1
|
Madadi Asl M, Valizadeh A. Entrainment by transcranial alternating current stimulation: Insights from models of cortical oscillations and dynamical systems theory. Phys Life Rev 2025; 53:147-176. [PMID: 40106964 DOI: 10.1016/j.plrev.2025.03.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2025] [Accepted: 03/12/2025] [Indexed: 03/22/2025]
Abstract
Signature of neuronal oscillations can be found in nearly every brain function. However, abnormal oscillatory activity is linked with several brain disorders. Transcranial alternating current stimulation (tACS) is a non-invasive brain stimulation technique that can potentially modulate neuronal oscillations and influence behavior both in health and disease. Yet, a complete understanding of how interacting networks of neurons are affected by tACS remains elusive. Entrainment effects by which tACS synchronizes neuronal oscillations is one of the main hypothesized mechanisms, as evidenced in animals and humans. Computational models of cortical oscillations may shed light on the entrainment effects of tACS, but current modeling studies lack specific guidelines to inform experimental investigations. This study addresses the existing gap in understanding the mechanisms of tACS effects on rhythmogenesis within the brain by providing a comprehensive overview of both theoretical and experimental perspectives. We explore the intricate interactions between oscillators and periodic stimulation through the lens of dynamical systems theory. Subsequently, we present a synthesis of experimental findings that demonstrate the effects of tACS on both individual neurons and collective oscillatory patterns in animal models and humans. Our review extends to computational investigations that elucidate the interplay between tACS and neuronal dynamics across diverse cortical network models. To illustrate these concepts, we conclude with a simple oscillatory neuron model, showcasing how fundamental theories of oscillatory behavior derived from dynamical systems, such as phase response of neurons to external perturbation, can account for the entrainment effects observed with tACS. Studies reviewed here render the necessity of integrated experimental and computational approaches for effective neuromodulation by tACS in health and disease.
Collapse
Affiliation(s)
- Mojtaba Madadi Asl
- School of Biological Sciences, Institute for Research in Fundamental Sciences (IPM), Tehran, Iran; Pasargad Institute for Advanced Innovative Solutions (PIAIS), Tehran, Iran.
| | - Alireza Valizadeh
- Pasargad Institute for Advanced Innovative Solutions (PIAIS), Tehran, Iran; Department of Physics, Institute for Advanced Studies in Basic Sciences (IASBS), Zanjan, Iran; The Zapata-Briceño Institute of Neuroscience, Madrid, Spain
| |
Collapse
|
2
|
Jafarian A, Assem MK, Kocagoncu E, Lanskey JH, Fye H, Williams R, Quinn AJ, Pitt J, Raymont V, Lowe S, Singh KD, Woolrich M, Nobre AC, Henson RN, Friston KJ, Rowe JB. Neurophysiological Progression in Alzheimer's Disease: Insights From Dynamic Causal Modelling of Longitudinal Magnetoencephalography. Hum Brain Mapp 2025; 46:e70234. [PMID: 40396657 DOI: 10.1002/hbm.70234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2025] [Revised: 05/01/2025] [Accepted: 05/06/2025] [Indexed: 05/22/2025] Open
Abstract
Neurodegenerative diseases, including Alzheimer's disease, are characterised by selective neuronal vulnerability with regional, laminar, cellular and neurotransmitter specificity. The regional losses of neurons and their synapses are associated with neurophysiological changes and cognitive decline. Hypotheses related to these mechanisms can be tested and compared by dynamic causal modelling (DCM) of human neuroimaging data, including magnetoencephalography (MEG). In this paper, we use DCM of cross-spectral densities to model changes between baseline and follow-up data in cortical regions of the default mode network, to characterise longitudinal changes in cortical microcircuits and their connectivity underlying resting-state MEG. Twenty-nine people with amyloid-positive mild cognitive impairment and Alzheimer's disease early dementia were studied at baseline and after an average interval of 16 months. To study longitudinal changes induced by Alzheimer's disease, we evaluate three complementary sets of DCM: (i) with regional specificity, of the contributions of neurons to measurements to accommodate regional variability in disease burden; (ii) with dual parameterisation of excitatory neurotransmission, motivated by preclinical and clinical evidence of distinct effects of disease on AMPA versus NMDA type glutamate receptors; and (iii) with constraints to test specific clinical hypothesis about the effects of disease-progression. Bayesian model selection at the group level confirmed evidence for regional specificity of the effects of Alzheimer's disease, with evidence for selective changes in NMDA neurotransmission, and progressive changes in connectivity within and between Precuneus and medial prefrontal cortex. Moreover, alterations in effective connectivity vary in accordance with individual differences in cognitive decline during follow-up. These applications of DCM enrich the mechanistic understanding of the pathophysiology of human Alzheimer's disease and inform experimental medicine studies of novel therapies. More generally, longitudinal DCM provides a potential platform for natural history and interventional studies of neurodegenerative and neuropsychiatric diseases, with selective neuronal vulnerability.
Collapse
Affiliation(s)
- Amirhossein Jafarian
- MRC Cognition and Brain Sciences, University of Cambridge, Cambridge, UK
- Department of Clinical Neurosciences and Cambridge University Hospitals NHS Foundation Trust, Cambridge Biomedical Campus, Cambridge, UK
| | - Melek Karadag Assem
- MRC Cognition and Brain Sciences, University of Cambridge, Cambridge, UK
- Department of Clinical Neurosciences and Cambridge University Hospitals NHS Foundation Trust, Cambridge Biomedical Campus, Cambridge, UK
| | - Ece Kocagoncu
- MRC Cognition and Brain Sciences, University of Cambridge, Cambridge, UK
- Department of Clinical Neurosciences and Cambridge University Hospitals NHS Foundation Trust, Cambridge Biomedical Campus, Cambridge, UK
| | - Juliette H Lanskey
- MRC Cognition and Brain Sciences, University of Cambridge, Cambridge, UK
- Department of Clinical Neurosciences and Cambridge University Hospitals NHS Foundation Trust, Cambridge Biomedical Campus, Cambridge, UK
| | - Haddy Fye
- Department of Clinical Neurosciences and Cambridge University Hospitals NHS Foundation Trust, Cambridge Biomedical Campus, Cambridge, UK
| | - Rebecca Williams
- MRC Cognition and Brain Sciences, University of Cambridge, Cambridge, UK
- Department of Clinical Neurosciences and Cambridge University Hospitals NHS Foundation Trust, Cambridge Biomedical Campus, Cambridge, UK
| | - Andrew J Quinn
- Oxford Centre for Human Brain Activity, Wellcome Centre for Integrative Neuroimaging, Department of Psychiatry, University of Oxford, Oxford, UK
- Department of Psychology, University of Birmingham, Birmingham, UK
| | - Jemma Pitt
- Department of Psychiatry, University of Oxford, Oxford, UK
| | | | - Stephen Lowe
- Lilly Centre for Clinical Pharmacology, Singapore
| | - Krish D Singh
- Cardiff University Brain Research Imaging Centre, School of Psychology, Cardiff University, Cardiff, UK
| | - Mark Woolrich
- Oxford Centre for Human Brain Activity, Wellcome Centre for Integrative Neuroimaging, Department of Psychiatry, University of Oxford, Oxford, UK
| | - Anna C Nobre
- Department of Psychiatry, University of Oxford, Oxford, UK
- Department of Psychology and Centre for Neurocognition and Behaviour, Wu Tsai Institute, Yale University, New Haven, Connecticut, USA
| | - Richard N Henson
- MRC Cognition and Brain Sciences, University of Cambridge, Cambridge, UK
| | - Karl J Friston
- Queen Square, Institute of Neurology, University College London, London, UK
| | - James B Rowe
- MRC Cognition and Brain Sciences, University of Cambridge, Cambridge, UK
- Department of Clinical Neurosciences and Cambridge University Hospitals NHS Foundation Trust, Cambridge Biomedical Campus, Cambridge, UK
| |
Collapse
|
3
|
Burns AP, Fortel I, Zhan L, Lazarov O, Mackin RS, Demos AP, Bendlin B, Leow A. Longitudinal excitation-inhibition balance altered by sex and APOE-ε4. Commun Biol 2025; 8:488. [PMID: 40133608 PMCID: PMC11937384 DOI: 10.1038/s42003-025-07876-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Accepted: 03/03/2025] [Indexed: 03/27/2025] Open
Abstract
Neuronal hyperexcitation affects memory and neural processing across the Alzheimer's disease (AD) cognitive continuum. Levetiracetam, an antiepileptic, shows promise in improving cognitive impairment by restoring the neural excitation/inhibition balance in AD patients. We previously identified a hyper-excitable phenotype in cognitively unimpaired female APOE-ε4 carriers relative to male counterparts cross-sectionally. This sex difference lacks longitudinal validation; however, clarifying the vulnerability of female ε4-carriers could better inform antiepileptic treatment efficacy. Here, we investigated this sex-by-ε4 interaction using a longitudinal design. We used resting-state fMRI and diffusion tensor imaging collected longitudinally from 106 participants who were cognitively unimpaired for at least one scan event but may have been assessed to have clinical dementia ratings corresponding to early mild cognitive impairment over time. By including scan events where participants transitioned to mild cognitive impairment, we modeled the trajectory of the whole-brain excitation-inhibition ratio throughout the preclinical cognitively healthy continuum and extended to early impairment. A linear mixed model revealed a significant three-way interaction among sex, ε4-status, and time, with female ε4-carriers showing a significant hyper-excitable trajectory. These findings suggest a possible pathway for preventative therapy targeting preclinical hyperexcitation in female ε4-carriers.
Collapse
Affiliation(s)
- Andrew P Burns
- Department of Biomedical Engineering University of Illinois Chicago (UIC), 851 S Morgan St, Chicago, IL, 60607, USA.
| | - Igor Fortel
- Department of Biomedical Engineering University of Illinois Chicago (UIC), 851 S Morgan St, Chicago, IL, 60607, USA
| | - Liang Zhan
- Department of Electrical and Computer Engineering, University of Pittsburgh, 4200 Fifth Avenue, Pittsburgh, PA, 15260, USA
| | - Orly Lazarov
- Department of Anatomy and Cell Biology, College of Medicine, University of Illinois Chicago, 808 S. Wood St, Chicago, IL, 60612, USA
| | - R Scott Mackin
- Department of Psychiatry and Behavioral Sciences, University of California San Francisco, 675 18th St, San Francisco, CA, 94107, USA
- Department of Veterans Affairs Medical Center, 4150 Clement Street, San Francisco, CA, USA
| | - Alexander P Demos
- Department of Psychology, University of Illinois Chicago (UIC), 1007 W Harrison St, Chicago, IL, 60607, USA
| | - Barbara Bendlin
- Department of Medicine, University of Wisconsin-Madison, 5158 Medical Foundation Centennial Building, 1685 Highland Ave, Madison, WI, 53792, USA
- Wisconsin Alzheimer's Disease Research Center, University of Wisconsin-Madison, 600 Highland Ave J5/1 Mezzanine, Madison, WI, 53792, USA
| | - Alex Leow
- Department of Biomedical Engineering University of Illinois Chicago (UIC), 851 S Morgan St, Chicago, IL, 60607, USA.
| |
Collapse
|
4
|
Dong K, Liang W, Hou T, Lu Z, Hao Y, Li C, Qiu Y, Kong N, Cheng Y, Wen Y, Ma W, Zheng W, Guan J, Lin Y, Huang K, Zhang L, Chen S, Ma X, Wu R, Wei N. Exploring the impact of APOE ɛ4 on functional connectivity in Alzheimer's disease across cognitive impairment levels. Neuroimage 2025; 305:120951. [PMID: 39638080 DOI: 10.1016/j.neuroimage.2024.120951] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2024] [Revised: 11/16/2024] [Accepted: 11/19/2024] [Indexed: 12/07/2024] Open
Abstract
The apolipoprotein E (APOE) ɛ4 allele is a recognized genetic risk factor for Alzheimer's Disease (AD). Studies have shown that APOE ɛ4 mediates the modulation of intrinsic functional brain networks in cognitively normal individuals and significantly disrupts the whole-brain topological structure in AD patients. However, how APOE ɛ4 regulates brain functional connectivity (FC) and consequently affects the levels of cognitive impairment in AD patients remains unknown. In this study, we systematically analyzed functional magnetic resonance imaging (fMRI) data from two distinct cohorts: an In-house dataset includes 59 AD patients (73.37 ± 6.42 years), and the ADNI dataset includes 117 AD patients (74.91 ± 7.91 years). Experimental comparisons were conducted by grouping AD patients based on both APOE ɛ4 status and cognitive impairment levels of AD. Network-Based Statistic (NBS) method and the Graph Neural Network Explainer (GNN-Explainer) were combined to identify significant FC changes across different comparisons. Importantly, the GNN-Explainer method was introduced as an enhancement over the NBS method to better model complex high-order nonlinear characteristics for discovering FC features that significantly contribute to classification tasks. The results showed that APOE ɛ4 primarily influenced temporal lobe FCs, while it influenced different cognitive impairment levels of AD by adjusting prefrontal-parietal FCs. These findings were validated by p-values < 0.05 from NBS method, and 5-fold cross-validation along with ablation studies from the GNN-Explainer method. In conclusion, our findings provide new insights into the role of APOE ɛ4 in altering FC dynamics during the progression of AD, highlighting potential targets for early intervention.
Collapse
Affiliation(s)
- Kangli Dong
- Department of Biomedical Engineering, College of Engineering, Shantou University, Shantou, 515063, Guangdong, China
| | - Wei Liang
- Department of Biomedical Engineering, College of Engineering, Shantou University, Shantou, 515063, Guangdong, China
| | - Ting Hou
- Department of Human Anatomy and Physiology, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, 510080, Guangdong, China
| | - Zhijie Lu
- Department of Neurosurgery, The First Affiliated Hospital of Shantou University Medical College, Shantou, 515041, Guangdong, China
| | - Yixuan Hao
- Department of Neurosurgery, The First Affiliated Hospital of Shantou University Medical College, Shantou, 515041, Guangdong, China
| | - Chenrui Li
- Department of Neurosurgery, The First Affiliated Hospital of Shantou University Medical College, Shantou, 515041, Guangdong, China
| | - Yue Qiu
- Department of Neurosurgery, The First Affiliated Hospital of Shantou University Medical College, Shantou, 515041, Guangdong, China
| | - Nan Kong
- Department of Neurosurgery, The First Affiliated Hospital of Shantou University Medical College, Shantou, 515041, Guangdong, China
| | - Yan Cheng
- The Second Hospital of Shandong University, Jinan, 250033, Shandong, China
| | - Yaqi Wen
- Department of Radiology, The Second Affiliated Hospital of Shantou University Medical College, Shantou, 515000, Guangdong, China
| | - Wanyin Ma
- Department of Radiology, The Second Affiliated Hospital of Shantou University Medical College, Shantou, 515000, Guangdong, China
| | - Wenbin Zheng
- Department of Radiology, The Second Affiliated Hospital of Shantou University Medical College, Shantou, 515000, Guangdong, China
| | - Jitian Guan
- Department of Radiology, The Second Affiliated Hospital of Shantou University Medical College, Shantou, 515000, Guangdong, China
| | - Yan Lin
- Department of Radiology, The Second Affiliated Hospital of Shantou University Medical College, Shantou, 515000, Guangdong, China
| | - Kai Huang
- Department of Radiology, The Second Affiliated Hospital of Shantou University Medical College, Shantou, 515000, Guangdong, China
| | - Lu Zhang
- Department of Rehabilitation, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Zhejiang University, Hangzhou, 310027, Zhejiang, China
| | - Siya Chen
- Department of Computer Science, City University of Hong Kong, Hong Kong, 999077, Hong Kong, China
| | - Xiangyuan Ma
- Department of Biomedical Engineering, College of Engineering, Shantou University, Shantou, 515063, Guangdong, China.
| | - Renhua Wu
- Department of Radiology, The Second Affiliated Hospital of Shantou University Medical College, Shantou, 515000, Guangdong, China.
| | - Naili Wei
- Department of Neurosurgery, The First Affiliated Hospital of Shantou University Medical College, Shantou, 515041, Guangdong, China.
| |
Collapse
|
5
|
May HG, Tsikonofilos K, Donat CK, Sastre M, Kozlov AS, Sharp DJ, Bruyns-Haylett M. EEG hyperexcitability and hyperconnectivity linked to GABAergic inhibitory interneuron loss following traumatic brain injury. Brain Commun 2024; 6:fcae385. [PMID: 39605970 PMCID: PMC11600960 DOI: 10.1093/braincomms/fcae385] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Revised: 09/04/2024] [Accepted: 11/25/2024] [Indexed: 11/29/2024] Open
Abstract
Traumatic brain injury represents a significant global health burden and has the highest prevalence among neurological disorders. Even mild traumatic brain injury can induce subtle, long-lasting changes that increase the risk of future neurodegeneration. Importantly, this can be challenging to detect through conventional neurological assessment. This underscores the need for more sensitive diagnostic tools, such as electroencephalography, to uncover opportunities for therapeutic intervention. Progress in the field has been hindered by a lack of studies linking mechanistic insights at the microscopic level from animal models to the macroscale phenotypes observed in clinical imaging. Our study addresses this gap by investigating a rat model of mild blast traumatic brain injury using both immunohistochemical staining of inhibitory interneurons and translationally relevant electroencephalography recordings. Although we observed no pronounced effects immediately post-injury, chronic time points revealed broadband hyperexcitability and increased connectivity, accompanied by decreased density of inhibitory interneurons. This pattern suggests a disruption in the balance between excitation and inhibition, providing a crucial link between cellular mechanisms and clinical hallmarks of injury. Our findings have significant implications for the diagnosis, monitoring, and treatment of traumatic brain injury. The emergence of electroencephalography abnormalities at chronic time points, despite the absence of immediate effects, highlights the importance of long-term monitoring in traumatic brain injury patients. The observed decrease in inhibitory interneuron density offers a potential cellular mechanism underlying the electroencephalography changes and may represent a target for therapeutic intervention. This study demonstrates the value of combining cellular-level analysis with macroscale neurophysiological recordings in animal models to elucidate the pathophysiology of traumatic brain injury. Future research should focus on translating these findings to human studies and exploring potential therapeutic strategies targeting the excitation-inhibition imbalance in traumatic brain injury.
