1
|
Faraj N, Hoogaars WMH, Duinkerken BHP, Wolters AHG, Kats K, Dekkers MC, Zaldumbide A, Giepmans BNG. Pancreatic exocrine damage induces beta cell stress in zebrafish larvae. Diabetologia 2025:10.1007/s00125-025-06432-4. [PMID: 40295334 DOI: 10.1007/s00125-025-06432-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/18/2024] [Accepted: 03/04/2025] [Indexed: 04/30/2025]
Abstract
AIMS/HYPOTHESIS Excessive endoplasmic reticulum (ER) stress in beta cells can impair proliferation and contribute to autoimmune responses such as the destruction of beta cells in type 1 diabetes. Exocrine-beta cell interactions affect beta cell growth and function. Notably, exocrine abnormalities are frequently observed alongside overloaded beta cells in different types of diabetes, suggesting that exocrine stress may induce beta cell ER stress and loss. While a cause-consequence relationship between exocrine stress and beta cell function cannot be addressed in humans, it can be studied in a zebrafish model. Larvae develop a pancreas with a human-like morphology by 120 h post-fertilisation, providing a valuable dynamic model for studying pancreatic interactions. Our aim was to target exocrine cells specifically and address beta cell status using transgenic zebrafish models and reporters. METHODS To explore the impact of exocrine damage on beta cell fitness, we generated a novel zebrafish model allowing exocrine pancreas ablation, using a nifurpirinol-nitroreductase system. We subsequently assessed the in vivo effects on beta cells by live-monitoring dynamic cellular events, such as ER stress, apoptosis and changes in beta cell number and volume. RESULTS Exocrine damage in zebrafish decreased pancreas volume by approximately 50% and changed its morphology. The resulting exocrine damage induced ER stress in 60-90% of beta cells and resulted in a ~50% reduction in their number. CONCLUSIONS/INTERPRETATION The zebrafish model provides a robust platform for investigating the interplay between exocrine cells and beta cells, thereby enhancing further insights into the mechanisms driving pancreatic diseases such as type 1 diabetes.
Collapse
Affiliation(s)
- Noura Faraj
- Department of Biomedical Sciences, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands
| | - Willem M H Hoogaars
- Department of Biomedical Sciences, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands
| | - B H Peter Duinkerken
- Department of Biomedical Sciences, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands
| | - Anouk H G Wolters
- Department of Biomedical Sciences, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands
| | - Kim Kats
- Department of Biomedical Sciences, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands
| | - Mette C Dekkers
- Department of Cell and Chemical Biology, Leiden University Medical Center, Leiden, the Netherlands
| | - Arnaud Zaldumbide
- Department of Cell and Chemical Biology, Leiden University Medical Center, Leiden, the Netherlands
| | - Ben N G Giepmans
- Department of Biomedical Sciences, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands.
| |
Collapse
|
2
|
Peng X, Wang K, Chen L. Biphasic glucose-stimulated insulin secretion over decades: a journey from measurements and modeling to mechanistic insights. LIFE METABOLISM 2025; 4:loae038. [PMID: 39872989 PMCID: PMC11770817 DOI: 10.1093/lifemeta/loae038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Revised: 11/10/2024] [Accepted: 11/13/2024] [Indexed: 01/30/2025]
Abstract
Glucose-stimulated insulin release from pancreatic β-cells is critical for maintaining blood glucose homeostasis. An abrupt increase in blood glucose concentration evokes a rapid and transient rise in insulin secretion followed by a prolonged, slower phase. A diminished first phase is one of the earliest indicators of β-cell dysfunction in individuals predisposed to develop type 2 diabetes. Consequently, researchers have explored the underlying mechanisms for decades, starting with plasma insulin measurements under physiological conditions and advancing to single-vesicle exocytosis measurements in individual β-cells combined with molecular manipulations. Based on a chain of evidence gathered from genetic manipulation to in vivo mouse phenotyping, a widely accepted theory posits that distinct functional insulin vesicle pools in β-cells regulate biphasic glucose-stimulated insulin secretion (GSIS) via activation of different metabolic signal pathways. Recently, we developed a high-resolution imaging technique to visualize single vesicle exocytosis from β-cells within an intact islet. Our findings reveal that β-cells within the islet exhibit heterogeneity in their secretory capabilities, which also differs from the heterogeneous Ca2+ signals observed in islet β-cells in response to glucose stimulation. Most importantly, we demonstrate that biphasic GSIS emerges from the interactions among α-, β-, and δ-cells within the islet and is driven by a small subset of hypersecretory β-cells. Finally, we propose that a shift from reductionism to holism may be required to fully understand the etiology of complex diseases such as diabetes.
