1
|
Han L, Wang C, Dong Z, Xiao C, Li W, Wang L, He P, Yang P, Huang S, Bai B. Biosynthesis of Natural Acylsucroses from Sucrose and Short Branched-Chain Fatty Acids via Artificially Engineered Escherichia coli. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2025; 73:9210-9220. [PMID: 40179051 DOI: 10.1021/acs.jafc.5c00568] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/05/2025]
Abstract
Natural acylsucrose, often found in the glandular trichomes of Solanaceae plants, has potential applications in many industries, including food, cosmetics, and pharmaceuticals. In this study, we engineered an Escherichia coli strain to complete the biosynthesis of acylsucroses through whole-cell transformation. Using acylsucrose acyltransferases and CoA ligases, acylsucroses, including monoacylsucrose S1:5 ("S" represents an acylsucrose backbone, the number before the colon indicates the number of acyl chains, and the number after the colon indicates the sum of carbons in all acyl chains), diacylsucrose S2:10, triacylsucrose S3:14, and triacylsucrose S3:15 were synthesized from the substrate sucrose and short branched-chain fatty acids by the engineered E. coli EcoSE07, of which S3:15 was the primary product. Several strategies were applied to improve acylsucrose production, including codon optimization, constitutive promoter replacement, and serial resting cell assays. The use of fed-batch fermentation with an engineered E. coli strain of EcoSE22 containing a constitutive promoter further improved the production of acylsucroses. Serial resting cell assays with an optical density of 50 at 600 nm significantly increased the production of acylsucroses S3:15 and S2:10. These findings will facilitate the synthesis of natural acylsucroses through whole-cell transformations and provide the potential for future industrial applications.
Collapse
Affiliation(s)
- Li Han
- School of Food and Bioengineering, Zhengzhou University of Light Industry, Zhengzhou 450002, China
- Zhengzhou Key Laboratory of Metabolic Engineering and Systems Biology, Zhengzhou 450002, China
| | - Chenhui Wang
- School of Food and Bioengineering, Zhengzhou University of Light Industry, Zhengzhou 450002, China
- Zhengzhou Key Laboratory of Metabolic Engineering and Systems Biology, Zhengzhou 450002, China
| | - Ziqiang Dong
- School of Food and Bioengineering, Zhengzhou University of Light Industry, Zhengzhou 450002, China
- Zhengzhou Key Laboratory of Metabolic Engineering and Systems Biology, Zhengzhou 450002, China
| | - Chengzhi Xiao
- Zhengzhou Key Laboratory of Metabolic Engineering and Systems Biology, Zhengzhou 450002, China
| | - Wenqin Li
- School of Food and Bioengineering, Zhengzhou University of Light Industry, Zhengzhou 450002, China
| | - Lijiao Wang
- Zhengzhou Key Laboratory of Metabolic Engineering and Systems Biology, Zhengzhou 450002, China
| | - Peixin He
- School of Food and Bioengineering, Zhengzhou University of Light Industry, Zhengzhou 450002, China
| | - Pengfei Yang
- College of Tobacco Science and Engineering, Zhengzhou University of Light Industry, Zhengzhou 450002, China
| | - Shen Huang
- College of Tobacco Science and Engineering, Zhengzhou University of Light Industry, Zhengzhou 450002, China
| | - Bing Bai
- College of Tobacco Science and Engineering, Zhengzhou University of Light Industry, Zhengzhou 450002, China
| |
Collapse
|
2
|
Xu S, Gaquerel E. Evolution of plant specialized metabolites: beyond ecological drivers. TRENDS IN PLANT SCIENCE 2025:S1360-1385(25)00044-5. [PMID: 40113551 DOI: 10.1016/j.tplants.2025.02.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2024] [Revised: 02/17/2025] [Accepted: 02/19/2025] [Indexed: 03/22/2025]
Abstract
Plants produce a highly diverse array of specialized metabolites. Traditionally, the evolution of these metabolites has been studied primarily through the lens of plants' ecological interactions with herbivores, pathogens, and pollinators, as many of them exhibit defense and/or attraction functions. However, increasing evidence suggests that many specialized metabolites, along with their precursors, also act as cellular signals that regulate cell growth and differentiation. We propose that these intrinsic functions are at least equally important factors in shaping the evolution of plant chemical defenses. We further discuss how future research that combines modern single-cell techniques and evolutionary genomics will provide novel insights into the evolutionary process of specialized metabolism diversification.
Collapse
Affiliation(s)
- Shuqing Xu
- Institute of Organismic and Molecular Evolution (iomE), University of Mainz, 55128 Mainz, Germany.
| | - Emmanuel Gaquerel
- Institut de Biologie Moléculaire des Plantes du CNRS, Université de Strasbourg, Strasbourg, France.
| |
Collapse
|
3
|
Dwivedi V, Okertchiri E, Yokom A, Schenck CA. A Metabolic Complex Involved in Tomato Specialized Metabolism. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.02.17.638719. [PMID: 40027690 PMCID: PMC11870507 DOI: 10.1101/2025.02.17.638719] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/05/2025]
Abstract
Specialized metabolites mediate diverse plant-environment interactions. Although, recent work has begun to enzymatically characterize entire plant specialized metabolic pathways, little is known about how different pathway components organize and interact within the cell. Here we use acylsugars - a class of specialized metabolites found across the Solanaceae family - as a model to explore cellular localization and metabolic complex formation of pathway enzymes. These compounds consist of a sugar core decorated with acyl groups, which are connected through ester linkages. In Solanum lycopersicum (tomato) four acylsugar acyltransferases (SlASAT1-4) sequentially add acyl chains to specific hydroxyl positions on a sucrose core leading to accumulation of tri and tetraacylated sucroses in the trichomes. To elucidate the spatial organization and interactions of tomato ASATs, we expressed SlASAT1-4 proteins fused with YFP in N. benthamiana and Arabidopsis protoplasts. Our findings revealed a distributed ASAT pathway with SlASAT1 and SlASAT3 localized to the mitochondria, SlASAT2 localized to the cytoplasm and nucleus, and SlASAT4 localized to the endoplasmic reticulum. To explore potential pairwise protein-protein interactions in acylsugar biosynthesis, we used various techniques, including co-immunoprecipitation, split luciferase assays, and bimolecular fluorescence complementation. These complementary approaches based on different interaction principles all demonstrated interactions among the different SlASAT pairs. Following transient expression of SlASAT1-4 in N. benthamiana , we were able to pull down a complex consisting of SlASAT1-4, which was confirmed through proteomics. Size exclusion chromatography of the SlASAT pulldown suggests a heteromultimeric complex consisting of SlASATs and perhaps other proteins involved in this interaction network. This study sheds light on the metabolic coordination for acylsugar biosynthesis through formation of an interaction network of four sequential steps coordinating efficient production of plant chemical defenses.
Collapse
|
4
|
Kruse LH, Bennett AA, Baruah VJ, Irfan M, Moghe GD. Extraction, Annotation, and Purification of Resin Glycosides from the Morning Glory Family (Convolvulaceae). Methods Mol Biol 2025; 2895:177-200. [PMID: 39885031 DOI: 10.1007/978-1-0716-4350-1_13] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2025]
Abstract
The metabolic diversity of plants, comprising over a million different metabolites across the plant kingdom, harbors enormous potential for pharmaceutical and biotechnological applications. Resin glycoside (RG) acylsugars from the Convolvulaceae are of interest due to their medicinal and agricultural potential. However, understanding the biological relevance of RGs is challenging as they exhibit a high lineage-specific structural diversity. Liquid chromatography-tandem mass spectrometry (LC-MS/MS) coupled with computational peak annotation can provide insights into this diversity. Here, we present a comprehensive protocol for the characterization of RG diversity using a sensitive LC-MS/MS instrument, a knowledge-based computational pipeline, and a web tool for peak annotation. The described experimental approach provides a step-by-step guide for RG sampling, extraction, purification for downstream analyses such as bioassays, and structural annotation using LC-MS/MS and computational metabolomics. The protocol focuses on qualitative analysis for putative annotation (Annotation Level 2 as defined by the Metabolomics Standards Initiative) of RGs and can serve as a valuable template for researchers exploring plant metabolic diversity beyond RGs and acylsugars.
Collapse
Affiliation(s)
- Lars H Kruse
- Michael Smith Laboratories, University of British Columbia, Vancouver, BC, Canada.
| | - Alexandra A Bennett
- Department of Chemistry, Institute of Analytical Chemistry, University of Natural Resources and Life Sciences, Vienna, Vienna, Austria
| | - Vishwa J Baruah
- Plant Biology Section, School of Integrative Plant Science, Cornell University, Ithaca, NY, USA
| | - Mohammad Irfan
- Plant Biology Section, School of Integrative Plant Science, Cornell University, Ithaca, NY, USA
| | - Gaurav D Moghe
- Plant Biology Section, School of Integrative Plant Science, Cornell University, Ithaca, NY, USA
| |
Collapse
|
5
|
Kartowikromo KY, Pizzo JS, Rutz T, Love ZE, Simmons AM, Ojeda AS, da Silva ALBR, Rodrigues C, Hamid AM. Identification and Structural Elucidation of Acylsugars in Tomato Leaves Using Liquid Chromatography-Ion Mobility-Tandem Mass Spectrometry (LC-IM-MS/MS). JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2025; 36:135-145. [PMID: 39680654 DOI: 10.1021/jasms.4c00376] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2024]
Abstract
Leaves of tomato plants contain various glandular trichomes that produce a wide range of metabolic products including acylsugars, which may serve as a defense mechanism against various insect pests. Acylsugars exhibit significant structural diversity, differing in their sugar cores, acylated positions, and type of acyl chains. This work demonstrated a comprehensive approach using multidimensional separation techniques, specifically liquid chromatography-ion mobility-tandem mass spectrometry (LC-IM-MS/MS), for structural characterization, and the discrimination of different tomato plants (one cultivar and five accessions) was demonstrated using tomato leaf extracts; six genotypes from five species of Solanum were represented. As a result, we identified 16 acylsugars through their molecular formulas and annotations using LC and MS analyses. The incorporation of ion mobility (IM) analysis revealed an additional 9 isomeric forms, resulting in a comprehensive total of 25 isomeric acylsugars identified. Furthermore, the experimental collision cross section (CCSexp) values agreed reasonably well with the corresponding predicted values (CCSpred), with an overall estimated error of less than 2%. These findings pave the way for research into how the different structural isomers of acylsugars might influence the self-defense mechanism in plants. Moreover, this work demonstrated that the investigated cultivar and accessions of tomatoes can be distinguished from each other based on their metabolite profile, e.g., acylsugars, with principal component analysis (PCA) and linear discriminant analysis (LDA) statistical models, yielding a prediction rate of 98.3%.
Collapse
Affiliation(s)
- Kimberly Y Kartowikromo
- Department of Chemistry and Biochemistry, Auburn University, Auburn, Alabama 36849, United States
| | - Jessica S Pizzo
- Department of Chemistry and Biochemistry, Auburn University, Auburn, Alabama 36849, United States
- Department of Horticulture, Auburn University, Auburn, Alabama 36849, United States
| | - Thiago Rutz
- Department of Horticulture, Auburn University, Auburn, Alabama 36849, United States
| | - Zachary E Love
- Department of Chemistry and Biochemistry, Auburn University, Auburn, Alabama 36849, United States
| | - Alvin M Simmons
- U.S. Vegetable Laboratory, USDA-ARS, Charleston, South Carolina 29414, United States
| | - Ann S Ojeda
- Department of Geosciences, Auburn University, Auburn, Alabama 36849, United States
| | - Andre L B R da Silva
- Department of Horticulture, Auburn University, Auburn, Alabama 36849, United States
| | - Camila Rodrigues
- Department of Horticulture, Auburn University, Auburn, Alabama 36849, United States
| | - Ahmed M Hamid
- Department of Chemistry and Biochemistry, Auburn University, Auburn, Alabama 36849, United States
| |
Collapse
|
6
|
Al-Hilfi A, Li Z, Merz KM, Walker KD. Mg 2+-Ion Dependence Revealed for a BAHD 13- O-β-Aminoacyltransferase from Taxus Plants. JACS AU 2024; 4:4249-4262. [PMID: 39610752 PMCID: PMC11600153 DOI: 10.1021/jacsau.4c00577] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Revised: 09/11/2024] [Accepted: 09/13/2024] [Indexed: 11/30/2024]
Abstract
A Taxus baccatin III:3-amino-3-phenylpropanoyltransferase (BAPT, Accession: AY082804) in clade 6 of the BAHD family catalyzed a Mg2+-dependent transfer of isoserines from their corresponding CoA thioesters. An advanced taxane baccatin III on the paclitaxel biosynthetic pathway in Taxus plants was incubated BAPT and phenylisoserine CoA or isobutenylisoserinyl CoA with and without MgCl2. BAPT biocatalytically converted baccatin III to its 13-O-phenylisoserinyl and 3-(1',1'-dimethylvinyl)isoserinyl analogs, an activity that abrogated when Mg2+ ions were omitted. Baccatin III analogs that are precursors to new generation taxanes were also assayed with BAPT, the Mg2+ cofactor, and 3-(1',1'-dimethylvinyl)isoserinyl CoA to make paclitaxel derivatives at k cat/K M ranging between 27 and 234 s-1 M-1. Molecular dynamics simulations of the BAPT active site modeled on the crystal structure of a BAHD family member (PDB: 4G0B) suggest that Mg2+ causes BAPT to use an unconventional active site space compared to those of other BAHD catalysts, studied over the last 25 years, that use a conserved catalytic histidine residue that is glycine in BAPT. The simulated six-membered Mg2+-coordination complex includes an interaction that disrupts an intramolecular hydrogen bond between the C13-hydroxyl and the carbonyl oxygen of the C4-acetate of baccatin III. A simulation snapshot captured an active site conformation showing the liberated C13-hydroxyl of baccatin III poised for acylation by BAPT through a potential substrate-assisted mechanism.
Collapse
Affiliation(s)
- Aimen Al-Hilfi
- Department
of Chemistry, Michigan State University, East Lansing, Michigan 48824, United States
| | - Zhen Li
- Department
of Chemistry, Michigan State University, East Lansing, Michigan 48824, United States
| | - Kenneth M. Merz
- Department
of Chemistry, Michigan State University, East Lansing, Michigan 48824, United States
- Department
of Biochemistry and Molecular Biology, Michigan
State University, East Lansing, Michigan 48824, United States
| | - Kevin D. Walker
- Department
of Chemistry, Michigan State University, East Lansing, Michigan 48824, United States
- Department
of Biochemistry and Molecular Biology, Michigan
State University, East Lansing, Michigan 48824, United States
| |
Collapse
|
7
|
Fernie AR, de Vries S, de Vries J. Evolution of plant metabolism: the state-of-the-art. Philos Trans R Soc Lond B Biol Sci 2024; 379:20230347. [PMID: 39343029 PMCID: PMC11449224 DOI: 10.1098/rstb.2023.0347] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Revised: 07/11/2024] [Accepted: 07/12/2024] [Indexed: 10/01/2024] Open
Abstract
Immense chemical diversity is one of the hallmark features of plants. This chemo-diversity is mainly underpinned by a highly complex and biodiverse biochemical machinery. Plant metabolic enzymes originated and were inherited from their eukaryotic and prokaryotic ancestors and further diversified by the unprecedentedly high rates of gene duplication and functionalization experienced in land plants. Unlike prokaryotic microbes, which display frequent horizontal gene transfer events and multiple inputs of energy and organic carbon, land plants predominantly rely on organic carbon generated from CO2 and have experienced relatively few gene transfers during their recent evolutionary history. As such, plant metabolic networks have evolved in a stepwise manner using existing networks as a starting point and under various evolutionary constraints. That said, until recently, the evolution of only a handful of metabolic traits had been extensively investigated and as such, the evolution of metabolism has received a fraction of the attention of, the evolution of development, for example. Advances in metabolomics and next-generation sequencing have, however, recently led to a deeper understanding of how a wide range of plant primary and specialized (secondary) metabolic pathways have evolved both as a consequence of natural selection and of domestication and crop improvement processes. This article is part of the theme issue 'The evolution of plant metabolism'.
