1
|
Záhonová K, Kaur H, Furgason CC, Smirnova AV, Dunfield PF, Dacks JB. Comparative Analysis of Protist Communities in Oilsands Tailings Using Amplicon Sequencing and Metagenomics. Environ Microbiol 2025; 27:e70029. [PMID: 39797470 PMCID: PMC11724239 DOI: 10.1111/1462-2920.70029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Revised: 11/05/2024] [Accepted: 11/29/2024] [Indexed: 01/13/2025]
Abstract
The Canadian province of Alberta contains substantial oilsands reservoirs, consisting of bitumen, clay and sand. Extracting oil involves separating bitumen from inorganic particles using hot water and chemical diluents, resulting in liquid tailings waste with ecotoxicologically significant compounds. Ongoing efforts aim to reclaim tailings-affected areas, with protist colonisation serving as one assessment method of reclamation progress. Oilsands-associated protist communities have mainly been evaluated using amplicon sequencing of the 18S rRNA V4 region; however, this barcode may overlook important protist groups. This study examined how community assessment methods between the V4 and V9 regions differ in representing protist diversity across four oilsands-associated environments. The V9 barcode identified more operational taxonomical units (OTUs) for Discoba, Metamonada and Amoebozoa compared with the V4. A comparative shotgun metagenomics approach revealed few eukaryotic contigs but did recover a complete Paramicrosporidia mitochondrial genome, only the second publicly available from microsporidians. Both V4 and V9 markers were informative for assessing community diversity in oilsands-associated environments and are most effective when combined for a comprehensive taxonomic estimate, particularly in anoxic environments.
Collapse
Affiliation(s)
- Kristína Záhonová
- Division of Infectious Diseases, Department of Medicine, and Department of Biological SciencesUniversity of AlbertaEdmontonAlbertaCanada
- Institute of Parasitology, Biology CentreCzech Academy of SciencesČeské BudějoviceCzech Republic
- Department of Parasitology, Faculty of ScienceCharles UniversityVestecCzech Republic
- Life Science Research Centre, Faculty of ScienceUniversity of OstravaOstravaCzech Republic
| | - Harpreet Kaur
- Division of Infectious Diseases, Department of Medicine, and Department of Biological SciencesUniversity of AlbertaEdmontonAlbertaCanada
| | | | - Angela V. Smirnova
- Department of Biological SciencesUniversity of CalgaryCalgaryAlbertaCanada
| | - Peter F. Dunfield
- Department of Biological SciencesUniversity of CalgaryCalgaryAlbertaCanada
| | - Joel B. Dacks
- Division of Infectious Diseases, Department of Medicine, and Department of Biological SciencesUniversity of AlbertaEdmontonAlbertaCanada
- Institute of Parasitology, Biology CentreCzech Academy of SciencesČeské BudějoviceCzech Republic
| |
Collapse
|
2
|
Ang'ang'o LM, Herren JK, Tastan Bishop Ö. Bioinformatics analysis of the Microsporidia sp. MB genome: a malaria transmission-blocking symbiont of the Anopheles arabiensis mosquito. BMC Genomics 2024; 25:1132. [PMID: 39578727 PMCID: PMC11585130 DOI: 10.1186/s12864-024-11046-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Accepted: 11/13/2024] [Indexed: 11/24/2024] Open
Abstract
BACKGROUND The use of microsporidia as a disease-transmission-blocking tool has garnered significant attention. Microsporidia sp. MB, known for its ability to block malaria development in mosquitoes, is an optimal candidate for supplementing malaria vector control methods. This symbiont, found in Anopheles mosquitoes, can be transmitted both vertically and horizontally with minimal effects on its mosquito host. Its genome, recently sequenced from An. arabiensis, comprises a compact 5.9 Mbp. RESULTS Here, we analyze the Microsporidia sp. MB genome, highlighting its major genomic features, gene content, and protein function. The genome contains 2247 genes, predominantly encoding enzymes. Unlike other members of the Enterocytozoonida group, Microsporidia sp. MB has retained most of the genes in the glycolytic pathway. Genes involved in RNA interference (RNAi) were also identified, suggesting a mechanism for host immune suppression. Importantly, meiosis-related genes (MRG) were detected, indicating potential for sexual reproduction in this organism. Comparative analyses revealed similarities with its closest relative, Vittaforma corneae, despite key differences in host interactions. CONCLUSION This study provides an in-depth analysis of the newly sequenced Microsporidia sp. MB genome, uncovering its unique adaptations for intracellular parasitism, including retention of essential metabolic pathways and RNAi machinery. The identification of MRGs suggests the possibility of sexual reproduction, offering insights into the symbiont's evolutionary strategies. Establishing a reference genome for Microsporidia sp. MB sets the foundation for future studies on its role in malaria transmission dynamics and host-parasite interactions.
Collapse
Affiliation(s)
- Lilian Mbaisi Ang'ang'o
- Department of Biochemistry, Microbiology, and Bioinformatics, Research Unit in Bioinformatics (RUBi), Rhodes University, Makhanda, 6140, South Africa
- International Centre of Insect Physiology and Ecology (icipe), P.O. Box 30772-00100, Nairobi, Kenya
| | - Jeremy Keith Herren
- International Centre of Insect Physiology and Ecology (icipe), P.O. Box 30772-00100, Nairobi, Kenya.
| | - Özlem Tastan Bishop
- Department of Biochemistry, Microbiology, and Bioinformatics, Research Unit in Bioinformatics (RUBi), Rhodes University, Makhanda, 6140, South Africa.
| |
Collapse
|
3
|
Bartošová-Sojková P, Butenko A, Richtová J, Fiala I, Oborník M, Lukeš J. Inside the Host: Understanding the Evolutionary Trajectories of Intracellular Parasitism. Annu Rev Microbiol 2024; 78:39-59. [PMID: 38684082 DOI: 10.1146/annurev-micro-041222-025305] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/02/2024]
Abstract
This review explores the origins of intracellular parasitism, an intriguing facet of symbiosis, where one organism harms its host, potentially becoming deadly. We focus on three distantly related groups of single-celled eukaryotes, namely Kinetoplastea, Holomycota, and Apicomplexa, which contain multiple species-rich lineages of intracellular parasites. Using comparative analysis of morphological, physiological, and molecular features of kinetoplastids, microsporidians, and sporozoans, as well as their closest free-living relatives, we reveal the evolutionary trajectories and adaptations that enabled the transition to intracellular parasitism. Intracellular parasites have evolved various efficient mechanisms for host acquisition and exploitation, allowing them to thrive in a variety of hosts. Each group has developed unique features related to the parasitic lifestyle, involving dedicated protein families associated with host cell invasion, survival, and exit. Indeed, parallel evolution has led to distinct lineages of intracellular parasites employing diverse traits and approaches to achieve similar outcomes.
Collapse
Affiliation(s)
- Pavla Bartošová-Sojková
- Institute of Parasitology, Biology Centre, Czech Academy of Sciences, České Budějovice, Czech Republic; , ,
| | - Anzhelika Butenko
- Life Science Research Centre, Faculty of Science, University of Ostrava, Ostrava, Czech Republic
- Faculty of Science, University of South Bohemia in České Budějovice, České Budějovice, Czech Republic
- Institute of Parasitology, Biology Centre, Czech Academy of Sciences, České Budějovice, Czech Republic; , ,
| | - Jitka Richtová
- Institute of Parasitology, Biology Centre, Czech Academy of Sciences, České Budějovice, Czech Republic; , ,
| | - Ivan Fiala
- Faculty of Science, University of South Bohemia in České Budějovice, České Budějovice, Czech Republic
- Institute of Parasitology, Biology Centre, Czech Academy of Sciences, České Budějovice, Czech Republic; , ,
| | - Miroslav Oborník
- Faculty of Science, University of South Bohemia in České Budějovice, České Budějovice, Czech Republic
- Institute of Parasitology, Biology Centre, Czech Academy of Sciences, České Budějovice, Czech Republic; , ,
| | - Julius Lukeš
- Faculty of Science, University of South Bohemia in České Budějovice, České Budějovice, Czech Republic
- Institute of Parasitology, Biology Centre, Czech Academy of Sciences, České Budějovice, Czech Republic; , ,
| |
Collapse
|
4
|
Gross M, Rajter Ľ, Mahé F, Bass D, Berney C, Henry N, de Vargas C, Dunthorn M. O short-branch Microsporidia, where art thou? Identifying diversity hotspots for future sampling. Eur J Protistol 2024; 96:126119. [PMID: 39396432 DOI: 10.1016/j.ejop.2024.126119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Revised: 09/23/2024] [Accepted: 09/24/2024] [Indexed: 10/15/2024]
Abstract
Short-branch Microsporidia were previously shown to form a basal grade within the expanded Microsporidia clade and to branch near the classical, long-branch Microsporidia. Although they share simpler versions of some morphological characteristics, they do not show accelerated evolutionary rates, making them ideal candidates to study the evolutionary trajectories that have led to long-branch microsporidian unique characteristics. However, most sequences assigned to the short-branch Microsporidia are undescribed, novel environmental lineages for which the identification requires knowledge of where they can be found. To direct future isolation, we used the EukBank database of the global UniEuk initiative that contains the majority of the publicly available environmental V4 SSU rRNA gene sequences of protists. The curated OTU table and corresponding metadata were used to evaluate the occurrence of short-branch Microsporidia across freshwater, hypersaline, marine benthic, marine pelagic, and terrestrial environments. Presence-absence analyses infer that short-branch Microsporidia are most abundant in freshwater and terrestrial environments, and alpha- and beta-diversity measures indicate that focusing our sampling effort on these two environments would cover a large part of their overall diversity. These results can be used to coordinate future isolation and sampling campaigns to better understand the enigmatic evolution of microsporidians' unique characteristics.
Collapse
Affiliation(s)
- Megan Gross
- Natural History Museum, University of Oslo, 0562 Oslo, Norway; Department of Ecology, University of Kaiserslautern-Landau RPTU, 67663 Kaiserslautern, Germany.
| | - Ľubomír Rajter
- Institute for Zoology, University of Cologne, 50923 Cologne, Germany
| | - Frédéric Mahé
- CIRAD, UMR PHIM, 34398 Montpellier, France; PHIM, Univ Montpellier, CIRAD, INRAE, Institut Agro, IRD, 34398 Montpellier, France
| | - David Bass
- Cefas, International Centre for Aquatic Animal Health, Weymouth, Dorset DT4 8UB, United Kingdom; Sustainable Aquaculture Futures, Biosciences, College of Life and Environmental Sciences, University of Exeter, Stocker Road, Exeter EX4 4QD, United Kingdom; Department of Life Sciences, The Natural History Museum, London SW7 5BD, United Kingdom
| | - Cédric Berney
- CNRS, Sorbonne Université, FR2424, ABiMS, Station Biologique de Roscoff, 29680 Roscoff, France; Sorbonne Université, CNRS, Station Biologique de Roscoff, UMR7144, ECOMAP, 29680 Roscoff, France
| | - Nicolas Henry
- CNRS, Sorbonne Université, FR2424, ABiMS, Station Biologique de Roscoff, 29680 Roscoff, France; Research Federation for the Study of Global Ocean Systems Ecology and Evolution, FR2022/Tara GOSEE, 75016 Paris, France
| | - Colomban de Vargas
- CNRS, Sorbonne Université, FR2424, ABiMS, Station Biologique de Roscoff, 29680 Roscoff, France; Sorbonne Université, CNRS, Station Biologique de Roscoff, UMR7144, ECOMAP, 29680 Roscoff, France
| | - Micah Dunthorn
- Natural History Museum, University of Oslo, 0562 Oslo, Norway
| |
Collapse
|
5
|
South LR, Hurdeal VG, Fast NM. Genomics and phylogenetic relationships of microsporidia and their relatives. J Eukaryot Microbiol 2024; 71:e13051. [PMID: 39079911 DOI: 10.1111/jeu.13051] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 06/28/2024] [Accepted: 07/02/2024] [Indexed: 11/20/2024]
Abstract
Microsporidia are intracellular parasites that all possess a unique infection apparatus involving a polar tube. Upon contact with a host cell, this tube forms the conduit through which the parasite enters the host. Infecting mostly animals, microsporidian species can be transmitted vertically or horizontally, and exert various effects on their hosts: infections range from being relatively benign to lethal. Microsporidian genomes possess highly divergent sequences and are often substantially reduced in size. Their divergent sequences and unique morphology created early challenges to our understanding of their phylogenetic position within the tree of eukaryotes. Over the last couple of decades, advances in both sequencing technology and phylogenetic methodology supported a clear relationship between microsporidia and fungi. However, the specifics of this relationship were muddied by the lack of known microsporidian relatives. With increased taxon discovery and the morphological and molecular characterization of microsporidia-like taxa, rozellids and aphelids, a better resolved picture is emerging. Here we review the history of microsporidian taxonomy and current status of genomics of microsporidia and their nearest relatives, with an aim to understand their morphological and metabolic differences, along with their evolutionary relationships.
Collapse
Affiliation(s)
- Lilith R South
- Biodiversity Research Centre, Department of Botany, University of British Columbia, Vancouver, British Columbia, Canada
| | - Vedprakash G Hurdeal
- Biodiversity Research Centre, Department of Botany, University of British Columbia, Vancouver, British Columbia, Canada
| | - Naomi M Fast
- Biodiversity Research Centre, Department of Botany, University of British Columbia, Vancouver, British Columbia, Canada
| |
Collapse
|
6
|
Deng Y, Chen G, Bao X, He J, Li Q. Characterization of the complete mitochondrial genome of Mucor indicus Lendn. 1930 (Mucorales: Mucoraceae), isolated from the wine fermentation system. Mitochondrial DNA B Resour 2024; 9:845-849. [PMID: 38939449 PMCID: PMC11210418 DOI: 10.1080/23802359.2024.2371376] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Accepted: 06/18/2024] [Indexed: 06/29/2024] Open
Abstract
Mucor indicus Lendn. 1930 has been widely used in food fermentation; however, its mitochondrial genome characteristics are not well understood. In this study, the complete mitochondrial genome of M. indicus was obtained, which was 61,400 bp in length with a GC content of 33%. The M. indicus mitochondrial genome was found to contain 14 core protein-coding genes, four free-standing ORFs, 18 intronic ORFs, 26 tRNAs, and two rRNA genes. Phylogenetic trees were generated for 25 early-differentiated fungi using the Bayesian inference (BI) method, which demonstrated that M. indicus is closely related to Mucor piriformis. This study provides useful information for the classification and evolution of Mucor species or other early-differentiated fungi.
