1
|
Jahn H, Shyng SL, Schultz C. Lipid probes to study ion channels. Curr Opin Chem Biol 2025; 85:102581. [PMID: 39978055 DOI: 10.1016/j.cbpa.2025.102581] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2024] [Revised: 01/29/2025] [Accepted: 01/30/2025] [Indexed: 02/22/2025]
Abstract
Lipids can have specific interaction partners and act as small molecule regulators of proteins, especially for transmembrane proteins. Transmembrane proteins, such as ion channels, can be influenced by lipids in four ways; lipids can be direct ligands, localize effector proteins or domains, affect protein-protein interaction, or change the biophysical properties of the surrounding membrane. In this article, we will give examples of how lipids directly interact with ion channels and address the complex aspect of indirect regulation via lipids of the surrounding membrane bilayer. In addition, we discuss current and propose future molecular tools and experiments elucidating the many roles lipids play in ion channel function.
Collapse
Affiliation(s)
- Helene Jahn
- Department of Chemical Physiology and Biochemistry, School of Medicine, Oregon Health and Science University, Portland, OR, 97239, USA; Department of Molecular Microbiology and Immunology, School of Medicine, Oregon Health and Science University, Portland, OR, 97239, USA
| | - Show-Ling Shyng
- Department of Chemical Physiology and Biochemistry, School of Medicine, Oregon Health and Science University, Portland, OR, 97239, USA.
| | - Carsten Schultz
- Department of Chemical Physiology and Biochemistry, School of Medicine, Oregon Health and Science University, Portland, OR, 97239, USA.
| |
Collapse
|
2
|
Liu X, Dos Santos T, Spigelman AF, Duckett S, Smith N, Suzuki K, MacDonald PE. TMEM55A-mediated PI5P signalling regulates alpha cell actin depolymerisation and glucagon secretion. Diabetologia 2025:10.1007/s00125-025-06411-9. [PMID: 40140059 DOI: 10.1007/s00125-025-06411-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/18/2024] [Accepted: 02/07/2025] [Indexed: 03/28/2025]
Abstract
AIMS/HYPOTHESIS Diabetes is associated with the dysfunction of glucagon-producing pancreatic islet alpha cells, although the underlying mechanisms regulating glucagon secretion and alpha cell dysfunction remain unclear. While insulin secretion from pancreatic beta cells has long been known to be controlled partly by intracellular phospholipid signalling, very little is known about the role of phospholipids in glucagon secretion. Using patch-clamp electrophysiology and single-cell RNA sequencing, we previously found that expression of PIP4P2 (encoding TMEM55A, a lipid phosphatase that dephosphorylates phosphatidylinositol-4,5-bisphosphate [PIP2] to phosphatidylinositol-5-phosphate [PI5P]) correlates with alpha cell function. We hypothesise that TMEM55A is involved in glucagon secretion and aim to validate the role of TMEM55A and its potential signalling molecules in alpha cell function and glucagon secretion. METHODS Correlation analysis was generated from the data in www.humanislets.com . Human islets were isolated at the Alberta Diabetes Institute IsletCore. Electrical recordings were performed on dispersed human or mouse islets with scrambled siRNA or si-PIP4P2 (si-Pip4p2 for mouse) transfection. Glucagon secretion was measured using an islet perfusion system with intact mouse islets. TMEM55A activity was measured using an in vitro on-beads phosphatase assay and live-cell imaging. GTPase activity was measured using an active GTPase pull-down assay. Confocal microscopy was used to quantify F-actin intensity using primary alpha cells and alphaTC1-9 cell lines after chemical treatment. RESULTS TMEM55A regulated alpha cell exocytosis and glucagon secretion. TMEM55A knockdown in both human and mouse alpha cells reduced exocytosis at low glucose levels and this was rescued by the direct reintroduction of PI5P. PI5P, instead of PIP2 increased the glucagon secretion using intact mouse islets. This did not occur through an effect on Ca2+ channel activity but through a remodelling of cortical F-actin dependent on TMEM55A lipid phosphatase activity, which occurred in response to oxidative stress. TMEM55A- and PI5P-induced F-actin remodelling depends on the inactivation of GTPase and RhoA, instead of Ras-related C3 botulinum toxin substrate 1 or CDC42. CONCLUSIONS/INTERPRETATION We reveal a novel pathway by which TMEM55A regulates alpha cell exocytosis by controlling intracellular PI5P and the F-actin network.
Collapse
Affiliation(s)
- Xiong Liu
- Department of Pharmacology, University of Alberta, Edmonton, AB, Canada
- Alberta Diabetes Institute, University of Alberta, Edmonton, AB, Canada
| | - Theodore Dos Santos
- Department of Pharmacology, University of Alberta, Edmonton, AB, Canada
- Alberta Diabetes Institute, University of Alberta, Edmonton, AB, Canada
| | - Aliya F Spigelman
- Department of Pharmacology, University of Alberta, Edmonton, AB, Canada
- Alberta Diabetes Institute, University of Alberta, Edmonton, AB, Canada
| | - Shawn Duckett
- Department of Pharmacology, University of Alberta, Edmonton, AB, Canada
- Alberta Diabetes Institute, University of Alberta, Edmonton, AB, Canada
| | - Nancy Smith
- Department of Pharmacology, University of Alberta, Edmonton, AB, Canada
- Alberta Diabetes Institute, University of Alberta, Edmonton, AB, Canada
| | - Kunimasa Suzuki
- Department of Pharmacology, University of Alberta, Edmonton, AB, Canada
- Alberta Diabetes Institute, University of Alberta, Edmonton, AB, Canada
| | - Patrick E MacDonald
- Department of Pharmacology, University of Alberta, Edmonton, AB, Canada.
- Alberta Diabetes Institute, University of Alberta, Edmonton, AB, Canada.
| |
Collapse
|
3
|
Zhang L, Wei Z, Dai Y, He F, Sun T. The role of CAPS in Ca 2+-regulated exocytosis: Promotion of vesicle tethering, priming, and fusion. Neuropharmacology 2025; 265:110247. [PMID: 39631678 DOI: 10.1016/j.neuropharm.2024.110247] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2024] [Revised: 11/27/2024] [Accepted: 12/02/2024] [Indexed: 12/07/2024]
Abstract
Neurotransmitter and neuromodulator release by Ca2+-regulated exocytosis is essential for information transmisson between cells. Formation of SNARE complex (soluble N-ethylmaleimide sensitive factor attachment protein receptors) provide energy to bring vesicles and the plasma membranes together and catalyze membrane fusion. The "Ca2+-dependent activator protein for secretion" (CAPS) assumes a pivotal role in facilitating vesicle content release, not only in the nervous system but also in various other secretory tissues. In recent years, great progress has been made in the study of the mechanism of CAPS regulating vesicle secretion. In this review, we summarize recent advances toward the functions and molecular mechanisms of CAPSs in vesicle exocytosis, and contemplate future research directions that will illuminate the molecular mechanisms of neurodegeneration.
Collapse
Affiliation(s)
- Li Zhang
- Key Clinical Laboratory of Henan Province, Department of Clinical Laboratory, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, China.
| | - Ziqing Wei
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, China; Henan Key Laboratory of Cerebrovascular Diseases, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, 450052, Henan, China
| | - Yuwan Dai
- Henan Provincial People's Hospital, 450003, Henan, China
| | - Fucheng He
- Key Clinical Laboratory of Henan Province, Department of Clinical Laboratory, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, China.
| | - Ting Sun
- Key Clinical Laboratory of Henan Province, Department of Clinical Laboratory, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, China.
| |
Collapse
|
4
|
Liu X, dos Santos T, Spigelman AF, Duckett S, Smith N, Suzuki K, MacDonald PE. TMEM55A-mediated PI5P signaling regulates α-cell actin depolymerization and glucagon secretion. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.12.16.628242. [PMID: 39763967 PMCID: PMC11702586 DOI: 10.1101/2024.12.16.628242] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/19/2025]
Abstract
Diabetes is associated with the dysfunction of glucagon-producing pancreatic islet α-cells, although the underlying mechanisms regulating glucagon secretion and α-cell dysfunction remain unclear. While insulin secretion from pancreatic β-cells has long been known to be partly controlled by intracellular phospholipid signaling, very little is known about the role of phospholipids in glucagon secretion. Here we show that TMEM55A, a lipid phosphatase that dephosphorylates phosphatidylinositol-4,5-bisphosphate (PIP2) to phosphatidylinositol-5-phosphate (PI5P), regulates α-cell exocytosis and glucagon secretion. TMEM55A knockdown in both human and mouse α-cells reduces exocytosis at low glucose, and this is rescued by the direct reintroduction of PI5P. This does not occur through an effect on Ca2+ channel activity, but through a re-modelling of cortical F-actin dependent upon TMEM55A lipid phosphatase activity which occurs in response to oxidative stress. In summary, we reveal a novel pathway by which TMEM55A regulates α-cell exocytosis by manipulating intracellular PI5P level and the F-actin network.
Collapse
Affiliation(s)
- Xiong Liu
- Department of Pharmacology, University of Alberta, Edmonton, AB T6G 2E1, Canada
- Alberta Diabetes Institute, University of Alberta, Edmonton, T6G 2E1, Canada
| | - Theodore dos Santos
- Department of Pharmacology, University of Alberta, Edmonton, AB T6G 2E1, Canada
- Alberta Diabetes Institute, University of Alberta, Edmonton, T6G 2E1, Canada
| | - Aliya F. Spigelman
- Department of Pharmacology, University of Alberta, Edmonton, AB T6G 2E1, Canada
- Alberta Diabetes Institute, University of Alberta, Edmonton, T6G 2E1, Canada
| | - Shawn Duckett
- Department of Pharmacology, University of Alberta, Edmonton, AB T6G 2E1, Canada
- Alberta Diabetes Institute, University of Alberta, Edmonton, T6G 2E1, Canada
| | - Nancy Smith
- Department of Pharmacology, University of Alberta, Edmonton, AB T6G 2E1, Canada
- Alberta Diabetes Institute, University of Alberta, Edmonton, T6G 2E1, Canada
| | - Kunimasa Suzuki
- Department of Pharmacology, University of Alberta, Edmonton, AB T6G 2E1, Canada
- Alberta Diabetes Institute, University of Alberta, Edmonton, T6G 2E1, Canada
| | - Patrick E. MacDonald
- Department of Pharmacology, University of Alberta, Edmonton, AB T6G 2E1, Canada
- Alberta Diabetes Institute, University of Alberta, Edmonton, T6G 2E1, Canada
| |
Collapse
|
5
|
Kao WS, Huang W, Zhang Y, Wen K, Meyer A, Escorihuela J, Laughlin ST. Redox-Activated Substrates for Enhancing Activatable Cyclopropene Bioorthogonal Reactions. Chembiochem 2024; 25:e202400304. [PMID: 39183177 DOI: 10.1002/cbic.202400304] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 08/08/2024] [Accepted: 08/19/2024] [Indexed: 08/27/2024]
Abstract
Bioorthogonal chemistry has become a mainstay in chemical biology and is making inroads in the clinic with recent advances in protein targeting and drug release. Since the field's beginning, a major focus has been on designing bioorthogonal reagents with good selectivity, reactivity, and stability in complex biological environments. More recently, chemists have imbued reagents with new functionalities like click-and-release or light/enzyme-controllable reactivity. We have previously developed a controllable cyclopropene-based bioorthogonal ligation, which has excellent stability in physiological conditions and can be triggered to react with tetrazines by exposure to enzymes, biologically significant small molecules, or light spanning the visual spectrum. Here, to improve reactivity and gain a better understanding of this system, we screened diene reaction partners for the cyclopropene. We found that a cyclopropene-quinone pair is 26 times faster than reactions with 1,2,4,5-tetrazines. Additionally, we showed that the reaction of the cyclopropene-quinone pair can be activated by two orthogonal mechanisms: caging group removal on the cyclopropene and oxidation/reduction of the quinone. Finally, we demonstrated that this caged cyclopropene-quinone can be used as an imaging tool to label the membranes of fixed, cultured cells.
