1
|
Kaleem M, Azmi L, Shahzad N, Taha M, Kumar S, Mujtaba MA, Hazazi AAH, Kayali A. Epigenetic dynamics and molecular mechanisms in oncogenesis, tumor progression, and therapy resistance. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2025:10.1007/s00210-025-04217-5. [PMID: 40358685 DOI: 10.1007/s00210-025-04217-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/04/2025] [Accepted: 04/22/2025] [Indexed: 05/15/2025]
Abstract
Cancer progression is governed by a dynamic interplay of genetic, epigenetic, and molecular mechanisms that regulate tumor initiation, growth, metastasis, and therapy resistance. This review highlights key molecular pathways involved in oncogenesis, focusing on genetic alterations (mutations, amplifications, and translocations) in oncogenes (RAS and MYC) and tumor suppressor genes (TP53 and PTEN). Additionally, genomic instability, resulting from defective DNA repair mechanisms like mismatch repair and homologous recombination (HR), is identified as a critical factor contributing to tumor heterogeneity and clonal evolution. Epigenetic modifications, including DNA methylation, histone acetylation, and non-coding RNA regulation, further remodel chromatin structure and modulate gene expression, influencing tumor initiation, growth, metastasis, and response to treatment. Post-translational modifications, such as the attachment of a Small Ubiquitin-like Modifier (SUMO) to a target protein and ubiquitination, further influence autophagy, apoptosis, and cellular plasticity, enabling cancer cells to survive therapeutic stress. Cutting-edge technologies such as CRISPR-Cas9-mediated epigenome editing and single-cell RNA sequencing have opened new doors to understanding cellular diversity and regulatory networks in cancer. The review further examines the tumor microenvironment, including stromal remodeling, immune evasion, and hypoxia-driven signaling pathways, which are critical modulators of tumor progression and drug resistance to treatment. By integrating molecular, genetic, and epigenetic perspectives, this study underscores the crucial need for innovative, targeted therapeutic approaches to address the complexity and adaptability of cancer, thereby paving the way for more effective treatments.
Collapse
Affiliation(s)
- Mohammed Kaleem
- Department of Pharmacology, Dadasaheb Balpande College of Pharmacy, Rashtrasant Tukadoji Maharaj Nagpur University, Nagpur, Maharashtra, India
| | - Lubna Azmi
- Department of Pharmaceutical Chemistry, Institute of Pharmaceutical Science, University of Lucknow, Uttar Pradesh, Lucknow, India
| | - Naiyer Shahzad
- Department of Pharmacology and Toxicology, Faculty of Medicine, Umm Al-Qura University, Makkah, Saudi Arabia
| | - Murtada Taha
- Department of Clinical Laboratory Science, Prince Sultan Military College of Health Sciences, Dhahran, Saudi Arabia
| | - Shiv Kumar
- School of Biomedical Engineering, Indian Institute of Technology (BHU) Varanasi, Uttar Pradesh, Varanasi, India
| | - Md Ali Mujtaba
- Department of Pharmaceutics, Faculty of Pharmacy, Northern Border University, Arar, Saudi Arabia.
- Center for Health Research, Northern Border University, Arar, Saudi Arabia.
| | | | - Asaad Kayali
- Department of Health Sciences, Higher Colleges of Technology, Al Ain, United Arab Emirates
| |
Collapse
|
2
|
Parikh C, Glenn RA, Shi Y, Chatterjee K, Kasliwal K, Swanzey EE, Singer S, Do SC, Zhan Y, Furuta Y, Tahiliani M, Apostolou E, Polyzos A, Koche R, Mezey JG, Vierbuchen T, Stadtfeld M. Genetic variation modulates susceptibility to aberrant DNA hypomethylation and imprint deregulation in naive pluripotent stem cells. Stem Cell Reports 2025; 20:102450. [PMID: 40086447 PMCID: PMC12069886 DOI: 10.1016/j.stemcr.2025.102450] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Revised: 02/13/2025] [Accepted: 02/13/2025] [Indexed: 03/16/2025] Open
Abstract
Naive pluripotent stem cells (nPSCs) frequently undergo pathological loss of DNA methylation at imprinted gene loci, posing a hurdle for biomedical applications and underscoring the need to identify underlying causes. We show that nPSCs from inbred mouse strains exhibit strain-specific susceptibility to locus-specific deregulation of imprinting marks during reprogramming and upon exposure to a mitogen-activated protein kinase (MAPK) inhibitor, a common approach to maintain naive pluripotency. Analysis of genetically diverse nPSCs from the Diversity Outbred (DO) stock confirms the impact of genetic variation on epigenome stability, which we leverage to identify trans-acting quantitative trait loci (QTLs) that modulate DNA methylation levels at specific targets or genome-wide. Analysis of multi-target QTLs on chromosomes 4 and 17 suggests candidate transcriptional regulators contributing to DNA methylation maintenance in nPSCs. We propose that genetic variants represent biomarkers to identify pluripotent cell lines with desirable properties and may allow the targeted engineering of nPSCs with stable epigenomes.
Collapse
Affiliation(s)
- C Parikh
- Sanford I. Weill Department of Medicine, Sandra and Edward Meyer Cancer Center, Weill Cornell Medicine, New York, NY 10065, USA; Department of Molecular, Cell and Cancer Biology, University of Massachusetts Chan Medical School, Worcester, MA 01655, USA
| | - R A Glenn
- Developmental Biology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA; Center for Stem Cell Biology, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA; Cell and Developmental Biology Program, Weill Cornell Graduate School of Medical Sciences, Cornell University, New York, NY, USA
| | - Y Shi
- Department of Computational Biology, Cornell University, Ithaca, NY 14853, USA
| | - K Chatterjee
- Sanford I. Weill Department of Medicine, Sandra and Edward Meyer Cancer Center, Weill Cornell Medicine, New York, NY 10065, USA
| | - K Kasliwal
- Sanford I. Weill Department of Medicine, Sandra and Edward Meyer Cancer Center, Weill Cornell Medicine, New York, NY 10065, USA
| | - E E Swanzey
- The Jackson Laboratory, Bar Harbor, ME 04609, USA
| | - S Singer
- Developmental Biology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA; Center for Stem Cell Biology, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - S C Do
- Developmental Biology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA; Center for Stem Cell Biology, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Y Zhan
- Mouse Genetics Core Facility, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Y Furuta
- Mouse Genetics Core Facility, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - M Tahiliani
- Department of Biology, New York University, New York, NY 10003, USA
| | - E Apostolou
- Sanford I. Weill Department of Medicine, Sandra and Edward Meyer Cancer Center, Weill Cornell Medicine, New York, NY 10065, USA
| | - A Polyzos
- Sanford I. Weill Department of Medicine, Sandra and Edward Meyer Cancer Center, Weill Cornell Medicine, New York, NY 10065, USA
| | - R Koche
- Center for Epigenetics Research, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - J G Mezey
- Department of Computational Biology, Cornell University, Ithaca, NY 14853, USA.
| | - T Vierbuchen
- Developmental Biology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA; Center for Stem Cell Biology, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA.
| | - M Stadtfeld
- Sanford I. Weill Department of Medicine, Sandra and Edward Meyer Cancer Center, Weill Cornell Medicine, New York, NY 10065, USA.
| |
Collapse
|
3
|
Ahn J, Hwang IS, Park MR, Rosa-Velazquez M, Cho IC, Relling AE, Hwang S, Lee K. Evolutionary lineage-specific genomic imprinting at the ZNF791 locus. PLoS Genet 2025; 21:e1011532. [PMID: 39813209 PMCID: PMC11734915 DOI: 10.1371/journal.pgen.1011532] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2024] [Accepted: 12/09/2024] [Indexed: 01/18/2025] Open
Abstract
Genomic imprinting is an epigenetic process that results in parent-of-origin effects on mammalian development and growth. Research on genomic imprinting in domesticated animals has lagged due to a primary focus on orthologs of mouse and human imprinted genes. This emphasis has limited the discovery of imprinted genes specific to livestock. To identify genomic imprinting in pigs, we generated parthenogenetic porcine embryos alongside biparental normal embryos, and then performed whole-genome bisulfite sequencing and RNA sequencing on these samples. In our analyses, we discovered a maternally methylated differentially methylated region within the orthologous ZNF791 locus in pigs. Additionally, we identified both a major imprinted isoform of the ZNF791-like gene and an unannotated antisense transcript that has not been previously annotated. Importantly, our comparative analyses of the orthologous ZNF791 gene in various eutherian mammals, including humans, non-human primates, rodents, artiodactyls, and dogs, revealed that this gene is subjected to genomic imprinting exclusively in domesticated animals, thereby highlighting lineage-specific imprinting. Furthermore, we explored the potential mechanisms behind the establishment of maternal DNA methylation imprints in porcine and bovine oocytes, supporting the notion that integration of transposable elements, active transcription, and histone modification may collectively contribute to the methylation of embedded intragenic CpG island promoters. Our findings convey fundamental insights into molecular and evolutionary aspects of livestock species-specific genomic imprinting and provide critical agricultural implications.