Collapse
Affiliation(s)
- Hazel G May
- Department of Brain Sciences, Imperial College London, London W12 0NN, UK
| | - Konstantinos Tsikonofilos
- Department of Bioengineering, Imperial College London, London SW7 2AZ, UK
- Department of Neuroscience, Karolinska Institutet, Stockholm 171 65, Sweden
- Department of Clinical Neuroscience, Karolinska Institutet, Stockholm 171 65, Sweden
| | - Cornelius K Donat
- Department of Brain Sciences, Imperial College London, London W12 0NN, UK
- Department of Medicinal Radiochemistry, Institute of Radiopharmaceutical Cancer Research, Helmholtz-Zentrum Dresden-Rossendorf, 01328 Dresden, Germany
| | - Magdalena Sastre
- Department of Brain Sciences, Imperial College London, London W12 0NN, UK
| | - Andriy S Kozlov
- Department of Bioengineering, Imperial College London, London SW7 2AZ, UK
| | - David J Sharp
- Department of Brain Sciences, Imperial College London, London W12 0NN, UK
| | - Michael Bruyns-Haylett
- Department of Bioengineering, Imperial College London, London SW7 2AZ, UK
- Department of Bioengineering, Institut Quimic de Sarria, Universitat Ramon Llul, Barcelona 08017, Spain
- Department of Quantitative Methods, Institut Quimic de Sarria, Universitat Ramon Llul, Barcelona 08017, Spain
| |
Collapse
|
6
|
van Nifterick AM, de Haan W, Stam CJ, Hillebrand A, Scheltens P, van Kesteren RE, Gouw AA. Functional network disruption in cognitively unimpaired autosomal dominant Alzheimer's disease: a magnetoencephalography study. Brain Commun 2024; 6:fcae423. [PMID: 39713236 PMCID: PMC11660908 DOI: 10.1093/braincomms/fcae423] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Revised: 10/09/2024] [Accepted: 11/22/2024] [Indexed: 12/24/2024] Open
Abstract
Understanding the nature and onset of neurophysiological changes, and the selective vulnerability of central hub regions in the functional network, may aid in managing the growing impact of Alzheimer's disease on society. However, the precise neurophysiological alterations occurring in the pre-clinical stage of human Alzheimer's disease remain controversial. This study aims to provide increased insights on quantitative neurophysiological alterations during a true early stage of Alzheimer's disease. Using high spatial resolution source-reconstructed magnetoencephalography, we investigated regional and whole-brain neurophysiological changes in a unique cohort of 11 cognitively unimpaired individuals with pathogenic mutations in the presenilin-1 or amyloid precursor protein gene and a 1:3 matched control group (n = 33) with a median age of 49 years. We examined several quantitative magnetoencephalography measures that have been shown robust in detecting differences in sporadic Alzheimer's disease patients and are sensitive to excitation-inhibition imbalance. This includes spectral power and functional connectivity in different frequency bands. We also investigated hub vulnerability using the hub disruption index. To understand how magnetoencephalography measures change as the disease progresses through its pre-clinical stage, correlations between magnetoencephalography outcomes and various clinical variables like age were analysed. A comparison of spectral power between mutation carriers and controls revealed oscillatory slowing, characterized by widespread higher theta (4-8 Hz) power, a lower posterior peak frequency and lower occipital alpha 2 (10-13 Hz) power. Functional connectivity analyses presented a lower whole-brain (amplitude-based) functional connectivity in the alpha (8-13 Hz) and beta (13-30 Hz) bands, predominantly located in parieto-temporal hub regions. Furthermore, we found a significant hub disruption index for (phase-based) functional connectivity in the theta band, attributed to both higher functional connectivity in 'non-hub' regions alongside a hub disruption. Neurophysiological changes did not correlate with indicators of pre-clinical disease progression in mutation carriers after multiple comparisons correction. Our findings provide evidence that oscillatory slowing and functional connectivity differences occur before cognitive impairment in individuals with autosomal dominant mutations leading to early onset Alzheimer's disease. The nature and direction of these alterations are comparable to those observed in the clinical stages of Alzheimer's disease, suggest an early excitation-inhibition imbalance, and fit with the activity-dependent functional degeneration hypothesis. These insights may prove useful for early diagnosis and intervention in the future.
Collapse
Affiliation(s)
- Anne M van Nifterick
- Alzheimer Center Amsterdam, Neurology, Vrije Universiteit Amsterdam, Amsterdam UMC Location VUmc, 1081 HZ Amsterdam, The Netherlands
- Clinical Neurophysiology and MEG Center, Neurology, Amsterdam UMC Location VUmc, 1081 HV Amsterdam, The Netherlands
- Amsterdam Neuroscience, Neurodegeneration, 1081 HV Amsterdam, The Netherlands
| | - Willem de Haan
- Alzheimer Center Amsterdam, Neurology, Vrije Universiteit Amsterdam, Amsterdam UMC Location VUmc, 1081 HZ Amsterdam, The Netherlands
- Amsterdam Neuroscience, Neurodegeneration, 1081 HV Amsterdam, The Netherlands
| | - Cornelis J Stam
- Clinical Neurophysiology and MEG Center, Neurology, Amsterdam UMC Location VUmc, 1081 HV Amsterdam, The Netherlands
- Amsterdam Neuroscience, Neurodegeneration, 1081 HV Amsterdam, The Netherlands
| | - Arjan Hillebrand
- Clinical Neurophysiology and MEG Center, Neurology, Amsterdam UMC Location VUmc, 1081 HV Amsterdam, The Netherlands
- Amsterdam Neuroscience, Brain Imaging, 1081 HV Amsterdam, The Netherlands
- Amsterdam Neuroscience, Systems and Network Neurosciences, 1081 HV Amsterdam, The Netherlands
| | - Philip Scheltens
- Alzheimer Center Amsterdam, Neurology, Vrije Universiteit Amsterdam, Amsterdam UMC Location VUmc, 1081 HZ Amsterdam, The Netherlands
- Amsterdam Neuroscience, Neurodegeneration, 1081 HV Amsterdam, The Netherlands
| | - Ronald E van Kesteren
- Amsterdam Neuroscience, Neurodegeneration, 1081 HV Amsterdam, The Netherlands
- Department of Molecular and Cellular Neurobiology, Center for Neurogenomics and Cognitive Research, Vrije Universiteit Amsterdam, 1081 HV Amsterdam, The Netherlands
| | - Alida A Gouw
- Alzheimer Center Amsterdam, Neurology, Vrije Universiteit Amsterdam, Amsterdam UMC Location VUmc, 1081 HZ Amsterdam, The Netherlands
- Clinical Neurophysiology and MEG Center, Neurology, Amsterdam UMC Location VUmc, 1081 HV Amsterdam, The Netherlands
- Amsterdam Neuroscience, Neurodegeneration, 1081 HV Amsterdam, The Netherlands
- Amsterdam Neuroscience, Systems and Network Neurosciences, 1081 HV Amsterdam, The Netherlands
| |
Collapse
|
7
|
Kucikova L, Xiong X, Reinecke P, Madden J, Jackson E, Tappin O, Huang W, Dounavi ME, Su L. The effects of APOEe4 allele on cerebral structure, function, and related interactions with cognition in young adults. Ageing Res Rev 2024; 101:102510. [PMID: 39326705 DOI: 10.1016/j.arr.2024.102510] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 09/11/2024] [Accepted: 09/16/2024] [Indexed: 09/28/2024]
Abstract
In the last decade, extensive research has emerged into understanding the impact of risk factors for Alzheimer's Disease (AD) on brain in pre-symptomatic stages. We investigated the neuroimaging correlates of the APOEe4 genetic risk factor for AD in young adulthood, its relationship with cognition, and potential effects of other variables on the findings. While conventional volumetric analyses revealed no consistent differences, more sophisticated analyses identified subtle structural differences between APOEe4 carriers and non-carriers. Findings from diffusion studies were limited, but functional studies demonstrated consistent alterations in connectivity and activity. The complex relationship between APOE genotype, neuroimaging variables, and cognition revealed no consensus on the directionality of findings. Methodological choices, including analytical approaches, sample size, and the influence of other genes, gender, and ethnicity, varied across studies, impacting comparability and generalizability. Recommendations for future research include multimodal and longitudinal imaging, standardisation of pipelines, advanced analytical techniques, and collaborative data pooling.
Collapse
Affiliation(s)
- Ludmila Kucikova
- Neuroscience Institute, School of Medicine and Population Health, University of Sheffield, Sheffield, United Kingdom; Insigneo Institute for In Silico Medicine, University of Sheffield, Sheffield, United Kingdom
| | - Xiong Xiong
- Neuroscience Institute, School of Medicine and Population Health, University of Sheffield, Sheffield, United Kingdom; School of Information and Communication Engineering, Beijing University of Posts and Telecommunications, Beijing, China
| | - Patricia Reinecke
- Academic Unit of Medical Education, Medical School, University of Sheffield, Sheffield, United Kingdom
| | - Jessica Madden
- Academic Unit of Medical Education, Medical School, University of Sheffield, Sheffield, United Kingdom
| | - Elizabeth Jackson
- Academic Unit of Medical Education, Medical School, University of Sheffield, Sheffield, United Kingdom
| | - Oliver Tappin
- Academic Unit of Medical Education, Medical School, University of Sheffield, Sheffield, United Kingdom
| | - Weijie Huang
- Neuroscience Institute, School of Medicine and Population Health, University of Sheffield, Sheffield, United Kingdom; State Key Laboratory of Cognitive Neuroscience and Learning, Beijing Normal University, Beijing, China; Department of Psychiatry, School of Clinical Medicine, University of Cambridge, Cambridge, United Kingdom
| | - Maria-Eleni Dounavi
- Department of Psychiatry, School of Clinical Medicine, University of Cambridge, Cambridge, United Kingdom
| | - Li Su
- Neuroscience Institute, School of Medicine and Population Health, University of Sheffield, Sheffield, United Kingdom; Insigneo Institute for In Silico Medicine, University of Sheffield, Sheffield, United Kingdom; Department of Psychiatry, School of Clinical Medicine, University of Cambridge, Cambridge, United Kingdom.
| |
Collapse
|
8
|
Smeralda CL, Pandit S, Turrini S, Reilly J, Palmisano A, Sprugnoli G, Hampel H, Benussi A, Borroni B, Press D, Rotenberg A, El Fakhri G, Koch G, Rossi S, Santarnecchi E. The role of parvalbumin interneuron dysfunction across neurodegenerative dementias. Ageing Res Rev 2024; 101:102509. [PMID: 39306248 DOI: 10.1016/j.arr.2024.102509] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Revised: 09/15/2024] [Accepted: 09/15/2024] [Indexed: 10/04/2024]
Abstract
Parvalbumin-positive (PV+) basket neurons are fast-spiking, non-adapting inhibitory interneurons whose oscillatory activity is essential for regulating cortical excitation/inhibition balance. Their dysfunction results in cortical hyperexcitability and gamma rhythm disruption, which have recently gained substantial traction as contributing factors as well as potential therapeutic targets for the treatment of Alzheimer's Disease (AD). Recent evidence indicates that PV+ cells are also impaired in Frontotemporal Dementia (FTD) and Dementia with Lewy bodies (DLB). However, no attempt has been made to integrate these findings into a coherent pathophysiological framework addressing the contribution of PV+ interneuron dysfunction to the generation of cortical hyperexcitability and gamma rhythm disruption in FTD and DLB. To fill this gap, we epitomized the most recent evidence on PV+ interneuron impairment in AD, FTD, and DLB, focusing on its contribution to the generation of cortical hyperexcitability and gamma oscillatory disruption and their interplay with misfolded protein accumulation, neuronal death, and clinical symptoms' onset. Our work deepens the current understanding concerning the role of PV+ interneuron dysfunction across neurodegenerative dementias, highlighting commonalities and differences among AD, FTD, and DLB, thus paving the way for identifying novel biomarkers and potential therapeutic targets for the treatment of these diseases.
Collapse
Affiliation(s)
- Carmelo Luca Smeralda
- Precision Neuroscience & Neuromodulation Program, Gordon Center for Medical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA; Siena Brain Investigation & Neuromodulation Lab (Si-BIN Lab), Unit of Neurology and Clinical Neurophysiology, Department of Medicine, Surgery and Neuroscience, University of Siena, Siena, Italy
| | - Siddhartha Pandit
- Precision Neuroscience & Neuromodulation Program, Gordon Center for Medical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Sonia Turrini
- Precision Neuroscience & Neuromodulation Program, Gordon Center for Medical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA; Centro Studi e Ricerche in Neuroscienze Cognitive, Dipartimento di Psicologia, University of Bologna, Italy
| | - Julianne Reilly
- Precision Neuroscience & Neuromodulation Program, Gordon Center for Medical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Annalisa Palmisano
- Chair of Lifespan Developmental Neuroscience, TUD Dresden University of Technology, Dresden, Germany
| | - Giulia Sprugnoli
- Precision Neuroscience & Neuromodulation Program, Gordon Center for Medical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Harald Hampel
- Sorbonne University, Alzheimer Precision Medicine (APM), AP-HP, Pitié-Salpêtrière Hospital, Paris, France
| | - Alberto Benussi
- Neurology Unit, Department of Clinical and Experimental Sciences, University of Brescia, Brescia, Italy; Neurology Unit, Department of Medical, Surgical and Health Sciences, University of Trieste, Trieste, Italy
| | - Barbara Borroni
- Neurology Unit, Department of Clinical and Experimental Sciences, University of Brescia, Brescia, Italy
| | - Daniel Press
- Cognitive Neurology Unit, Beth Israel Deaconess Medical Center, 330 Brookline Avenue, Brookline, MA, USA
| | - Alexander Rotenberg
- Department of Neurology, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| | - Georges El Fakhri
- Gordon Center for Medical Imaging, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Giacomo Koch
- Human Physiology Unit, Department of Neuroscience and Rehabilitation, University of Ferrara, Ferrara, Italy; Experimental Neuropsychophysiology Laboratory, IRCCS Santa Lucia Foundation, Rome, Italy
| | - Simone Rossi
- Siena Brain Investigation & Neuromodulation Lab (Si-BIN Lab), Unit of Neurology and Clinical Neurophysiology, Department of Medicine, Surgery and Neuroscience, University of Siena, Siena, Italy
| | - Emiliano Santarnecchi
- Precision Neuroscience & Neuromodulation Program, Gordon Center for Medical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
9
|
L'esperance OJ, McGhee J, Davidson G, Niraula S, Smith AS, Sosunov A, Yan SS, Subramanian J. Functional connectivity favors aberrant visual network c-Fos expression accompanied by cortical synapse loss in a mouse model of Alzheimer's disease. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.01.05.522900. [PMID: 36712054 PMCID: PMC9881957 DOI: 10.1101/2023.01.05.522900] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
While Alzheimer's disease (AD) has been extensively studied with a focus on cognitive networks, sensory network dysfunction has received comparatively less attention despite compelling evidence of its significance in both Alzheimer's disease patients and mouse models. We recently found that neurons in the primary visual cortex of an AD mouse model expressing human amyloid protein precursor with the Swedish and Indiana mutations (hAPP mutations) exhibit aberrant c-Fos expression and altered synaptic structures at a pre-amyloid plaque stage. However, it is unclear whether aberrant c-Fos expression and synaptic pathology vary across the broader visual network and to what extent c-Fos abnormality in the cortex is inherited through functional connectivity. Using both sexes of 4-6-month AD model mice with hAPP mutations (J20[PDGF-APPSw, Ind]), we found that cortical regions of the visual network show aberrant c-Fos expression and impaired experience-dependent modulation while subcortical regions do not. Interestingly, the average network-wide functional connectivity strength of a brain region in wild type (WT) mice significantly predicts its aberrant c-Fos expression, which in turn correlates with impaired experience-dependent modulation in the AD model. Using in vivo two-photon and ex vivo imaging of presynaptic termini, we observed a subtle yet selective weakening of excitatory cortical synapses in the visual cortex. Intriguingly, the change in the size distribution of cortical boutons in the AD model is downscaled relative to those in WT mice, suggesting that synaptic weakening may reflect an adaptation to aberrant activity. Our observations suggest that cellular and synaptic abnormalities in the AD model represent a maladaptive transformation of the baseline physiological state seen in WT conditions rather than entirely novel and unrelated manifestations.
Collapse
|
10
|
Cabrera-Álvarez J, Stefanovski L, Martin L, Susi G, Maestú F, Ritter P. A Multiscale Closed-Loop Neurotoxicity Model of Alzheimer's Disease Progression Explains Functional Connectivity Alterations. eNeuro 2024; 11:ENEURO.0345-23.2023. [PMID: 38565295 PMCID: PMC11026343 DOI: 10.1523/eneuro.0345-23.2023] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Revised: 12/05/2023] [Accepted: 12/22/2023] [Indexed: 04/04/2024] Open
Abstract
The accumulation of amyloid-β (Aβ) and hyperphosphorylated-tau (hp-tau) are two classical histopathological biomarkers in Alzheimer's disease (AD). However, their detailed interactions with the electrophysiological changes at the meso- and macroscale are not yet fully understood. We developed a mechanistic multiscale model of AD progression, linking proteinopathy to its effects on neural activity and vice-versa. We integrated a heterodimer model of prion-like protein propagation and a brain network model of Jansen-Rit neural masses derived from human neuroimaging data whose parameters varied due to neurotoxicity. Results showed that changes in inhibition guided the electrophysiological alterations found in AD, and these changes were mainly attributed to Aβ effects. Additionally, we found a causal disconnection between cellular hyperactivity and interregional hypersynchrony contrary to previous beliefs. Finally, we demonstrated that early Aβ and hp-tau depositions' location determine the spatiotemporal profile of the proteinopathy. The presented model combines the molecular effects of both Aβ and hp-tau together with a mechanistic protein propagation model and network effects within a closed-loop model. This holds the potential to enlighten the interplay between AD mechanisms on various scales, aiming to develop and test novel hypotheses on the contribution of different AD-related variables to the disease evolution.
Collapse
Affiliation(s)
- Jesús Cabrera-Álvarez
- Department of Experimental Psychology, Complutense University of Madrid, Pozuelo de Alarcón 28223, Spain
- Centre for Cognitive and Computational Neuroscience, Complutense University of Madrid, Madrid 28040, Spain
| | - Leon Stefanovski
- Berlin Institute of Health at Charité - Universitätsmedizin Berlin, Berlin 10117, Germany
- Department of Neurology with Experimental Neurology, Brain Simulation Section, Charité - Universitätsmedizin Berlin, Berlin 10117, Germany
| | - Leon Martin
- Berlin Institute of Health at Charité - Universitätsmedizin Berlin, Berlin 10117, Germany
- Department of Neurology with Experimental Neurology, Brain Simulation Section, Charité - Universitätsmedizin Berlin, Berlin 10117, Germany
| | - Gianluca Susi
- Centre for Cognitive and Computational Neuroscience, Complutense University of Madrid, Madrid 28040, Spain
- Department of Structure of Matter, Thermal Physics and Electronics, Complutense University of Madrid, Madrid 28040, Spain
| | - Fernando Maestú
- Department of Experimental Psychology, Complutense University of Madrid, Pozuelo de Alarcón 28223, Spain
- Centre for Cognitive and Computational Neuroscience, Complutense University of Madrid, Madrid 28040, Spain
| | - Petra Ritter
- Berlin Institute of Health at Charité - Universitätsmedizin Berlin, Berlin 10117, Germany
- Department of Neurology with Experimental Neurology, Brain Simulation Section, Charité - Universitätsmedizin Berlin, Berlin 10117, Germany
- Bernstein Center for Computational Neuroscience Berlin, Berlin 10115, Germany
| |
Collapse
|
11
|
Almeida VN. Somatostatin and the pathophysiology of Alzheimer's disease. Ageing Res Rev 2024; 96:102270. [PMID: 38484981 DOI: 10.1016/j.arr.2024.102270] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 03/09/2024] [Accepted: 03/09/2024] [Indexed: 03/28/2024]
Abstract
Among the central features of Alzheimer's disease (AD) progression are altered levels of the neuropeptide somatostatin (SST), and the colocalisation of SST-positive interneurons (SST-INs) with amyloid-β plaques, leading to cell death. In this theoretical review, I propose a molecular model for the pathogenesis of AD based on SST-IN hypofunction and hyperactivity. Namely, hypofunctional and hyperactive SST-INs struggle to control hyperactivity in medial regions in early stages, leading to axonal Aβ production through excessive presynaptic GABAB inhibition, GABAB1a/APP complex downregulation and internalisation. Concomitantly, excessive SST-14 release accumulates near SST-INs in the form of amyloids, which bind to Aβ to form toxic mixed oligomers. This leads to differential SST-IN death through excitotoxicity, further disinhibition, SST deficits, and increased Aβ release, fibrillation and plaque formation. Aβ plaques, hyperactive networks and SST-IN distributions thereby tightly overlap in the brain. Conversely, chronic stimulation of postsynaptic SST2/4 on gulutamatergic neurons by hyperactive SST-INs promotes intense Mitogen-Activated Protein Kinase (MAPK) p38 activity, leading to somatodendritic p-tau staining and apoptosis/neurodegeneration - in agreement with a near complete overlap between p38 and neurofibrillary tangles. This model is suitable to explain some of the principal risk factors and markers of AD progression, including mitochondrial dysfunction, APOE4 genotype, sex-dependent vulnerability, overactive glial cells, dystrophic neurites, synaptic/spine losses, inter alia. Finally, the model can also shed light on qualitative aspects of AD neuropsychology, especially within the domains of spatial and declarative (episodic, semantic) memory, under an overlying pattern of contextual indiscrimination, ensemble instability, interference and generalisation.