Collapse
Affiliation(s)
- Wei-Siang Kao
- Department of Chemistry, Stony Brook University, 100 Nicolls Road, Stony Brook, NY-11794, USA
| | - Wei Huang
- Department of Chemistry, Stony Brook University, 100 Nicolls Road, Stony Brook, NY-11794, USA
| | - Yunlei Zhang
- Department of Chemistry, Stony Brook University, 100 Nicolls Road, Stony Brook, NY-11794, USA
| | - Kangqiao Wen
- Department of Chemistry, Stony Brook University, 100 Nicolls Road, Stony Brook, NY-11794, USA
| | - Andrea Meyer
- Department of Chemistry, Stony Brook University, 100 Nicolls Road, Stony Brook, NY-11794, USA
| | - Jorge Escorihuela
- Departamento de Química Orgánica, Universitat de València, Avda. Vicente Andrés Estellés s/n, Burjassot, Valencia, 46100, Spain
| | - Scott T Laughlin
- Department of Chemistry, Stony Brook University, 100 Nicolls Road, Stony Brook, NY-11794, USA
| |
Collapse
|
6
|
Richter Gorey CL, St Louis AP, Chorna T, Brill JA, Dason JS. Differential functions of phosphatidylinositol 4-kinases in neurotransmission and synaptic development. Eur J Neurosci 2024; 60:5966-5979. [PMID: 39267207 DOI: 10.1111/ejn.16526] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Revised: 08/07/2024] [Accepted: 08/16/2024] [Indexed: 09/14/2024]
Abstract
Phosphoinositides, such as PI(4,5)P2, are known to function as structural components of membranes, signalling molecules, markers of membrane identity, mediators of protein recruitment and regulators of neurotransmission and synaptic development. Phosphatidylinositol 4-kinases (PI4Ks) synthesize PI4P, which are precursors for PI(4,5)P2, but may also have independent functions. The roles of PI4Ks in neurotransmission and synaptic development have not been studied in detail. Previous studies on PI4KII and PI4KIIIβ at the Drosophila larval neuromuscular junction have suggested that PI4KII and PI4KIIIβ enzymes may serve redundant roles, where single PI4K mutants yielded mild or no synaptic phenotypes. However, the precise synaptic functions (neurotransmission and synaptic growth) of these PI4Ks have not been thoroughly studied. Here, we used PI4KII and PI4KIIIβ null mutants and presynaptic-specific knockdowns of these PI4Ks to investigate their roles in neurotransmission and synaptic growth. We found that PI4KII and PI4KIIIβ appear to have non-overlapping functions. Specifically, glial PI4KII functions to restrain synaptic growth, whereas presynaptic PI4KIIIβ promotes synaptic growth. Furthermore, loss of PI4KIIIβ or presynaptic PI4KII impairs neurotransmission. The data presented in this study uncover new roles for PI4K enzymes in neurotransmission and synaptic growth.
Collapse
Affiliation(s)
| | | | - Tetyana Chorna
- Cell Biology Program, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Julie A Brill
- Cell Biology Program, The Hospital for Sick Children, Toronto, Ontario, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada
- Institute of Medical Science, University of Toronto, Toronto, Ontario, Canada
| | - Jeffrey S Dason
- Department of Biomedical Sciences, University of Windsor, Windsor, Ontario, Canada
| |
Collapse
|
7
|
Maldifassi MC, Guerra-Fernández MJ, Ponce D, Alfonso-Bueno S, Maripillán J, Vielma AH, Báez-Matus X, Marengo FD, Acuña-Castillo C, Sáez JC, Martínez AD, Cárdenas AM. Autocrine activation of P2X7 receptors mediates catecholamine secretion in chromaffin cells. Br J Pharmacol 2024; 181:2905-2922. [PMID: 38679932 DOI: 10.1111/bph.16371] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Revised: 02/23/2024] [Accepted: 03/04/2024] [Indexed: 05/01/2024] Open
Abstract
BACKGROUND AND PURPOSE ATP is highly accumulated in secretory vesicles and secreted upon exocytosis from neurons and endocrine cells. In adrenal chromaffin granules, intraluminal ATP reaches concentrations over 100 mM. However, how these large amounts of ATP contribute to exocytosis has not been investigated. EXPERIMENTAL APPROACH Exocytotic events in bovine and mouse adrenal chromaffin cells were measured with single cell amperometry. Cytosolic Ca2+ measurements were carried out in Fluo-4 loaded cells. Submembrane Ca2+ was examined in PC12 cells transfected with a membrane-tethered Ca2+ indicator Lck-GCaMP3. ATP release was measured using the luciferin/luciferase assay. Knockdown of P2X7 receptors was induced with short interfering RNA (siRNA). Direct Ca2+ influx through this receptor was measured using a P2X7 receptor-GCamp6 construct. KEY RESULTS ATP induced exocytosis in chromaffin cells, whereas the ectonucleotidase apyrase reduced the release events induced by the nicotinic agonist dimethylphenylpiperazinium (DMPP), high KCl, or ionomycin. The purinergic agonist BzATP also promoted a secretory response that was dependent on extracellular Ca2+. A740003, a P2X7 receptor antagonist, abolished secretory responses of these secretagogues. Exocytosis was also diminished in chromaffin cells when P2X7 receptors were silenced using siRNAs and in cells of P2X7 receptor knockout mice. In PC12 cells, DMPP induced ATP release, triggering Ca2+ influx through P2X7 receptors. Furthermore, BzATP, DMPP, and KCl allowed the formation of submembrane Ca2+ microdomains inhibited by A740003. CONCLUSION AND IMPLICATIONS Autocrine activation of P2X7 receptors constitutes a crucial feedback system that amplifies the secretion of catecholamines in chromaffin cells by favouring submembrane Ca2+ microdomains.
Collapse
Affiliation(s)
- María Constanza Maldifassi
- Centro Interdisciplinario de Neurociencia de Valparaíso, Facultad de Ciencias, Universidad de Valparaíso, Valparaíso, Chile
| | - María José Guerra-Fernández
- Centro Interdisciplinario de Neurociencia de Valparaíso, Facultad de Ciencias, Universidad de Valparaíso, Valparaíso, Chile
| | - Daniela Ponce
- Centro Interdisciplinario de Neurociencia de Valparaíso, Facultad de Ciencias, Universidad de Valparaíso, Valparaíso, Chile
| | - Samuel Alfonso-Bueno
- Instituto de Fisiología, Biología Molecular y Neurociencias. CONICET. Departamento de Fisiología y Biología Molecular y Celular. Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Jaime Maripillán
- Centro Interdisciplinario de Neurociencia de Valparaíso, Facultad de Ciencias, Universidad de Valparaíso, Valparaíso, Chile
| | - Alex H Vielma
- Centro Interdisciplinario de Neurociencia de Valparaíso, Facultad de Ciencias, Universidad de Valparaíso, Valparaíso, Chile
| | - Ximena Báez-Matus
- Centro Interdisciplinario de Neurociencia de Valparaíso, Facultad de Ciencias, Universidad de Valparaíso, Valparaíso, Chile
| | - Fernando D Marengo
- Instituto de Fisiología, Biología Molecular y Neurociencias. CONICET. Departamento de Fisiología y Biología Molecular y Celular. Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Claudio Acuña-Castillo
- Departamento de Biología, Facultad de Química y Biología, Universidad de Santiago de Chile, USACH, Santiago, Chile
| | - Juan C Sáez
- Centro Interdisciplinario de Neurociencia de Valparaíso, Facultad de Ciencias, Universidad de Valparaíso, Valparaíso, Chile
| | - Agustín D Martínez
- Centro Interdisciplinario de Neurociencia de Valparaíso, Facultad de Ciencias, Universidad de Valparaíso, Valparaíso, Chile
| | - Ana M Cárdenas
- Centro Interdisciplinario de Neurociencia de Valparaíso, Facultad de Ciencias, Universidad de Valparaíso, Valparaíso, Chile
| |
Collapse
|
8
|
Ali Moussa HY, Shin KC, Ponraj J, Park SH, Lee OS, Mansour S, Park Y. PIP 2 Is An Electrostatic Catalyst for Vesicle Fusion by Lowering the Hydration Energy: Arresting Vesicle Fusion by Masking PIP 2. ACS NANO 2024; 18:12737-12748. [PMID: 38717305 DOI: 10.1021/acsnano.3c09614] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2024]
Abstract
Lipids are key factors in regulating membrane fusion. Lipids are not only structural components to form membranes but also active catalysts for vesicle fusion and neurotransmitter release, which are driven by soluble N-ethylmaleimide-sensitive factor attachment protein receptor (SNARE) proteins. SNARE proteins seem to be partially assembled before fusion, but the mechanisms that arrest vesicle fusion before Ca2+ influx are still not clear. Here, we show that phosphatidylinositol 4,5-bisphosphate (PIP2) electrostatically triggers vesicle fusion as an electrostatic catalyst by lowering the hydration energy and that a myristoylated alanine-rich C-kinase substrate (MARCKS), a PIP2-binding protein, arrests vesicle fusion in a vesicle docking state where the SNARE complex is partially assembled. Vesicle-mimicking liposomes fail to reproduce vesicle fusion arrest by masking PIP2, indicating that native vesicles are essential for the reconstitution of physiological vesicle fusion. PIP2 attracts cations to repel water molecules from membranes, thus lowering the hydration energy barrier.
Collapse
Affiliation(s)
- Houda Yasmine Ali Moussa
- Neurological Disorders Research Center, Qatar Biomedical Research Institute (QBRI), Hamad Bin Khalifa University (HBKU), Qatar Foundation, Doha, Qatar
| | - Kyung Chul Shin
- Neurological Disorders Research Center, Qatar Biomedical Research Institute (QBRI), Hamad Bin Khalifa University (HBKU), Qatar Foundation, Doha, Qatar
| | - Janarthanan Ponraj
- HBKU Core Laboratories, Hamad Bin Khalifa University (HBKU), Doha, Qatar
| | | | - One-Sun Lee
- Center for Interdisciplinary Biosciences, Technology and Innovation Park, P. J. Šafárik University, Košice SK-04001, Slovakia
| | - Said Mansour
- HBKU Core Laboratories, Hamad Bin Khalifa University (HBKU), Doha, Qatar
| | - Yongsoo Park
- Neurological Disorders Research Center, Qatar Biomedical Research Institute (QBRI), Hamad Bin Khalifa University (HBKU), Qatar Foundation, Doha, Qatar
- College of Health & Life Sciences (CHLS), Hamad Bin Khalifa University (HBKU), Qatar Foundation, Doha, Qatar
| |
Collapse
|
9
|
Lolicato F, Nickel W, Haucke V, Ebner M. Phosphoinositide switches in cell physiology - From molecular mechanisms to disease. J Biol Chem 2024; 300:105757. [PMID: 38364889 PMCID: PMC10944118 DOI: 10.1016/j.jbc.2024.105757] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 02/02/2024] [Accepted: 02/08/2024] [Indexed: 02/18/2024] Open
Abstract
Phosphoinositides are amphipathic lipid molecules derived from phosphatidylinositol that represent low abundance components of biological membranes. Rather than serving as mere structural elements of lipid bilayers, they represent molecular switches for a broad range of biological processes, including cell signaling, membrane dynamics and remodeling, and many other functions. Here, we focus on the molecular mechanisms that turn phosphoinositides into molecular switches and how the dysregulation of these processes can lead to disease.