Collapse
Affiliation(s)
- Alisdair R. Fernie
- Max-Planck-Institute of Molecular Plant Physiology, Am Mühlenberg 1, Potsdam-Golm14476, Germany
| | - Sophie de Vries
- Department of Applied Bioinformatics, University of Goettingen, Institute of Microbiology and Genetics, Goldschmidtstr. 1, Goettingen37077, Germany
| | - Jan de Vries
- Department of Applied Bioinformatics, University of Goettingen, Institute of Microbiology and Genetics, Goldschmidtstr. 1, Goettingen37077, Germany
- University of Goettingen, Campus Institute Data Science (CIDAS), Goldschmidstr. 1, Goettingen37077, Germany
- Department of Applied Bioinformatics, University of Goettingen, Goettingen Center for Molecular Biosciences (GZMB), Goldschmidtstr. 1, Goettingen37077, Germany
| |
Collapse
|
8
|
Sun C, Wei J, Gu X, Wu M, Li M, Liu Y, An N, Wu K, Wu S, Wu J, Xu M, Wu JC, Wang YL, Chao DY, Zhang Y, Wu S. Different multicellular trichome types coordinate herbivore mechanosensing and defense in tomato. THE PLANT CELL 2024; 36:koae269. [PMID: 39404780 PMCID: PMC11638769 DOI: 10.1093/plcell/koae269] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Revised: 07/12/2024] [Accepted: 10/03/2024] [Indexed: 12/15/2024]
Abstract
Herbivore-induced wounding can elicit a defense response in plants. However, whether plants possess a surveillance system capable of detecting herbivore threats and initiating preparatory defenses before wounding occurs remains unclear. In this study, we reveal that tomato (Solanum lycopersicum) trichomes can detect and respond to the mechanical stimuli generated by herbivores. Mechanical stimuli are preferentially perceived by long trichomes, and this mechanosensation is transduced via intra-trichome communication. This communication presumably involves calcium waves, and the transduced signals activate the jasmonic acid (JA) signaling pathway in short glandular trichomes, resulting in the upregulation of the Woolly (Wo)-SlMYC1 regulatory module for terpene biosynthesis. This induced defense mechanism provides plants with an early warning system against the threat of herbivore invasion. Our findings represent a perspective on the role of multicellular trichomes in plant defense and the underlying intra-trichome communication.
Collapse
Affiliation(s)
- Chao Sun
- College of Life Sciences, College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - JinBo Wei
- College of Life Sciences, College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - XinYun Gu
- College of Life Sciences, College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - MinLiang Wu
- College of Life Sciences, College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Meng Li
- College of Life Sciences, College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - YiXi Liu
- College of Life Sciences, College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - NingKai An
- College of Life Sciences, College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - KeMeng Wu
- College of Life Sciences, College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - ShaSha Wu
- College of Life Sciences, College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - JunQing Wu
- College of Life Sciences, College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - MeiZhi Xu
- College of Life Sciences, College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Jia-Chen Wu
- CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai 200032, China
| | - Ya-Ling Wang
- CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai 200032, China
| | - Dai-Yin Chao
- CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai 200032, China
| | - YouJun Zhang
- Department of Plant Protection, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Shuang Wu
- College of Life Sciences, College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| |
Collapse
|
9
|
Fiesel PD, Kerwin RE, Jones AD, Last RL. Trading acyls and swapping sugars: metabolic innovations in Solanum trichomes. PLANT PHYSIOLOGY 2024; 196:1231-1253. [PMID: 38748602 PMCID: PMC11444299 DOI: 10.1093/plphys/kiae279] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Revised: 03/19/2024] [Accepted: 05/01/2024] [Indexed: 05/28/2024]
Abstract
Solanaceae (nightshade family) species synthesize a remarkable array of clade- and tissue-specific specialized metabolites. Protective acylsugars, one such class of structurally diverse metabolites, are produced by ACYLSUGAR ACYLTRANSFERASE (ASAT) enzymes from sugars and acyl-coenzyme A esters. Published research has revealed trichome acylsugars composed of glucose and sucrose cores in species across the family. In addition, acylsugars have been analyzed across a small fraction of the >1,200 species in the phenotypically megadiverse Solanum genus, with a handful containing inositol and glycosylated inositol cores. The current study sampled several dozen species across subclades of Solanum to get a more detailed view of acylsugar chemodiversity. In depth characterization of acylsugars from the clade II species brinjal eggplant (Solanum melongena) led to the identification of eight unusual structures with inositol or inositol glycoside cores and hydroxyacyl chains. Liquid chromatography-mass spectrometry analysis of 31 additional species in the Solanum genus revealed striking acylsugar diversity, with some traits restricted to specific clades and species. Acylinositols and inositol-based acyldisaccharides were detected throughout much of the genus. In contrast, acylglucoses and acylsucroses were more restricted in distribution. Analysis of tissue-specific transcriptomes and interspecific acylsugar acetylation differences led to the identification of the brinjal eggplant ASAT 3-LIKE 1 (SmASAT3-L1; SMEL4.1_12g015780) enzyme. This enzyme is distinct from previously characterized acylsugar acetyltransferases, which are in the ASAT4 clade, and appears to be a functionally divergent ASAT3. This study provides a foundation for investigating the evolution and function of diverse Solanum acylsugar structures and harnessing this diversity in breeding and synthetic biology.
Collapse
Affiliation(s)
- Paul D Fiesel
- Department of Biochemistry and Molecular Biology, Michigan State University, 603 Wilson Road, East Lansing, MI 48823, USA
| | - Rachel E Kerwin
- Department of Biochemistry and Molecular Biology, Michigan State University, 603 Wilson Road, East Lansing, MI 48823, USA
| | - A Daniel Jones
- Department of Biochemistry and Molecular Biology, Michigan State University, 603 Wilson Road, East Lansing, MI 48823, USA
| | - Robert L Last
- Department of Biochemistry and Molecular Biology, Michigan State University, 603 Wilson Road, East Lansing, MI 48823, USA
- Department of Plant Biology, Michigan State University, 612 Wilson Road, East Lansing, MI 48823, USA
| |
Collapse
|
10
|
Wang JX, Han WH, Xie R, Zhang FB, Ge ZW, Ji SX, Liu SS, Wang XW. Metabolic and Molecular Insights Into Nicotiana benthamiana Trichome Exudates: An Ammunition Depot for Plant Resistance Against Insect Pests. PLANT, CELL & ENVIRONMENT 2024. [PMID: 39262218 DOI: 10.1111/pce.15135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Revised: 07/02/2024] [Accepted: 08/20/2024] [Indexed: 09/13/2024]
Abstract
Nicotiana benthamiana, a widely acknowledged laboratory model plant for molecular studies, exhibits lethality to certain insect pests and can serve as a dead-end trap plant for pest control in the field. However, the underlying mechanism of N. benthamiana's resistance against insects remains unknown. Here, we elucidate that the lethal effect of N. benthamiana on the whitefly Bemisia tabaci arises from the toxic glandular trichome exudates. By comparing the metabolite profiles of trichome exudates, we found that 51 metabolites, including five O-acyl sugars (O-AS) with medium-chain acyl moieties, were highly accumulated in N. benthamiana. Silencing of two O-AS biosynthesis genes, branched-chain keto acid dehydrogenase (BCKD) and Isopropyl malate synthase-C (IPMS-C), significantly reduced the O-AS levels in N. benthamiana and its resistance against whiteflies. Additionally, we demonstrated that the higher expression levels of BCKD and IPMS-C in the trichomes of N. benthamiana contribute to O-AS synthesis and consequently enhance whitefly resistance. Furthermore, overexpression of NbBCKD and NbIPMS-C genes in the cultivated tobacco Nicotiana tabacum enhanced its resistance to whiteflies. Our study revealed the metabolic and molecular mechanisms underlying the lethal effect of N. benthamiana on whiteflies and presents a promising avenue for improving whitefly resistance.
Collapse
Affiliation(s)
- Jun-Xia Wang
- State Key Laboratory of Rice Biology and Breeding, Ministry of Agriculture Key Lab of Molecular Biology of Crop Pathogens and Insects, Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, Institute of Insect Sciences, Zhejiang University, Hangzhou, China
| | - Wen-Hao Han
- State Key Laboratory of Rice Biology and Breeding, Ministry of Agriculture Key Lab of Molecular Biology of Crop Pathogens and Insects, Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, Institute of Insect Sciences, Zhejiang University, Hangzhou, China
| | - Rui Xie
- State Key Laboratory of Rice Biology and Breeding, Ministry of Agriculture Key Lab of Molecular Biology of Crop Pathogens and Insects, Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, Institute of Insect Sciences, Zhejiang University, Hangzhou, China
| | - Feng-Bin Zhang
- State Key Laboratory of Rice Biology and Breeding, Ministry of Agriculture Key Lab of Molecular Biology of Crop Pathogens and Insects, Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, Institute of Insect Sciences, Zhejiang University, Hangzhou, China
| | - Zhi-Wei Ge
- Analysis Center of Agrobiology and Environmental Sciences, Zhejiang University, Hangzhou, China
| | - Shun-Xia Ji
- State Key Laboratory of Rice Biology and Breeding, Ministry of Agriculture Key Lab of Molecular Biology of Crop Pathogens and Insects, Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, Institute of Insect Sciences, Zhejiang University, Hangzhou, China
| | - Shu-Sheng Liu
- State Key Laboratory of Rice Biology and Breeding, Ministry of Agriculture Key Lab of Molecular Biology of Crop Pathogens and Insects, Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, Institute of Insect Sciences, Zhejiang University, Hangzhou, China
| | - Xiao-Wei Wang
- State Key Laboratory of Rice Biology and Breeding, Ministry of Agriculture Key Lab of Molecular Biology of Crop Pathogens and Insects, Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, Institute of Insect Sciences, Zhejiang University, Hangzhou, China
| |
Collapse
|
11
|
Kaji T, Nishizato Y, Yoshimatsu H, Yoda A, Liang W, Chini A, Fernández-Barbero G, Nozawa K, Kyozuka J, Solano R, Ueda M. Δ 4-dn- iso-OPDA, a bioactive plant hormone of Marchantia polymorpha. iScience 2024; 27:110191. [PMID: 38974968 PMCID: PMC11225365 DOI: 10.1016/j.isci.2024.110191] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Revised: 05/09/2024] [Accepted: 06/03/2024] [Indexed: 07/09/2024] Open
Abstract
Significant progress has been recently made in our understanding of the evolution of jasmonates biosynthesis and signaling. The bioactive jasmonate activating COI1-JAZ co-receptor differs in bryophytes and vascular plants. Dinor-iso-12-oxo-phytodienoic acid (dn-iso-OPDA) is the bioactive hormone in bryophytes and lycophytes. However, further studies showed that the full activation of hormone signaling in Marchantia polymorpha requires additional unidentified hormones. Δ4-dn-OPDAs were previously identified as novel bioactive jasmonates in M. polymorpha. In this paper, we describe the major bioactive isomer of Δ4-dn-OPDAs as Δ4-dn-iso-OPDA through chemical synthesis, receptor binding assay, and biological activity in M. polymorpha. In addition, we disclosed that Δ4-dn-cis-OPDA is a biosynthetic precursor of Δ4-dn-iso-OPDA. We demonstrated that in planta cis-to-iso conversion of Δ4-dn-cis-OPDA occurs in the biosynthesis of Δ4-dn-iso-OPDA, defining a key biosynthetic step in the chemical evolution of hormone structure. We predict that these findings will facilitate further understanding of the molecular evolution of plant hormone signaling.
Collapse
Affiliation(s)
- Takuya Kaji
- Graduate School of Science, Tohoku University, 6-3, Aramaki-Aza-Aoba, Aoba-ku, Sendai 980-8578, Japan
| | - Yuho Nishizato
- Graduate School of Science, Tohoku University, 6-3, Aramaki-Aza-Aoba, Aoba-ku, Sendai 980-8578, Japan
| | - Hidenori Yoshimatsu
- Graduate School of Science, Tohoku University, 6-3, Aramaki-Aza-Aoba, Aoba-ku, Sendai 980-8578, Japan
| | - Akiyoshi Yoda
- Graduate School of Life Sciences, Tohoku University, 2-1-1, Katahira, Aoba-ku, Sendai 980-8577, Japan
| | - Wenting Liang
- Plant Molecular Genetics Department, National Centre for Biotechnology (CNB), Consejo Superior de Investigaciones Cientificas (CSIC), Campus University Autonoma, 28049 Madrid, Spain
| | - Andrea Chini
- Plant Molecular Genetics Department, National Centre for Biotechnology (CNB), Consejo Superior de Investigaciones Cientificas (CSIC), Campus University Autonoma, 28049 Madrid, Spain
| | - Gemma Fernández-Barbero
- Plant Molecular Genetics Department, National Centre for Biotechnology (CNB), Consejo Superior de Investigaciones Cientificas (CSIC), Campus University Autonoma, 28049 Madrid, Spain
| | - Kei Nozawa
- Graduate School of Science, Tohoku University, 6-3, Aramaki-Aza-Aoba, Aoba-ku, Sendai 980-8578, Japan
| | - Junko Kyozuka
- Graduate School of Life Sciences, Tohoku University, 2-1-1, Katahira, Aoba-ku, Sendai 980-8577, Japan
| | - Roberto Solano
- Plant Molecular Genetics Department, National Centre for Biotechnology (CNB), Consejo Superior de Investigaciones Cientificas (CSIC), Campus University Autonoma, 28049 Madrid, Spain
| | - Minoru Ueda
- Graduate School of Science, Tohoku University, 6-3, Aramaki-Aza-Aoba, Aoba-ku, Sendai 980-8578, Japan
- Department of Molecular and Chemical Life Sciences, Graduate School of Life Sciences, Tohoku University, Sendai 980-8577, Japan
| |
Collapse
|
12
|
Bai Y, Liu X, Baldwin IT. Using Synthetic Biology to Understand the Function of Plant Specialized Metabolites. ANNUAL REVIEW OF PLANT BIOLOGY 2024; 75:629-653. [PMID: 38424065 DOI: 10.1146/annurev-arplant-060223-013842] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/02/2024]
Abstract
Plant specialized metabolites (PSMs) are variably distributed across taxa, tissues, and ecological contexts; this variability has inspired many theories about PSM function, which, to date, remain poorly tested because predictions have outpaced the available data. Advances in mass spectrometry-based metabolomics have enabled unbiased PSM profiling, and molecular biology techniques have produced PSM-free plants; the combination of these methods has accelerated our understanding of the complex ecological roles that PSMs play in plants. Synthetic biology techniques and workflows are producing high-value, structurally complex PSMs in quantities and purities sufficient for both medicinal and functional studies. These workflows enable the reengineering of PSM transport, externalization, structural diversity, and production in novel taxa, facilitating rigorous tests of long-standing theoretical predictions about why plants produce so many different PSMs in particular tissues and ecological contexts. Plants use their chemical prowess to solve ecological challenges, and synthetic biology workflows are accelerating our understanding of these evolved functions.
Collapse
Affiliation(s)
- Yuechen Bai
- State Key Laboratory of Genetic Engineering, Shanghai Engineering Research Center of Industrial Microorganisms, Department of Biochemistry, Institute of Plant Biology, School of Life Sciences, Fudan University, Shanghai, China; ,
| | - Xinyu Liu
- State Key Laboratory of Genetic Engineering, Shanghai Engineering Research Center of Industrial Microorganisms, Department of Biochemistry, Institute of Plant Biology, School of Life Sciences, Fudan University, Shanghai, China; ,
| | - Ian T Baldwin
- Max Planck Institute for Chemical Ecology, Jena, Germany;
| |
Collapse
|
13
|
Kerwin RE, Hart JE, Fiesel PD, Lou YR, Fan P, Jones AD, Last RL. Tomato root specialized metabolites evolved through gene duplication and regulatory divergence within a biosynthetic gene cluster. SCIENCE ADVANCES 2024; 10:eadn3991. [PMID: 38657073 PMCID: PMC11094762 DOI: 10.1126/sciadv.adn3991] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Accepted: 03/20/2024] [Indexed: 04/26/2024]
Abstract
Tremendous plant metabolic diversity arises from phylogenetically restricted specialized metabolic pathways. Specialized metabolites are synthesized in dedicated cells or tissues, with pathway genes sometimes colocalizing in biosynthetic gene clusters (BGCs). However, the mechanisms by which spatial expression patterns arise and the role of BGCs in pathway evolution remain underappreciated. In this study, we investigated the mechanisms driving acylsugar evolution in the Solanaceae. Previously thought to be restricted to glandular trichomes, acylsugars were recently found in cultivated tomato roots. We demonstrated that acylsugars in cultivated tomato roots and trichomes have different sugar cores, identified root-enriched paralogs of trichome acylsugar pathway genes, and characterized a key paralog required for root acylsugar biosynthesis, SlASAT1-LIKE (SlASAT1-L), which is nested within a previously reported trichome acylsugar BGC. Last, we provided evidence that ASAT1-L arose through duplication of its paralog, ASAT1, and was trichome-expressed before acquiring root-specific expression in the Solanum genus. Our results illuminate the genomic context and molecular mechanisms underpinning metabolic diversity in plants.