Collapse
Affiliation(s)
- Victor N Almeida
- Institute of Psychiatry, Faculty of Medicine, University of São Paulo (USP), Brazil; Faculty of Languages, Federal University of Minas Gerais (UFMG), Brazil.
| |
Collapse
|
12
|
Godfrey K, Muthukumaraswamy SD, Stinear CM, Hoeh NR. Resting-state EEG connectivity recorded before and after rTMS treatment in patients with treatment-resistant depression. Psychiatry Res Neuroimaging 2024; 338:111767. [PMID: 38183848 DOI: 10.1016/j.pscychresns.2023.111767] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Revised: 11/12/2023] [Accepted: 12/08/2023] [Indexed: 01/08/2024]
Abstract
Repetitive transcranial magnetic stimulation (rTMS) has shown efficacy and tolerability in Major Depressive Disorder (MDD). However, the underlying mechanisms of its antidepressant effects remain unclear. This open-label study investigated electroencephalography (EEG) functional connectivity markers associated with response and the antidepressant effects of rTMS. Resting-state EEG data were collected from 28 participants with MDD before and after a four-week rTMS course. Source-space functional connectivity between 38 cortical regions was compared using an orthogonalised amplitude approach. Depressive symptoms significantly improved following rTMS, with 43 % of participants classified as responders. While the study's functional connectivity findings did not withstand multiple comparison corrections, exploratory analyses suggest an association between theta band connectivity and rTMS treatment mechanisms. Fronto-parietal theta connectivity increased after treatment but did not correlate with antidepressant response. Notably, low baseline theta connectivity was associated with greater response. However, due to the exploratory nature and small sample size, further replication is needed. The findings provide preliminary evidence that EEG functional connectivity, particularly within the theta band, may reflect the mechanisms by which rTMS exerts its therapeutic effects.
Collapse
Affiliation(s)
- Kate Godfrey
- School of Pharmacy, The University of Auckland, Auckland, New Zealand; Division of Psychiatry, Imperial College London, London, United Kingdom.
| | | | - Cathy M Stinear
- School of Medicine, The University of Auckland, Auckland, New Zealand
| | - Nicholas R Hoeh
- Department of Psychological Medicine, The University of Auckland, Auckland, New Zealand; Auckland District Health Board, Auckland, New Zealand
| |
Collapse
|
13
|
Snytte J, Setton R, Mwilambwe-Tshilobo L, Natasha Rajah M, Sheldon S, Turner GR, Spreng RN. Structure-Function Interactions in the Hippocampus and Prefrontal Cortex Are Associated with Episodic Memory in Healthy Aging. eNeuro 2024; 11:ENEURO.0418-23.2023. [PMID: 38479810 PMCID: PMC10972739 DOI: 10.1523/eneuro.0418-23.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 12/11/2023] [Accepted: 12/15/2023] [Indexed: 04/01/2024] Open
Abstract
Aging comes with declines in episodic memory. Memory decline is accompanied by structural and functional alterations within key brain regions, including the hippocampus and lateral prefrontal cortex, as well as their affiliated default and frontoparietal control networks. Most studies have examined how structural or functional differences relate to memory independently. Here we implemented a multimodal, multivariate approach to investigate how interactions between individual differences in structural integrity and functional connectivity relate to episodic memory performance in healthy aging. In a sample of younger (N = 111; mean age, 22.11 years) and older (N = 78; mean age, 67.29 years) adults, we analyzed structural MRI and multiecho resting-state fMRI data. Participants completed measures of list recall (free recall of words from a list), associative memory (cued recall of paired words), and source memory (cued recall of the trial type, or the sensory modality in which a word was presented). The findings revealed that greater structural integrity of the posterior hippocampus and middle frontal gyrus were linked with a pattern of increased within-network connectivity, which together were related to better associative and source memory in older adulthood. Critically, older adults displayed better memory performance in the context of decreased hippocampal volumes when structural differences were accompanied by functional reorganization. This functional reorganization was characterized by a pruning of connections between the hippocampus and the limbic and frontoparietal control networks. Our work provides insight into the neural mechanisms that underlie age-related compensation, revealing that the functional architecture associated with better memory performance in healthy aging is tied to the structural integrity of the hippocampus and prefrontal cortex.
Collapse
Affiliation(s)
- Jamie Snytte
- Department of Psychology, McGill University, Montreal, Quebec H3A 1G1, Canada
| | - Roni Setton
- Department of Psychology, Harvard University, Cambridge, Massachusetts 02138
| | - Laetitia Mwilambwe-Tshilobo
- Annenberg School for Communication, University of Pennsylvania, Philadelphia, Pennsylvania 19104
- Department of Psychology, Princeton University, Princeton, New Jersey 08540
| | - M Natasha Rajah
- Department of Psychology, McGill University, Montreal, Quebec H3A 1G1, Canada
- Department of Psychiatry, McGill University, Montreal, Quebec H3A 1A1, Canada
| | - Signy Sheldon
- Department of Psychology, McGill University, Montreal, Quebec H3A 1G1, Canada
| | - Gary R Turner
- Department of Psychology, York University, Toronto, Ontario M3J 1P3, Canada
| | - R Nathan Spreng
- Department of Psychology, McGill University, Montreal, Quebec H3A 1G1, Canada
- Department of Psychiatry, McGill University, Montreal, Quebec H3A 1A1, Canada
- Montreal Neurological Institute, Department of Neurology and Neurosurgery, McGill University, Montreal, Quebec H3A 2B4, Canada
- McConnell Brain Imaging Centre, McGill University, Montreal, Quebec H3A 2B4, Canada
| |
Collapse
|
14
|
Hojjati SH, Chiang GC, Butler TA, de Leon M, Gupta A, Li Y, Sabuncu MR, Feiz F, Nayak S, Shteingart J, Ozoria S, Gholipour Picha S, Stern Y, Luchsinger JA, Devanand DP, Razlighi QR. Remote Associations Between Tau and Cortical Amyloid-β Are Stage-Dependent. J Alzheimers Dis 2024; 98:1467-1482. [PMID: 38552116 PMCID: PMC11091581 DOI: 10.3233/jad-231362] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/19/2024] [Indexed: 04/20/2024]
Abstract
Background Histopathologic studies of Alzheimer's disease (AD) suggest that extracellular amyloid-β (Aβ) plaques promote the spread of neurofibrillary tau tangles. However, these two proteinopathies initiate in spatially distinct brain regions, so how they interact during AD progression is unclear. Objective In this study, we utilized Aβ and tau positron emission tomography (PET) scans from 572 older subjects (476 healthy controls (HC), 14 with mild cognitive impairment (MCI), 82 with mild AD), at varying stages of the disease, to investigate to what degree tau is associated with cortical Aβ deposition. Methods Using multiple linear regression models and a pseudo-longitudinal ordering technique, we investigated remote tau-Aβ associations in four pathologic phases of AD progression based on tau spread: 1) no-tau, 2) pre-acceleration, 3) acceleration, and 4) post-acceleration. Results No significant tau-Aβ association was detected in the no-tau phase. In the pre-acceleration phase, the earliest stage of tau deposition, associations emerged between regional tau in medial temporal lobe (MTL) (i.e., entorhinal cortex, parahippocampal gyrus) and cortical Aβ in lateral temporal lobe regions. The strongest tau-Aβ associations were found in the acceleration phase, in which tau in MTL regions was strongly associated with cortical Aβ (i.e., temporal and frontal lobes regions). Strikingly, in the post-acceleration phase, including 96% of symptomatic subjects, tau-Aβ associations were no longer significant. Conclusions The results indicate that associations between tau and Aβ are stage-dependent, which could have important implications for understanding the interplay between these two proteinopathies during the progressive stages of AD.
Collapse
Affiliation(s)
- Seyed Hani Hojjati
- Department of Radiology, Brain Health Imaging Institute, Weill Cornell Medicine, New York, NY, USA
| | - Gloria C. Chiang
- Department of Radiology, Brain Health Imaging Institute, Weill Cornell Medicine, New York, NY, USA
| | - Tracy A. Butler
- Department of Radiology, Brain Health Imaging Institute, Weill Cornell Medicine, New York, NY, USA
| | - Mony de Leon
- Department of Radiology, Brain Health Imaging Institute, Weill Cornell Medicine, New York, NY, USA
| | - Ajay Gupta
- Department of Radiology, Weill Cornell Medicine, New York, NY, USA
| | - Yi Li
- Department of Radiology, Brain Health Imaging Institute, Weill Cornell Medicine, New York, NY, USA
| | - Mert R. Sabuncu
- Department of Radiology, Weill Cornell Medicine, New York, NY, USA
- Department of Electrical and Computer Engineering, Cornell University, Ithaca, NY, USA
| | - Farnia Feiz
- Department of Radiology, Brain Health Imaging Institute, Weill Cornell Medicine, New York, NY, USA
| | - Siddharth Nayak
- Department of Radiology, Brain Health Imaging Institute, Weill Cornell Medicine, New York, NY, USA
| | - Jacob Shteingart
- Department of Radiology, Brain Health Imaging Institute, Weill Cornell Medicine, New York, NY, USA
| | - Sindy Ozoria
- Department of Radiology, Brain Health Imaging Institute, Weill Cornell Medicine, New York, NY, USA
| | - Saman Gholipour Picha
- Department of Radiology, Brain Health Imaging Institute, Weill Cornell Medicine, New York, NY, USA
- Department of Biomedical Engineering, Illinois Institute of Technology, Chicago, IL, USA
| | - Yaakov Stern
- Departments of Neurology, Psychiatry, GH Sergievsky Center, The Taub Institute for the Research on Alzheimer’s Disease and the Aging Brain, Columbia University Irving Medical Center, New York, NY, USA
| | - José A. Luchsinger
- Departments of Medicine and Epidemiology, Columbia University Irving Medical Center, New York, NY, USA
| | - Davangere P. Devanand
- Division of Geriatric Psychiatry, New York State Psychiatric Institute, Columbia University Irving Medical Center, New York, NY, USA
- Department of Neurology, Taub Institute for Research on Alzheimer’s Disease and the Aging Brain, Columbia University Irving Medical Center, New York, NY, USA
- Department of Psychiatry, New York State Psychiatric Institute, Columbia University Irving Medical Center, New York, NY, USA
| | - Qolamreza R. Razlighi
- Department of Radiology, Brain Health Imaging Institute, Weill Cornell Medicine, New York, NY, USA
| |
Collapse
|
15
|
L’Esperance OJ, McGhee J, Davidson G, Niraula S, Smith A, Sosunov AA, Yan SS, Subramanian J. Functional Connectivity Favors Aberrant Visual Network c-Fos Expression Accompanied by Cortical Synapse Loss in a Mouse Model of Alzheimer's Disease. J Alzheimers Dis 2024; 101:111-131. [PMID: 39121131 PMCID: PMC11810533 DOI: 10.3233/jad-240776] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/11/2024]
Abstract
Background While Alzheimer's disease (AD) has been extensively studied with a focus on cognitive networks, visual network dysfunction has received less attention despite compelling evidence of its significance in AD patients and mouse models. We recently reported c-Fos and synaptic dysregulation in the primary visual cortex of a pre-amyloid plaque AD-model. Objective We test whether c-Fos expression and presynaptic density/dynamics differ in cortical and subcortical visual areas in an AD-model. We also examine whether aberrant c-Fos expression is inherited through functional connectivity and shaped by light experience. Methods c-Fos+ cell density, functional connectivity, and their experience-dependent modulation were assessed for visual and whole-brain networks in both sexes of 4-6-month-old J20 (AD-model) and wildtype (WT) mice. Cortical and subcortical differences in presynaptic vulnerability in the AD-model were compared using ex vivo and in vivo imaging. Results Visual cortical, but not subcortical, networks show aberrant c-Fos expression and impaired experience-dependent modulation. The average functional connectivity of a brain region in WT mice significantly predicts aberrant c-Fos expression, which correlates with impaired experience-dependent modulation in the AD-model. We observed a subtle yet selective weakening of excitatory visual cortical synapses. The size distribution of cortical boutons in the AD-model is downscaled relative to those in WT mice, suggesting a synaptic scaling-like adaptation of bouton size. Conclusions Visual network structural and functional disruptions are biased toward cortical regions in pre-plaque J20 mice, and the cellular and synaptic dysregulation in the AD-model represents a maladaptive modification of the baseline physiology seen in WT conditions.
Collapse
Affiliation(s)
- Oliver J. L’Esperance
- Department of Pharmacology and Toxicology, School of Pharmacy, University of Kansas, Lawrence, KS 66045, USA
| | - Josh McGhee
- Department of Pharmacology and Toxicology, School of Pharmacy, University of Kansas, Lawrence, KS 66045, USA
| | - Garett Davidson
- Department of Pharmacology and Toxicology, School of Pharmacy, University of Kansas, Lawrence, KS 66045, USA
| | - Suraj Niraula
- Department of Pharmacology and Toxicology, School of Pharmacy, University of Kansas, Lawrence, KS 66045, USA
| | - Adam Smith
- Department of Pharmacology and Toxicology, School of Pharmacy, University of Kansas, Lawrence, KS 66045, USA
| | - Alexandre A. Sosunov
- Department of Neurosurgery, Columbia University Medical Center,630 W. 168th St. New York, NY 10032
| | - Shirley Shidu Yan
- Department of Neurosurgery, Columbia University Medical Center,630 W. 168th St. New York, NY 10032
| | - Jaichandar Subramanian
- Department of Pharmacology and Toxicology, School of Pharmacy, University of Kansas, Lawrence, KS 66045, USA
| |
Collapse
|
16
|
LoBue C, McClintock S, Chiang HS, Helphrey J, Thakkar V, Hart J. A Critical Review of Noninvasive Brain Stimulation Technologies in Alzheimer's Dementia and Primary Progressive Aphasia. J Alzheimers Dis 2024; 100:743-760. [PMID: 38905047 PMCID: PMC11959453 DOI: 10.3233/jad-240230] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/23/2024]
Abstract
Multiple pharmacologic agents now have been approved in the United States and other countries as treatment to slow disease and clinical progression for Alzheimer's disease. Given these treatments have not been proven to lessen the cognitive deficits already manifested in the Alzheimer's Clinical Syndrome (ACS), and none are aimed for another debilitating dementia syndrome identified as primary progressive aphasia (PPA), there is an urgent need for new, safe, tolerable, and efficacious treatments to mitigate the cognitive deficits experienced in ACS and PPA. Noninvasive brain stimulation has shown promise for enhancing cognitive functioning, and there has been interest in its potential therapeutic value in ACS and PPA. This review critically examines the evidence of five technologies in ACS and PPA: transcranial direct current stimulation (tDCS), transcranial alternating current stimulation (tACS), transcranial random noise stimulation (tRNS), repetitive transcranial magnetic stimulation (rTMS), and noninvasive vagus nerve stimulation (nVNS). Many randomized controlled trials of tDCS and rTMS report positive treatment effects on cognition in ACS and PPA that persist out to at least 8 weeks, whereas there are few trials for tACS and none for tRNS and nVNS. However, most positive trials did not identify clinically meaningful changes, underscoring that clinical efficacy has yet to be established in ACS and PPA. Much is still to be learned about noninvasive brain stimulation in ACS and PPA, and shifting the focus to prioritize clinical significance in addition to statistical significance in trials could yield greater success in understanding its potential cognitive effects and optimal parameters.
Collapse
Affiliation(s)
- Christian LoBue
- Department of Psychiatry, University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd, Dallas,TX, 75390
- Department of Neurological Surgery, University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd, Dallas,TX, 75390
| | - Shawn McClintock
- Department of Psychiatry, University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd, Dallas,TX, 75390
| | - Hsueh-Sheng Chiang
- Department of Neurology, University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd, Dallas,TX, 75390
- School of Behavioral and Brain Sciences, University of Texas at Dallas, 800 W Campbell Rd, Richardson, TX 75080
| | - Jessica Helphrey
- Department of Psychiatry, University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd, Dallas,TX, 75390
| | - Vishal Thakkar
- Department of Psychiatry, University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd, Dallas,TX, 75390
| | - John Hart
- Department of Psychiatry, University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd, Dallas,TX, 75390
- Department of Neurology, University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd, Dallas,TX, 75390
- School of Behavioral and Brain Sciences, University of Texas at Dallas, 800 W Campbell Rd, Richardson, TX 75080
| |
Collapse
|
17
|
Doherty JL, Cunningham AC, Chawner SJRA, Moss HM, Dima DC, Linden DEJ, Owen MJ, van den Bree MBM, Singh KD. Atypical cortical networks in children at high-genetic risk of psychiatric and neurodevelopmental disorders. Neuropsychopharmacology 2024; 49:368-376. [PMID: 37402765 PMCID: PMC7615386 DOI: 10.1038/s41386-023-01628-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 05/04/2023] [Accepted: 06/01/2023] [Indexed: 07/06/2023]
Abstract
Although many genetic risk factors for psychiatric and neurodevelopmental disorders have been identified, the neurobiological route from genetic risk to neuropsychiatric outcome remains unclear. 22q11.2 deletion syndrome (22q11.2DS) is a copy number variant (CNV) syndrome associated with high rates of neurodevelopmental and psychiatric disorders including autism spectrum disorder (ASD), attention deficit hyperactivity disorder (ADHD) and schizophrenia. Alterations in neural integration and cortical connectivity have been linked to the spectrum of neuropsychiatric disorders seen in 22q11.2DS and may be a mechanism by which the CNV acts to increase risk. In this study, magnetoencephalography (MEG) was used to investigate electrophysiological markers of local and global network function in 34 children with 22q11.2DS and 25 controls aged 10-17 years old. Resting-state oscillatory activity and functional connectivity across six frequency bands were compared between groups. Regression analyses were used to explore the relationships between these measures, neurodevelopmental symptoms and IQ. Children with 22q11.2DS had altered network activity and connectivity in high and low frequency bands, reflecting modified local and long-range cortical circuitry. Alpha and theta band connectivity were negatively associated with ASD symptoms while frontal high frequency (gamma band) activity was positively associated with ASD symptoms. Alpha band activity was positively associated with cognitive ability. These findings suggest that haploinsufficiency at the 22q11.2 locus impacts short and long-range cortical circuits, which could be a mechanism underlying neurodevelopmental and psychiatric vulnerability in this high-risk group.
Collapse
Affiliation(s)
- Joanne L Doherty
- Centre for Neuropsychiatric Genetics and Genomics, Division of Psychological Medicine and Clinical Neurosciences, School of Medicine, Cardiff University, Cardiff, UK.