Collapse
Affiliation(s)
- Jinsoo Ahn
- Department of Animal Sciences, The Ohio State University, Columbus, Ohio, United States of America
| | - In-Sul Hwang
- National Institute of Animal Science, Rural Development Administration, Jeonbuk 55365, Republic of Korea
- Columbia Center for Translational Immunology, Columbia University Irving Medical Center, Columbia University, New York, New York, United States of America
| | - Mi-Ryung Park
- National Institute of Animal Science, Rural Development Administration, Jeonbuk 55365, Republic of Korea
| | - Milca Rosa-Velazquez
- Department of Animal Sciences, The Ohio State University, Wooster, Ohio, United States of America
| | - In-Cheol Cho
- National Institute of Animal Science, Rural Development Administration, Jeonbuk 55365, Republic of Korea
| | - Alejandro E. Relling
- Department of Animal Sciences, The Ohio State University, Wooster, Ohio, United States of America
| | - Seongsoo Hwang
- National Institute of Animal Science, Rural Development Administration, Jeonbuk 55365, Republic of Korea
| | - Kichoon Lee
- Department of Animal Sciences, The Ohio State University, Columbus, Ohio, United States of America
| |
Collapse
|
4
|
Jarred EG, Western PS. Polycomb in female reproductive health: patterning the present and programming the future. Reprod Fertil Dev 2024; 36:RD24152. [PMID: 39636716 DOI: 10.1071/rd24152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2024] [Accepted: 11/14/2024] [Indexed: 12/07/2024] Open
Abstract
Epigenetic modifications regulate chromatin accessibility, gene expression, cell differentiation and tissue development. As epigenetic modifications can be inherited via mitotic and meiotic cell divisions, they enable a heritable memory of cell identity and function and can alter inherited characteristics in the next generation. Tight regulation of epigenetic information is critical for normal cell function and is often disrupted in diseases including cancer, metabolic, neurological and inherited congenital conditions. The ovary performs critical functions in female reproductive health and fertility, including oocyte and sex-hormone production. Oocytes undergo extensive epigenetic programming including the establishment of maternal genomic imprints, which are critical for offspring health and development. Epigenetic modifiers also regulate ovarian somatic cells, such as granulosa and theca cells which support oocytes and produce hormones. While ovarian dysfunction contributes to serious ovarian conditions such as primary ovarian insufficiency (POI), polycystic ovary syndrome (PCOS) and ovarian cancers, the roles of epigenetic modifications in the ovary and their contribution to ovarian dysfunction are not properly understood. Here we review recent advancements in understanding Polycomb proteins, important epigenetic modifiers that have emerging roles in ovarian development and maternal epigenetic inheritance. Polycomb group proteins (PcGs) contribute to the faithful establishment of epigenetic information in oocytes, a process essential for normal offspring development in mice. Emerging evidence also indicates that PcGs regulate ovarian function and female fertility. Understanding these and similar mechanisms will provide greater insight into the epigenetic regulation of ovarian and oocyte function, and how its disruption can impact reproductive health and maternal inheritance.
Collapse
Affiliation(s)
- Ellen G Jarred
- Centre for Reproductive Health, Hudson Institute of Medical Research and Department of Molecular and Translational Science, Monash University, Clayton, Vic, Australia
| | - Patrick S Western
- Centre for Reproductive Health, Hudson Institute of Medical Research and Department of Molecular and Translational Science, Monash University, Clayton, Vic, Australia
| |
Collapse
|
5
|
Rajaram N, Benzler K, Bashtrykov P, Jeltsch A. Allele-specific DNA demethylation editing leads to stable upregulation of allele-specific gene expression. iScience 2024; 27:111007. [PMID: 39429790 PMCID: PMC11490731 DOI: 10.1016/j.isci.2024.111007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2024] [Revised: 08/12/2024] [Accepted: 09/17/2024] [Indexed: 10/22/2024] Open
Abstract
Epigenome editing is an emerging technology that allows to rewrite epigenome states and reprogram gene expression. Here, we have developed allele-specific DNA demethylation editing at gene promoters containing an SNP by sgRNA/dCas9 mediated recuitment of TET1. Maximal DNA demethylation (up to 90%) was observed 6 days after transient transfection of the epigenome editors and it was almost stable for 15 days. After allele-specific targeting, DNA demethylation was up to 15-fold more efficient at the targeted allele. Our data show that locus-specific and allele-specific DNA demethylation can trigger the expression of previously silenced genes. Allele-specific DNA demethylation shifted allelic expression ratios about 4-fold. Allele-specific DNA demethylation could be used to correct aberrant imprinting in patients suffering from imprinting disorders and to study the roles of individual alleles of a gene in a given cellular context.
Collapse
Affiliation(s)
- Nivethika Rajaram
- Institute of Biochemistry and Technical Biochemistry, University of Stuttgart, Allmandring 31, 70569 Stuttgart, Germany
| | - Katharina Benzler
- Institute of Biochemistry and Technical Biochemistry, University of Stuttgart, Allmandring 31, 70569 Stuttgart, Germany
| | - Pavel Bashtrykov
- Institute of Biochemistry and Technical Biochemistry, University of Stuttgart, Allmandring 31, 70569 Stuttgart, Germany
| | - Albert Jeltsch
- Institute of Biochemistry and Technical Biochemistry, University of Stuttgart, Allmandring 31, 70569 Stuttgart, Germany
| |
Collapse
|
6
|
Edwards MM, Wang N, Sagi I, Kinreich S, Benvenisty N, Gerhardt J, Egli D, Koren A. Parent-of-origin-specific DNA replication timing is confined to large imprinted regions. Cell Rep 2024; 43:114700. [PMID: 39235941 DOI: 10.1016/j.celrep.2024.114700] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 06/19/2024] [Accepted: 08/14/2024] [Indexed: 09/07/2024] Open
Abstract
Genomic imprinting involves differential DNA methylation and gene expression between homologous paternal and maternal loci. It remains unclear, however, whether DNA replication also shows parent-of-origin-specific patterns at imprinted or other genomic regions. Here, we investigate genome-wide asynchronous DNA replication utilizing uniparental human embryonic stem cells containing either maternal-only (parthenogenetic) or paternal-only (androgenetic) DNA. Four clusters of imprinted genes exhibited differential replication timing based on parent of origin, while the remainder of the genome, 99.82%, showed no significant replication asynchrony between parental origins. Active alleles in imprinted gene clusters replicated earlier than their inactive counterparts. At the Prader-Willi syndrome locus, replication asynchrony spanned virtually the entirety of S phase. Replication asynchrony was carried through differentiation to neuronal precursor cells in a manner consistent with gene expression. This study establishes asynchronous DNA replication as a hallmark of large imprinted gene clusters.
Collapse
Affiliation(s)
- Matthew M Edwards
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY 14853, USA
| | - Ning Wang
- Department of Pediatrics and Naomi Berrie Diabetes Center, Columbia University, New York, NY 10032, USA; Columbia University Stem Cell Initiative, New York, NY 10032, USA
| | - Ido Sagi
- The Azrieli Center for Stem Cells and Genetic Research, Department of Genetics, Silberman Institute of Life Sciences, The Hebrew University, Jerusalem 91904, Israel
| | - Shay Kinreich
- The Azrieli Center for Stem Cells and Genetic Research, Department of Genetics, Silberman Institute of Life Sciences, The Hebrew University, Jerusalem 91904, Israel
| | - Nissim Benvenisty
- The Azrieli Center for Stem Cells and Genetic Research, Department of Genetics, Silberman Institute of Life Sciences, The Hebrew University, Jerusalem 91904, Israel.
| | - Jeannine Gerhardt
- Ronald O. Perelman and Claudia Cohen Center for Reproductive Medicine, Weill Cornell Medicine, New York, NY 10065, USA; Department of Obstetrics and Gynecology, Weill Cornell Medicine, New York, NY 10065, USA.
| | - Dieter Egli
- Department of Pediatrics and Naomi Berrie Diabetes Center, Columbia University, New York, NY 10032, USA; Columbia University Stem Cell Initiative, New York, NY 10032, USA.
| | - Amnon Koren
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY 14853, USA; Department of Molecular and Cellular Biology, Roswell Park Comprehensive Cancer Center, Buffalo, NY 14263, USA.
| |
Collapse
|
7
|
Bai X, Yao HC, Wu B, Liu LR, Ding YY, Xiao CL. DeepBAM: a high-accuracy single-molecule CpG methylation detection tool for Oxford nanopore sequencing. Brief Bioinform 2024; 25:bbae413. [PMID: 39177264 PMCID: PMC11342253 DOI: 10.1093/bib/bbae413] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Revised: 07/29/2024] [Accepted: 08/05/2024] [Indexed: 08/24/2024] Open
Abstract
Recent nanopore sequencing system (R10.4) has enhanced base calling accuracy and is being increasingly utilized for detecting CpG methylation state. However, the robustness and universality of the methylation calling model in officially supplied Dorado remains poorly tested. In this study, we obtained heterogeneous datasets from human and plant sources to carry out comprehensive evaluations, which showed that Dorado performed significantly different across datasets. We therefore developed deep neural networks and implemented several optimizations in training a new model called DeepBAM. DeepBAM achieved superior and more stable performances compared with Dorado, including higher area under the ROC curves (98.47% on average and up to 7.36% improvement) and F1 scores (94.97% on average and up to 16.24% improvement) across the datasets. DeepBAM-based whole genome methylation frequencies have achieved >0.95 correlations with BS-seq on four of five datasets, outperforming Dorado in all instances. It enables unraveling allele-specific methylation patterns, including regions of transposable elements. The enhanced performance of DeepBAM paves the way for broader applications of nanopore sequencing in CpG methylation studies.
Collapse
Affiliation(s)
- Xin Bai
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, 7 Jinsui Road, Tianhe District, Guangzhou 510060, China
| | - Hui-Cong Yao
- School of Artificial Intelligence, Sun Yat-Sen University, Gaoxin District, Zhuhai 519000, China
| | - Bo Wu
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, 7 Jinsui Road, Tianhe District, Guangzhou 510060, China
| | - Luo-Ran Liu
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, 7 Jinsui Road, Tianhe District, Guangzhou 510060, China
| | - Yu-Ying Ding
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, 7 Jinsui Road, Tianhe District, Guangzhou 510060, China
| | - Chuan-Le Xiao
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, 7 Jinsui Road, Tianhe District, Guangzhou 510060, China
| |
Collapse
|
8
|
Parikh C, Glenn RA, Shi Y, Chatterjee K, Swanzey EE, Singer S, Do SC, Zhan Y, Furuta Y, Tahiliani M, Apostolou E, Polyzos A, Koche R, Mezey JG, Vierbuchen T, Stadtfeld M. Genetic variation modulates susceptibility to aberrant DNA hypomethylation and imprint deregulation in naïve pluripotent stem cells. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.06.26.600805. [PMID: 38979237 PMCID: PMC11230387 DOI: 10.1101/2024.06.26.600805] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/10/2024]
Abstract
Naïve pluripotent stem cells (nPSC) frequently undergo pathological and not readily reversible loss of DNA methylation marks at imprinted gene loci. This abnormality poses a hurdle for using pluripotent cell lines in biomedical applications and underscores the need to identify the causes of imprint instability in these cells. We show that nPSCs from inbred mouse strains exhibit pronounced strain-specific susceptibility to locus-specific deregulation of imprinting marks during reprogramming to pluripotency and upon culture with MAP kinase inhibitors, a common approach to maintain naïve pluripotency. Analysis of genetically highly diverse nPSCs from the Diversity Outbred (DO) stock confirms that genetic variation is a major determinant of epigenome stability in pluripotent cells. We leverage the variable DNA hypomethylation in DO lines to identify several trans-acting quantitative trait loci (QTLs) that determine epigenome stability at either specific target loci or genome-wide. Candidate factors encoded by two multi-target QTLs on chromosomes 4 and 17 suggest specific transcriptional regulators that contribute to DNA methylation maintenance in nPSCs. We propose that genetic variants represent candidate biomarkers to identify pluripotent cell lines with desirable properties and might serve as entry points for the targeted engineering of nPSCs with stable epigenomes. Highlights Naïve pluripotent stem cells from distinct inbred mouse strains exhibit variable DNA methylation levels at imprinted gene loci.The vulnerability of pluripotent stem cells to loss of genomic imprinting caused by MAP kinase inhibition strongly differs between inbred mouse strains.Genetically diverse pluripotent stem cell lines from Diversity Outbred mouse stock allow the identification of quantitative trait loci controlling DNA methylation stability.Genetic variants may serve as biomarkers to identify naïve pluripotent stem cell lines that are epigenetically stable in specific culture conditions.