Collapse
Affiliation(s)
- Rachel E. Kerwin
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI 48824, USA
| | - Jaynee E. Hart
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI 48824, USA
| | - Paul D. Fiesel
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI 48824, USA
| | - Yann-Ru Lou
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI 48824, USA
- Department of Plant Biology, University of California, Davis, Davis, CA 95616, USA
| | - Pengxiang Fan
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI 48824, USA
- Department of Horticulture, Zhejiang University, Hangzhou, China
| | - A. Daniel Jones
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI 48824, USA
- Department of Chemistry, Michigan State University, East Lansing, MI 48824, USA
| | - Robert L. Last
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI 48824, USA
- Department of Plant Biology, Michigan State University, East Lansing, MI 48824, USA
| |
Collapse
|
14
|
Ochoa-Alejo N, Reyes-Valdés MH, Martínez O. Estimating Transcriptome Diversity and Specialization in Capsicum annuum L. PLANTS (BASEL, SWITZERLAND) 2024; 13:983. [PMID: 38611513 PMCID: PMC11013594 DOI: 10.3390/plants13070983] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Revised: 03/22/2024] [Accepted: 03/26/2024] [Indexed: 04/14/2024]
Abstract
Chili pepper fruits of the genus Capsicum represent excellent experimental models to study the growth, development, and ripening processes in a non-climacteric species at the physiological, biochemical, and molecular levels. Fruit growth, development, and ripening involve a complex, harmonious, and finely controlled regulation of gene expression. The purpose of this study was to estimate the changes in transcriptome diversity and specialization, as well as gene specificities during fruit development in this crop, and to illustrate the advantages of estimating these parameters. To achieve these aims, we programmed and made publicly available an R package. In this study, we applied these methods to a set of 179 RNA-Seq libraries from a factorial experiment that includes 12 different genotypes at various stages of fruit development. We found that the diversity of the transcriptome decreases linearly from the flower to the mature fruit, while its specialization follows a complex and non-linear behavior during this process. Additionally, by defining sets of genes with different degrees of specialization and applying Gene Ontology enrichment analysis, we identified processes, functions, and components that play a central role in particular fruit development stages. In conclusion, the estimation of diversity, specialization, and specificity summarizes the global properties of the transcriptomes, providing insights that are difficult to achieve by other means.
Collapse
Affiliation(s)
- Neftalí Ochoa-Alejo
- Departamento de Ingeniería Genética, Unidad Irapuato, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Irapuato 36824, Guanajuato, Mexico;
| | - M. Humberto Reyes-Valdés
- Department of Plant Breeding, Universidad Autónoma Agraria Antonio Narro, Saltillo 25315, Coahuila, Mexico;
| | - Octavio Martínez
- Unidad de Genómica Avanzada (Langebio), Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (Cinvestav), Irapuato 36824, Guanajuato, Mexico
| |
Collapse
|
15
|
Zhou J, Zou X, Deng Z, Duan L. Analysing a Group of Homologous BAHD Enzymes Provides Insights into the Evolutionary Transition of Rosmarinic Acid Synthases from Hydroxycinnamoyl-CoA:Shikimate/Quinate Hydroxycinnamoyl Transferases. PLANTS (BASEL, SWITZERLAND) 2024; 13:512. [PMID: 38498481 PMCID: PMC10892161 DOI: 10.3390/plants13040512] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Revised: 02/01/2024] [Accepted: 02/05/2024] [Indexed: 03/20/2024]
Abstract
The interplay of various enzymes and compounds gives rise to the intricate secondary metabolic networks observed today. However, the current understanding of their formation and expansion remains limited. BAHD acyltransferases play important roles in the biosynthesis of numerous significant secondary metabolites. In plants, they are widely distributed and exhibit a diverse range of activities. Among them, rosmarinic acid synthase (RAS) and hydroxycinnamoyl-CoA:shikimate/quinate hydroxycinnamoyl transferase (HCT) have gained significant recognition and have been extensively investigated as prominent members of the BAHD acyltransferase family. Here, we conducted a comprehensive study on a unique group of RAS homologous enzymes in Mentha longifolia that display both catalytic activities and molecular features similar to HCT and Lamiaceae RAS. Subsequent phylogenetic and comparative genome analyses revealed their derivation from expansion events within the HCT gene family, indicating their potential as collateral branches along the evolutionary trajectory, leading to Lamiaceae RAS while still retaining certain ancestral vestiges. This discovery provides more detailed insights into the evolution from HCT to RAS. Our collective findings indicate that gene duplication is the driving force behind the observed evolutionary pattern in plant-specialized enzymes, which probably originated from ancestral enzyme promiscuity and were subsequently shaped by principles of biological adaptation.
Collapse
Affiliation(s)
| | | | | | - Lian Duan
- Key Laboratory of Combinatory Biosynthesis and Drug Discovery, Ministry of Education, School of Pharmaceutical Science, Wuhan University, Wuhan 430071, China; (J.Z.); (X.Z.); (Z.D.)
| |
Collapse
|
16
|
Decot H, Sudhakaran M, Boismier E, Schilmiller A, Claucherty E, Doseff AI, Aliakbarian B. Tart Cherry ( Prunus cerasus L.) Pit Extracts Protect Human Skin Cells against Oxidative Stress: Unlocking Sustainable Uses for Food Industry Byproducts. Foods 2023; 12:3748. [PMID: 37893640 PMCID: PMC10606708 DOI: 10.3390/foods12203748] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 09/25/2023] [Accepted: 10/07/2023] [Indexed: 10/29/2023] Open
Abstract
Industrial processing of tart cherries (Prunus cerasus L.) produces bioproducts like cherry pits (CP), which contribute to adverse environmental effects. To identify sustainable strategies to minimize the environmental impact of cherry processing, we investigated their potential value as antioxidants for prospective utilization within cosmeceutical applications. Untargeted metabolomic analyses of water and water: ethanol CP extracts using an eco-friendly technique revealed significant enrichment in coumaroyl derivatives and flavonoids with congruent metabolite representation regardless of the extraction solvent. The antioxidant activity of tart CP extracts was evaluated on human skin cells exposed to H2O2 or LPS, modeling environmentally induced oxidants. Notably, both CP extracts provide antioxidant activity by reducing H2O2 or LPS-induced ROS in human skin keratinocytes without affecting cell viability. The CP extracts increased the expression of CAT and SOD1 genes encoding antioxidant regulatory enzymes while decreasing the expression of NOS2, a pro-oxidant regulator. These findings reveal the antioxidant properties of tart CP, offering new opportunities to produce natural-based skin care products and adding economic value while providing sustainable options to reduce the environmental impact of food byproducts.
Collapse
Affiliation(s)
- Hannah Decot
- Molecular, Cellular, and Integrative Physiology Graduate Program, Michigan State University, 567 Wilson Rd., East Lansing, MI 48824, USA; (H.D.); (M.S.)
- Department of Physiology, Michigan State University, 567 Wilson Rd., East Lansing, MI 48824, USA;
| | - Meenakshi Sudhakaran
- Molecular, Cellular, and Integrative Physiology Graduate Program, Michigan State University, 567 Wilson Rd., East Lansing, MI 48824, USA; (H.D.); (M.S.)
- Department of Physiology, Michigan State University, 567 Wilson Rd., East Lansing, MI 48824, USA;
| | - Emma Boismier
- Department of Physiology, Michigan State University, 567 Wilson Rd., East Lansing, MI 48824, USA;
| | - Anthony Schilmiller
- Mass Spectrometry and Metabolomics Core, Michigan State University, 603 Wilson Rd., East Lansing, MI 48824, USA;
| | - Ethan Claucherty
- The Axia Institute, Michigan State University, 1910 W. St. Andrews Rd., Midland, MI 49640, USA;
| | - Andrea I. Doseff
- Department of Physiology, Michigan State University, 567 Wilson Rd., East Lansing, MI 48824, USA;
- Department of Pharmacology and Toxicology, Michigan State University, 1355 Bogue St., East Lasing, MI 48824, USA
| | - Bahar Aliakbarian
- The Axia Institute, Michigan State University, 1910 W. St. Andrews Rd., Midland, MI 49640, USA;
- Department of Biosystems and Agricultural Engineering, Michigan State University, 524 S Shaw Lane, East Lansing, MI 48824, USA
| |
Collapse
|
17
|
Elser D, Pflieger D, Villette C, Moegle B, Miesch L, Gaquerel E. Evolutionary metabolomics of specialized metabolism diversification in the genus Nicotiana highlights N-acylnornicotine innovations. SCIENCE ADVANCES 2023; 9:eade8984. [PMID: 37624884 PMCID: PMC10456844 DOI: 10.1126/sciadv.ade8984] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Accepted: 07/25/2023] [Indexed: 08/27/2023]
Abstract
Specialized metabolite (SM) diversification is a core process to plants' adaptation to diverse ecological niches. Here, we implemented a computational mass spectrometry-based metabolomics approach to exploring SM diversification in tissues of 20 species covering Nicotiana phylogenetics sections. To markedly increase metabolite annotation, we created a large in silico fragmentation database, comprising >1 million structures, and scripts for connecting class prediction to consensus substructures. Together, the approach provides an unprecedented cartography of SM diversity and section-specific innovations in this genus. As a case study and in combination with nuclear magnetic resonance and mass spectrometry imaging, we explored the distribution of N-acylnornicotines, alkaloids predicted to be specific to Repandae allopolyploids, and revealed their prevalence in the genus, albeit at much lower magnitude, as well as a greater structural diversity than previously thought. Together, the data integration approaches provided here should act as a resource for future research in plant SM evolution.
Collapse
Affiliation(s)
- David Elser
- Institut de Biologie Moléculaire des Plantes du CNRS, Université de Strasbourg, Strasbourg, France
| | - David Pflieger
- Institut de Biologie Moléculaire des Plantes du CNRS, Université de Strasbourg, Strasbourg, France
| | - Claire Villette
- Institut de Biologie Moléculaire des Plantes du CNRS, Université de Strasbourg, Strasbourg, France
| | - Baptiste Moegle
- Institut de Chimie du CNRS UMR 7177, Université de Strasbourg, Strasbourg, France
| | - Laurence Miesch
- Institut de Chimie du CNRS UMR 7177, Université de Strasbourg, Strasbourg, France
| | - Emmanuel Gaquerel
- Institut de Biologie Moléculaire des Plantes du CNRS, Université de Strasbourg, Strasbourg, France
| |
Collapse
|
18
|
Wang X, Wang C, Yang M, Jie W, Fazal A, Fu J, Yin T, Cai J, Liu B, Lu G, Lin H, Han H, Wen Z, Qi J, Yang Y. Genome-Wide Comparison and Functional Characterization of HMGR Gene Family Associated with Shikonin Biosynthesis in Lithospermum erythrorhizon. Int J Mol Sci 2023; 24:12532. [PMID: 37569907 PMCID: PMC10419935 DOI: 10.3390/ijms241512532] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Revised: 07/16/2023] [Accepted: 08/04/2023] [Indexed: 08/13/2023] Open
Abstract
3-hydroxy-3-methylglutaryl-CoA reductase (HMGR), as the rate-limiting enzyme in the mevalonate pathway, is essential for the biosynthesis of shikonin in Lithospermum erythrorhizon. However, in the absence of sufficient data, the principles of a genome-wide in-depth evolutionary exploration of HMGR family members in plants, as well as key members related to shikonin biosynthesis, remain unidentified. In this study, 124 HMGRs were identified and characterized from 36 representative plants, including L. erythrorhizon. Vascular plants were found to have more HMGR family genes than nonvascular plants. The phylogenetic tree revealed that during lineage and species diversification, the HMGRs evolved independently and intronless LerHMGRs emerged from multi-intron HMGR in land plants. Among them, Pinus tabuliformis and L. erythrorhizon had the most HMGR gene duplications, with 11 LerHMGRs most likely expanded through WGD/segmental and tandem duplications. In seedling roots and M9 cultured cells/hairy roots, where shikonin biosynthesis occurs, LerHMGR1 and LerHMGR2 were expressed significantly more than other genes. The enzymatic activities of LerHMGR1 and LerHMGR2 further supported their roles in catalyzing the conversion of HMG-CoA to mevalonate. Our findings provide insight into the molecular evolutionary properties and function of the HMGR family in plants and a basis for the genetic improvement of efficiently produced secondary metabolites in L. erythrorhizon.
Collapse
Affiliation(s)
- Xuan Wang
- State Key Laboratory of Pharmaceutical Biotechnology, Institute for Plant Molecular Biology, School of Life Sciences, Nanjing University, Nanjing 210023, China
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing 210037, China
| | - Changyi Wang
- State Key Laboratory of Pharmaceutical Biotechnology, Institute for Plant Molecular Biology, School of Life Sciences, Nanjing University, Nanjing 210023, China
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing 210037, China
| | - Minkai Yang
- State Key Laboratory of Pharmaceutical Biotechnology, Institute for Plant Molecular Biology, School of Life Sciences, Nanjing University, Nanjing 210023, China
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing 210037, China
| | - Wencai Jie
- State Key Laboratory of Pharmaceutical Biotechnology, Institute for Plant Molecular Biology, School of Life Sciences, Nanjing University, Nanjing 210023, China
| | - Aliya Fazal
- State Key Laboratory of Pharmaceutical Biotechnology, Institute for Plant Molecular Biology, School of Life Sciences, Nanjing University, Nanjing 210023, China
| | - Jiangyan Fu
- State Key Laboratory of Pharmaceutical Biotechnology, Institute for Plant Molecular Biology, School of Life Sciences, Nanjing University, Nanjing 210023, China
| | - Tongming Yin
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing 210037, China
| | - Jinfeng Cai
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing 210037, China
| | - Bao Liu
- Key Laboratory of Molecular Epigenetics of the Ministry of Education (MOE), Northeast Normal University, Changchun 130024, China
| | - Guihua Lu
- State Key Laboratory of Pharmaceutical Biotechnology, Institute for Plant Molecular Biology, School of Life Sciences, Nanjing University, Nanjing 210023, China
- School of Life Sciences, Huaiyin Normal University, Huaian 223300, China
| | - Hongyan Lin
- State Key Laboratory of Pharmaceutical Biotechnology, Institute for Plant Molecular Biology, School of Life Sciences, Nanjing University, Nanjing 210023, China
| | - Hongwei Han
- State Key Laboratory of Pharmaceutical Biotechnology, Institute for Plant Molecular Biology, School of Life Sciences, Nanjing University, Nanjing 210023, China
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing 210037, China
| | - Zhongling Wen
- State Key Laboratory of Pharmaceutical Biotechnology, Institute for Plant Molecular Biology, School of Life Sciences, Nanjing University, Nanjing 210023, China
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing 210037, China
| | - Jinliang Qi
- State Key Laboratory of Pharmaceutical Biotechnology, Institute for Plant Molecular Biology, School of Life Sciences, Nanjing University, Nanjing 210023, China
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing 210037, China
| | - Yonghua Yang
- State Key Laboratory of Pharmaceutical Biotechnology, Institute for Plant Molecular Biology, School of Life Sciences, Nanjing University, Nanjing 210023, China
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing 210037, China
| |
Collapse
|
19
|
Lewis DC, van der Zwan T, Richards A, Little H, Coaker GL, Bostock RM. The Oomycete Microbe-Associated Molecular Pattern, Arachidonic Acid, and an Ascophyllum nodosum-Derived Plant Biostimulant Induce Defense Metabolome Remodeling in Tomato. PHYTOPATHOLOGY 2023; 113:1084-1092. [PMID: 36598344 PMCID: PMC10318118 DOI: 10.1094/phyto-10-22-0368-r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Arachidonic acid (AA) is an oomycete-derived microbe-associated molecular pattern (MAMP) capable of eliciting robust defense responses and inducing resistance in plants. Similarly, Ascophylum nodosum extract (ANE) from the brown seaweed A. nodosum, a plant biostimulant that contains AA, can also prime plants for defense against pathogen challenges. A previous parallel study comparing the transcriptomes of AA- and ANE-root-treated tomatoes demonstrated significant overlap in transcriptional profiles, a shared induced resistance phenotype, and changes in the accumulation of various defense-related phytohormones. In this work, untargeted metabolomic analysis via liquid chromatography-mass spectrometry was conducted to investigate the local and systemic metabolome-wide remodeling events elicited by AA and ANE root treatment in tomatoes. Our study demonstrated AA and ANE's capacity to locally and systemically alter the metabolome of tomatoes with enrichment of chemical classes and accumulation of metabolites associated with defense-related secondary metabolism. AA- and ANE-root-treated plants showed enrichment of fatty acyl-glycosides and strong modulation of hydroxycinnamic acids and derivatives. Identification of specific metabolites whose accumulation was affected by AA and ANE treatment revealed shared metabolic changes related to ligno-suberin biosynthesis and the synthesis of phenolic compounds. This study highlights the extensive local and systemic metabolic changes in tomatoes induced by treatment with a fatty acid MAMP and a seaweed-derived plant biostimulant with implications for induced resistance and crop improvement.
