genetics, Faculty of Veterinary and Animal Sciences, The Islamia University of Bahawalpur, Bahawalpur, Pakistan
| | - Hua-Zhen Liu
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction, Ministry of Education, College of Animal Science and Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Ahmed A. Elolimy
- Department of Animal Production, National Research Centre, Giza, Egypt
| | - Mahmoud I. Mandouh
- Department of Nutrition and Clinical Nutrition, Faculty of Veterinary Medicine, Cairo University, Giza, Egypt
| | - Alzahraa M. Abdelatty
- Department of Nutrition and Clinical Nutrition, Faculty of Veterinary Medicine, Cairo University, Giza, Egypt
| | - Shijun Li
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction, Ministry of Education, College of Animal Science and Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei, China
| |
Collapse
|
17
|
Cochrane RR, Shrestha A, Severo de Almeida MM, Agyare-Tabbi M, Brumwell SL, Hamadache S, Meaney JS, Nucifora DP, Say HH, Sharma J, Soltysiak MPM, Tong C, Van Belois K, Walker EJL, Lachance MA, Gloor GB, Edgell DR, Shapiro RS, Karas BJ. Superior Conjugative Plasmids Delivered by Bacteria to Diverse Fungi. BIODESIGN RESEARCH 2022; 2022:9802168. [PMID: 37850145 PMCID: PMC10521675 DOI: 10.34133/2022/9802168] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Accepted: 07/28/2022] [Indexed: 10/19/2023] Open
Abstract
Fungi are nature's recyclers, allowing for ecological nutrient cycling and, in turn, the continuation of life on Earth. Some fungi inhabit the human microbiome where they can provide health benefits, while others are opportunistic pathogens that can cause disease. Yeasts, members of the fungal kingdom, have been domesticated by humans for the production of beer, bread, and, recently, medicine and chemicals. Still, the great untapped potential exists within the diverse fungal kingdom. However, many yeasts are intractable, preventing their use in biotechnology or in the development of novel treatments for pathogenic fungi. Therefore, as a first step for the domestication of new fungi, an efficient DNA delivery method needs to be developed. Here, we report the creation of superior conjugative plasmids and demonstrate their transfer via conjugation from bacteria to 7 diverse yeast species including the emerging pathogen Candida auris. To create our superior plasmids, derivatives of the 57 kb conjugative plasmid pTA-Mob 2.0 were built using designed gene deletions and insertions, as well as some unintentional mutations. Specifically, a cluster mutation in the promoter of the conjugative gene traJ had the most significant effect on improving conjugation to yeasts. In addition, we created Golden Gate assembly-compatible plasmid derivatives that allow for the generation of custom plasmids to enable the rapid insertion of designer genetic cassettes. Finally, we demonstrated that designer conjugative plasmids harboring engineered restriction endonucleases can be used as a novel antifungal agent, with important applications for the development of next-generation antifungal therapeutics.
Collapse
Affiliation(s)
- Ryan R. Cochrane
- Department of Biochemistry, Schulich School of Medicine and Dentistry, The University of Western Ontario, London, ON, Canada, N6A 5C1
| | - Arina Shrestha
- Department of Biochemistry, Schulich School of Medicine and Dentistry, The University of Western Ontario, London, ON, Canada, N6A 5C1
| | - Mariana M. Severo de Almeida
- Department of Biochemistry, Schulich School of Medicine and Dentistry, The University of Western Ontario, London, ON, Canada, N6A 5C1
| | - Michelle Agyare-Tabbi
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, ON, Canada, N1G 2W1
| | - Stephanie L. Brumwell
- Department of Biochemistry, Schulich School of Medicine and Dentistry, The University of Western Ontario, London, ON, Canada, N6A 5C1
| | - Samir Hamadache
- Department of Biochemistry, Schulich School of Medicine and Dentistry, The University of Western Ontario, London, ON, Canada, N6A 5C1
| | - Jordyn S. Meaney
- Department of Biochemistry, Schulich School of Medicine and Dentistry, The University of Western Ontario, London, ON, Canada, N6A 5C1
| | - Daniel P. Nucifora
- Department of Biochemistry, Schulich School of Medicine and Dentistry, The University of Western Ontario, London, ON, Canada, N6A 5C1
| | - Henry Heng Say
- Department of Biochemistry, Schulich School of Medicine and Dentistry, The University of Western Ontario, London, ON, Canada, N6A 5C1
| | - Jehoshua Sharma
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, ON, Canada, N1G 2W1
| | | | - Cheryl Tong
- Department of Biochemistry, Schulich School of Medicine and Dentistry, The University of Western Ontario, London, ON, Canada, N6A 5C1
| | - Katherine Van Belois
- Department of Biology, The University of Western Ontario, London, Ontario, Canada, N6A 5B7
| | - Emma J. L. Walker
- Department of Biochemistry, Schulich School of Medicine and Dentistry, The University of Western Ontario, London, ON, Canada, N6A 5C1
| | - Marc-André Lachance
- Department of Biology, The University of Western Ontario, London, Ontario, Canada, N6A 5B7
| | - Gregory B. Gloor
- Department of Biochemistry, Schulich School of Medicine and Dentistry, The University of Western Ontario, London, ON, Canada, N6A 5C1
| | - David R. Edgell
- Department of Biochemistry, Schulich School of Medicine and Dentistry, The University of Western Ontario, London, ON, Canada, N6A 5C1
| | - Rebecca S. Shapiro
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, ON, Canada, N1G 2W1
| | - Bogumil J. Karas
- Department of Biochemistry, Schulich School of Medicine and Dentistry, The University of Western Ontario, London, ON, Canada, N6A 5C1
| |
Collapse
|
18
|
Tao S, Chen H, Li N, Liang W. The Application of the CRISPR-Cas System in Antibiotic Resistance. Infect Drug Resist 2022; 15:4155-4168. [PMID: 35942309 PMCID: PMC9356603 DOI: 10.2147/idr.s370869] [Citation(s) in RCA: 44] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Accepted: 06/17/2022] [Indexed: 11/28/2022] Open
Abstract
The emergence and global epidemic of antimicrobial resistance (AMR) poses a serious threat to global public health in recent years. AMR genes are shared between bacterial pathogens mainly via horizontal gene transfer (HGT) on mobile genetic elements (MGEs), thereby accelerating the spread of antimicrobial resistance (AMR) and increasing the burden of drug resistance. There is an urgent need to develop new strategies to control bacterial infections and the spread of antimicrobial resistance. The clustered regularly interspaced short palindromic repeats (CRISPR) and CRISPR-associated proteins (Cas) are an RNA-guided adaptive immune system in prokaryotes that recognizes and defends against invasive genetic elements such as phages and plasmids. Because of its specifically target and cleave DNA sequences encoding antibiotic resistance genes, CRISPR/Cas system has been developed into a new gene-editing tool for the prevention and control of bacterial drug resistance. CRISPR-Cas plays a potentially important role in controlling horizontal gene transfer and limiting the spread of antibiotic resistance. In this review, we will introduce the structure and working mechanism of CRISPR-Cas systems, followed by delivery strategies, and then focus on the relationship between antimicrobial resistance and CRISPR-Cas. Moreover, the challenges and prospects of this research field are discussed, thereby providing a reference for the prevention and control of the spread of antibiotic resistance.