Collapse
Affiliation(s)
- Fabio Lolicato
- Heidelberg University Biochemistry Center, Heidelberg, Germany; Department of Physics, University of Helsinki, Helsinki, Finland.
| | - Walter Nickel
- Heidelberg University Biochemistry Center, Heidelberg, Germany
| | - Volker Haucke
- Leibniz-Forschungsinstitut für Molekulare Pharmakologie (FMP), Berlin, Germany; Department of Biology, Chemistry, Pharmacy, Freie Universität Berlin, Berlin, Germany; Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Michael Ebner
- Leibniz-Forschungsinstitut für Molekulare Pharmakologie (FMP), Berlin, Germany.
| |
Collapse
|
10
|
Gonzales DT, Schuhmacher M, Lennartz HM, Iglesias-Artola JM, Kuhn SM, Barahtjan P, Zechner C, Nadler A. Quantifying single-cell diacylglycerol signaling kinetics after uncaging. Biophys J 2023; 122:4699-4709. [PMID: 37978803 PMCID: PMC10754688 DOI: 10.1016/j.bpj.2023.11.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Revised: 07/07/2023] [Accepted: 11/15/2023] [Indexed: 11/19/2023] Open
Abstract
Studying the role of molecularly distinct lipid species in cell signaling remains challenging due to a scarcity of methods for performing quantitative lipid biochemistry in living cells. We have recently used lipid uncaging to quantify lipid-protein affinities and rates of lipid trans-bilayer movement and turnover in the diacylglycerol signaling pathway. This approach is based on acquiring live-cell dose-response curves requiring light dose titrations and experimental determination of uncaging photoreaction efficiency. We here aimed to develop a methodological approach that allows us to retrieve quantitative kinetic data from uncaging experiments that 1) require only typically available datasets without the need for specialized additional constraints and 2) should in principle be applicable to other types of photoactivation experiments. Our new analysis framework allows us to identify model parameters such as diacylglycerol-protein affinities and trans-bilayer movement rates, together with initial uncaged diacylglycerol levels, using noisy single-cell data for a broad variety of structurally different diacylglycerol species. We find that lipid unsaturation degree and side-chain length generally correlate with faster lipid trans-bilayer movement and turnover and also affect lipid-protein affinities. In summary, our work demonstrates how rate parameters and lipid-protein affinities can be quantified from single-cell signaling trajectories with sufficient sensitivity to resolve the subtle kinetic differences caused by the chemical diversity of cellular signaling lipid pools.
Collapse
Affiliation(s)
- David T Gonzales
- Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany; Center for Systems Biology Dresden, Dresden, Germany
| | - Milena Schuhmacher
- Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany; École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - H Mathilda Lennartz
- Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany
| | | | - Sascha M Kuhn
- Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany
| | - Pavel Barahtjan
- Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany
| | - Christoph Zechner
- Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany; Center for Systems Biology Dresden, Dresden, Germany.
| | - André Nadler
- Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany.
| |
Collapse
|
11
|
Bolz S, Kaempf N, Puchkov D, Krauss M, Russo G, Soykan T, Schmied C, Lehmann M, Müller R, Schultz C, Perrais D, Maritzen T, Haucke V. Synaptotagmin 1-triggered lipid signaling facilitates coupling of exo- and endocytosis. Neuron 2023; 111:3765-3774.e7. [PMID: 37738980 DOI: 10.1016/j.neuron.2023.08.016] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 06/16/2023] [Accepted: 08/16/2023] [Indexed: 09/24/2023]
Abstract
Exocytosis and endocytosis are essential physiological processes and are of prime importance for brain function. Neurotransmission depends on the Ca2+-triggered exocytosis of synaptic vesicles (SVs). In neurons, exocytosis is spatiotemporally coupled to the retrieval of an equal amount of membrane and SV proteins by compensatory endocytosis. How exocytosis and endocytosis are balanced to maintain presynaptic membrane homeostasis and, thereby, sustain brain function is essentially unknown. We combine mouse genetics with optical imaging to show that the SV calcium sensor Synaptotagmin 1 couples exocytic SV fusion to the endocytic retrieval of SV membranes by promoting the local activity-dependent formation of the signaling lipid phosphatidylinositol 4,5-bisphosphate (PI(4,5)P2) at presynaptic sites. Interference with these mechanisms impairs PI(4,5)P2-triggered SV membrane retrieval but not exocytic SV fusion. Our findings demonstrate that the coupling of SV exocytosis and endocytosis involves local Synaptotagmin 1-induced lipid signaling to maintain presynaptic membrane homeostasis in central nervous system neurons.
Collapse
Affiliation(s)
- Svenja Bolz
- Leibniz-Forschungsinstitut für Molekulare Pharmakologie (FMP), Robert-Rössle-Str. 10, 13125 Berlin, Germany
| | - Natalie Kaempf
- Leibniz-Forschungsinstitut für Molekulare Pharmakologie (FMP), Robert-Rössle-Str. 10, 13125 Berlin, Germany
| | - Dmytro Puchkov
- Leibniz-Forschungsinstitut für Molekulare Pharmakologie (FMP), Robert-Rössle-Str. 10, 13125 Berlin, Germany
| | - Michael Krauss
- Leibniz-Forschungsinstitut für Molekulare Pharmakologie (FMP), Robert-Rössle-Str. 10, 13125 Berlin, Germany
| | - Giulia Russo
- Leibniz-Forschungsinstitut für Molekulare Pharmakologie (FMP), Robert-Rössle-Str. 10, 13125 Berlin, Germany
| | - Tolga Soykan
- Leibniz-Forschungsinstitut für Molekulare Pharmakologie (FMP), Robert-Rössle-Str. 10, 13125 Berlin, Germany
| | - Christopher Schmied
- Leibniz-Forschungsinstitut für Molekulare Pharmakologie (FMP), Robert-Rössle-Str. 10, 13125 Berlin, Germany
| | - Martin Lehmann
- Leibniz-Forschungsinstitut für Molekulare Pharmakologie (FMP), Robert-Rössle-Str. 10, 13125 Berlin, Germany
| | - Rainer Müller
- European Molecular Biology Laboratory (EMBL), Cell Biology and Biophysics Unit, 69117 Heidelberg, Germany
| | - Carsten Schultz
- European Molecular Biology Laboratory (EMBL), Cell Biology and Biophysics Unit, 69117 Heidelberg, Germany; Department of Chemical Physiology & Biochemistry, Oregon Health & Science University (OHSU), Portland, OR 97239, USA
| | - David Perrais
- University of Bordeaux, CNRS, Interdisciplinary Institute for Neuroscience, UMR 5297, 33000 Bordeaux, France
| | - Tanja Maritzen
- Leibniz-Forschungsinstitut für Molekulare Pharmakologie (FMP), Robert-Rössle-Str. 10, 13125 Berlin, Germany; Department of Nanophysiology, University of Kaiserslautern-Landau, 67663 Kaiserslautern, Germany
| | - Volker Haucke
- Leibniz-Forschungsinstitut für Molekulare Pharmakologie (FMP), Robert-Rössle-Str. 10, 13125 Berlin, Germany; Faculty of Biology, Chemistry, Pharmacy, Freie Universität Berlin, 14195 Berlin, Germany; NeuroCure Cluster of Excellence, Charité Universitätsmedizin Berlin, 10117 Berlin, Germany.
| |
Collapse
|
12
|
Uematsu M, Baskin JM. Chemical Approaches for Measuring and Manipulating Lipids at the Organelle Level. Cold Spring Harb Perspect Biol 2023; 15:a041407. [PMID: 37604586 PMCID: PMC10691496 DOI: 10.1101/cshperspect.a041407] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/23/2023]
Abstract
As the products of complex and often redundant metabolic pathways, lipids are challenging to measure and perturb using genetic tools. Yet by virtue of being the major constituents of cellular membranes, lipids are highly regulated in space and time. Chemists have stepped into this methodological void, developing an array of techniques for the precise quantification and manipulation of lipids at the subcellular, organelle level. Here, we survey the landscape of these methods. For measuring lipids, we summarize the use of metabolic labeling and click chemistry tagging, photoaffinity labeling, isotopic tagging for Raman microscopy, and chemoenzymatic labeling for tracking lipid production and interorganelle transport. For perturbing lipids, we describe synthetic photocaged lipids and membrane editing approaches using optogenetic enzymes for precise manipulation of lipid signaling. Collectively, these chemical and biochemical tools are revealing phenomena and mechanisms underlying lipid functions at the subcellular level.
Collapse
Affiliation(s)
- Masaaki Uematsu
- Weill Institute for Cell and Molecular Biology, Cornell University, Ithaca, New York 14853, USA
| | - Jeremy M Baskin
- Weill Institute for Cell and Molecular Biology, Cornell University, Ithaca, New York 14853, USA
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14853, USA
| |
Collapse
|
13
|
Blumrich EM, Nicholson-Fish JC, Pronot M, Davenport EC, Kurian D, Cole A, Smillie KJ, Cousin MA. Phosphatidylinositol 4-kinase IIα is a glycogen synthase kinase 3-regulated interaction hub for activity-dependent bulk endocytosis. Cell Rep 2023; 42:112633. [PMID: 37314927 DOI: 10.1016/j.celrep.2023.112633] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 04/04/2023] [Accepted: 05/25/2023] [Indexed: 06/16/2023] Open
Abstract
Phosphatidylinositol 4-kinase IIα (PI4KIIα) generates essential phospholipids and is a cargo for endosomal adaptor proteins. Activity-dependent bulk endocytosis (ADBE) is the dominant synaptic vesicle endocytosis mode during high neuronal activity and is sustained by glycogen synthase kinase 3β (GSK3β) activity. We reveal the GSK3β substrate PI4KIIα is essential for ADBE via its depletion in primary neuronal cultures. Kinase-dead PI4KIIα rescues ADBE in these neurons but not a phosphomimetic form mutated at the GSK3β site, Ser-47. Ser-47 phosphomimetic peptides inhibit ADBE in a dominant-negative manner, confirming that Ser-47 phosphorylation is essential for ADBE. Phosphomimetic PI4KIIα interacts with a specific cohort of presynaptic molecules, two of which, AGAP2 and CAMKV, are also essential for ADBE when depleted in neurons. Thus, PI4KIIα is a GSK3β-dependent interaction hub that silos essential ADBE molecules for liberation during neuronal activity.