Collapse
|
9
|
Kerckhofs E, Schubert D. Conserved functions of chromatin regulators in basal Archaeplastida. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2024; 118:1301-1311. [PMID: 37680033 DOI: 10.1111/tpj.16446] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Revised: 08/15/2023] [Accepted: 08/18/2023] [Indexed: 09/09/2023]
Abstract
Chromatin is a dynamic network that regulates genome organization and gene expression. Different types of chromatin regulators are highly conserved among Archaeplastida, including unicellular algae, while some chromatin genes are only present in land plant genomes. Here, we review recent advances in understanding the function of conserved chromatin factors in basal land plants and algae. We focus on the role of Polycomb-group genes which mediate H3K27me3-based silencing and play a role in balancing gene dosage and regulating haploid-to-diploid transitions by tissue-specific repression of the transcription factors KNOX and BELL in many representatives of the green lineage. Moreover, H3K27me3 predominantly occupies repetitive elements which can lead to their silencing in a unicellular alga and basal land plants, while it covers mostly protein-coding genes in higher land plants. In addition, we discuss the role of nuclear matrix constituent proteins as putative functional lamin analogs that are highly conserved among land plants and might have an ancestral function in stress response regulation. In summary, our review highlights the importance of studying chromatin regulation in a wide range of organisms in the Archaeplastida.
Collapse
Affiliation(s)
- Elise Kerckhofs
- Epigenetics of Plants, Institute for Biology, Freie Universität Berlin, Berlin, Germany
| | - Daniel Schubert
- Epigenetics of Plants, Institute for Biology, Freie Universität Berlin, Berlin, Germany
| |
Collapse
|
10
|
Hubert JN, Perret M, Riquet J, Demars J. Livestock species as emerging models for genomic imprinting. Front Cell Dev Biol 2024; 12:1348036. [PMID: 38500688 PMCID: PMC10945557 DOI: 10.3389/fcell.2024.1348036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Accepted: 01/19/2024] [Indexed: 03/20/2024] Open
Abstract
Genomic imprinting is an epigenetically-regulated process of central importance in mammalian development and evolution. It involves multiple levels of regulation, with spatio-temporal heterogeneity, leading to the context-dependent and parent-of-origin specific expression of a small fraction of the genome. Genomic imprinting studies have therefore been essential to increase basic knowledge in functional genomics, evolution biology and developmental biology, as well as with regard to potential clinical and agrigenomic perspectives. Here we offer an overview on the contribution of livestock research, which features attractive resources in several respects, for better understanding genomic imprinting and its functional impacts. Given the related broad implications and complexity, we promote the use of such resources for studying genomic imprinting in a holistic and integrative view. We hope this mini-review will draw attention to the relevance of livestock genomic imprinting studies and stimulate research in this area.
Collapse
Affiliation(s)
| | | | | | - Julie Demars
- GenPhySE, Université de Toulouse, INRAE, ENVT, Castanet Tolosan, France
| |
Collapse
|
11
|
Albrecht C, Rajaram N, Broche J, Bashtrykov P, Jeltsch A. Locus-Specific and Stable DNA Demethylation at the H19/ IGF2 ICR1 by Epigenome Editing Using a dCas9-SunTag System and the Catalytic Domain of TET1. Genes (Basel) 2024; 15:80. [PMID: 38254969 PMCID: PMC10815749 DOI: 10.3390/genes15010080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 01/04/2024] [Accepted: 01/05/2024] [Indexed: 01/24/2024] Open
Abstract
DNA methylation is critically involved in the regulation of chromatin states and cell-type-specific gene expression. The exclusive expression of imprinted genes from either the maternal or the paternal allele is regulated by allele-specific DNA methylation at imprinting control regions (ICRs). Aberrant DNA hyper- or hypomethylation at the ICR1 of the H19/IGF2 imprinting locus is characteristic for the imprinting disorders Beckwith-Wiedemann syndrome (BWS) and Silver-Russell syndrome (SRS), respectively. In this paper, we performed epigenome editing to induce targeted DNA demethylation at ICR1 in HEK293 cells using dCas9-SunTag and the catalytic domain of TET1. 5-methylcytosine (5mC) levels at the target locus were reduced up to 90% and, 27 days after transient transfection, >60% demethylation was still observed. Consistent with the stable demethylation of CTCF-binding sites within the ICR1, the occupancy of the DNA methylation-sensitive insulator CTCF protein increased by >2-fold throughout the 27 days. Additionally, the H19 expression was increased by 2-fold stably, while IGF2 was repressed though only transiently. Our data illustrate the ability of epigenome editing to implement long-term changes in DNA methylation at imprinting control regions after a single transient treatment, potentially paving the way for therapeutic epigenome editing approaches in the treatment of imprinting disorders.
Collapse
Affiliation(s)
| | | | | | | | - Albert Jeltsch
- Institute of Biochemistry and Technical Biochemistry, University of Stuttgart, Allmandring 31, 70569 Stuttgart, Germany; (C.A.)
| |
Collapse
|
12
|
Weinberg-Shukron A, Youngson NA, Ferguson-Smith AC, Edwards CA. Epigenetic control and genomic imprinting dynamics of the Dlk1-Dio3 domain. Front Cell Dev Biol 2023; 11:1328806. [PMID: 38155837 PMCID: PMC10754522 DOI: 10.3389/fcell.2023.1328806] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Accepted: 11/27/2023] [Indexed: 12/30/2023] Open
Abstract
Genomic imprinting is an epigenetic process whereby genes are monoallelically expressed in a parent-of-origin-specific manner. Imprinted genes are frequently found clustered in the genome, likely illustrating their need for both shared regulatory control and functional inter-dependence. The Dlk1-Dio3 domain is one of the largest imprinted clusters. Genes in this region are involved in development, behavior, and postnatal metabolism: failure to correctly regulate the domain leads to Kagami-Ogata or Temple syndromes in humans. The region contains many of the hallmarks of other imprinted domains, such as long non-coding RNAs and parental origin-specific CTCF binding. Recent studies have shown that the Dlk1-Dio3 domain is exquisitely regulated via a bipartite imprinting control region (ICR) which functions differently on the two parental chromosomes to establish monoallelic expression. Furthermore, the Dlk1 gene displays a selective absence of imprinting in the neurogenic niche, illustrating the need for precise dosage modulation of this domain in different tissues. Here, we discuss the following: how differential epigenetic marks laid down in the gametes cause a cascade of events that leads to imprinting in the region, how this mechanism is selectively switched off in the neurogenic niche, and why studying this imprinted region has added a layer of sophistication to how we think about the hierarchical epigenetic control of genome function.
Collapse
Affiliation(s)
| | - Neil A. Youngson
- School of BioSciences, The University of Melbourne, Parkville, VIC, Australia
| | | | - Carol A. Edwards
- Department of Genetics, University of Cambridge, Cambridge, United Kingdom
| |
Collapse
|
13
|
Yang MY, Hsu CM, Lin PM, Yang CH, Hu ML, Chen IY, Lin SF. Altered expression of imprinted genes in patients with cytogenetically normal‑acute myeloid leukemia: Implications for leukemogenesis and survival outcomes. Mol Clin Oncol 2023; 19:94. [PMID: 37920417 PMCID: PMC10619196 DOI: 10.3892/mco.2023.2690] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Accepted: 09/21/2023] [Indexed: 11/04/2023] Open
Abstract
Genomic imprinting, an epigenetic mechanism that regulates gene expression from parental chromosomes, holds substantial relevance in multiple cancers, including hematopoietic malignancies. In the present study, the expression of a panel of 16 human imprinted genes in bone marrow samples from 64 patients newly diagnosed with cytogenetically normal-acute myeloid leukemia (CN-AML) were examined alongside peripheral blood samples from 85 healthy subjects. The validated findings of the present study revealed significant upregulation of seven genes [COPI coat complex subunit gamma 2 (COPG2), H19 imprinted maternally expressed transcript (H19), insulin like growth factor 2 (IGF2), PEG3 antisense RNA 1 (PEG3-AS1), DNA primase subunit 2 (PRIM2), solute carrier family 22 member 3 SLC22A3 and Zinc finger protein 215 (ZNF215)] in patients with CN-AML (P<0.001). Notably, the expression level of H19 exhibited an inverse association with the survival duration of the patients (P=0.018), establishing it as a predictive marker for two- and five-year survival in patients with CN-AML. Kaplan-Meier analysis demonstrated that patients with lower H19 expression had superior two- and five-year survival rates compared with those with higher H19 expression. The results of the present study highlighted the association between loss of imprinting and leukemogenesis in CN-AML, underscoring the significance of H19 imprinting loss as a prognostic indicator for unfavorable two- and five-year survival in CN-AML patients.