Collapse
Affiliation(s)
- Xiaohong Peng
- New Cornerstone Science Laboratory, State Key Laboratory of Membrane Biology, Beijing Key Laboratory of Cardiometabolic Molecular Medicine, Institute of Molecular Medicine, National Biomedical Imaging Center, The Beijing Laboratory of Biomedical Imaging, Peking-Tsinghua Center for Life Sciences, School of Future Technology, Peking University, Beijing 100871, China
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Peking University, Beijing 100191, China
| | - Kai Wang
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Peking University, Beijing 100191, China
| | - Liangyi Chen
- New Cornerstone Science Laboratory, State Key Laboratory of Membrane Biology, Beijing Key Laboratory of Cardiometabolic Molecular Medicine, Institute of Molecular Medicine, National Biomedical Imaging Center, The Beijing Laboratory of Biomedical Imaging, Peking-Tsinghua Center for Life Sciences, School of Future Technology, Peking University, Beijing 100871, China
- PKU-IDG/McGovern Institute for Brain Research, Beijing 100871, China
| |
Collapse
|
3
|
Zhao J, Liang S, Cen HH, Li Y, Baker RK, Ruprai B, Gao G, Zhang C, Ren H, Tang C, Chen L, Liu Y, Lynn FC, Johnson JD, Kieffer TJ. PDX1+ cell budding morphogenesis in a stem cell-derived islet spheroid system. Nat Commun 2024; 15:5894. [PMID: 39003281 PMCID: PMC11246529 DOI: 10.1038/s41467-024-50109-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2024] [Accepted: 07/01/2024] [Indexed: 07/15/2024] Open
Abstract
Remarkable advances in protocol development have been achieved to manufacture insulin-secreting islets from human pluripotent stem cells (hPSCs). Distinct from current approaches, we devised a tunable strategy to generate islet spheroids enriched for major islet cell types by incorporating PDX1+ cell budding morphogenesis into staged differentiation. In this process that appears to mimic normal islet morphogenesis, the differentiating islet spheroids organize with endocrine cells that are intermingled or arranged in a core-mantle architecture, accompanied with functional heterogeneity. Through in vitro modelling of human pancreas development, we illustrate the importance of PDX1 and the requirement for EphB3/4 signaling in eliciting cell budding morphogenesis. Using this new approach, we model Mitchell-Riley syndrome with RFX6 knockout hPSCs illustrating unexpected morphogenesis defects in the differentiation towards islet cells. The tunable differentiation system and stem cell-derived islet models described in this work may facilitate addressing fundamental questions in islet biology and probing human pancreas diseases.
Collapse
Affiliation(s)
- Jia Zhao
- Life Sciences Institute, Departments of Cellular & Physiological Sciences and Surgery, University of British Columbia, Vancouver, BC, Canada.
| | - Shenghui Liang
- Life Sciences Institute, Departments of Cellular & Physiological Sciences and Surgery, University of British Columbia, Vancouver, BC, Canada
| | - Haoning Howard Cen
- Life Sciences Institute, Departments of Cellular & Physiological Sciences and Surgery, University of British Columbia, Vancouver, BC, Canada
| | - Yanjun Li
- Institute of Molecular Medicine, School of Future Technology, National Biomedical Imaging Center, Peking University, Beijing, China
| | - Robert K Baker
- Life Sciences Institute, Departments of Cellular & Physiological Sciences and Surgery, University of British Columbia, Vancouver, BC, Canada
| | - Balwinder Ruprai
- Life Sciences Institute, Departments of Cellular & Physiological Sciences and Surgery, University of British Columbia, Vancouver, BC, Canada
| | - Guang Gao
- Imaging Core Facility, Life Sciences Institute, University of British Columbia, Vancouver, BC, Canada
| | - Chloe Zhang
- Life Sciences Institute, Departments of Cellular & Physiological Sciences and Surgery, University of British Columbia, Vancouver, BC, Canada
| | - Huixia Ren
- Institute of Molecular Medicine, School of Future Technology, National Biomedical Imaging Center, Peking University, Beijing, China
- Center for Quantitative Biology, Peking University, Beijing, China
| | - Chao Tang
- Center for Quantitative Biology, Peking University, Beijing, China
| | - Liangyi Chen
- Institute of Molecular Medicine, School of Future Technology, National Biomedical Imaging Center, Peking University, Beijing, China
- PKU-IDG/McGovern Institute for Brain Research, Peking University, Beijing, China
| | - Yanmei Liu
- Key Laboratory of Brain, Cognition and Education Sciences, Ministry of Education, South China Normal University, 510631, Guangzhou, China
- Institute for Brain Research and Rehabilitation, and Guangdong Key Laboratory of Mental Health and Cognitive Science, South China Normal University, 510631, Guangzhou, China
| | - Francis C Lynn
- BC Children's Hospital Research Institute, Department of Surgery, University of British Columbia, Vancouver, BC, Canada
| | - James D Johnson
- Life Sciences Institute, Departments of Cellular & Physiological Sciences and Surgery, University of British Columbia, Vancouver, BC, Canada
| | - Timothy J Kieffer
- Life Sciences Institute, Departments of Cellular & Physiological Sciences and Surgery, University of British Columbia, Vancouver, BC, Canada.
- School of Biomedical Engineering, University of British Columbia, Vancouver, BC, Canada.
| |
Collapse
|
4
|
Braam MJS, Zhao J, Liang S, Ida S, Kloostra NK, Iworima DG, Tang M, Baker RK, Quiskamp N, Piret JM, Kieffer TJ. Protocol development to further differentiate and transition stem cell-derived pancreatic progenitors from a monolayer into endocrine cells in suspension culture. Sci Rep 2023; 13:8877. [PMID: 37264038 DOI: 10.1038/s41598-023-35716-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Accepted: 05/23/2023] [Indexed: 06/03/2023] Open
Abstract
The generation of functional β-cells from human pluripotent stem cells (hPSCs) for cell replacement therapy and disease modeling of diabetes is being investigated by many groups. We have developed a protocol to harvest and aggregate hPSC-derived pancreatic progenitors generated using a commercially available kit into near uniform spheroids and to further differentiate the cells toward an endocrine cell fate in suspension culture. Using a static suspension culture platform, we could generate a high percentage of insulin-expressing, glucose-responsive cells. We identified FGF7 as a soluble factor promoting aggregate survival with no inhibitory effect on endocrine gene expression. Notch inhibition of pancreatic progenitor cells during aggregation improved endocrine cell induction in vitro and improved graft function following implantation and further differentiation in mice. Thus we provide an approach to promote endocrine formation from kit-derived pancreatic progenitors, either through extended culture or post implant.