Collapse
Affiliation(s)
- Yue Deng
- Luzhou Vocational and Technical College, Luzhou, P. R. China
| | - Guangjiu Chen
- Luzhou Vocational and Technical College, Luzhou, P. R. China
| | - Xuedong Bao
- Luzhou Vocational and Technical College, Luzhou, P. R. China
| | - Jie He
- Luzhou Vocational and Technical College, Luzhou, P. R. China
| | - Qiang Li
- School of Food and Biological Engineering, Chengdu University, Chengdu, P. R. China
| |
Collapse
|
7
|
Deng Y, Chen G, Bao X, He J, Li Q. Mitochondrial genomic characteristics and phylogenetic analysis of a brewing fungus, Rhizopus microsporus Tiegh. 1875 (Mucorales: Rhizopodaceae). Mitochondrial DNA B Resour 2024; 9:657-662. [PMID: 38774188 PMCID: PMC11107855 DOI: 10.1080/23802359.2024.2356133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Accepted: 05/12/2024] [Indexed: 05/24/2024] Open
Abstract
Rhizopus microsporus Tiegh. 1875 is widely used in a variety of industries, such as brewing, wine making, baking, and medicine production, as it has the capability to break down proteins and generate surface-active agents. To date, the mitochondrial genome features of early evolved fungi from the Rhizopus genus have not been extensively studied. Our research obtained a full mitochondrial genome of R. microsporus species, which was 43,837 bp in size and had a GC content of 24.93%. This genome contained 14 core protein-coding genes, 3 independent ORFs, 7 intronic ORFs, 24 tRNAs, and 2 rRNA genes. Through the use of the BI phylogenetic inference method, we were able to create phylogenetic trees for 25 early differentiation fungi which strongly supported the major clades; this indicated that R. microsporus is most closely related to Rhizopus oryzae.
Collapse
Affiliation(s)
- Yue Deng
- Luzhou Vocational and Technical College, Luzhou, Sichuan, P. R. China
| | - Guangjiu Chen
- Luzhou Vocational and Technical College, Luzhou, Sichuan, P. R. China
| | - Xuedong Bao
- Luzhou Vocational and Technical College, Luzhou, Sichuan, P. R. China
| | - Jie He
- Luzhou Vocational and Technical College, Luzhou, Sichuan, P. R. China
| | - Qiang Li
- School of Food and Biological Engineering, Chengdu University, Chengdu, Sichuan, P. R. China
| |
Collapse
|
8
|
Thomé PC, Irisarri I, Wolinska J, Monaghan MT, Strassert JFH. Single-cell genomics reveals new rozellid lineages and supports their sister relationship to Microsporidia. Biol Lett 2023; 19:20230398. [PMID: 38087939 PMCID: PMC10716661 DOI: 10.1098/rsbl.2023.0398] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Accepted: 11/20/2023] [Indexed: 12/18/2023] Open
Abstract
The phylum Rozellomycota has been proposed for a group of early-branching holomycotan lineages representing obligate parasites and hyperparasites of zoosporic fungi, oomycotes or phytoplankton. Given their predominantly intracellular lifestyle, rozellids are typically known from environmental ribosomal DNA data, except for the well-studied Rozella species. To date, the phylogenetic relationship between rozellids and microsporidians (Microsporidia) is not fully understood and most reliable hypotheses are based on phylogenomic analyses that incorporate the only publicly available rozellid genome of Rozella allomycis. Here, we provide genomic data of three new rozellid lineages obtained by single-cell sequencing from environmental samples and show with a phylogenomic approach that rozellids form a monophyletic group that is sister to microsporidians, corroborating the previously proposed phylum Rozellomycota. Whereas no mitochondrial genes coding for the respiratory Complex I could be found, we discovered a gene coding for a nucleotide phosphate transporter in one of the three draft genomes. The scattered absence of Complex I genes and scattered presence of nucleotide transporter genes across diverse microsporidian and rozellid lineages suggest that these adaptations to a parasitic lifestyle, which reduce the parasite's capability to synthesize ATP but enables it to steal ATP from its host, evolved independently in microsporidians and rozellids.
Collapse
Affiliation(s)
- Pauline C. Thomé
- Department of Evolutionary and Integrative Ecology, Leibniz Institute of Freshwater Ecology and Inland Fisheries (IGB), Berlin, Germany
| | - Iker Irisarri
- Section Phylogenomics, Centre for Molecular Biodiversity Research, Leibniz Institute for the Analysis of Biodiversity Change, Museum of Nature Hamburg, Hamburg, Germany
| | - Justyna Wolinska
- Department of Evolutionary and Integrative Ecology, Leibniz Institute of Freshwater Ecology and Inland Fisheries (IGB), Berlin, Germany
- Institut für Biologie, Freie Universität Berlin, Berlin, Germany
| | - Michael T. Monaghan
- Department of Evolutionary and Integrative Ecology, Leibniz Institute of Freshwater Ecology and Inland Fisheries (IGB), Berlin, Germany
- Institut für Biologie, Freie Universität Berlin, Berlin, Germany
| | - Jürgen F. H. Strassert
- Department of Evolutionary and Integrative Ecology, Leibniz Institute of Freshwater Ecology and Inland Fisheries (IGB), Berlin, Germany
| |
Collapse
|
9
|
Antao NV, Lam C, Davydov A, Riggi M, Sall J, Petzold C, Liang FX, Iwasa JH, Ekiert DC, Bhabha G. 3D reconstructions of parasite development and the intracellular niche of the microsporidian pathogen Encephalitozoon intestinalis. Nat Commun 2023; 14:7662. [PMID: 37996434 PMCID: PMC10667486 DOI: 10.1038/s41467-023-43215-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Accepted: 11/02/2023] [Indexed: 11/25/2023] Open
Abstract
Microsporidia are an early-diverging group of fungal pathogens with a wide host range. Several microsporidian species cause opportunistic infections in humans that can be fatal. As obligate intracellular parasites with highly reduced genomes, microsporidia are dependent on host metabolites for successful replication and development. Our knowledge of microsporidian intracellular development remains rudimentary, and our understanding of the intracellular niche occupied by microsporidia has relied on 2D TEM images and light microscopy. Here, we use serial block-face scanning electron microscopy (SBF-SEM) to capture 3D snapshots of the human-infecting species, Encephalitozoon intestinalis, within host cells. We track E. intestinalis development through its life cycle, which allows us to propose a model for how its infection organelle, the polar tube, is assembled de novo in developing spores. 3D reconstructions of parasite-infected cells provide insights into the physical interactions between host cell organelles and parasitophorous vacuoles, which contain the developing parasites. The host cell mitochondrial network is substantially remodeled during E. intestinalis infection, leading to mitochondrial fragmentation. SBF-SEM analysis shows changes in mitochondrial morphology in infected cells, and live-cell imaging provides insights into mitochondrial dynamics during infection. Our data provide insights into parasite development, polar tube assembly, and microsporidia-induced host mitochondria remodeling.
Collapse
Affiliation(s)
- Noelle V Antao
- Department of Cell Biology, New York University School of Medicine, New York, NY, USA
| | - Cherry Lam
- Department of Cell Biology, New York University School of Medicine, New York, NY, USA
| | - Ari Davydov
- Department of Cell Biology, New York University School of Medicine, New York, NY, USA
| | - Margot Riggi
- Department of Biochemistry, University of Utah, Salt Lake City, USA
| | - Joseph Sall
- Office of Science and Research Microscopy Laboratory, New York University School of Medicine, New York, NY, USA
| | - Christopher Petzold
- Office of Science and Research Microscopy Laboratory, New York University School of Medicine, New York, NY, USA
| | - Feng-Xia Liang
- Department of Cell Biology, New York University School of Medicine, New York, NY, USA
- Office of Science and Research Microscopy Laboratory, New York University School of Medicine, New York, NY, USA
| | - Janet H Iwasa
- Department of Biochemistry, University of Utah, Salt Lake City, USA
| | - Damian C Ekiert
- Department of Cell Biology, New York University School of Medicine, New York, NY, USA.
- Department of Microbiology, New York University School of Medicine, New York, NY, USA.
| | - Gira Bhabha
- Department of Cell Biology, New York University School of Medicine, New York, NY, USA.
| |
Collapse
|
10
|
Wadi L, El Jarkass HT, Tran TD, Islah N, Luallen RJ, Reinke AW. Genomic and phenotypic evolution of nematode-infecting microsporidia. PLoS Pathog 2023; 19:e1011510. [PMID: 37471459 PMCID: PMC10393165 DOI: 10.1371/journal.ppat.1011510] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Accepted: 06/24/2023] [Indexed: 07/22/2023] Open
Abstract
Microsporidia are a large phylum of intracellular parasites that can infect most types of animals. Species in the Nematocida genus can infect nematodes including Caenorhabditis elegans, which has become an important model to study mechanisms of microsporidia infection. To understand the genomic properties and evolution of nematode-infecting microsporidia, we sequenced the genomes of nine species of microsporidia, including two genera, Enteropsectra and Pancytospora, without any previously sequenced genomes. Core cellular processes, including metabolic pathways, are mostly conserved across genera of nematode-infecting microsporidia. Each species encodes unique proteins belonging to large gene families that are likely used to interact with host cells. Most strikingly, we observed one such family, NemLGF1, is present in both Nematocida and Pancytospora species, but not any other microsporidia. To understand how Nematocida phenotypic traits evolved, we measured the host range, tissue specificity, spore size, and polar tube length of several species in the genus. Our phylogenetic analysis shows that Nematocida is composed of two groups of species with distinct traits and that species with longer polar tubes infect multiple tissues. Together, our work details both genomic and trait evolution between related microsporidia species and provides a useful resource for further understanding microsporidia evolution and infection mechanisms.
Collapse
Affiliation(s)
- Lina Wadi
- Department of Molecular Genetics, University of Toronto, Toronto, Canada
| | | | - Tuan D Tran
- Department of Biology, San Diego State University, San Diego, California, United States of America
| | - Nizar Islah
- Department of Molecular Genetics, University of Toronto, Toronto, Canada
| | - Robert J Luallen
- Department of Biology, San Diego State University, San Diego, California, United States of America
| | - Aaron W Reinke
- Department of Molecular Genetics, University of Toronto, Toronto, Canada
| |
Collapse
|
11
|
An X, Han S, Ren X, Sichone J, Fan Z, Wu X, Zhang Y, Wang H, Cai W, Sun F. Succession of Fungal Community during Outdoor Deterioration of Round Bamboo. J Fungi (Basel) 2023; 9:691. [PMID: 37367627 DOI: 10.3390/jof9060691] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 06/09/2023] [Accepted: 06/14/2023] [Indexed: 06/28/2023] Open
Abstract
Bamboo's mechanical and aesthetic properties are significantly influenced by fungi. However, few studies have been conducted to investigate the structure and dynamics of fungal communities in bamboo during its natural deterioration. In this study, fungal community succession and characteristic variations of round bamboo in roofed and unroofed environments over a period of 13 weeks of deterioration were deciphered using high-throughput sequencing and multiple characterization methods. A total of 459 fungal Operational Taxonomic Units (OTUs) from eight phyla were identified. The fungal community's richness of roofed bamboo samples showed an increasing trend, whereas that of unroofed bamboo samples presented a declining trend during deterioration. Ascomycota and Basidiomycota were the dominant phyla throughout the deterioration process in two different environments: Basidiomycota was found to be an early colonizer of unroofed bamboo samples. Principal Coordinates Analysis (PCoA) analysis suggested that the deterioration time had a greater impact on fungal community variation compared to the exposure conditions. Redundancy analysis (RDA) further revealed that temperature was a major environmental factor that contributed to the variation in fungal communities. Additionally, the bamboo epidermis presented a descending total amount of cell wall components in both roofed and unroofed conditions. The correlation analysis between the fungal community and relative abundance of three major cell wall components elucidated that Cladosporium was negatively correlated with hemicellulose in roofed samples, whereas they presented a positive correlation with hemicellulose and a negative correlation with lignin in unroofed samples. Furthermore, the contact angle decreased during the deterioration process in the roofed as well as unroofed samples, which could arise from the degradation of lignin. Our findings provide novel insights into the fungal community succession on round bamboo during its natural deterioration and give useful information for round bamboo protection.
Collapse
Affiliation(s)
- Xiaojiao An
- School of Chemical and Materials Engineering, National Engineering & Technology Research Center for the Comprehensive Utilization of Wood-Based Resources, Zhejiang A&F University, Hangzhou 311300, China
| | - Shuaibo Han
- School of Chemical and Materials Engineering, National Engineering & Technology Research Center for the Comprehensive Utilization of Wood-Based Resources, Zhejiang A&F University, Hangzhou 311300, China
- Microbes and Insects Control Institute of Bio-Based Materials, Zhejiang A&F University, Hangzhou 311300, China
| | - Xin Ren
- School of Chemical and Materials Engineering, National Engineering & Technology Research Center for the Comprehensive Utilization of Wood-Based Resources, Zhejiang A&F University, Hangzhou 311300, China
| | - John Sichone
- School of Chemical and Materials Engineering, National Engineering & Technology Research Center for the Comprehensive Utilization of Wood-Based Resources, Zhejiang A&F University, Hangzhou 311300, China
| | - Zhiwei Fan
- School of Chemical and Materials Engineering, National Engineering & Technology Research Center for the Comprehensive Utilization of Wood-Based Resources, Zhejiang A&F University, Hangzhou 311300, China
| | - Xinxing Wu
- School of Chemical and Materials Engineering, National Engineering & Technology Research Center for the Comprehensive Utilization of Wood-Based Resources, Zhejiang A&F University, Hangzhou 311300, China
- Microbes and Insects Control Institute of Bio-Based Materials, Zhejiang A&F University, Hangzhou 311300, China
| | - Yan Zhang
- School of Chemical and Materials Engineering, National Engineering & Technology Research Center for the Comprehensive Utilization of Wood-Based Resources, Zhejiang A&F University, Hangzhou 311300, China
- Microbes and Insects Control Institute of Bio-Based Materials, Zhejiang A&F University, Hangzhou 311300, China
| | - Hui Wang
- School of Chemical and Materials Engineering, National Engineering & Technology Research Center for the Comprehensive Utilization of Wood-Based Resources, Zhejiang A&F University, Hangzhou 311300, China
- Microbes and Insects Control Institute of Bio-Based Materials, Zhejiang A&F University, Hangzhou 311300, China
| | - Wei Cai
- Anji Zhujing Bamboo Technology Co., Ltd., Huzhou 313300, China
| | - Fangli Sun
- School of Chemical and Materials Engineering, National Engineering & Technology Research Center for the Comprehensive Utilization of Wood-Based Resources, Zhejiang A&F University, Hangzhou 311300, China
- Microbes and Insects Control Institute of Bio-Based Materials, Zhejiang A&F University, Hangzhou 311300, China
| |
Collapse
|
12
|
Wan YC, Troemel ER, Reinke AW. Conservation of Nematocida microsporidia gene expression and host response in Caenorhabditis nematodes. PLoS One 2022; 17:e0279103. [PMID: 36534656 PMCID: PMC9762603 DOI: 10.1371/journal.pone.0279103] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Accepted: 11/30/2022] [Indexed: 12/24/2022] Open
Abstract
Microsporidia are obligate intracellular parasites that are known to infect most types of animals. Many species of microsporidia can infect multiple related hosts, but it is not known if microsporidia express different genes depending upon which host species is infected or if the host response to infection is specific to each microsporidia species. To address these questions, we took advantage of two species of Nematocida microsporidia, N. parisii and N. ausubeli, that infect two species of Caenorhabditis nematodes, C. elegans and C. briggsae. We performed RNA-seq at several time points for each host infected with either microsporidia species. We observed that Nematocida transcription was largely independent of its host. We also observed that the host transcriptional response was similar when infected with either microsporidia species. Finally, we analyzed if the host response to microsporidia infection was conserved across host species. We observed that although many of the genes upregulated in response to infection are not direct orthologs, the same expanded gene families are upregulated in both Caenorhabditis hosts. Together our results describe the transcriptional interactions of Nematocida infection in Caenorhabditis hosts and demonstrate that these responses are evolutionarily conserved.