Collapse
Affiliation(s)
- Eva-Maria Blumrich
- Centre for Discovery Brain Sciences, University of Edinburgh, Hugh Robson Building, George Square, Edinburgh, Scotland EH8 9XD, UK; Muir Maxwell Epilepsy Centre, University of Edinburgh, Hugh Robson Building, George Square, Edinburgh, Scotland EH8 9XD, UK; Simons Initiative for the Developing Brain, University of Edinburgh, Hugh Robson Building, George Square, Edinburgh, Scotland EH8 9XD, UK
| | - Jessica C Nicholson-Fish
- Centre for Discovery Brain Sciences, University of Edinburgh, Hugh Robson Building, George Square, Edinburgh, Scotland EH8 9XD, UK
| | - Marie Pronot
- Centre for Discovery Brain Sciences, University of Edinburgh, Hugh Robson Building, George Square, Edinburgh, Scotland EH8 9XD, UK; Muir Maxwell Epilepsy Centre, University of Edinburgh, Hugh Robson Building, George Square, Edinburgh, Scotland EH8 9XD, UK; Simons Initiative for the Developing Brain, University of Edinburgh, Hugh Robson Building, George Square, Edinburgh, Scotland EH8 9XD, UK
| | - Elizabeth C Davenport
- Centre for Discovery Brain Sciences, University of Edinburgh, Hugh Robson Building, George Square, Edinburgh, Scotland EH8 9XD, UK; Muir Maxwell Epilepsy Centre, University of Edinburgh, Hugh Robson Building, George Square, Edinburgh, Scotland EH8 9XD, UK; Simons Initiative for the Developing Brain, University of Edinburgh, Hugh Robson Building, George Square, Edinburgh, Scotland EH8 9XD, UK
| | - Dominic Kurian
- The Roslin Institute, University of Edinburgh, Easter Bush, Midlothian, Scotland EH25 9RG, UK
| | - Adam Cole
- Neurosignalling and Mood Disorders Group, The Garvan Institute of Medical Research, 384 Victoria Street, Darlinghurst, NSW 2010, Australia
| | - Karen J Smillie
- Centre for Discovery Brain Sciences, University of Edinburgh, Hugh Robson Building, George Square, Edinburgh, Scotland EH8 9XD, UK; Muir Maxwell Epilepsy Centre, University of Edinburgh, Hugh Robson Building, George Square, Edinburgh, Scotland EH8 9XD, UK.
| | - Michael A Cousin
- Centre for Discovery Brain Sciences, University of Edinburgh, Hugh Robson Building, George Square, Edinburgh, Scotland EH8 9XD, UK; Muir Maxwell Epilepsy Centre, University of Edinburgh, Hugh Robson Building, George Square, Edinburgh, Scotland EH8 9XD, UK; Simons Initiative for the Developing Brain, University of Edinburgh, Hugh Robson Building, George Square, Edinburgh, Scotland EH8 9XD, UK.
| |
Collapse
|
14
|
Feldthouse MG, Vyleta NP, Smith SM. PLC regulates spontaneous glutamate release triggered by extracellular calcium and readily releasable pool size in neocortical neurons. Front Cell Neurosci 2023; 17:1193485. [PMID: 37260580 PMCID: PMC10228687 DOI: 10.3389/fncel.2023.1193485] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Accepted: 04/26/2023] [Indexed: 06/02/2023] Open
Abstract
Introduction Dynamic physiological changes in brain extracellular calcium ([Ca2+]o) occur when high levels of neuronal activity lead to substantial Ca2+ entry via ion channels reducing local [Ca2+]o. Perturbations of the extracellular microenvironment that increase [Ca2+]o are commonly used to study how [Ca2+] regulates neuronal activity. At excitatory synapses, the Ca2+-sensing receptor (CaSR) and other G-protein coupled receptors link [Ca2+]o and spontaneous glutamate release. Phospholipase C (PLC) is activated by G-proteins and is hypothesized to mediate this process. Methods Patch-clamping cultured neocortical neurons, we tested how spontaneous glutamate release was affected by [Ca2+]o and inhibition of PLC activity. We used hypertonic sucrose (HS) to evaluate the readily releasable pool (RRP) and test if it was affected by inhibition of PLC activity. Results Spontaneous glutamate release substantially increased with [Ca2+]o, and inhibition of PLC activity, with U73122, abolished this effect. PLC-β1 is an abundant isoform in the neocortex, however, [Ca2+]o-dependent spontaneous release was unchanged in PLC-β1 null mutants (PLC-β1-/-). U73122 completely suppressed this response in PLC-β1-/- neurons, indicating that this residual [Ca2+]o-sensitivity may be mediated by other PLC isoforms. The RRP size was substantially reduced after incubation in U73122, but not U73343. Phorbol esters increased RRP size after PLC inhibition. Discussion Together these data point to a strong role for PLC in mediating changes in spontaneous release elicited by [Ca2+]o and other extracellular cues, possibly by modifying the size of the RRP.
Collapse
Affiliation(s)
- Maya G. Feldthouse
- Section of Pulmonary and Critical Care Medicine and Research and Development, VA Portland Health Care System, Portland, OR, United States
| | - Nicholas P. Vyleta
- Division of Pulmonary and Critical Care Medicine, Oregon Health and Science University, Portland, OR, United States
| | - Stephen M. Smith
- Section of Pulmonary and Critical Care Medicine and Research and Development, VA Portland Health Care System, Portland, OR, United States
- Division of Pulmonary and Critical Care Medicine, Oregon Health and Science University, Portland, OR, United States
| |
Collapse
|
15
|
Abstract
Lipids are key components of all organisms. We are well educated in their use as fuel and their essential role to form membranes. We also know much about their biosynthesis and metabolism. We are also aware that most lipids have signaling character meaning that a change in their concentration or location constitutes a signal that helps a living cell to respond to changes in the environment or to fulfill its specific function ranging from secretion to cell division. What is much less understood is how lipids change location in cells over time and what other biomolecules they interact with at each stage of their lifetime. Due to the large number of often quite similar lipid species and the sometimes very short lifetime of signaling lipids, we need highly specific tools to manipulate and visualize lipids and lipid-protein interactions. If successfully applied, these tools provide fabulous opportunities for discovery.In this Account, I summarize the development of synthetic tools from our lab that were designed to address crucial properties that allow them to function as tools in live cell experiments. Techniques to change the concentration of lipids by adding a small molecule or by light are described and complemented by examples of biological findings made when applying the tools. This ranges from chemical dimerizer-based systems to synthetic "caged" lipid derivatives. Furthermore, I discuss the problem of locating a lipid in an intact cell. Synthetic molecular probes are described that help to unravel the lipid location and to determine their binding proteins. These location studies require in-cell lipid tagging by click chemistry, photo-cross-linking to prevent further movement and the "caging" groups to avoid premature metabolism. The combination of these many technical features in a single tool allows for the analysis of not only lipid fluxes through metabolism but also lipid transport from one membrane to another as well as revealing the lipid interactome in a cell-dependent manner. This latter point is crucial because with these multifunctional tools in combination with lipidomics we can now address differences in healthy versus diseased cells and ultimately find the changes that are essential for disease development and new therapeutics that prevent these changes.
Collapse
Affiliation(s)
- Carsten Schultz
- Department of Chemical Physiology and
Biochemistry, Oregon Health & Science
University, Portland, Oregon 97239, United States
| |
Collapse
|
16
|
Jiménez-López C, Nadler A. Caged lipid probes for controlling lipid levels on subcellular scales. Curr Opin Chem Biol 2023; 72:102234. [PMID: 36493527 DOI: 10.1016/j.cbpa.2022.102234] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Revised: 10/26/2022] [Accepted: 11/07/2022] [Indexed: 12/12/2022]
Abstract
Lipids exert their cellular functions in individual organelles, in some cases on the scale of even smaller, specialized membrane domains. Thus, the experimental capacity to precisely manipulate lipid levels at the subcellular level is crucial for studying lipid-related processes in cell biology. Photo-caged lipid probes which partition into specific cellular membranes prior to photoactivation have emerged as key tools for localized and selective perturbation of lipid concentration in living cells. In this review, we provide an overview of the recent advances in the area and outline which developments are still required for the methodology to be more widely implemented in the wider membrane biology community.
Collapse
Affiliation(s)
| | - André Nadler
- Max Planck Institute for Molecular Cell Biology and Genetics, Dresden, Germany.
| |
Collapse
|
17
|
Zong P, Yue L. Regulation of Presynaptic Calcium Channels. ADVANCES IN NEUROBIOLOGY 2023; 33:171-202. [PMID: 37615867 DOI: 10.1007/978-3-031-34229-5_7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/25/2023]
Abstract
Voltage-gated calcium channels (VGCCs), especially Cav2.1 and Cav2.2, are the major mediators of Ca2+ influx at the presynaptic membrane in response to neuron excitation, thereby exerting a predominant control on synaptic transmission. To guarantee the timely and precise release of neurotransmitters at synapses, the activity of presynaptic VGCCs is tightly regulated by a variety of factors, including auxiliary subunits, membrane potential, G protein-coupled receptors (GPCRs), calmodulin (CaM), Ca2+-binding proteins (CaBP), protein kinases, various interacting proteins, alternative splicing events, and genetic variations.
Collapse
Affiliation(s)
- Pengyu Zong
- Department of Cell Biology, Calhoun Cardiology Center, University of Connecticut School of Medicine, Farmington, CT, USA
| | - Lixia Yue
- Department of Cell Biology, Calhoun Cardiology Center, University of Connecticut School of Medicine, Farmington, CT, USA.
| |
Collapse
|
18
|
Dickson EJ. Role of Lysosomal Cholesterol in Regulating PI(4,5)P 2-Dependent Ion Channel Function. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2023; 1422:193-215. [PMID: 36988882 DOI: 10.1007/978-3-031-21547-6_7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 03/30/2023]
Abstract
Lysosomes are central regulators of cellular growth and signaling. Once considered the acidic garbage can of the cell, their ever-expanding repertoire of functions include the regulation of cell growth, gene regulation, metabolic signaling, cell migration, and cell death. In this chapter, we detail how another of the lysosome's crucial roles, cholesterol transport, plays a vital role in the control of ion channel function and neuronal excitability through its ability to influence the abundance of the plasma membrane signaling lipid phosphatidylinositol 4,5-bisphosphate (PI(4,5)P2). This chapter will introduce the biosynthetic pathways of cholesterol and PI(4,5)P2, discuss the molecular mechanisms through which each lipid distinctly regulates ion channels, and consider the interdependence of these lipids in the control of ion channel function.