Collapse
Affiliation(s)
- Mitchell J S Braam
- Department of Cellular and Physiological Sciences, Life Sciences Institute, University of British Columbia, Vancouver, Canada
| | - Jia Zhao
- Department of Cellular and Physiological Sciences, Life Sciences Institute, University of British Columbia, Vancouver, Canada
| | - Shenghui Liang
- Department of Cellular and Physiological Sciences, Life Sciences Institute, University of British Columbia, Vancouver, Canada
| | - Shogo Ida
- Department of Cellular and Physiological Sciences, Life Sciences Institute, University of British Columbia, Vancouver, Canada
| | - Nick K Kloostra
- Department of Cellular and Physiological Sciences, Life Sciences Institute, University of British Columbia, Vancouver, Canada
| | - Diepiriye G Iworima
- Department of Cellular and Physiological Sciences, Life Sciences Institute, University of British Columbia, Vancouver, Canada
- School of Biomedical Engineering, University of British Columbia, Vancouver, BC, Canada
| | - Mei Tang
- Department of Cellular and Physiological Sciences, Life Sciences Institute, University of British Columbia, Vancouver, Canada
| | - Robert K Baker
- Department of Cellular and Physiological Sciences, Life Sciences Institute, University of British Columbia, Vancouver, Canada
| | | | - James M Piret
- Michael Smith Laboratories, University of British Columbia, Vancouver, BC, Canada
- Department of Chemical and Biological Engineering, University of British Columbia, Vancouver, BC, Canada
- School of Biomedical Engineering, University of British Columbia, Vancouver, BC, Canada
| | - Timothy J Kieffer
- Department of Cellular and Physiological Sciences, Life Sciences Institute, University of British Columbia, Vancouver, Canada.
- School of Biomedical Engineering, University of British Columbia, Vancouver, BC, Canada.
- Department of Surgery, University of British Columbia, Vancouver, BC, Canada.
| |
Collapse
|
5
|
Liang S, Zhao J, Baker RK, Tran E, Zhan L, Kieffer TJ. Differentiation of stem cell-derived pancreatic progenitors into insulin-secreting islet clusters in a multiwell-based static 3D culture system. CELL REPORTS METHODS 2023; 3:100466. [PMID: 37323565 PMCID: PMC10261893 DOI: 10.1016/j.crmeth.2023.100466] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Revised: 11/08/2022] [Accepted: 04/12/2023] [Indexed: 06/17/2023]
Abstract
Orbital shaker-based suspension culture systems have been in widespread use for differentiating human pluripotent stem cell (hPSC)-derived pancreatic progenitors toward islet-like clusters during endocrine induction stages. However, reproducibility between experiments is hampered by variable degrees of cell loss in shaking cultures, which contributes to variable differentiation efficiencies. Here, we describe a 96-well-based static suspension culture method for differentiation of pancreatic progenitors into hPSC-islets. Compared with shaking culture, this static 3D culture system induces similar islet gene expression profiles during differentiation processes but significantly reduces cell loss and improves cell viability of endocrine clusters. This static culture method results in more reproducible and efficient generation of glucose-responsive, insulin-secreting hPSC-islets. The successful differentiation and well-to-well consistency in 96-well plates also provides a proof of principle that the static 3D culture system can serve as a platform for small-scale compound screening experiments as well as facilitating further protocol development.
Collapse
Affiliation(s)
- Shenghui Liang
- Department of Cellular & Physiological Sciences, Life Sciences Institute, University of British Columbia, Vancouver, BC V6T 1Z3, Canada
| | - Jia Zhao
- Department of Cellular & Physiological Sciences, Life Sciences Institute, University of British Columbia, Vancouver, BC V6T 1Z3, Canada
| | - Robert K. Baker
- Department of Cellular & Physiological Sciences, Life Sciences Institute, University of British Columbia, Vancouver, BC V6T 1Z3, Canada
| | - Elisa Tran
- Department of Cellular & Physiological Sciences, Life Sciences Institute, University of British Columbia, Vancouver, BC V6T 1Z3, Canada
| | - Lisa Zhan
- Department of Cellular & Physiological Sciences, Life Sciences Institute, University of British Columbia, Vancouver, BC V6T 1Z3, Canada
| | - Timothy J. Kieffer
- Department of Cellular & Physiological Sciences, Life Sciences Institute, University of British Columbia, Vancouver, BC V6T 1Z3, Canada
- Department of Surgery, University of British Columbia, Vancouver, BC V6T 1Z3, Canada
- School of Biomedical Engineering, University of British Columbia, Vancouver, BC V6T 1Z3, Canada
| |
Collapse
|
6
|
Ren H, Li Y, Han C, Yu Y, Shi B, Peng X, Zhang T, Wu S, Yang X, Kim S, Chen L, Tang C. Pancreatic α and β cells are globally phase-locked. Nat Commun 2022; 13:3721. [PMID: 35764654 PMCID: PMC9240067 DOI: 10.1038/s41467-022-31373-6] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2021] [Accepted: 06/15/2022] [Indexed: 11/25/2022] Open
Abstract
The Ca2+ modulated pulsatile glucagon and insulin secretions by pancreatic α and β cells play a crucial role in glucose homeostasis. However, how α and β cells coordinate to produce various Ca2+ oscillation patterns is still elusive. Using a microfluidic device and transgenic mice, we recorded Ca2+ signals from islet α and β cells, and observed heterogeneous Ca2+ oscillation patterns intrinsic to each islet. After a brief period of glucose stimulation, α and β cells’ oscillations were globally phase-locked. While the activation of α cells displayed a fixed time delay of ~20 s to that of β cells, β cells activated with a tunable period. Moreover, islet α cell number correlated with oscillation frequency. We built a mathematical model of islet Ca2+ oscillation incorporating paracrine interactions, which quantitatively agreed with the experimental data. Our study highlights the importance of cell-cell interaction in generating stable but tunable islet oscillation patterns. The Ca2+ modulated pulsatile glucagon and insulin secretions by pancreatic α and β cells are critical in glucose homeostasis. Here the authors show that the Ca2+ oscillations of α and β cells are phase-locked, and that the oscillation pattern is tuned by paracrine interactions between α and β cells.