- Cardiff University's Brain Research Imaging Centre (CUBRIC), School of Psychology, College of Biomedical and Life Sciences, Cardiff University, Cardiff, UK.
| | - Adam C Cunningham
- Centre for Neuropsychiatric Genetics and Genomics, Division of Psychological Medicine and Clinical Neurosciences, School of Medicine, Cardiff University, Cardiff, UK
| | - Samuel J R A Chawner
- Centre for Neuropsychiatric Genetics and Genomics, Division of Psychological Medicine and Clinical Neurosciences, School of Medicine, Cardiff University, Cardiff, UK
| | - Hayley M Moss
- Centre for Neuropsychiatric Genetics and Genomics, Division of Psychological Medicine and Clinical Neurosciences, School of Medicine, Cardiff University, Cardiff, UK
| | - Diana C Dima
- Cardiff University's Brain Research Imaging Centre (CUBRIC), School of Psychology, College of Biomedical and Life Sciences, Cardiff University, Cardiff, UK
| | - David E J Linden
- Centre for Neuropsychiatric Genetics and Genomics, Division of Psychological Medicine and Clinical Neurosciences, School of Medicine, Cardiff University, Cardiff, UK
- Cardiff University's Brain Research Imaging Centre (CUBRIC), School of Psychology, College of Biomedical and Life Sciences, Cardiff University, Cardiff, UK
| | - Michael J Owen
- Centre for Neuropsychiatric Genetics and Genomics, Division of Psychological Medicine and Clinical Neurosciences, School of Medicine, Cardiff University, Cardiff, UK
| | - Marianne B M van den Bree
- Centre for Neuropsychiatric Genetics and Genomics, Division of Psychological Medicine and Clinical Neurosciences, School of Medicine, Cardiff University, Cardiff, UK
| | - Krish D Singh
- Cardiff University's Brain Research Imaging Centre (CUBRIC), School of Psychology, College of Biomedical and Life Sciences, Cardiff University, Cardiff, UK
| |
Collapse
|
18
|
Steward A, Biel D, Dewenter A, Roemer S, Wagner F, Dehsarvi A, Rathore S, Otero Svaldi D, Higgins I, Brendel M, Dichgans M, Shcherbinin S, Ewers M, Franzmeier N. ApoE4 and Connectivity-Mediated Spreading of Tau Pathology at Lower Amyloid Levels. JAMA Neurol 2023; 80:1295-1306. [PMID: 37930695 PMCID: PMC10628846 DOI: 10.1001/jamaneurol.2023.4038] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Accepted: 09/07/2023] [Indexed: 11/07/2023]
Abstract
Importance For the Alzheimer disease (AD) therapies to effectively attenuate clinical progression, it may be critical to intervene before the onset of amyloid-associated tau spreading, which drives neurodegeneration and cognitive decline. Time points at which amyloid-associated tau spreading accelerates may depend on individual risk factors, such as apolipoprotein E ε4 (ApoE4) carriership, which is linked to faster disease progression; however, the association of ApoE4 with amyloid-related tau spreading is unclear. Objective To assess if ApoE4 carriers show accelerated amyloid-related tau spreading and propose amyloid positron emission tomography (PET) thresholds at which tau spreading accelerates in ApoE4 carriers vs noncarriers. Design, Setting, and Participants This cohort study including combined ApoE genotyping, amyloid PET, and longitudinal tau PET from 2 independent samples: the Alzheimer's Disease Neuroimaging Initiative (ADNI; n = 237; collected from April 2015 to August 2022) and Avid-A05 (n = 130; collected from December 2013 to July 2017) with a mean (SD) tau PET follow-up time of 1.9 (0.96) years in ADNI and 1.4 (0.23) years in Avid-A05. ADNI is an observational multicenter Alzheimer disease neuroimaging initiative and Avid-A05 an observational clinical trial. Participants classified as cognitively normal (152 in ADNI and 77 in Avid-A05) or mildly cognitively impaired (107 in ADNI and 53 in Avid-A05) were selected based on ApoE genotyping, amyloid-PET, and longitudinal tau PET data availability. Participants with ApoE ε2/ε4 genotype or classified as having dementia were excluded. Resting-state functional magnetic resonance imaging connectivity templates were based on 42 healthy participants in ADNI. Main Outcomes and Measures Mediation of amyloid PET on the association between ApoE4 status and subsequent tau PET increase through Braak stage regions and interaction between ApoE4 status and amyloid PET with annual tau PET increase through Braak stage regions and connectivity-based spreading stages (tau epicenter connectivity ranked regions). Results The mean (SD) age was 73.9 (7.35) years among the 237 ADNI participants and 70.2 (9.7) years among the 130 Avid-A05 participants. A total of 107 individuals in ADNI (45.1%) and 45 in Avid-A05 (34.6%) were ApoE4 carriers. Across both samples, we found that higher amyloid PET-mediated ApoE4-related tau PET increased globally (ADNI b, 0.15; 95% CI, 0.05-0.28; P = .001 and Avid-A05 b, 0.33; 95% CI, 0.14-0.54; P < .001) and in earlier Braak regions. Further, we found a significant association between ApoE4 status by amyloid PET interaction and annual tau PET increases consistently through early Braak- and connectivity-based stages where amyloid-related tau accumulation was accelerated in ApoE4carriers vs noncarriers at lower centiloid thresholds, corrected for age and sex. Conclusions and Relevance The findings in this study indicate that amyloid-related tau accumulation was accelerated in ApoE4 carriers at lower amyloid levels, suggesting that ApoE4 may facilitate earlier amyloid-driven tau spreading across connected brain regions. Possible therapeutic implications might be further investigated to determine when best to prevent tau spreading and thus cognitive decline depending on ApoE4 status.
Collapse
Affiliation(s)
- Anna Steward
- Institute for Stroke and Dementia Research, University Hospital, Ludwig Maximilian University of Munich, Munich, Germany
| | - Davina Biel
- Institute for Stroke and Dementia Research, University Hospital, Ludwig Maximilian University of Munich, Munich, Germany
| | - Anna Dewenter
- Institute for Stroke and Dementia Research, University Hospital, Ludwig Maximilian University of Munich, Munich, Germany
| | - Sebastian Roemer
- Institute for Stroke and Dementia Research, University Hospital, Ludwig Maximilian University of Munich, Munich, Germany
- Department of Neurology, University Hospital, Ludwig Maximilian University of Munich, Munich, Germany
| | - Fabian Wagner
- Institute for Stroke and Dementia Research, University Hospital, Ludwig Maximilian University of Munich, Munich, Germany
| | - Amir Dehsarvi
- Institute for Stroke and Dementia Research, University Hospital, Ludwig Maximilian University of Munich, Munich, Germany
| | | | | | | | - Matthias Brendel
- Department of Nuclear Medicine, University Hospital, Ludwig Maximilian University of Munich, Munich, Germany
- Munich Cluster for Systems Neurology, Munich, Germany
| | - Martin Dichgans
- Institute for Stroke and Dementia Research, University Hospital, Ludwig Maximilian University of Munich, Munich, Germany
- Munich Cluster for Systems Neurology, Munich, Germany
| | | | - Michael Ewers
- Institute for Stroke and Dementia Research, University Hospital, Ludwig Maximilian University of Munich, Munich, Germany
- German Center for Neurodegenerative Diseases, Munich, Germany
| | - Nicolai Franzmeier
- Institute for Stroke and Dementia Research, University Hospital, Ludwig Maximilian University of Munich, Munich, Germany
- Munich Cluster for Systems Neurology, Munich, Germany
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, The Sahlgrenska Academy, University of Gothenburg, Sweden
| |
Collapse
|
19
|
Zegarra-Valdivia JA, Pignatelli J, Nuñez A, Torres Aleman I. The Role of Insulin-like Growth Factor I in Mechanisms of Resilience and Vulnerability to Sporadic Alzheimer's Disease. Int J Mol Sci 2023; 24:16440. [PMID: 38003628 PMCID: PMC10671249 DOI: 10.3390/ijms242216440] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 11/06/2023] [Accepted: 11/14/2023] [Indexed: 11/26/2023] Open
Abstract
Despite decades of intense research, disease-modifying therapeutic approaches for Alzheimer's disease (AD) are still very much needed. Apart from the extensively analyzed tau and amyloid pathological cascades, two promising avenues of research that may eventually identify new druggable targets for AD are based on a better understanding of the mechanisms of resilience and vulnerability to this condition. We argue that insulin-like growth factor I (IGF-I) activity in the brain provides a common substrate for the mechanisms of resilience and vulnerability to AD. We postulate that preserved brain IGF-I activity contributes to resilience to AD pathology as this growth factor intervenes in all the major pathological cascades considered to be involved in AD, including metabolic impairment, altered proteostasis, and inflammation, to name the three that are considered to be the most important ones. Conversely, disturbed IGF-I activity is found in many AD risk factors, such as old age, type 2 diabetes, imbalanced diet, sedentary life, sociality, stroke, stress, and low education, whereas the Apolipoprotein (Apo) E4 genotype and traumatic brain injury may also be influenced by brain IGF-I activity. Accordingly, IGF-I activity should be taken into consideration when analyzing these processes, while its preservation will predictably help prevent the progress of AD pathology. Thus, we need to define IGF-I activity in all these conditions and develop a means to preserve it. However, defining brain IGF-I activity cannot be solely based on humoral or tissue levels of this neurotrophic factor, and new functionally based assessments need to be developed.
Collapse
Affiliation(s)
- Jonathan A. Zegarra-Valdivia
- Achucarro Basque Center for Neuroscience, 48940 Leioa, Spain;
- Biomedical Research Networking Center on Neurodegenerative Diseases (CIBERNED), 28029 Madrid, Spain;
- School of Medicine, Universidad Señor de Sipán, Chiclayo 14000, Peru
| | - Jaime Pignatelli
- Biomedical Research Networking Center on Neurodegenerative Diseases (CIBERNED), 28029 Madrid, Spain;
- Cajal Institute (CSIC), 28002 Madrid, Spain
| | - Angel Nuñez
- Department of Anatomy, Histology and Neuroscience, Universidad Autónoma de Madrid, 28049 Madrid, Spain;
| | - Ignacio Torres Aleman
- Achucarro Basque Center for Neuroscience, 48940 Leioa, Spain;
- Biomedical Research Networking Center on Neurodegenerative Diseases (CIBERNED), 28029 Madrid, Spain;
- Ikerbasque, Basque Foundation for Science, 48009 Bilbao, Spain
| |
Collapse
|
20
|
Dounavi ME, Mak E, Swann P, Low A, Muniz-Terrera G, McKeever A, Pope M, Williams GB, Wells K, Lawlor B, Naci L, Malhotra P, Mackay C, Koychev I, Ritchie K, Su L, Ritchie CW, O’Brien JT. Differential association of cerebral blood flow and anisocytosis in APOE ε4 carriers at midlife. J Cereb Blood Flow Metab 2023; 43:1672-1684. [PMID: 37132287 PMCID: PMC10581239 DOI: 10.1177/0271678x231173587] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Revised: 03/31/2023] [Accepted: 04/05/2023] [Indexed: 05/04/2023]
Abstract
Cerebral hemodynamic alterations have been observed in apolipoprotein ε4 (APOE4) carriers at midlife, however the physiological underpinnings of this observation are poorly understood. Our goal was to investigate cerebral blood flow (CBF) and its spatial coefficient of variation (CoV) in relation to APOE4 and a measure of erythrocyte anisocytosis (red blood cell distribution width - RDW) in a middle-aged cohort. Data from 563 participants in the PREVENT-Dementia study scanned with 3 T MRI cross-sectionally were analysed. Voxel-wise and region-of-interest analyses within nine vascular regions were run to detect areas of altered perfusion. Within the vascular regions, interaction terms between APOE4 and RDW in predicting CBF were examined. Areas of hyperperfusion in APOE4 carriers were detected mainly in frontotemporal regions. The APOE4 allele differentially moderated the association between RDW and CBF, an association which was more prominent in the distal vascular territories (p - [0.01, 0.05]). The CoV was not different between the considered groups. We provide novel evidence that in midlife, RDW and CBF are differentially associated in APOE4 carriers and non-carriers. This association is consistent with a differential hemodynamic response to hematological alterations in APOE4 carriers.
Collapse
Affiliation(s)
- Maria-Eleni Dounavi
- Department of Psychiatry, School of Clinical Medicine, University of Cambridge, Cambridge, UK
| | - Elijah Mak
- Department of Psychiatry, School of Clinical Medicine, University of Cambridge, Cambridge, UK
| | - Peter Swann
- Department of Psychiatry, School of Clinical Medicine, University of Cambridge, Cambridge, UK
| | - Audrey Low
- Department of Psychiatry, School of Clinical Medicine, University of Cambridge, Cambridge, UK
| | | | - Anna McKeever
- Department of Psychiatry, School of Clinical Medicine, University of Cambridge, Cambridge, UK
| | - Marianna Pope
- Department of Psychiatry, School of Clinical Medicine, University of Cambridge, Cambridge, UK
| | - Guy B Williams
- Department of Clinical Neurosciences and Wolfson Brain Imaging Centre, University of Cambridge, Cambridge, UK
| | - Katie Wells
- Centre for Dementia Prevention, University of Edinburgh, Edinburgh, UK
| | - Brian Lawlor
- Institute of Neuroscience, Trinity College Dublin, University of Dublin, Dublin, Ireland
| | - Lorina Naci
- Institute of Neuroscience, Trinity College Dublin, University of Dublin, Dublin, Ireland
| | - Paresh Malhotra
- Division of Brain Science, Imperial College Healthcare NHS Trust, UK
| | - Clare Mackay
- Department of Psychiatry, University of Oxford, Oxford, UK
| | - Ivan Koychev
- Department of Psychiatry, University of Oxford, Oxford, UK
| | | | - Li Su
- Department of Psychiatry, School of Clinical Medicine, University of Cambridge, Cambridge, UK
- Department of Neuroscience, University of Sheffield, Sheffield, UK
| | - Craig W Ritchie
- Centre for Dementia Prevention, University of Edinburgh, Edinburgh, UK
| | - John T O’Brien
- Department of Psychiatry, School of Clinical Medicine, University of Cambridge, Cambridge, UK
| |
Collapse
|
21
|
Li M, He L, Zhang Z, Li Z, Zhu X, Jiao C, Hu D. The decoupling between hemodynamic parameters and neural activity implies a complex origin of spontaneous brain oscillations. Front Comput Neurosci 2023; 17:1214793. [PMID: 37583895 PMCID: PMC10423917 DOI: 10.3389/fncom.2023.1214793] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2023] [Accepted: 07/18/2023] [Indexed: 08/17/2023] Open
Abstract
Introduction Spontaneous low-frequency oscillations play a key role in brain activity. However, the underlying mechanism and origin of low-frequency oscillations remain under debate. Methods Optical imaging and an electrophysiological recording system were combined to investigate spontaneous oscillations in the hemodynamic parameters and neuronal activity of awake and anesthetized mice after Nω-nitro-L-arginine methyl ester (L-NAME) administration. Results The spectrum of local field potential (LFP) signals was significantly changed by L-NAME, which was further corroborated by the increase in energy and spatial synchronization. The important finding was that L-NAME triggered regular oscillations in both LFP signals and hemodynamic signals. Notably, the frequency peak of hemodynamic signals can be different from that of LFP oscillations in awake mice. Discussion A model of the neurovascular system was proposed to interpret this mismatch of peak frequencies, supporting the view that spontaneous low-frequency oscillations arise from multiple sources.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Dewen Hu
- College of Intelligence Science and Technology, National University of Defense Technology, Changsha, China
| |
Collapse
|
22
|
Yang S, Park JH, Lu HC. Axonal energy metabolism, and the effects in aging and neurodegenerative diseases. Mol Neurodegener 2023; 18:49. [PMID: 37475056 PMCID: PMC10357692 DOI: 10.1186/s13024-023-00634-3] [Citation(s) in RCA: 42] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Accepted: 06/08/2023] [Indexed: 07/22/2023] Open
Abstract
Human studies consistently identify bioenergetic maladaptations in brains upon aging and neurodegenerative disorders of aging (NDAs), such as Alzheimer's disease, Parkinson's disease, Huntington's disease, and Amyotrophic lateral sclerosis. Glucose is the major brain fuel and glucose hypometabolism has been observed in brain regions vulnerable to aging and NDAs. Many neurodegenerative susceptible regions are in the topological central hub of the brain connectome, linked by densely interconnected long-range axons. Axons, key components of the connectome, have high metabolic needs to support neurotransmission and other essential activities. Long-range axons are particularly vulnerable to injury, neurotoxin exposure, protein stress, lysosomal dysfunction, etc. Axonopathy is often an early sign of neurodegeneration. Recent studies ascribe axonal maintenance failures to local bioenergetic dysregulation. With this review, we aim to stimulate research in exploring metabolically oriented neuroprotection strategies to enhance or normalize bioenergetics in NDA models. Here we start by summarizing evidence from human patients and animal models to reveal the correlation between glucose hypometabolism and connectomic disintegration upon aging/NDAs. To encourage mechanistic investigations on how axonal bioenergetic dysregulation occurs during aging/NDAs, we first review the current literature on axonal bioenergetics in distinct axonal subdomains: axon initial segments, myelinated axonal segments, and axonal arbors harboring pre-synaptic boutons. In each subdomain, we focus on the organization, activity-dependent regulation of the bioenergetic system, and external glial support. Second, we review the mechanisms regulating axonal nicotinamide adenine dinucleotide (NAD+) homeostasis, an essential molecule for energy metabolism processes, including NAD+ biosynthetic, recycling, and consuming pathways. Third, we highlight the innate metabolic vulnerability of the brain connectome and discuss its perturbation during aging and NDAs. As axonal bioenergetic deficits are developing into NDAs, especially in asymptomatic phase, they are likely exaggerated further by impaired NAD+ homeostasis, the high energetic cost of neural network hyperactivity, and glial pathology. Future research in interrogating the causal relationship between metabolic vulnerability, axonopathy, amyloid/tau pathology, and cognitive decline will provide fundamental knowledge for developing therapeutic interventions.
Collapse
Affiliation(s)
- Sen Yang
- The Linda and Jack Gill Center for Biomolecular Sciences, Indiana University, Bloomington, IN, 47405, USA
- Department of Psychological and Brain Sciences, Indiana University, Bloomington, IN, 47405, USA
- Program in Neuroscience, Indiana University, Bloomington, IN, 47405, USA
| | - Jung Hyun Park
- The Linda and Jack Gill Center for Biomolecular Sciences, Indiana University, Bloomington, IN, 47405, USA
- Department of Psychological and Brain Sciences, Indiana University, Bloomington, IN, 47405, USA
- Program in Neuroscience, Indiana University, Bloomington, IN, 47405, USA
| | - Hui-Chen Lu
- The Linda and Jack Gill Center for Biomolecular Sciences, Indiana University, Bloomington, IN, 47405, USA.
- Department of Psychological and Brain Sciences, Indiana University, Bloomington, IN, 47405, USA.
- Program in Neuroscience, Indiana University, Bloomington, IN, 47405, USA.
| |
Collapse
|
23
|
Brown J, Camporesi E, Lantero-Rodriguez J, Olsson M, Wang A, Medem B, Zetterberg H, Blennow K, Karikari TK, Wall M, Hill E. Tau in cerebrospinal fluid induces neuronal hyperexcitability and alters hippocampal theta oscillations. Acta Neuropathol Commun 2023; 11:67. [PMID: 37095572 PMCID: PMC10127378 DOI: 10.1186/s40478-023-01562-5] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Accepted: 04/03/2023] [Indexed: 04/26/2023] Open
Abstract
Alzheimer's disease (AD) and other tauopathies are characterized by the aggregation of tau into soluble and insoluble forms (including tangles and neuropil threads). In humans, a fraction of both phosphorylated and non-phosphorylated N-terminal to mid-domain tau species, are secreted into cerebrospinal fluid (CSF). Some of these CSF tau species can be measured as diagnostic and prognostic biomarkers, starting from early stages of disease. While in animal models of AD pathology, soluble tau aggregates have been shown to disrupt neuronal function, it is unclear whether the tau species present in CSF will modulate neural activity. Here, we have developed and applied a novel approach to examine the electrophysiological effects of CSF from patients with a tau-positive biomarker profile. The method involves incubation of acutely-isolated wild-type mouse hippocampal brain slices with small volumes of diluted human CSF, followed by a suite of electrophysiological recording methods to evaluate their effects on neuronal function, from single cells through to the network level. Comparison of the toxicity profiles of the same CSF samples, with and without immuno-depletion for tau, has enabled a pioneering demonstration that CSF-tau potently modulates neuronal function. We demonstrate that CSF-tau mediates an increase in neuronal excitability in single cells. We then observed, at the network level, increased input-output responses and enhanced paired-pulse facilitation as well as an increase in long-term potentiation. Finally, we show that CSF-tau modifies the generation and maintenance of hippocampal theta oscillations, which have important roles in learning and memory and are known to be altered in AD patients. Together, we describe a novel method for screening human CSF-tau to understand functional effects on neuron and network activity, which could have far-reaching benefits in understanding tau pathology, thus allowing for the development of better targeted treatments for tauopathies in the future.