Collapse
Affiliation(s)
- Yin Chen Wan
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada
| | - Emily R. Troemel
- School of Biological Sciences, University of California, San Diego, La Jolla, California, United States of America
| | - Aaron W. Reinke
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
13
|
Yu QZ, Hu MY, Wang L, Lin JQ, Fang SG. Incubation determines favorable microbial communities in Chinese alligator nests. Front Microbiol 2022; 13:983808. [PMID: 36312961 PMCID: PMC9606745 DOI: 10.3389/fmicb.2022.983808] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Accepted: 09/20/2022] [Indexed: 11/22/2022] Open
Abstract
Nest materials are a major heat source due to rotting promoted by microbial activity. Additionally, they are a potential microbial source given their direct contact with eggshells. Microbial dynamics during incubation have been studied in wild birds; however, similar studies in reptiles remain elusive. Here, the study characterized microbial communities in the nest materials of Chinese alligator (Alligator sinensis) using high-throughput sequencing of bacterial 16S rRNA genes and fungal internal transcribed spacer (ITS) region sequences. The results showed that significant changes in the diversity and structure of microbial communities according to different incubation periods. The diversity and richness of bacterial species increased significantly over time, but the relative abundance of the most dominant bacteria in pre-incubation period, including some pathogenic bacteria, declined after incubation. In contrast, fungal species diversity and richness decreased significantly with time. Additionally, nest material composition significantly influenced microbial community structure rather than species diversity and richness. Notably, the fungal community structure showed a stronger response than bacteria to nest material composition, which varied due to differences in plant litter composition. Our results demonstrate the significant response of microbial community diversity and structure to differences in incubation periods and nest material composition in reptiles. It is further emphasized that the importance of incubation period in the conservation of the Chinese alligator and could inform similar studies in other reptiles and birds.
Collapse
Affiliation(s)
- Qin-Zhang Yu
- The Key Laboratory of Conservation Biology for Endangered Wildlife of the Ministry of Education, State Conservation Center for Gene Resources of Endangered Wildlife, College of Life Sciences, Zhejiang University, Hangzhou, China
| | - Meng-Yuan Hu
- The Key Laboratory of Conservation Biology for Endangered Wildlife of the Ministry of Education, State Conservation Center for Gene Resources of Endangered Wildlife, College of Life Sciences, Zhejiang University, Hangzhou, China
| | - Li Wang
- The Key Laboratory of Conservation Biology for Endangered Wildlife of the Ministry of Education, State Conservation Center for Gene Resources of Endangered Wildlife, College of Life Sciences, Zhejiang University, Hangzhou, China
| | - Jian-Qing Lin
- Guangdong Provincial Key Laboratory of Marine Disaster Prediction and Prevention, Guangdong Provincial Key Laboratory of Marine Biotechnology, Institute of Marine Science, Shantou University, Shantou, China
| | - Sheng-Guo Fang
- The Key Laboratory of Conservation Biology for Endangered Wildlife of the Ministry of Education, State Conservation Center for Gene Resources of Endangered Wildlife, College of Life Sciences, Zhejiang University, Hangzhou, China
| |
Collapse
|
14
|
Abstract
It has been assumed that fungi are characterized by a haploid-dominant life cycle with a general absence of mitosis in the diploid stage (haplontic life cycles). However, this characterization is based largely on information for Dikarya, a group of fungi that contains mushrooms, lichens, molds, yeasts, and most described fungi. We now appreciate that most early-diverging lineages of fungi are not Dikarya and share traits with protists, such as flagellated life stages. Here, we generated an improved phylogeny of the fungi by generating genome sequences of 69 zoosporic fungi. We show, using the estimated heterozygosity of these genomes, that many fungal lineages have diploid-dominant life cycles (diplontic). This finding forces us to rethink the early evolution of the fungal cell. Most of the described species in kingdom Fungi are contained in two phyla, the Ascomycota and the Basidiomycota (subkingdom Dikarya). As a result, our understanding of the biology of the kingdom is heavily influenced by traits observed in Dikarya, such as aerial spore dispersal and life cycles dominated by mitosis of haploid nuclei. We now appreciate that Fungi comprises numerous phylum-level lineages in addition to those of Dikarya, but the phylogeny and genetic characteristics of most of these lineages are poorly understood due to limited genome sampling. Here, we addressed major evolutionary trends in the non-Dikarya fungi by phylogenomic analysis of 69 newly generated draft genome sequences of the zoosporic (flagellated) lineages of true fungi. Our phylogeny indicated five lineages of zoosporic fungi and placed Blastocladiomycota, which has an alternation of haploid and diploid generations, as branching closer to the Dikarya than to the Chytridiomyceta. Our estimates of heterozygosity based on genome sequence data indicate that the zoosporic lineages plus the Zoopagomycota are frequently characterized by diploid-dominant life cycles. We mapped additional traits, such as ancestral cell-cycle regulators, cell-membrane– and cell-wall–associated genes, and the use of the amino acid selenocysteine on the phylogeny and found that these ancestral traits that are shared with Metazoa have been subject to extensive parallel loss across zoosporic lineages. Together, our results indicate a gradual transition in the genetics and cell biology of fungi from their ancestor and caution against assuming that traits measured in Dikarya are typical of other fungal lineages.
Collapse
|
15
|
Galindo LJ, Torruella G, López-García P, Ciobanu M, Gutiérrez-Preciado A, Karpov SA, Moreira D. Phylogenomics Supports the Monophyly of Aphelids and Fungi and Identifies New Molecular Synapomorphies. Syst Biol 2022:6651083. [PMID: 35900180 DOI: 10.1093/sysbio/syac054] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Revised: 07/12/2022] [Accepted: 07/19/2022] [Indexed: 11/13/2022] Open
Abstract
The supergroup Holomycota, composed of Fungi and several related lineages of unicellular organisms (Nucleariida, Rozellida, Microsporidia, and Aphelida), represents one of the major branches in the phylogeny of eukaryotes. Nevertheless, except for the well-established position of Nucleariida as the first holomycotan branch to diverge, the relationships among the other lineages have so far remained unresolved largely owing to the lack of molecular data for some groups. This was notably the case aphelids, a poorly known group of endobiotic phagotrophic protists that feed on algae with cellulose walls. The first molecular phylogenies including aphelids supported their sister relationship with Rozellida and Microsporidia which, collectively, formed a new group called Opisthosporidia (the 'Opisthosporidia hypothesis'). However, recent phylogenomic analyses including massive sequence data from two aphelid genera, Paraphelidium and Amoeboaphelidium, suggested that the aphelids are sister to fungi (the 'Aphelida+Fungi hypothesis'). Should this position be confirmed, aphelids would be key to understanding the early evolution of Holomycota and the origin of Fungi. Here, we carry out phylogenomic analyses with an expanded taxonomic sampling for aphelids after sequencing the transcriptomes of two species of the genus Aphelidium (A. insulamus and A. tribonematis) in order to test these competing hypotheses. Our new phylogenomic analyses including species from the three known aphelid genera strongly rejected the Opisthosporidia hypothesis. Furthermore, comparative genomic analyses further supported the Aphelida+Fungi hypothesis via the identification of 19 orthologous genes exclusively shared by these two lineages. Seven of them originated from ancient horizontal gene transfer events predating the aphelid-fungal split and the remaining 12 likely evolved de novo, constituting additional molecular synapomorphies for this clade. Ancestral trait reconstruction based on our well-resolved phylogeny of Holomycota suggests that the progenitor of both fungi and rozellids, was aphelid-like, having an amoeboflagellate state and likely preying endobiotically on cellulose-containing, cell-walled organisms. Two lineages, which we propose to call Phytophagea and Opisthophagea, evolved from this ancestor. Phytophagea, grouping aphelids and classical fungi, mainly specialized in endobiotic predation of algal cells. Fungi emerged from this lineage after losing phagotrophy in favour of osmotrophy. Opisthophagea, grouping rozellids and Microsporidia, became parasites, mostly of chitin-containing hosts. This lineage entered a progressive reductive process that resulted in a unique lifestyle, especially in the highly derived Microsporidia.
Collapse
Affiliation(s)
- Luis Javier Galindo
- Unité d'Ecologie Systématique et Evolution, CNRS, Université Paris-Saclay, AgroParisTech, Orsay, France
| | - Guifré Torruella
- Unité d'Ecologie Systématique et Evolution, CNRS, Université Paris-Saclay, AgroParisTech, Orsay, France
| | - Purificación López-García
- Unité d'Ecologie Systématique et Evolution, CNRS, Université Paris-Saclay, AgroParisTech, Orsay, France
| | - Maria Ciobanu
- Unité d'Ecologie Systématique et Evolution, CNRS, Université Paris-Saclay, AgroParisTech, Orsay, France
| | - Ana Gutiérrez-Preciado
- Unité d'Ecologie Systématique et Evolution, CNRS, Université Paris-Saclay, AgroParisTech, Orsay, France
| | - Sergey A Karpov
- Zoological Institute RAS, Universitetskaya emb. 1, and St Petersburg State University, Universitetskaya emb. 7/9, St Petersburg 199034, Russia
| | - David Moreira
- Unité d'Ecologie Systématique et Evolution, CNRS, Université Paris-Saclay, AgroParisTech, Orsay, France
| |
Collapse
|
16
|
Strassert JFH, Monaghan MT. Phylogenomic insights into the early diversification of fungi. Curr Biol 2022; 32:3628-3635.e3. [PMID: 35830854 DOI: 10.1016/j.cub.2022.06.057] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Revised: 05/10/2022] [Accepted: 06/16/2022] [Indexed: 11/25/2022]
Abstract
Phylogenomic analyses have boosted our understanding of the evolutionary trajectories of all living forms by providing continuous improvements to the tree of life.1-5 Within this tree, fungi represent an ancient eukaryote group,6 having diverged from the animals ∼1.35 billion years ago.7 Estimates of the number of extant species range between 1.5 and 3.8 million.8,9 Recent reclassifications and the discovery of the deep-branching Sanchytriomycota lineage10 have brought the number of proposed phyla to 20,11 21 if the Microsporidia are included.12-14 Uncovering how the diverse and globally distributed fungi are related to each other is fundamental for understanding how their lifestyles, morphologies, and metabolic capacities evolved. To date, many of the proposed relationships among the phyla remain controversial and no phylogenomic study has examined the entire fungal tree using a taxonomically comprehensive dataset and suitable models of evolution. We assembled and curated a 299-protein dataset with a taxon sampling broad enough to encompass all recognized fungal diversity with available data, but selective enough to run computationally intensive analyses using best-fitting models. Using a range of reconstruction methods, we were able to resolve many contested nodes, such as a sister relationship of Chytridiomyceta to all other non-Opisthosporidia fungi (with Chytridiomycota being sister to Monoblepharomycota + Neocallimastigomycota), a branching of Blastocladiomycota + Sanchytriomycota after the Chytridiomyceta but before other non-Opisthosporidia fungi, and a branching of Glomeromycota as sister to the Dikarya. Our up-to-date fungal tree of life will serve as a springboard for future investigations on the early evolution of fungi.
Collapse
Affiliation(s)
- Jürgen F H Strassert
- Department of Evolutionary and Integrative Ecology, Leibniz Institute of Freshwater Ecology and Inland Fisheries (IGB), Berlin, Germany.
| | - Michael T Monaghan
- Department of Evolutionary and Integrative Ecology, Leibniz Institute of Freshwater Ecology and Inland Fisheries (IGB), Berlin, Germany; Institut für Biologie, Freie Universität Berlin, Berlin, Germany
| |
Collapse
|
17
|
da Silva TH, Câmara PEAS, Pinto OHB, Carvalho-Silva M, Oliveira FS, Convey P, Rosa CA, Rosa LH. Diversity of Fungi Present in Permafrost in the South Shetland Islands, Maritime Antarctic. MICROBIAL ECOLOGY 2022; 83:58-67. [PMID: 33733305 DOI: 10.1007/s00248-021-01735-6] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/07/2021] [Accepted: 03/10/2021] [Indexed: 05/06/2023]
Abstract
We assess the fungal diversity present in permafrost from different islands in the South Shetland Islands archipelago, maritime Antarctic, using next-generation sequencing (NGS). We detected 1,003,637 fungal DNA reads representing, in rank abundance order, the phyla Ascomycota, Mortierellomycota, Basidiomycota, Chytridiomycota, Rozellomycota, Mucoromycota, Calcarisporiellomycota and Zoopagomycota. Ten taxa were dominant these being, in order of abundance, Pseudogymnoascus appendiculatus, Penicillium sp., Pseudogymnoascus roseus, Penicillium herquei, Curvularia lunata, Leotiomycetes sp., Mortierella sp. 1, Mortierella fimbricystis, Fungal sp. 1 and Fungal sp. 2. A further 38 taxa had intermediate abundance and 345 were classified as rare. The total fungal community detected in the permafrost showed high indices of diversity, richness and dominance, although these varied between the sampling locations. The use of a metabarcoding approach revealed the presence of DNA of a complex fungal assemblage in the permafrost of the South Shetland Islands including taxa with a range of ecological functions among which were multiple animal, human and plant pathogenic fungi. Further studies are required to determine whether the taxa identified are present in the form of viable cells or propagules and which might be released from melting permafrost to other Antarctic habitats and potentially dispersed more widely.
Collapse
Affiliation(s)
- Thamar Holanda da Silva
- Laboratório de Microbiologia Polar e Conexões Tropicais, Departamento de Microbiologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, P. O. Box 486, Belo Horizonte, MG, CEP 31270-901, Brazil
| | | | | | | | - Fábio Soares Oliveira
- Departamento de Geografia, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Peter Convey
- British Antarctic Survey, NERC, High Cross, Madingley Road, Cambridge, CB3 0ET, UK
| | - Carlos Augusto Rosa
- Laboratório de Microbiologia Polar e Conexões Tropicais, Departamento de Microbiologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, P. O. Box 486, Belo Horizonte, MG, CEP 31270-901, Brazil
| | - Luiz Henrique Rosa
- Laboratório de Microbiologia Polar e Conexões Tropicais, Departamento de Microbiologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, P. O. Box 486, Belo Horizonte, MG, CEP 31270-901, Brazil.
| |
Collapse
|
18
|
Corsaro D. Insights into Microsporidia Evolution from Early Diverging Microsporidia. EXPERIENTIA SUPPLEMENTUM (2012) 2022; 114:71-90. [PMID: 35543999 DOI: 10.1007/978-3-030-93306-7_3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Microsporidia have drastically modified genomes and cytology resulting from their high level of adaptation to intracytoplasmic parasitism. Their origins, which had long remained enigmatic, were placed within the line of Rozella, a primitive endoparasitic chytrid. These origins became more and more refined with the discovery of various parasites morphologically similar to the primitive lines of microsporidia (Metchnikovellids and Chytridiopsids) but which possess fungal-like genomes and functional mitochondria. These various parasites turn out to be distinct missing links between a large assemblage of chytrid-like rozellids and the true microsporidians, which are actually a very evolved branch of the rozellids themselves. The question of how to consider the historically known Microsporidia and the various microsporidia-like organisms within paraphyletic rozellids is discussed.