Collapse
Affiliation(s)
- Domonique C. Lewis
- Department of Plant Pathology, University of California, Davis, CA 95616, USA
| | - Timo van der Zwan
- Acadian Plant Health, Acadian Seaplants, Ltd., Dartmouth, Nova Scotia, Canada, B3B 1X8
| | - Andrew Richards
- Acadian Plant Health, Acadian Seaplants, Ltd., Dartmouth, Nova Scotia, Canada, B3B 1X8
| | - Holly Little
- Acadian Plant Health, Acadian Seaplants, Ltd., Dartmouth, Nova Scotia, Canada, B3B 1X8
| | - Gitta L. Coaker
- Department of Plant Pathology, University of California, Davis, CA 95616, USA
| | - Richard M. Bostock
- Department of Plant Pathology, University of California, Davis, CA 95616, USA
| |
Collapse
|
20
|
Ji W, Mandal S, Rezenom YH, McKnight TD. Specialized metabolism by trichome-enriched Rubisco and fatty acid synthase components. PLANT PHYSIOLOGY 2023; 191:1199-1213. [PMID: 36264116 PMCID: PMC9922422 DOI: 10.1093/plphys/kiac487] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Accepted: 09/26/2022] [Indexed: 06/16/2023]
Abstract
Acylsugars, specialized metabolites with defense activities, are secreted by trichomes of many solanaceous plants. Several acylsugar metabolic genes (AMGs) remain unknown. We previously reported multiple candidate AMGs. Here, using multiple approaches, we characterized additional AMGs. First, we identified differentially expressed genes between high- and low-acylsugar-producing F2 plants derived from a cross between cultivated tomato (Solanum lycopersicum) and a wild relative (Solanum pennellii), which produce acylsugars that are ∼1% and ∼20% of leaf dry weight, respectively. Expression levels of many known and candidate AMGs positively correlated with acylsugar amounts in F2 individuals. Next, we identified lycopersicum-pennellii putative orthologs with higher nonsynonymous to synonymous substitutions. These analyses identified four candidate genes, three of which showed enriched expression in stem trichomes compared to underlying tissues (shaved stems). Virus-induced gene silencing confirmed two candidates, Sopen05g009610 [beta-ketoacyl-(acyl-carrier-protein) reductase; fatty acid synthase component] and Sopen07g006810 (Rubisco small subunit), as AMGs. Phylogenetic analysis indicated that Sopen05g009610 is distinct from specialized metabolic cytosolic reductases but closely related to two capsaicinoid biosynthetic reductases, suggesting evolutionary relationship between acylsugar and capsaicinoid biosynthesis. Analysis of publicly available datasets revealed enriched expression of Sopen05g009610 orthologs in trichomes of several acylsugar-producing species. Similarly, orthologs of Sopen07g006810 were identified as solanaceous trichome-enriched members, which form a phylogenetic clade distinct from those of mesophyll-expressed "regular" Rubisco small subunits. Furthermore, δ13C analyses indicated recycling of metabolic CO2 into acylsugars by Sopen07g006810 and showed how trichomes support high levels of specialized metabolite production. These findings have implications for genetic manipulation of trichome-specialized metabolism in solanaceous crops.
Collapse
Affiliation(s)
| | | | - Yohannes H Rezenom
- Department of Chemistry, Texas A&M University, College Station, Texas 77843, USA
| | | |
Collapse
|
21
|
D’Esposito D, Guadagno A, Amoroso CG, Cascone P, Cencetti G, Michelozzi M, Guerrieri E, Ercolano MR. Genomic and metabolic profiling of two tomato contrasting cultivars for tolerance to Tuta absoluta. PLANTA 2023; 257:47. [PMID: 36708391 PMCID: PMC9884263 DOI: 10.1007/s00425-023-04073-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Accepted: 01/11/2023] [Indexed: 06/18/2023]
Abstract
Dissimilar patterns of variants affecting genes involved in response to herbivory, including those leading to difference in VOC production, were identified in tomato lines with contrasting response to Tuta absoluta. Tuta absoluta is one of the most destructive insect pest affecting tomato production, causing important yield losses both in open field and greenhouse. The selection of tolerant varieties to T. absoluta is one of the sustainable approaches to control this invasive leafminer. In this study, the genomic diversity of two tomato varieties, one tolerant and the other susceptible to T. absoluta infestation was explored, allowing us to identify chromosome regions with highly dissimilar pattern. Genes affected by potential functional variants were involved in several processes, including response to herbivory and secondary metabolism. A metabolic analysis for volatile organic compounds (VOCs) was also performed, highlighting a difference in several classes of chemicals in the two genotypes. Taken together, these findings can aid tomato breeding programs aiming to develop tolerant plants to T. absoluta.
Collapse
Affiliation(s)
- Daniela D’Esposito
- Department of Agricultural Sciences, University of Naples Federico II, 80055 Portici, NA Italy
| | - Anna Guadagno
- Department of Agricultural Sciences, University of Naples Federico II, 80055 Portici, NA Italy
| | - Ciro Gianmaria Amoroso
- Department of Agricultural Sciences, University of Naples Federico II, 80055 Portici, NA Italy
| | - Pasquale Cascone
- Institute for Sustainable Plant Protection, National Research Council of Italy, 80055 Portici, NA Italy
| | - Gabriele Cencetti
- Institute of Biosciences and Bioresources, National Research Council of Italy, 50019 Sesto Fiorentino, FI Italy
| | - Marco Michelozzi
- Institute of Biosciences and Bioresources, National Research Council of Italy, 50019 Sesto Fiorentino, FI Italy
| | - Emilio Guerrieri
- Institute for Sustainable Plant Protection, National Research Council of Italy, 80055 Portici, NA Italy
| | | |
Collapse
|
22
|
Ali O, Ramsubhag A, Jayaraman J. Transcriptome-wide modulation by Sargassum vulgare and Acanthophora spicifera extracts results in a prime-triggered plant signalling cascade in tomato and sweet pepper. AOB PLANTS 2022; 14:plac046. [PMID: 36483312 PMCID: PMC9724562 DOI: 10.1093/aobpla/plac046] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Accepted: 10/04/2022] [Indexed: 06/17/2023]
Abstract
Seaweed extracts (SWEs) are becoming integrated into crop production systems due to their multiple beneficial effects including growth promotion and induction of defence mechanisms. However, the comprehensive molecular mechanisms of these effects are yet to be elucidated. The current study investigated the transcriptomic changes induced by SWEs derived from Sargassum vulgare and Acanthophora spicifera on tomato and sweet pepper plants. Tomato and sweet pepper plants were subjected to foliar treatment with alkaline extracts prepared from the above seaweeds. Transcriptome changes in the plants were assessed 72 h after treatments using RNA sequencing. The treated plants were also analysed for defence enzyme activities, nutrient composition and phytohormonal profiles. The results showed the significant enrichment of genes associated with several growth and defence processes including photosynthesis, carbon and nitrogen metabolism, plant hormone signal transduction, plant-pathogen interaction, secondary metabolite metabolism, MAPK signalling and amino acid biosynthesis. Activities of defence enzymes were also significantly increased in SWE-treated plants. Plant nutrient profiling showed significant increases in calcium, potassium, nitrogen, sulphur, boron, copper, iron, manganese, zinc and phosphorous levels in SWE-treated plants. Furthermore, the levels of auxins, cytokinins and gibberellins were also significantly increased in the treated plants. The severity of bacterial leaf spot and early blight incidence in plants treated with SWE was significantly reduced, in addition to other effects like an increase in chlorophyll content, plant growth, and fruit yield. The results demonstrated the complex effect of S. vulgare and A. spicifera extracts on the plants' transcriptome and provided evidence of a strong role of these extracts in increasing plant growth responses while priming the plants against pathogenic attack simultaneously. The current study contributes to the understanding of the molecular mechanisms of SWEs in plants and helps their usage as a viable organic input for sustainable crop production.
Collapse
Affiliation(s)
- Omar Ali
- Department of Life Sciences, Faculty of Science and Technology, The University of the West Indies, St. Augustine TTO, 00000, Trinidad and Tobago
| | - Adesh Ramsubhag
- Department of Life Sciences, Faculty of Science and Technology, The University of the West Indies, St. Augustine TTO, 00000, Trinidad and Tobago
| | | |
Collapse
|
23
|
Moreno-Velasco A, Flores-Tafoya PDJ, Fragoso-Serrano M, Leitão SG, Pereda-Miranda R. Resin Glycosides from Operculina hamiltonii and Their Synergism with Vinblastine in Cancer Cells. JOURNAL OF NATURAL PRODUCTS 2022; 85:2385-2394. [PMID: 36162138 DOI: 10.1021/acs.jnatprod.2c00594] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Operculina hamiltonii is a vine native to the north and northeast region of Brazil, where its roots are traded as a depurative and laxative remedy with the name of Brazilian jalap in traditional medicine. Procedures for the isolation, purification by recycling HPLC, and structure elucidation of three undescribed resin glycosides are presented herein. Hamiltonin I (1) represents a macrocyclic structure of a tetrasaccharide of (11S)-hydroxyhexadecanoic acid. Additionally, two acyclic pentasaccharides, named hamiltoniosides I (2) and II (3), were also isolated, which are related structurally to the known compounds 4 and 5, macrocyclic lactone-type batatinosides. The tetrasaccharide core of 1 was diacylated by n-decanoic acid and the unusual n-hexadecanoic acid moiety, while the pentasaccharides 2-5 were esterified by one unit of n-decanoic or n-dodecanoic acid. All the isolated compounds were found to be inactive as cytotoxic agents. However, when they were evaluated (1-25 μM) in combination with a sublethal concentration of the anticancer agent vinblastine (0.003 μM), a significant enhancement of the resultant cytotoxicity was produced, especially for multidrug-resistant breast carcinoma epithelial cells. Such combined synergistic potency may be beneficial for chemotherapy, making resin glycosides potential candidates for drug repurposing of conventional chemotherapeutic drugs to reduce their side effects.
Collapse
Affiliation(s)
- Armando Moreno-Velasco
- Departamento de Farmacia, Facultad de Química and Programa de Maestría y Doctorado en Ciencias Químicas, Universidad Nacional Autónoma de México, Ciudad Universitaria, Mexico City 04510, Mexico
| | - Pedro de Jesús Flores-Tafoya
- Departamento de Farmacia, Facultad de Química and Programa de Maestría y Doctorado en Ciencias Químicas, Universidad Nacional Autónoma de México, Ciudad Universitaria, Mexico City 04510, Mexico
| | - Mabel Fragoso-Serrano
- Departamento de Farmacia, Facultad de Química and Programa de Maestría y Doctorado en Ciencias Químicas, Universidad Nacional Autónoma de México, Ciudad Universitaria, Mexico City 04510, Mexico
| | - Suzana Guimarães Leitão
- Faculdade de Farmacia, Universidade Federal do Rio de Janeiro, CCS, Bloco A, Ilha do Fundão, Rio de Janeiro 21941-902, Brazil
| | - Rogelio Pereda-Miranda
- Departamento de Farmacia, Facultad de Química and Programa de Maestría y Doctorado en Ciencias Químicas, Universidad Nacional Autónoma de México, Ciudad Universitaria, Mexico City 04510, Mexico
| |
Collapse
|
24
|
Kruse LH, Weigle AT, Irfan M, Martínez-Gómez J, Chobirko JD, Schaffer JE, Bennett AA, Specht CD, Jez JM, Shukla D, Moghe GD. Orthology-based analysis helps map evolutionary diversification and predict substrate class use of BAHD acyltransferases. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2022; 111:1453-1468. [PMID: 35816116 DOI: 10.1111/tpj.15902] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Revised: 06/15/2022] [Accepted: 07/05/2022] [Indexed: 06/15/2023]
Abstract
Large enzyme families catalyze metabolic diversification by virtue of their ability to use diverse chemical scaffolds. How enzyme families attain such functional diversity is not clear. Furthermore, duplication and promiscuity in such enzyme families limits their functional prediction, which has produced a burgeoning set of incompletely annotated genes in plant genomes. Here, we address these challenges using BAHD acyltransferases as a model. This fast-evolving family expanded drastically in land plants, increasing from one to five copies in algae to approximately 100 copies in diploid angiosperm genomes. Compilation of >160 published activities helped visualize the chemical space occupied by this family and define eight different classes based on structural similarities between acceptor substrates. Using orthologous groups (OGs) across 52 sequenced plant genomes, we developed a method to predict BAHD acceptor substrate class utilization as well as origins of individual BAHD OGs in plant evolution. This method was validated using six novel and 28 previously characterized enzymes and helped improve putative substrate class predictions for BAHDs in the tomato genome. Our results also revealed that while cuticular wax and lignin biosynthetic activities were more ancient, anthocyanin acylation activity was fixed in BAHDs later near the origin of angiosperms. The OG-based analysis enabled identification of signature motifs in anthocyanin-acylating BAHDs, whose importance was validated via molecular dynamic simulations, site-directed mutagenesis and kinetic assays. Our results not only describe how BAHDs contributed to evolution of multiple chemical phenotypes in the plant world but also propose a biocuration-enabled approach for improved functional annotation of plant enzyme families.
Collapse
Affiliation(s)
- Lars H Kruse
- Plant Biology Section, School of Integrative Plant Sciences, Cornell University, Ithaca, New York, 14853, USA
| | - Austin T Weigle
- Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, Illinois, 61801, USA
| | - Mohammad Irfan
- Plant Biology Section, School of Integrative Plant Sciences, Cornell University, Ithaca, New York, 14853, USA
| | - Jesús Martínez-Gómez
- Plant Biology Section, School of Integrative Plant Sciences, Cornell University, Ithaca, New York, 14853, USA
- L.H. Bailey Hortorium, Cornell University, Ithaca, New York, 14853, USA
| | - Jason D Chobirko
- Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, Illinois, 61801, USA
| | - Jason E Schaffer
- Department of Biology, Washington University in St. Louis, St. Louis, Missouri, 63130, USA
| | - Alexandra A Bennett
- Plant Biology Section, School of Integrative Plant Sciences, Cornell University, Ithaca, New York, 14853, USA
| | - Chelsea D Specht
- Plant Biology Section, School of Integrative Plant Sciences, Cornell University, Ithaca, New York, 14853, USA
- L.H. Bailey Hortorium, Cornell University, Ithaca, New York, 14853, USA
| | - Joseph M Jez
- Department of Biology, Washington University in St. Louis, St. Louis, Missouri, 63130, USA
| | - Diwakar Shukla
- Department of Chemical and Biomolecular Engineering, University of Illinois at Urbana-Champaign, Urbana, Illinois, 61801, USA
| | - Gaurav D Moghe
- Plant Biology Section, School of Integrative Plant Sciences, Cornell University, Ithaca, New York, 14853, USA
| |
Collapse
|
25
|
Schenck CA, Anthony TM, Jacobs M, Jones AD, Last RL. Natural variation meets synthetic biology: Promiscuous trichome-expressed acyltransferases from Nicotiana. PLANT PHYSIOLOGY 2022; 190:146-164. [PMID: 35477794 PMCID: PMC9434288 DOI: 10.1093/plphys/kiac192] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Accepted: 03/23/2022] [Indexed: 06/14/2023]
Abstract
Acylsugars are defensive, trichome-synthesized sugar esters produced in plants across the Solanaceae (nightshade) family. Although assembled from simple metabolites and synthesized by a relatively short core biosynthetic pathway, tremendous within- and across-species acylsugar structural variation is documented across the family. To advance our understanding of the diversity and the synthesis of acylsugars within the Nicotiana genus, trichome extracts were profiled across the genus coupled with transcriptomics-guided enzyme discovery and in vivo and in vitro analysis. Differences in the types of sugar cores, numbers of acylations, and acyl chain structures contributed to over 300 unique annotated acylsugars throughout Nicotiana. Placement of acyl chain length into a phylogenetic context revealed that an unsaturated acyl chain type was detected in a few closely related species. A comparative transcriptomics approach identified trichome-enriched Nicotiana acuminata acylsugar biosynthetic candidate enzymes. More than 25 acylsugar variants could be produced in a single enzyme assay with four N. acuminata acylsugar acyltransferases (NacASAT1-4) together with structurally diverse acyl-CoAs and sucrose. Liquid chromatography coupled with mass spectrometry screening of in vitro products revealed the ability of these enzymes to make acylsugars not present in Nicotiana plant extracts. In vitro acylsugar production also provided insights into acyltransferase acyl donor promiscuity and acyl acceptor specificity as well as regiospecificity of some ASATs. This study suggests that promiscuous Nicotiana acyltransferases can be used as synthetic biology tools to produce novel and potentially useful metabolites.