Collapse
Affiliation(s)
- Eamonn J Dickson
- Department of Physiology and Membrane Biology, University of California, Davis, CA, USA.
| |
Collapse
|
19
|
Kobbersmed JRL, Berns MMM, Ditlevsen S, Sørensen JB, Walter AM. Allosteric stabilization of calcium and phosphoinositide dual binding engages several synaptotagmins in fast exocytosis. eLife 2022; 11:74810. [PMID: 35929728 PMCID: PMC9489213 DOI: 10.7554/elife.74810] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Accepted: 08/04/2022] [Indexed: 12/04/2022] Open
Abstract
Synaptic communication relies on the fusion of synaptic vesicles with the plasma membrane, which leads to neurotransmitter release. This exocytosis is triggered by brief and local elevations of intracellular Ca2+ with remarkably high sensitivity. How this is molecularly achieved is unknown. While synaptotagmins confer the Ca2+ sensitivity of neurotransmitter exocytosis, biochemical measurements reported Ca2+ affinities too low to account for synaptic function. However, synaptotagmin’s Ca2+ affinity increases upon binding the plasma membrane phospholipid PI(4,5)P2 and, vice versa, Ca2+ binding increases synaptotagmin’s PI(4,5)P2 affinity, indicating a stabilization of the Ca2+/PI(4,5)P2 dual-bound state. Here, we devise a molecular exocytosis model based on this positive allosteric stabilization and the assumptions that (1.) synaptotagmin Ca2+/PI(4,5)P2 dual binding lowers the energy barrier for vesicle fusion and that (2.) the effect of multiple synaptotagmins on the energy barrier is additive. The model, which relies on biochemically measured Ca2+/PI(4,5)P2 affinities and protein copy numbers, reproduced the steep Ca2+ dependency of neurotransmitter release. Our results indicate that each synaptotagmin engaging in Ca2+/PI(4,5)P2 dual-binding lowers the energy barrier for vesicle fusion by ~5 kBT and that allosteric stabilization of this state enables the synchronized engagement of several (typically three) synaptotagmins for fast exocytosis. Furthermore, we show that mutations altering synaptotagmin’s allosteric properties may show dominant-negative effects, even though synaptotagmins act independently on the energy barrier, and that dynamic changes of local PI(4,5)P2 (e.g. upon vesicle movement) dramatically impact synaptic responses. We conclude that allosterically stabilized Ca2+/PI(4,5)P2 dual binding enables synaptotagmins to exert their coordinated function in neurotransmission. For our brains and nervous systems to work properly, the nerve cells within them must be able to ‘talk’ to each other. They do this by releasing chemical signals called neurotransmitters which other cells can detect and respond to. Neurotransmitters are packaged in tiny membrane-bound spheres called vesicles. When a cell of the nervous system needs to send a signal to its neighbours, the vesicles fuse with the outer membrane of the cell, discharging their chemical contents for other cells to detect. The initial trigger for neurotransmitter release is a short, fast increase in the amount of calcium ions inside the signalling cell. One of the main proteins that helps regulate this process is synaptotagmin which binds to calcium and gives vesicles the signal to start unloading their chemicals. Despite acting as a calcium sensor, synaptotagmin actually has a very low affinity for calcium ions by itself, meaning that it would not be efficient for the protein to respond alone. Synpatotagmin is more likely to bind to calcium if it is attached to a molecule called PIP2, which is found in the membranes of cells The effect also occurs in reverse, as the binding of calcium to synaptotagmin increases the protein’s affinity for PIP2. However, how these three molecules – synaptotagmin, PIP2, and calcium – work together to achieve the physiological release of neurotransmitters is poorly understood. To help answer this question, Kobbersmed, Berns et al. set up a computer simulation of ‘virtual vesicles’ using available experimental data on synaptotagmin’s affinity with calcium and PIP2. In this simulation, synaptotagmin could only trigger the release of neurotransmitters when bound to both calcium and PIP2. The model also showed that each ‘complex’ of synaptotagmin/calcium/PIP2 made the vesicles more likely to fuse with the outer membrane of the cell – to the extent that only a handful of synaptotagmin molecules were needed to start neurotransmitter release from a single vesicle. These results shed new light on a biological process central to the way nerve cells communicate with each other. In the future, Kobbersmed, Berns et al. hope that this insight will help us to understand the cause of diseases where communication in the nervous system is impaired.
Collapse
Affiliation(s)
- Janus R L Kobbersmed
- Department of Mathematical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Manon M M Berns
- Department of Neuroscience, University of Copenhagen, Copenhagen, Denmark
| | - Susanne Ditlevsen
- Department of Mathematical Sciences, University of Copenhagen, Copenhagen, Denmark
| | | | - Alexander M Walter
- Department of Mathematical Sciences, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
20
|
Ge L, Shin W, Arpino G, Wei L, Chan CY, Bleck CKE, Zhao W, Wu LG. Sequential compound fusion and kiss-and-run mediate exo- and endocytosis in excitable cells. SCIENCE ADVANCES 2022; 8:eabm6049. [PMID: 35714180 PMCID: PMC9205584 DOI: 10.1126/sciadv.abm6049] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Accepted: 05/03/2022] [Indexed: 06/15/2023]
Abstract
Vesicle fusion at preestablished plasma membrane release sites releases transmitters and hormones to mediate fundamental functions like neuronal network activities and fight-or-flight responses. This half-a-century-old concept-fusion at well-established release sites in excitable cells-needs to be modified to include the sequential compound fusion reported here-vesicle fusion at previously fused Ω-shaped vesicular membrane. With superresolution STED microscopy in excitable neuroendocrine chromaffin cells, we real-time visualized sequential compound fusion pore openings and content releases in generating multivesicular and asynchronous release from single release sites, which enhances exocytosis strength and dynamic ranges in excitable cells. We also visualized subsequent compound fusion pore closure, a new mode of endocytosis termed compound kiss-and-run that enhances vesicle recycling capacity. These results suggest modifying current exo-endocytosis concepts by including rapid release-site assembly at fused vesicle membrane, where sequential compound fusion and kiss-and-run take place to enhance exo-endocytosis capacity and dynamic ranges.
Collapse
Affiliation(s)
- Lihao Ge
- National Institute of Neurological Disorders and Stroke, 35 Convent Dr., Bldg. 35, Rm. 2B-1012, Bethesda, MD 20892, USA
| | - Wonchul Shin
- National Institute of Neurological Disorders and Stroke, 35 Convent Dr., Bldg. 35, Rm. 2B-1012, Bethesda, MD 20892, USA
| | - Gianvito Arpino
- National Institute of Neurological Disorders and Stroke, 35 Convent Dr., Bldg. 35, Rm. 2B-1012, Bethesda, MD 20892, USA
| | - Lisi Wei
- National Institute of Neurological Disorders and Stroke, 35 Convent Dr., Bldg. 35, Rm. 2B-1012, Bethesda, MD 20892, USA
| | - Chung Yu Chan
- National Institute of Neurological Disorders and Stroke, 35 Convent Dr., Bldg. 35, Rm. 2B-1012, Bethesda, MD 20892, USA
| | | | - Weidong Zhao
- National Institute of Neurological Disorders and Stroke, 35 Convent Dr., Bldg. 35, Rm. 2B-1012, Bethesda, MD 20892, USA
| | - Ling-Gang Wu
- National Institute of Neurological Disorders and Stroke, 35 Convent Dr., Bldg. 35, Rm. 2B-1012, Bethesda, MD 20892, USA
| |
Collapse
|
21
|
Chen L, Zhao ZW, Zeng PH, Zhou YJ, Yin WJ. Molecular mechanisms for ABCA1-mediated cholesterol efflux. Cell Cycle 2022; 21:1121-1139. [PMID: 35192423 PMCID: PMC9103275 DOI: 10.1080/15384101.2022.2042777] [Citation(s) in RCA: 54] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
The maintenance of cellular cholesterol homeostasis is essential for normal cell function and viability. Excessive cholesterol accumulation is detrimental to cells and serves as the molecular basis of many diseases, such as atherosclerosis, Alzheimer's disease, and diabetes mellitus. The peripheral cells do not have the ability to degrade cholesterol. Cholesterol efflux is therefore the only pathway to eliminate excessive cholesterol from these cells. This process is predominantly mediated by ATP-binding cassette transporter A1 (ABCA1), an integral membrane protein. ABCA1 is known to transfer intracellular free cholesterol and phospholipids to apolipoprotein A-I (apoA-I) for generating nascent high-density lipoprotein (nHDL) particles. nHDL can accept more free cholesterol from peripheral cells. Free cholesterol is then converted to cholesteryl ester by lecithin:cholesterol acyltransferase to form mature HDL. HDL-bound cholesterol enters the liver for biliary secretion and fecal excretion. Although how cholesterol is transported by ABCA1 to apoA-I remains incompletely understood, nine models have been proposed to explain this effect. In this review, we focus on the current view of the mechanisms underlying ABCA1-mediated cholesterol efflux to provide an important framework for future investigation and lipid-lowering therapy.
Collapse
Affiliation(s)
- Lei Chen
- Department of Cardiology, The Second Affiliated Hospital of Hainan Medical University, Haikou, Hainan, China
| | - Zhen-Wang Zhao
- Institute of Cardiovascular Disease, Key Lab for Arteriosclerology of Hunan Province, Hunan International Scientific and Technological Cooperation Base of Arteriosclerotic Disease, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, Hengyang Medical School, University of South China, Hengyang, Hunan, China
| | - Peng-Hui Zeng
- Department of Clinical Laboratory, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan, China
| | - Ying-Jie Zhou
- Department of Clinical Laboratory, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan, China
| | - Wen-Jun Yin
- Department of Clinical Laboratory, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan, China,CONTACT Wen-Jun Yin Department of Clinical Laboratory, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan421001, China
| |
Collapse
|
22
|
Doumane M, Caillaud MC, Jaillais Y. Experimental manipulation of phosphoinositide lipids: from cells to organisms. Trends Cell Biol 2022; 32:445-461. [DOI: 10.1016/j.tcb.2022.01.009] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Revised: 01/17/2022] [Accepted: 01/18/2022] [Indexed: 12/14/2022]
|
23
|
Abstract
Phosphoinositides are signalling lipids derived from phosphatidylinositol, a ubiquitous phospholipid in the cytoplasmic leaflet of eukaryotic membranes. Initially discovered for their roles in cell signalling, phosphoinositides are now widely recognized as key integrators of membrane dynamics that broadly impact on all aspects of cell physiology and on disease. The past decade has witnessed a vast expansion of our knowledge of phosphoinositide biology. On the endocytic and exocytic routes, phosphoinositides direct the inward and outward flow of membrane as vesicular traffic is coupled to the conversion of phosphoinositides. Moreover, recent findings on the roles of phosphoinositides in autophagy and the endolysosomal system challenge our view of lysosome biology. The non-vesicular exchange of lipids, ions and metabolites at membrane contact sites in between organelles has also been found to depend on phosphoinositides. Here we review our current understanding of how phosphoinositides shape and direct membrane dynamics to impact on cell physiology, and provide an overview of emerging concepts in phosphoinositide regulation.
Collapse
|
24
|
Lipstein N, Chang S, Lin KH, López-Murcia FJ, Neher E, Taschenberger H, Brose N. Munc13-1 is a Ca 2+-phospholipid-dependent vesicle priming hub that shapes synaptic short-term plasticity and enables sustained neurotransmission. Neuron 2021; 109:3980-4000.e7. [PMID: 34706220 PMCID: PMC8691950 DOI: 10.1016/j.neuron.2021.09.054] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Revised: 08/10/2021] [Accepted: 09/23/2021] [Indexed: 11/28/2022]
Abstract
During ongoing presynaptic action potential (AP) firing, transmitter release is limited by the availability of release-ready synaptic vesicles (SVs). The rate of SV recruitment (SVR) to release sites is strongly upregulated at high AP frequencies to balance SV consumption. We show that Munc13-1-an essential SV priming protein-regulates SVR via a Ca2+-phospholipid-dependent mechanism. Using knockin mouse lines with point mutations in the Ca2+-phospholipid-binding C2B domain of Munc13-1, we demonstrate that abolishing Ca2+-phospholipid binding increases synaptic depression, slows recovery of synaptic strength after SV pool depletion, and reduces temporal fidelity of synaptic transmission, while increased Ca2+-phospholipid binding has the opposite effects. Thus, Ca2+-phospholipid binding to the Munc13-1-C2B domain accelerates SVR, reduces short-term synaptic depression, and increases the endurance and temporal fidelity of neurotransmission, demonstrating that Munc13-1 is a core vesicle priming hub that adjusts SV re-supply to demand.