Collapse
Affiliation(s)
- Daniele Corsaro
- CHLAREAS Chlamydia Research Association, Vandoeuvre-lès-Nancy, France.
| |
Collapse
|
19
|
Williams BAP, Williams TA, Trew J. Comparative Genomics of Microsporidia. EXPERIENTIA SUPPLEMENTUM (2012) 2022; 114:43-69. [PMID: 35543998 DOI: 10.1007/978-3-030-93306-7_2] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
The microsporidia are a phylum of intracellular parasites that represent the eukaryotic cell in a state of extreme reduction, with genomes and metabolic capabilities embodying eukaryotic cells in arguably their most streamlined state. Over the past 20 years, microsporidian genomics has become a rapidly expanding field starting with sequencing of the genome of Encephalitozoon cuniculi, one of the first ever sequenced eukaryotes, to the current situation where we have access to the data from over 30 genomes across 20+ genera. Reaching back further in evolutionary history, to the point where microsporidia diverged from other eukaryotic lineages, we now also have genomic data for some of the closest known relatives of the microsporidia such as Rozella allomycis, Metchnikovella spp. and Amphiamblys sp. Data for these organisms allow us to better understand the genomic processes that shaped the emergence of the microsporidia as a group. These intensive genomic efforts have revealed some of the processes that have shaped microsporidian cells and genomes including patterns of genome expansions and contractions through gene gain and loss, whole genome duplication, differential patterns of invasion and purging of transposable elements. All these processes have been shown to occur across short and longer time scales to give rise to a phylum of parasites with dynamic genomes with a diversity of sizes and organisations.
Collapse
Affiliation(s)
| | - Tom A Williams
- School of Biological Sciences, University of Bristol, Bristol, UK
| | - Jahcub Trew
- School of Biosciences, University of Exeter, Exeter, UK
| |
Collapse
|
20
|
Early-diverging fungal phyla: taxonomy, species concept, ecology, distribution, anthropogenic impact, and novel phylogenetic proposals. FUNGAL DIVERS 2021; 109:59-98. [PMID: 34608378 PMCID: PMC8480134 DOI: 10.1007/s13225-021-00480-y] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2021] [Accepted: 07/19/2021] [Indexed: 01/02/2023]
Abstract
The increasing number of new fungal species described from all over the world along with the use of genetics to define taxa, has dramatically changed the classification system of early-diverging fungi over the past several decades. The number of phyla established for non-Dikarya fungi has increased from 2 to 17. However, to date, both the classification and phylogeny of the basal fungi are still unresolved. In this article, we review the recent taxonomy of the basal fungi and re-evaluate the relationships among early-diverging lineages of fungal phyla. We also provide information on the ecology and distribution in Mucoromycota and highlight the impact of chytrids on amphibian populations. Species concepts in Chytridiomycota, Aphelidiomycota, Rozellomycota, Neocallimastigomycota are discussed in this paper. To preserve the current application of the genus Nephridiophaga (Chytridiomycota: Nephridiophagales), a new type species, Nephridiophaga blattellae, is proposed.
Collapse
|
21
|
Rämä T, Quandt CA. Improving Fungal Cultivability for Natural Products Discovery. Front Microbiol 2021; 12:706044. [PMID: 34603232 PMCID: PMC8481835 DOI: 10.3389/fmicb.2021.706044] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Accepted: 08/23/2021] [Indexed: 11/13/2022] Open
Abstract
The pool of fungal secondary metabolites can be extended by activating silent gene clusters of cultured strains or by using sensitive biological assays that detect metabolites missed by analytical methods. Alternatively, or in parallel with the first approach, one can increase the diversity of existing culture collections to improve the access to new natural products. This review focuses on the latter approach of screening previously uncultured fungi for chemodiversity. Both strategies have been practiced since the early days of fungal biodiscovery, yet relatively little has been done to overcome the challenge of cultivability of as-yet-uncultivated fungi. Whereas earlier cultivability studies using media formulations and biological assays to scrutinize fungal growth and associated factors were actively conducted, the application of modern omics methods remains limited to test how to culture the fungal dark matter and recalcitrant groups of described fungi. This review discusses the development of techniques to increase the cultivability of filamentous fungi that include culture media formulations and the utilization of known chemical growth factors, in situ culturing and current synthetic biology approaches that build upon knowledge from sequenced genomes. We list more than 100 growth factors, i.e., molecules, biological or physical factors that have been demonstrated to induce spore germination as well as tens of inducers of mycelial growth. We review culturing conditions that can be successfully manipulated for growth of fungi and visit recent information from omics methods to discuss the metabolic basis of cultivability. Earlier work has demonstrated the power of co-culturing fungi with their host, other microorganisms or their exudates to increase their cultivability. Co-culturing of two or more organisms is also a strategy used today for increasing cultivability. However, fungi possess an increased risk for cross-contaminations between isolates in existing in situ or microfluidics culturing devices. Technological improvements for culturing fungi are discussed in the review. We emphasize that improving the cultivability of fungi remains a relevant strategy in drug discovery and underline the importance of ecological and taxonomic knowledge in culture-dependent drug discovery. Combining traditional and omics techniques such as single cell or metagenome sequencing opens up a new era in the study of growth factors of hundreds of thousands of fungal species with high drug discovery potential.
Collapse
Affiliation(s)
- Teppo Rämä
- Marbio, Norwegian College of Fishery Science, University of Tromsø – The Arctic University of Norway, Tromsø, Norway
| | - C. Alisha Quandt
- Department of Ecology and Evolutionary Biology, University of Colorado, Boulder, Boulder, CO, United States
| |
Collapse
|
22
|
Longepierre M, Widmer F, Keller T, Weisskopf P, Colombi T, Six J, Hartmann M. Limited resilience of the soil microbiome to mechanical compaction within four growing seasons of agricultural management. ISME COMMUNICATIONS 2021; 1:44. [PMID: 36740718 PMCID: PMC9723577 DOI: 10.1038/s43705-021-00046-8] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Revised: 07/22/2021] [Accepted: 07/26/2021] [Indexed: 02/07/2023]
Abstract
Soil compaction affects many soil functions, but we have little information on the resistance and resilience of soil microorganisms to this disturbance. Here, we present data on the response of soil microbial diversity to a single compaction event and its temporal evolution under different agricultural management systems during four growing seasons. Crop yield was reduced (up to -90%) in the first two seasons after compaction, but mostly recovered in subsequent seasons. Soil compaction increased soil bulk density (+15%), and decreased air permeability (-94%) and gas diffusion (-59%), and those properties did not fully recover within four growing seasons. Soil compaction induced cropping system-dependent shifts in microbial community structures with little resilience over the four growing seasons. Microbial taxa sensitive to soil compaction were detected in all major phyla. Overall, anaerobic prokaryotes and saprotrophic fungi increased in compacted soils, whereas aerobic prokaryotes and plant-associated fungi were mostly negatively affected. Most measured properties showed large spatial variability across the replicated blocks, demonstrating the dependence of compaction effects on initial conditions. This study demonstrates that soil compaction is a disturbance that can have long-lasting effects on soil properties and soil microorganisms, but those effects are not necessarily aligned with changes in crop yield.
Collapse
Affiliation(s)
- Manon Longepierre
- Sustainable Agroecosystems, Department of Environmental Systems Science, ETH Zurich, Zurich, Switzerland.
| | | | - Thomas Keller
- Soil Quality and Soil Use, Agroscope, Zurich, Switzerland
- Department of Soil and Environment, Swedish University of Agricultural Sciences (SLU), Uppsala, Sweden
| | | | - Tino Colombi
- Department of Soil and Environment, Swedish University of Agricultural Sciences (SLU), Uppsala, Sweden
| | - Johan Six
- Sustainable Agroecosystems, Department of Environmental Systems Science, ETH Zurich, Zurich, Switzerland
| | - Martin Hartmann
- Sustainable Agroecosystems, Department of Environmental Systems Science, ETH Zurich, Zurich, Switzerland.
| |
Collapse
|
23
|
|
24
|
Li Y, Steenwyk JL, Chang Y, Wang Y, James TY, Stajich JE, Spatafora JW, Groenewald M, Dunn CW, Hittinger CT, Shen XX, Rokas A. A genome-scale phylogeny of the kingdom Fungi. Curr Biol 2021; 31:1653-1665.e5. [PMID: 33607033 PMCID: PMC8347878 DOI: 10.1016/j.cub.2021.01.074] [Citation(s) in RCA: 141] [Impact Index Per Article: 35.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2020] [Revised: 12/10/2020] [Accepted: 01/21/2021] [Indexed: 12/22/2022]
Abstract
Phylogenomic studies using genome-scale amounts of data have greatly improved understanding of the tree of life. Despite the diversity, ecological significance, and biomedical and industrial importance of fungi, evolutionary relationships among several major lineages remain poorly resolved, especially those near the base of the fungal phylogeny. To examine poorly resolved relationships and assess progress toward a genome-scale phylogeny of the fungal kingdom, we compiled a phylogenomic data matrix of 290 genes from the genomes of 1,644 species that includes representatives from most major fungal lineages. We also compiled 11 data matrices by subsampling genes or taxa from the full data matrix based on filtering criteria previously shown to improve phylogenomic inference. Analyses of these 12 data matrices using concatenation- and coalescent-based approaches yielded a robust phylogeny of the fungal kingdom, in which ∼85% of internal branches were congruent across data matrices and approaches used. We found support for several historically poorly resolved relationships as well as evidence for polytomies likely stemming from episodes of ancient diversification. By examining the relative evolutionary divergence of taxonomic groups of equivalent rank, we found that fungal taxonomy is broadly aligned with both genome sequence divergence and divergence time but also identified lineages where current taxonomic circumscription does not reflect their levels of evolutionary divergence. Our results provide a robust phylogenomic framework to explore the tempo and mode of fungal evolution and offer directions for future fungal phylogenetic and taxonomic studies.
Collapse
Affiliation(s)
- Yuanning Li
- Department of Biological Sciences, Vanderbilt University, Nashville, TN 37235, USA
| | - Jacob L Steenwyk
- Department of Biological Sciences, Vanderbilt University, Nashville, TN 37235, USA
| | - Ying Chang
- Department of Botany and Plant Pathology, Oregon State University, Corvallis, OR 97331, USA
| | - Yan Wang
- Department of Microbiology and Plant Pathology, Institute for Integrative Genome Biology, University of California, Riverside, CA 92521, USA; Department of Biological Sciences, University of Toronto Scarborough and Department of Ecology and Evolutionary Biology, University of Toronto, Toronto, ON, Canada
| | - Timothy Y James
- Department of Ecology and Evolutionary Biology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Jason E Stajich
- Department of Microbiology and Plant Pathology, Institute for Integrative Genome Biology, University of California, Riverside, CA 92521, USA
| | - Joseph W Spatafora
- Department of Botany and Plant Pathology, Oregon State University, Corvallis, OR 97331, USA
| | - Marizeth Groenewald
- Westerdijk Fungal Biodiversity Institute, 3584 CT, Utrecht 85167, the Netherlands
| | - Casey W Dunn
- Department of Ecology and Evolutionary Biology, Yale University, New Haven, CT 06520, USA
| | - Chris Todd Hittinger
- Laboratory of Genetics, Center for Genomic Science Innovation, J.F. Crow Institute for the Study of Evolution, DOE Great Lakes Bioenergy Research Center, Wisconsin Energy Institute, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Xing-Xing Shen
- State Key Laboratory of Rice Biology and Ministry of Agriculture Key Lab of Molecular Biology of Crop Pathogens and Insects, Institute of Insect Sciences, Zhejiang University, Hangzhou 310058, China.
| | - Antonis Rokas
- Department of Biological Sciences, Vanderbilt University, Nashville, TN 37235, USA.
| |
Collapse
|
25
|
Park E, Poulin R. Revisiting the phylogeny of microsporidia. Int J Parasitol 2021; 51:855-864. [PMID: 33891934 DOI: 10.1016/j.ijpara.2021.02.005] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Revised: 02/15/2021] [Accepted: 02/15/2021] [Indexed: 12/18/2022]
Abstract
Canonical microsporidians are a group of obligate intracellular parasites of a wide range of hosts comprising ~1,300 species of >220 genera. Microsporidians are related to fungi, and many characterised and uncharacterized groups closely related to them have been discovered recently, filling the knowledge gaps between them. These groups assigned to the superphylum Opisthosporidia have provided several important insights into the evolution of diverse intracellular parasitic lineages within the tree of eukaryotes. The most studied among opisthosporidians, canonical microsporidians, were known to science more than 160 years ago, however, the classification of canonical Microsporidia has been challenging due to common morphological homoplasy, and accelerated evolutionary rates. Instead of morphological characters, ssrRNA sequences have been used as the primary data for the classification of canonical microsporidians. Previous studies have produced a useful backbone of the microsporidian phylogeny, but provided only some nodal support, causing some confusion. Here, we reconstructed phylogenetic trees of canonical microsporidians using Bayesian and Maximum Likelihood inferences. We included rRNA sequences of 126 described/named genera, by far the broadest taxon coverage to date. Overall, our trees show similar topology and recovered four of the five main clades demonstrated in previous studies (Clades 1, 3, 4 and 5). Family level clades were well resolved within each major clade, but many were discordant with the recently revised classification. Therefore, revision and some reshuffling, especially within and between Clades 1 and 3 are required. We also reconstructed phylogenetic trees of Opisthosporidia to better integrate the evolutionary history of canonical microsporidians in a broader context. We discuss several traits shared only by canonical microsporidians that may have contributed to their striking ecological success in diverse metazoans. More targeted studies on the neglected host groups will be of value for a better understanding of the evolutionary history of these interesting intracellular parasites.