Collapse
Affiliation(s)
- Shuan Tao
- School of Medical, Jiangsu University, Zhenjiang, Jiangsu Province, 212013, People’s Republic of China
- Lianyungang Clinical College of Jiangsu University, Lianyungang, Jiangsu Province, 222023, People’s Republic of China
| | - Huimin Chen
- School of Medical, Jiangsu University, Zhenjiang, Jiangsu Province, 212013, People’s Republic of China
| | - Na Li
- Bengbu Medical College, Bengbu, Anhui Province, 233030, People’s Republic of China
| | - Wei Liang
- Lianyungang Clinical College of Jiangsu University, Lianyungang, Jiangsu Province, 222023, People’s Republic of China
| |
Collapse
|
19
|
Johnson CN, Sheriff EK, Duerkop BA, Chatterjee A. Let Me Upgrade You: Impact of Mobile Genetic Elements on Enterococcal Adaptation and Evolution. J Bacteriol 2021; 203:e0017721. [PMID: 34370561 PMCID: PMC8508098 DOI: 10.1128/jb.00177-21] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Enterococci are Gram-positive bacteria that have evolved to thrive as both commensals and pathogens, largely due to their accumulation of mobile genetic elements via horizontal gene transfer (HGT). Common agents of HGT include plasmids, transposable elements, and temperate bacteriophages. These vehicles of HGT have facilitated the evolution of the enterococci, specifically Enterococcus faecalis and Enterococcus faecium, into multidrug-resistant hospital-acquired pathogens. On the other hand, commensal strains of Enterococcus harbor CRISPR-Cas systems that prevent the acquisition of foreign DNA, restricting the accumulation of mobile genetic elements. In this review, we discuss enterococcal mobile genetic elements by highlighting their contributions to bacterial fitness, examine the impact of CRISPR-Cas on their acquisition, and identify key areas of research that can improve our understanding of enterococcal evolution and ecology.
Collapse
Affiliation(s)
- Cydney N. Johnson
- Department of Immunology and Microbiology, University of Colorado School of Medicine, Aurora, Colorado, USA
| | - Emma K. Sheriff
- Department of Immunology and Microbiology, University of Colorado School of Medicine, Aurora, Colorado, USA
| | - Breck A. Duerkop
- Department of Immunology and Microbiology, University of Colorado School of Medicine, Aurora, Colorado, USA
| | - Anushila Chatterjee
- Department of Immunology and Microbiology, University of Colorado School of Medicine, Aurora, Colorado, USA
| |
Collapse
|
20
|
Wongpayak P, Meesungnoen O, Saejang S, Subsoontorn P. A highly effective and self-transmissible CRISPR antimicrobial for elimination of target plasmids without antibiotic selection. PeerJ 2021; 9:e11996. [PMID: 34567840 PMCID: PMC8428258 DOI: 10.7717/peerj.11996] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Accepted: 07/27/2021] [Indexed: 01/21/2023] Open
Abstract
The use of CRISPR/Cas (Clustered Regularly Interspaced Short Palindromic Repeats/CRISPR associated protein) for sequence-specific elimination of bacteria or resistance genes is a powerful tool for combating antibiotic resistance. However, this approach requires efficient delivery of CRISPR/Cas DNA cassette(s) into the targeted bacterial population. Compared to phage transduction, plasmid conjugation can deliver DNA to a broader host range but often suffers from low delivery efficiency. Here, we developed multi-plasmid conjugation systems for efficient CRISPR/Cas delivery, target DNA elimination and plasmid replacement. The CRISPR/Cas system, delivered via a broad-host-range R1162 mobilizable plasmid, specifically eliminated the targeted plasmid in recipient cells. A self-transmissible RK2 helper plasmid facilitated the spread of mobilizable CRISPR/Cas. The replacement of the target plasmid with another plasmid from the same compatibility group helped speed up target plasmid elimination especially when the target plasmid was also mobilizable. Together, we showed that up to 100% of target plasmid from the entire recipient population could be replaced even at a low (1:180) donor-to-recipient ratio and in the absence of transconjugant selection. Such an ability to modify genetic content of microbiota efficiently in the absence of selection will be critical for future development of CRISPR antimicrobials as well as genetic tools for in situ microbiome engineering.
Collapse
Affiliation(s)
- Panjaporn Wongpayak
- Department of Biochemistry, Faculty of Medical Science, Naresuan University, Muang Phitsanulok, Phitsanulok, Thailand
| | | | - Somchai Saejang
- Department of Biochemistry, Faculty of Medical Science, Naresuan University, Muang Phitsanulok, Phitsanulok, Thailand
| | - Pakpoom Subsoontorn
- Department of Biochemistry, Faculty of Medical Science, Naresuan University, Muang Phitsanulok, Phitsanulok, Thailand
| |
Collapse
|
21
|
Gholizadeh P, Aghazadeh M, Ghotaslou R, Rezaee MA, Pirzadeh T, Cui L, Watanabe S, Feizi H, Kadkhoda H, Kafil HS. Role of CRISPR-Cas system on antibiotic resistance patterns of Enterococcus faecalis. Ann Clin Microbiol Antimicrob 2021; 20:49. [PMID: 34321002 PMCID: PMC8317297 DOI: 10.1186/s12941-021-00455-6] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Accepted: 07/19/2021] [Indexed: 12/27/2022] Open
Abstract
Clustered regularly interspaced short palindromic repeat (CRISPR)-Cas systems are one of the factors which can contribute to limiting the development and evolution of antibiotic resistance in bacteria. There are three genomic loci of CRISPR-Cas in Enterococcus faecalis. In this study, we aimed to assess correlation of the CRISPR-Cas system distribution with the acquisition of antibiotic resistance among E. faecalis isolates. A total of 151 isolates of E. faecalis were collected from urinary tract infections (UTI) and dental-root canal (DRC). All isolates were screened for phenotypic antibiotic resistance. In addition, antibiotic resistance genes and CRISPR loci were screened by using polymerase chain reaction. Genomic background of the isolates was identified by random amplified polymorphic DNA (RAPD)-PCR. The number of multidrug-resistant E. faecalis strains were higher in UTI isolates than in DRC isolates. RAPD-PCR confirmed that genomic background was diverse in UTI and DRC isolates used in this study. CRISPR loci were highly accumulated in gentamycin-, teicoplanin-, erythromycin-, and tetracycline-susceptible strains. In concordance with drug susceptibility, smaller number of CRISPR loci were identified in vanA, tetM, ermB, aac6’-aph(2”), aadE, and ant(6) positive strains. These data indicate a negative correlation between CRISPR-cas loci and antibiotic resistance, as well as, carriage of antibiotic resistant genes in both of UTI and DRC isolates.