Collapse
Affiliation(s)
- Noa Lipstein
- Department of Molecular Neurobiology, Max Planck Institute of Experimental Medicine, Göttingen, Germany
| | - Shuwen Chang
- Department of Molecular Neurobiology, Max Planck Institute of Experimental Medicine, Göttingen, Germany
| | - Kun-Han Lin
- Emeritus Laboratory of Membrane Biophysics, Max Planck Institute for Biophysical Chemistry, Göttingen, Germany
| | | | - Erwin Neher
- Emeritus Laboratory of Membrane Biophysics, Max Planck Institute for Biophysical Chemistry, Göttingen, Germany; Cluster of Excellence "Multiscale Bioimaging," Georg August University, Göttingen, Germany
| | - Holger Taschenberger
- Department of Molecular Neurobiology, Max Planck Institute of Experimental Medicine, Göttingen, Germany.
| | - Nils Brose
- Department of Molecular Neurobiology, Max Planck Institute of Experimental Medicine, Göttingen, Germany; Cluster of Excellence "Multiscale Bioimaging," Georg August University, Göttingen, Germany.
| |
Collapse
|
25
|
Ryan A, Hammond GRV, Deiters A. Optical Control of Phosphoinositide Binding: Rapid Activation of Subcellular Protein Translocation and Cell Signaling. ACS Synth Biol 2021; 10:2886-2895. [PMID: 34748306 DOI: 10.1021/acssynbio.1c00328] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Cells utilize protein translocation to specific compartments for spatial and temporal regulation of protein activity, in particular in the context of signaling processes. Protein recognition and binding to various subcellular membranes is mediated by a network of phosphatidylinositol phosphate (PIP) species bearing one or multiple phosphate moieties on the polar inositol head. Here, we report a new, highly efficient method for optical control of protein localization through the site-specific incorporation of a photocaged amino acid for steric and electrostatic disruption of inositol phosphate recognition and binding. We demonstrate general applicability of the approach by photocaging two unrelated proteins, sorting nexin 3 (SNX3) and the pleckstrin homology (PH) domain of phospholipase C delta 1 (PLCδ1), with two distinct PIP binding domains and distinct subcellular localizations. We have established the applicability of this methodology through its application to Son of Sevenless 2 (SOS2), a signaling protein involved in the extracellular signal-regulated kinase/mitogen-activated protein kinase (ERK/MAPK) cascade. Upon fusing the photocaged plasma membrane-targeted construct PH-enhanced green fluorescent protein (EGFP), to the catalytic domain of SOS2, we demonstrated light-induced membrane localization of the construct resulting in fast and extensive activation of the ERK signaling pathway in NIH 3T3 cells. This approach can be readily extended to other proteins, with minimal protein engineering, and provides a method for acute optical control of protein translocation with rapid and complete activation.
Collapse
Affiliation(s)
- Amy Ryan
- Department of Chemistry, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, United States
| | - Gerald R. V. Hammond
- Department of Cell Biology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15260, United States
| | - Alexander Deiters
- Department of Chemistry, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, United States
| |
Collapse
|
26
|
Hassan Z, Kumar ND, Reggiori F, Khan G. How Viruses Hijack and Modify the Secretory Transport Pathway. Cells 2021; 10:2535. [PMID: 34685515 PMCID: PMC8534161 DOI: 10.3390/cells10102535] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Revised: 08/28/2021] [Accepted: 09/06/2021] [Indexed: 12/23/2022] Open
Abstract
Eukaryotic cells contain dynamic membrane-bound organelles that are constantly remodeled in response to physiological and environmental cues. Key organelles are the endoplasmic reticulum, the Golgi apparatus and the plasma membrane, which are interconnected by vesicular traffic through the secretory transport route. Numerous viruses, especially enveloped viruses, use and modify compartments of the secretory pathway to promote their replication, assembly and cell egression by hijacking the host cell machinery. In some cases, the subversion mechanism has been uncovered. In this review, we summarize our current understanding of how the secretory pathway is subverted and exploited by viruses belonging to Picornaviridae, Coronaviridae, Flaviviridae,Poxviridae, Parvoviridae and Herpesviridae families.
Collapse
Affiliation(s)
- Zubaida Hassan
- Department of Medical Microbiology and Immunology, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain P.O. Box 17666, United Arab Emirates;
- Department of Microbiology, School of Life Sciences, Modibbo Adama University, Yola PMB 2076, Nigeria
| | - Nilima Dinesh Kumar
- Department of Biomedical Sciences of Cells and Systems, University of Groningen, University Medical Center Groningen, 9713 AV Groningen, The Netherlands; (N.D.K.); (F.R.)
- Department of Medical Microbiology and Infection Prevention, University of Groningen, University Medical Center Groningen, 9713 AV Groningen, The Netherlands
| | - Fulvio Reggiori
- Department of Biomedical Sciences of Cells and Systems, University of Groningen, University Medical Center Groningen, 9713 AV Groningen, The Netherlands; (N.D.K.); (F.R.)
| | - Gulfaraz Khan
- Department of Medical Microbiology and Immunology, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain P.O. Box 17666, United Arab Emirates;
| |
Collapse
|
27
|
Farley S, Laguerre A, Schultz C. Caged lipids for subcellular manipulation. Curr Opin Chem Biol 2021; 65:42-48. [PMID: 34119744 DOI: 10.1016/j.cbpa.2021.04.012] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Revised: 04/22/2021] [Accepted: 04/26/2021] [Indexed: 12/20/2022]
Abstract
We present recently developed strategies to manipulate lipid levels in live cells by light. We focus on photoremovable protecting groups that lead to subcellular restricted localization and activation and discuss alternative techniques. We emphasize the development of organelle targeting of caged lipids and discuss recent advances in chromatic orthogonality of caging groups for future applications.
Collapse
Affiliation(s)
- Scotland Farley
- Dept. Chemical Physiology & Biochemistry, Oregon Health and Science University (OHSU), Portland, OR, USA
| | - Aurélien Laguerre
- Dept. Chemical Physiology & Biochemistry, Oregon Health and Science University (OHSU), Portland, OR, USA
| | - Carsten Schultz
- Dept. Chemical Physiology & Biochemistry, Oregon Health and Science University (OHSU), Portland, OR, USA.
| |
Collapse
|
28
|
Function of Drosophila Synaptotagmins in membrane trafficking at synapses. Cell Mol Life Sci 2021; 78:4335-4364. [PMID: 33619613 PMCID: PMC8164606 DOI: 10.1007/s00018-021-03788-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Revised: 01/29/2021] [Accepted: 02/09/2021] [Indexed: 12/13/2022]
Abstract
The Synaptotagmin (SYT) family of proteins play key roles in regulating membrane trafficking at neuronal synapses. Using both Ca2+-dependent and Ca2+-independent interactions, several SYT isoforms participate in synchronous and asynchronous fusion of synaptic vesicles (SVs) while preventing spontaneous release that occurs in the absence of stimulation. Changes in the function or abundance of the SYT1 and SYT7 isoforms alter the number and route by which SVs fuse at nerve terminals. Several SYT family members also regulate trafficking of other subcellular organelles at synapses, including dense core vesicles (DCV), exosomes, and postsynaptic vesicles. Although SYTs are linked to trafficking of multiple classes of synaptic membrane compartments, how and when they interact with lipids, the SNARE machinery and other release effectors are still being elucidated. Given mutations in the SYT family cause disorders in both the central and peripheral nervous system in humans, ongoing efforts are defining how these proteins regulate vesicle trafficking within distinct neuronal compartments. Here, we review the Drosophila SYT family and examine their role in synaptic communication. Studies in this invertebrate model have revealed key similarities and several differences with the predicted activity of their mammalian counterparts. In addition, we highlight the remaining areas of uncertainty in the field and describe outstanding questions on how the SYT family regulates membrane trafficking at nerve terminals.
Collapse
|
29
|
Carvalhais LG, Martinho VC, Ferreiro E, Pinheiro PS. Unraveling the Nanoscopic Organization and Function of Central Mammalian Presynapses With Super-Resolution Microscopy. Front Neurosci 2021; 14:578409. [PMID: 33584169 PMCID: PMC7874199 DOI: 10.3389/fnins.2020.578409] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Accepted: 12/03/2020] [Indexed: 12/22/2022] Open
Abstract
The complex, nanoscopic scale of neuronal function, taking place at dendritic spines, axon terminals, and other minuscule structures, cannot be adequately resolved using standard, diffraction-limited imaging techniques. The last couple of decades saw a rapid evolution of imaging methods that overcome the diffraction limit imposed by Abbe's principle. These techniques, including structured illumination microscopy (SIM), stimulated emission depletion (STED), photo-activated localization microscopy (PALM), and stochastic optical reconstruction microscopy (STORM), among others, have revolutionized our understanding of synapse biology. By exploiting the stochastic nature of fluorophore light/dark states or non-linearities in the interaction of fluorophores with light, by using modified illumination strategies that limit the excitation area, these methods can achieve spatial resolutions down to just a few tens of nm or less. Here, we review how these advanced imaging techniques have contributed to unprecedented insight into the nanoscopic organization and function of mammalian neuronal presynapses, revealing new organizational principles or lending support to existing views, while raising many important new questions. We further discuss recent technical refinements and newly developed tools that will continue to expand our ability to delve deeper into how synaptic function is orchestrated at the nanoscopic level.