Collapse
Affiliation(s)
- Eunji Park
- Department of Zoology, University of Otago, 340 Great King Street, Dunedin 9016, New Zealand.
| | - Robert Poulin
- Department of Zoology, University of Otago, 340 Great King Street, Dunedin 9016, New Zealand
| |
Collapse
|
26
|
Chang Y, Rochon D, Sekimoto S, Wang Y, Chovatia M, Sandor L, Salamov A, Grigoriev IV, Stajich JE, Spatafora JW. Genome-scale phylogenetic analyses confirm Olpidium as the closest living zoosporic fungus to the non-flagellated, terrestrial fungi. Sci Rep 2021; 11:3217. [PMID: 33547391 PMCID: PMC7865070 DOI: 10.1038/s41598-021-82607-4] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Accepted: 01/19/2021] [Indexed: 12/24/2022] Open
Abstract
The zoosporic obligate endoparasites, Olpidium, hold a pivotal position to the reconstruction of the flagellum loss in fungi, one of the key morphological transitions associated with the colonization of land by the early fungi. We generated genome and transcriptome data from non-axenic zoospores of Olpidium bornovanus and used a metagenome approach to extract phylogenetically informative fungal markers. Our phylogenetic reconstruction strongly supported Olpidium as the closest zoosporic relative of the non-flagellated terrestrial fungi. Super-alignment analyses resolved Olpidium as sister to the non-flagellated terrestrial fungi, whereas a super-tree approach recovered different placements of Olpidium, but without strong support. Further investigations detected little conflicting signal among the sampled markers but revealed a potential polytomy in early fungal evolution associated with the branching order among Olpidium, Zoopagomycota and Mucoromycota. The branches defining the evolutionary relationships of these lineages were characterized by short branch lengths and low phylogenetic content and received equivocal support for alternative phylogenetic hypotheses from individual markers. These nodes were marked by important morphological innovations, including the transition to hyphal growth and the loss of flagellum, which enabled early fungi to explore new niches and resulted in rapid and temporally concurrent Precambrian diversifications of the ancestors of several phyla of fungi.
Collapse
Affiliation(s)
- Ying Chang
- Department of Botany and Plant Pathology, College of Agricultural Sciences, Oregon State University, Oregon, USA.
| | - D'Ann Rochon
- Agriculture and Agri-Food Canada, Pacific Agri-Food Research Centre, Summerland, BC, Canada
| | - Satoshi Sekimoto
- Department of Botany, University of British Columbia, Vancouver, BC, Canada
- Research and Development Center, Mitsubishi-Chemical Foods Corporation, Yokohama, Japan
| | - Yan Wang
- Department of Microbiology and Plant Pathology, University of California Riverside, Riverside, CA, USA
- Institute for Integrative Genome Biology, University of California, Riverside, CA, USA
- Department of Biological Sciences, University of Toronto Scarborough, Toronto, Canada
- Department of Ecology and Evolutionary Biology, University of Toronto, Toronto, Canada
| | - Mansi Chovatia
- Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Laura Sandor
- Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Asaf Salamov
- Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Igor V Grigoriev
- Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
- Department of Plant and Microbial Biology, University of California Berkeley, Berkeley, CA, USA
| | - Jason E Stajich
- Department of Microbiology and Plant Pathology, University of California Riverside, Riverside, CA, USA
- Institute for Integrative Genome Biology, University of California, Riverside, CA, USA
| | - Joseph W Spatafora
- Department of Botany and Plant Pathology, College of Agricultural Sciences, Oregon State University, Oregon, USA
| |
Collapse
|
27
|
Li W, Feng Y, Xiao L. Diagnosis and molecular typing of Enterocytozoon bieneusi: the significant role of domestic animals in transmission of human microsporidiosis. Res Vet Sci 2020; 133:251-261. [PMID: 33035931 DOI: 10.1016/j.rvsc.2020.09.030] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Revised: 09/15/2020] [Accepted: 09/25/2020] [Indexed: 12/30/2022]
Abstract
Enterocytozoon bieneusi is an obligate intracellular fungus-like parasite with high genetic diversity among mammalian and avian hosts. Based on polymorphism analysis of the ribosomal internal transcribed spacer (ITS), nearly 500 genotypes were identified within E. bieneusi. Those genotypes form several genetic groups that exhibit phenotypic differences in host specificity and zoonotic potential and probably have varying public health implications. Some of the genotypes in Group 1 (e.g., D, EbpC, and Type IV) and Group 2 (e.g., BEB4, BEB6, I, and J) are the most common ones that infect a variety of hosts including humans and thus are of public health importance. By contrast, those genotypes in other genetic groups (Groups 3-11) are mostly restricted to the hosts from which they were originally isolated, which would have unknown or limited impacts on public health. Advances on diagnosis and molecular typing of E. bieneusi are introduced in this review. Genotype distribution pattern of E. bieneusi in major domestic animal groups (pigs, cattle, sheep, goats, cats, and dogs), the role of those animals in zoonotic transmission of microsporidiosis, and food and water as potential vehicles for transmission are interpreted here as well. This review highlights the importance of including more genetic or epidemiological data obtained in the same geographical areas and using more reliable genetic markers to analyze the actual extent of host specificity in E. bieneusi, for the purpose of fully appreciating zoonotic risks of those domestic animals in close contacts with men and enhancing our understanding of the modes of transmission.
Collapse
Affiliation(s)
- Wei Li
- Heilongjiang Key Laboratory for Zoonosis, College of Veterinary Medicine, Northeast Agricultural University, Harbin, Heilongjiang, China.
| | - Yaoyu Feng
- Key Laboratory of Zoonosis of Ministry of Agriculture, College of Veterinary Medicine, South China Agricultural University, Guangzhou, Guangdong, China
| | - Lihua Xiao
- Key Laboratory of Zoonosis of Ministry of Agriculture, College of Veterinary Medicine, South China Agricultural University, Guangzhou, Guangdong, China.
| |
Collapse
|
28
|
Genomic and fossil windows into the secret lives of the most ancient fungi. Nat Rev Microbiol 2020; 18:717-730. [PMID: 32908302 DOI: 10.1038/s41579-020-0426-8] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/17/2020] [Indexed: 12/26/2022]
Abstract
Fungi have crucial roles in modern ecosystems as decomposers and pathogens, and they engage in various mutualistic associations with other organisms, especially plants. They have a lengthy geological history, and there is an emerging understanding of their impact on the evolution of Earth systems on a large scale. In this Review, we focus on the roles of fungi in the establishment and early evolution of land and freshwater ecosystems. Today, questions of evolution over deep time are informed by discoveries of new fossils and evolutionary analysis of new genomes. Inferences can be drawn from evolutionary analysis by comparing the genes and genomes of fungi with the biochemistry and development of their plant and algal hosts. We then contrast this emerging picture against evidence from the fossil record to develop a new, integrated perspective on the origin and early evolution of fungi.
Collapse
|
29
|
Phylogenomic Analyses of Non-Dikarya Fungi Supports Horizontal Gene Transfer Driving Diversification of Secondary Metabolism in the Amphibian Gastrointestinal Symbiont, Basidiobolus. G3-GENES GENOMES GENETICS 2020; 10:3417-3433. [PMID: 32727924 PMCID: PMC7466969 DOI: 10.1534/g3.120.401516] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Research into secondary metabolism (SM) production by fungi has resulted in the discovery of diverse, biologically active compounds with significant medicinal applications. The fungi rich in SM production are taxonomically concentrated in the subkingdom Dikarya, which comprises the phyla Ascomycota and Basidiomycota. Here, we explore the potential for SM production in Mucoromycota and Zoopagomycota, two phyla of nonflagellated fungi that are not members of Dikarya, by predicting and identifying core genes and gene clusters involved in SM. The majority of non-Dikarya have few genes and gene clusters involved in SM production except for the amphibian gut symbionts in the genus Basidiobolus. Basidiobolus genomes exhibit an enrichment of SM genes involved in siderophore, surfactin-like, and terpene cyclase production, all these with evidence of constitutive gene expression. Gene expression and chemical assays also confirm that Basidiobolus has significant siderophore activity. The expansion of SMs in Basidiobolus are partially due to horizontal gene transfer from bacteria, likely as a consequence of its ecology as an amphibian gut endosymbiont.
Collapse
|
30
|
Yakovleva Y, Nassonova E, Lebedeva N, Lanzoni O, Petroni G, Potekhin A, Sabaneyeva E. The first case of microsporidiosis in Paramecium. Parasitology 2020; 147:957-971. [PMID: 32338239 PMCID: PMC10317679 DOI: 10.1017/s0031182020000633] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2019] [Revised: 02/29/2020] [Accepted: 04/08/2020] [Indexed: 11/06/2022]
Abstract
A new microsporidian species, Globosporidium paramecii gen. nov., sp. nov., from Paramecium primaurelia is described on the basis of morphology, fine structure, and SSU rRNA gene sequence. This is the first case of microsporidiosis in Paramecium reported so far. All observed stages of the life cycle are monokaryotic. The parasites develop in the cytoplasm, at least some part of the population in endoplasmic reticulum and its derivates. Meronts divide by binary fission. Sporogonial plasmodium divides by rosette-like budding. Early sporoblasts demonstrate a well-developed exospore forming blister-like structures. Spores with distinctive spherical shape are dimorphic in size (3.7 ± 0.2 and 1.9 ± 0.2 μm). Both types of spores are characterized by a thin endospore, a short isofilar polar tube making one incomplete coil, a bipartite polaroplast, and a large posterior vacuole. Experimental infection was successful for 5 of 10 tested strains of the Paramecium aurelia species complex. All susceptible strains belong to closely related P. primaurelia and P. pentaurelia species. Phylogenetic analysis placed the new species in the Clade 4 of Microsporidia and revealed its close relationship to Euplotespora binucleata (a microsporidium from the ciliate Euplotes woodruffi), to Helmichia lacustris and Mrazekia macrocyclopis, microsporidia from aquatic invertebrates.
Collapse
Affiliation(s)
- Yulia Yakovleva
- Department of Cytology and Histology, Saint Petersburg State University, Universitetskaya emb. 7/9, 199034Saint Petersburg, Russian Federation
| | - Elena Nassonova
- Laboratory of Cytology of Unicellular Organisms, Institute of Cytology RAS, Tikhoretsky ave. 4, 194064Saint Petersburg, Russian Federation
- Department of Invertebrate Zoology, Saint Petersburg State University, Universitetskaya emb. 7/9, 199034Saint Petersburg, Russian Federation
| | - Natalia Lebedeva
- Core Facility Center for Cultivation of Microorganisms, Saint Petersburg State University, Peterhof, Botanicheskaya st. 17, 198504Saint Petersburg, Russian Federation
| | - Olivia Lanzoni
- Department of Biology, University of Pisa, via A Volta 4, 56126Pisa, Italy
| | - Giulio Petroni
- Department of Biology, University of Pisa, via A Volta 4, 56126Pisa, Italy
| | - Alexey Potekhin
- Department of Microbiology, Saint Petersburg State University, 16th line, Vasilyevsky Island, 29, 199178Saint Petersburg, Russian Federation
| | - Elena Sabaneyeva
- Department of Cytology and Histology, Saint Petersburg State University, Universitetskaya emb. 7/9, 199034Saint Petersburg, Russian Federation
| |
Collapse
|
31
|
Abstract
In this review, we discuss the current status and future challenges for fully elucidating the fungal tree of life. In the last 15 years, advances in genomic technologies have revolutionized fungal systematics, ushering the field into the phylogenomic era. This has made the unthinkable possible, namely access to the entire genetic record of all known extant taxa. We first review the current status of the fungal tree and highlight areas where additional effort will be required. We then review the analytical challenges imposed by the volume of data and discuss methods to recover the most accurate species tree given the sea of gene trees. Highly resolved and deeply sampled trees are being leveraged in novel ways to study fungal radiations, species delimitation, and metabolic evolution. Finally, we discuss the critical issue of incorporating the unnamed and uncultured dark matter taxa that represent the vast majority of fungal diversity.
Collapse
Affiliation(s)
- Timothy Y James
- Department of Ecology and Evolutionary Biology, University of Michigan, Ann Arbor, Michigan 48109, USA;
| | - Jason E Stajich
- Department of Microbiology and Plant Pathology, Institute for Integrative Genome Biology, University of California, Riverside, California 92521, USA;
| | - Chris Todd Hittinger
- Laboratory of Genetics, DOE Great Lakes Bioenergy Research Center, Wisconsin Energy Institute, Center for Genomic Science and Innovation, J.F. Crow Institute for the Study of Evolution, University of Wisconsin-Madison, Madison, Wisconsin 53726, USA;
| | - Antonis Rokas
- Department of Biological Sciences, Vanderbilt University, Nashville, Tennessee 37235, USA;
| |
Collapse
|
32
|
Medina R, Franco MEE, Bartel LC, Martinez Alcántara V, Saparrat MCN, Balatti PA. Fungal Mitogenomes: Relevant Features to Planning Plant Disease Management. Front Microbiol 2020; 11:978. [PMID: 32547508 PMCID: PMC7272585 DOI: 10.3389/fmicb.2020.00978] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2020] [Accepted: 04/23/2020] [Indexed: 01/18/2023] Open
Abstract
Mitochondrial genomes (mt-genomes) are characterized by a distinct codon usage and their autonomous replication. Mt-genomes encode highly conserved genes (mt-genes), like proteins involved in electron transport and oxidative phosphorylation but they also carry highly variable regions that are in part responsible for their high plasticity. The degree of conservation of their genes is such that they allow the establishment of phylogenetic relationships even across distantly related species. Here, we describe the mechanisms that generate changes along mt-genomes, which play key roles at enlarging the ability of fungi to adapt to changing environments. Within mt-genomes of fungal pathogens, there are dispensable as well as indispensable genes for survival, virulence and/or pathogenicity. We also describe the different complexes or mechanisms targeted by fungicides, thus addressing a relevant issue regarding disease management. Despite the controversial origin and evolution of fungal mt-genomes, the intrinsic mechanisms and molecular biology involved in their evolution will help to understand, at the molecular level, the strategies for fungal disease management.