Collapse
Affiliation(s)
- Pourya Gholizadeh
- Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.,Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mohammad Aghazadeh
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Reza Ghotaslou
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | | | - Tahereh Pirzadeh
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Longzhu Cui
- Division of Bacteriology, Department of Infection and Immunity, School of Medicine, Jichi Medical University, Shimotsuke, Tochigi, Japan
| | - Shinya Watanabe
- Division of Bacteriology, Department of Infection and Immunity, School of Medicine, Jichi Medical University, Shimotsuke, Tochigi, Japan
| | - Hadi Feizi
- Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.,Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Hiva Kadkhoda
- Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.,Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Hossein Samadi Kafil
- Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
22
|
CRISPR-Cas, a Revolution in the Treatment and Study of ESKAPE Infections: Pre-Clinical Studies. Antibiotics (Basel) 2021; 10:antibiotics10070756. [PMID: 34206474 PMCID: PMC8300728 DOI: 10.3390/antibiotics10070756] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Revised: 06/18/2021] [Accepted: 06/19/2021] [Indexed: 12/14/2022] Open
Abstract
One of the biggest threats we face globally is the emergence of antimicrobial-resistant (AMR) bacteria, which runs in parallel with the lack in the development of new antimicrobials. Among these AMR bacteria pathogens belonging to the ESKAPE group can be highlighted (Enterococcus spp., Staphylococcus aureus, Klebsiella pneumoniae, Acinetobacter baumannii, Pseudomonas aeruginosa and Enterobacter spp.) due to their profile of drug resistance and virulence. Therefore, innovative lines of treatment must be developed for these bacteria. In this review, we summarize the different strategies for the treatment and study of molecular mechanisms of AMR in the ESKAPE pathogens based on the clustered regularly interspaced short palindromic repeats (CRISPR) and CRISPR-associated (Cas) proteins’ technologies: loss of plasmid or cellular viability, random mutation or gene deletion as well directed mutations that lead to a gene’s loss of function.
Collapse
|
23
|
Wang L, Wang L, Liu Y, Wang Z, Chen Q, Liu Z, Hu J. Characterization of type I-F CRISPR-Cas system in Laribacter hongkongensis isolates from animals, the environment and diarrhea patients. Int J Food Microbiol 2021; 346:109153. [PMID: 33744818 DOI: 10.1016/j.ijfoodmicro.2021.109153] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Revised: 02/27/2021] [Accepted: 03/02/2021] [Indexed: 12/12/2022]
Abstract
Laribacter hongkongensis is a foodborne organism that is associated with gastroenteritis and diarrhea in humans. Here we describe the structural characteristics and potential function of CRISPR systems to obtain insight into the genotypic diversity of L. hongkongensis. Specifically, we analyzed the genomic content of six L. hongkongensis genomes and identified two CRISPR loci (CRISPR1 and CRISPR2) belonging to the I-F subtype of CRISPR systems. CRISPR1 was flanked on one side by cas genes and a 170 bp-long putative leader sequence, while CRISPR2 arrays located further and processed by the same cas genes. Then a combination of PCR and sequencing was used to determine the prevalence and distribution of the two CRISPR arrays in 112 L. hongkongensis strains isolated from patients, animals, and water reservoirs. In total, the CRISPR1-Cas system of complete subtype I-F was detected in 91.5% (108/118) of the isolates, whereas CRISPR2 locus existed in 72.0% (85/118). Ten strains only possessed part of the cas genes of subtype I-F and four of them with CRISPR2 array. The two loci contained highly conserved and identical direct repeat sequences which were stable in their RNA secondary structure. Additionally, 2564 total spacers including 980 unique spacers arranged in 59 alleles were identified. Homology analysis showed only 1.8% (18/980) of the spacers matched with plasmid or phage. CRISPR polymorphism present in human isolates and frog isolates was more closely related and more extensive than that of fish isolates based on spacer polymorphism. The elucidation of the structural characteristics of the CRISPR-Cas system may be helpful for further studying the specific mechanism of adaptive immunity and other biological functions mediated by CRISPR in L. hongkongensis. The conservation of CRISPR loci and hypervariable repeat-spacer arrays imply the potential for molecular typing of L. hongkongensis.
Collapse
Affiliation(s)
- Ling Wang
- Department of Nosocomial Infection Administration, Zhujiang Hospital, Southern Medical University, Guangzhou 510280, China
| | - Li Wang
- Office, Luohu district Center for Disease Control and Prevention, Shenzhen 518000, China
| | - Youzhao Liu
- Department of AIDS Prevention and Control, Guangdong Center for Disease Control and Prevention, Guangzhou 510300, China
| | - Zhiyun Wang
- Department of Immunization Programmes, Baiyun district Center for Disease Control and Prevention, Guangzhou 510540, China
| | - Qing Chen
- Department of Epidemiology, School of Public Health, Southern Medical University, Guangzhou 510515, China
| | - Zhihua Liu
- Department of Infectious Disease, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China.
| | - Jing Hu
- Department of Nosocomial Infection Administration, Zhujiang Hospital, Southern Medical University, Guangzhou 510280, China.
| |
Collapse
|
24
|
Ping S, Mayorga-Reyes N, Price VJ, Onuoha M, Bhardwaj P, Rodrigues M, Owen J, Palacios Araya D, Akins RL, Palmer KL. Characterization of presumptive vancomycin-resistant enterococci recovered during infection control surveillance in Dallas, Texas, USA. Access Microbiol 2021; 3:000214. [PMID: 34151166 PMCID: PMC8209702 DOI: 10.1099/acmi.0.000214] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Accepted: 02/24/2021] [Indexed: 11/18/2022] Open
Abstract
Enterococcus faecalis and E. faecium are Gram-positive bacteria that normally inhabit the human gastrointestinal tract. They are also opportunistic pathogens and can cause nosocomial infection outbreaks. To prevent the spread of nosocomial infections, hospitals may rely on screening methods to identify patients colonized with multidrug-resistant organisms including vancomycin-resistant enterococci (VRE). Spectra VRE agar (Remel) contains vancomycin and other medium components that select for VRE and phenotypically differentiate between E. faecalis and E. faecium by colony colour. We obtained 66 de-identified rectal swab cultures on Spectra VRE agar that were obtained during routine patient admission surveillance at a hospital system in Dallas, Texas, USA. We analysed 90 presumptive VRE from 61 of the Spectra VRE agar cultures using molecular and culture methods. Using ddl typing, 55 were found to be E. faecium and 32 were found to be E. faecalis . While most of the E. faecium were positive for the vanA gene by PCR (52 of 55 strains), few of the E. faecalis were positive for either vanA or vanB (five of 32 strains). The 27 E. faecalis vanA- and vanB-negative strains could not be recultured on Spectra VRE agar. Overall, we found that Spectra VRE agar performed robustly for the identification of vancomycin-resistant E. faecium , but presumptive false positives were obtained for vancomycin-resistant E. faecalis .