Collapse
Affiliation(s)
- Lia G Carvalhais
- Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal.,Center for Innovative Biomedicine and Biotechnology, University of Coimbra, Coimbra, Portugal.,Institute for Interdisciplinary Research, University of Coimbra, Coimbra, Portugal
| | - Vera C Martinho
- Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal.,Center for Innovative Biomedicine and Biotechnology, University of Coimbra, Coimbra, Portugal.,Institute for Interdisciplinary Research, University of Coimbra, Coimbra, Portugal
| | - Elisabete Ferreiro
- Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal.,Center for Innovative Biomedicine and Biotechnology, University of Coimbra, Coimbra, Portugal.,Institute for Interdisciplinary Research, University of Coimbra, Coimbra, Portugal
| | - Paulo S Pinheiro
- Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal.,Center for Innovative Biomedicine and Biotechnology, University of Coimbra, Coimbra, Portugal.,Institute for Interdisciplinary Research, University of Coimbra, Coimbra, Portugal
| |
Collapse
|
30
|
Katan M, Cockcroft S. Phosphatidylinositol(4,5)bisphosphate: diverse functions at the plasma membrane. Essays Biochem 2020; 64:513-531. [PMID: 32844214 PMCID: PMC7517351 DOI: 10.1042/ebc20200041] [Citation(s) in RCA: 97] [Impact Index Per Article: 19.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Revised: 07/25/2020] [Accepted: 07/29/2020] [Indexed: 12/20/2022]
Abstract
Phosphatidylinositol(4,5) bisphosphate (PI(4,5)P2) has become a major focus in biochemistry, cell biology and physiology owing to its diverse functions at the plasma membrane. As a result, the functions of PI(4,5)P2 can be explored in two separate and distinct roles - as a substrate for phospholipase C (PLC) and phosphoinositide 3-kinase (PI3K) and as a primary messenger, each having unique properties. Thus PI(4,5)P2 makes contributions in both signal transduction and cellular processes including actin cytoskeleton dynamics, membrane dynamics and ion channel regulation. Signalling through plasma membrane G-protein coupled receptors (GPCRs), receptor tyrosine kinases (RTKs) and immune receptors all use PI(4,5)P2 as a substrate to make second messengers. Activation of PI3K generates PI(3,4,5)P3 (phosphatidylinositol(3,4,5)trisphosphate), a lipid that recruits a plethora of proteins with pleckstrin homology (PH) domains to the plasma membrane to regulate multiple aspects of cellular function. In contrast, PLC activation results in the hydrolysis of PI(4,5)P2 to generate the second messengers, diacylglycerol (DAG), an activator of protein kinase C and inositol(1,4,5)trisphosphate (IP3/I(1,4,5)P3) which facilitates an increase in intracellular Ca2+. Decreases in PI(4,5)P2 by PLC also impact on functions that are dependent on the intact lipid and therefore endocytosis, actin dynamics and ion channel regulation are subject to control. Spatial organisation of PI(4,5)P2 in nanodomains at the membrane allows for these multiple processes to occur concurrently.
Collapse
Affiliation(s)
- Matilda Katan
- Institute of Structural and Molecular Biology, Division of Biosciences, University College London, Gower Street, London WC1E 6BT, U.K
| | - Shamshad Cockcroft
- Department of Neuroscience, Physiology and Pharmacology, Division of Biosciences, University College London, 21 University Street, London WC1E 6JJ, U.K
| |
Collapse
|
31
|
Nguyen TTN, Koerdt SN, Gerke V. Plasma membrane phosphatidylinositol (4,5)-bisphosphate promotes Weibel-Palade body exocytosis. Life Sci Alliance 2020; 3:3/11/e202000788. [PMID: 32826291 PMCID: PMC7442956 DOI: 10.26508/lsa.202000788] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Revised: 08/14/2020] [Accepted: 08/14/2020] [Indexed: 01/26/2023] Open
Abstract
Phosphatidylinositol (4,5)-bisphosphate transiently accumulates at sites of Weibel–Palade body–plasma membrane fusion and promotes agonist-evoked exocytosis of endothelial von-Willebrand factor. Weibel–Palade bodies (WPB) are specialized secretory organelles of endothelial cells that control vascular hemostasis by regulated, Ca2+-dependent exocytosis of the coagulation-promoting von-Willebrand factor. Some proteins of the WPB docking and fusion machinery have been identified but a role of membrane lipids in regulated WPB exocytosis has so far remained elusive. We show here that the plasma membrane phospholipid composition affects Ca2+-dependent WPB exocytosis and von-Willebrand factor release. Phosphatidylinositol (4,5)-bisphosphate [PI(4,5)P2] becomes enriched at WPB–plasma membrane contact sites at the time of fusion, most likely downstream of phospholipase D1-mediated production of phosphatidic acid (PA) that activates phosphatidylinositol 4-phosphate (PI4P) 5-kinase γ. Depletion of plasma membrane PI(4,5)P2 or down-regulation of PI4P 5-kinase γ interferes with histamine-evoked and Ca2+-dependent WPB exocytosis and a mutant PI4P 5-kinase γ incapable of binding PA affects WPB exocytosis in a dominant-negative manner. This indicates that a unique PI(4,5)P2-rich environment in the plasma membrane governs WPB fusion possibly by providing interaction sites for WPB-associated docking factors.
Collapse
Affiliation(s)
- Tu Thi Ngoc Nguyen
- Institute of Medical Biochemistry, Center for Molecular Biology of Inflammation, University of Münster, Münster, Germany
| | - Sophia N Koerdt
- Institute of Medical Biochemistry, Center for Molecular Biology of Inflammation, University of Münster, Münster, Germany
| | - Volker Gerke
- Institute of Medical Biochemistry, Center for Molecular Biology of Inflammation, University of Münster, Münster, Germany
| |
Collapse
|
32
|
Mono- and Poly-unsaturated Phosphatidic Acid Regulate Distinct Steps of Regulated Exocytosis in Neuroendocrine Cells. Cell Rep 2020; 32:108026. [DOI: 10.1016/j.celrep.2020.108026] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Revised: 06/16/2020] [Accepted: 07/21/2020] [Indexed: 12/21/2022] Open
|
33
|
Dolphin AC, Lee A. Presynaptic calcium channels: specialized control of synaptic neurotransmitter release. Nat Rev Neurosci 2020; 21:213-229. [PMID: 32161339 PMCID: PMC7873717 DOI: 10.1038/s41583-020-0278-2] [Citation(s) in RCA: 144] [Impact Index Per Article: 28.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/12/2020] [Indexed: 11/09/2022]
Abstract
Chemical synapses are heterogeneous junctions formed between neurons that are specialized for the conversion of electrical impulses into the exocytotic release of neurotransmitters. Voltage-gated Ca2+ channels play a pivotal role in this process as they are the major conduits for the Ca2+ ions that trigger the fusion of neurotransmitter-containing vesicles with the presynaptic membrane. Alterations in the intrinsic function of these channels and their positioning within the active zone can profoundly alter the timing and strength of synaptic output. Advances in optical and electron microscopic imaging, structural biology and molecular techniques have facilitated recent breakthroughs in our understanding of the properties of voltage-gated Ca2+ channels that support their presynaptic functions. Here we examine the nature of these channels, how they are trafficked to and anchored within presynaptic boutons, and the mechanisms that allow them to function optimally in shaping the flow of information through neural circuits.
Collapse
Affiliation(s)
- Annette C Dolphin
- Department of Neuroscience, Physiology and Pharmacology, University College London, London, UK.
| | - Amy Lee
- Department of Molecular Physiology and Biophysics, University of Iowa, Iowa City, IA, USA.
| |
Collapse
|
34
|
Bradberry MM, Bao H, Lou X, Chapman ER. Phosphatidylinositol 4,5-bisphosphate drives Ca 2+-independent membrane penetration by the tandem C2 domain proteins synaptotagmin-1 and Doc2β. J Biol Chem 2019; 294:10942-10953. [PMID: 31147445 DOI: 10.1074/jbc.ra119.007929] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2019] [Revised: 05/28/2019] [Indexed: 12/14/2022] Open
Abstract
Exocytosis mediates the release of neurotransmitters and hormones from neurons and neuroendocrine cells. Tandem C2 domain proteins in the synaptotagmin (syt) and double C2 domain (Doc2) families regulate exocytotic membrane fusion via direct interactions with Ca2+ and phospholipid bilayers. Syt1 is a fast-acting, low-affinity Ca2+ sensor that penetrates membranes upon binding Ca2+ to trigger synchronous vesicle fusion. The closely related Doc2β is a slow-acting, high-affinity Ca2+ sensor that triggers spontaneous and asynchronous vesicle fusion, but whether it also penetrates membranes is unknown. Both syt1 and Doc2β bind the dynamically regulated plasma membrane lipid phosphatidylinositol 4,5-bisphosphate (PIP2), but it is unclear whether PIP2 serves only as a membrane contact or enables specialized membrane-binding modes by these Ca2+ sensors. Furthermore, it has been shown that PIP2 uncaging can trigger rapid, syt1-dependent exocytosis in the absence of Ca2+ influx, suggesting that current models for the action of these Ca2+ sensors are incomplete. Here, using a series of steady-state and time-resolved fluorescence measurements, we show that Doc2β, like syt1, penetrates membranes in a Ca2+-dependent manner. Unexpectedly, we observed that PIP2 can drive membrane penetration by both syt1 and Doc2β in the absence of Ca2+, providing a plausible mechanism for Ca2+-independent, PIP2-dependent exocytosis. Quantitative measurements of penetration depth revealed that, in the presence of Ca2+, PIP2 drives Doc2β, but not syt1, substantially deeper into the membrane, defining a biophysical regulatory mechanism specific to this high-affinity Ca2+ sensor. Our results provide evidence of a novel role for PIP2 in regulating, and under some circumstances triggering, exocytosis.
Collapse
Affiliation(s)
- Mazdak M Bradberry
- Howard Hughes Medical Institute and the Department of Neuroscience, School of Medicine and Public Health, University of Wisconsin, Madison, Wisconsin 53706 and; Medical Scientist Training Program, School of Medicine and Public Health, University of Wisconsin, Madison, Wisconsin 53705
| | - Huan Bao
- Howard Hughes Medical Institute and the Department of Neuroscience, School of Medicine and Public Health, University of Wisconsin, Madison, Wisconsin 53706 and
| | - Xiaochu Lou
- Howard Hughes Medical Institute and the Department of Neuroscience, School of Medicine and Public Health, University of Wisconsin, Madison, Wisconsin 53706 and
| | - Edwin R Chapman
- Howard Hughes Medical Institute and the Department of Neuroscience, School of Medicine and Public Health, University of Wisconsin, Madison, Wisconsin 53706 and.
| |
Collapse
|
35
|
Amyloid β oligomers suppress excitatory transmitter release via presynaptic depletion of phosphatidylinositol-4,5-bisphosphate. Nat Commun 2019; 10:1193. [PMID: 30867420 PMCID: PMC6416269 DOI: 10.1038/s41467-019-09114-z] [Citation(s) in RCA: 86] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2018] [Accepted: 02/21/2019] [Indexed: 12/21/2022] Open
Abstract
Amyloid β (Aβ) oligomer-induced aberrant neurotransmitter release is proposed to be a crucial early event leading to synapse dysfunction in Alzheimer's disease (AD). In the present study, we report that the release probability (Pr) at the synapse between the Schaffer collateral (SC) and CA1 pyramidal neurons is significantly reduced at an early stage in mouse models of AD with elevated Aβ production. High nanomolar synthetic oligomeric Aβ42 also suppresses Pr at the SC-CA1 synapse in wild-type mice. This Aβ-induced suppression of Pr is mainly due to an mGluR5-mediated depletion of phosphatidylinositol-4,5-bisphosphate (PIP2) in axons. Selectively inhibiting Aβ-induced PIP2 hydrolysis in the CA3 region of the hippocampus strongly prevents oligomeric Aβ-induced suppression of Pr at the SC-CA1 synapse and rescues synaptic and spatial learning and memory deficits in APP/PS1 mice. These results first reveal the presynaptic mGluR5-PIP2 pathway whereby oligomeric Aβ induces early synaptic deficits in AD.
Collapse
|
36
|
Understanding phosphoinositides: rare, dynamic, and essential membrane phospholipids. Biochem J 2019; 476:1-23. [PMID: 30617162 DOI: 10.1042/bcj20180022] [Citation(s) in RCA: 170] [Impact Index Per Article: 28.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2018] [Revised: 12/03/2018] [Accepted: 12/07/2018] [Indexed: 12/15/2022]
Abstract
Polyphosphoinositides (PPIs) are essential phospholipids located in the cytoplasmic leaflet of eukaryotic cell membranes. Despite contributing only a small fraction to the bulk of cellular phospholipids, they make remarkable contributions to practically all aspects of a cell's life and death. They do so by recruiting cytoplasmic proteins/effectors or by interacting with cytoplasmic domains of membrane proteins at the membrane-cytoplasm interface to organize and mold organelle identity. The present study summarizes aspects of our current understanding concerning the metabolism, manipulation, measurement, and intimate roles these lipids play in regulating membrane homeostasis and vital cell signaling reactions in health and disease.