Collapse
Affiliation(s)
- Craig A Schenck
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, Michigan 48824, USA
| | - Thilani M Anthony
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, Michigan 48824, USA
| | - MacKenzie Jacobs
- Department of Physical Sciences and Mathematics, West Liberty University, West Liberty, West Virginia 26074, USA
| | - A Daniel Jones
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, Michigan 48824, USA
| | - Robert L Last
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, Michigan 48824, USA
- Department of Plant Biology, Michigan State University, East Lansing, Michigan 48824, USA
| |
Collapse
|
26
|
Han X, Xing Y, Zhu Y, Luo L, Liu L, Zhai Y, Wang W, Shao R, Ren M, Li F, Yang Q. GhMYC2 activates cytochrome P450 gene CYP71BE79 to regulate gossypol biosynthesis in cotton. PLANTA 2022; 256:63. [PMID: 35995890 DOI: 10.1007/s00425-022-03974-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Accepted: 08/13/2022] [Indexed: 06/15/2023]
Abstract
GhMYC2 regulates the gossypol biosynthesis pathway in cotton through activation of the expression of gossypol synthesis gene CYP71BE79, CDNC, CYP706B1, DH1, and CYP82D113. Cotton is one of the main cash crops globally. Cottonseed contains fiber, fat, protein, and starch, and has important economic value. However, gossypol in cottonseed seriously affects the development and utilization of cottonseed. Nonetheless, gossypol has great application potential in agriculture, medicine, and industry. Therefore, it is very important to study gossypol biosynthesis and its upstream regulatory pathways. It has been reported that the content of gossypol in hairy roots of cotton is regulated through jasmonic acid signaling; however, the specific molecular mechanism has not been revealed yet. We found that the expression of basic helix-loop-helix family transcription factor GhMYC2 was significantly upregulated after exogenous administration of methyl jasmonate to cotton seedlings, and the content of gossypol changed significantly with the variation of GhMYC2 expression. Further studies revealed that GhMYC2 could specifically bind to the G-Box in the promoter region of CDNC, CYP706B1, DH1, CYP82D113, CYP71BE79 to activate its expression and regulate gossypol synthesis, and its activation of CYP71BE79 promoter was inhibited by GhJAZ2. Not only that GhMYC2 could also interact with GoPGF. In this work, the molecular mechanisms of gossypol biosynthesis regulated by GhMYC2 were analyzed. The results provide a theoretical basis for cultivating new varieties of low-gossypol or high-gossypol cotton and creating excellent germplasm resources.
Collapse
Affiliation(s)
- Xinpei Han
- College of Agronomy, Henan Agricultural University, Zhengzhou, China
| | - Yadi Xing
- Zhengzhou Research Base, State Key Laboratory of Cotton Biology, Zhengzhou University, Zhengzhou, China.
- Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, China.
| | - Yaqian Zhu
- Zhengzhou Research Base, State Key Laboratory of Cotton Biology, Zhengzhou University, Zhengzhou, China
- Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, China
| | - Lei Luo
- Zhengzhou Research Base, State Key Laboratory of Cotton Biology, Zhengzhou University, Zhengzhou, China
- Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, China
| | - Lulu Liu
- Zhengzhou Research Base, State Key Laboratory of Cotton Biology, Zhengzhou University, Zhengzhou, China
- Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, China
| | - Yaohua Zhai
- Zhengzhou Research Base, State Key Laboratory of Cotton Biology, Zhengzhou University, Zhengzhou, China
- Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, China
| | - Wenjing Wang
- Zhengzhou Research Base, State Key Laboratory of Cotton Biology, Zhengzhou University, Zhengzhou, China
- Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, China
| | - Ruixing Shao
- College of Agronomy, Henan Agricultural University, Zhengzhou, China
| | - Maozhi Ren
- Zhengzhou Research Base, State Key Laboratory of Cotton Biology, Zhengzhou University, Zhengzhou, China
- Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, China
| | - Fuguang Li
- Zhengzhou Research Base, State Key Laboratory of Cotton Biology, Zhengzhou University, Zhengzhou, China.
- Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, China.
| | - Qinghua Yang
- College of Agronomy, Henan Agricultural University, Zhengzhou, China.
| |
Collapse
|
27
|
Fiesel PD, Parks HM, Last RL, Barry CS. Fruity, sticky, stinky, spicy, bitter, addictive, and deadly: evolutionary signatures of metabolic complexity in the Solanaceae. Nat Prod Rep 2022; 39:1438-1464. [PMID: 35332352 PMCID: PMC9308699 DOI: 10.1039/d2np00003b] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Covering: 2000-2022Plants collectively synthesize a huge repertoire of metabolites. General metabolites, also referred to as primary metabolites, are conserved across the plant kingdom and are required for processes essential to growth and development. These include amino acids, sugars, lipids, and organic acids. In contrast, specialized metabolites, historically termed secondary metabolites, are structurally diverse, exhibit lineage-specific distribution and provide selective advantage to host species to facilitate reproduction and environmental adaptation. Due to their potent bioactivities, plant specialized metabolites attract considerable attention for use as flavorings, fragrances, pharmaceuticals, and bio-pesticides. The Solanaceae (Nightshade family) consists of approximately 2700 species and includes crops of significant economic, cultural, and scientific importance: these include potato, tomato, pepper, eggplant, tobacco, and petunia. The Solanaceae has emerged as a model family for studying the biochemical evolution of plant specialized metabolism and multiple examples exist of lineage-specific metabolites that influence the senses and physiology of commensal and harmful organisms, including humans. These include, alcohols, phenylpropanoids, and carotenoids that contribute to fruit aroma and color in tomato (fruity), glandular trichome-derived terpenoids and acylsugars that contribute to plant defense (stinky & sticky, respectively), capsaicinoids in chilli-peppers that influence seed dispersal (spicy), and steroidal glycoalkaloids (bitter) from Solanum, nicotine (addictive) from tobacco, as well as tropane alkaloids (deadly) from Deadly Nightshade that deter herbivory. Advances in genomics and metabolomics, coupled with the adoption of comparative phylogenetic approaches, resulted in deeper knowledge of the biosynthesis and evolution of these metabolites. This review highlights recent progress in this area and outlines opportunities for - and challenges of-developing a more comprehensive understanding of Solanaceae metabolism.
Collapse
Affiliation(s)
- Paul D Fiesel
- Department of Biochemistry & Molecular Biology, Michigan State University, East Lansing, MI 48824, USA
| | - Hannah M Parks
- Department of Biochemistry & Molecular Biology, Michigan State University, East Lansing, MI 48824, USA
| | - Robert L Last
- Department of Biochemistry & Molecular Biology, Michigan State University, East Lansing, MI 48824, USA
- Department of Plant Biology, Michigan State University, East Lansing, MI 48824, USA
| | - Cornelius S Barry
- Department of Horticulture, Michigan State University, East Lansing, MI 48824, USA.
| |
Collapse
|
28
|
Feng H, Acosta-Gamboa L, Kruse LH, Tracy JD, Chung SH, Nava Fereira AR, Shakir S, Xu H, Sunter G, Gore MA, Casteel CL, Moghe GD, Jander G. Acylsugars protect Nicotiana benthamiana against insect herbivory and desiccation. PLANT MOLECULAR BIOLOGY 2022; 109:505-522. [PMID: 34586580 DOI: 10.1007/s11103-021-01191-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2021] [Accepted: 09/12/2021] [Indexed: 06/13/2023]
Abstract
KEY MESSAGE Nicotiana benthamiana acylsugar acyltransferase (ASAT) is required for protection against desiccation and insect herbivory. Knockout mutations provide a new resource for investigation of plant-aphid and plant-whitefly interactions. Nicotiana benthamiana is used extensively as a transient expression platform for functional analysis of genes from other species. Acylsugars, which are produced in the trichomes, are a hypothesized cause of the relatively high insect resistance that is observed in N. benthamiana. We characterized the N. benthamiana acylsugar profile, bioinformatically identified two acylsugar acyltransferase genes, ASAT1 and ASAT2, and used CRISPR/Cas9 mutagenesis to produce acylsugar-deficient plants for investigation of insect resistance and foliar water loss. Whereas asat1 mutations reduced accumulation, asat2 mutations caused almost complete depletion of foliar acylsucroses. Three hemipteran and three lepidopteran herbivores survived, gained weight, and/or reproduced significantly better on asat2 mutants than on wildtype N. benthamiana. Both asat1 and asat2 mutations reduced the water content and increased leaf temperature. Our results demonstrate the specific function of two ASAT proteins in N. benthamiana acylsugar biosynthesis, insect resistance, and desiccation tolerance. The improved growth of aphids and whiteflies on asat2 mutants will facilitate the use of N. benthamiana as a transient expression platform for the functional analysis of insect effectors and resistance genes from other plant species. Similarly, the absence of acylsugars in asat2 mutants will enable analysis of acylsugar biosynthesis genes from other Solanaceae by transient expression.
Collapse
Affiliation(s)
- Honglin Feng
- Boyce Thompson Institute, Ithaca, NY, 14853, USA
| | - Lucia Acosta-Gamboa
- Plant Breeding and Genetics Section, School of Integrative Plant Science, Cornell University, Ithaca, NY, 14853, USA
| | - Lars H Kruse
- Plant Biology Section, School of Integrative Plant Science, Cornell University, Ithaca, NY, 14853, USA
- Michael Smith Laboratories, University of British Columbia, Vancouver, BC, V6T 1Z4, Canada
| | - Jake D Tracy
- Plant-Microbe Biology and Plant Pathology Section, School of Integrative Plant Science, Cornell University, Ithaca, NY, 14853, USA
- Department of Plant Sciences and Plant Pathology, Montana State University, Bozeman, MT, 59717, USA
| | | | - Alba Ruth Nava Fereira
- Department of Biology, University of Texas San Antonio, San Antonio, TX, 78249, USA
- Department of Biological Sciences, Northern Illinois University, Dekalb, IL, 60115, USA
| | - Sara Shakir
- Boyce Thompson Institute, Ithaca, NY, 14853, USA
- Gembloux Agro-Bio Tech Institute, The University of Liege, Gembloux, Belgium
| | - Hongxing Xu
- Boyce Thompson Institute, Ithaca, NY, 14853, USA
- College of Life Science, The Shaanxi Normal University, Xi'an, China
| | - Garry Sunter
- Department of Biology, University of Texas San Antonio, San Antonio, TX, 78249, USA
- Department of Biological Sciences, Northern Illinois University, Dekalb, IL, 60115, USA
| | - Michael A Gore
- Plant Breeding and Genetics Section, School of Integrative Plant Science, Cornell University, Ithaca, NY, 14853, USA
| | - Clare L Casteel
- Plant-Microbe Biology and Plant Pathology Section, School of Integrative Plant Science, Cornell University, Ithaca, NY, 14853, USA
| | - Gaurav D Moghe
- Plant Biology Section, School of Integrative Plant Science, Cornell University, Ithaca, NY, 14853, USA
| | - Georg Jander
- Boyce Thompson Institute, Ithaca, NY, 14853, USA.
| |
Collapse
|
29
|
Schenck CA, Busta L. Using interdisciplinary, phylogeny-guided approaches to understand the evolution of plant metabolism. PLANT MOLECULAR BIOLOGY 2022; 109:355-367. [PMID: 34816350 DOI: 10.1007/s11103-021-01220-1] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Accepted: 11/05/2021] [Indexed: 06/13/2023]
Abstract
To cope with relentless environmental pressures, plants produce an arsenal of structurally diverse chemicals, often called specialized metabolites. These lineage-specific compounds are derived from the simple building blocks made by ubiquitous core metabolic pathways. Although the structures of many specialized metabolites are known, the underlying metabolic pathways and the evolutionary events that have shaped the plant chemical diversity landscape are only beginning to be understood. However, with the advent of multi-omics data sets and the relative ease of studying pathways in previously intractable non-model species, plant specialized metabolic pathways are now being systematically identified. These large datasets also provide a foundation for comparative, phylogeny-guided studies of plant metabolism. Comparisons of metabolic traits and features like chemical abundances, enzyme activities, or gene sequences from phylogenetically diverse plants provide insights into how metabolic pathways evolved. This review highlights the power of studying evolution through the lens of comparative biochemistry, particularly how placing metabolism into a phylogenetic context can help a researcher identify the metabolic innovations enabling the evolution of structurally diverse plant metabolites.
Collapse
Affiliation(s)
- Craig A Schenck
- Department of Biochemistry, University of Missouri, Columbia, MO, USA.
| | - Lucas Busta
- Department of Chemistry and Biochemistry, University of Minnesota Duluth, Duluth, MN, USA
| |
Collapse
|
30
|
Chang A, Hu Z, Chen B, Vanderschuren H, Chen M, Qu Y, Yu W, Li Y, Sun H, Cao J, Vasudevan K, Li C, Cao Y, Zhang J, Shen Y, Yang A, Wang Y. Characterization of trichome-specific BAHD acyltransferases involved in acylsugar biosynthesis in Nicotiana tabacum. JOURNAL OF EXPERIMENTAL BOTANY 2022; 73:3913-3928. [PMID: 35262703 DOI: 10.1093/jxb/erac095] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Accepted: 03/07/2022] [Indexed: 06/14/2023]
Abstract
Glandular trichomes of tobacco (Nicotiana tabacum) produce blends of acylsucroses that contribute to defence against pathogens and herbivorous insects, but the mechanism of assembly of these acylsugars has not yet been determined. In this study, we isolated and characterized two trichome-specific acylsugar acyltransferases that are localized in the endoplasmic reticulum, NtASAT1 and NtASAT2. They sequentially catalyse two additive steps of acyl donors to sucrose to produce di-acylsucrose. Knocking out of NtASAT1 or NtASAT2 resulted in deficiency of acylsucrose; however, there was no effect on acylsugar accumulation in plants overexpressing NtASAT1 or NtASAT2. Genomic analysis and profiling revealed that NtASATs originated from the T subgenome, which is derived from the acylsugar-producing diploid ancestor N. tomentosiformis. Our identification of NtASAT1 and NtASAT2 as enzymes involved in acylsugar assembly in tobacco potentially provides a new approach and target genes for improving crop resistance against pathogens and insects.
Collapse
Affiliation(s)
- Aixia Chang
- Tobacco Research Institute, Chinese Academy of Agricultural Sciences, Qingdao, 266101, China
- Plant Genetics Laboratory, Gembloux Agro-Bio Tech, University of Liège, 5030 Gembloux, Belgium
| | - Zhongyi Hu
- Jiangxi Food Inspection and Testing Research Institute, Nanchang, 330001, China
| | - Biao Chen
- Tobacco Research Institute, Chinese Academy of Agricultural Sciences, Qingdao, 266101, China
| | - Herve Vanderschuren
- Plant Genetics Laboratory, Gembloux Agro-Bio Tech, University of Liège, 5030 Gembloux, Belgium
- Tropical Crop Improvement Lab, Department of Biosystems, KU Leuven, Heverlee, Belgium
| | - Ming Chen
- Tobacco Research Institute, Chinese Academy of Agricultural Sciences, Qingdao, 266101, China
| | - Yafang Qu
- Tobacco Research Institute, Chinese Academy of Agricultural Sciences, Qingdao, 266101, China
| | - Weisong Yu
- Tobacco Research Institute, Chinese Academy of Agricultural Sciences, Qingdao, 266101, China
| | - Yangyang Li
- Hunan Tobacco Research Institute, Changsha, 410004, China
| | - Huiqing Sun
- Tobacco Research Institute, Chinese Academy of Agricultural Sciences, Qingdao, 266101, China
| | - Jianmin Cao
- Tobacco Research Institute, Chinese Academy of Agricultural Sciences, Qingdao, 266101, China
| | - Kumar Vasudevan
- Plant Genetics Laboratory, Gembloux Agro-Bio Tech, University of Liège, 5030 Gembloux, Belgium
| | - Chenying Li
- Tobacco Research Institute, Chinese Academy of Agricultural Sciences, Qingdao, 266101, China
| | - Yanan Cao
- Tobacco Research Institute, Chinese Academy of Agricultural Sciences, Qingdao, 266101, China
| | - Jianye Zhang
- Green Catalysis Center, College of Chemistry, Zhengzhou University, Zhengzhou, 450001, China
| | - Yeming Shen
- Green Catalysis Center, College of Chemistry, Zhengzhou University, Zhengzhou, 450001, China
| | - Aiguo Yang
- Tobacco Research Institute, Chinese Academy of Agricultural Sciences, Qingdao, 266101, China
| | - Yuanying Wang
- Tobacco Research Institute, Chinese Academy of Agricultural Sciences, Qingdao, 266101, China
| |
Collapse
|
31
|
Leong BJ, Hurney S, Fiesel P, Anthony TM, Moghe G, Jones AD, Last RL. Identification of BAHD acyltransferases associated with acylinositol biosynthesis in Solanum quitoense (naranjilla). PLANT DIRECT 2022; 6:e415. [PMID: 35774622 PMCID: PMC9219006 DOI: 10.1002/pld3.415] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Revised: 05/26/2022] [Accepted: 06/03/2022] [Indexed: 06/15/2023]
Abstract
Plants make a variety of specialized metabolites that can mediate interactions with animals, microbes, and competitor plants. Understanding how plants synthesize these compounds enables studies of their biological roles by manipulating their synthesis in vivo as well as producing them in vitro. Acylsugars are a group of protective metabolites that accumulate in the trichomes of many Solanaceae family plants. Acylinositol biosynthesis is of interest because it appears to be restricted to a subgroup of species within the Solanum genus. Previous work characterized a triacylinositol acetyltransferase involved in acylinositol biosynthesis in the Andean fruit plant Solanum quitoense (lulo or naranjilla). We characterized three additional S. quitoense trichome expressed enzymes and found that virus-induced gene silencing of each caused changes in acylinositol accumulation. pH was shown to influence the stability and rearrangement of the product of ASAT1H and could potentially play a role in acylinositol biosynthesis. Surprisingly, the in vitro triacylinositol products of these enzymes are distinct from those that accumulate in planta. This suggests that additional enzymes are required in acylinositol biosynthesis. These characterized S. quitoense enzymes, nonetheless, provide opportunities to test the biological impact and properties of these triacylinositols in vitro.