Collapse
Affiliation(s)
- Ming-Yu Yang
- Graduate Institute of Clinical Medical Sciences, College of Medicine, Chang Gung University, Taoyuan 33302, Taiwan, R.O.C
- Department of Otolaryngology, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Taiwan 83301, Taiwan, R.O.C
| | - Cheng-Ming Hsu
- Department of Otolaryngology-Head and Neck Surgery, Chiayi Chang Gung Memorial Hospital, Puzi, Chiayi 61363, Taiwan, R.O.C
- Department of Medicine, College of Medicine, Chang Gung University, Taoyuan 33302, Taiwan, R.O.C
| | - Pai-Mei Lin
- School of Medicine for International Students and Department of Nursing, I-Shou University, Kaohsiung 82445, Taiwan, R.O.C
| | - Chao-Hui Yang
- Graduate Institute of Clinical Medical Sciences, College of Medicine, Chang Gung University, Taoyuan 33302, Taiwan, R.O.C
- Department of Otolaryngology, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Taiwan 83301, Taiwan, R.O.C
| | - Ming-Luen Hu
- Division of Hepatogastroenterology, Department of Internal Medicine, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Taiwan 83302, Taiwan, R.O.C
| | - I-Ya Chen
- Graduate Institute of Clinical Medical Sciences, College of Medicine, Chang Gung University, Taoyuan 33302, Taiwan, R.O.C
| | - Sheng-Fung Lin
- Division of Hematology and Oncology, Department of Internal Medicine, E-Da Hospital, Kaohsiung 82445, Taiwan, R.O.C
| |
Collapse
|
14
|
Stricker SH. Folding makes an imprint. Genes Dev 2023; 37:779-780. [PMID: 37821108 PMCID: PMC10620038 DOI: 10.1101/gad.351216.123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/13/2023]
Abstract
Imprinted gene clusters are confined genomic regions containing genes with parent-of-origin-dependent transcriptional activity. In this issue of Genes & Development, Loftus and colleagues (pp. 829-843) made use of an insightful combination of descriptive approaches, genetic manipulations, and epigenome-editing approaches to show that differences in nuclear topology precede the onset of imprinted expression at the Peg13-Kcnk9 locus. Furthermore, the investigators provide data in line with a model suggesting that parent-of-origin-specific topological differences could be responsible for parent-of-origin-specific enhancer activity and thus imprinted expression.
Collapse
Affiliation(s)
- Stefan H Stricker
- Reprogramming and Regeneration, Biomedical Center (BMC), Physiological Genomics, Faculty of Medicine, Ludwig Maximilian University (LMU) Munich, Planegg-Martinsried 82152, Germany; Epigenetic Epigenetic Engineering, Institute of Stem Cell Research, Helmholtz Zentrum, German Research Center for Environmental Health, Planegg-Martinsried 82152, Germany
| |
Collapse
|
15
|
Loftus D, Bae B, Whilden CM, Whipple AJ. Allelic chromatin structure precedes imprinted expression of Kcnk9 during neurogenesis. Genes Dev 2023; 37:829-843. [PMID: 37821107 PMCID: PMC10620047 DOI: 10.1101/gad.350896.123] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Accepted: 09/18/2023] [Indexed: 10/13/2023]
Abstract
Differences in chromatin state inherited from the parental gametes influence the regulation of maternal and paternal alleles in offspring. This phenomenon, known as genomic imprinting, results in genes preferentially transcribed from one parental allele. While local epigenetic factors such as DNA methylation are known to be important for the establishment of imprinted gene expression, less is known about the mechanisms by which differentially methylated regions (DMRs) lead to differences in allelic expression across broad stretches of chromatin. Allele-specific higher-order chromatin structure has been observed at multiple imprinted loci, consistent with the observation of allelic binding of the chromatin-organizing factor CTCF at multiple DMRs. However, whether allelic chromatin structure impacts allelic gene expression is not known for most imprinted loci. Here we characterize the mechanisms underlying brain-specific imprinted expression of the Peg13-Kcnk9 locus, an imprinted region associated with intellectual disability. We performed region capture Hi-C on mouse brains from reciprocal hybrid crosses and found imprinted higher-order chromatin structure caused by the allelic binding of CTCF to the Peg13 DMR. Using an in vitro neuron differentiation system, we showed that imprinted chromatin structure precedes imprinted expression at the locus. Additionally, activation of a distal enhancer induced imprinted expression of Kcnk9 in an allelic chromatin structure-dependent manner. This work provides a high-resolution map of imprinted chromatin structure and demonstrates that chromatin state established in early development can promote imprinted expression upon differentiation.
Collapse
Affiliation(s)
- Daniel Loftus
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, Massachusetts 02138, USA
| | - Bongmin Bae
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, Massachusetts 02138, USA
| | - Courtney M Whilden
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, Massachusetts 02138, USA
| | - Amanda J Whipple
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, Massachusetts 02138, USA
| |
Collapse
|
16
|
Hollwey E, Briffa A, Howard M, Zilberman D. Concepts, mechanisms and implications of long-term epigenetic inheritance. Curr Opin Genet Dev 2023; 81:102087. [PMID: 37441873 DOI: 10.1016/j.gde.2023.102087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Revised: 06/19/2023] [Accepted: 06/21/2023] [Indexed: 07/15/2023]
Abstract
Many modes and mechanisms of epigenetic inheritance have been elucidated in eukaryotes. Most of them are relatively short-term, generally not exceeding one or a few organismal generations. However, emerging evidence indicates that one mechanism, cytosine DNA methylation, can mediate epigenetic inheritance over much longer timescales, which are mostly or completely inaccessible in the laboratory. Here we discuss the evidence for, and mechanisms and implications of, such long-term epigenetic inheritance. We argue that compelling evidence supports the long-term epigenetic inheritance of gene body methylation, at least in the model angiosperm Arabidopsis thaliana, and that variation in such methylation can therefore serve as an epigenetic basis for phenotypic variation in natural populations.
Collapse
Affiliation(s)
| | - Amy Briffa
- Department of Computational and Systems Biology, John Innes Centre, Norwich Research Park, Norwich NR4 7UH, UK
| | - Martin Howard
- Department of Computational and Systems Biology, John Innes Centre, Norwich Research Park, Norwich NR4 7UH, UK
| | - Daniel Zilberman
- Institute of Science and Technology, 3400 Klosterneuburg, Austria.
| |
Collapse
|
17
|
Carrion SA, Michal JJ, Jiang Z. Imprinted Genes: Genomic Conservation, Transcriptomic Dynamics and Phenomic Significance in Health and Diseases. Int J Biol Sci 2023; 19:3128-3142. [PMID: 37416777 PMCID: PMC10321285 DOI: 10.7150/ijbs.83712] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Accepted: 05/25/2023] [Indexed: 07/08/2023] Open
Abstract
Since its discovery in 1991, genomic imprinting has been the subject of numerous studies into its mechanisms of establishment and regulation, evolution and function, and presence in multiple genomes. Disturbance of imprinting has been implicated in a range of diseases, ranging from debilitating syndromes to cancers to fetal deficiencies. Despite this, studies done on the prevalence and relevance of imprinting on genes have been limited in scope, tissue types available, and focus, by both availability and resources. This has left a gap in comparative studies. To address this, we assembled a collection of imprinted genes available in current literature covering five species. Here we sought to identify trends and motifs in the imprinted gene set (IGS) in three distinct arenas: evolutionary conservation, across-tissue expression, and health phenomics. Overall, we found that imprinted genes displayed less conservation and higher proportions of non-coding RNA while maintaining synteny. Maternally expressed genes (MEGs) and paternally expressed genes (PEGs) occupied distinct roles in tissue expression and biological pathway use, while imprinted genes collectively showed a broader tissue range, notable preference for tissue specific expression and limited gene pathways than comparable sex differentiation genes. Both human and murine imprinted genes showed the same clear phenotypic trends, that were distinct from those displayed by sex differentiation genes which were less involved in mental and nervous system disease. While both sets had representation across the genome, the IGS showed clearer clustering as expected, with PEGs significantly more represented than MEGs.
Collapse
Affiliation(s)
| | | | - Zhihua Jiang
- ✉ Corresponding author: Dr. Zhihua Jiang (ORCID ID: 0000-0003-1986-088X), Professor of Genome Biology. Phone: 509-335 8761;
| |
Collapse
|
18
|
Loftus D, Bae B, Whilden CM, Whipple AJ. Allelic chromatin structure primes imprinted expression of Kcnk9 during neurogenesis. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.06.09.544389. [PMID: 37333073 PMCID: PMC10274912 DOI: 10.1101/2023.06.09.544389] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/20/2023]
Abstract
Differences in chromatin state inherited from the parental gametes influence the regulation of maternal and paternal alleles in offspring. This phenomenon, known as genomic imprinting, results in genes preferentially transcribed from one parental allele. While local epigenetic factors such as DNA methylation are known to be important for the establishment of imprinted gene expression, less is known about the mechanisms by which differentially methylated regions (DMRs) lead to differences in allelic expression across broad stretches of chromatin. Allele-specific higher-order chromatin structure has been observed at multiple imprinted loci, consistent with the observation of allelic binding of the chromatin-organizing factor CTCF at multiple DMRs. However, whether allelic chromatin structure impacts allelic gene expression is not known for most imprinted loci. Here we characterize the mechanisms underlying brain-specific imprinted expression of the Peg13-Kcnk9 locus, an imprinted region associated with intellectual disability. We performed region capture Hi-C on mouse brain from reciprocal hybrid crosses and found imprinted higher-order chromatin structure caused by the allelic binding of CTCF to the Peg13 DMR. Using an in vitro neuron differentiation system, we show that on the maternal allele enhancer-promoter contacts formed early in development prime the brain-specific potassium leak channel Kcnk9 for maternal expression prior to neurogenesis. In contrast, these enhancer-promoter contacts are blocked by CTCF on the paternal allele, preventing paternal Kcnk9 activation. This work provides a high-resolution map of imprinted chromatin structure and demonstrates that chromatin state established in early development can promote imprinted expression upon differentiation.