Collapse
Affiliation(s)
- Rocio Medina
- Centro de Investigaciones de Fitopatología, Comisión de Investigaciones Científicas de la Provincia de Buenos Aires (CIDEFI-CICPBA), Facultad de Ciencias Agrarias y Forestales, Universidad Nacional de La Plata, La Plata, Argentina
| | | | - Laura Cecilia Bartel
- Centro de Investigaciones de Fitopatología, Comisión de Investigaciones Científicas de la Provincia de Buenos Aires (CIDEFI-CICPBA), Facultad de Ciencias Agrarias y Forestales, Universidad Nacional de La Plata, La Plata, Argentina
| | - Virginia Martinez Alcántara
- Cátedra de Microbiología Agrícola, Facultad de Ciencias Agrarias y Forestales, Universidad Nacional de La Plata, La Plata, Argentina
| | - Mario Carlos Nazareno Saparrat
- Cátedra de Microbiología Agrícola, Facultad de Ciencias Agrarias y Forestales, Universidad Nacional de La Plata, La Plata, Argentina
- Instituto de Fisiología Vegetal (INFIVE), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Universidad Nacional de La Plata, La Plata, Argentina
| | - Pedro Alberto Balatti
- Centro de Investigaciones de Fitopatología, Comisión de Investigaciones Científicas de la Provincia de Buenos Aires (CIDEFI-CICPBA), Facultad de Ciencias Agrarias y Forestales, Universidad Nacional de La Plata, La Plata, Argentina
| |
Collapse
|
33
|
Timofeev S, Tokarev Y, Dolgikh V. Energy metabolism and its evolution in Microsporidia and allied taxa. Parasitol Res 2020; 119:1433-1441. [DOI: 10.1007/s00436-020-06657-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2019] [Accepted: 03/10/2020] [Indexed: 10/24/2022]
|
34
|
Wadi L, Reinke AW. Evolution of microsporidia: An extremely successful group of eukaryotic intracellular parasites. PLoS Pathog 2020; 16:e1008276. [PMID: 32053705 PMCID: PMC7017984 DOI: 10.1371/journal.ppat.1008276] [Citation(s) in RCA: 76] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Affiliation(s)
- Lina Wadi
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada
| | - Aaron W. Reinke
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada
- * E-mail:
| |
Collapse
|
35
|
Corsaro D, Walochnik J, Venditti D, Hauröder B, Michel R. Solving an old enigma: Morellospora saccamoebae gen. nov., sp. nov. (Rozellomycota), a Sphaerita-like parasite of free-living amoebae. Parasitol Res 2020; 119:925-934. [PMID: 32048025 DOI: 10.1007/s00436-020-06623-5] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2019] [Accepted: 02/05/2020] [Indexed: 12/21/2022]
Abstract
The Rozellomycota form a lineage basal or sister to the Fungi, ancestor of Microsporidia. Their biodiversity is very rich but remains poorly characterized. The few known species are all parasites, whether of water molds and algae (Rozella), crustaceans (Mitosporidium), or as endonuclear parasites of amoebae (Nucleophaga, Paramicrosporidium). Since the nineteenth century, intracytoplasmic parasites of various protozoa have been described as species of the same genus Sphaerita. However, it was later thought possible to separate these parasites into at least two distinct groups, those forming flagellated zoospores, prevalent in Euglena and other flagellates, and those forming immobile spores, found mainly in free-living and endozoic amoebae. Herein, we report the recovery of a strain of the free-living amoeba species Saccamoeba lacustris, naturally infected by an intracytoplasmic parasite, which under light microscope has a morphology consistent with that of Sphaerita. Biomolecular analyses were thus performed. Our results show that the intracytoplasmic parasite of Saccamoeba belongs to the same subgroup of Mitosporidium and that it forms a new genus within Rozellomycota, Morellospora, that corresponds to the former spore-forming Sphaerita-like parasites of amoebae.
Collapse
Affiliation(s)
- Daniele Corsaro
- CHLAREAS, 12 rue du Maconnais, F-54500, Vandoeuvre-lès-Nancy, France.
| | - Julia Walochnik
- Molecular Parasitology, Institute of Specific Prophylaxis and Tropical Medicine, Medical University of Vienna, Kinderspitalgasse 15, 1095, Vienna, Austria
| | - Danielle Venditti
- CHLAREAS, 12 rue du Maconnais, F-54500, Vandoeuvre-lès-Nancy, France
| | - Bärbel Hauröder
- Department of Pathology, Electron Microscopy Facility, Bundeswehr Central Hospital Koblenz, Andernacher Strasse 100, 56070, Koblenz, Germany
| | - Rolf Michel
- Department of Pathology, Electron Microscopy Facility, Bundeswehr Central Hospital Koblenz, Andernacher Strasse 100, 56070, Koblenz, Germany
| |
Collapse
|
36
|
Naranjo‐Ortiz MA, Gabaldón T. Fungal evolution: diversity, taxonomy and phylogeny of the Fungi. Biol Rev Camb Philos Soc 2019; 94:2101-2137. [PMID: 31659870 PMCID: PMC6899921 DOI: 10.1111/brv.12550] [Citation(s) in RCA: 161] [Impact Index Per Article: 26.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2018] [Revised: 07/25/2019] [Accepted: 07/31/2019] [Indexed: 12/11/2022]
Abstract
The fungal kingdom comprises a hyperdiverse clade of heterotrophic eukaryotes characterized by the presence of a chitinous cell wall, the loss of phagotrophic capabilities and cell organizations that range from completely unicellular monopolar organisms to highly complex syncitial filaments that may form macroscopic structures. Fungi emerged as a 'Third Kingdom', embracing organisms that were outside the classical dichotomy of animals versus vegetals. The taxonomy of this group has a turbulent history that is only now starting to be settled with the advent of genomics and phylogenomics. We here review the current status of the phylogeny and taxonomy of fungi, providing an overview of the main defined groups. Based on current knowledge, nine phylum-level clades can be defined: Opisthosporidia, Chytridiomycota, Neocallimastigomycota, Blastocladiomycota, Zoopagomycota, Mucoromycota, Glomeromycota, Basidiomycota and Ascomycota. For each group, we discuss their main traits and their diversity, focusing on the evolutionary relationships among the main fungal clades. We also explore the diversity and phylogeny of several groups of uncertain affinities and the main phylogenetic and taxonomical controversies and hypotheses in the field.
Collapse
Affiliation(s)
- Miguel A. Naranjo‐Ortiz
- Bioinformatics and Genomics Programme, Centre for Genomic Regulation (CRG)The Barcelona Institute of Science and TechnologyDr. Aiguader 88Barcelona08003Spain
| | - Toni Gabaldón
- Bioinformatics and Genomics Programme, Centre for Genomic Regulation (CRG)The Barcelona Institute of Science and TechnologyDr. Aiguader 88Barcelona08003Spain
- Health and Experimental Sciences DepartmentUniversitat Pompeu Fabra (UPF)08003BarcelonaSpain
- ICREAPg. Lluís Companys 2308010BarcelonaSpain
| |
Collapse
|
37
|
Corsaro D, Venditti D. Putative group I introns in the eukaryote nuclear internal transcribed spacers. Curr Genet 2019; 66:373-384. [PMID: 31463775 DOI: 10.1007/s00294-019-01027-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2019] [Revised: 08/05/2019] [Accepted: 08/17/2019] [Indexed: 11/28/2022]
Abstract
Group I introns are mobile genetic elements that interrupt genes encoding proteins and RNAs. In the rRNA operon, introns can insert in the small subunit (SSU) and large subunit (LSU) of a wide variety of protists and various prokaryotes, but they were never found in the ITS region. In this study, unusually long ITS regions of fungi and closely related unicellular organisms (Polychytrium aggregatum, Mitosporidium daphniae, Amoeboaphelidium occidentale and Nuclearia simplex) were analysed. While the insertion of repeats is responsible for long ITS in other eukaryotes, the increased size of the sequences analysed herein seems rather due to the presence of introns in ITS-1 or ITS-2. The identified insertions can be folded in secondary structures according to group I intron models, and they cluster within introns in conserved core-based phylogeny. In addition, for Mitosporidium, Amoeboaphelidium and Nuclearia, more conventional ITS-2 structures can be deduced once spacer introns are removed. Sequences of five shark species were also analysed for their structure and included in phylogeny because of unpublished work reporting introns in their ITS, obtaining congruent results. Overall, the data presented herein indicate that spacer regions may contain introns.
Collapse
Affiliation(s)
- Daniele Corsaro
- CHLAREAS, 12 rue du Maconnais, Vandoeuvre-lès-Nancy, 54500, France.
| | | |
Collapse
|
38
|
Naranjo‐Ortiz MA, Gabaldón T. Fungal evolution: major ecological adaptations and evolutionary transitions. Biol Rev Camb Philos Soc 2019; 94:1443-1476. [PMID: 31021528 PMCID: PMC6850671 DOI: 10.1111/brv.12510] [Citation(s) in RCA: 147] [Impact Index Per Article: 24.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2018] [Revised: 03/10/2019] [Accepted: 03/13/2019] [Indexed: 12/13/2022]
Abstract
Fungi are a highly diverse group of heterotrophic eukaryotes characterized by the absence of phagotrophy and the presence of a chitinous cell wall. While unicellular fungi are far from rare, part of the evolutionary success of the group resides in their ability to grow indefinitely as a cylindrical multinucleated cell (hypha). Armed with these morphological traits and with an extremely high metabolical diversity, fungi have conquered numerous ecological niches and have shaped a whole world of interactions with other living organisms. Herein we survey the main evolutionary and ecological processes that have guided fungal diversity. We will first review the ecology and evolution of the zoosporic lineages and the process of terrestrialization, as one of the major evolutionary transitions in this kingdom. Several plausible scenarios have been proposed for fungal terrestralization and we here propose a new scenario, which considers icy environments as a transitory niche between water and emerged land. We then focus on exploring the main ecological relationships of Fungi with other organisms (other fungi, protozoans, animals and plants), as well as the origin of adaptations to certain specialized ecological niches within the group (lichens, black fungi and yeasts). Throughout this review we use an evolutionary and comparative-genomics perspective to understand fungal ecological diversity. Finally, we highlight the importance of genome-enabled inferences to envision plausible narratives and scenarios for important transitions.
Collapse
Affiliation(s)
- Miguel A. Naranjo‐Ortiz
- Department of Genomics and Bioinformatics, Centre for Genomic Regulation (CRG)The Barcelona Institute of Science and TechnologyDr. Aiguader 88, Barcelona08003Spain
| | - Toni Gabaldón
- Department of Genomics and Bioinformatics, Centre for Genomic Regulation (CRG)The Barcelona Institute of Science and TechnologyDr. Aiguader 88, Barcelona08003Spain
- Department of Experimental and Health Sciences, Universitat Pompeu Fabra (UPF)08003BarcelonaSpain
- ICREA, Pg. Lluís Companys 2308010BarcelonaSpain
| |
Collapse
|
39
|
Major P, Sendra KM, Dean P, Williams TA, Watson AK, Thwaites DT, Embley TM, Hirt RP. A new family of cell surface located purine transporters in Microsporidia and related fungal endoparasites. eLife 2019; 8:e47037. [PMID: 31355745 PMCID: PMC6699826 DOI: 10.7554/elife.47037] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2019] [Accepted: 07/23/2019] [Indexed: 01/20/2023] Open
Abstract
Plasma membrane-located transport proteins are key adaptations for obligate intracellular Microsporidia parasites, because they can use them to steal host metabolites the parasites need to grow and replicate. However, despite their importance, the functions and substrate specificities of most Microsporidia transporters are unknown. Here, we provide functional data for a family of transporters conserved in all microsporidian genomes and also in the genomes of related endoparasites. The universal retention among otherwise highly reduced genomes indicates an important role for these transporters for intracellular parasites. Using Trachipleistophora hominis, a Microsporidia isolated from an HIV/AIDS patient, as our experimental model, we show that the proteins are ATP and GTP transporters located on the surface of parasites during their intracellular growth and replication. Our work identifies a new route for the acquisition of essential energy and nucleotides for a major group of intracellular parasites that infect most animal species including humans.
Collapse
Affiliation(s)
- Peter Major
- Institute for Cell and Molecular Biosciences, the Medical SchoolNewcastle UniversityNewcastle upon TyneUnited Kingdom
| | - Kacper M Sendra
- Institute for Cell and Molecular Biosciences, the Medical SchoolNewcastle UniversityNewcastle upon TyneUnited Kingdom
| | - Paul Dean
- Institute for Cell and Molecular Biosciences, the Medical SchoolNewcastle UniversityNewcastle upon TyneUnited Kingdom
| | - Tom A Williams
- Institute for Cell and Molecular Biosciences, the Medical SchoolNewcastle UniversityNewcastle upon TyneUnited Kingdom
| | - Andrew K Watson
- Institute for Cell and Molecular Biosciences, the Medical SchoolNewcastle UniversityNewcastle upon TyneUnited Kingdom
| | - David T Thwaites
- Institute for Cell and Molecular Biosciences, the Medical SchoolNewcastle UniversityNewcastle upon TyneUnited Kingdom
| | - T Martin Embley
- Institute for Cell and Molecular Biosciences, the Medical SchoolNewcastle UniversityNewcastle upon TyneUnited Kingdom
| | - Robert P Hirt
- Institute for Cell and Molecular Biosciences, the Medical SchoolNewcastle UniversityNewcastle upon TyneUnited Kingdom
| |
Collapse
|
40
|
Ahmed NH, Caffara M, Sitjà-Bobadilla A, Fioravanti ML, Mazzone A, Aboulezz AS, Metwally AM, Omar MAE, Palenzuela OR. Detection of the intranuclear microsporidian Enterospora nucleophila in gilthead sea bream by in situ hybridization. JOURNAL OF FISH DISEASES 2019; 42:809-815. [PMID: 30968978 DOI: 10.1111/jfd.12993] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2018] [Revised: 02/02/2019] [Accepted: 02/03/2019] [Indexed: 06/09/2023]
Abstract
Enterospora nucleophila is an intranuclear microsporidian responsible for emaciative microsporidiosis of gilthead sea bream (GSB). Its minute size and cryptic nature make it easily misdiagnosed. An in situ hybridization (ISH) technique based on antisense oligonucleotide probes specific for the parasite was developed and used in clinically infected GSB in combination with calcofluor white stain (CW) and other histopathological techniques. The ISH method was found to label very conspicuously the cells containing parasite stages, with the signal concentrating in merogonial and sporogonial plasmodia within the infected cell nuclei. Comparison with CW demonstrated limited ISH signal in cells containing mature spores, which was attributed mostly to the scarcity of probe targets present in these stages. Although spores were detected in other organs of the digestive system as well as in the peripheral blood, proliferative stages or parasite reservoirs were not found in this work outside the intestines. The study demonstrated a frequent disassociation between the presence of abundant spores and the intensity of the infections as determined by the parasite activity. The ISH allows confirmatory diagnosis of GSB microsporidiosis and estimation of infection intensity and will be a valuable tool for a more precise determination of parasite dissemination pathways and pathogeny mechanisms.