Collapse
Affiliation(s)
- Bryan J. Leong
- Department of Plant BiologyMichigan State UniversityEast LansingMichiganUSA
- Present address:
Horticultural Sciences DepartmentUniversity of FloridaGainesvilleFloridaUSA
| | - Steven Hurney
- Department of ChemistryMichigan State UniversityEast LansingMichiganUSA
- Present address:
Michigan Department of Health and Human ServicesLansingMichiganUSA
| | - Paul Fiesel
- Department of Biochemistry and Molecular BiologyMichigan State UniversityEast LansingMichiganUSA
| | - Thilani M. Anthony
- Department of Biochemistry and Molecular BiologyMichigan State UniversityEast LansingMichiganUSA
| | - Gaurav Moghe
- Department of Biochemistry and Molecular BiologyMichigan State UniversityEast LansingMichiganUSA
- Present address:
Plant Biology Section, School of Integrative Plant SciencesCornell UniversityIthacaNew YorkUSA
| | - Arthur Daniel Jones
- Department of ChemistryMichigan State UniversityEast LansingMichiganUSA
- Department of Biochemistry and Molecular BiologyMichigan State UniversityEast LansingMichiganUSA
| | - Robert L. Last
- Department of Plant BiologyMichigan State UniversityEast LansingMichiganUSA
- Department of Biochemistry and Molecular BiologyMichigan State UniversityEast LansingMichiganUSA
| |
Collapse
|
32
|
Abstract
As a midsized gene family conserved more by lineage than function, the typical plant terpene synthases (TPSs) could be a valuable tool to examine plant evolution. TPSs are pivotal in biosynthesis of gibberellins and related phytohormones as well as in formation of the extensive arsenal of specialized plant metabolites mediating ecological interactions whose production is often lineage specific. Yet the origin and early evolution of the TPS family is not well understood. Systematic analysis of an array of transcriptomes and sequenced genomes indicated that the TPS family originated after the divergence of land plants from charophytic algae. Phylogenetic and biochemical analyses support the hypothesis that the ancestral TPS gene encoded a bifunctional class I and II diterpene synthase producing the ent-kaurene required for phytohormone production in all extant lineages of land plants. Moreover, the ancestral TPS gene likely underwent duplication at least twice early in land plant evolution. Together these two gave rise to three TPS lineages leading to the extant TPS-c, TPS-e/f, and the remaining TPS (h/d/a/b/g) subfamilies, with the latter dedicated to secondary rather than primary metabolism while the former two contain those genes involved in ent-kaurene production. Nevertheless, parallel evolution from the ent-kaurene–producing class I and class II diterpene synthases has led to roles for TPS-e/f and -c subfamily members in secondary metabolism as well. These results clarify TPS evolutionary history and provide context for the role of these genes in producing the vast diversity of terpenoid natural products observed today in various land plant lineages.
Collapse
|
33
|
Colinas M, Fitzpatrick TB. Coenzymes and the primary and specialized metabolism interface. CURRENT OPINION IN PLANT BIOLOGY 2022; 66:102170. [PMID: 35063913 DOI: 10.1016/j.pbi.2021.102170] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2021] [Revised: 12/06/2021] [Accepted: 12/20/2021] [Indexed: 06/14/2023]
Abstract
In plants, primary and specialized metabolism have classically been distinguished as either essential for growth or required for survival in a particular environment. Coenzymes (organic cofactors) are essential for growth but their importance to specialized metabolism is often not considered. In line with the recent proposal of viewing primary and specialized metabolism as an integrated whole rather than segregated lots with a defined interface, we highlight here the importance of collating information on the regulation of coenzyme supply with metabolic demands using examples of vitamin B derived coenzymes. We emphasize that coenzymes can have enormous influence on the outcome of metabolic as well as engineered pathways and should be taken into account in the era of synthetic biology.
Collapse
Affiliation(s)
- Maite Colinas
- Department of Natural Product Biosynthesis, Max Planck Institute for Chemical Ecology, Hans-Knöll-Straße 80, D-07745 Jena, Germany.
| | - Teresa B Fitzpatrick
- Department of Botany and Plant Biology, University of Geneva, Quai Ernest-Ansermet 30, CH-1211 Geneva 4, Switzerland.
| |
Collapse
|
34
|
Fu T, Xu C, Li H, Wu X, Tang M, Xiao B, Lv R, Zhang Z, Gao X, Liu B, Yang C. Salinity Tolerance in a Synthetic Allotetraploid Wheat (S lS lAA) Is Similar to Its Higher Tolerant Parent Aegilops longissima (S lS l) and Linked to Flavonoids Metabolism. FRONTIERS IN PLANT SCIENCE 2022; 13:835498. [PMID: 35371151 PMCID: PMC8968947 DOI: 10.3389/fpls.2022.835498] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Accepted: 02/16/2022] [Indexed: 06/14/2023]
Abstract
Allotetraploidization between A and S (closely related to B) genome species led to the speciation of allotetraploid wheat (genome BBAA). However, the immediate metabolic outcomes and adaptive changes caused by the allotetraploidization event are poorly understood. Here, we investigated how allotetraploidization affected salinity tolerance using a synthetic allotetraploid wheat line (genome SlSlAA, labeled as 4x), its Aegilops longissima (genome SlSl, labeled as SlSl) and Triticum urartu (AA genome, labeled as AA) parents. We found that the degree of salinity tolerance of 4x was similar to its SlSl parent, and both were substantially more tolerant to salinity stress than AA. This suggests that the SlSl subgenome exerts a dominant effect for this trait in 4x. Compared with SlSl and 4x, the salinity-stressed AA plants did not accumulate a higher concentration of Na+ in leaves, but showed severe membrane peroxidation and accumulated a higher concentration of ROS (H2O2 and O2 ⋅-) and a lesser concentration of flavonoids, indicating that ROS metabolism plays a key role in saline sensitivity. Exogenous flavonoid application to roots of AA plants significantly relieved salinity-caused injury. Our results suggest that the higher accumulation of flavonoids in SlSl may contribute to ROS scavenging and salinity tolerance, and these physiological properties were stably inherited by the nascent allotetraploid SlSlAA.
Collapse
|
35
|
Günther J, Erthmann PØ, Khakimov B, Bak S. Reciprocal mutations of two multifunctional β-amyrin synthases from Barbarea vulgaris shift α/β-amyrin ratios. PLANT PHYSIOLOGY 2022; 188:1483-1495. [PMID: 34865155 PMCID: PMC8896598 DOI: 10.1093/plphys/kiab545] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Accepted: 10/25/2021] [Indexed: 05/09/2023]
Abstract
In the wild cruciferous wintercress (Barbarea vulgaris), β-amyrin-derived saponins are involved in resistance against insect herbivores like the major agricultural pest diamondback moth (Plutella xylostella). Enzymes belonging to the 2,3-oxidosqualene cyclase family have been identified and characterized in B. vulgaris G-type and P-type plants that differ in their natural habitat, insect resistance and saponin content. Both G-type and P-type plants possess highly similar 2,3-oxidosqualene cyclase enzymes that mainly produce β-amyrin (Barbarea vulgaris Lupeol synthase 5 G-Type; BvLUP5-G) or α-amyrin (Barbarea vulgaris Lupeol synthase 5 P-Type; BvLUP5-P), respectively. Despite the difference in product formation, the two BvLUP5 enzymes are 98% identical at the amino acid level. This provides a unique opportunity to investigate determinants of product formation, using the B. vulgaris 2,3-oxidosqualene cyclase enzymes as a model for studying amino acid residues that determine differences in product formation. In this study, we identified two amino acid residues at position 121 and 735 that are responsible for the dominant changes in generated product ratios of β-amyrin and α-amyrin in both BvLUP5 enzymes. These amino acid residues have not previously been highlighted as directly involved in 2,3-oxidosqualene cyclase product specificity. Our results highlight the functional diversity and promiscuity of 2,3-oxidosqualene cyclase enzymes. These enzymes serve as important mediators of metabolic plasticity throughout plant evolution.
Collapse
Affiliation(s)
- Jan Günther
- Department of Plant and Environmental Sciences and Copenhagen Plant Science Center, University of Copenhagen, Denmark
| | - Pernille Østerbye Erthmann
- Department of Plant and Environmental Sciences and Copenhagen Plant Science Center, University of Copenhagen, Denmark
| | - Bekzod Khakimov
- Department of Plant and Environmental Sciences and Copenhagen Plant Science Center, University of Copenhagen, Denmark
- Department of Food Science, University of Copenhagen, Denmark
| | - Søren Bak
- Department of Plant and Environmental Sciences and Copenhagen Plant Science Center, University of Copenhagen, Denmark
- Author for communication:
| |
Collapse
|
36
|
Kruse LH, Bennett AA, Mahood EH, Lazarus E, Park SJ, Schroeder F, Moghe GD. Illuminating the lineage-specific diversification of resin glycoside acylsugars in the morning glory (Convolvulaceae) family using computational metabolomics. HORTICULTURE RESEARCH 2022; 9:uhab079. [PMID: 35039851 PMCID: PMC8825387 DOI: 10.1093/hr/uhab079] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Revised: 10/24/2021] [Accepted: 11/12/2021] [Indexed: 05/13/2023]
Abstract
Acylsugars are a class of plant defense compounds produced across many distantly related families. Members of the horticulturally important morning glory (Convolvulaceae) family produce a diverse sub-class of acylsugars called resin glycosides (RGs), which comprise oligosaccharide cores, hydroxyacyl chain(s), and decorating aliphatic and aromatic acyl chains. While many RG structures are characterized, the extent of structural diversity of this class in different genera and species is not known. In this study, we asked whether there has been lineage-specific diversification of RG structures in different Convolvulaceae species that may suggest diversification of the underlying biosynthetic pathways. Liquid chromatography coupled with tandem mass spectrometry (LC-MS/MS) was performed from root and leaf extracts of 26 species sampled in a phylogeny-guided manner. LC-MS/MS revealed thousands of peaks with signature RG fragmentation patterns with one species producing over 300 signals, mirroring the diversity in Solanaceae-type acylsugars. A novel RG from Dichondra argentea was characterized using Nuclear Magnetic Resonance spectroscopy, supporting previous observations of RGs with open hydroxyacyl chains instead of closed macrolactone ring structures. Substantial lineage-specific differentiation in utilization of sugars, hydroxyacyl chains, and decorating acyl chains was discovered, especially among Ipomoea and Convolvulus - the two largest genera in Convolvulaceae. Adopting a computational, knowledge-based strategy, we further developed a high-recall workflow that successfully explained ~72% of the MS/MS fragments, predicted the structural components of 11/13 previously characterized RGs, and partially annotated ~45% of the RGs. Overall, this study improves our understanding of phytochemical diversity and lays a foundation for characterizing the evolutionary mechanisms underlying RG diversification.
Collapse
Affiliation(s)
- Lars H Kruse
- Plant Biology Section, School of Integrative Plant Science, Cornell University, Ithaca, NY, 14853, USA
- Present Address: Michael Smith Laboratories, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
| | - Alexandra A Bennett
- Plant Biology Section, School of Integrative Plant Science, Cornell University, Ithaca, NY, 14853, USA
- Present Address: Institute of Analytical Chemistry, Universität für Bodenkultur Wien, Vienna, 1090, Austria
| | - Elizabeth H Mahood
- Plant Biology Section, School of Integrative Plant Science, Cornell University, Ithaca, NY, 14853, USA
| | - Elena Lazarus
- Plant Biology Section, School of Integrative Plant Science, Cornell University, Ithaca, NY, 14853, USA
- Present Address: Department of Plant Biology, Carnegie Institution for Science, Stanford, CA, 94305, USA
| | - Se Jin Park
- Plant Biology Section, School of Integrative Plant Science, Cornell University, Ithaca, NY, 14853, USA
| | - Frank Schroeder
- Boyce Thompson Institute and Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY, 14853, USA
| | - Gaurav D Moghe
- Plant Biology Section, School of Integrative Plant Science, Cornell University, Ithaca, NY, 14853, USA
| |
Collapse
|
37
|
Lou YR, Anthony TM, Fiesel PD, Arking RE, Christensen EM, Jones AD, Last RL. It happened again: Convergent evolution of acylglucose specialized metabolism in black nightshade and wild tomato. SCIENCE ADVANCES 2021; 7:eabj8726. [PMID: 34757799 PMCID: PMC8580325 DOI: 10.1126/sciadv.abj8726] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Accepted: 09/20/2021] [Indexed: 05/09/2023]
Abstract
Plants synthesize myriad phylogenetically restricted specialized (aka “secondary”) metabolites with diverse structures. Metabolism of acylated sugar esters in epidermal glandular secreting trichomes across the Solanaceae (nightshade) family is ideal for investigating the mechanisms of evolutionary metabolic diversification. We developed methods to structurally analyze acylhexose mixtures by 2D NMR, which led to the insight that the Old World species black nightshade (Solanum nigrum) accumulates acylglucoses and acylinositols in the same tissue. Detailed in vitro biochemistry, cross-validated by in vivo virus-induced gene silencing, revealed two unique features of the four-step acylglucose biosynthetic pathway: A trichome-expressed, neofunctionalized invertase-like enzyme, SnASFF1, converts BAHD-produced acylsucroses to acylglucoses, which, in turn, are substrates for the acylglucose acyltransferase, SnAGAT1. This biosynthetic pathway evolved independently from that recently described in the wild tomato Solanum pennellii, reinforcing that acylsugar biosynthesis is evolutionarily dynamic with independent examples of primary metabolic enzyme cooption and additional variation in BAHD acyltransferases.
Collapse
Affiliation(s)
- Yann-Ru Lou
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI 48824, USA
| | - Thilani M. Anthony
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI 48824, USA
| | - Paul D. Fiesel
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI 48824, USA
| | | | | | - A. Daniel Jones
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI 48824, USA
| | - Robert L. Last
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI 48824, USA
- Department of Plant Biology, Michigan State University, East Lansing, MI 48824, USA
| |
Collapse
|
38
|
Desmet S, Morreel K, Dauwe R. Origin and Function of Structural Diversity in the Plant Specialized Metabolome. PLANTS (BASEL, SWITZERLAND) 2021; 10:2393. [PMID: 34834756 PMCID: PMC8621143 DOI: 10.3390/plants10112393] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Revised: 10/29/2021] [Accepted: 11/03/2021] [Indexed: 05/07/2023]
Abstract
The plant specialized metabolome consists of a multitude of structurally and functionally diverse metabolites, variable from species to species. The specialized metabolites play roles in the response to environmental changes and abiotic or biotic stresses, as well as in plant growth and development. At its basis, the specialized metabolism is built of four major pathways, each starting from a few distinct primary metabolism precursors, and leading to distinct basic carbon skeleton core structures: polyketides and fatty acid derivatives, terpenoids, alkaloids, and phenolics. Structural diversity in specialized metabolism, however, expands exponentially with each subsequent modification. We review here the major sources of structural variety and question if a specific role can be attributed to each distinct structure. We focus on the influences that various core structures and modifications have on flavonoid antioxidant activity and on the diversity generated by oxidative coupling reactions. We suggest that many oxidative coupling products, triggered by initial radical scavenging, may not have a function in se, but could potentially be enzymatically recycled to effective antioxidants. We further discuss the wide structural variety created by multiple decorations (glycosylations, acylations, prenylations), the formation of high-molecular weight conjugates and polyesters, and the plasticity of the specialized metabolism. We draw attention to the need for untargeted methods to identify the complex, multiply decorated and conjugated compounds, in order to study the functioning of the plant specialized metabolome.