Collapse
Affiliation(s)
- Huixia Ren
- Center for Quantitative Biology, Peking University, Beijing, 100871, China.,Peking-Tsinghua Center for Life Sciences, Peking University, Beijing, 100871, China
| | - Yanjun Li
- Center for Quantitative Biology, Peking University, Beijing, 100871, China.,Institute of Molecular Medicine, School of Future Technology, National Biomedical Imaging Center, Peking University, Beijing, 100871, China
| | - Chengsheng Han
- Institute of Molecular Medicine, School of Future Technology, National Biomedical Imaging Center, Peking University, Beijing, 100871, China
| | - Yi Yu
- Center for Quantitative Biology, Peking University, Beijing, 100871, China
| | - Bowen Shi
- Peking-Tsinghua Center for Life Sciences, Peking University, Beijing, 100871, China
| | - Xiaohong Peng
- Institute of Molecular Medicine, School of Future Technology, National Biomedical Imaging Center, Peking University, Beijing, 100871, China
| | - Tianming Zhang
- Yuanpei College, Peking University, Beijing, 100871, China
| | - Shufang Wu
- Center for Quantitative Biology, Peking University, Beijing, 100871, China
| | - Xiaojing Yang
- Center for Quantitative Biology, Peking University, Beijing, 100871, China.,Peking-Tsinghua Center for Life Sciences, Peking University, Beijing, 100871, China
| | - Sneppen Kim
- Niels Bohr Institute, University of Copenhagen, 2100, Copenhagen, Denmark
| | - Liangyi Chen
- Peking-Tsinghua Center for Life Sciences, Peking University, Beijing, 100871, China. .,Institute of Molecular Medicine, School of Future Technology, National Biomedical Imaging Center, Peking University, Beijing, 100871, China.
| | - Chao Tang
- Center for Quantitative Biology, Peking University, Beijing, 100871, China. .,Peking-Tsinghua Center for Life Sciences, Peking University, Beijing, 100871, China.
| |
Collapse
|
7
|
Faraj N, Duinkerken BHP, Carroll EC, Giepmans BNG. Microscopic modulation and analysis of islets of Langerhans in living zebrafish larvae. FEBS Lett 2022; 596:2497-2512. [DOI: 10.1002/1873-3468.14411] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Revised: 04/22/2022] [Accepted: 05/20/2022] [Indexed: 11/08/2022]
Affiliation(s)
- Noura Faraj
- Department of Biomedical Sciences of Cells and Systems, University of Groningen University Medical Center Groningen Groningen 9713AV The Netherlands
| | - B. H. Peter Duinkerken
- Department of Biomedical Sciences of Cells and Systems, University of Groningen University Medical Center Groningen Groningen 9713AV The Netherlands
| | - Elizabeth C. Carroll
- Department of Imaging Physics Delft University of Technology Delft, 2628 CJ The Netherlands
| | - Ben N. G. Giepmans
- Department of Biomedical Sciences of Cells and Systems, University of Groningen University Medical Center Groningen Groningen 9713AV The Netherlands
| |
Collapse
|
8
|
Darden CM, Vasu S, Mattke J, Liu Y, Rhodes CJ, Naziruddin B, Lawrence MC. Calcineurin/NFATc2 and PI3K/AKT signaling maintains β-cell identity and function during metabolic and inflammatory stress. iScience 2022; 25:104125. [PMID: 35402865 PMCID: PMC8983383 DOI: 10.1016/j.isci.2022.104125] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Revised: 12/02/2021] [Accepted: 03/16/2022] [Indexed: 11/19/2022] Open
Abstract
Pancreatic islets respond to metabolic and inflammatory stress by producing hormones and other factors that induce adaptive cellular and systemic responses. Here we show that intracellular Ca2+ ([Ca2+]i) and ROS signals generated by high glucose and cytokine-induced ER stress activate calcineurin (CN)/NFATc2 and PI3K/AKT to maintain β-cell identity and function. This was attributed in part by direct induction of the endocrine differentiation gene RFX6 and suppression of several β-cell "disallowed" genes, including MCT1. CN/NFATc2 targeted p300 and HDAC1 to RFX6 and MCT1 promoters to induce and suppress gene transcription, respectively. In contrast, prolonged exposure to stress, hyperstimulated [Ca2+]i, or perturbation of CN/NFATc2 resulted in downregulation of RFX6 and induction of MCT1. These findings reveal that CN/NFATc2 and PI3K/AKT maintain β-cell function during acute stress, but β-cells dedifferentiate to a dysfunctional state upon loss or exhaustion of Ca2+/CN/NFATc2 signaling. They further demonstrate the utility of targeting CN/NFATc2 to restore β-cell function.