Collapse
Affiliation(s)
- Daniel Loftus
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, MA 02138 USA
| | - Bongmin Bae
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, MA 02138 USA
| | - Courtney M. Whilden
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, MA 02138 USA
| | - Amanda J. Whipple
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, MA 02138 USA
| |
Collapse
|
19
|
Bina M. Defining Candidate Imprinted loci in Bos taurus. Genes (Basel) 2023; 14:1036. [PMID: 37239396 PMCID: PMC10217866 DOI: 10.3390/genes14051036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 04/27/2023] [Accepted: 04/30/2023] [Indexed: 05/28/2023] Open
Abstract
Using a whole-genome assembly of Bos taurus, I applied my bioinformatics strategy to locate candidate imprinting control regions (ICRs) genome-wide. In mammals, genomic imprinting plays essential roles in embryogenesis. In my strategy, peaks in plots mark the locations of known, inferred, and candidate ICRs. Genes in the vicinity of candidate ICRs correspond to potential imprinted genes. By displaying my datasets on the UCSC genome browser, one could view peak positions with respect to genomic landmarks. I give two examples of candidate ICRs in loci that influence spermatogenesis in bulls: CNNM1 and CNR1. I also give examples of candidate ICRs in loci that influence muscle development: SIX1 and BCL6. By examining the ENCODE data reported for mice, I deduced regulatory clues about cattle. I focused on DNase I hypersensitive sites (DHSs). Such sites reveal accessibility of chromatin to regulators of gene expression. For inspection, I chose DHSs in chromatin from mouse embryonic stem cells (ESCs) ES-E14, mesoderm, brain, heart, and skeletal muscle. The ENCODE data revealed that the SIX1 promoter was accessible to the transcription initiation apparatus in mouse ESCs, mesoderm, and skeletal muscles. The data also revealed accessibility of BCL6 locus to regulatory proteins in mouse ESCs and examined tissues.
Collapse
Affiliation(s)
- Minou Bina
- Department of Chemistry, Purdue University, West Lafayette, IN 47907, USA
| |
Collapse
|
20
|
Bayerl J, Laird DJ. Eggs made from male mouse stem cells using error-prone culture. Nature 2023; 615:805-807. [PMID: 36922658 DOI: 10.1038/d41586-023-00755-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/18/2023]
|
21
|
Kreibich E, Kleinendorst R, Barzaghi G, Kaspar S, Krebs AR. Single-molecule footprinting identifies context-dependent regulation of enhancers by DNA methylation. Mol Cell 2023; 83:787-802.e9. [PMID: 36758546 DOI: 10.1016/j.molcel.2023.01.017] [Citation(s) in RCA: 49] [Impact Index Per Article: 24.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Revised: 11/21/2022] [Accepted: 01/16/2023] [Indexed: 02/11/2023]
Abstract
Enhancers are cis-regulatory elements that control the establishment of cell identities during development. In mammals, enhancer activation is tightly coupled with DNA demethylation. However, whether this epigenetic remodeling is necessary for enhancer activation is unknown. Here, we adapted single-molecule footprinting to measure chromatin accessibility and transcription factor binding as a function of the presence of methylation on the same DNA molecules. We leveraged natural epigenetic heterogeneity at active enhancers to test the impact of DNA methylation on their chromatin accessibility in multiple cell lineages. Although reduction of DNA methylation appears dispensable for the activity of most enhancers, we identify a class of cell-type-specific enhancers where DNA methylation antagonizes the binding of transcription factors. Genetic perturbations reveal that chromatin accessibility and transcription factor binding require active demethylation at these loci. Thus, in addition to safeguarding the genome from spurious activation, DNA methylation directly controls transcription factor occupancy at active enhancers.
Collapse
Affiliation(s)
- Elisa Kreibich
- European Molecular Biology Laboratory (EMBL), Genome Biology Unit, Meyerhofstraße 1, 69117 Heidelberg, Germany; Faculty of Biosciences, Collaboration for Joint PhD Degree between EMBL and Heidelberg University, Heidelberg, Germany
| | - Rozemarijn Kleinendorst
- European Molecular Biology Laboratory (EMBL), Genome Biology Unit, Meyerhofstraße 1, 69117 Heidelberg, Germany
| | - Guido Barzaghi
- European Molecular Biology Laboratory (EMBL), Genome Biology Unit, Meyerhofstraße 1, 69117 Heidelberg, Germany; Faculty of Biosciences, Collaboration for Joint PhD Degree between EMBL and Heidelberg University, Heidelberg, Germany
| | - Sarah Kaspar
- European Molecular Biology Laboratory (EMBL), Genome Biology Unit, Meyerhofstraße 1, 69117 Heidelberg, Germany
| | - Arnaud R Krebs
- European Molecular Biology Laboratory (EMBL), Genome Biology Unit, Meyerhofstraße 1, 69117 Heidelberg, Germany.
| |
Collapse
|
22
|
Fertan E, Gendron WH, Wong AA, Hanson GM, Brown RE, Weaver ICG. Noncanonical regulation of imprinted gene Igf2 by amyloid-beta 1-42 in Alzheimer's disease. Sci Rep 2023; 13:2043. [PMID: 36739453 PMCID: PMC9899226 DOI: 10.1038/s41598-023-29248-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Accepted: 02/01/2023] [Indexed: 02/05/2023] Open
Abstract
Reduced insulin-like growth factor 2 (IGF2) levels in Alzheimer's disease (AD) may be the mechanism relating age-related metabolic disorders to dementia. Since Igf2 is an imprinted gene, we examined age and sex differences in the relationship between amyloid-beta 1-42 (Aβ42) accumulation and epigenetic regulation of the Igf2/H19 gene cluster in cerebrum, liver, and plasma of young and old male and female 5xFAD mice, in frontal cortex of male and female AD and non-AD patients, and in HEK293 cell cultures. We show IGF2 levels, Igf2 expression, histone acetylation, and H19 ICR methylation are lower in females than males. However, elevated Aβ42 levels are associated with Aβ42 binding to Igf2 DMR2, increased DNA and histone methylation, and a reduction in Igf2 expression and IGF2 levels in 5xFAD mice and AD patients, independent of H19 ICR methylation. Cell culture results confirmed the binding of Aβ42 to Igf2 DMR2 increased DNA and histone methylation, and reduced Igf2 expression. These results indicate an age- and sex-related causal relationship among Aβ42 levels, epigenomic state, and Igf2 expression in AD and provide a potential mechanism for Igf2 regulation in normal and pathological conditions, suggesting IGF2 levels may be a useful diagnostic biomarker for Aβ42 targeted AD therapies.
Collapse
Affiliation(s)
- Emre Fertan
- Department of Psychology and Neuroscience, Dalhousie University, Halifax, NS, B3H 4R2, Canada
| | - William H Gendron
- Department of Psychology and Neuroscience, Dalhousie University, Halifax, NS, B3H 4R2, Canada
| | - Aimée A Wong
- Department of Psychology and Neuroscience, Dalhousie University, Halifax, NS, B3H 4R2, Canada
| | - Gabrielle M Hanson
- Department of Psychology and Neuroscience, Dalhousie University, Halifax, NS, B3H 4R2, Canada
| | - Richard E Brown
- Department of Psychology and Neuroscience, Dalhousie University, Halifax, NS, B3H 4R2, Canada.,Brain Repair Centre, Dalhousie University, Halifax, NS, B3H 4R2, Canada
| | - Ian C G Weaver
- Department of Psychology and Neuroscience, Dalhousie University, Halifax, NS, B3H 4R2, Canada. .,Department of Psychiatry, Dalhousie University, Halifax, NS, B3H 4R2, Canada. .,Department of Pathology, Dalhousie University, Halifax, NS, B3H 4R2, Canada. .,Brain Repair Centre, Dalhousie University, Halifax, NS, B3H 4R2, Canada.
| |
Collapse
|
23
|
Vargas LN, Silveira MM, Franco MM. Epigenetic Reprogramming and Somatic Cell Nuclear Transfer. Methods Mol Biol 2023; 2647:37-58. [PMID: 37041328 DOI: 10.1007/978-1-0716-3064-8_2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/13/2023]
Abstract
Epigenetics is an area of genetics that studies the heritable modifications in gene expression and phenotype that are not controlled by the primary sequence of DNA. The main epigenetic mechanisms are DNA methylation, post-translational covalent modifications in histone tails, and non-coding RNAs. During mammalian development, there are two global waves of epigenetic reprogramming. The first one occurs during gametogenesis and the second one begins immediately after fertilization. Environmental factors such as exposure to pollutants, unbalanced nutrition, behavioral factors, stress, in vitro culture conditions can negatively affect epigenetic reprogramming events. In this review, we describe the main epigenetic mechanisms found during mammalian preimplantation development (e.g., genomic imprinting, X chromosome inactivation). Moreover, we discuss the detrimental effects of cloning by somatic cell nuclear transfer on the reprogramming of epigenetic patterns and some molecular alternatives to minimize these negative impacts.
Collapse
Affiliation(s)
- Luna N Vargas
- Laboratory of Animal Reproduction, Embrapa Genetic Resources and Biotechnology, Brasília, Distrito Federal, Brazil
- Institute of Biotechnology, Federal University of Uberlândia, Uberlândia, Minas Gerais, Brazil
| | - Márcia M Silveira
- Laboratory of Animal Reproduction, Embrapa Genetic Resources and Biotechnology, Brasília, Distrito Federal, Brazil
- Institute of Biotechnology, Federal University of Uberlândia, Uberlândia, Minas Gerais, Brazil
| | - Maurício M Franco
- Laboratory of Animal Reproduction, Embrapa Genetic Resources and Biotechnology, Brasília, Distrito Federal, Brazil.
- Institute of Biotechnology, Federal University of Uberlândia, Uberlândia, Minas Gerais, Brazil.
- School of Veterinary Medicine, Federal University of Uberlândia, Uberlândia, Minas Gerais, Brazil.
| |
Collapse
|
24
|
Du W, Shi G, Shan CM, Li Z, Zhu B, Jia S, Li Q, Zhang Z. Mechanisms of chromatin-based epigenetic inheritance. SCIENCE CHINA. LIFE SCIENCES 2022; 65:2162-2190. [PMID: 35792957 PMCID: PMC10311375 DOI: 10.1007/s11427-022-2120-1] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Accepted: 04/27/2022] [Indexed: 06/15/2023]
Abstract
Multi-cellular organisms such as humans contain hundreds of cell types that share the same genetic information (DNA sequences), and yet have different cellular traits and functions. While how genetic information is passed through generations has been extensively characterized, it remains largely obscure how epigenetic information encoded by chromatin regulates the passage of certain traits, gene expression states and cell identity during mitotic cell divisions, and even through meiosis. In this review, we will summarize the recent advances on molecular mechanisms of epigenetic inheritance, discuss the potential impacts of epigenetic inheritance during normal development and in some disease conditions, and outline future research directions for this challenging, but exciting field.