Collapse
Affiliation(s)
- Sara Ping
- Department of Biological Sciences, The University of Texas at Dallas, Richardson, Texas, USA
| | - Nancy Mayorga-Reyes
- Department of Biological Sciences, The University of Texas at Dallas, Richardson, Texas, USA
| | - Valerie J. Price
- Department of Biological Sciences, The University of Texas at Dallas, Richardson, Texas, USA
| | - Michelle Onuoha
- Department of Biological Sciences, The University of Texas at Dallas, Richardson, Texas, USA
| | - Pooja Bhardwaj
- Department of Biological Sciences, The University of Texas at Dallas, Richardson, Texas, USA
| | - Marinelle Rodrigues
- Department of Biological Sciences, The University of Texas at Dallas, Richardson, Texas, USA
| | - Jordan Owen
- Department of Biological Sciences, The University of Texas at Dallas, Richardson, Texas, USA
| | - Dennise Palacios Araya
- Department of Biological Sciences, The University of Texas at Dallas, Richardson, Texas, USA
| | | | - Kelli L. Palmer
- Department of Biological Sciences, The University of Texas at Dallas, Richardson, Texas, USA
| |
Collapse
|
25
|
Roy S, Naha S, Rao A, Basu S. CRISPR-Cas system, antibiotic resistance and virulence in bacteria: Through a common lens. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2021; 178:123-174. [PMID: 33685595 DOI: 10.1016/bs.pmbts.2020.12.005] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
CRISPR-Cas system, antibiotic resistance and virulence are different modes of survival for the bacteria. CRISPR-Cas is an adaptive immune system that can degrade foreign DNA, antibiotic resistance helps bacteria to evade drugs that can threaten their existence and virulence determinants are offensive tools that can facilitate the establishment of infection by pathogens. This chapter focuses on these three aspects, providing insights about the CRISPR system and resistance mechanisms in brief, followed by understanding the synergistic or antagonistic relationship of resistance and virulence determinants in connection to the CRISPR system. We have addressed the discussion of this evolving topic through specific examples and studies. Different approaches for successful detection of this unique defense system in bacteria and various applications of the CRISPR-Cas systems to show how it can be harnessed to tackle the increasing problem of antibiotic resistance have been put forth. World Health Organization has declared antibiotic resistance as a serious global problem of the 21st century. As antibiotic-resistant bacteria increase their footprint across the globe, newer tools such as the CRISPR-Cas system hold immense promise to tackle this problem.
Collapse
Affiliation(s)
- Subhasree Roy
- Division of Bacteriology, ICMR-National Institute of Cholera and Enteric Diseases, Scheme XM, Beliaghata, Kolkata, India
| | - Sharmi Naha
- Division of Bacteriology, ICMR-National Institute of Cholera and Enteric Diseases, Scheme XM, Beliaghata, Kolkata, India
| | - Ankur Rao
- Division of Bacteriology, ICMR-National Institute of Cholera and Enteric Diseases, Scheme XM, Beliaghata, Kolkata, India
| | - Sulagna Basu
- Division of Bacteriology, ICMR-National Institute of Cholera and Enteric Diseases, Scheme XM, Beliaghata, Kolkata, India.
| |
Collapse
|
26
|
Gholizadeh P, Aghazadeh M, Ghotaslou R, Ahangarzadeh Rezaee M, Pirzadeh T, Köse Ş, Ganbarov K, Yousefi M, Kafil HS. CRISPR- cas system in the acquisition of virulence genes in dental-root canal and hospital-acquired isolates of Enterococcus faecalis. Virulence 2020; 11:1257-1267. [PMID: 32930628 PMCID: PMC7549939 DOI: 10.1080/21505594.2020.1809329] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2020] [Revised: 07/23/2020] [Accepted: 08/08/2020] [Indexed: 01/20/2023] Open
Abstract
Enterococcus faecalis is one of the important causative agents of nosocomial and life-threatening infections in human. Several studies have demonstrated that the presence of CRISPR-cas is associated with antibiotic susceptibility and lack of virulence traits. In this study, we aimed to assess the phenotypic and genotypic virulence determinants in relation to CRISPR elements from the dental-root canals and hospital-acquired isolates of E. faecalis. Eighty-eight hospital-acquired and 73 dental-root canal isolates of E. faecalis were assessed in this study. Phenotypic screening of the isolates included biofilm formation, and gelatinase and hemolysis activities. Genotypical screening using PCR was further used to evaluate the presence of CRISPR elements and different virulence-associated genes such as efaA, esp, cylA, hyl, gelE, ace, ebpR, and asa1. Biofilm formation, gelatinase, and hemolysis activities were detected in 93.8%, 29.2%, and 19.2% of the isolates, respectively. The most prevalent virulence-associated gene was ace, which was followed by efaA, whereas cylA was the least identified. The presence of CRISPR1-cas, orphan CRISPR2, and CRISPR3-cas was determined in 13%, 55.3%, and 17.4% of the isolates, respectively. CRISPR elements were significantly more prevalent in the dental-root canal isolates. An inverse significant correlation was found between CRISPR-cas loci, esp, and gelE, while direct correlations were observed in the case of cylA, hyl, gelE (among CRISPR-loci 1 and 3), asa1, ace, biofilm formation, and hemolysis activity. Findings, therefore, indicate that CRISPR-cas might prevent the acquisition of some respective pathogenicity factors in some isolates, though not all; so selective forces could not influence pathogenic traits. Abbreviations: BHI: brain-heart infusion agar; CRISPRs: Clustered regularly interspaced short palindromic repeats; Esp: Cell wall-associated protein; ENT: ear-nose-throat; ICU: intensive care units; OD: optical densities; PCR: polymerase chain reaction; SDS: sodium dodecyl sulfate; UTI: urinary tract infection.