Collapse
Affiliation(s)
- Carly M. Darden
- Islet Cell Laboratory, Baylor Scott & White Research Institute, Dallas, TX 75204, USA
- Institute of Biomedical Studies, Baylor University, Waco, TX 76706, USA
| | - Srividya Vasu
- Islet Cell Laboratory, Baylor Scott & White Research Institute, Dallas, TX 75204, USA
| | - Jordan Mattke
- Islet Cell Laboratory, Baylor Scott & White Research Institute, Dallas, TX 75204, USA
- Institute of Biomedical Studies, Baylor University, Waco, TX 76706, USA
| | - Yang Liu
- Annette C. and Harold C. Simmons Transplant Institute, Baylor University Medical Center, Dallas, TX 75246, USA
| | - Christopher J. Rhodes
- Kovler Diabetes Center, Department of Medicine, Section of Endocrinology, Diabetes & Metabolism, University of Chicago, Chicago, IL 60637, USA
- Research and Early Development, Cardiovascular, Renal and Metabolic Diseases, BioPharmaceuticals R&D, AstraZeneca Ltd, Gaithersburg, MD 20878, USA
| | - Bashoo Naziruddin
- Annette C. and Harold C. Simmons Transplant Institute, Baylor University Medical Center, Dallas, TX 75246, USA
| | - Michael C. Lawrence
- Islet Cell Laboratory, Baylor Scott & White Research Institute, Dallas, TX 75204, USA
| |
Collapse
|
9
|
Liang S, Zhao J, Wang Q, Yang M, Wang X, Chen S, Chen M, Sun C. Carbon monoxide enhances calcium transients and glucose-stimulated insulin secretion from pancreatic β-cells by activating Phospholipase C signal pathway in diabetic mice. Biochem Biophys Res Commun 2021; 582:1-7. [PMID: 34678590 DOI: 10.1016/j.bbrc.2021.10.030] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Revised: 09/29/2021] [Accepted: 10/12/2021] [Indexed: 01/31/2023]
Abstract
In early stage of diabetes, insulin secretion from pancreatic β-cells is increased to deal with the elevated blood glucose. Previous studies have reported that islet-produced carbon monoxide (CO) is associated with increased glucose-stimulated insulin secretion from β-cells. However, this compensatory mechanism by which CO may act to enhance β-cell function remain unclear. In this study, we revealed that CO promoted intracellular calcium ([Ca2+]i) elevation and glucose-stimulated insulin secretion (GSIS) from pancreatic β-cells in leptin receptor deficient db/db mice but not in C57 mice. The stimulatory effects of CO on β-cell function in db/db mice was blocked by inhibition of Phospholipase C (PLC) signaling pathway. We further demonstrated that CO triggered [Ca2+]i transients and enhanced GSIS in C57 islets when β-cells overexpressed with PLCγ1 and PLCδ1, but not PLCβ1. On the other hand, reducing PLCγ1 and PLCδ1 expressions in db/db islets dramatically attenuated the stimulatory effects of CO on β-cell function, whereas interfering PLCβ1 expression had no effects on CO-induced β-cell function enhancement. Our findings showing that CO elevated [Ca2+]i and enhanced GSIS by activating PLC signaling through PLCγ1 and PLCδ1 isoforms in db/db pancreatic β-cells may suggest an important mechanism by which CO promotes β-cell function to prevent hyperglycemia. Our study may also provide new insights into the therapy for type II diabetes and offer a potential target for therapeutic applications of CO.
Collapse
Affiliation(s)
- Shenghui Liang
- Institute of Molecular Medicine, Peking University, Beijing, 100871, China.
| | - Jia Zhao
- Institute of Molecular Medicine, Peking University, Beijing, 100871, China
| | - Quanyi Wang
- Institute of Molecular Medicine, Peking University, Beijing, 100871, China; Department of Biopharmaceutics, School of Life Science and Technology, China Pharmaceutical University, Nanjing, Jiangsu, 211198, China
| | - Min Yang
- Institute of Molecular Medicine, Peking University, Beijing, 100871, China; The Key Laboratory of Invertebrate Systematics and Application, College of Life Sciences, Hebei University, Baoding, Hebei, 071002, China
| | - Xiaozhi Wang
- Institute of Molecular Medicine, Peking University, Beijing, 100871, China; Department of Cardiology, The First Affiliated Hospital with Nanjing Medical University, Nanjing, Jiangsu, 210029, China
| | - Shuqiu Chen
- Department of Urology, Zhongda Hospital, Southeast University, Nanjing, Jiangsu, 210009, China
| | - Ming Chen
- Department of Urology, Zhongda Hospital, Southeast University, Nanjing, Jiangsu, 210009, China
| | - Chao Sun
- Department of Urology, Zhongda Hospital, Southeast University, Nanjing, Jiangsu, 210009, China.
| |
Collapse
|
10
|
Abstract
β-Cells in the islet of Langerhans have a central role in maintaining energy homeostasis. Understanding the physiology of β-cells and other islet cells requires a deep understanding of their structural and functional organization, their interaction with vessels and nerves, the layout of paracrine interactions, and the relationship between subcellular compartments and protein complexes inside each cell. These elements are not static; they are dynamic and exert their biological actions at different scales of time. Therefore, scientists must be able to investigate (and visualize) short- and long-lived events within the pancreas and β-cells. Current technological advances in microscopy are able to bridge multiple spatiotemporal scales in biology to reveal the complexity and heterogeneity of β-cell biology. Here, I briefly discuss the historical discoveries that leveraged microscopes to establish the basis of β-cell anatomy and structure, the current imaging platforms that allow the study of islet and β-cell biology at multiple scales of resolution, and their challenges and implications. Lastly, I outline how the remarkable longevity of structural elements at different scales in biology, from molecules to cells to multicellular structures, could represent a previously unrecognized organizational pattern in developing and adult β-cells and pancreas biology.
Collapse
Affiliation(s)
- Rafael Arrojo E Drigo
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN
| |
Collapse
|
11
|
Wortham M, Sander M. Transcriptional mechanisms of pancreatic β-cell maturation and functional adaptation. Trends Endocrinol Metab 2021; 32:474-487. [PMID: 34030925 PMCID: PMC8259463 DOI: 10.1016/j.tem.2021.04.011] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Revised: 04/12/2021] [Accepted: 04/19/2021] [Indexed: 12/31/2022]
Abstract
Pancreatic β-cells secrete insulin commensurate to circulating nutrient levels to maintain normoglycemia. The ability of β-cells to couple insulin secretion to nutrient stimuli is acquired during a postnatal maturation process. In mature β-cells the insulin secretory response adapts to changes in nutrient state. Both β-cell maturation and functional adaptation rely on the interplay between extracellular cues and cell type-specific transcriptional programs. Here we review emerging evidence that developmental and homeostatic regulation of β-cell function involves collaboration between lineage-determining and signal-dependent transcription factors (LDTFs and SDTFs, respectively). A deeper understanding of β-cell SDTFs and their cognate signals would delineate mechanisms of β-cell maturation and functional adaptation, which has direct implications for diabetes therapies and for generating mature β-cells from stem cells.