Collapse
Affiliation(s)
- Sandrien Desmet
- Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052 Gent, Belgium; (S.D.); (K.M.)
- Center for Plant Systems Biology, VIB, 9052 Gent, Belgium
| | - Kris Morreel
- Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052 Gent, Belgium; (S.D.); (K.M.)
- Center for Plant Systems Biology, VIB, 9052 Gent, Belgium
| | - Rebecca Dauwe
- Unité de Recherche Biologie des Plantes et Innovation (BIOPI), UMR Transfrontalière BioEcoAgro, Université de Picardie Jules Verne, 80000 Amiens, France
| |
Collapse
|
39
|
Álvarez-Lugo A, Becerra A. The Role of Gene Duplication in the Divergence of Enzyme Function: A Comparative Approach. Front Genet 2021; 12:641817. [PMID: 34335678 PMCID: PMC8318041 DOI: 10.3389/fgene.2021.641817] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Accepted: 06/21/2021] [Indexed: 11/13/2022] Open
Abstract
Gene duplication is a crucial process involved in the appearance of new genes and functions. It is thought to have played a major role in the growth of enzyme families and the expansion of metabolism at the biosphere's dawn and in recent times. Here, we analyzed paralogous enzyme content within each of the seven enzymatic classes for a representative sample of prokaryotes by a comparative approach. We found a high ratio of paralogs for three enzymatic classes: oxidoreductases, isomerases, and translocases, and within each of them, most of the paralogs belong to only a few subclasses. Our results suggest an intricate scenario for the evolution of prokaryotic enzymes, involving different fates for duplicated enzymes fixed in the genome, where around 20-40% of prokaryotic enzymes have paralogs. Intracellular organisms have a lesser ratio of duplicated enzymes, whereas free-living enzymes show the highest ratios. We also found that phylogenetically close phyla and some unrelated but with the same lifestyle share similar genomic and biochemical traits, which ultimately support the idea that gene duplication is associated with environmental adaptation.
Collapse
Affiliation(s)
- Alejandro Álvarez-Lugo
- Posgrado en Ciencias Biológicas, Universidad Nacional Autónoma de México, Mexico City, Mexico.,Facultad de Ciencias, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Arturo Becerra
- Facultad de Ciencias, Universidad Nacional Autónoma de México, Mexico City, Mexico
| |
Collapse
|
40
|
Abstract
Tremendous chemical diversity is the hallmark of plants and is supported by highly complex biochemical machinery. Plant metabolic enzymes originated and were transferred from eukaryotic and prokaryotic ancestors and further diversified by the unprecedented rates of gene duplication and functionalization experienced in land plants. Unlike microbes, which have frequent horizontal gene transfer events and multiple inputs of energy and organic carbon, land plants predominantly rely on organic carbon generated from CO2 and have experienced very few, if any, gene transfers during their recent evolutionary history. As such, plant metabolic networks have evolved in a stepwise manner and on existing networks under various evolutionary constraints. This review aims to take a broader view of plant metabolic evolution and lay a framework to further explore evolutionary mechanisms of the complex metabolic network. Understanding the underlying metabolic and genetic constraints is also an empirical prerequisite for rational engineering and redesigning of plant metabolic pathways.
Collapse
Affiliation(s)
- Hiroshi A Maeda
- Department of Botany, University of Wisconsin-Madison, Madison, Wisconsin 53706, USA;
| | - Alisdair R Fernie
- Max-Planck-Institut für Molekulare Pflanzenphysiologie, 14476 Potsdam-Golm, Germany;
| |
Collapse
|
41
|
Landis JB, Miller CM, Broz AK, Bennett AA, Carrasquilla-Garcia N, Cook DR, Last RL, Bedinger PA, Moghe GD. Migration through a Major Andean Ecogeographic Disruption as a Driver of Genetic and Phenotypic Diversity in a Wild Tomato Species. Mol Biol Evol 2021; 38:3202-3219. [PMID: 33822137 PMCID: PMC8321546 DOI: 10.1093/molbev/msab092] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Evolutionary dynamics at the population level play a central role in creating the diversity of life on our planet. In this study, we sought to understand the origins of such population-level variation in mating systems and defensive acylsugar chemistry in Solanum habrochaites—a wild tomato species found in diverse Andean habitats in Ecuador and Peru. Using Restriction-site-Associated-DNA-Sequencing (RAD-seq) of 50 S. habrochaites accessions, we identified eight population clusters generated via isolation and hybridization dynamics of 4–6 ancestral populations. Detailed characterization of mating systems of these clusters revealed emergence of multiple self-compatible (SC) groups from progenitor self-incompatible populations in the northern part of the species range. Emergence of these SC groups was also associated with fixation of deleterious alleles inactivating acylsugar acetylation. The Amotape-Huancabamba Zone—a geographical landmark in the Andes with high endemism and isolated microhabitats—was identified as a major driver of differentiation in the northern species range, whereas large geographical distances contributed to population structure and evolution of a novel SC group in the central and southern parts of the range, where the species was also inferred to have originated. Findings presented here highlight the role of the diverse ecogeography of Peru and Ecuador in generating population differentiation, and enhance our understanding of the microevolutionary processes that create biological diversity.
Collapse
Affiliation(s)
- Jacob B Landis
- Department of Botany and Plant Sciences, University of California, Riverside, Riverside, CA, USA.,Plant Biology Section, School of Integrative Plant Science, Cornell University, Ithaca, NY, USA
| | | | - Amanda K Broz
- Department of Biology, Colorado State University, Fort Collins, CO, USA
| | - Alexandra A Bennett
- Plant Biology Section, School of Integrative Plant Science, Cornell University, Ithaca, NY, USA
| | | | - Douglas R Cook
- Department of Plant Pathology, University of California, Davis, Davis, CA, USA
| | - Robert L Last
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI, USA.,Department of Plant Biology, Michigan State University, East Lansing, MI, USA
| | | | - Gaurav D Moghe
- Plant Biology Section, School of Integrative Plant Science, Cornell University, Ithaca, NY, USA.,Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI, USA
| |
Collapse
|
42
|
Oshikiri H, Watanabe B, Yamamoto H, Yazaki K, Takanashi K. Two BAHD Acyltransferases Catalyze the Last Step in the Shikonin/Alkannin Biosynthetic Pathway. PLANT PHYSIOLOGY 2020; 184:753-761. [PMID: 32727911 PMCID: PMC7536692 DOI: 10.1104/pp.20.00207] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2020] [Accepted: 07/24/2020] [Indexed: 05/28/2023]
Abstract
Several Boraginaceae plants produce biologically active red naphthoquinone pigments, derivatives of the enantiomers shikonin and alkannin, which vary in acyl groups on their side chains. Compositions of shikonin/alkannin derivatives vary in plant species, but the mechanisms generating the diversity of shikonin/alkannin derivatives are largely unknown. This study describes the identification and characterization of two BAHD acyltransferases, shikonin O-acyltransferase (LeSAT1) and alkannin O-acyltransferase (LeAAT1), from Lithospermum erythrorhizon, a medicinal plant in the family Boraginaceae that primarily produces the shikonin/alkannin derivatives acetylshikonin and β-hydroxyisovalerylshikonin. Enzyme assays using Escherichia coli showed that the acylation activity of LeSAT1 was specific to shikonin, whereas the acylation activity of LeAAT1 was specific to alkannin. Both enzymes recognized acetyl-CoA, isobutyryl-CoA, and isovaleryl-CoA as acyl donors to produce their corresponding shikonin/alkannin derivatives, with both enzymes showing the highest activity for acetyl-CoA. These findings were consistent with the composition of shikonin/alkannin derivatives in intact L erythrorhizon plants and cell cultures. Genes encoding both enzymes were preferentially expressed in the roots and cell cultures in the dark in pigment production medium M9, conditions associated with shikonin/alkannin production. These results indicated that LeSAT1 and LeAAT1 are enantiomer-specific acyltransferases that generate various shikonin/alkannin derivatives.
Collapse
Affiliation(s)
- Haruka Oshikiri
- Department of Biology, Faculty of Science, Shinshu University, Nagano 390-8621, Japan
| | - Bunta Watanabe
- Institute for Chemical Research, Kyoto University, Kyoto 611-0011, Japan
| | - Hirobumi Yamamoto
- Department of Applied Biology, Faculty of Life Sciences, Toyo University, Gunma 374-0193, Japan
| | - Kazufumi Yazaki
- Research Institute for Sustainable Humanosphere, Kyoto University, Kyoto 611-0011, Japan
| | - Kojiro Takanashi
- Department of Biology, Faculty of Science, Shinshu University, Nagano 390-8621, Japan
| |
Collapse
|
43
|
Balyan S, Rao S, Jha S, Bansal C, Das JR, Mathur S. Characterization of novel regulators for heat stress tolerance in tomato from Indian sub-continent. PLANT BIOTECHNOLOGY JOURNAL 2020; 18:2118-2132. [PMID: 32163647 PMCID: PMC7540533 DOI: 10.1111/pbi.13371] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/31/2019] [Revised: 02/19/2020] [Accepted: 02/26/2020] [Indexed: 05/03/2023]
Abstract
The footprint of tomato cultivation, a cool region crop that exhibits heat stress (HS) sensitivity, is increasing in the tropics/sub-tropics. Knowledge of novel regulatory hot spots from varieties growing in the Indian sub-continent climatic zones could be vital for developing HS-resilient crops. Comparative transcriptome-wide signatures of a tolerant (CLN1621L) and sensitive (CA4) cultivar pair shortlisted from a pool of varieties exhibiting variable thermo-sensitivity using physiological-, survival- and yield-related traits revealed redundant to cultivar-specific HS regulation. The antagonistically expressing genes encode enzymes and proteins that have roles in plant defence and abiotic stresses. Functional characterization of three antagonistic genes by overexpression and silencing established Solyc09g014280 (Acylsugar acyltransferase) and Solyc07g056570 (Notabilis) that are up-regulated in tolerant cultivar, as positive regulators of HS tolerance and Solyc03g020030 (Pin-II proteinase inhibitor), that are down-regulated in CLN1621L, as negative regulator of thermotolerance. Transcriptional assessment of promoters of these genes by SNPs in stress-responsive cis-elements and promoter swapping experiments in opposite cultivar background showed inherent cultivar-specific orchestration of transcription factors in regulating transcription. Moreover, overexpression of three ethylene response transcription factors (ERF.C1/F4/F5) also improved HS tolerance in tomato. This study identifies several novel HS tolerance genes and provides proof of their utility in tomato thermotolerance.
Collapse
Affiliation(s)
- Sonia Balyan
- National Institute of Plant Genome ResearchNew DelhiIndia
| | - Sombir Rao
- National Institute of Plant Genome ResearchNew DelhiIndia
| | - Sarita Jha
- National Institute of Plant Genome ResearchNew DelhiIndia
| | - Chandni Bansal
- National Institute of Plant Genome ResearchNew DelhiIndia
| | | | - Saloni Mathur
- National Institute of Plant Genome ResearchNew DelhiIndia
| |
Collapse
|
44
|
Tohge T, Scossa F, Wendenburg R, Frasse P, Balbo I, Watanabe M, Alseekh S, Jadhav SS, Delfin JC, Lohse M, Giavalisco P, Usadel B, Zhang Y, Luo J, Bouzayen M, Fernie AR. Exploiting Natural Variation in Tomato to Define Pathway Structure and Metabolic Regulation of Fruit Polyphenolics in the Lycopersicum Complex. MOLECULAR PLANT 2020; 13:1027-1046. [PMID: 32305499 DOI: 10.1016/j.molp.2020.04.004] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2019] [Revised: 02/01/2020] [Accepted: 04/11/2020] [Indexed: 05/10/2023]
Abstract
While the structures of plant primary metabolic pathways are generally well defined and highly conserved across species, those defining specialized metabolism are less well characterized and more highly variable across species. In this study, we investigated polyphenolic metabolism in the lycopersicum complex by characterizing the underlying biosynthetic and decorative reactions that constitute the metabolic network of polyphenols across eight different species of tomato. For this purpose, GC-MS- and LC-MS-based metabolomics of different tissues of Solanum lycopersicum and wild tomato species were carried out, in concert with the evaluation of cross-hybridized microarray data for MapMan-based transcriptomic analysis, and publicly available RNA-sequencing data for annotation of biosynthetic genes. The combined data were used to compile species-specific metabolic networks of polyphenolic metabolism, allowing the establishment of an entire pan-species biosynthetic framework as well as annotation of the functions of decoration enzymes involved in the formation of metabolic diversity of the flavonoid pathway. The combined results are discussed in the context of the current understanding of tomato flavonol biosynthesis as well as a global view of metabolic shifts during fruit ripening. Our results provide an example as to how large-scale biology approaches can be used for the definition and refinement of large specialized metabolism pathways.
Collapse
Affiliation(s)
- Takayuki Tohge
- Max-Planck-Institut für Molekulare Pflanzenphysiologie, Am Muehlenberg 1, 14476 Potsdam-Golm, Germany; Graduate School of Biological Science, Nara Institute of Science and Technology, Ikoma 630-0192 Japan
| | - Federico Scossa
- Max-Planck-Institut für Molekulare Pflanzenphysiologie, Am Muehlenberg 1, 14476 Potsdam-Golm, Germany; Council for Agricultural Research and Economics (CREA), Research Centre for Genomics and Bioinformatics, via Ardeatina 546 00178 Rome, Italy
| | - Regina Wendenburg
- Max-Planck-Institut für Molekulare Pflanzenphysiologie, Am Muehlenberg 1, 14476 Potsdam-Golm, Germany
| | - Pierre Frasse
- Université de Toulouse, INP-ENSA Toulouse, Génomique et Biotechnologie des Fruits, Castanet-Tolosan 31326, France
| | - Ilse Balbo
- Max-Planck-Institut für Molekulare Pflanzenphysiologie, Am Muehlenberg 1, 14476 Potsdam-Golm, Germany
| | - Mutsumi Watanabe
- Max-Planck-Institut für Molekulare Pflanzenphysiologie, Am Muehlenberg 1, 14476 Potsdam-Golm, Germany; Graduate School of Biological Science, Nara Institute of Science and Technology, Ikoma 630-0192 Japan
| | - Saleh Alseekh
- Max-Planck-Institut für Molekulare Pflanzenphysiologie, Am Muehlenberg 1, 14476 Potsdam-Golm, Germany; Institute of Plant Systems Biology, 4000 Plovdiv, Bulgaria
| | - Sagar Sudam Jadhav
- Max-Planck-Institut für Molekulare Pflanzenphysiologie, Am Muehlenberg 1, 14476 Potsdam-Golm, Germany
| | - Jay C Delfin
- Graduate School of Biological Science, Nara Institute of Science and Technology, Ikoma 630-0192 Japan
| | - Marc Lohse
- Max-Planck-Institut für Molekulare Pflanzenphysiologie, Am Muehlenberg 1, 14476 Potsdam-Golm, Germany
| | - Patrick Giavalisco
- Max-Planck-Institut für Molekulare Pflanzenphysiologie, Am Muehlenberg 1, 14476 Potsdam-Golm, Germany; Max Planck Institute for Biology of Ageing, Joseph Stelzmann Strasse 9b, 50931 Cologne, Germany
| | - Bjoern Usadel
- Max-Planck-Institut für Molekulare Pflanzenphysiologie, Am Muehlenberg 1, 14476 Potsdam-Golm, Germany; Institute of Botany and Molecular Genetics, BioSC, RWTH Aachen University, 52056 Aachen, Germany
| | - Youjun Zhang
- Max-Planck-Institut für Molekulare Pflanzenphysiologie, Am Muehlenberg 1, 14476 Potsdam-Golm, Germany; Institute of Plant Systems Biology, 4000 Plovdiv, Bulgaria
| | - Jie Luo
- National Key Laboratory of Crop Genetic Improvement and National Center of Plant Gene Research (Wuhan), Huazhong Agricultural University, Wuhan 430070, China
| | - Mondher Bouzayen
- Université de Toulouse, INP-ENSA Toulouse, Génomique et Biotechnologie des Fruits, Castanet-Tolosan 31326, France
| | - Alisdair R Fernie
- Max-Planck-Institut für Molekulare Pflanzenphysiologie, Am Muehlenberg 1, 14476 Potsdam-Golm, Germany; Institute of Plant Systems Biology, 4000 Plovdiv, Bulgaria.
| |
Collapse
|
45
|
Chang AX, Chen B, Yang AG, Hu RS, Feng QF, Chen M, Yang XN, Luo CG, Li YY, Wang YY. The trichome-specific acetolactate synthase NtALS1 gene, is involved in acylsugar biosynthesis in tobacco (Nicotiana tabacum L.). PLANTA 2020; 252:13. [PMID: 32621079 DOI: 10.1007/s00425-020-03418-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Accepted: 06/26/2020] [Indexed: 06/11/2023]
Abstract
MAIN CONCLUSION NtALS1 is specifically expressed in glandular trichomes, and can improve the content of acylsugars in tobacco. ABTRACT The glandular trichomes of many species in the Solanaceae family play an important role in plant defense. These epidermal outgrowths exhibit specialized secondary metabolism, including the production of structurally diverse acylsugars that function in defense against insects and have substantial developmental potential for commercial uses. However, our current understanding of genes involved in acyl chain biosynthesis of acylsugars remains poor in tobacco. In this study, we identified three acetolactate synthase (ALS) genes in tobacco through homology-based gene prediction using Arabidopsis ALS. Quantitative real-time PCR (qRT-PCR) and tissue distribution analyses suggested that NtALS1 was highly expressed in the tips of glandular trichomes. Subcellular localization analysis showed that the NtALS1 localized to the chloroplast. Moreover, in the wild-type K326 variety background, we generated two ntals1 loss-of-function mutants using the CRISPR-Cas9 system. Acylsugars contents in the two ntals1 mutants were significantly lower than those in the wild type. Through phylogenetic tree analysis, we also identified NtALS1 orthologs that may be involved in acylsugar biosynthesis in other Solanaceae species. Taken together, these findings indicate a functional role for NtALS1 in acylsugar biosynthesis in tobacco.