Collapse
Affiliation(s)
- Nahla Hossameldin Ahmed
- Institute of Aquaculture "Torre de la Sal" (IATS-CSIC), Castellón, Spain
- National Institute of Oceanography and Fisheries (NIOF), Hurghada, Egypt
| | - Monica Caffara
- Department of Veterinary Medical Sciences, University of Bologna, Bologna, Italy
| | | | | | - Angelica Mazzone
- Department of Veterinary Medical Sciences, University of Bologna, Bologna, Italy
| | | | - Asmaa Mohamed Metwally
- Department of Parasitology, Faculty of Veterinary Medicine, South Valley University, Qena, Egypt
| | - Mosaab Adl-Eldin Omar
- Department of Parasitology, Faculty of Veterinary Medicine, South Valley University, Qena, Egypt
| | | |
Collapse
|
41
|
Stentiford GD, Bass D, Williams BAP. Ultimate opportunists-The emergent Enterocytozoon group Microsporidia. PLoS Pathog 2019; 15:e1007668. [PMID: 31048922 PMCID: PMC6497299 DOI: 10.1371/journal.ppat.1007668] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Affiliation(s)
- Grant D. Stentiford
- International Centre of Excellence for Aquatic Animal Health, Centre for Environment Fisheries and Aquaculture Science, Weymouth Laboratory, Weymouth, Dorset, United Kingdom
- Centre for Sustainable Aquaculture Futures, College of Life and Environmental Sciences, University of Exeter, Exeter, United Kingdom
- * E-mail:
| | - David Bass
- International Centre of Excellence for Aquatic Animal Health, Centre for Environment Fisheries and Aquaculture Science, Weymouth Laboratory, Weymouth, Dorset, United Kingdom
- Centre for Sustainable Aquaculture Futures, College of Life and Environmental Sciences, University of Exeter, Exeter, United Kingdom
- Department of Life Sciences, The Natural History Museum, London, United Kingdom
| | - Bryony A. P. Williams
- Centre for Sustainable Aquaculture Futures, College of Life and Environmental Sciences, University of Exeter, Exeter, United Kingdom
- Biosciences, College of Life and Environmental Sciences, University of Exeter, Exeter, United Kingdom
| |
Collapse
|
42
|
Samba-Louaka A, Delafont V, Rodier MH, Cateau E, Héchard Y. Free-living amoebae and squatters in the wild: ecological and molecular features. FEMS Microbiol Rev 2019; 43:415-434. [DOI: 10.1093/femsre/fuz011] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2018] [Accepted: 04/30/2019] [Indexed: 02/06/2023] Open
Abstract
ABSTRACT
Free-living amoebae are protists frequently found in water and soils. They feed on other microorganisms, mainly bacteria, and digest them through phagocytosis. It is accepted that these amoebae play an important role in the microbial ecology of these environments. There is a renewed interest for the free-living amoebae since the discovery of pathogenic bacteria that can resist phagocytosis and of giant viruses, underlying that amoebae might play a role in the evolution of other microorganisms, including several human pathogens. Recent advances, using molecular methods, allow to bring together new information about free-living amoebae. This review aims to provide a comprehensive overview of the newly gathered insights into (1) the free-living amoeba diversity, assessed with molecular tools, (2) the gene functions described to decipher the biology of the amoebae and (3) their interactions with other microorganisms in the environment.
Collapse
Affiliation(s)
- Ascel Samba-Louaka
- Laboratoire Ecologie et Biologie des Interactions (EBI), Equipe Microbiologie de l'Eau, Université de Poitiers, UMR CNRS 7267, 1 rue Georges Bonnet, TSA51106, 86073 POITIERS Cedex 9, France
| | - Vincent Delafont
- Laboratoire Ecologie et Biologie des Interactions (EBI), Equipe Microbiologie de l'Eau, Université de Poitiers, UMR CNRS 7267, 1 rue Georges Bonnet, TSA51106, 86073 POITIERS Cedex 9, France
| | - Marie-Hélène Rodier
- Laboratoire Ecologie et Biologie des Interactions (EBI), Equipe Microbiologie de l'Eau, Université de Poitiers, UMR CNRS 7267, 1 rue Georges Bonnet, TSA51106, 86073 POITIERS Cedex 9, France
- Laboratoire de Parasitologie et Mycologie, CHU La Milétrie, 2 rue de la Milétrie, 86021 Poitiers Cedex, France
| | - Estelle Cateau
- Laboratoire Ecologie et Biologie des Interactions (EBI), Equipe Microbiologie de l'Eau, Université de Poitiers, UMR CNRS 7267, 1 rue Georges Bonnet, TSA51106, 86073 POITIERS Cedex 9, France
- Laboratoire de Parasitologie et Mycologie, CHU La Milétrie, 2 rue de la Milétrie, 86021 Poitiers Cedex, France
| | - Yann Héchard
- Laboratoire Ecologie et Biologie des Interactions (EBI), Equipe Microbiologie de l'Eau, Université de Poitiers, UMR CNRS 7267, 1 rue Georges Bonnet, TSA51106, 86073 POITIERS Cedex 9, France
| |
Collapse
|
43
|
Peters MJ, Suwannapong G, Pelin A, Corradi N. Genetic and Genome Analyses Reveal Genetically Distinct Populations of the Bee Pathogen Nosema ceranae from Thailand. MICROBIAL ECOLOGY 2019; 77:877-889. [PMID: 30288544 DOI: 10.1007/s00248-018-1268-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2018] [Accepted: 09/25/2018] [Indexed: 06/08/2023]
Abstract
The recent global decline in Western honeybee (Apis mellifera) populations is of great concern for pollination and honey production worldwide. Declining honeybee populations are frequently infected by the microsporidian pathogen Nosema ceranae. This species was originally described in the Asiatic honeybee (Apis cerana), and its identification in global A. mellifera hives could result from a recent host transfer. Recent genome studies have found that global populations of this parasite are polyploid and that humans may have fueled their global expansion. To better understand N. ceranae biology, we investigated its genetic diversity within part of their native range (Thailand) and among different hosts (A. mellifera, A. cerana) using both PCR and genome-based methods. We find that Thai N. ceranae populations share many SNPs with other global populations and appear to be clonal. However, in stark contrast with previous studies, we found that these populations also carry many SNPs not found elsewhere, indicating that these populations have evolved in their current geographic location for some time. Our genome analyses also indicate the potential presence of diploidy within Thai populations of N. ceranae.
Collapse
Affiliation(s)
- Melissa J Peters
- Department of Biology, University of Ottawa, Ottawa, Ontario, Canada
| | | | - Adrian Pelin
- Department of Biochemistry, University of Ottawa, Ottawa, Ontario, Canada
- Center for Cancer Therapeutics, Ottawa Hospital Research Institute, Ottawa, Ontario, Canada
| | - Nicolas Corradi
- Department of Biology, University of Ottawa, Ottawa, Ontario, Canada.
| |
Collapse
|
44
|
Li W, Xiao L. Multilocus Sequence Typing and Population Genetic Analysis of Enterocytozoon bieneusi: Host Specificity and Its Impacts on Public Health. Front Genet 2019; 10:307. [PMID: 31001333 PMCID: PMC6454070 DOI: 10.3389/fgene.2019.00307] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2018] [Accepted: 03/20/2019] [Indexed: 01/13/2023] Open
Abstract
Microsporidia comprise a large class of unicellular eukaryotic pathogens that are medically and agriculturally important, but poorly understood. There have been nearly 1,500 microsporidian species described thus far, which are variable in biology, genetics, genomics, and host specificity. Among those, Enterocytozoon bieneusi is the well-known species responsible for the most recorded cases of human microsporidian affections. The pathogen can colonize a broad range of mammals and birds and most of the animals surveyed share some genotypes with humans, posing a threat to public health. Based on DNA sequence analysis of the ribosomal internal transcribed spacer (ITS) and phylogenetic analysis, several hundreds of E. bieneusi genotypes have been defined and clustered into different genetic groups with varied levels of host specificity. However, single locus-based typing using ITS might have insufficient resolution to discriminate among E. bieneusi isolates with complex genetic or hereditary characteristics and to assess the elusive reproduction or transmission modes of the organism, highlighting the need for exploration and application of multilocus sequence typing (MLST) and population genetic tools. The present review begins with a primer on microsporidia and major microsporidian species, briefly introduces the recent advances on E. bieneusi ITS genotyping and phylogeny, summarizes recent MLST and population genetic data, analyzes the inter- and intragroup host specificity at the MLST level, and interprets the public health implications of host specificity in zoonotic or cross-species transmission of this ubiquitous fungus.
Collapse
Affiliation(s)
- Wei Li
- Heilongjiang Key Laboratory for Zoonosis, College of Veterinary Medicine, Northeast Agricultural University, Harbin, China
| | - Lihua Xiao
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| |
Collapse
|
45
|
Chang Y, Desirò A, Na H, Sandor L, Lipzen A, Clum A, Barry K, Grigoriev IV, Martin FM, Stajich JE, Smith ME, Bonito G, Spatafora JW. Phylogenomics of Endogonaceae and evolution of mycorrhizas within Mucoromycota. THE NEW PHYTOLOGIST 2019; 222:511-525. [PMID: 30485448 DOI: 10.1111/nph.15613] [Citation(s) in RCA: 51] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2018] [Accepted: 10/29/2018] [Indexed: 06/09/2023]
Abstract
Endogonales (Mucoromycotina), composed of Endogonaceae and Densosporaceae, is the only known non-Dikarya order with ectomycorrhizal members. They also form mycorrhizal-like association with some nonspermatophyte plants. It has been recently proposed that Endogonales were among the earliest mycorrhizal partners with land plants. It remains unknown whether Endogonales possess genomes with mycorrhizal-lifestyle signatures and whether Endogonales originated around the same time as land plants did. We sampled sporocarp tissue from four Endogonaceae collections and performed shotgun genome sequencing. After binning the metagenome data, we assembled and annotated the Endogonaceae genomes. We performed comparative analysis on plant-cell-wall-degrading enzymes (PCWDEs) and small secreted proteins (SSPs). We inferred phylogenetic placement of Endogonaceae and estimated the ages of Endogonaceae and Endogonales with expanded taxon sampling. Endogonaceae have large genomes with high repeat content, low diversity of PCWDEs, but without elevated SSP/secretome ratios. Dating analysis estimated that Endogonaceae originated in the Permian-Triassic boundary and Endogonales originated in the mid-late Silurian. Mycoplasma-related endobacterium sequences were identified in three Endogonaceae genomes. Endogonaceae genomes possess typical signatures of mycorrhizal lifestyle. The early origin of Endogonales suggests that the mycorrhizal association between Endogonales and plants might have played an important role during the colonization of land by plants.
Collapse
Affiliation(s)
- Ying Chang
- Department of Botany and Plant Pathology, Oregon State University, Corvallis, OR, 97331, USA
| | - Alessandro Desirò
- Department of Plant, Soil and Microbial Sciences, Michigan State University, East Lansing, MI, 48824, USA
| | - Hyunsoo Na
- US Department of Energy Joint Genome Institute, Walnut Creek, CA, 94598, USA
| | - Laura Sandor
- US Department of Energy Joint Genome Institute, Walnut Creek, CA, 94598, USA
| | - Anna Lipzen
- US Department of Energy Joint Genome Institute, Walnut Creek, CA, 94598, USA
| | - Alicia Clum
- US Department of Energy Joint Genome Institute, Walnut Creek, CA, 94598, USA
| | - Kerrie Barry
- US Department of Energy Joint Genome Institute, Walnut Creek, CA, 94598, USA
| | - Igor V Grigoriev
- US Department of Energy Joint Genome Institute, Walnut Creek, CA, 94598, USA
- Department of Plant and Microbial Biology, University of California Berkeley, Berkeley, CA, 94720, USA
| | - Francis M Martin
- Institut national de la recherche agronomique, Laboratoire d'excellence ARBRE, Centre INRA-Grand Est, Unité mixte de recherche Inra-Université de Lorraine "Interactions Arbres/Microorganismes", 54280, Champenoux, France
| | - Jason E Stajich
- Department of Microbiology and Plant Pathology, University of California, Riverside, CA, 92521, USA
| | - Matthew E Smith
- Department of Plant Pathology, University of Florida, Gainesville, FL, 32611, USA
| | - Gregory Bonito
- Department of Plant, Soil and Microbial Sciences, Michigan State University, East Lansing, MI, 48824, USA
| | - Joseph W Spatafora
- Department of Botany and Plant Pathology, Oregon State University, Corvallis, OR, 97331, USA
| |
Collapse
|
46
|
Whelan TA, Lee NT, Lee RCH, Fast NM. Microsporidian Introns Retained against a Background of Genome Reduction: Characterization of an Unusual Set of Introns. Genome Biol Evol 2019; 11:263-269. [PMID: 30496512 PMCID: PMC6349667 DOI: 10.1093/gbe/evy260] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/24/2018] [Indexed: 01/22/2023] Open
Abstract
Spliceosomal introns are ubiquitous features of eukaryotic genomes, but the mechanisms responsible for their loss and gain are difficult to identify. Microsporidia are obligate intracellular parasites that have significantly reduced genomes and, as a result, have lost many if not all of their introns. In the microsporidian Encephalitozoon cuniculi, a relatively long intron was identified and was spliced at higher levels than the remaining introns. This long intron is part of a set of unique introns in two unrelated genes that show high levels of sequence conservation across diverse microsporidia. The introns possess a unique internal conserved region, which overlaps with a shared, predicted stem–loop structure. The unusual similarity and retention of these long introns in reduced microsporidian genomes could indicate that these introns function similarly, are homologous, or both. Regardless, the significant genome reduction in microsporidia provides a rare opportunity to understand intron evolution.
Collapse
Affiliation(s)
- Thomas A Whelan
- Biodiversity Research Centre and Department of Botany, University of British Columbia, Vancouver, British Columbia, Canada
| | - Nicole T Lee
- Biodiversity Research Centre and Department of Botany, University of British Columbia, Vancouver, British Columbia, Canada
| | - Renny C H Lee
- Biodiversity Research Centre and Department of Botany, University of British Columbia, Vancouver, British Columbia, Canada
| | - Naomi M Fast
- Biodiversity Research Centre and Department of Botany, University of British Columbia, Vancouver, British Columbia, Canada
| |
Collapse
|
47
|
Adl SM, Bass D, Lane CE, Lukeš J, Schoch CL, Smirnov A, Agatha S, Berney C, Brown MW, Burki F, Cárdenas P, Čepička I, Chistyakova L, del Campo J, Dunthorn M, Edvardsen B, Eglit Y, Guillou L, Hampl V, Heiss AA, Hoppenrath M, James TY, Karnkowska A, Karpov S, Kim E, Kolisko M, Kudryavtsev A, Lahr DJ, Lara E, Le Gall L, Lynn DH, Mann DG, Massana R, Mitchell EA, Morrow C, Park JS, Pawlowski JW, Powell MJ, Richter DJ, Rueckert S, Shadwick L, Shimano S, Spiegel FW, Torruella G, Youssef N, Zlatogursky V, Zhang Q. Revisions to the Classification, Nomenclature, and Diversity of Eukaryotes. J Eukaryot Microbiol 2019; 66:4-119. [PMID: 30257078 PMCID: PMC6492006 DOI: 10.1111/jeu.12691] [Citation(s) in RCA: 663] [Impact Index Per Article: 110.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2018] [Accepted: 09/04/2018] [Indexed: 12/22/2022]
Abstract
This revision of the classification of eukaryotes follows that of Adl et al., 2012 [J. Euk. Microbiol. 59(5)] and retains an emphasis on protists. Changes since have improved the resolution of many nodes in phylogenetic analyses. For some clades even families are being clearly resolved. As we had predicted, environmental sampling in the intervening years has massively increased the genetic information at hand. Consequently, we have discovered novel clades, exciting new genera and uncovered a massive species level diversity beyond the morphological species descriptions. Several clades known from environmental samples only have now found their home. Sampling soils, deeper marine waters and the deep sea will continue to fill us with surprises. The main changes in this revision are the confirmation that eukaryotes form at least two domains, the loss of monophyly in the Excavata, robust support for the Haptista and Cryptista. We provide suggested primer sets for DNA sequences from environmental samples that are effective for each clade. We have provided a guide to trophic functional guilds in an appendix, to facilitate the interpretation of environmental samples, and a standardized taxonomic guide for East Asian users.