Collapse
Affiliation(s)
- Jessica Brown
- School of Life Sciences, University of Warwick, Coventry, CV4 7AL, UK
- Division of Pharmacy and Optometry, School of Health Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, M13 9PL, UK
| | - Elena Camporesi
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, University of Gothenburg, 43180, Mölndal, Sweden
| | - Juan Lantero-Rodriguez
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, University of Gothenburg, 43180, Mölndal, Sweden
| | - Maria Olsson
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, University of Gothenburg, 43180, Mölndal, Sweden
- Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, 43180, Mölndal, Sweden
| | - Alice Wang
- School of Life Sciences, University of Warwick, Coventry, CV4 7AL, UK
| | - Blanca Medem
- School of Life Sciences, University of Warwick, Coventry, CV4 7AL, UK
| | - Henrik Zetterberg
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, University of Gothenburg, 43180, Mölndal, Sweden
- Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, 43180, Mölndal, Sweden
- UK Dementia Research Institute at UCL, London, WC1E 6BT, UK
- Department of Neurodegenerative Disease, UCL Institute of Neurology, London, WC1E 6BT, UK
- Hong Kong Center for Neurodegenerative Diseases, Clear Water Bay, Hong Kong, China
- Wisconsin Alzheimer's Disease Research Center, University of Wisconsin, Madison, WI, 53792, USA
- School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, 53792, USA
| | - Kaj Blennow
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, University of Gothenburg, 43180, Mölndal, Sweden
- Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, 43180, Mölndal, Sweden
| | - Thomas K Karikari
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, University of Gothenburg, 43180, Mölndal, Sweden
- Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, 43180, Mölndal, Sweden
- Department of Psychiatry, School of Medicine, University of Pittsburgh, Pittsburgh, PA, 15213, USA
| | - Mark Wall
- School of Life Sciences, University of Warwick, Coventry, CV4 7AL, UK
| | - Emily Hill
- School of Life Sciences, University of Warwick, Coventry, CV4 7AL, UK.
| |
Collapse
|
24
|
Ponomareva NV, Andreeva TV, Protasova MS, Kunizheva SS, Kuznetsova IL, Kolesnikova EP, Malina DD, Mitrofanov AA, Fokin VF, Illarioshkin SN, Rogaev EI. Neuronal Hyperactivation in EEG Data during Cognitive Tasks Is Related to the Apolipoprotein J/Clusterin Genotype in Nondemented Adults. Int J Mol Sci 2023; 24:6790. [PMID: 37047762 PMCID: PMC10095572 DOI: 10.3390/ijms24076790] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2022] [Revised: 03/24/2023] [Accepted: 03/30/2023] [Indexed: 04/08/2023] Open
Abstract
The clusterin (CLU) rs11136000 CC genotype is a probable risk factor for Alzheimer's disease (AD). CLU, also known as the apolipoprotein J gene, shares certain properties with the apolipoprotein E (APOE) gene with a well-established relationship with AD. This study aimed to determine whether the electrophysiological patterns of brain activation during the letter fluency task (LFT) depend on CLU genotypes in adults without dementia. Previous studies have shown that LFT performance involves activation of the frontal cortex. We examined EEG alpha1 and alpha2 band desynchronization in the frontal regions during the LFT in 94 nondemented individuals stratified by CLU (rs11136000) genotype. Starting at 30 years of age, CLU CC carriers exhibited more pronounced task-related alpha2 desynchronization than CLU CT&TT carriers in the absence of any differences in LFT performance. In CLU CC carriers, alpha2 desynchronization was significantly correlated with age. Increased task-related activation in individuals at genetic risk for AD may reflect greater "effort" to perform the task and/or neuronal hyperexcitability. The results show that the CLU genotype is associated with neuronal hyperactivation in the frontal cortex during cognitive tasks performances in nondemented individuals, suggesting systematic vulnerability of LFT related cognitive networks in people carrying unfavorable CLU alleles.
Collapse
Affiliation(s)
- Natalya V. Ponomareva
- Research Center of Neurology, 125367 Moscow, Russia
- Center for Genetics and Life Science, Sirius University of Science and Technology, 354349 Sochi, Russia
| | - Tatiana V. Andreeva
- Center for Genetics and Life Science, Sirius University of Science and Technology, 354349 Sochi, Russia
- Vavilov Institute of General Genetics, Russian Academy of Sciences, 119991 Moscow, Russia
- Centre for Genetics and Genetic Technologies, Faculty of Biology, Lomonosov Moscow State University, 119192 Moscow, Russia
| | - Maria S. Protasova
- Vavilov Institute of General Genetics, Russian Academy of Sciences, 119991 Moscow, Russia
| | - Svetlana S. Kunizheva
- Center for Genetics and Life Science, Sirius University of Science and Technology, 354349 Sochi, Russia
- Vavilov Institute of General Genetics, Russian Academy of Sciences, 119991 Moscow, Russia
| | - Irina L. Kuznetsova
- Center for Genetics and Life Science, Sirius University of Science and Technology, 354349 Sochi, Russia
- Vavilov Institute of General Genetics, Russian Academy of Sciences, 119991 Moscow, Russia
| | | | | | | | | | | | - Evgeny I. Rogaev
- Center for Genetics and Life Science, Sirius University of Science and Technology, 354349 Sochi, Russia
- Department of Psychiatry, Umass Chan Medical School, Shrewsbury, MA 01545, USA
| |
Collapse
|
25
|
Gao SM, Qi Y, Zhang Q, Mohammed AS, Lee YT, Guan Y, Li H, Fu Y, Wang MC. Aging Atlas Reveals Cell-Type-Specific Regulation of Pro-longevity Strategies. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.02.28.530490. [PMID: 36909655 PMCID: PMC10002668 DOI: 10.1101/2023.02.28.530490] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/07/2023]
Abstract
Organism aging occurs at the multicellular level; however, how pro-longevity mechanisms slow down aging in different cell types remains unclear. We generated single-cell transcriptomic atlases across the lifespan of Caenorhabditis elegans under different pro-longevity conditions (http://mengwanglab.org/atlas). We found cell-specific, age-related changes across somatic and germ cell types and developed transcriptomic aging clocks for different tissues. These clocks enabled us to determine tissue-specific aging-slowing effects of different pro-longevity mechanisms, and identify major cell types sensitive to these regulations. Additionally, we provided a systemic view of alternative polyadenylation events in different cell types, as well as their cell-type-specific changes during aging and under different pro-longevity conditions. Together, this study provides molecular insights into how aging occurs in different cell types and how they respond to pro-longevity strategies.
Collapse
|
26
|
Madadi Asl M, Valizadeh A, Tass PA. Decoupling of interacting neuronal populations by time-shifted stimulation through spike-timing-dependent plasticity. PLoS Comput Biol 2023; 19:e1010853. [PMID: 36724144 PMCID: PMC9891531 DOI: 10.1371/journal.pcbi.1010853] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Accepted: 01/05/2023] [Indexed: 02/02/2023] Open
Abstract
The synaptic organization of the brain is constantly modified by activity-dependent synaptic plasticity. In several neurological disorders, abnormal neuronal activity and pathological synaptic connectivity may significantly impair normal brain function. Reorganization of neuronal circuits by therapeutic stimulation has the potential to restore normal brain dynamics. Increasing evidence suggests that the temporal stimulation pattern crucially determines the long-lasting therapeutic effects of stimulation. Here, we tested whether a specific pattern of brain stimulation can enable the suppression of pathologically strong inter-population synaptic connectivity through spike-timing-dependent plasticity (STDP). More specifically, we tested how introducing a time shift between stimuli delivered to two interacting populations of neurons can effectively decouple them. To that end, we first used a tractable model, i.e., two bidirectionally coupled leaky integrate-and-fire (LIF) neurons, to theoretically analyze the optimal range of stimulation frequency and time shift for decoupling. We then extended our results to two reciprocally connected neuronal populations (modules) where inter-population delayed connections were modified by STDP. As predicted by the theoretical results, appropriately time-shifted stimulation causes a decoupling of the two-module system through STDP, i.e., by unlearning pathologically strong synaptic interactions between the two populations. Based on the overall topology of the connections, the decoupling of the two modules, in turn, causes a desynchronization of the populations that outlasts the cessation of stimulation. Decoupling effects of the time-shifted stimulation can be realized by time-shifted burst stimulation as well as time-shifted continuous simulation. Our results provide insight into the further optimization of a variety of multichannel stimulation protocols aiming at a therapeutic reshaping of diseased brain networks.
Collapse
Affiliation(s)
- Mojtaba Madadi Asl
- School of Biological Sciences, Institute for Research in Fundamental Sciences (IPM), Tehran, Iran
- Pasargad Institute for Advanced Innovative Solutions (PIAIS), Tehran, Iran
| | - Alireza Valizadeh
- Pasargad Institute for Advanced Innovative Solutions (PIAIS), Tehran, Iran
- Department of Physics, Institute for Advanced Studies in Basic Sciences (IASBS), Zanjan, Iran
| | - Peter A. Tass
- Department of Neurosurgery, Stanford University School of Medicine, Stanford, CA, United States of America
| |
Collapse
|
27
|
Lissaman R, Lancaster TM, Parker GD, Graham KS, Lawrence AD, Hodgetts CJ. Tract-specific differences in white matter microstructure between young adult APOE ε4 carriers and non-carriers: A replication and extension study. NEUROIMAGE. REPORTS 2022; 2:None. [PMID: 36507069 PMCID: PMC9726682 DOI: 10.1016/j.ynirp.2022.100126] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Revised: 08/05/2022] [Accepted: 08/18/2022] [Indexed: 12/15/2022]
Abstract
The parahippocampal cingulum bundle (PHCB) interconnects regions known to be vulnerable to early Alzheimer's disease (AD) pathology, including posteromedial cortex and medial temporal lobe. While AD-related pathology has been robustly associated with alterations in PHCB microstructure, specifically lower fractional anisotropy (FA) and higher mean diffusivity (MD), emerging evidence indicates that the reverse pattern is evident in younger adults at increased risk of AD. In one such study, Hodgetts et al. (2019) reported that healthy young adult carriers of the apolipoprotein-E (APOE) ε4 allele - the strongest common genetic risk factor for AD - showed higher FA and lower MD in the PHCB but not the inferior longitudinal fasciculus (ILF). These results are consistent with proposals claiming that heightened neural activity and intrinsic connectivity play a significant role in increasing posteromedial cortex vulnerability to amyloid-β and tau spread beyond the medial temporal lobe. Given the implications for understanding AD risk, here we sought to replicate Hodgetts et al.'s finding in a larger sample (N = 128; 40 APOE ε4 carriers, 88 APOE ε4 non-carriers) of young adults (age range = 19-33). Extending this work, we also conducted an exploratory analysis using a more advanced measure of white matter microstructure: hindrance modulated orientational anisotropy (HMOA). Contrary to the original study, we did not observe higher FA or lower MD in the PHCB of APOE ε4 carriers relative to non-carriers. Bayes factors (BFs) further revealed moderate-to-strong evidence in support of these null findings. In addition, we observed no APOE ε4-related differences in PHCB HMOA. Our findings indicate that young adult APOE ε4 carriers and non-carriers do not differ in PHCB microstructure, casting some doubt on the notion that early-life variation in PHCB tract microstructure might enhance vulnerability to amyloid-β accumulation and/or tau spread.
Collapse
Affiliation(s)
- Rikki Lissaman
- Cardiff University Brain Research Imaging Centre (CUBRIC), School of Psychology, Cardiff University, Cardiff, Wales, United Kingdom
- Douglas Research Centre, Montreal, Quebec, Canada
- Department of Psychiatry, McGill University, Montreal, Quebec, Canada
| | - Thomas M. Lancaster
- Cardiff University Brain Research Imaging Centre (CUBRIC), School of Psychology, Cardiff University, Cardiff, Wales, United Kingdom
- School of Psychology, University of Bath, Bath, England, United Kingdom
| | - Greg D. Parker
- Cardiff University Brain Research Imaging Centre (CUBRIC), School of Psychology, Cardiff University, Cardiff, Wales, United Kingdom
| | - Kim S. Graham
- Cardiff University Brain Research Imaging Centre (CUBRIC), School of Psychology, Cardiff University, Cardiff, Wales, United Kingdom
- Department of Psychology, University of Edinburgh, Edinburgh, Scotland, United Kingdom
| | - Andrew D. Lawrence
- Cardiff University Brain Research Imaging Centre (CUBRIC), School of Psychology, Cardiff University, Cardiff, Wales, United Kingdom
| | - Carl J. Hodgetts
- Cardiff University Brain Research Imaging Centre (CUBRIC), School of Psychology, Cardiff University, Cardiff, Wales, United Kingdom
- Department of Psychology, Royal Holloway, University of London, Egham, England, United Kingdom
| |
Collapse
|
28
|
van Nifterick AM, Gouw AA, van Kesteren RE, Scheltens P, Stam CJ, de Haan W. A multiscale brain network model links Alzheimer’s disease-mediated neuronal hyperactivity to large-scale oscillatory slowing. Alzheimers Res Ther 2022; 14:101. [PMID: 35879779 PMCID: PMC9310500 DOI: 10.1186/s13195-022-01041-4] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Accepted: 07/02/2022] [Indexed: 01/30/2023]
Abstract
Background Neuronal hyperexcitability and inhibitory interneuron dysfunction are frequently observed in preclinical animal models of Alzheimer’s disease (AD). This study investigates whether these microscale abnormalities explain characteristic large-scale magnetoencephalography (MEG) activity in human early-stage AD patients. Methods To simulate spontaneous electrophysiological activity, we used a whole-brain computational network model comprised of 78 neural masses coupled according to human structural brain topology. We modified relevant model parameters to simulate six literature-based cellular scenarios of AD and compare them to one healthy and six contrast (non-AD-like) scenarios. The parameters include excitability, postsynaptic potentials, and coupling strength of excitatory and inhibitory neuronal populations. Whole-brain spike density and spectral power analyses of the simulated data reveal mechanisms of neuronal hyperactivity that lead to oscillatory changes similar to those observed in MEG data of 18 human prodromal AD patients compared to 18 age-matched subjects with subjective cognitive decline. Results All but one of the AD-like scenarios showed higher spike density levels, and all but one of these scenarios had a lower peak frequency, higher spectral power in slower (theta, 4–8Hz) frequencies, and greater total power. Non-AD-like scenarios showed opposite patterns mainly, including reduced spike density and faster oscillatory activity. Human AD patients showed oscillatory slowing (i.e., higher relative power in the theta band mainly), a trend for lower peak frequency and higher total power compared to controls. Combining model and human data, the findings indicate that neuronal hyperactivity can lead to oscillatory slowing, likely due to hyperexcitation (by hyperexcitability of pyramidal neurons or greater long-range excitatory coupling) and/or disinhibition (by reduced excitability of inhibitory interneurons or weaker local inhibitory coupling strength) in early AD. Conclusions Using a computational brain network model, we link findings from different scales and models and support the hypothesis of early-stage neuronal hyperactivity underlying E/I imbalance and whole-brain network dysfunction in prodromal AD. Supplementary Information The online version contains supplementary material available at 10.1186/s13195-022-01041-4.
Collapse
|
29
|
Mirza-Davies A, Foley S, Caseras X, Baker E, Holmans P, Escott-Price V, Jones DK, Harrison JR, Messaritaki E. The impact of genetic risk for Alzheimer's disease on the structural brain networks of young adults. Front Neurosci 2022; 16:987677. [PMID: 36532292 PMCID: PMC9748570 DOI: 10.3389/fnins.2022.987677] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Accepted: 11/09/2022] [Indexed: 12/02/2022] Open
Abstract
Introduction We investigated the structural brain networks of 562 young adults in relation to polygenic risk for Alzheimer's disease, using magnetic resonance imaging (MRI) and genotype data from the Avon Longitudinal Study of Parents and Children. Methods Diffusion MRI data were used to perform whole-brain tractography and generate structural brain networks for the whole-brain connectome, and for the default mode, limbic and visual subnetworks. The mean clustering coefficient, mean betweenness centrality, characteristic path length, global efficiency and mean nodal strength were calculated for these networks, for each participant. The connectivity of the rich-club, feeder and local connections was also calculated. Polygenic risk scores (PRS), estimating each participant's genetic risk, were calculated at genome-wide level and for nine specific disease pathways. Correlations were calculated between the PRS and (a) the graph theoretical metrics of the structural networks and (b) the rich-club, feeder and local connectivity of the whole-brain networks. Results In the visual subnetwork, the mean nodal strength was negatively correlated with the genome-wide PRS (r = -0.19, p = 1.4 × 10-3), the mean betweenness centrality was positively correlated with the plasma lipoprotein particle assembly PRS (r = 0.16, p = 5.5 × 10-3), and the mean clustering coefficient was negatively correlated with the tau-protein binding PRS (r = -0.16, p = 0.016). In the default mode network, the mean nodal strength was negatively correlated with the genome-wide PRS (r = -0.14, p = 0.044). The rich-club and feeder connectivities were negatively correlated with the genome-wide PRS (r = -0.16, p = 0.035; r = -0.15, p = 0.036). Discussion We identified small reductions in brain connectivity in young adults at risk of developing Alzheimer's disease in later life.
Collapse
Affiliation(s)
- Anastasia Mirza-Davies
- School of Medicine, University Hospital Wales, Cardiff University, Cardiff, United Kingdom
- Cardiff University Brain Research Imaging Centre (CUBRIC), School of Psychology, Cardiff University, Cardiff, United Kingdom
| | - Sonya Foley
- Cardiff University Brain Research Imaging Centre (CUBRIC), School of Psychology, Cardiff University, Cardiff, United Kingdom
| | - Xavier Caseras
- Division of Psychological Medicine and Clinical Neurosciences, MRC Centre for Neuropsychiatric Genetics and Genomics, Cardiff University, Cardiff, United Kingdom
| | - Emily Baker
- UK Dementia Research Institute, Cardiff University, Cardiff, United Kingdom
| | - Peter Holmans
- Division of Psychological Medicine and Clinical Neurosciences, MRC Centre for Neuropsychiatric Genetics and Genomics, Cardiff University, Cardiff, United Kingdom
| | - Valentina Escott-Price
- Division of Psychological Medicine and Clinical Neurosciences, MRC Centre for Neuropsychiatric Genetics and Genomics, Cardiff University, Cardiff, United Kingdom
- UK Dementia Research Institute, Cardiff University, Cardiff, United Kingdom
| | - Derek K. Jones
- Cardiff University Brain Research Imaging Centre (CUBRIC), School of Psychology, Cardiff University, Cardiff, United Kingdom
| | - Judith R. Harrison
- Cardiff University Brain Research Imaging Centre (CUBRIC), School of Psychology, Cardiff University, Cardiff, United Kingdom
- Institute for Translational and Clinical Research, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Eirini Messaritaki
- Cardiff University Brain Research Imaging Centre (CUBRIC), School of Psychology, Cardiff University, Cardiff, United Kingdom
- BRAIN Biomedical Research Unit, School of Medicine, Cardiff University, Cardiff, United Kingdom
| |
Collapse
|
30
|
Zhu JD, Huang CW, Chang HI, Tsai SJ, Huang SH, Hsu SW, Lee CC, Chen HJ, Chang CC, Yang AC. Functional MRI and ApoE4 genotype for predicting cognitive decline in amyloid-positive individuals. Ther Adv Neurol Disord 2022; 15:17562864221138154. [PMID: 36419870 PMCID: PMC9677312 DOI: 10.1177/17562864221138154] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Accepted: 10/24/2022] [Indexed: 12/20/2024] Open
Abstract
BACKGROUND In light of advancements in machine learning techniques, many studies have implemented machine learning approaches combined with data measures to predict and classify Alzheimer's disease. Studies that predicted cognitive status with longitudinal follow-up of amyloid-positive individuals remain scarce, however. OBJECTIVE We developed models based on voxel-wise functional connectivity (FC) density mapping and the presence of the ApoE4 genotype to predict whether amyloid-positive individuals would experience cognitive decline after 1 year. METHODS We divided 122 participants into cognitive decline and stable cognition groups based on the participants' change rates in Mini-Mental State Examination scores. In addition, we included 68 participants from Alzheimer's Disease Neuroimaging Initiative (ADNI) database as an external validation data set. Subsequently, we developed two classification models: the first model included 99 voxels, and the second model included 99 voxels and the ApoE4 genotype as features to train the models by Wide Neural Network algorithm with fivefold cross-validation and to predict the classes in the hold-out test and ADNI data sets. RESULTS The results revealed that both models demonstrated high accuracy in classifying the two groups in the hold-out test data set. The model for FC demonstrated good performance, with a mean F 1-score of 0.86. The model for FC combined with the ApoE4 genotype achieved superior performance, with a mean F 1-score of 0.90. In the ADNI data set, the two models demonstrated stable performances, with mean F 1-scores of 0.77 in the first and second models. CONCLUSION Our findings suggest that the proposed models exhibited promising accuracy for predicting cognitive status after 1 year in amyloid-positive individuals. Notably, the combination of FC and the ApoE4 genotype increased prediction accuracy. These findings can assist clinicians in predicting changes in cognitive status in individuals with a high risk of Alzheimer's disease and can assist future studies in developing precise treatment and prevention strategies.