Collapse
Affiliation(s)
- Pourya Gholizadeh
- Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, I.R. Iran
| | - Mohammad Aghazadeh
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, I.R. Iran
| | - Reza Ghotaslou
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, I.R. Iran
| | | | - Tahereh Pirzadeh
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, I.R. Iran
| | - Şükran Köse
- Department of Infectious Diseases and Clinical Microbiology, University of Health Sciences, Tepecik Training and Research Hospital, İzmir, Turkey
| | | | - Mehdi Yousefi
- Biotechnology Research Center, Tabriz University of Medical Sciences, Tabriz, I.R. Iran
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, I.R. Iran
| | - Hossein Samadi Kafil
- Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, I.R. Iran
| |
Collapse
|
27
|
Espinosa J, Lin TY, Estrella Y, Kim B, Molina H, Hang HC. Enterococcus NlpC/p60 Peptidoglycan Hydrolase SagA Localizes to Sites of Cell Division and Requires Only a Catalytic Dyad for Protease Activity. Biochemistry 2020; 59:4470-4480. [PMID: 33136372 DOI: 10.1021/acs.biochem.0c00755] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Peptidoglycan is a vital component of the bacterial cell wall, and its dynamic remodeling by NlpC/p60 hydrolases is crucial for proper cell division and survival. Beyond these essential functions, we previously discovered that Enterococcus species express and secrete the NlpC/p60 hydrolase-secreted antigen A (SagA), whose catalytic activity can modulate host immune responses in animal models. However, the localization and peptidoglycan hydrolase activity of SagA in Enterococcus was still unclear. In this study, we show that SagA contributes to a triseptal structure in dividing cells of enterococci and localizes to sites of cell division through its N-terminal coiled-coil domain. Using molecular modeling and site-directed mutagenesis, we identify amino acid residues within the SagA-NlpC/p60 domain that are crucial for catalytic activity and potential substrate binding. Notably, these studies revealed that SagA may function via a catalytic Cys-His dyad instead of the predicted Cys-His-His triad, which is conserved in SagA orthologs from other Enterococcus species. Our results provide key additional insight into peptidoglycan remodeling in Enterococcus by SagA NlpC/p60 hydrolases.
Collapse
Affiliation(s)
- Juliel Espinosa
- Laboratory of Chemical Biology and Microbial Pathogenesis, The Rockefeller University, New York, New York 10065, United States
| | - Ti-Yu Lin
- Laboratory of Chemical Biology and Microbial Pathogenesis, The Rockefeller University, New York, New York 10065, United States
| | - Yadyvic Estrella
- Laboratory of Chemical Biology and Microbial Pathogenesis, The Rockefeller University, New York, New York 10065, United States
| | - Byungchul Kim
- Laboratory of Chemical Biology and Microbial Pathogenesis, The Rockefeller University, New York, New York 10065, United States
| | - Henrik Molina
- Proteomics Resource Center, The Rockefeller University, New York, New York 10065, United States
| | - Howard C Hang
- Laboratory of Chemical Biology and Microbial Pathogenesis, The Rockefeller University, New York, New York 10065, United States.,Departments of Immunology & Microbiology and Chemistry, Scripps Research, La Jolla, California 92037, United States
| |
Collapse
|
28
|
Vrancianu CO, Popa LI, Bleotu C, Chifiriuc MC. Targeting Plasmids to Limit Acquisition and Transmission of Antimicrobial Resistance. Front Microbiol 2020; 11:761. [PMID: 32435238 PMCID: PMC7219019 DOI: 10.3389/fmicb.2020.00761] [Citation(s) in RCA: 85] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2019] [Accepted: 03/30/2020] [Indexed: 12/19/2022] Open
Abstract
Antimicrobial resistance (AMR) is a significant global threat to both public health and the environment. The emergence and expansion of AMR is sustained by the enormous diversity and mobility of antimicrobial resistance genes (ARGs). Different mechanisms of horizontal gene transfer (HGT), including conjugation, transduction, and transformation, have facilitated the accumulation and dissemination of ARGs in Gram-negative and Gram-positive bacteria. This has resulted in the development of multidrug resistance in some bacteria. The most clinically significant ARGs are usually located on different mobile genetic elements (MGEs) that can move intracellularly (between the bacterial chromosome and plasmids) or intercellularly (within the same species or between different species or genera). Resistance plasmids play a central role both in HGT and as support elements for other MGEs, in which ARGs are assembled by transposition and recombination mechanisms. Considering the crucial role of MGEs in the acquisition and transmission of ARGs, a potential strategy to control AMR is to eliminate MGEs. This review discusses current progress on the development of chemical and biological approaches for the elimination of ARG carriers.
Collapse
Affiliation(s)
- Corneliu Ovidiu Vrancianu
- Microbiology Immunology Department, Faculty of Biology, University of Bucharest, Bucharest, Romania
- The Research Institute of the University of Bucharest, Bucharest, Romania
| | - Laura Ioana Popa
- Microbiology Immunology Department, Faculty of Biology, University of Bucharest, Bucharest, Romania
- The Research Institute of the University of Bucharest, Bucharest, Romania
- The National Institute of Research and Development for Biological Sciences, Bucharest, Romania
| | - Coralia Bleotu
- Microbiology Immunology Department, Faculty of Biology, University of Bucharest, Bucharest, Romania
- The Research Institute of the University of Bucharest, Bucharest, Romania
- Stefan S. Nicolau Institute of Virology, Bucharest, Romania
| | - Mariana Carmen Chifiriuc
- Microbiology Immunology Department, Faculty of Biology, University of Bucharest, Bucharest, Romania
- The Research Institute of the University of Bucharest, Bucharest, Romania
| |
Collapse
|
29
|
Mahendra C, Christie KA, Osuna BA, Pinilla-Redondo R, Kleinstiver BP, Bondy-Denomy J. Broad-spectrum anti-CRISPR proteins facilitate horizontal gene transfer. Nat Microbiol 2020; 5:620-629. [PMID: 32218510 PMCID: PMC7194981 DOI: 10.1038/s41564-020-0692-2] [Citation(s) in RCA: 73] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2019] [Accepted: 02/14/2020] [Indexed: 12/26/2022]
Abstract
CRISPR-Cas adaptive immune systems protect bacteria and archaea against their invading genetic parasites, including bacteriophages/viruses and plasmids. In response to this immunity, many phages have anti-CRISPR (Acr) proteins that inhibit CRISPR-Cas targeting. To date, anti-CRISPR genes have primarily been discovered in phage or prophage genomes. Here, we uncovered acr loci on plasmids and other conjugative elements present in Firmicutes using the Listeria acrIIA1 gene as a marker. The four identified genes, found in Listeria, Enterococcus, Streptococcus and Staphylococcus genomes, can inhibit type II-A SpyCas9 or SauCas9, and are thus named acrIIA16-19. In Enterococcus faecalis, conjugation of a Cas9-targeted plasmid was enhanced by anti-CRISPRs derived from Enterococcus conjugative elements, highlighting a role for Acrs in the dissemination of plasmids. Reciprocal co-immunoprecipitation showed that each Acr protein interacts with Cas9, and Cas9-Acr complexes were unable to cleave DNA. Northern blotting suggests that these anti-CRISPRs manipulate single guide RNA length, loading or stability. Mirroring their activity in bacteria, AcrIIA16 and AcrIIA17 provide robust and highly potent broad-spectrum inhibition of distinct Cas9 proteins in human cells (for example, SpyCas9, SauCas9, SthCas9, NmeCas9 and CjeCas9). This work presents a focused analysis of non-phage Acr proteins, demonstrating a role in horizontal gene transfer bolstered by broad-spectrum CRISPR-Cas9 inhibition.