Collapse
Affiliation(s)
- Matthew Wortham
- Departments of Pediatrics and Cellular & Molecular Medicine, Pediatric Diabetes Research Center, University of California, San Diego, La Jolla, CA 92093, USA
| | - Maike Sander
- Departments of Pediatrics and Cellular & Molecular Medicine, Pediatric Diabetes Research Center, University of California, San Diego, La Jolla, CA 92093, USA.
| |
Collapse
|
12
|
de Boer P, Giepmans BN. State-of-the-art microscopy to understand islets of Langerhans: what to expect next? Immunol Cell Biol 2021; 99:509-520. [PMID: 33667022 PMCID: PMC8252556 DOI: 10.1111/imcb.12450] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Revised: 03/03/2021] [Accepted: 03/04/2021] [Indexed: 12/12/2022]
Abstract
The discovery of Langerhans and microscopic description of islets in the pancreas were crucial steps in the discovery of insulin. Over the past 150 years, many discoveries in islet biology and type 1 diabetes have been made using powerful microscopic techniques. In the past decade, combination of new probes, animal and tissue models, application of new biosensors and automation of light and electron microscopic methods and other (sub)cellular imaging modalities have proven their potential in understanding the beta cell under (patho)physiological conditions. The imaging evolution, from fluorescent jellyfish to real‐time intravital functional imaging, the revolution in automation and data handling and the increased resolving power of analytical imaging techniques are now converging. Here, we review innovative approaches that address islet biology from new angles by studying cells and molecules at high spatiotemporal resolution and in live models. Broad implementation of these cellular imaging techniques will shed new light on cause/consequence of (mal)function in islets of Langerhans in the years to come.
Collapse
Affiliation(s)
- Pascal de Boer
- Department of Biomedical Sciences of Cells and Systems, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Ben Ng Giepmans
- Department of Biomedical Sciences of Cells and Systems, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| |
Collapse
|
13
|
Szlapinski SK, Bennett J, Strutt BJ, Hill DJ. Increased alpha and beta cell mass during mouse pregnancy is not dependent on transdifferentiation. Exp Biol Med (Maywood) 2021; 246:617-628. [PMID: 33231513 PMCID: PMC7934144 DOI: 10.1177/1535370220972686] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2020] [Accepted: 10/21/2020] [Indexed: 12/12/2022] Open
Abstract
Maternal pancreatic beta-cell mass (BCM) increases during pregnancy to compensate for relative insulin resistance. If BCM expansion is suboptimal, gestational diabetes mellitus can develop. Alpha-cell mass (ACM) also changes during pregnancy, but there is a lack of information about α-cell plasticity in pregnancy and whether α- to β-cell transdifferentiation can occur. To investigate this, we used a mouse model of gestational glucose intolerance induced by feeding low-protein (LP) diet from conception until weaning and compared pregnant female offspring to control diet-fed animals. Control and LP pancreata were collected for immunohistochemical analysis and serum glucagon levels were measured. In order to lineage trace α- to β-cell conversion, we utilized transgenic mice expressing yellow fluorescent protein behind the proglucagon gene promoter (Gcg-Cre/YFP) and collected pancreata for histology at various gestational timepoints. Alpha-cell proliferation increased significantly at gestational day (GD) 9.5 in control pregnancies resulting in an increased ACM at GD18.5, and this was significantly reduced in LP animals. Despite these changes, serum glucagon was higher in LP mice at GD18.5. Pregnant Gcg-Cre/YFP mice showed no increase in the abundance of insulin+YFP+glucagon- cells (phenotypic β-cells). A second population of insulin+YFP+glucagon+ cells was identified which also did not alter during pregnancy. However, there was an altered anatomical distribution within islets with fewer insulin+YFP+glucagon- cells but more insulin+YFP+glucagon+ cells being present in the islet mantle at GD18.5. These findings demonstrate that dynamic changes in ACM occur during normal pregnancy and were altered in glucose-intolerant pregnancies.
Collapse
Affiliation(s)
- Sandra K Szlapinski
- Department of Physiology and Pharmacology, Western University, London, ON N6A 3K7, Canada
- Lawson Health Research Institute, Diabetes & Endocrinology, St Joseph’s Health Care, London, ON N6A 4V2, Canada
| | - Jamie Bennett
- Lawson Health Research Institute, Diabetes & Endocrinology, St Joseph’s Health Care, London, ON N6A 4V2, Canada
| | - Brenda J Strutt
- Department of Physiology and Pharmacology, Western University, London, ON N6A 3K7, Canada
- Lawson Health Research Institute, Diabetes & Endocrinology, St Joseph’s Health Care, London, ON N6A 4V2, Canada
| | - David J Hill
- Department of Physiology and Pharmacology, Western University, London, ON N6A 3K7, Canada
- Lawson Health Research Institute, Diabetes & Endocrinology, St Joseph’s Health Care, London, ON N6A 4V2, Canada
| |
Collapse
|
14
|
Norris D, Yang P, Shin SY, Kearney AL, Kim HJ, Geddes T, Senior AM, Fazakerley DJ, Nguyen LK, James DE, Burchfield JG. Signaling Heterogeneity is Defined by Pathway Architecture and Intercellular Variability in Protein Expression. iScience 2021; 24:102118. [PMID: 33659881 PMCID: PMC7892930 DOI: 10.1016/j.isci.2021.102118] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Revised: 01/07/2021] [Accepted: 01/22/2021] [Indexed: 12/12/2022] Open
Abstract