Collapse
|
37
|
Frank JA, Broichhagen J, Yushchenko DA, Trauner D, Schultz C, Hodson DJ. Optical tools for understanding the complexity of β-cell signalling and insulin release. Nat Rev Endocrinol 2018; 14:721-737. [PMID: 30356209 DOI: 10.1038/s41574-018-0105-2] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Following stimulation, pancreatic β-cells must orchestrate a plethora of signalling events to ensure the appropriate release of insulin and maintenance of normal glucose homeostasis. Failure at any point in this cascade leads to impaired insulin secretion, elevated blood levels of glucose and eventually type 2 diabetes mellitus. Likewise, β-cell replacement or regeneration strategies for the treatment of both type 1 and type 2 diabetes mellitus might fail if the correct cell signalling phenotype cannot be faithfully recreated. However, current understanding of β-cell function is complicated because of the highly dynamic nature of their intracellular and intercellular signalling as well as insulin release itself. β-Cells must precisely integrate multiple signals stemming from multiple cues, often with differing intensities, frequencies and cellular and subcellular localizations, before converging these signals onto insulin exocytosis. In this respect, optical approaches with high resolution in space and time are extremely useful for properly deciphering the complexity of β-cell signalling. An increased understanding of β-cell signalling might identify new mechanisms underlying insulin release, with relevance for future drug therapy and de novo stem cell engineering of functional islets.
Collapse
Affiliation(s)
- James A Frank
- Research Laboratory of Electronics, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Johannes Broichhagen
- Department of Chemical Biology, Max Planck Institute for Medical Research, Heidelberg, Germany
| | - Dmytro A Yushchenko
- Institute of Organic Chemistry and Biochemistry, Academy of Sciences of the Czech Republic, Prague, Czech Republic
| | - Dirk Trauner
- Research Laboratory of Electronics, Massachusetts Institute of Technology, Cambridge, MA, USA
- Department of Chemistry, New York University, New York, NY, USA
| | - Carsten Schultz
- European Molecular Biology Laboratory (EMBL), Cell Biology and Biophysics Unit, Heidelberg, Germany.
- Department of Physiology and Pharmacology, Oregon Health and Science University, Portland, OR, USA.
| | - David J Hodson
- Institute of Metabolism and Systems Research (IMSR) and Centre of Membrane Proteins and Receptors (COMPARE), University of Birmingham, Birmingham, UK.
- Centre for Endocrinology, Diabetes and Metabolism, Birmingham Health Partners, Birmingham, UK.
| |
Collapse
|
38
|
Bumpus TW, Baskin JM. Greasing the Wheels of Lipid Biology with Chemical Tools. Trends Biochem Sci 2018; 43:970-983. [PMID: 30472989 DOI: 10.1016/j.tibs.2018.09.011] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2018] [Revised: 08/31/2018] [Accepted: 09/19/2018] [Indexed: 02/06/2023]
Abstract
Biological lipids are a structurally diverse and historically vexing group of hydrophobic metabolites. Here, we review recent advances in chemical imaging techniques that reveal changes in lipid biosynthesis, metabolism, dynamics, and interactions. We highlight tools for tagging many lipid classes via metabolic incorporation of bioorthogonally functionalized precursors, detectable via click chemistry, and photocaged, photoswitchable, and photocrosslinkable variants of different lipids. Certain lipid probes can supplant traditional protein-based markers of organelle membranes in super-resolution microscopy, and emerging vibrational imaging methods, such as stimulated Raman spectroscopy (SRS), enable simultaneous imaging of more than a dozen different types of target molecule, including lipids. Collectively, these chemical imaging techniques will illuminate, in living color, previously hidden aspects of lipid biology.
Collapse
Affiliation(s)
- Timothy W Bumpus
- Department of Chemistry and Chemical Biology and Weill Institute for Cell and Molecular Biology, Cornell University, Ithaca, NY 14853, USA
| | - Jeremy M Baskin
- Department of Chemistry and Chemical Biology and Weill Institute for Cell and Molecular Biology, Cornell University, Ithaca, NY 14853, USA.
| |
Collapse
|
39
|
Cantarutti KC, Burgess J, Brill JA, Dason JS. Type II phosphatidylinositol 4-kinase regulates nerve terminal growth and synaptic vesicle recycling. J Neurogenet 2018; 32:230-235. [DOI: 10.1080/01677063.2018.1502762] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
Affiliation(s)
| | - Jason Burgess
- Program in Cell Biology, The Hospital for Sick Children, Toronto, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, Canada
| | - Julie A. Brill
- Program in Cell Biology, The Hospital for Sick Children, Toronto, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, Canada
- Institute of Medical Science, University of Toronto, Toronto, Canada
| | - Jeffrey S. Dason
- Department of Biological Sciences, University of Windsor, Windsor, Canada
| |
Collapse
|
40
|
Böhme MA, Grasskamp AT, Walter AM. Regulation of synaptic release-site Ca 2+ channel coupling as a mechanism to control release probability and short-term plasticity. FEBS Lett 2018; 592:3516-3531. [PMID: 29993122 DOI: 10.1002/1873-3468.13188] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2018] [Revised: 06/26/2018] [Accepted: 07/06/2018] [Indexed: 12/31/2022]
Abstract
Synaptic transmission relies on the rapid fusion of neurotransmitter-containing synaptic vesicles (SVs), which happens in response to action potential (AP)-induced Ca2+ influx at active zones (AZs). A highly conserved molecular machinery cooperates at SV-release sites to mediate SV plasma membrane attachment and maturation, Ca2+ sensing, and membrane fusion. Despite this high degree of conservation, synapses - even within the same organism, organ or neuron - are highly diverse regarding the probability of APs to trigger SV fusion. Additionally, repetitive activation can lead to either strengthening or weakening of transmission. In this review, we discuss mechanisms controlling release probability and this short-term plasticity. We argue that an important layer of control is exerted by evolutionarily conserved AZ scaffolding proteins, which determine the coupling distance between SV fusion sites and voltage-gated Ca2+ channels (VGCC) and, thereby, shape synapse-specific input/output behaviors. We propose that AZ-scaffold modifications may occur to adapt the coupling distance during synapse maturation and plastic regulation of synapse strength.
Collapse
Affiliation(s)
- Mathias A Böhme
- Leibniz-Forschungsinstitut für Molekulare Pharmakologie, Berlin, Germany
| | | | - Alexander M Walter
- Leibniz-Forschungsinstitut für Molekulare Pharmakologie, Berlin, Germany
| |
Collapse
|
41
|
Laguerre A, Schultz C. Novel lipid tools and probes for biological investigations. Curr Opin Cell Biol 2018; 53:97-104. [PMID: 30015291 DOI: 10.1016/j.ceb.2018.06.013] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2018] [Revised: 06/12/2018] [Accepted: 06/29/2018] [Indexed: 12/21/2022]
Abstract
We present the latest advances in lipid tool development for studying cellular membrane trafficking and metabolism. We focus on chemical modifications that are introduced to natural lipid structures. The new functionalities are used to follow and interfere with lipid dynamics in intact cells.
Collapse
Affiliation(s)
- Aurélien Laguerre
- Dept. of Physiology & Pharmacology, Oregon Health and Science University (OHSU), Portland, OR, USA
| | - Carsten Schultz
- Dept. of Physiology & Pharmacology, Oregon Health and Science University (OHSU), Portland, OR, USA; European Molecular Biology Laboratory (EMBL), Cell Biology and Biophysics Unit, 69117 Heidelberg, Germany.
| |
Collapse
|
42
|
Sharma S, Lindau M. The fusion pore, 60 years after the first cartoon. FEBS Lett 2018; 592:3542-3562. [PMID: 29904915 DOI: 10.1002/1873-3468.13160] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2018] [Revised: 06/07/2018] [Accepted: 06/12/2018] [Indexed: 11/10/2022]
Abstract
Neurotransmitter release occurs in the form of quantal events by fusion of secretory vesicles with the plasma membrane, and begins with the formation of a fusion pore that has a conductance similar to that of a large ion channel or gap junction. In this review, we propose mechanisms of fusion pore formation and discuss their implications for fusion pore structure and function. Accumulating evidence indicates a direct role of soluble N-ethylmaleimide-sensitive-factor attachment receptor proteins in the opening of fusion pores. Fusion pores are likely neither protein channels nor purely lipid, but are of proteolipidic composition. Future perspectives to gain better insight into the molecular structure of fusion pores are discussed.
Collapse
Affiliation(s)
- Satyan Sharma
- Laboratory for Nanoscale Cell Biology, Max-Planck-Institute for Biophysical Chemistry, Göttingen, Germany
| | - Manfred Lindau
- Laboratory for Nanoscale Cell Biology, Max-Planck-Institute for Biophysical Chemistry, Göttingen, Germany.,School of Applied and Engineering Physics, Cornell University, Ithaca, NY, USA
| |
Collapse
|
43
|
Maritzen T, Haucke V. Coupling of exocytosis and endocytosis at the presynaptic active zone. Neurosci Res 2018; 127:45-52. [DOI: 10.1016/j.neures.2017.09.013] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2017] [Revised: 07/13/2017] [Accepted: 08/25/2017] [Indexed: 01/08/2023]
|
44
|
Walter AM, Böhme MA, Sigrist SJ. Vesicle release site organization at synaptic active zones. Neurosci Res 2017; 127:3-13. [PMID: 29275162 DOI: 10.1016/j.neures.2017.12.006] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2017] [Revised: 12/04/2017] [Accepted: 12/06/2017] [Indexed: 11/30/2022]
Abstract
Information transfer between nerve cells (neurons) forms the basis of behavior, emotion, and survival. Signal transduction from one neuron to another occurs at synapses, and relies on both electrical and chemical signal propagation. At chemical synapses, incoming electrical action potentials trigger the release of chemical neurotransmitters that are sensed by the connected cell and here reconverted to an electrical signal. The presynaptic conversion of an electrical to a chemical signal is an energy demanding, highly regulated process that relies on a complex, evolutionarily conserved molecular machinery. Here, we review the biophysical characteristics of this process, the current knowledge of the molecules operating in this reaction and genetic specializations that may have evolved to shape inter-neuronal signaling.
Collapse
Affiliation(s)
- Alexander M Walter
- Leibniz-Forschungsinstitut für Molekulare Pharmakologie, Robert-Roessle-Straße 10, Berlin 13125, Germany.
| | - Mathias A Böhme
- Leibniz-Forschungsinstitut für Molekulare Pharmakologie, Robert-Roessle-Straße 10, Berlin 13125, Germany
| | - Stephan J Sigrist
- Freie Universität Berlin, Institute for Biology/Genetics, Takustraße 6, 14195 Berlin, Germany; NeuroCure, Cluster of Excellence, Charité Universitätsmedizin, Charitéplatz 1, 10117 Berlin, Germany.
| |
Collapse
|