Collapse
Affiliation(s)
- Jun-Ding Zhu
- Institute of Brain Science, National Yang Ming
Chiao Tung University, Taipei, Taiwan
| | - Chi-Wei Huang
- Department of Neurology, Cognition and Aging
Center, Institute for Translational Research in Biomedicine, Kaohsiung Chang
Gung Memorial Hospital, Chang Gung University College of Medicine,
Kaohsiung, Taiwan
| | - Hsin-I Chang
- Department of Neurology, Cognition and Aging
Center, Institute for Translational Research in Biomedicine, Kaohsiung Chang
Gung Memorial Hospital, Chang Gung University College of Medicine,
Kaohsiung, Taiwan
| | - Shih-Jen Tsai
- Institute of Brain Science, National Yang Ming
Chiao Tung University, Taipei, Taiwan
- Department of Psychiatry, Taipei Veterans
General Hospital, Taipei, Taiwan
- Division of Psychiatry, School of Medicine,
National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Shu-Hua Huang
- Department of Nuclear Medicine, Kaohsiung Chang
Gung Memorial Hospital, Chang Gung University College of Medicine,
Kaohsiung, Taiwan
| | - Shih-Wei Hsu
- Department of NeuroRadiology, Kaohsiung Chang
Gung Memorial Hospital, Chang Gung University College of Medicine,
Kaohsiung, Taiwan
| | - Chen-Chang Lee
- Department of NeuroRadiology, Kaohsiung Chang
Gung Memorial Hospital, Chang Gung University College of Medicine,
Kaohsiung, Taiwan
| | - Hong-Jie Chen
- Department of Nuclear Medicine, Kaohsiung
Chang Gung Memorial Hospital, Chang Gung University College of Medicine,
Kaohsiung, Taiwan
| | - Chiung-Chih Chang
- Cognition and Aging Center, Institute for
Translational Research in Biomedicine, Department of Neurology, Kaohsiung
Chang Gung Memorial Hospital, Chang Gung University College of Medicine, No.
123 Ta-Pei Road, Niau-Sung District, Kaohsiung 833, Taiwan
| | - Albert C. Yang
- Institute of Brain Science/Digital Medicine
and Smart Healthcare Research Center, National Yang Ming Chiao Tung
University, No. 155, Sec. 2, Linong Street, Beitou District, Taipei 112,
Taiwan
- Department of Medical Research, Taipei
Veterans General Hospital, Taipei, Taiwan
| |
Collapse
|
31
|
Adaikkan C, Wang J, Abdelaal K, Middleton SJ, Bozzelli PL, Wickersham IR, McHugh TJ, Tsai LH. Alterations in a cross-hemispheric circuit associates with novelty discrimination deficits in mouse models of neurodegeneration. Neuron 2022; 110:3091-3105.e9. [PMID: 35987206 PMCID: PMC9547933 DOI: 10.1016/j.neuron.2022.07.023] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Revised: 02/23/2022] [Accepted: 07/22/2022] [Indexed: 10/15/2022]
Abstract
A major pathological hallmark of neurodegenerative diseases, including Alzheimer's, is a significant reduction in the white matter connecting the two cerebral hemispheres, as well as in the correlated activity between anatomically corresponding bilateral brain areas. However, the underlying circuit mechanisms and the cognitive relevance of cross-hemispheric (CH) communication remain poorly understood. Here, we show that novelty discrimination behavior activates CH neurons and enhances homotopic synchronized neural oscillations in the visual cortex. CH neurons provide excitatory drive required for synchronous neural oscillations between hemispheres, and unilateral inhibition of the CH circuit is sufficient to impair synchronous oscillations and novelty discrimination behavior. In the 5XFAD and Tau P301S mouse models, CH communication is altered, and novelty discrimination is impaired. These data reveal a hitherto uncharacterized CH circuit in the visual cortex, establishing a causal link between this circuit and novelty discrimination behavior and highlighting its impairment in mouse models of neurodegeneration.
Collapse
Affiliation(s)
- Chinnakkaruppan Adaikkan
- Picower Institute for Learning and Memory, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA 02139, USA.
| | - Jun Wang
- Picower Institute for Learning and Memory, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Karim Abdelaal
- Picower Institute for Learning and Memory, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Steven J Middleton
- Laboratory for Circuit and Behavioral Physiology, RIKEN Center for Brain Science, Wakoshi, Saitama 351-0198, Japan
| | - P Lorenzo Bozzelli
- Picower Institute for Learning and Memory, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Ian R Wickersham
- Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; McGovern Institute for Brain Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Thomas J McHugh
- Laboratory for Circuit and Behavioral Physiology, RIKEN Center for Brain Science, Wakoshi, Saitama 351-0198, Japan; Department of Life Sciences, Graduate School of Arts and Sciences, The University of Tokyo, Tokyo, Japan.
| | - Li-Huei Tsai
- Picower Institute for Learning and Memory, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Broad Institute of Harvard and Massachusetts Institute of Technology, Cambridge, MA 02139, USA.
| |
Collapse
|
32
|
Spinelli G, Bakardjian H, Schwartz D, Potier MC, Habert MO, Levy M, Dubois B, George N. Theta Band-Power Shapes Amyloid-Driven Longitudinal EEG Changes in Elderly Subjective Memory Complainers At-Risk for Alzheimer's Disease. J Alzheimers Dis 2022; 90:69-84. [PMID: 36057818 DOI: 10.3233/jad-220204] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022]
Abstract
BACKGROUND Alzheimer's disease (AD) includes progressive symptoms spread along a continuum of preclinical and clinical stages. Although numerous studies uncovered the neuro-cognitive changes of AD, very little is known on the natural history of brain lesions and modifications of brain networks in elderly cognitively-healthy memory complainers at risk of AD for carrying pathophysiological biomarkers (amyloidopathy and tauopathy). OBJECTIVE We analyzed resting-state electroencephalography (EEG) of 318 cognitively-healthy subjective memory complainers from the INSIGHT-preAD cohort at the time of their first visit (M0) and two-years later (M24). METHODS Using 18F-florbetapir PET-scanner, subjects were stratified between amyloid negative (A-; n = 230) and positive (A+; n = 88) groups. Differences between A+ and A-were estimated at source-level in each band-power of the EEG spectrum. RESULTS At M0, we found an increase of theta power in the mid-frontal cortex in A+ compared to A-. No significant association was found between mid-frontal theta and the individuals' cognitive performance. At M24, theta power increased in A+ relative to A-individuals in the posterior cingulate cortex and the pre-cuneus. Alpha band revealed a peculiar decremental trend in posterior brain regions in the A+ relative to the A-group only at M24. Theta power increase over the mid-frontal and mid-posterior cortices suggests an hypoactivation of the default-mode network in the A+ individuals and a non-linear longitudinal progression at M24. CONCLUSION We provide the first source-level longitudinal evidence on the impact of brain amyloidosis on the EEG dynamics of a large-scale, monocentric cohort of elderly individuals at-risk for AD.
Collapse
Affiliation(s)
- Giuseppe Spinelli
- Sorbonne Université, Institut du Cerveau - Paris Brain Institute - ICM, Inserm, CNRS, APHP, Hôpital de la Pitié Salpêtrière, Centre MEG-EEG, CENIR, Paris, France.,AP-HP, Hôpital de la Pitié-Salpêtrière, Institute of Memory and Alzheimer's Disease (IM2A), Department of Neurology, Paris, France
| | - Hovagim Bakardjian
- AP-HP, Hôpital de la Pitié-Salpêtrière, Institute of Memory and Alzheimer's Disease (IM2A), Department of Neurology, Paris, France
| | | | - Marie-Claude Potier
- Sorbonne Université, Institut du Cerveau - Paris Brain Institute - ICM, Inserm, CNRS, APHP, Hôpital de la Pitié Salpêtrière, Centre MEG-EEG, CENIR, Paris, France
| | - Marie-Odile Habert
- Sorbonne Université, CNRS, INSERM, Laboratoire d'Imagerie Biomédicale, Paris, France.,AP-HP, Hôpital de la Pitié-Salpêtrière, Médecine Nucléaire, Paris, France.,Centre d'Acquisition et Traitement des Images (CATI), http://www.cati-neuroimaging.com
| | - Marcel Levy
- AP-HP, Hôpital de la Pitié-Salpêtrière, Institute of Memory and Alzheimer's Disease (IM2A), Department of Neurology, Paris, France
| | - Bruno Dubois
- Sorbonne Université, Institut du Cerveau - Paris Brain Institute - ICM, Inserm, CNRS, APHP, Hôpital de la Pitié Salpêtrière, Centre MEG-EEG, CENIR, Paris, France.,AP-HP, Hôpital de la Pitié-Salpêtrière, Institute of Memory and Alzheimer's Disease (IM2A), Department of Neurology, Paris, France
| | - Nathalie George
- Sorbonne Université, Institut du Cerveau - Paris Brain Institute - ICM, Inserm, CNRS, APHP, Hôpital de la Pitié Salpêtrière, Centre MEG-EEG, CENIR, Paris, France
| | | |
Collapse
|
33
|
Saroja SR, Gorbachev K, TCW J, Goate AM, Pereira AC. Astrocyte-secreted glypican-4 drives APOE4-dependent tau hyperphosphorylation. Proc Natl Acad Sci U S A 2022; 119:e2108870119. [PMID: 35969759 PMCID: PMC9407658 DOI: 10.1073/pnas.2108870119] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Accepted: 06/07/2022] [Indexed: 01/03/2023] Open
Abstract
Tau protein aggregates are a major driver of neurodegeneration and behavioral impairments in tauopathies, including in Alzheimer's disease (AD). Apolipoprotein E4 (APOE4), the highest genetic risk factor for late-onset AD, has been shown to exacerbate tau hyperphosphorylation in mouse models. However, the exact mechanisms through which APOE4 induces tau hyperphosphorylation remains unknown. Here, we report that the astrocyte-secreted protein glypican-4 (GPC-4), which we identify as a binding partner of APOE4, drives tau hyperphosphorylation. We discovered that first, GPC-4 preferentially interacts with APOE4 in comparison to APOE2, considered to be a protective allele to AD, and second, that postmortem APOE4-carrying AD brains highly express GPC-4 in neurotoxic astrocytes. Furthermore, the astrocyte-secreted GPC-4 induced both tau accumulation and propagation in vitro. CRISPR/dCas9-mediated activation of GPC-4 in a tauopathy mouse model robustly induced tau hyperphosphorylation. In the absence of GPC4, APOE4-induced tau hyperphosphorylation was largely diminished using in vitro tau fluorescence resonance energy transfer-biosensor cells, in human-induced pluripotent stem cell-derived astrocytes and in an in vivo mouse model. We further show that APOE4-mediated surface trafficking of APOE receptor low-density lipoprotein receptor-related protein 1 through GPC-4 can be a gateway to tau spreading. Collectively, these data support that APOE4-induced tau hyperphosphorylation is directly mediated by GPC-4.
Collapse
Affiliation(s)
- Sivaprakasam R. Saroja
- Department of Neurology, Icahn School of Medicine, Mount Sinai, New York, NY 10029
- Nash Family Department of Neuroscience, Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029
| | - Kirill Gorbachev
- Department of Neurology, Icahn School of Medicine, Mount Sinai, New York, NY 10029
- Nash Family Department of Neuroscience, Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029
| | - Julia TCW
- Nash Family Department of Neuroscience, Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029
- Ronald M. Loeb Center for Alzheimer's Disease, Icahn School of Medicine at Mount Sinai, New York, NY 10029
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029
| | - Alison M. Goate
- Nash Family Department of Neuroscience, Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029
- Ronald M. Loeb Center for Alzheimer's Disease, Icahn School of Medicine at Mount Sinai, New York, NY 10029
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029
| | - Ana C. Pereira
- Department of Neurology, Icahn School of Medicine, Mount Sinai, New York, NY 10029
- Nash Family Department of Neuroscience, Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029
- Ronald M. Loeb Center for Alzheimer's Disease, Icahn School of Medicine at Mount Sinai, New York, NY 10029
| |
Collapse
|
34
|
Ponomareva NV, Andreeva TV, Protasova M, Konovalov RN, Krotenkova MV, Kolesnikova EP, Malina DD, Kanavets EV, Mitrofanov AA, Fokin VF, Illarioshkin SN, Rogaev EI. Genetic association of apolipoprotein E genotype with EEG alpha rhythm slowing and functional brain network alterations during normal aging. Front Neurosci 2022; 16:931173. [PMID: 35979332 PMCID: PMC9376365 DOI: 10.3389/fnins.2022.931173] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Accepted: 06/27/2022] [Indexed: 12/02/2022] Open
Abstract
The ε4 allele of the apolipoprotein E (APOE4+) genotype is a major genetic risk factor for Alzheimer’s disease (AD), but the mechanisms underlying its influence remain incompletely understood. The study aimed to investigate the possible effect of the APOE genotype on spontaneous electroencephalogram (EEG) alpha characteristics, resting-state functional MRI (fMRI) connectivity (rsFC) in large brain networks and the interrelation of alpha rhythm and rsFC characteristics in non-demented adults during aging. We examined the EEG alpha subband’s relative power, individual alpha peak frequency (IAPF), and fMRI rsFC in non-demented volunteers (age range 26–79 years) stratified by the APOE genotype. The presence of the APOE4+ genotype was associated with lower IAPF and lower relative power of the 11–13 Hz alpha subbands. The age related decrease in EEG IAPF was more pronounced in the APOE4+ carriers than in the APOE4+ non-carriers (APOE4-). The APOE4+ carriers had a stronger fMRI positive rsFC of the interhemispheric regions of the frontoparietal, lateral visual and salience networks than the APOE4– individuals. In contrast, the negative rsFC in the network between the left hippocampus and the right posterior parietal cortex was reduced in the APOE4+ carriers compared to the non-carriers. Alpha rhythm slowing was associated with the dysfunction of hippocampal networks. Our results show that in adults without dementia APOE4+ genotype is associated with alpha rhythm slowing and that this slowing is age-dependent. Our data suggest predominant alterations of inhibitory processes in large-scale brain network of non-demented APOE4+ carriers. Moreover, dysfunction of large-scale hippocampal network can influence APOE-related alpha rhythm vulnerability.
Collapse
Affiliation(s)
- Natalya V. Ponomareva
- Research Center of Neurology, Moscow, Russia
- Center for Genetics and Life Science, Sirius University of Science and Technology, Sochi, Russia
- *Correspondence: Natalya V. Ponomareva,
| | - Tatiana V. Andreeva
- Center for Genetics and Life Science, Sirius University of Science and Technology, Sochi, Russia
- Vavilov Institute of General Genetics, Russian Academy of Sciences (RAS), Moscow, Russia
| | - Maria Protasova
- Center for Genetics and Life Science, Sirius University of Science and Technology, Sochi, Russia
- Vavilov Institute of General Genetics, Russian Academy of Sciences (RAS), Moscow, Russia
| | | | | | | | | | | | | | | | | | - Evgeny I. Rogaev
- Center for Genetics and Life Science, Sirius University of Science and Technology, Sochi, Russia
- Vavilov Institute of General Genetics, Russian Academy of Sciences (RAS), Moscow, Russia
- Brudnick Neuropsychiatric Research Institute (BNRI), University of Massachusetts Medical School, Worcester, MA, United States
- Evgeny I. Rogaev,
| |
Collapse
|
35
|
Kawabata S. Excessive/Aberrant and Maladaptive Synaptic Plasticity: A Hypothesis for the Pathogenesis of Alzheimer’s Disease. Front Aging Neurosci 2022; 14:913693. [PMID: 35865745 PMCID: PMC9294348 DOI: 10.3389/fnagi.2022.913693] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Accepted: 06/08/2022] [Indexed: 01/01/2023] Open
Abstract
The amyloid hypothesis for the pathogenesis of Alzheimer’s disease (AD) is widely accepted. Last year, the US Food and Drug Administration considered amyloid-β peptide (Aβ) as a surrogate biomarker and approved an anti-Aβ antibody, aducanumab, although its effectiveness in slowing the progression of AD is still uncertain. This approval has caused a great deal of controversy. Opinions are divided about whether there is enough evidence to definitely consider Aβ as a causative substance of AD. To develop this discussion constructively and to discover the most suitable therapeutic interventions in the end, an alternative persuasive hypothesis needs to emerge to better explain the facts. In this paper, I propose a hypothesis that excessive/aberrant and maladaptive synaptic plasticity is the pathophysiological basis for AD.
Collapse
|
36
|
Wiesman AI, Murman DL, Losh RA, Schantell M, Christopher-Hayes NJ, Johnson HJ, Willett MP, Wolfson SL, Losh KL, Johnson CM, May PE, Wilson TW. Spatially resolved neural slowing predicts impairment and amyloid burden in Alzheimer's disease. Brain 2022; 145:2177-2189. [PMID: 35088842 PMCID: PMC9246709 DOI: 10.1093/brain/awab430] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Revised: 10/05/2021] [Accepted: 10/24/2021] [Indexed: 11/28/2022] Open
Abstract
An extensive electrophysiological literature has proposed a pathological 'slowing' of neuronal activity in patients on the Alzheimer's disease spectrum. Supported by numerous studies reporting increases in low-frequency and decreases in high-frequency neural oscillations, this pattern has been suggested as a stable biomarker with potential clinical utility. However, no spatially resolved metric of such slowing exists, stymieing efforts to understand its relation to proteinopathy and clinical outcomes. Further, the assumption that this slowing is occurring in spatially overlapping populations of neurons has not been empirically validated. In the current study, we collected cross-sectional resting state measures of neuronal activity using magnetoencephalography from 38 biomarker-confirmed patients on the Alzheimer's disease spectrum and 20 cognitively normal biomarker-negative older adults. From these data, we compute and validate a new metric of spatially resolved oscillatory deviations from healthy ageing for each patient on the Alzheimer's disease spectrum. Using this Pathological Oscillatory Slowing Index, we show that patients on the Alzheimer's disease spectrum exhibit robust neuronal slowing across a network of temporal, parietal, cerebellar and prefrontal cortices. This slowing effect is shown to be directly relevant to clinical outcomes, as oscillatory slowing in temporal and parietal cortices significantly predicted both general (i.e. Montreal Cognitive Assessment scores) and domain-specific (i.e. attention, language and processing speed) cognitive function. Further, regional amyloid-β accumulation, as measured by quantitative 18F florbetapir PET, robustly predicted the magnitude of this pathological neural slowing effect, and the strength of this relationship between amyloid-β burden and neural slowing also predicted attentional impairments across patients. These findings provide empirical support for a spatially overlapping effect of oscillatory neural slowing in biomarker-confirmed patients on the Alzheimer's disease spectrum, and link this effect to both regional proteinopathy and cognitive outcomes in a spatially resolved manner. The Pathological Oscillatory Slowing Index also represents a novel metric that is of potentially high utility across a number of clinical neuroimaging applications, as oscillatory slowing has also been extensively documented in other patient populations, most notably Parkinson's disease, with divergent spectral and spatial features.