Collapse
Affiliation(s)
- Wenlong Du
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China
| | - Guojun Shi
- State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences and Peking-Tsinghua Center for Life Sciences, Peking University, Beijing, 100871, China
| | - Chun-Min Shan
- State Key Laboratory of Plant Genomics, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Zhiming Li
- Institutes of Cancer Genetics, Herbert Irving Comprehensive Cancer Center, Columbia University Medical Center, New York, NY, 10032, USA
| | - Bing Zhu
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China.
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China.
| | - Songtao Jia
- Department of Biological Sciences, Columbia University, New York, NY, 10027, USA.
| | - Qing Li
- State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences and Peking-Tsinghua Center for Life Sciences, Peking University, Beijing, 100871, China.
| | - Zhiguo Zhang
- Institutes of Cancer Genetics, Herbert Irving Comprehensive Cancer Center, Columbia University Medical Center, New York, NY, 10032, USA.
| |
Collapse
|
25
|
Schrott R, Greeson KW, King D, Crow KMS, Easley CA, Murphy SK. Cannabis alters DNA methylation at maternally imprinted and autism candidate genes in spermatogenic cells. Syst Biol Reprod Med 2022; 68:357-369. [PMID: 35687495 PMCID: PMC10032331 DOI: 10.1080/19396368.2022.2073292] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/02/2022] [Revised: 04/18/2022] [Accepted: 04/23/2022] [Indexed: 10/18/2022]
Abstract
Cannabis use in the United States is increasing, with highest consumption among men at their peak reproductive years. We previously demonstrated widespread changes in sperm DNA methylation with cannabis exposure in humans and rats, including genes important in neurodevelopment. Here, we use an in vitro human spermatogenesis model to recapitulate chronic cannabis use and assess DNA methylation at imprinted and autism spectrum disorder (ASD) candidate genes in spermatogonial stem cell (SSC)- and spermatid-like cells. Methylation at maternally imprinted genes SGCE and GRB10 was significantly altered in SSC- and spermatid-like cells, respectively, while PEG3 was significantly differentially methylated in spermatid-like cells. Two of ten randomly selected ASD candidate genes, HCN1 and NR4A2, had significantly altered methylation with cannabis exposure in SSC-like cells. These results support our findings in human cohorts and provide a new tool with which to gain mechanistic insights into the association between paternal cannabis use and risk of ASD in offspring.
Collapse
Affiliation(s)
- Rose Schrott
- Division of Reproductive Sciences, Department of Obstetrics and Gynecology, Duke University Medical Center, Durham, NC, 27701, USA
- Integrated Toxicology and Environmental Health Program, Nicholas School of the Environment, Duke University, Durham, NC, 27701, USA
| | - Katherine W. Greeson
- Department of Environmental Health Science, College of Public Health, University of Georgia, Athens, GA, 30602, USA
- Regenerative Bioscience Center, University of Georgia, Athens, GA, 30602, USA
| | - Dillon King
- Division of Reproductive Sciences, Department of Obstetrics and Gynecology, Duke University Medical Center, Durham, NC, 27701, USA
- Integrated Toxicology and Environmental Health Program, Nicholas School of the Environment, Duke University, Durham, NC, 27701, USA
| | - Krista M. Symosko Crow
- Department of Environmental Health Science, College of Public Health, University of Georgia, Athens, GA, 30602, USA
- Regenerative Bioscience Center, University of Georgia, Athens, GA, 30602, USA
| | - Charles A. Easley
- Department of Environmental Health Science, College of Public Health, University of Georgia, Athens, GA, 30602, USA
- Regenerative Bioscience Center, University of Georgia, Athens, GA, 30602, USA
| | - Susan K. Murphy
- Division of Reproductive Sciences, Department of Obstetrics and Gynecology, Duke University Medical Center, Durham, NC, 27701, USA
- Integrated Toxicology and Environmental Health Program, Nicholas School of the Environment, Duke University, Durham, NC, 27701, USA
| |
Collapse
|
26
|
Mbiydzenyuy NE, Hemmings SMJ, Qulu L. Prenatal maternal stress and offspring aggressive behavior: Intergenerational and transgenerational inheritance. Front Behav Neurosci 2022; 16:977416. [PMID: 36212196 PMCID: PMC9539686 DOI: 10.3389/fnbeh.2022.977416] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Accepted: 08/22/2022] [Indexed: 11/13/2022] Open
Abstract
Even though studies have shown that prenatal maternal stress is associated with increased reactivity of the HPA axis, the association between prenatal maternal stress and fetal glucocorticoid exposure is complex and most likely dependent on unidentified and poorly understood variables including nature and timing of prenatal insults. The precise mechanisms in which prenatal maternal stress influence neuroendocrine signaling between the maternal-placental-fetal interface are still unclear. The aim of this review article is to bring comprehensive basic concepts about prenatal maternal stress and mechanisms of transmission of maternal stress to the fetus. This review covers recent studies showing associations between maternal stress and alterations in offspring aggressive behavior, as well as the possible pathways for the “transmission” of maternal stress to the fetus: (1) maternal-fetal HPA axis dysregulation; (2) intrauterine environment disruption due to variations in uterine artery flow; (3) epigenetic modifications of genes implicated in aggressive behavior. Here, we present evidence for the phenomenon of intergenerational and transgenerational transmission, to better understands the mechanism(s) of transmission from parent to offspring. We discuss studies showing associations between maternal stress and alterations in offspring taking note of neuroendocrine, brain architecture and epigenetic changes that may suggest risk for aggressive behavior. We highlight animal and human studies that focus on intergenerational transmission following exposure to stress from a biological mechanistic point of view, and maternal stress-induced epigenetic modifications that have potential to impact on aggressive behavior in later generations.
Collapse
Affiliation(s)
- Ngala Elvis Mbiydzenyuy
- Department of Basic Science, School of Medicine, Copperbelt University, Ndola, Zambia
- Division of Medical Physiology, Biomedical Science Research Institute, Stellenbosch University, Cape Town, South Africa
- *Correspondence: Ngala Elvis Mbiydzenyuy,
| | - Sian Megan Joanna Hemmings
- Department of Psychiatry, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, South Africa
| | - Lihle Qulu
- Division of Medical Physiology, Biomedical Science Research Institute, Stellenbosch University, Cape Town, South Africa
| |
Collapse
|
27
|
Li J, Yu D, Wang J, Li C, Wang Q, Wang J, Du W, Zhao S, Pang Y, Hao H, Zhao X, Zhu H, Li S, Zou H. Identification of the porcine IG-DMR and abnormal imprinting of DLK1-DIO3 in cloned pigs. Front Cell Dev Biol 2022; 10:964045. [PMID: 36036009 PMCID: PMC9400927 DOI: 10.3389/fcell.2022.964045] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Accepted: 07/12/2022] [Indexed: 11/19/2022] Open
Abstract
Correct reprogramming of the DLK1-DIO3 imprinted region is critical for the development of cloned animals. However, in pigs, the imprinting and regulation of the DLK1-DIO3 region has not been systematically analyzed. The objective of this study was to investigate the imprinting status and methylation regulation of the DLK1-DIO3 region in wild-type and cloned neonatal pigs. We mapped the imprinting control region, IG-DMR, by homologous alignment and validated it in sperm, oocytes, fibroblasts, and parthenogenetic embryos. Subsequently, single nucleotide polymorphism-based sequencing and bisulfite sequencing polymerase chain reaction were conducted to analyze imprinting and methylation in different types of fibroblasts, as well as wild-type and cloned neonatal pigs. The results showed that Somatic cell nuclear transfer (SCNT) resulted in hypermethylation of the IG-DMR and aberrant gene expression in the DLK1-DIO3 region. Similar to wild-type pigs, imprinted expression and methylation were observed in the surviving cloned pigs, whereas in dead cloned pigs, the IG-DMR was hypermethylated and the expression of GTL2 was nearly undetectable. Our study reveals that abnormal imprinting of the DLK1-DIO3 region occurs in cloned pigs, which provides a theoretical basis for improving the cloning efficiency by gene editing to correct abnormal imprinting.
Collapse
Affiliation(s)
- Junliang Li
- Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
- College of Life Sciences, Hebei Agricultural University, Baoding, Hebei, China
| | - Dawei Yu
- Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
- National Germplasm Center of Domestic Animal Resources, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
- *Correspondence: Dawei Yu, ; Huabin Zhu, ; Shijie Li, ; Huiying Zou,
| | - Jing Wang
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Chongyang Li
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Qingwei Wang
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Jing Wang
- Department of Human Genetics David Geffen School of Medicine University of California Los Angeles, Los Angeles, CA, United States
| | - Weihua Du
- Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Shanjiang Zhao
- Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Yunwei Pang
- Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Haisheng Hao
- Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Xueming Zhao
- Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Huabin Zhu
- Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
- *Correspondence: Dawei Yu, ; Huabin Zhu, ; Shijie Li, ; Huiying Zou,
| | - Shijie Li
- College of Life Sciences, Hebei Agricultural University, Baoding, Hebei, China
- *Correspondence: Dawei Yu, ; Huabin Zhu, ; Shijie Li, ; Huiying Zou,
| | - Huiying Zou
- Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
- *Correspondence: Dawei Yu, ; Huabin Zhu, ; Shijie Li, ; Huiying Zou,
| |
Collapse
|
28
|
Han X, He H, Shao L, Cui S, Yu H, Zhang X, Wu Q. Deletion of Meg8-DMR Enhances Migration and Invasion of MLTC-1 Depending on the CTCF Binding Sites. Int J Mol Sci 2022; 23:ijms23158828. [PMID: 35955961 PMCID: PMC9369160 DOI: 10.3390/ijms23158828] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Revised: 07/28/2022] [Accepted: 08/05/2022] [Indexed: 11/30/2022] Open
Abstract
The Dlk1-Dio3 imprinted domain on mouse chromosome 12 contains three well-characterized paternally methylated differentially methylated regions (DMRs): IG-DMR, Gtl2-DMR, and Dlk1-DMR. These DMRs control the expression of many genes involved in embryonic development, inherited diseases, and human cancer in this domain. The first maternal methylation DMR discovered in this domain was the Meg8-DMR, the targets and biological function of which are still unknown. Here, using an enhancer-blocking assay, we first dissected the functional parts of the Meg8-DMR and showed that its insulator activity is dependent on the CCCTC-binding factor (CTCF) in MLTC-1. Results from RNA-seq showed that the deletion of the Meg8-DMR and its compartment CTCF binding sites, but not GGCG repeats, lead to the downregulation of numerous genes on chromosome 12, in particular the drastically reduced expression of Dlk1 and Rtl1 in the Dlk1-Dio3 domain, while differentially expressed genes are enriched in the MAPK pathway. In vitro assays revealed that the deletion of the Meg8-DMR and CTCF binding sites enhances cell migration and invasion by decreasing Dlk1 and activating the Notch1-Rhoc-MAPK/ERK pathway. These findings enhance research into gene regulation in the Dlk1-Dio3 domain by indicating that the Meg8-DMR functions as a long-range regulatory element which is dependent on CTCF binding sites and affects multiple genes in this domain.