Collapse
Affiliation(s)
- Sina M. Adl
- Department of Soil SciencesCollege of Agriculture and Bioresources, University of SaskatchewanSaskatoonS7N 5A8SKCanada
| | - David Bass
- Department of Life SciencesThe Natural History MuseumCromwell RoadLondonSW7 5BDUnited Kingdom
- Centre for Environment, Fisheries and Aquaculture Science (CEFAS)Barrack Road, The NotheWeymouthDorsetDT4 8UBUnited Kingdom
| | - Christopher E. Lane
- Department of Biological SciencesUniversity of Rhode IslandKingstonRhode Island02881USA
| | - Julius Lukeš
- Institute of Parasitology, Biology CentreCzech Academy of SciencesČeské Budějovice37005Czechia
- Faculty of ScienceUniversity of South BohemiaČeské Budějovice37005Czechia
| | - Conrad L. Schoch
- National Institute for Biotechnology Information, National Library of Medicine, National Institutes of HealthBethesdaMaryland20892USA
| | - Alexey Smirnov
- Department of Invertebrate ZoologyFaculty of BiologySaint Petersburg State UniversitySaint Petersburg199034Russia
| | - Sabine Agatha
- Department of BiosciencesUniversity of SalzburgHellbrunnerstrasse 34SalzburgA‐5020Austria
| | - Cedric Berney
- CNRS, UMR 7144 (AD2M), Groupe Evolution des Protistes et Ecosystèmes PélagiquesStation Biologique de RoscoffPlace Georges TeissierRoscoff29680France
| | - Matthew W. Brown
- Department of Biological SciencesMississippi State UniversityStarkville39762MississippiUSA
- Institute for Genomics, Biocomputing & BiotechnologyMississippi State UniversityStarkville39762MississippiUSA
| | - Fabien Burki
- Department of Organismal BiologyProgram in Systematic BiologyScience for Life LaboratoryUppsala UniversityUppsala75236Sweden
| | - Paco Cárdenas
- Pharmacognosy, Department of Medicinal ChemistryUppsala UniversityBMC Box 574UppsalaSE‐75123Sweden
| | - Ivan Čepička
- Department of ZoologyFaculty of ScienceCharles UniversityVinicna 7Prague128 44Czechia
| | - Lyudmila Chistyakova
- Core Facility Centre for Culture Collection of MicroorganismsSaint Petersburg State UniversitySaint Petersburg198504Russia
| | - Javier del Campo
- Institut de Ciències del Mar, CSICPasseig Marítim de la Barceloneta, 37‐49Barcelona08003CataloniaSpain
| | - Micah Dunthorn
- Department of EcologyUniversity of KaiserslauternErwin‐Schroedinger StreetKaiserslauternD‐67663Germany
- Department of Eukaryotic MicrobiologyUniversity of Duisburg‐EssenUniversitätsstrasse 5EssenD‐45141Germany
| | - Bente Edvardsen
- Department of BiosciencesUniversity of OsloP.O. Box 1066 BlindernOslo0316Norway
| | - Yana Eglit
- Department of BiologyDalhousie UniversityHalifaxB3H 4R2NSCanada
| | - Laure Guillou
- Sorbonne Université, Université Pierre et Marie Curie ‐ Paris 6, CNRS, UMR 7144 (AD2M)Station Biologique de RoscoffPlace Georges Teissier, CS90074Roscoff29688France
| | - Vladimír Hampl
- Department of ParasitologyFaculty of ScienceCharles University, BIOCEVPrůmyslová 595Vestec252 42Czechia
| | - Aaron A. Heiss
- Department of Invertebrate ZoologyAmerican Museum of Natural HistoryNew York CityNew York10024USA
| | - Mona Hoppenrath
- Senckenberg am Meer, DZMB – German Centre for Marine Biodiversity ResearchWilhelmshaven26382Germany
| | - Timothy Y. James
- Department of Ecology and Evolutionary BiologyUniversity of MichiganAnn ArborMichigan48109USA
| | - Anna Karnkowska
- Department of Molecular Phylogenetics and EvolutionUniversity of WarsawWarsaw02‐089Poland
| | - Sergey Karpov
- Department of Invertebrate ZoologyFaculty of BiologySaint Petersburg State UniversitySaint Petersburg199034Russia
- Department of Molecular Phylogenetics and EvolutionUniversity of WarsawWarsaw02‐089Poland
| | - Eunsoo Kim
- Department of Invertebrate ZoologyAmerican Museum of Natural HistoryNew York CityNew York10024USA
| | - Martin Kolisko
- Institute of Parasitology, Biology CentreCzech Academy of SciencesČeské Budějovice37005Czechia
| | - Alexander Kudryavtsev
- Department of Invertebrate ZoologyFaculty of BiologySaint Petersburg State UniversitySaint Petersburg199034Russia
- Laboratory of Parasitic Worms and ProtistologyZoological Institute RASSaint Petersburg199034Russia
| | - Daniel J.G. Lahr
- Department of ZoologyInstitute of BiosciencesUniversity of Sao PauloMatao Travessa 14 Cidade UniversitariaSao Paulo05508‐090Sao PauloBrazil
| | - Enrique Lara
- Laboratory of Soil BiodiversityUniversity of NeuchâtelRue Emile‐Argand 11Neuchâtel2000Switzerland
- Real Jardín Botánico, CSICPlaza de Murillo 2Madrid28014Spain
| | - Line Le Gall
- Institut de Systématique, Évolution, Biodiversité, Muséum National d'Histoire NaturelleSorbonne Universités57 rue Cuvier, CP 39Paris75005France
| | - Denis H. Lynn
- Department of Integrative BiologyUniversity of GuelphSummerlee Science ComplexGuelphONN1G 2W1Canada
- Department of ZoologyUniversity of British Columbia4200‐6270 University Blvd.VancouverBCV6T 1Z4Canada
| | - David G. Mann
- Royal Botanic GardenEdinburghEH3 5LRUnited Kingdom
- Institute for Agrifood Research and TechnologyC/Poble Nou km 5.5Sant Carles de La RàpitaE‐43540Spain
| | - Ramon Massana
- Institut de Ciències del Mar, CSICPasseig Marítim de la Barceloneta, 37‐49Barcelona08003CataloniaSpain
| | - Edward A.D. Mitchell
- Laboratory of Soil BiodiversityUniversity of NeuchâtelRue Emile‐Argand 11Neuchâtel2000Switzerland
- Jardin Botanique de NeuchâtelChemin du Perthuis‐du‐Sault 58Neuchâtel2000Switzerland
| | - Christine Morrow
- Department of Natural SciencesNational Museums Northern Ireland153 Bangor RoadHolywoodBT18 OEUUnited Kingdom
| | - Jong Soo Park
- Department of Oceanography and Kyungpook Institute of OceanographySchool of Earth System SciencesKyungpook National UniversityDaeguKorea
| | - Jan W. Pawlowski
- Department of Genetics and EvolutionUniversity of Geneva1211Geneva 4Switzerland
| | - Martha J. Powell
- Department of Biological SciencesThe University of AlabamaTuscaloosaAlabama35487USA
| | - Daniel J. Richter
- Institut de Biologia Evolutiva (CSIC‐Universitat Pompeu Fabra)Passeig Marítim de la Barceloneta 37‐49Barcelona08003CataloniaSpain
| | - Sonja Rueckert
- School of Applied SciencesEdinburgh Napier UniversityEdinburghEH11 4BNUnited Kingdom
| | - Lora Shadwick
- Department of Biological SciencesUniversity of ArkansasFayettevilleArkansasAR 72701USA
| | - Satoshi Shimano
- Science Research CentreHosei University2‐17‐1 FujimiChiyoda‐kuTokyo102‐8160Japan
| | - Frederick W. Spiegel
- Department of Biological SciencesUniversity of ArkansasFayettevilleArkansasAR 72701USA
| | - Guifré Torruella
- Laboratoire Evolution et Systématique, Université Paris‐XIOrsay91405France
| | - Noha Youssef
- Department of Microbiology and Molecular GeneticsOklahoma State UniversityStillwaterOklahoma74074USA
| | - Vasily Zlatogursky
- Department of Invertebrate ZoologyFaculty of BiologySaint Petersburg State UniversitySaint Petersburg199034Russia
- Department of Organismal BiologySystematic Biology ProgramUppsala UniversityUppsalaSE‐752 36Sweden
| | - Qianqian Zhang
- Yantai Institute of Coastal Zone ResearchChinese Academy of ScienceYantai264003China
| |
Collapse
|
48
|
Torruella G, Grau-Bové X, Moreira D, Karpov SA, Burns JA, Sebé-Pedrós A, Völcker E, López-García P. Global transcriptome analysis of the aphelid Paraphelidium tribonemae supports the phagotrophic origin of fungi. Commun Biol 2018; 1:231. [PMID: 30588510 PMCID: PMC6299283 DOI: 10.1038/s42003-018-0235-z] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2018] [Accepted: 11/22/2018] [Indexed: 01/20/2023] Open
Abstract
Aphelids are little-known phagotrophic parasites of algae whose life cycle and morphology resemble those of the parasitic rozellids (Cryptomycota, Rozellomycota). In previous phylogenetic analyses of RNA polymerase and rRNA genes, aphelids, rozellids and Microsporidia (parasites of animals) formed a clade, named Opisthosporidia, which appeared as the sister group to Fungi. However, the statistical support for the Opisthosporidia was always moderate. Here, we generated full life-cycle transcriptome data for the aphelid species Paraphelidium tribonemae. In-depth multi-gene phylogenomic analyses using several protein datasets place this aphelid as the closest relative of fungi to the exclusion of rozellids and Microsporidia. In contrast with the comparatively reduced Rozella allomycis genome, we infer a rich, free-living-like aphelid proteome, with a metabolism similar to fungi, including cellulases likely involved in algal cell-wall penetration and enzymes involved in chitin biosynthesis. Our results suggest that fungi evolved from complex aphelid-like ancestors that lost phagotrophy and became osmotrophic.
Collapse
Affiliation(s)
- Guifré Torruella
- Unité d’Ecologie, Systématique et Evolution, CNRS, Université Paris-Sud, Université Paris-Saclay, AgroParisTech, 91400 Orsay, France
| | - Xavier Grau-Bové
- Institut de Biologia Evolutiva, Universitat Pompeu Fabra-CSIC, 08003 Barcelona, Catalonia Spain
| | - David Moreira
- Unité d’Ecologie, Systématique et Evolution, CNRS, Université Paris-Sud, Université Paris-Saclay, AgroParisTech, 91400 Orsay, France
| | - Sergey A. Karpov
- Unité d’Ecologie, Systématique et Evolution, CNRS, Université Paris-Sud, Université Paris-Saclay, AgroParisTech, 91400 Orsay, France
- Zoological Institute, Russian Academy of Sciences and St. Petersburg State University, St. Petersburg, Russian Federation 199134
| | - John A. Burns
- Sackler Institute for Comparative Genomics and Division of Invertebrate Zoology, American Museum of Natural History, New York, 10024-5192 NY USA
| | | | | | - Purificación López-García
- Unité d’Ecologie, Systématique et Evolution, CNRS, Université Paris-Sud, Université Paris-Saclay, AgroParisTech, 91400 Orsay, France
| |
Collapse
|
49
|
Filling gaps in the microsporidian tree: rDNA phylogeny of Chytridiopsis typographi (Microsporidia: Chytridiopsida). Parasitol Res 2018; 118:169-180. [DOI: 10.1007/s00436-018-6130-1] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2018] [Accepted: 10/23/2018] [Indexed: 12/18/2022]
|
50
|
Ahrendt SR, Quandt CA, Ciobanu D, Clum A, Salamov A, Andreopoulos B, Cheng JF, Woyke T, Pelin A, Henrissat B, Reynolds NK, Benny GL, Smith ME, James TY, Grigoriev IV. Leveraging single-cell genomics to expand the fungal tree of life. Nat Microbiol 2018; 3:1417-1428. [PMID: 30297742 PMCID: PMC6784888 DOI: 10.1038/s41564-018-0261-0] [Citation(s) in RCA: 68] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2018] [Accepted: 09/03/2018] [Indexed: 11/09/2022]
Abstract
Environmental DNA surveys reveal that most fungal diversity represents uncultured species. We sequenced the genomes of eight uncultured species across the fungal tree of life using a new single-cell genomics pipeline. We show that, despite a large variation in genome and gene space recovery from each single amplified genome (SAG), ≥90% can be recovered by combining multiple SAGs. SAGs provide robust placement for early-diverging lineages and infer a diploid ancestor of fungi. Early-diverging fungi share metabolic deficiencies and show unique gene expansions correlated with parasitism and unculturability. Single-cell genomics holds great promise in exploring fungal diversity, life cycles and metabolic potential.
Collapse
Affiliation(s)
- Steven R Ahrendt
- US Department of Energy Joint Genome Institute, Walnut Creek, CA, USA.,Department of Plant and Microbial Biology, University of California Berkeley, Berkeley, CA, USA
| | - C Alisha Quandt
- Department of Ecology and Evolutionary Biology, University of Michigan, Ann Arbor, MI, USA.,Department of Ecology and Evolutionary Biology, University of Colorado Boulder, Boulder, CO, USA
| | - Doina Ciobanu
- US Department of Energy Joint Genome Institute, Walnut Creek, CA, USA
| | - Alicia Clum
- US Department of Energy Joint Genome Institute, Walnut Creek, CA, USA
| | - Asaf Salamov
- US Department of Energy Joint Genome Institute, Walnut Creek, CA, USA
| | - Bill Andreopoulos
- US Department of Energy Joint Genome Institute, Walnut Creek, CA, USA
| | - Jan-Fang Cheng
- US Department of Energy Joint Genome Institute, Walnut Creek, CA, USA
| | - Tanja Woyke
- US Department of Energy Joint Genome Institute, Walnut Creek, CA, USA
| | - Adrian Pelin
- Ottawa Hospital Research Institute, Centre for Innovative Cancer Research, Ottawa, Ontario, Canada
| | - Bernard Henrissat
- Architecture et Fonction des Macromolécules Biologiques, UMR 7857 CNRS, Aix-Marseille University, Marseille, France.,Institut National de la Recherche Agronomique, USC 1408 Architecture et Fonction des Macromolécules Biologiques, Marseille, France.,Department of Biological Sciences, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Nicole K Reynolds
- Department of Plant Pathology, University of Florida, Gainesville, FL, USA
| | - Gerald L Benny
- Department of Plant Pathology, University of Florida, Gainesville, FL, USA
| | - Matthew E Smith
- Department of Plant Pathology, University of Florida, Gainesville, FL, USA
| | - Timothy Y James
- Department of Ecology and Evolutionary Biology, University of Michigan, Ann Arbor, MI, USA.
| | - Igor V Grigoriev
- US Department of Energy Joint Genome Institute, Walnut Creek, CA, USA. .,Department of Plant and Microbial Biology, University of California Berkeley, Berkeley, CA, USA.
| |
Collapse
|