Collapse
Affiliation(s)
- Alex I Wiesman
- Montreal Neurological Institute, McGill University, Montreal, Quebec, Canada
- Department of Neurological Sciences, University of Nebraska Medical Center (UNMC), Omaha, NE, USA
| | - Daniel L Murman
- Department of Neurological Sciences, University of Nebraska Medical Center (UNMC), Omaha, NE, USA
- Memory Disorders & Behavioral Neurology Program, UNMC, Omaha, NE, USA
| | - Rebecca A Losh
- Institute for Human Neuroscience, Boys Town National Research Hospital, Boys Town, NE, USA
| | - Mikki Schantell
- Institute for Human Neuroscience, Boys Town National Research Hospital, Boys Town, NE, USA
| | | | - Hallie J Johnson
- Institute for Human Neuroscience, Boys Town National Research Hospital, Boys Town, NE, USA
| | - Madelyn P Willett
- Institute for Human Neuroscience, Boys Town National Research Hospital, Boys Town, NE, USA
| | | | - Kathryn L Losh
- Institute for Human Neuroscience, Boys Town National Research Hospital, Boys Town, NE, USA
| | | | - Pamela E May
- Department of Neurological Sciences, University of Nebraska Medical Center (UNMC), Omaha, NE, USA
| | - Tony W Wilson
- Institute for Human Neuroscience, Boys Town National Research Hospital, Boys Town, NE, USA
| |
Collapse
|
37
|
Fortel I, Butler M, Korthauer LE, Zhan L, Ajilore O, Sidiropoulos A, Wu Y, Driscoll I, Schonfeld D, Leow A. Inferring excitation-inhibition dynamics using a maximum entropy model unifying brain structure and function. Netw Neurosci 2022; 6:420-444. [PMID: 35733430 PMCID: PMC9205431 DOI: 10.1162/netn_a_00220] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Accepted: 12/07/2021] [Indexed: 11/04/2022] Open
Abstract
Neural activity coordinated across different scales from neuronal circuits to large-scale brain networks gives rise to complex cognitive functions. Bridging the gap between micro- and macroscale processes, we present a novel framework based on the maximum entropy model to infer a hybrid resting-state structural connectome, representing functional interactions constrained by structural connectivity. We demonstrate that the structurally informed network outperforms the unconstrained model in simulating brain dynamics, wherein by constraining the inference model with the network structure we may improve the estimation of pairwise BOLD signal interactions. Further, we simulate brain network dynamics using Monte Carlo simulations with the new hybrid connectome to probe connectome-level differences in excitation-inhibition balance between apolipoprotein E (APOE)-ε4 carriers and noncarriers. Our results reveal sex differences among APOE-ε4 carriers in functional dynamics at criticality; specifically, female carriers appear to exhibit a lower tolerance to network disruptions resulting from increased excitatory interactions. In sum, the new multimodal network explored here enables analysis of brain dynamics through the integration of structure and function, providing insight into the complex interactions underlying neural activity such as the balance of excitation and inhibition.
Collapse
Affiliation(s)
- Igor Fortel
- Department of Bioengineering, University of Illinois at Chicago, Chicago, IL, USA
| | - Mitchell Butler
- Department of Bioengineering, University of Illinois at Chicago, Chicago, IL, USA
| | - Laura E. Korthauer
- Department of Psychology, University of Wisconsin–Milwaukee, Milwaukee, WI, USA
- Warren Alpert Medical School, Brown University, Providence, RI, USA
| | - Liang Zhan
- Department of Electrical and Computer Engineering, University of Pittsburgh, Pittsburgh, PA, USA
| | - Olusola Ajilore
- Department of Psychiatry, University of Illinois at Chicago, Chicago, IL, USA
| | | | - Yichao Wu
- Department of Math, Statistics, and Computer Science, University of Illinois at Chicago, Chicago, IL, USA
| | - Ira Driscoll
- Department of Psychology, University of Wisconsin–Milwaukee, Milwaukee, WI, USA
| | - Dan Schonfeld
- Department of Bioengineering, University of Illinois at Chicago, Chicago, IL, USA
- Department of Electrical and Computer Engineering, University of Illinois at Chicago, Chicago, IL, USA
| | - Alex Leow
- Department of Bioengineering, University of Illinois at Chicago, Chicago, IL, USA
- Department of Psychiatry, University of Illinois at Chicago, Chicago, IL, USA
| |
Collapse
|
38
|
Vaghari D, Kabir E, Henson RN. Late combination shows that MEG adds to MRI in classifying MCI versus controls. Neuroimage 2022; 252:119054. [PMID: 35247546 PMCID: PMC8987738 DOI: 10.1016/j.neuroimage.2022.119054] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2021] [Revised: 02/20/2022] [Accepted: 03/01/2022] [Indexed: 12/12/2022] Open
Abstract
Early detection of Alzheimer's disease (AD) is essential for developing effective treatments. Neuroimaging techniques like Magnetic Resonance Imaging (MRI) have the potential to detect brain changes before symptoms emerge. Structural MRI can detect atrophy related to AD, but it is possible that functional changes are observed even earlier. We therefore examined the potential of Magnetoencephalography (MEG) to detect differences in functional brain activity in people with Mild Cognitive Impairment (MCI) - a state at risk of early AD. We introduce a framework for multimodal combination to ask whether MEG data from a resting-state provides complementary information beyond structural MRI data in the classification of MCI versus controls. More specifically, we used multi-kernel learning of support vector machines to classify 163 MCI cases versus 144 healthy elderly controls from the BioFIND dataset. When using the covariance of planar gradiometer data in the low Gamma range (30-48 Hz), we found that adding a MEG kernel improved classification accuracy above kernels that captured several potential confounds (e.g., age, education, time-of-day, head motion). However, accuracy using MEG alone (68%) was worse than MRI alone (71%). When simply concatenating (normalized) features from MEG and MRI into one kernel (Early combination), there was no advantage of combining MEG with MRI versus MRI alone. When combining kernels of modality-specific features (Intermediate combination), there was an improvement in multimodal classification to 74%. The biggest multimodal improvement however occurred when we combined kernels from the predictions of modality-specific classifiers (Late combination), which achieved 77% accuracy (a reliable improvement in terms of permutation testing). We also explored other MEG features, such as the variance versus covariance of magnetometer versus planar gradiometer data within each of 6 frequency bands (delta, theta, alpha, beta, low gamma, or high gamma), and found that they generally provided complementary information for classification above MRI. We conclude that MEG can improve on the MRI-based classification of MCI.
Collapse
Affiliation(s)
- Delshad Vaghari
- MRC Cognition and Brain Sciences Unit, University of Cambridge, UK; Department of Electrical and Computer Engineering, Tarbiat Modares University, Tehran, Iran
| | - Ehsanollah Kabir
- Department of Electrical and Computer Engineering, Tarbiat Modares University, Tehran, Iran
| | - Richard N Henson
- MRC Cognition and Brain Sciences Unit, University of Cambridge, UK; Department of Psychiatry, University of Cambridge, UK.
| |
Collapse
|
39
|
Clarke H, Messaritaki E, Dimitriadis SI, Metzler-Baddeley C. Dementia Risk Factors Modify Hubs but Leave Other Connectivity Measures Unchanged in Asymptomatic Individuals: A Graph Theoretical Analysis. Brain Connect 2022; 12:26-40. [PMID: 34030485 PMCID: PMC8867081 DOI: 10.1089/brain.2020.0935] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
Background: Alzheimer's disease (AD) is the most common form of dementia with genetic and environmental risk contributing to its development. Graph theoretical analyses of brain networks constructed from structural and functional magnetic resonance imaging (MRI) measurements have identified connectivity changes in AD and individuals with mild cognitive impairment. However, brain connectivity in asymptomatic individuals at risk of AD remains poorly understood. Methods: We analyzed diffusion-weighted MRI data from 161 asymptomatic individuals (38-71 years) from the Cardiff Ageing and Risk of Dementia Study (CARDS). We calculated white matter tracts and constructed whole-brain, default mode network (DMN) and visual structural brain networks that incorporate multiple structural metrics as edge weights. We then calculated the relationship of three AD risk factors, namely Apolipoprotein-E ɛ4 (APOE4) genotype, family history of dementia (FH), and central obesity (Waist-Hip-Ratio [WHR]), on graph theoretical measures and hubs. Results: We observed no risk-related differences in clustering coefficients, characteristic path lengths, eccentricity, diameter, and radius across the whole-brain, DMN or visual system. However, a hub in the right paracentral lobule was present in all the high-risk groups (FH, APOE4, obese), but absent in low-risk groups (no FH, APOE4-ve, healthy WHR). Discussion: We identified no risk-related effects on graph theoretical metrics in the structural brain networks of cognitively healthy individuals. However, high risk was associated with a hub in the right paracentral lobule, a medial fronto-parietal cortical area with motor and sensory functions. This finding is consistent with accumulating evidence for right parietal cortex contributions in AD. If this phenotype is shown to predict symptom development in longitudinal studies, it could be used as an early biomarker of AD. Impact statement Alzheimer's disease (AD) is a common form of dementia that to date has no cure. Identifying early biomarkers will aid the discovery and development of treatments that may slow AD progression in the future. In this article, we report that asymptomatic individuals at heightened risk of dementia due to their family history, Apolipoprotein-E ɛ4 genotype, and central adiposity have a hub in the right paracentral lobule, which is absent in low-risk groups. If this phenotype were to predict the development of symptoms in a longitudinal study of the same cohort, it could provide an early biomarker of disease progression.
Collapse
Affiliation(s)
- Hannah Clarke
- Cardiff University Brain Research Imaging Centre (CUBRIC), School of Psychology, Cardiff University, Cardiff, United Kingdom
- School of Medicine, UK Dementia Research Institute, Cardiff University, Cardiff, United Kingdom
| | - Eirini Messaritaki
- Cardiff University Brain Research Imaging Centre (CUBRIC), School of Psychology, Cardiff University, Cardiff, United Kingdom
- BRAIN Biomedical Research Unit, School of Medicine, Cardiff University, Cardiff, United Kingdom
| | - Stavros I. Dimitriadis
- Cardiff University Brain Research Imaging Centre (CUBRIC), School of Psychology, Cardiff University, Cardiff, United Kingdom
- Neuroinformatics Group, Cardiff University Brain Research Imaging Centre, School of Psychology, Cardiff University, Cardiff, United Kingdom
- Division of Psychological Medicine and Clinical Neurosciences, School of Medicine, Cardiff University, Cardiff, United Kingdom
- School of Psychology, Cardiff University, Cardiff, United Kingdom
- Neuroscience and Mental Health Research Institute, School of Medicine, Cardiff University, Cardiff, United Kingdom
- MRC Centre for Neuropsychiatric Genetics and Genomics, School of Medicine, Cardiff University, Cardiff, United Kingdom
| | - Claudia Metzler-Baddeley
- Cardiff University Brain Research Imaging Centre (CUBRIC), School of Psychology, Cardiff University, Cardiff, United Kingdom
- Neuroscience and Mental Health Research Institute, School of Medicine, Cardiff University, Cardiff, United Kingdom
| |
Collapse
|
40
|
Perioperative neurocognitive and functional neuroimaging trajectories in older APOE4 carriers compared with non-carriers: secondary analysis of a prospective cohort study. Br J Anaesth 2021; 127:917-928. [PMID: 34535274 PMCID: PMC8693648 DOI: 10.1016/j.bja.2021.08.012] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Revised: 07/20/2021] [Accepted: 08/01/2021] [Indexed: 01/21/2023] Open
Abstract
BACKGROUND Cognitive dysfunction after surgery is a major issue in older adults. Here, we determined the effect of APOE4 on perioperative neurocognitive function in older patients. METHODS We enrolled 140 English-speaking patients ≥60 yr old scheduled for noncardiac surgery under general anaesthesia in an observational cohort study, of whom 52 underwent neuroimaging. We measured cognition; Aβ, tau, p-tau levels in CSF; and resting-state intrinsic functional connectivity in six Alzheimer's disease-risk regions before and 6 weeks after surgery. RESULTS There were no significant APOE4-related differences in cognition or CSF biomarkers, except APOE4 carriers had lower CSF Aβ levels than non-carriers (preoperative median CSF Aβ [median absolute deviation], APOE4 305 pg ml-1 [65] vs 378 pg ml-1 [38], respectively; P=0.001). Controlling for age, APOE4 carriers had significantly greater preoperative functional connectivity than non-carriers between several brain regions implicated in Alzheimer's disease, including between the left posterior cingulate cortex and left angular gyrus (β [95% confidence interval, CI], 0.218 [0.137-0.230]; PFWE=0.016). APOE4 carriers, but not non-carriers, experienced significant connectivity decreases from before to 6 weeks after surgery between several brain regions including between the left posterior cingulate cortex and left angular gyrus (β [95% CI], -0.196 [-0.256 to -0.136]; PFWE=0.001). Most preoperative and postoperative functional connectivity differences did not change after controlling for preoperative CSF Aβ levels. CONCLUSIONS Postoperative change trajectories for cognition and CSF Aβ, tau or p-tau levels did not differ between community dwelling older APOE4 carriers and non-carriers. APOE4 carriers showed greater preoperative functional connectivity and greater postoperative decreases in functional connectivity in key Alzheimer's disease-risk regions, which occur via Aβ-independent mechanisms.
Collapse
|
41
|
Costigan A, Umla-Runge K, Evans C, Raybould R, Graham K, Lawrence A. Evidence against altered excitatory/inhibitory balance in the posteromedial cortex of young adult APOE E4 carriers: A resting state 1H-MRS study. NEUROIMAGE. REPORTS 2021; 1:100059. [PMID: 36896169 PMCID: PMC9986794 DOI: 10.1016/j.ynirp.2021.100059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Revised: 09/09/2021] [Accepted: 10/04/2021] [Indexed: 11/20/2022]
Abstract
A strategy to gain insight into early changes that may predispose people to Alzheimer's disease (AD) is to study the brains of younger cognitively healthy people that are at increased genetic risk of AD. The Apolipoprotein (APOE) E4 allele is the strongest genetic risk factor for AD, and several neuroimaging studies comparing APOE E4 carriers with non-carriers at age ∼20-30 years have detected hyperactivity (or reduced deactivation) in posteromedial cortex (PMC), a key hub of the default network (DN), which has a high susceptibility to early amyloid deposition in AD. Transgenic mouse models suggest such early network activity alterations may result from altered excitatory/inhibitory (E/I) balance, but this is yet to be examined in humans. Here we test the hypothesis that PMC fMRI hyperactivity could be underpinned by altered levels of excitatory (glutamate) and/or inhibitory (GABA) neurotransmitters in this brain region. Forty-seven participants (20 APOE E4 carriers and 27 non-carriers) aged 18-25 years underwent resting-state proton magnetic resonance spectroscopy (1H-MRS), a non-invasive neuroimaging technique to measure glutamate and GABA in vivo. Metabolites were measured in a PMC voxel of interest and in a comparison voxel in the occipital cortex (OCC). There was no difference in either glutamate or GABA between the E4 carriers and non-carriers in either MRS voxel, or in the ratio of glutamate to GABA, a measure of E/I balance. Default Bayesian t-tests revealed evidence in support of this null finding. Our findings suggest that PMC hyperactivity in APOE E4 carriers is unlikely to be associated with, or possibly may precede, alterations in local resting-state PMC neurotransmitters, thus informing our understanding of the spatio-temporal sequence of early network alterations underlying APOE E4 related AD risk.
Collapse
Affiliation(s)
- A.G. Costigan
- Cardiff University Brain Research Imaging Centre (CUBRIC), School of Psychology, Cardiff University, Maindy Road, Cardiff, CF24 4HQ, UK
| | - K. Umla-Runge
- Cardiff University Brain Research Imaging Centre (CUBRIC), School of Psychology, Cardiff University, Maindy Road, Cardiff, CF24 4HQ, UK
| | - C.J. Evans
- Cardiff University Brain Research Imaging Centre (CUBRIC), School of Psychology, Cardiff University, Maindy Road, Cardiff, CF24 4HQ, UK
| | - R. Raybould
- UK Dementia Research Institute, Cardiff, Hadyn Ellis Building, Maindy Road, Cardiff, CF24 4HQ, UK
| | - K.S. Graham
- Cardiff University Brain Research Imaging Centre (CUBRIC), School of Psychology, Cardiff University, Maindy Road, Cardiff, CF24 4HQ, UK
| | - A.D. Lawrence
- Cardiff University Brain Research Imaging Centre (CUBRIC), School of Psychology, Cardiff University, Maindy Road, Cardiff, CF24 4HQ, UK
| |
Collapse
|
42
|
Kim E, Yu JW, Kim B, Lim SH, Lee SH, Kim K, Son G, Jeon HA, Moon C, Sakong J, Choi JW. Refined prefrontal working memory network as a neuromarker for Alzheimer's disease. BIOMEDICAL OPTICS EXPRESS 2021; 12:7199-7222. [PMID: 34858710 PMCID: PMC8606140 DOI: 10.1364/boe.438926] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Revised: 10/02/2021] [Accepted: 10/13/2021] [Indexed: 06/13/2023]
Abstract
Detecting Alzheimer's disease (AD) is an important step in preventing pathological brain damage. Working memory (WM)-related network modulation can be a pathological feature of AD, but is usually modulated by untargeted cognitive processes and individual variance, resulting in the concealment of this key information. Therefore, in this study, we comprehensively investigated a new neuromarker, named "refined network," in a prefrontal cortex (PFC) that revealed the pathological features of AD. A refined network was acquired by removing unnecessary variance from the WM-related network. By using a functional near-infrared spectroscopy (fNIRS) device, we evaluated the reliability of the refined network, which was identified from the three groups classified by AD progression: healthy people (N=31), mild cognitive impairment (N=11), and patients with AD (N=18). As a result, we identified edges with significant correlations between cognitive functions and groups in the dorsolateral PFC. Moreover, the refined network achieved a significantly correlating metric with neuropsychological test scores, and a remarkable three-class classification accuracy (95.0%). These results implicate the refined PFC WM-related network as a powerful neuromarker for AD screening.
Collapse
Affiliation(s)
- Eunho Kim
- Department of Information and Communication Engineering, DGIST, Daegu 42988, Republic of Korea
- These authors equally contributed to this work
| | - Jin-Woo Yu
- Department of Information and Communication Engineering, DGIST, Daegu 42988, Republic of Korea
- These authors equally contributed to this work
| | - Bomin Kim
- Department of Information and Communication Engineering, DGIST, Daegu 42988, Republic of Korea
| | - Sung-Ho Lim
- Department of Information and Communication Engineering, DGIST, Daegu 42988, Republic of Korea
- Brain Engineering Convergence Research Center, DGIST, Daegu 42988, Republic of Korea
| | - Sang-Ho Lee
- Convergence Research Advanced Centre for Olfaction, DGIST, Daegu 42988, Republic of Korea
| | - Kwangsu Kim
- Department of Brain and Cognitive Sciences, DGIST, Daegu 42988, Republic of Korea
| | - Gowoon Son
- Department of Brain and Cognitive Sciences, DGIST, Daegu 42988, Republic of Korea
| | - Hyeon-Ae Jeon
- Brain Engineering Convergence Research Center, DGIST, Daegu 42988, Republic of Korea
- Department of Brain and Cognitive Sciences, DGIST, Daegu 42988, Republic of Korea
| | - Cheil Moon
- Brain Engineering Convergence Research Center, DGIST, Daegu 42988, Republic of Korea
- Convergence Research Advanced Centre for Olfaction, DGIST, Daegu 42988, Republic of Korea
- Department of Brain and Cognitive Sciences, DGIST, Daegu 42988, Republic of Korea
| | - Joon Sakong
- Department of Occupational and Environmental Medicine, Yeungnam University Hospital, Daegu 42415, Republic of Korea
- Department of Preventive Medicine and Public Health, College of Medicine, Yeungnam University, Daegu 42415, Republic of Korea
| | - Ji-Woong Choi
- Department of Information and Communication Engineering, DGIST, Daegu 42988, Republic of Korea
- Brain Engineering Convergence Research Center, DGIST, Daegu 42988, Republic of Korea
| |
Collapse
|
43
|
Monllor P, Cervera-Ferri A, Lloret MA, Esteve D, Lopez B, Leon JL, Lloret A. Electroencephalography as a Non-Invasive Biomarker of Alzheimer's Disease: A Forgotten Candidate to Substitute CSF Molecules? Int J Mol Sci 2021; 22:10889. [PMID: 34639229 PMCID: PMC8509134 DOI: 10.3390/ijms221910889] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Revised: 09/26/2021] [Accepted: 10/05/2021] [Indexed: 12/12/2022] Open
Abstract
Biomarkers for disease diagnosis and prognosis are crucial in clinical practice. They should be objective and quantifiable and respond to specific therapeutic interventions. Optimal biomarkers should reflect the underlying process (pathological or not), be reproducible, widely available, and allow measurements repeatedly over time. Ideally, biomarkers should also be non-invasive and cost-effective. This review aims to focus on the usefulness and limitations of electroencephalography (EEG) in the search for Alzheimer's disease (AD) biomarkers. The main aim of this article is to review the evolution of the most used biomarkers in AD and the need for new peripheral and, ideally, non-invasive biomarkers. The characteristics of the EEG as a possible source for biomarkers will be revised, highlighting its advantages compared to the molecular markers available so far.