Insulin's activation of PI3K/Akt signaling, stimulates glucose uptake by enhancing delivery of GLUT4 to the cell surface. Here we examined the origins of intercellular heterogeneity in insulin signaling. Akt activation alone accounted for ~25% of the variance in GLUT4, indicating that additional sources of variance exist. The Akt and GLUT4 responses were highly reproducible within the same cell, suggesting the variance is between cells (extrinsic) and not within cells (intrinsic). Generalized mechanistic models (supported by experimental observations) demonstrated that the correlation between the steady-state levels of two measured signaling processes decreases with increasing distance from each other and that intercellular variation in protein expression (as an example of extrinsic variance) is sufficient to account for the variance in and between Akt and GLUT4. Thus, the response of a population to insulin signaling is underpinned by considerable single-cell heterogeneity that is largely driven by variance in gene/protein expression between cells. Insulin signaling is heterogeneous between cells in the same population The temporal response of signaling components within a cell is highly reproducible Upstream responses (Akt) can only partially predict downstream response (GLUT4) Protein expression variance is a driver of intercellular signaling heterogeneity
Collapse
Affiliation(s)
- Dougall Norris
- Charles Perkins Centre, The University of Sydney, Sydney, NSW 2006, Australia.,School of Life and Environmental Sciences, The University of Sydney, Sydney, NSW 2006, Australia
| | - Pengyi Yang
- Charles Perkins Centre, The University of Sydney, Sydney, NSW 2006, Australia.,School of Mathematics and Statistics, The University of Sydney, Sydney, NSW 2006, Australia.,Computational Systems Biology Group, Children's Medical Research Institute, Faculty of Medicine and Health, The University of Sydney, Westmead, NSW 2145, Australia
| | - Sung-Young Shin
- Department of Biochemistry and Molecular Biology, School of Biomedical Sciences, Monash University, Clayton, VIC 3800, Australia.,Biomedicine Discovery Institute, Monash University, Clayton, VIC 3800, Australia
| | - Alison L Kearney
- Charles Perkins Centre, The University of Sydney, Sydney, NSW 2006, Australia.,School of Life and Environmental Sciences, The University of Sydney, Sydney, NSW 2006, Australia
| | - Hani Jieun Kim
- Charles Perkins Centre, The University of Sydney, Sydney, NSW 2006, Australia.,School of Mathematics and Statistics, The University of Sydney, Sydney, NSW 2006, Australia.,Computational Systems Biology Group, Children's Medical Research Institute, Faculty of Medicine and Health, The University of Sydney, Westmead, NSW 2145, Australia
| | - Thomas Geddes
- Charles Perkins Centre, The University of Sydney, Sydney, NSW 2006, Australia.,School of Mathematics and Statistics, The University of Sydney, Sydney, NSW 2006, Australia.,Computational Systems Biology Group, Children's Medical Research Institute, Faculty of Medicine and Health, The University of Sydney, Westmead, NSW 2145, Australia
| | - Alistair M Senior
- Charles Perkins Centre, The University of Sydney, Sydney, NSW 2006, Australia.,School of Life and Environmental Sciences, The University of Sydney, Sydney, NSW 2006, Australia
| | - Daniel J Fazakerley
- Charles Perkins Centre, The University of Sydney, Sydney, NSW 2006, Australia
| | - Lan K Nguyen
- Department of Biochemistry and Molecular Biology, School of Biomedical Sciences, Monash University, Clayton, VIC 3800, Australia.,Biomedicine Discovery Institute, Monash University, Clayton, VIC 3800, Australia
| | - David E James
- Charles Perkins Centre, The University of Sydney, Sydney, NSW 2006, Australia.,School of Life and Environmental Sciences, The University of Sydney, Sydney, NSW 2006, Australia.,Sydney Medical School, The University of Sydney, Sydney, NSW 2006, Australia
| | - James G Burchfield
- Charles Perkins Centre, The University of Sydney, Sydney, NSW 2006, Australia.,School of Life and Environmental Sciences, The University of Sydney, Sydney, NSW 2006, Australia
| |
Collapse
|
15
|
Kolic J, Beet L, Overby P, Cen HH, Panzhinskiy E, Ure DR, Cross JL, Huizinga RB, Johnson JD. Differential Effects of Voclosporin and Tacrolimus on Insulin Secretion From Human Islets. Endocrinology 2020; 161:5902465. [PMID: 32894758 PMCID: PMC7567406 DOI: 10.1210/endocr/bqaa162] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Accepted: 09/02/2020] [Indexed: 12/16/2022]
Abstract
The incidence of new onset diabetes after transplant (NODAT) has increased over the past decade, likely due to calcineurin inhibitor-based immunosuppressants, including tacrolimus (TAC) and cyclosporin. Voclosporin (VCS), a next-generation calcineurin inhibitor, is reported to cause fewer incidences of NODAT but the reason is unclear. While calcineurin signaling plays important roles in pancreatic β-cell survival, proliferation, and function, its effects on human β-cells remain understudied. In particular, we do not understand why some calcineurin inhibitors have more profound effects on the incidence of NODAT. We compared the effects of TAC and VCS on the dynamics of insulin secretory function, programmed cell death rate, and the transcriptomic profile of human islets. We studied 2 clinically relevant doses of TAC (10 ng/mL, 30 ng/mL) and VCS (20 ng/mL, 60 ng/mL), meant to approximate the clinical trough and peak concentrations. TAC, but not VCS, caused a significant impairment of 15 mM glucose-stimulated and 30 mM KCl-stimulated insulin secretion. This points to molecular defects in the distal stages of exocytosis after voltage-gated Ca2+ entry. No significant effects on islet cell survival or total insulin content were identified. RNA sequencing showed that TAC significantly decreased the expression of 17 genes, including direct and indirect regulators of exocytosis (SYT16, TBC1D30, PCK1, SMOC1, SYT5, PDK4, and CREM), whereas VCS has less broad, and milder, effects on gene expression. Clinically relevant doses of TAC, but not VCS, directly inhibit insulin secretion from human islets, likely via transcriptional control of exocytosis machinery.