Collapse
Affiliation(s)
- Xiao Han
- School of Life Science and Technology, Harbin Institute of Technology, Harbin 150001, China
| | - Hongjuan He
- School of Life Science and Technology, Harbin Institute of Technology, Harbin 150001, China
| | - Lan Shao
- School of Life Science and Technology, Harbin Institute of Technology, Harbin 150001, China
| | - Shuang Cui
- School of Life Science and Technology, Harbin Institute of Technology, Harbin 150001, China
| | - Haoran Yu
- School of Life Science and Technology, Harbin Institute of Technology, Harbin 150001, China
| | - Ximeijia Zhang
- School of Life Science and Technology, Harbin Institute of Technology, Harbin 150001, China
| | - Qiong Wu
- School of Life Science and Technology, Harbin Institute of Technology, Harbin 150001, China
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150001, China
- Correspondence: ; Tel./Fax: +86-0451-86416944
| |
Collapse
|
29
|
Mattei AL, Bailly N, Meissner A. DNA methylation: a historical perspective. Trends Genet 2022; 38:676-707. [DOI: 10.1016/j.tig.2022.03.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Revised: 03/14/2022] [Accepted: 03/15/2022] [Indexed: 10/18/2022]
|
30
|
Hubert JN, Demars J. Genomic Imprinting in the New Omics Era: A Model for Systems-Level Approaches. Front Genet 2022; 13:838534. [PMID: 35368671 PMCID: PMC8965095 DOI: 10.3389/fgene.2022.838534] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Accepted: 02/28/2022] [Indexed: 11/13/2022] Open
Abstract
Genomic imprinting represents a noteworthy inheritance mechanism leading to allele-specific regulations dependent of the parental origin. Imprinted loci are especially involved in essential mammalian functions related to growth, development and behavior. In this mini-review, we first offer a summary of current representations associated with genomic imprinting through key results of the three last decades. We then outline new perspectives allowed by the spread of new omics technologies tackling various interacting levels of imprinting regulations, including genomics, transcriptomics and epigenomics. We finally discuss the expected contribution of new omics data to unresolved big questions in the field.
Collapse
|
31
|
Pastor WA, Kwon SY. Distinctive aspects of the placental epigenome and theories as to how they arise. Cell Mol Life Sci 2022; 79:569. [PMID: 36287261 PMCID: PMC9606139 DOI: 10.1007/s00018-022-04568-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2022] [Revised: 08/18/2022] [Accepted: 09/21/2022] [Indexed: 11/26/2022]
Abstract
The placenta has a methylome dramatically unlike that of any somatic cell type. Among other distinctions, it features low global DNA methylation, extensive “partially methylated domains” packed in dense heterochromatin and methylation of hundreds of CpG islands important in somatic development. These features attract interest in part because a substantial fraction of human cancers feature the exact same phenomena, suggesting parallels between epigenome formation in placentation and cancer. Placenta also features an expanded set of imprinted genes, some of which come about by distinctive developmental pathways. Recent discoveries, some from far outside the placental field, shed new light on how the unusual placental epigenetic state may arise. Nonetheless, key questions remain unresolved.
Collapse
Affiliation(s)
- William A Pastor
- Department of Biochemistry, McGill University, Montreal, QC, H3G 1Y6, Canada.
- Rosalind & Morris Goodman Cancer Institute, McGill University, Montreal, QC, H3A 1A3, Canada.
| | - Sin Young Kwon
- Department of Biochemistry, McGill University, Montreal, QC, H3G 1Y6, Canada
| |
Collapse
|
32
|
Aronson BE, Scourzic L, Shah V, Swanzey E, Kloetgen A, Polyzos A, Sinha A, Azziz A, Caspi I, Li J, Pelham-Webb B, Glenn RA, Vierbuchen T, Wichterle H, Tsirigos A, Dawlaty MM, Stadtfeld M, Apostolou E. A bipartite element with allele-specific functions safeguards DNA methylation imprints at the Dlk1-Dio3 locus. Dev Cell 2021; 56:3052-3065.e5. [PMID: 34710357 PMCID: PMC8628258 DOI: 10.1016/j.devcel.2021.10.004] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Revised: 08/06/2021] [Accepted: 10/04/2021] [Indexed: 11/23/2022]
Abstract
Loss of imprinting (LOI) results in severe developmental defects, but the mechanisms preventing LOI remain incompletely understood. Here, we dissect the functional components of the imprinting control region of the essential Dlk1-Dio3 locus (called IG-DMR) in pluripotent stem cells. We demonstrate that the IG-DMR consists of two antagonistic elements: a paternally methylated CpG island that prevents recruitment of TET dioxygenases and a maternally unmethylated non-canonical enhancer that ensures expression of the Gtl2 lncRNA by counteracting de novo DNA methyltransferases. Genetic or epigenetic editing of these elements leads to distinct LOI phenotypes with characteristic alternations of allele-specific gene expression, DNA methylation, and 3D chromatin topology. Although repression of the Gtl2 promoter results in dysregulated imprinting, the stability of LOI phenotypes depends on the IG-DMR, suggesting a functional hierarchy. These findings establish the IG-DMR as a bipartite control element that maintains imprinting by allele-specific restriction of the DNA (de)methylation machinery.
Collapse
Affiliation(s)
- Boaz E Aronson
- Sanford I Weill Department of Medicine, Division of Hematology/Oncology, Sandra and Edward Meyer Cancer Center, New York, NY 10021, USA
| | - Laurianne Scourzic
- Sanford I Weill Department of Medicine, Division of Hematology/Oncology, Sandra and Edward Meyer Cancer Center, New York, NY 10021, USA
| | - Veevek Shah
- Sanford I Weill Department of Medicine, Division of Hematology/Oncology, Sandra and Edward Meyer Cancer Center, New York, NY 10021, USA
| | - Emily Swanzey
- Sanford I Weill Department of Medicine, Division of Regenerative Medicine, Weill Cornell Medicine, New York, NY 10021, USA; The Jackson Laboratory, Bar Harbor, ME, USA
| | - Andreas Kloetgen
- Department of Pathology, New York University School of Medicine, New York, NY 10016, USA; Department of Computational Biology of Infection Research, Helmholtz Centre for Infection Research, 38124 Braunschweig, Germany
| | - Alexander Polyzos
- Sanford I Weill Department of Medicine, Division of Hematology/Oncology, Sandra and Edward Meyer Cancer Center, New York, NY 10021, USA
| | - Abhishek Sinha
- Department of Pathology and Cell Biology, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Annabel Azziz
- Weill Cornell Graduate School of Medical Sciences, Weill Cornell Medicine, New York, NY 10065, USA
| | - Inbal Caspi
- Developmental Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Jiexi Li
- Sanford I Weill Department of Medicine, Division of Hematology/Oncology, Sandra and Edward Meyer Cancer Center, New York, NY 10021, USA
| | - Bobbie Pelham-Webb
- Weill Cornell/Rockefeller/Sloan Kettering Tri-Institutional MD-PhD program, New York, NY, USA
| | - Rachel A Glenn
- Weill Cornell Graduate School of Medical Sciences, Weill Cornell Medicine, New York, NY 10065, USA; Developmental Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA; Center for Stem Cell Biology and Center for Epigenetics Research, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Thomas Vierbuchen
- Developmental Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA; Center for Stem Cell Biology and Center for Epigenetics Research, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Hynek Wichterle
- Department of Pathology and Cell Biology, Columbia University Irving Medical Center, New York, NY 10032, USA; Department of Neurology, Neuroscience and Rehabilitation and Regenerative Medicine, Columbia University Irving Medical Center, Center for Motor Neuron Biology and Disease and Columbia Stem Cell Initiative, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Aristotelis Tsirigos
- Department of Pathology, New York University School of Medicine, New York, NY 10016, USA; Institute for Computational Medicine and Applied Bioinformatics Laboratories, New York University School of Medicine, New York, NY 10016, USA
| | - Meelad M Dawlaty
- Ruth L and David S. Gottesman Institute for Stem Cell and Regenerative Medicine Research, Bronx, NY 10461, USA; Department of Genetics, Department of Developmental & Molecular Biology, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Matthias Stadtfeld
- Sanford I Weill Department of Medicine, Division of Regenerative Medicine, Weill Cornell Medicine, New York, NY 10021, USA.
| | - Effie Apostolou
- Sanford I Weill Department of Medicine, Division of Hematology/Oncology, Sandra and Edward Meyer Cancer Center, New York, NY 10021, USA.
| |
Collapse
|
33
|
Barreto VM, Kubasova N, Alves-Pereira CF, Gendrel AV. X-Chromosome Inactivation and Autosomal Random Monoallelic Expression as "Faux Amis". Front Cell Dev Biol 2021; 9:740937. [PMID: 34631717 PMCID: PMC8495168 DOI: 10.3389/fcell.2021.740937] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Accepted: 08/30/2021] [Indexed: 12/23/2022] Open
Abstract
X-chromosome inactivation (XCI) and random monoallelic expression of autosomal genes (RMAE) are two paradigms of gene expression regulation where, at the single cell level, genes can be expressed from either the maternal or paternal alleles. X-chromosome inactivation takes place in female marsupial and placental mammals, while RMAE has been described in mammals and also other species. Although the outcome of both processes results in random monoallelic expression and mosaicism at the cellular level, there are many important differences. We provide here a brief sketch of the history behind the discovery of XCI and RMAE. Moreover, we review some of the distinctive features of these two phenomena, with respect to when in development they are established, their roles in dosage compensation and cellular phenotypic diversity, and the molecular mechanisms underlying their initiation and stability.