Collapse
Affiliation(s)
- Caroline Mahendra
- Department of Microbiology and Immunology, University of California, San Francisco, San Francisco, CA, USA
| | - Kathleen A Christie
- Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA, USA
- Department of Pathology, Massachusetts General Hospital, Boston, MA, USA
- Department of Pathology, Harvard Medical School, Boston, MA, USA
| | - Beatriz A Osuna
- Department of Microbiology and Immunology, University of California, San Francisco, San Francisco, CA, USA
| | - Rafael Pinilla-Redondo
- Department of Microbiology and Immunology, University of California, San Francisco, San Francisco, CA, USA
- Section of Microbiology, University of Copenhagen, Universitetsparken 15, Copenhagen, Denmark
- Department of Technological Educations, University College Copenhagen, Sigurdsgade 26, Copenhagen, Denmark
| | - Benjamin P Kleinstiver
- Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA, USA
- Department of Pathology, Massachusetts General Hospital, Boston, MA, USA
- Department of Pathology, Harvard Medical School, Boston, MA, USA
| | - Joseph Bondy-Denomy
- Department of Microbiology and Immunology, University of California, San Francisco, San Francisco, CA, USA.
- Quantitative Biosciences Institute, University of California, San Francisco, San Francisco, CA, USA.
- Innovative Genomics Institute, Berkeley, CA, USA.
| |
Collapse
|
30
|
Conjugative Delivery of CRISPR-Cas9 for the Selective Depletion of Antibiotic-Resistant Enterococci. Antimicrob Agents Chemother 2019; 63:AAC.01454-19. [PMID: 31527030 DOI: 10.1128/aac.01454-19] [Citation(s) in RCA: 93] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2019] [Accepted: 08/29/2019] [Indexed: 12/19/2022] Open
Abstract
The innovation of new therapies to combat multidrug-resistant (MDR) bacteria is being outpaced by the continued rise of MDR bacterial infections. Of particular concern are hospital-acquired infections (HAIs) that are recalcitrant to antibiotic therapies. The Gram-positive intestinal pathobiont Enterococcus faecalis is associated with HAIs, and some strains are MDR. Therefore, novel strategies to control E. faecalis populations are needed. We previously characterized an E. faecalis type II CRISPR-Cas system and demonstrated its utility in the sequence-specific removal of antibiotic resistance determinants. Here, we present work describing the adaption of this CRISPR-Cas system into a constitutively expressed module encoded on a pheromone-responsive conjugative plasmid that efficiently transfers to E. faecalis for the selective removal of antibiotic resistance genes. Using in vitro competition assays, we show that these CRISPR-Cas-encoding delivery plasmids, or CRISPR-Cas antimicrobials, can reduce the occurrence of antibiotic resistance in enterococcal populations in a sequence-specific manner. Furthermore, we demonstrate that deployment of CRISPR-Cas antimicrobials in the murine intestine reduces the occurrence of antibiotic-resistant E. faecalis by several orders of magnitude. Finally, we show that E. faecalis donor strains harboring CRISPR-Cas antimicrobials are immune to uptake of antibiotic resistance determinants in vivo Our results demonstrate that conjugative delivery of CRISPR-Cas antimicrobials may be adaptable for future deployment from probiotic bacteria for exact targeting of defined MDR bacteria or for precision engineering of polymicrobial communities in the mammalian intestine.
Collapse
|
31
|
Enterococcus faecalis CRISPR-Cas Is a Robust Barrier to Conjugative Antibiotic Resistance Dissemination in the Murine Intestine. mSphere 2019; 4:4/4/e00464-19. [PMID: 31341074 PMCID: PMC6656873 DOI: 10.1128/msphere.00464-19] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
CRISPR-Cas is a type of immune system in bacteria that is hypothesized to be a natural impediment to the spread of antibiotic resistance genes. In this study, we directly assessed the impact of CRISPR-Cas on antibiotic resistance dissemination in the mammalian intestine and under different in vitro conditions. We observed a robust effect of CRISPR-Cas on in vivo but not in vitro dissemination of antibiotic resistance plasmids in the native mammalian intestinal colonizer Enterococcus faecalis. We conclude that standard in vitro experiments currently do not appropriately model the in vivo conditions where antibiotic resistance dissemination occurs between E. faecalis strains in the intestine. Moreover, our results demonstrate that CRISPR-Cas present in native members of the mammalian intestinal microbiota can block the spread of antibiotic resistance plasmids. CRISPR-Cas systems are barriers to horizontal gene transfer (HGT) in bacteria. Little is known about CRISPR-Cas interactions with conjugative plasmids, and studies investigating CRISPR-Cas/plasmid interactions in in vivo models relevant to infectious disease are lacking. These are significant gaps in knowledge because conjugative plasmids disseminate antibiotic resistance genes among pathogens in vivo, and it is essential to identify strategies to reduce the spread of these elements. We use enterococci as models to understand the interactions of CRISPR-Cas with conjugative plasmids. Enterococcus faecalis is a native colonizer of the mammalian intestine and harbors pheromone-responsive plasmids (PRPs). PRPs mediate inter- and intraspecies transfer of antibiotic resistance genes. We assessed E. faecalis CRISPR-Cas anti-PRP activity in the mouse intestine and under different in vitro conditions. We observed striking differences in CRISPR-Cas efficiency in vitro versus in vivo. With few exceptions, CRISPR-Cas blocked intestinal PRP dissemination, while in vitro, the PRP frequently escaped CRISPR-Cas defense. Our results further the understanding of CRISPR-Cas biology by demonstrating that standard in vitro experiments do not adequately model the in vivo antiplasmid activity of CRISPR-Cas. Additionally, our work identifies several variables that impact the apparent in vitro antiplasmid activity of CRISPR-Cas, including planktonic versus biofilm settings, different donor-to-recipient ratios, production of a plasmid-encoded bacteriocin, and the time point at which matings are sampled. Our results are clinically significant because they demonstrate that barriers to HGT encoded by normal (healthy) human microbiota can have significant impacts on in vivo antibiotic resistance dissemination. IMPORTANCE CRISPR-Cas is a type of immune system in bacteria that is hypothesized to be a natural impediment to the spread of antibiotic resistance genes. In this study, we directly assessed the impact of CRISPR-Cas on antibiotic resistance dissemination in the mammalian intestine and under different in vitro conditions. We observed a robust effect of CRISPR-Cas on in vivo but not in vitro dissemination of antibiotic resistance plasmids in the native mammalian intestinal colonizer Enterococcus faecalis. We conclude that standard in vitro experiments currently do not appropriately model the in vivo conditions where antibiotic resistance dissemination occurs between E. faecalis strains in the intestine. Moreover, our results demonstrate that CRISPR-Cas present in native members of the mammalian intestinal microbiota can block the spread of antibiotic resistance plasmids.