Collapse
Affiliation(s)
- Jelena Kolic
- Diabetes Research Group, Life Sciences Institute, Department of Cellular and Physiological Sciences & Department of Surgery, University of British Columbia, Vancouver, Canada
| | - Leanne Beet
- Diabetes Research Group, Life Sciences Institute, Department of Cellular and Physiological Sciences & Department of Surgery, University of British Columbia, Vancouver, Canada
| | - Peter Overby
- Diabetes Research Group, Life Sciences Institute, Department of Cellular and Physiological Sciences & Department of Surgery, University of British Columbia, Vancouver, Canada
| | - Haoning Howard Cen
- Diabetes Research Group, Life Sciences Institute, Department of Cellular and Physiological Sciences & Department of Surgery, University of British Columbia, Vancouver, Canada
| | - Evgeniy Panzhinskiy
- Diabetes Research Group, Life Sciences Institute, Department of Cellular and Physiological Sciences & Department of Surgery, University of British Columbia, Vancouver, Canada
| | - Daren R Ure
- Hepion Pharmaceuticals, Edmonton, Alberta, Canada
| | | | | | - James D Johnson
- Correspondence: Professor James D. Johnson, PhD, Faculty of Medicine, Department of Cellular and Physiological Sciences & Department of Surgery, The University of British Columbia, Life Sciences Institute, 5358 – 2350 Health Sciences Mall, Vancouver, British Columbia, Canada, V6T 1Z3. E-mail: ; Twitter: @JimJohnsonSci
| |
Collapse
|
16
|
Huey J, Keutler K, Schultz C. Chemical Biology Toolbox for Studying Pancreatic Islet Function - A Perspective. Cell Chem Biol 2020; 27:1015-1031. [PMID: 32822616 DOI: 10.1016/j.chembiol.2020.07.023] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2020] [Revised: 07/10/2020] [Accepted: 07/28/2020] [Indexed: 01/14/2023]
Abstract
The islets of Langerhans represent one of the many complex endocrine organs in mammals. Traditionally, islet function is studied by a mixture of physiological, cell biological, and molecular biological methods. Recently, novel techniques stemming from the ever-increasing toolbox provided by chemical laboratories have been added to the repertoire. Many emerging techniques will soon be available to manipulate and monitor islet function at the single-cell level and potentially in intact model animals, as well as in isolated human islets. Here, we review the most current small-molecule-based and genetically encoded molecular tool sets available to study islet function. We provide an outlook regarding future tool developments that will impact islet research, with a special focus on the interplay between different islet cell types.
Collapse
Affiliation(s)
- Julia Huey
- Program in Physiology and Pharmacology, Oregon Health and Science University, Portland, OR 97210, USA; Department of Chemical Physiology and Biochemistry, Oregon Health and Science University, Portland, OR 97210, USA
| | - Kaya Keutler
- Program in Physiology and Pharmacology, Oregon Health and Science University, Portland, OR 97210, USA; Department of Chemical Physiology and Biochemistry, Oregon Health and Science University, Portland, OR 97210, USA
| | - Carsten Schultz
- Department of Chemical Physiology and Biochemistry, Oregon Health and Science University, Portland, OR 97210, USA.
| |
Collapse
|
17
|
Chawla P, Delgadillo Silva LF, Ninov N. Insights on β-cell regeneration from the zebrafish shoal: from generation of cells to functional integration. CURRENT OPINION IN PHYSIOLOGY 2020. [DOI: 10.1016/j.cophys.2019.11.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
18
|
High spatiotemporal resolution and low photo-toxicity fluorescence imaging in live cells and in vivo. Biochem Soc Trans 2020; 47:1635-1650. [PMID: 31829403 DOI: 10.1042/bst20190020] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2019] [Revised: 11/22/2019] [Accepted: 11/26/2019] [Indexed: 12/18/2022]
Abstract
Taking advantage of high contrast and molecular specificity, fluorescence microscopy has played a critical role in the visualization of subcellular structures and function, enabling unprecedented exploration from cell biology to neuroscience in living animals. To record and quantitatively analyse complex and dynamic biological processes in real time, fluorescence microscopes must be capable of rapid, targeted access deep within samples at high spatial resolutions, using techniques including super-resolution fluorescence microscopy, light sheet fluorescence microscopy, and multiple photon microscopy. In recent years, tremendous breakthroughs have improved the performance of these fluorescence microscopies in spatial resolution, imaging speed, and penetration. Here, we will review recent advancements of these microscopies in terms of the trade-off among spatial resolution, sampling speed and penetration depth and provide a view of their possible applications.
Collapse
|
19
|
Idevall-Hagren O, Tengholm A. Metabolic regulation of calcium signaling in beta cells. Semin Cell Dev Biol 2020; 103:20-30. [PMID: 32085965 DOI: 10.1016/j.semcdb.2020.01.008] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2019] [Revised: 01/10/2020] [Accepted: 01/28/2020] [Indexed: 12/22/2022]
Abstract
The cytoplasmic Ca2+ concentration ([Ca2+]cyt) regulates a vast number of cellular functions, including insulin secretion from beta cells. The major physiological insulin secretagogue, glucose, triggers [Ca2+]cyt oscillations in beta cells. Synchronization of the oscillations among the beta cells within an islet underlies the generation of pulsatile insulin secretion. This review describes the mechanisms generating [Ca2+]cyt oscillations, the interactions between [Ca2+]cyt and cell metabolism, as well as the contribution of various organelles to the shaping of [Ca2+]cyt signals and insulin secretion. It also discusses how Ca2+ signals are coordinated and spread throughout the islets and data indicating that altered Ca2+ signaling is associated with beta cell dysfunction and development of type 2 diabetes.
Collapse
Affiliation(s)
- Olof Idevall-Hagren
- Department of Medical Cell Biology, Uppsala University, Biomedical Centre, Box 571, SE-751 23 Uppsala, Sweden
| | - Anders Tengholm
- Department of Medical Cell Biology, Uppsala University, Biomedical Centre, Box 571, SE-751 23 Uppsala, Sweden.
| |
Collapse
|
20
|
Starling S. Imaging β-cell function in vivo. Nat Rev Endocrinol 2019; 15:192. [PMID: 30783218 DOI: 10.1038/s41574-019-0181-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|