Collapse
Affiliation(s)
- Paloma Monllor
- CIBERFES, Department of Physiology, Institute INCLIVA, Faculty of Medicine, Health Research University of Valencia, Avda. Blasco Ibanez 17, 46010 Valencia, Spain; (P.M.); (D.E.)
| | - Ana Cervera-Ferri
- Department of Human Anatomy and Embryology, Faculty of Medicine, University of Valencia, 46010 Valencia, Spain;
| | - Maria-Angeles Lloret
- Department of Clinical Neurophysiology, University Clinic Hospital of Valencia, Avda. Blasco Ibanez, 19, 46010 Valencia, Spain;
| | - Daniel Esteve
- CIBERFES, Department of Physiology, Institute INCLIVA, Faculty of Medicine, Health Research University of Valencia, Avda. Blasco Ibanez 17, 46010 Valencia, Spain; (P.M.); (D.E.)
| | - Begoña Lopez
- Department of Neurology, University Clinic Hospital of Valencia, Avda. Blasco Ibanez, 19, 46010 Valencia, Spain;
| | - Jose-Luis Leon
- Ascires Biomedical Group, Department of Neuroradiology, Hospital Clinico Universitario, 46010 Valencia, Spain;
| | - Ana Lloret
- CIBERFES, Department of Physiology, Institute INCLIVA, Faculty of Medicine, Health Research University of Valencia, Avda. Blasco Ibanez 17, 46010 Valencia, Spain; (P.M.); (D.E.)
| |
Collapse
|
44
|
Gouw AA, Hillebrand A, Schoonhoven DN, Demuru M, Ris P, Scheltens P, Stam CJ. Routine magnetoencephalography in memory clinic patients: A machine learning approach. ALZHEIMER'S & DEMENTIA (AMSTERDAM, NETHERLANDS) 2021; 13:e12227. [PMID: 34568539 PMCID: PMC8449227 DOI: 10.1002/dad2.12227] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/20/2021] [Revised: 05/12/2021] [Accepted: 06/04/2021] [Indexed: 11/06/2022]
Abstract
INTRODUCTION We report the routine application of magnetoencephalography (MEG) in a memory clinic, and its value in the discrimination of patients with Alzheimer's disease (AD) dementia from controls. METHODS Three hundred sixty-six patients visiting our memory clinic underwent MEG recording. Source-reconstructed MEG data were visually assessed and evaluated in the context of clinical findings and other diagnostic markers. We analyzed the diagnostic accuracy of MEG spectral measures in the discrimination of individual AD dementia patients (n = 40) from subjective cognitive decline (SCD) patients (n = 40) using random forest models. RESULTS Best discrimination was obtained using a combination of relative theta and delta power (accuracy 0.846, sensitivity 0.855, specificity 0.837). The results were validated in an independent cohort. Hippocampal and thalamic regions, besides temporal-occipital lobes, contributed considerably to the model. DISCUSSION MEG has been implemented successfully in the workup of memory clinic patients and has value in diagnostic decision-making.
Collapse
Affiliation(s)
- Alida A. Gouw
- Alzheimer Center and Department of Neurology, VU University medical center, Amsterdam UMCAmsterdamThe Netherlands
- Department of Clinical Neurophysiology and MEG CenterNeuroscience Campus AmsterdamVU University Medical CenterAmsterdam UMCAmsterdamThe Netherlands
| | - Arjan Hillebrand
- Department of Clinical Neurophysiology and MEG CenterNeuroscience Campus AmsterdamVU University Medical CenterAmsterdam UMCAmsterdamThe Netherlands
| | - Deborah N. Schoonhoven
- Alzheimer Center and Department of Neurology, VU University medical center, Amsterdam UMCAmsterdamThe Netherlands
- Department of Clinical Neurophysiology and MEG CenterNeuroscience Campus AmsterdamVU University Medical CenterAmsterdam UMCAmsterdamThe Netherlands
| | - Matteo Demuru
- Alzheimer Center and Department of Neurology, VU University medical center, Amsterdam UMCAmsterdamThe Netherlands
- Department of Clinical Neurophysiology and MEG CenterNeuroscience Campus AmsterdamVU University Medical CenterAmsterdam UMCAmsterdamThe Netherlands
| | - Peterjan Ris
- Department of Clinical Neurophysiology and MEG CenterNeuroscience Campus AmsterdamVU University Medical CenterAmsterdam UMCAmsterdamThe Netherlands
| | - Philip Scheltens
- Alzheimer Center and Department of Neurology, VU University medical center, Amsterdam UMCAmsterdamThe Netherlands
| | - Cornelis J. Stam
- Department of Clinical Neurophysiology and MEG CenterNeuroscience Campus AmsterdamVU University Medical CenterAmsterdam UMCAmsterdamThe Netherlands
| |
Collapse
|
45
|
Yang S, Bornot JMS, Fernandez RB, Deravi F, Hoque S, Wong-Lin K, Prasad G. Detection of Mild Cognitive Impairment with MEG Functional Connectivity Using Wavelet-Based Neuromarkers. SENSORS (BASEL, SWITZERLAND) 2021; 21:6210. [PMID: 34577423 PMCID: PMC8473237 DOI: 10.3390/s21186210] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/11/2021] [Revised: 09/08/2021] [Accepted: 09/10/2021] [Indexed: 11/23/2022]
Abstract
Studies on developing effective neuromarkers based on magnetoencephalographic (MEG) signals have been drawing increasing attention in the neuroscience community. This study explores the idea of using source-based magnitude-squared spectral coherence as a spatial indicator for effective regions of interest (ROIs) localization, subsequently discriminating the participants with mild cognitive impairment (MCI) from a group of age-matched healthy control (HC) elderly participants. We found that the cortical regions could be divided into two distinctive groups based on their coherence indices. Compared to HC, some ROIs showed increased connectivity (hyper-connected ROIs) for MCI participants, whereas the remaining ROIs demonstrated reduced connectivity (hypo-connected ROIs). Based on these findings, a series of wavelet-based source-level neuromarkers for MCI detection are proposed and explored, with respect to the two distinctive ROI groups. It was found that the neuromarkers extracted from the hyper-connected ROIs performed significantly better for MCI detection than those from the hypo-connected ROIs. The neuromarkers were classified using support vector machine (SVM) and k-NN classifiers and evaluated through Monte Carlo cross-validation. An average recognition rate of 93.83% was obtained using source-reconstructed signals from the hyper-connected ROI group. To better conform to clinical practice settings, a leave-one-out cross-validation (LOOCV) approach was also employed to ensure that the data for testing was from a participant that the classifier has never seen. Using LOOCV, we found the best average classification accuracy was reduced to 83.80% using the same set of neuromarkers obtained from the ROI group with functional hyper-connections. This performance surpassed the results reported using wavelet-based features by approximately 15%. Overall, our work suggests that (1) certain ROIs are particularly effective for MCI detection, especially when multi-resolution wavelet biomarkers are employed for such diagnosis; (2) there exists a significant performance difference in system evaluation between research-based experimental design and clinically accepted evaluation standards.
Collapse
Affiliation(s)
- Su Yang
- Department of Computer Science, Swansea University, Swansea SA1 8EN, UK
| | - Jose Miguel Sanchez Bornot
- Intelligent Systems Research Centre, School of Computing, Engineering and Intelligent Systems, Ulster University, Londonderry BT48 7JL, Ireland; (J.M.S.B.); (K.W.-L.); (G.P.)
| | | | - Farzin Deravi
- School of Engineering, University of Kent, Canterbury CT2 7NZ, UK; (F.D.); (S.H.)
| | - Sanaul Hoque
- School of Engineering, University of Kent, Canterbury CT2 7NZ, UK; (F.D.); (S.H.)
| | - KongFatt Wong-Lin
- Intelligent Systems Research Centre, School of Computing, Engineering and Intelligent Systems, Ulster University, Londonderry BT48 7JL, Ireland; (J.M.S.B.); (K.W.-L.); (G.P.)
| | - Girijesh Prasad
- Intelligent Systems Research Centre, School of Computing, Engineering and Intelligent Systems, Ulster University, Londonderry BT48 7JL, Ireland; (J.M.S.B.); (K.W.-L.); (G.P.)
| |
Collapse
|
46
|
Shaw AD, Chandler HL, Hamandi K, Muthukumaraswamy SD, Hammers A, Singh KD. Tiagabine induced modulation of oscillatory connectivity and activity match PET-derived, canonical GABA-A receptor distributions. Eur Neuropsychopharmacol 2021; 50:34-45. [PMID: 33957336 PMCID: PMC8415204 DOI: 10.1016/j.euroneuro.2021.04.005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Revised: 03/30/2021] [Accepted: 04/11/2021] [Indexed: 12/04/2022]
Abstract
As the most abundant inhibitory neurotransmitter in the mammalian brain, γ-aminobutyric acid (GABA) plays a crucial role in shaping the frequency and amplitude of oscillations, which suggests a role for GABA in shaping the topography of functional connectivity and activity. This study explored the effects of pharmacologically blocking the reuptake of GABA (increasing local concentrations) using the GABA transporter 1 (GAT1) blocker, tiagabine (15 mg). In a placebo-controlled crossover design, we collected resting magnetoencephalography (MEG) recordings from 15 healthy individuals prior to, and at 1-, 3- and 5- hours post, administration of tiagabine and placebo. We quantified whole brain activity and functional connectivity in discrete frequency bands. Drug-by-session (2 × 4) analysis of variance in connectivity revealed interaction and main effects. Post-hoc permutation testing of each post-drug recording vs. respective pre-drug baseline revealed consistent reductions of a bilateral occipital network spanning theta, alpha and beta frequencies, across 1- 3- and 5- hour recordings following tiagabine only. The same analysis applied to activity revealed significant increases across frontal regions, coupled with reductions in posterior regions, across delta, theta, alpha and beta frequencies. Crucially, the spatial distribution of tiagabine-induced changes overlap with group-averaged maps of the distribution of GABAA receptors, from flumazenil (FMZ-VT) PET, demonstrating a link between GABA availability, GABAA receptor distribution, and low-frequency network oscillations. Our results indicate that the relationship between PET receptor distributions and MEG effects warrants further exploration, since elucidating the nature of this relationship may uncover electrophysiologically-derived maps of oscillatory activity as sensitive, time-resolved, and targeted receptor-mapping tools for pharmacological imaging.
Collapse
Affiliation(s)
- Alexander D Shaw
- Cardiff University Brain Research Imaging Centre (CUBRIC), School of Psychology, Cardiff University, CF24 4HQ, Wales.
| | - Hannah L Chandler
- Cardiff University Brain Research Imaging Centre (CUBRIC), School of Psychology, Cardiff University, CF24 4HQ, Wales
| | - Khalid Hamandi
- Cardiff University Brain Research Imaging Centre (CUBRIC), School of Psychology, Cardiff University, CF24 4HQ, Wales
| | - Suresh D Muthukumaraswamy
- School of Pharmacy, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand
| | - Alexander Hammers
- King's College London & Guy's and St Thomas' PET Centre, School of Biomedical Engineering and Imaging Sciences, St Thomas' Hospital, London SE1 7EH, United States
| | - Krish D Singh
- Cardiff University Brain Research Imaging Centre (CUBRIC), School of Psychology, Cardiff University, CF24 4HQ, Wales
| |
Collapse
|
47
|
Tait L, Lopes MA, Stothart G, Baker J, Kazanina N, Zhang J, Goodfellow M. A large-scale brain network mechanism for increased seizure propensity in Alzheimer's disease. PLoS Comput Biol 2021; 17:e1009252. [PMID: 34379638 PMCID: PMC8382184 DOI: 10.1371/journal.pcbi.1009252] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Revised: 08/23/2021] [Accepted: 07/06/2021] [Indexed: 11/19/2022] Open
Abstract
People with Alzheimer's disease (AD) are 6-10 times more likely to develop seizures than the healthy aging population. Leading hypotheses largely consider hyperexcitability of local cortical tissue as primarily responsible for increased seizure prevalence in AD. However, in the general population of people with epilepsy, large-scale brain network organization additionally plays a role in determining seizure likelihood and phenotype. Here, we propose that alterations to large-scale brain network organization seen in AD may contribute to increased seizure likelihood. To test this hypothesis, we combine computational modelling with electrophysiological data using an approach that has proved informative in clinical epilepsy cohorts without AD. EEG was recorded from 21 people with probable AD and 26 healthy controls. At the time of EEG acquisition, all participants were free from seizures. Whole brain functional connectivity derived from source-reconstructed EEG recordings was used to build subject-specific brain network models of seizure transitions. As cortical tissue excitability was increased in the simulations, AD simulations were more likely to transition into seizures than simulations from healthy controls, suggesting an increased group-level probability of developing seizures at a future time for AD participants. We subsequently used the model to assess seizure propensity of different regions across the cortex. We found the most important regions for seizure generation were those typically burdened by amyloid-beta at the early stages of AD, as previously reported by in-vivo and post-mortem staging of amyloid plaques. Analysis of these spatial distributions also give potential insight into mechanisms of increased susceptibility to generalized (as opposed to focal) seizures in AD vs controls. This research suggests avenues for future studies testing patients with seizures, e.g. co-morbid AD/epilepsy patients, and comparisons with PET and MRI scans to relate regional seizure propensity with AD pathologies.
Collapse
Affiliation(s)
- Luke Tait
- Cardiff University Brain Research Imaging Centre, Cardiff University, Cardiff, United Kingdom
| | - Marinho A. Lopes
- Cardiff University Brain Research Imaging Centre, Cardiff University, Cardiff, United Kingdom
| | - George Stothart
- Department of Psychology, University of Bath, Bath, United Kingdom
| | - John Baker
- Dementia Research Centre, Queen Square Institute of Neurology, UCL, London, United Kingdom
| | - Nina Kazanina
- School of Psychological Science, University of Bristol, Bristol, United Kingdom
| | - Jiaxiang Zhang
- Cardiff University Brain Research Imaging Centre, Cardiff University, Cardiff, United Kingdom
| | - Marc Goodfellow
- Living Systems Institute, University of Exeter, Exeter, United Kingdom
| |
Collapse
|
48
|
Maestú F, de Haan W, Busche MA, DeFelipe J. Neuronal excitation/inhibition imbalance: core element of a translational perspective on Alzheimer pathophysiology. Ageing Res Rev 2021; 69:101372. [PMID: 34029743 DOI: 10.1016/j.arr.2021.101372] [Citation(s) in RCA: 108] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Revised: 04/16/2021] [Accepted: 05/19/2021] [Indexed: 02/08/2023]
Abstract
Our incomplete understanding of the link between Alzheimer's Disease pathology and symptomatology is a crucial obstacle for therapeutic success. Recently, translational studies have begun to connect the dots between protein alterations and deposition, brain network dysfunction and cognitive deficits. Disturbance of neuronal activity, and in particular an imbalance in underlying excitation/inhibition (E/I), appears early in AD, and can be regarded as forming a central link between structural brain pathology and cognitive dysfunction. While there are emerging (non-)pharmacological options to influence this imbalance, the complexity of human brain dynamics has hindered identification of an optimal approach. We suggest that focusing on the integration of neurophysiological aspects of AD at the micro-, meso- and macroscale, with the support of computational network modeling, can unite fundamental and clinical knowledge, provide a general framework, and suggest rational therapeutic targets.
Collapse
|
49
|
Messaritaki E, Foley S, Schiavi S, Magazzini L, Routley B, Jones DK, Singh KD. Predicting MEG resting-state functional connectivity from microstructural information. Netw Neurosci 2021; 5:477-504. [PMID: 34189374 PMCID: PMC8233113 DOI: 10.1162/netn_a_00187] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Accepted: 02/01/2021] [Indexed: 12/18/2022] Open
Abstract
Understanding how human brain microstructure influences functional connectivity is an important endeavor. In this work, magnetic resonance imaging data from 90 healthy participants were used to calculate structural connectivity matrices using the streamline count, fractional anisotropy, radial diffusivity, and a myelin measure (derived from multicomponent relaxometry) to assign connection strength. Unweighted binarized structural connectivity matrices were also constructed. Magnetoencephalography resting-state data from those participants were used to calculate functional connectivity matrices, via correlations of the Hilbert envelopes of beamformer time series in the delta, theta, alpha, and beta frequency bands. Nonnegative matrix factorization was performed to identify the components of the functional connectivity. Shortest path length and search-information analyses of the structural connectomes were used to predict functional connectivity patterns for each participant. The microstructure-informed algorithms predicted the components of the functional connectivity more accurately than they predicted the total functional connectivity. This provides a methodology to understand functional mechanisms better. The shortest path length algorithm exhibited the highest prediction accuracy. Of the weights of the structural connectivity matrices, the streamline count and the myelin measure gave the most accurate predictions, while the fractional anisotropy performed poorly. Overall, different structural metrics paint very different pictures of the structural connectome and its relationship to functional connectivity.
Collapse
Affiliation(s)
- Eirini Messaritaki
- Cardiff University Brain Research Imaging Centre (CUBRIC), School of Psychology, Cardiff University, Maindy Road, Cardiff, UK
| | - Sonya Foley
- Cardiff University Brain Research Imaging Centre (CUBRIC), School of Psychology, Cardiff University, Maindy Road, Cardiff, UK
| | - Simona Schiavi
- Department of Computer Science, University of Verona, Verona, Italy
| | - Lorenzo Magazzini
- Cardiff University Brain Research Imaging Centre (CUBRIC), School of Psychology, Cardiff University, Maindy Road, Cardiff, UK
| | - Bethany Routley
- Cardiff University Brain Research Imaging Centre (CUBRIC), School of Psychology, Cardiff University, Maindy Road, Cardiff, UK
| | - Derek K Jones
- Cardiff University Brain Research Imaging Centre (CUBRIC), School of Psychology, Cardiff University, Maindy Road, Cardiff, UK
| | - Krish D Singh
- Cardiff University Brain Research Imaging Centre (CUBRIC), School of Psychology, Cardiff University, Maindy Road, Cardiff, UK
| |
Collapse
|
50
|
Courtney SM, Hinault T. When the time is right: Temporal dynamics of brain activity in healthy aging and dementia. Prog Neurobiol 2021; 203:102076. [PMID: 34015374 DOI: 10.1016/j.pneurobio.2021.102076] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Revised: 05/08/2021] [Accepted: 05/14/2021] [Indexed: 10/21/2022]
Abstract
Brain activity and communications are complex phenomena that dynamically unfold over time. However, in contrast with the large number of studies reporting neuroanatomical differences in activation relative to young adults, changes of temporal dynamics of neural activity during normal and pathological aging have been grossly understudied and are still poorly known. Here, we synthesize the current state of knowledge from MEG and EEG studies that aimed at specifying the effects of healthy and pathological aging on local and network dynamics, and discuss the clinical and theoretical implications of these findings. We argue that considering the temporal dynamics of brain activations and networks could provide a better understanding of changes associated with healthy aging, and the progression of neurodegenerative disease. Recent research has also begun to shed light on the association of these dynamics with other imaging modalities and with individual differences in cognitive performance. These insights hold great potential for driving new theoretical frameworks and development of biomarkers to aid in identifying and treating age-related cognitive changes.
Collapse
Affiliation(s)
- S M Courtney
- Department of Psychological and Brain Sciences, Johns Hopkins University, Baltimore, MD, 21218, USA; F.M. Kirby Research Center, Kennedy Krieger Institute, MD 21205, USA; Department of Neuroscience, Johns Hopkins University, MD 21205, USA
| | - T Hinault
- Department of Psychological and Brain Sciences, Johns Hopkins University, Baltimore, MD, 21218, USA; U1077 INSERM-EPHE-UNICAEN, Caen, France.
| |
Collapse
|