Collapse
|
32
|
Lima R, Del Fiol FS, Balcão VM. Prospects for the Use of New Technologies to Combat Multidrug-Resistant Bacteria. Front Pharmacol 2019; 10:692. [PMID: 31293420 PMCID: PMC6598392 DOI: 10.3389/fphar.2019.00692] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2019] [Accepted: 05/28/2019] [Indexed: 12/18/2022] Open
Abstract
The increasing use of antibiotics is being driven by factors such as the aging of the population, increased occurrence of infections, and greater prevalence of chronic diseases that require antimicrobial treatment. The excessive and unnecessary use of antibiotics in humans has led to the emergence of bacteria resistant to the antibiotics currently available, as well as to the selective development of other microorganisms, hence contributing to the widespread dissemination of resistance genes at the environmental level. Due to this, attempts are being made to develop new techniques to combat resistant bacteria, among them the use of strictly lytic bacteriophage particles, CRISPR-Cas, and nanotechnology. The use of these technologies, alone or in combination, is promising for solving a problem that humanity faces today and that could lead to human extinction: the domination of pathogenic bacteria resistant to artificial drugs. This prospective paper discusses the potential of bacteriophage particles, CRISPR-Cas, and nanotechnology for use in combating human (bacterial) infections.
Collapse
Affiliation(s)
- Renata Lima
- LABiToN-Laboratory of Bioactivity Assessment and Toxicology of Nanomaterials, University of Sorocaba, Sorocaba, Brazil
| | - Fernando Sá Del Fiol
- CRIA-Antibiotic Reference and Information Center, University of Sorocaba, Sorocaba, Brazil
| | - Victor M Balcão
- PhageLab-Laboratory of Biofilms and Bacteriophages, i(bs)2-intelligent biosensing and biomolecule stabilization research group, University of Sorocaba, Sorocaba, Brazil.,Department of Biology and CESAM, University of Aveiro, Campus Universitário de Santiago, Aveiro, Portugal
| |
Collapse
|
33
|
Gong L, Li M, Cheng F, Zhao D, Chen Y, Xiang H. Primed adaptation tolerates extensive structural and size variations of the CRISPR RNA guide in Haloarcula hispanica. Nucleic Acids Res 2019; 47:5880-5891. [PMID: 30957847 PMCID: PMC6582329 DOI: 10.1093/nar/gkz244] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2019] [Revised: 03/22/2019] [Accepted: 03/27/2019] [Indexed: 12/13/2022] Open
Abstract
Recent studies on CRISPR adaptation revealed that priming is a major pathway of spacer acquisition, at least for the most prevalent type I systems. Priming is guided by a CRISPR RNA which fully/partially matches the invader DNA, but the plasticity of this RNA guide has not yet been characterized. In this study, we extensively modified the two conserved handles of a priming crRNA in Haloarcula hispanica, and altered the size of its central spacer part. Interestingly, priming is insusceptible to the full deletion of 3' handle, which seriously impaired crRNA stability and interference effects. With 3' handle deletion, further truncation of 5' handle revealed that its spacer-proximal 6 nucleotides could provide the least conserved sequence required for priming. Subsequent scanning mutation further identified critical nucleotides within 5' handle. Besides, priming was also shown to tolerate a wider size variation of the spacer part, compared to interference. These data collectively illustrate the high tolerance of priming to extensive structural/size variations of the crRNA guide, which highlights the structural flexibility of the crRNA-effector ribonucleoprotein complex. The observed high priming effectiveness suggests that primed adaptation promotes clearance of the fast-replicating and ever-evolving viral DNA, by rapidly and persistently multiplexing the interference pathway.
Collapse
Affiliation(s)
- Luyao Gong
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Ming Li
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Feiyue Cheng
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Dahe Zhao
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Yihua Chen
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Hua Xiang
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
34
|
Abstract
Our bodies are colonized by a complex ecosystem of bacteria, unicellular eukaryotes and their viruses that together play a major role in our health. Over the past few years tools derived from the prokaryotic immune system known as CRISPR-Cas have empowered researchers to modify and study organisms with unprecedented ease and efficiency. Here we discuss how various types of CRISPR-Cas systems can be used to modify the genome of gut microorganisms and bacteriophages. CRISPR-Cas systems can also be delivered to bacterial population and programmed to specifically eliminate members of the microbiome. Finally, engineered CRISPR-Cas systems can be used to control gene expression and modulate the production of metabolites and proteins. Together these tools provide exciting opportunities to investigate the complex interplay between members of the microbiome and our bodies, and present new avenues for the development of drugs that target the microbiome. This article is part of a discussion meeting issue 'The ecology and evolution of prokaryotic CRISPR-Cas adaptive immune systems'.
Collapse
Affiliation(s)
| | - David Bikard
- Synthetic Biology Group, Department of Microbiology, Institut Pasteur, Paris 75015, France
| |
Collapse
|
35
|
Abstract
The study of the genetics of enterococci has focused heavily on mobile genetic elements present in these organisms, the complex regulatory circuits used to control their mobility, and the antibiotic resistance genes they frequently carry. Recently, more focus has been placed on the regulation of genes involved in the virulence of the opportunistic pathogenic species Enterococcus faecalis and Enterococcus faecium. Little information is available concerning fundamental aspects of DNA replication, partition, and division; this article begins with a brief overview of what little is known about these issues, primarily by comparison with better-studied model organisms. A variety of transcriptional and posttranscriptional mechanisms of regulation of gene expression are then discussed, including a section on the genetics and regulation of vancomycin resistance in enterococci. The article then provides extensive coverage of the pheromone-responsive conjugation plasmids, including sections on regulation of the pheromone response, the conjugative apparatus, and replication and stable inheritance. The article then focuses on conjugative transposons, now referred to as integrated, conjugative elements, or ICEs, and concludes with several smaller sections covering emerging areas of interest concerning the enterococcal mobilome, including nonpheromone plasmids of particular interest, toxin-antitoxin systems, pathogenicity islands, bacteriophages, and genome defense.