Collapse
Affiliation(s)
- Ai-Xia Chang
- Tobacco Research Institute, Chinese Academy of Agricultural Sciences, Qingdao, China
| | - Biao Chen
- Tobacco Research Institute, Chinese Academy of Agricultural Sciences, Qingdao, China
| | - Ai-Guo Yang
- Tobacco Research Institute, Chinese Academy of Agricultural Sciences, Qingdao, China
| | - Ri-Sheng Hu
- Hunan Tobacco Research Institute, Changsha, China
| | - Quan-Fu Feng
- Tobacco Research Institute, Chinese Academy of Agricultural Sciences, Qingdao, China
| | - Ming Chen
- Tobacco Research Institute, Chinese Academy of Agricultural Sciences, Qingdao, China
| | - Xiao-Ning Yang
- Tobacco Research Institute, Chinese Academy of Agricultural Sciences, Qingdao, China
| | - Cheng-Gang Luo
- Tobacco Research Institute, Chinese Academy of Agricultural Sciences, Qingdao, China
| | - Yang-Yang Li
- Hunan Tobacco Research Institute, Changsha, China.
| | - Yuan-Ying Wang
- Tobacco Research Institute, Chinese Academy of Agricultural Sciences, Qingdao, China.
| |
Collapse
|
46
|
Fan P, Wang P, Lou YR, Leong BJ, Moore BM, Schenck CA, Combs R, Cao P, Brandizzi F, Shiu SH, Last RL. Evolution of a plant gene cluster in Solanaceae and emergence of metabolic diversity. eLife 2020; 9:e56717. [PMID: 32613943 PMCID: PMC7386920 DOI: 10.7554/elife.56717] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2020] [Accepted: 07/01/2020] [Indexed: 12/15/2022] Open
Abstract
Plants produce phylogenetically and spatially restricted, as well as structurally diverse specialized metabolites via multistep metabolic pathways. Hallmarks of specialized metabolic evolution include enzymatic promiscuity and recruitment of primary metabolic enzymes and examples of genomic clustering of pathway genes. Solanaceae glandular trichomes produce defensive acylsugars, with sidechains that vary in length across the family. We describe a tomato gene cluster on chromosome 7 involved in medium chain acylsugar accumulation due to trichome specific acyl-CoA synthetase and enoyl-CoA hydratase genes. This cluster co-localizes with a tomato steroidal alkaloid gene cluster and is syntenic to a chromosome 12 region containing another acylsugar pathway gene. We reconstructed the evolutionary events leading to this gene cluster and found that its phylogenetic distribution correlates with medium chain acylsugar accumulation across the Solanaceae. This work reveals insights into the dynamics behind gene cluster evolution and cell-type specific metabolite diversity.
Collapse
Affiliation(s)
- Pengxiang Fan
- Department of Biochemistry and Molecular Biology, Michigan State UniversityEast LansingUnited States
| | - Peipei Wang
- Department of Plant Biology, Michigan State UniversityEast LansingUnited States
| | - Yann-Ru Lou
- Department of Biochemistry and Molecular Biology, Michigan State UniversityEast LansingUnited States
| | - Bryan J Leong
- Department of Plant Biology, Michigan State UniversityEast LansingUnited States
| | - Bethany M Moore
- Department of Plant Biology, Michigan State UniversityEast LansingUnited States
- University of WisconsinMadisonUnited States
| | - Craig A Schenck
- Department of Biochemistry and Molecular Biology, Michigan State UniversityEast LansingUnited States
| | - Rachel Combs
- Division of Biological Sciences, University of MissouriColumbusUnited States
| | - Pengfei Cao
- Department of Plant Biology, Michigan State UniversityEast LansingUnited States
- MSU-DOE Plant Research Laboratory, Michigan State UniversityEast LansingUnited States
| | - Federica Brandizzi
- Department of Plant Biology, Michigan State UniversityEast LansingUnited States
- MSU-DOE Plant Research Laboratory, Michigan State UniversityEast LansingUnited States
| | - Shin-Han Shiu
- Department of Plant Biology, Michigan State UniversityEast LansingUnited States
- Department of Computational Mathematics, Science, and Engineering, Michigan State UniversityEast LansingUnited States
| | - Robert L Last
- Department of Biochemistry and Molecular Biology, Michigan State UniversityEast LansingUnited States
- Department of Plant Biology, Michigan State UniversityEast LansingUnited States
| |
Collapse
|
47
|
Mihaylova-Kroumova AB, Artiouchine I, Korenkov VD, Wagner GJ. Patterns of inheritance of acylsugar acyl groups in selected interspecific hybrids of genus Nicotiana. JOURNAL OF PLANT RESEARCH 2020; 133:509-523. [PMID: 32277383 DOI: 10.1007/s10265-020-01188-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2019] [Accepted: 04/02/2020] [Indexed: 05/26/2023]
Abstract
Glandular trichomes on the surface of Solanaceae species produce acyl sugars that are species-, and cultivar-specific. Acyl sugars are known to possess insecticidal, antibiotic, and hormone-like properties, and as such have great potential as a class of naturally occurring pesticides and antibiotics. The objective of this work was to analyze the acyl composition of acyl sugars in the leaf trichome exudate from selected Nicotiana species and to follow the inheritance of acyl content in their hybrids. Trichome exudates were collected, and the acyl profiles of acyl sugars were identified via GC-MS. The variations in acyl group inheritance in the hybrids (a single parent resemblance, missing, complementary, and novel groups) matched the patterns described in the literature for a variety of secondary metabolites. However, we did not find a complementation of major parental acyl groups. Instead, in some hybrids we observed a dynamic change in the proportions of acyl groups, distinguishing the acyl group profiles as novel. We observed paternal (i.e. N. tabacum cv. Turkish Samsun × N. benthamiana hybrids) and maternal (i.e. N. tabacum cv. Samsun-nn × N. otophora) inheritance patterns, novel acyl profiles (N. excelsior hybrids), and missing acyl groups (N. excelsiana). Selective inheritance of some acyl groups in the hybrids of N. benthamiana (4- and 5-methylheptanoic isomers) or N. alata (octanoate) was found. Suggestions are given to explain certain patterns of inheritance. The data presented here contribute to the body of knowledge about the effect of interspecific hybridization on the secondary metabolites by including acylsugar acyl groups that have not been studied previously.
Collapse
Affiliation(s)
- Antoaneta B Mihaylova-Kroumova
- Kentucky Tobacco Research and Development Center, College of Agriculture, University of Kentucky, 1401 University Dr., Lexington, KY, 40546-0236, USA.
| | - Ivan Artiouchine
- Kentucky Tobacco Research and Development Center, College of Agriculture, University of Kentucky, 1401 University Dr., Lexington, KY, 40546-0236, USA
| | - Victor D Korenkov
- Kentucky Tobacco Research and Development Center, College of Agriculture, University of Kentucky, 1401 University Dr., Lexington, KY, 40546-0236, USA
| | - George J Wagner
- Kentucky Tobacco Research and Development Center, College of Agriculture, University of Kentucky, 1401 University Dr., Lexington, KY, 40546-0236, USA
| |
Collapse
|
48
|
Leong BJ, Hurney SM, Fiesel PD, Moghe GD, Jones AD, Last RL. Specialized Metabolism in a Nonmodel Nightshade: Trichome Acylinositol Biosynthesis. PLANT PHYSIOLOGY 2020; 183:915-924. [PMID: 32354879 PMCID: PMC7333698 DOI: 10.1104/pp.20.00276] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2020] [Accepted: 04/15/2020] [Indexed: 05/13/2023]
Abstract
Plants make many biologically active, specialized metabolites, which vary in structure, biosynthesis, and the processes they influence. An increasing number of these compounds are documented to protect plants from insects, pathogens, or herbivores or to mediate interactions with beneficial organisms, including pollinators and nitrogen-fixing microbes. Acylsugars, one class of protective compounds, are made in glandular trichomes of plants across the Solanaceae family. While most described acylsugars are acylsucroses, published examples also include acylsugars with hexose cores. The South American fruit crop naranjilla (lulo; Solanum quitoense) produces acylsugars containing a myoinositol core. We identified an enzyme that acetylates triacylinositols, a function homologous to the last step in the acylsucrose biosynthetic pathway of tomato (Solanum lycopersicum). Our analysis reveals parallels between S. lycopersicum acylsucrose and S. quitoense acylinositol biosynthesis, suggesting a common evolutionary origin.
Collapse
Affiliation(s)
- Bryan J Leong
- Department of Plant Biology, Michigan State University, East Lansing, Michigan 48824
| | - Steven M Hurney
- Department of Chemistry, Michigan State University, East Lansing, Michigan 48824
| | - Paul D Fiesel
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, Michigan 48824
| | - Gaurav D Moghe
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, Michigan 48824
| | - A Daniel Jones
- Department of Chemistry, Michigan State University, East Lansing, Michigan 48824
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, Michigan 48824
| | - Robert L Last
- Department of Plant Biology, Michigan State University, East Lansing, Michigan 48824
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, Michigan 48824
| |
Collapse
|
49
|
Nakabayashi R, Saito K. Higher dimensional metabolomics using stable isotope labeling for identifying the missing specialized metabolism in plants. CURRENT OPINION IN PLANT BIOLOGY 2020; 55:84-92. [PMID: 32388402 DOI: 10.1016/j.pbi.2020.02.009] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/12/2019] [Revised: 02/27/2020] [Accepted: 02/27/2020] [Indexed: 05/08/2023]
Abstract
The exact mechanics of specialized metabolism and its importance throughout plant evolution remain mysterious. Specialized metabolites and their corresponding biosynthetic genes are crucial to understand the reason for the prevalence of certain metabolism. Even though mass spectrometry-based metabolomics has enabled us to acquire data about the structural properties of unknown specialized metabolites as well as known metabolites and their corresponding isomers/analogs, extensive analytical approaches are still required. Herein, we review the most advanced analytical approaches using stable isotope labeling that can be used to identify the unknown specialized metabolites.
Collapse
Affiliation(s)
- Ryo Nakabayashi
- RIKEN Center for Sustainable Resource Science, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama 230-0045, Japan.
| | - Kazuki Saito
- RIKEN Center for Sustainable Resource Science, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama 230-0045, Japan; Graduate School of Pharmaceutical Sciences, Chiba University, 1-8-1 Inohana, Chuo-ku, Chiba 260-8675, Japan; Plant Molecular Science Center, Chiba University, 1-8-1 Inohana, Chuo-ku, Chiba 260-8675, Japan.
| |
Collapse
|
50
|
Auber RP, Suttiyut T, McCoy RM, Ghaste M, Crook JW, Pendleton AL, Widhalm JR, Wisecaver JH. Hybrid de novo genome assembly of red gromwell ( Lithospermum erythrorhizon) reveals evolutionary insight into shikonin biosynthesis. HORTICULTURE RESEARCH 2020; 7:82. [PMID: 32528694 PMCID: PMC7261806 DOI: 10.1038/s41438-020-0301-9] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/07/2020] [Revised: 03/06/2020] [Accepted: 03/31/2020] [Indexed: 05/08/2023]
Abstract
Lithospermum erythrorhizon (red gromwell; zicao) is a medicinal and economically valuable plant belonging to the Boraginaceae family. Roots from L. erythrorhizon have been used for centuries based on the antiviral and wound-healing properties produced from the bioactive compound shikonin and its derivatives. More recently, shikonin, its enantiomer alkannin, and several other shikonin/alkannin derivatives have collectively emerged as valuable natural colorants and as novel drug scaffolds. Despite several transcriptomes and proteomes having been generated from L. erythrorhizon, a reference genome is still unavailable. This has limited investigations into elucidating the shikonin/alkannin pathway and understanding its evolutionary and ecological significance. In this study, we obtained a de novo genome assembly for L. erythrorhizon using a combination of Oxford Nanopore long-read and Illumina short-read sequencing technologies. The resulting genome is ∼367.41 Mb long, with a contig N50 size of 314.31 kb and 27,720 predicted protein-coding genes. Using the L. erythrorhizon genome, we identified several additional p-hydroxybenzoate:geranyltransferase (PGT) homologs and provide insight into their evolutionary history. Phylogenetic analysis of prenyltransferases suggests that PGTs originated in a common ancestor of modern shikonin/alkannin-producing Boraginaceous species, likely from a retrotransposition-derived duplication event of an ancestral prenyltransferase gene. Furthermore, knocking down expression of LePGT1 in L. erythrorhizon hairy root lines revealed that LePGT1 is predominantly responsible for shikonin production early in culture establishment. Taken together, the reference genome reported in this study and the provided analysis on the evolutionary origin of shikonin/alkannin biosynthesis will guide elucidation of the remainder of the pathway.
Collapse
Affiliation(s)
- Robert P. Auber
- Department of Biochemistry, Purdue University, West Lafayette, IN 47907 USA
- Purdue Center for Plant Biology, Purdue University, West Lafayette, IN 47907 USA
| | - Thiti Suttiyut
- Purdue Center for Plant Biology, Purdue University, West Lafayette, IN 47907 USA
- Department of Horticulture and Landscape Architecture, Purdue University, West Lafayette, IN 47907 USA
| | - Rachel M. McCoy
- Purdue Center for Plant Biology, Purdue University, West Lafayette, IN 47907 USA
- Department of Horticulture and Landscape Architecture, Purdue University, West Lafayette, IN 47907 USA
| | - Manoj Ghaste
- Purdue Center for Plant Biology, Purdue University, West Lafayette, IN 47907 USA
- Department of Horticulture and Landscape Architecture, Purdue University, West Lafayette, IN 47907 USA
| | - Joseph W. Crook
- Purdue Center for Plant Biology, Purdue University, West Lafayette, IN 47907 USA
- Department of Horticulture and Landscape Architecture, Purdue University, West Lafayette, IN 47907 USA
| | - Amanda L. Pendleton
- Department of Biochemistry, Purdue University, West Lafayette, IN 47907 USA
- Purdue Center for Plant Biology, Purdue University, West Lafayette, IN 47907 USA
| | - Joshua R. Widhalm
- Purdue Center for Plant Biology, Purdue University, West Lafayette, IN 47907 USA
- Department of Horticulture and Landscape Architecture, Purdue University, West Lafayette, IN 47907 USA
| | - Jennifer H. Wisecaver
- Department of Biochemistry, Purdue University, West Lafayette, IN 47907 USA
- Purdue Center for Plant Biology, Purdue University, West Lafayette, IN 47907 USA
| |
Collapse
|