Collapse
Affiliation(s)
- Keith E Weaver
- Division of Basic Biomedical Sciences, Sanford School of Medicine, University of South Dakota, Vermillion, SD 57069
| |
Collapse
|
36
|
Investigation of direct repeats, spacers and proteins associated with clustered regularly interspaced short palindromic repeat (CRISPR) system of Vibrio parahaemolyticus. Mol Genet Genomics 2018; 294:253-262. [PMID: 30357478 DOI: 10.1007/s00438-018-1504-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2018] [Accepted: 10/15/2018] [Indexed: 12/11/2022]
Abstract
Vibrio parahaemolyticus, a ubiquitous bacterium of the marine environment is an important food-borne pathogen responsible for gastroenteritis worldwide. In this study, we aimed to investigate the occurrence and diversity of the CRISPR-Cas system in V. parahaemolyticus genomes using a bioinformatics approach. The CRISPR-Cas system functions as an adaptive immune system in prokaryotes that provides immunity against foreign genetic elements. In total, 570 genomes V. parahaemolyticus genomes were analyzed of which 200 confirmed for the presence of CRISPR-Cas system. The CRISPR-Cas loci were further analyzed for their repeats, spacers and associated Cas proteins. Among the 200 V. parahaemolyticus strains analyzed, 16 (8%) strains possessed the CRISPR-Cas system of complete subtype I-F, while the remaining 184 (92%) harbored the minimalistic type, a subtype I-F variant. Orphan CRISPR repeats and Cas genes were found in one strain each. The CRISPR-associated direct repeat had an unit length of 28 bases. The number of repeat units in each array ranged from 3 to 5 or 5-41 depending on whether they belonged to the minimalistic or complete subtype-IF CRISPR-Cas system, respectively. Of the 768 spacers analyzed in this study, 295 were found to be unique to V. parahaemolyticus. Homology analysis of the conserved spacers revealed matches to plasmids, phages and gut viruses and self chromosomes. Among the CRISPR-associated proteins, Cas5 and Cas7 proteins were found to be conserved. However, variations were seen in the Cas6 protein, which could be grouped into four different types based on their protein length as well as amino acid composition. We present here the diversity and main features of the CRISPR-Cas system in V. parahaemolyticus, which could provide valuable insights in elucidating the role and mechanism of CRISPR/Cas elements in this pathogen.
Collapse
|
37
|
Loss-of-Function Mutations in epaR Confer Resistance to ϕNPV1 Infection in Enterococcus faecalis OG1RF. Antimicrob Agents Chemother 2018; 62:AAC.00758-18. [PMID: 30104266 PMCID: PMC6153818 DOI: 10.1128/aac.00758-18] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2018] [Accepted: 08/01/2018] [Indexed: 02/06/2023] Open
Abstract
Enterococcus faecalis is a Gram-positive opportunistic pathogen that inhabits the human gastrointestinal tract. Because of the high frequency of antibiotic resistance among Enterococcus clinical isolates, interest in using phage to treat enterococcal infections and to decolonize high-risk patients for antibiotic-resistant Enterococcus is rising. Bacteria can evolve phage resistance, but there is little published information on these mechanisms in E. faecalis In this report, we identified genetic determinants of E. faecalis resistance to phage NPV1 (ϕNPV1). We found that loss-of-function mutations in epaR confer ϕNPV1 resistance by blocking phage adsorption. We attribute the inability of the phage to adsorb to the modification or loss of an extracellular polymer in strains with inactivated epaR Phage-resistant epaR mutants exhibited increased daptomycin and osmotic stress susceptibilities. Our results demonstrate that in vitro spontaneous resistance to ϕNPV1 comes at a cost in E. faecalis OG1RF.
Collapse
|
38
|
Hullahalli K, Rodrigues M, Nguyen UT, Palmer K. An Attenuated CRISPR-Cas System in Enterococcus faecalis Permits DNA Acquisition. mBio 2018; 9:e00414-18. [PMID: 29717009 PMCID: PMC5930301 DOI: 10.1128/mbio.00414-18] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2018] [Accepted: 03/28/2018] [Indexed: 12/13/2022] Open
Abstract
Antibiotic-resistant bacteria are critical public health concerns. Among the prime causative factors for the spread of antibiotic resistance is horizontal gene transfer (HGT). A useful model organism for investigating the relationship between HGT and antibiotic resistance is the opportunistic pathogen Enterococcus faecalis, since the species possesses highly conjugative plasmids that readily disseminate antibiotic resistance genes and virulence factors in nature. Unlike many commensal E. faecalis strains, the genomes of multidrug-resistant (MDR) E. faecalis clinical isolates are enriched for mobile genetic elements (MGEs) and lack clustered regularly interspaced short palindromic repeats (CRISPR) and CRISPR-associated protein (Cas) genome defense systems. CRISPR-Cas systems cleave foreign DNA in a programmable, sequence-specific manner and are disadvantageous for MGE-derived genome expansion. An unexplored facet of CRISPR biology in E. faecalis is that MGEs that are targeted by native CRISPR-Cas systems can be maintained transiently. Here, we investigate the basis for this "CRISPR tolerance." We observe that E. faecalis can maintain self-targeting constructs that direct Cas9 to cleave the chromosome, but at a fitness cost. Interestingly, DNA repair genes were not upregulated during self-targeting, but integrated prophages were strongly induced. We determined that low cas9 expression contributes to this transient nonlethality and used this knowledge to develop a robust CRISPR-assisted genome-editing scheme. Our results suggest that E. faecalis has maximized the potential for DNA acquisition by attenuating its CRISPR machinery, thereby facilitating the acquisition of potentially beneficial MGEs that may otherwise be restricted by genome defense.IMPORTANCE CRISPR-Cas has provided a powerful toolkit to manipulate bacteria, resulting in improved genetic manipulations and novel antimicrobials. These powerful applications rely on the premise that CRISPR-Cas chromosome targeting, which leads to double-stranded DNA breaks, is lethal. In this study, we show that chromosomal CRISPR targeting in Enterococcus faecalis is transiently nonlethal. We uncover novel phenotypes associated with this "CRISPR tolerance" and, after determining its genetic basis, develop a genome-editing platform in E. faecalis with negligible off-target effects. Our findings reveal a novel strategy exploited by a bacterial pathogen to cope with CRISPR-induced conflicts to more readily accept DNA, and our robust CRISPR editing platform will help simplify genetic modifications in this organism.
Collapse
Affiliation(s)
- Karthik Hullahalli
- Department of Biological Sciences, The University of Texas at Dallas, Richardson, Texas, USA
| | - Marinelle Rodrigues
- Department of Biological Sciences, The University of Texas at Dallas, Richardson, Texas, USA
| | - Uyen Thy Nguyen
- Department of Biological Sciences, The University of Texas at Dallas, Richardson, Texas, USA
| | - Kelli Palmer
- Department of Biological Sciences, The University of Texas at Dallas, Richardson, Texas, USA
| |
Collapse
|