Collapse
Affiliation(s)
- Vasco M Barreto
- Chronic Diseases Research Centre, CEDOC, Nova Medical School, Lisbon, Portugal
| | - Nadiya Kubasova
- Chronic Diseases Research Centre, CEDOC, Nova Medical School, Lisbon, Portugal
| | - Clara F Alves-Pereira
- Department of Genetics, Smurfit Institute of Genetics, Trinity College Dublin, University of Dublin, Dublin, Ireland
| | - Anne-Valerie Gendrel
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina da Universidade de Lisboa, Lisbon, Portugal
| |
Collapse
|
34
|
Wu X, Galbraith DA, Chatterjee P, Jeong H, Grozinger CM, Yi SV. Lineage and Parent-of-Origin Effects in DNA Methylation of Honey Bees (Apis mellifera) Revealed by Reciprocal Crosses and Whole-Genome Bisulfite Sequencing. Genome Biol Evol 2021; 12:1482-1492. [PMID: 32597952 PMCID: PMC7502210 DOI: 10.1093/gbe/evaa133] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/22/2020] [Indexed: 12/13/2022] Open
Abstract
Parent-of-origin methylation arises when the methylation patterns of a particular allele are dependent on the parent it was inherited from. Previous work in honey bees has shown evidence of parent-of-origin-specific expression, yet the mechanisms regulating such pattern remain unknown in honey bees. In mammals and plants, DNA methylation is known to regulate parent-of-origin effects such as genomic imprinting. Here, we utilize genotyping of reciprocal European and Africanized honey bee crosses to study genome-wide allele-specific methylation patterns in sterile and reproductive individuals. Our data confirm the presence of allele-specific methylation in honey bees in lineage-specific contexts but also importantly, though to a lesser degree, parent-of-origin contexts. We show that the majority of allele-specific methylation occurs due to lineage rather than parent-of-origin factors, regardless of the reproductive state. Interestingly, genes affected by allele-specific DNA methylation often exhibit both lineage and parent-of-origin effects, indicating that they are particularly labile in terms of DNA methylation patterns. Additionally, we re-analyzed our previous study on parent-of-origin-specific expression in honey bees and found little association with parent-of-origin-specific methylation. These results indicate strong genetic background effects on allelic DNA methylation and suggest that although parent-of-origin effects are manifested in both DNA methylation and gene expression, they are not directly associated with each other.
Collapse
Affiliation(s)
- Xin Wu
- School of Biological Sciences, Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, Georgia
| | - David A Galbraith
- Department of Entomology, Center for Pollinator Research, Huck Institutes of the Life Sciences, Pennsylvania State University
| | - Paramita Chatterjee
- School of Biological Sciences, Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, Georgia
| | - Hyeonsoo Jeong
- School of Biological Sciences, Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, Georgia
| | - Christina M Grozinger
- Department of Entomology, Center for Pollinator Research, Huck Institutes of the Life Sciences, Pennsylvania State University
| | - Soojin V Yi
- School of Biological Sciences, Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, Georgia
| |
Collapse
|
35
|
Santini L, Halbritter F, Titz-Teixeira F, Suzuki T, Asami M, Ma X, Ramesmayer J, Lackner A, Warr N, Pauler F, Hippenmeyer S, Laue E, Farlik M, Bock C, Beyer A, Perry ACF, Leeb M. Genomic imprinting in mouse blastocysts is predominantly associated with H3K27me3. Nat Commun 2021; 12:3804. [PMID: 34155196 PMCID: PMC8217501 DOI: 10.1038/s41467-021-23510-4] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Accepted: 04/30/2021] [Indexed: 02/06/2023] Open
Abstract
In mammalian genomes, differentially methylated regions (DMRs) and histone marks including trimethylation of histone 3 lysine 27 (H3K27me3) at imprinted genes are asymmetrically inherited to control parentally-biased gene expression. However, neither parent-of-origin-specific transcription nor imprints have been comprehensively mapped at the blastocyst stage of preimplantation development. Here, we address this by integrating transcriptomic and epigenomic approaches in mouse preimplantation embryos. We find that seventy-one genes exhibit previously unreported parent-of-origin-specific expression in blastocysts (nBiX: novel blastocyst-imprinted expressed). Uniparental expression of nBiX genes disappears soon after implantation. Micro-whole-genome bisulfite sequencing (µWGBS) of individual uniparental blastocysts detects 859 DMRs. We further find that 16% of nBiX genes are associated with a DMR, whereas most are associated with parentally-biased H3K27me3, suggesting a role for Polycomb-mediated imprinting in blastocysts. nBiX genes are clustered: five clusters contained at least one published imprinted gene, and five clusters exclusively contained nBiX genes. These data suggest that early development undergoes a complex program of stage-specific imprinting involving different tiers of regulation.
Collapse
Affiliation(s)
- Laura Santini
- Max Perutz Laboratories Vienna, University of Vienna, Vienna Biocenter, Vienna, Austria
| | - Florian Halbritter
- St. Anna Children's Cancer Research Institute (CCRI), Vienna, Austria
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria
| | - Fabian Titz-Teixeira
- Cologne Excellence Cluster Cellular Stress Response in Aging-Associated Diseases (CECAD), University of Cologne, Cologne, Germany
| | - Toru Suzuki
- Laboratory of Mammalian Molecular Embryology, Department of Biology and Biochemistry, University of Bath, Bath, UK
| | - Maki Asami
- Laboratory of Mammalian Molecular Embryology, Department of Biology and Biochemistry, University of Bath, Bath, UK
| | - Xiaoyan Ma
- Department of Biochemistry, University of Cambridge, Cambridge, UK
| | - Julia Ramesmayer
- Max Perutz Laboratories Vienna, University of Vienna, Vienna Biocenter, Vienna, Austria
| | - Andreas Lackner
- Max Perutz Laboratories Vienna, University of Vienna, Vienna Biocenter, Vienna, Austria
| | - Nick Warr
- Mammalian Genetics Unit, MRC Harwell Institute, Harwell, UK
| | - Florian Pauler
- Institute for Science and Technology Austria, Klosterneuburg, Austria
| | - Simon Hippenmeyer
- Institute for Science and Technology Austria, Klosterneuburg, Austria
| | - Ernest Laue
- Department of Biochemistry, University of Cambridge, Cambridge, UK
| | - Matthias Farlik
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria
- Department of Dermatology, Medical University of Vienna, Vienna, Austria
| | - Christoph Bock
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria
- Institute of Artificial Intelligence and Decision Support, Center for Medical Statistics, Informatics, and Intelligent Systems, Medical University of Vienna, Vienna, Austria
| | - Andreas Beyer
- Cologne Excellence Cluster Cellular Stress Response in Aging-Associated Diseases (CECAD), University of Cologne, Cologne, Germany
| | - Anthony C F Perry
- Laboratory of Mammalian Molecular Embryology, Department of Biology and Biochemistry, University of Bath, Bath, UK.
| | - Martin Leeb
- Max Perutz Laboratories Vienna, University of Vienna, Vienna Biocenter, Vienna, Austria.
| |
Collapse
|
36
|
Epigenetic Changes Induced by Maternal Factors during Fetal Life: Implication for Type 1 Diabetes. Genes (Basel) 2021; 12:genes12060887. [PMID: 34201206 PMCID: PMC8227197 DOI: 10.3390/genes12060887] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Revised: 06/06/2021] [Accepted: 06/07/2021] [Indexed: 02/07/2023] Open
Abstract
Organ-specific autoimmune diseases, such as type 1 diabetes, are believed to result from T-cell-mediated damage of the target tissue. The immune-mediated tissue injury, in turn, is known to depend on complex interactions between genetic and environmental factors. Nevertheless, the mechanisms whereby environmental factors contribute to the pathogenesis of autoimmune diseases remain elusive and represent a major untapped target to develop novel strategies for disease prevention. Given the impact of the early environment on the developing immune system, epigenetic changes induced by maternal factors during fetal life have been linked to a likelihood of developing an autoimmune disease later in life. In humans, DNA methylation is the epigenetic mechanism most extensively investigated. This review provides an overview of the critical role of DNA methylation changes induced by prenatal maternal conditions contributing to the increased risk of immune-mediated diseases on the offspring, with a particular focus on T1D. A deeper understanding of epigenetic alterations induced by environmental stressors during fetal life may be pivotal for developing targeted prevention strategies of type 1 diabetes by modifying the maternal environment.
Collapse
|
37
|
Loss of ZNF215 imprinting is associated with poor five-year survival in patients with cytogenetically abnormal-acute myeloid leukemia. Blood Cells Mol Dis 2021; 90:102577. [PMID: 34091126 DOI: 10.1016/j.bcmd.2021.102577] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2021] [Revised: 05/23/2021] [Accepted: 05/23/2021] [Indexed: 01/05/2023]
Abstract
Genomic imprinting is a form of epigenetic regulation and imprinted genes are silenced in a parental-specific manner. Imprinting is associated with various human diseases and cancers, but its roles in leukemogenesis remains elusive. In this study, the expression of a panel of 16 human imprinted genes was investigated using real-time quantitative polymerase chain reaction and 8 of them were further validated in 114 patients newly diagnosed with cytogenetically abnormal-acute myeloid leukemia (CA-AML) and 85 healthy subjects. Our results demonstrated upregulated expression of 8 imprinted genes (C15orf2, COPG2, H19, IGF2, PEG3-AS1, PRIM2, SLC22A3 and ZNF215) was observed in patients with CA-AML (p < 0.001). Patients' survival days were negatively correlated with the expression levels of H19 (p = 0.024), PGE3-AS1 (p = 0.038), and ZNF215 (p = 0.012). Multivariate logistic regression analysis further revealed the expression level ZNF215 can be used as a predictor for five-year survival for patients with CA-AML (p = 0.009) with a hazard ratio of 0.870 (95.0% confident interval: 0.784-0.965). Our results demonstrated that loss of imprinting of imprinted genes is critical for the leukemogenesis of AML under CA condition, and loss of ZNF215 imprinting is associated with poor five-year survival of patients with CA-AML.
Collapse
|
38
|
Zhu H, Sun H, Yu D, Li T, Hai T, Liu C, Zhang Y, Chen Y, Dai X, Li Z, Li W, Liu R, Feng G, Zhou Q. Transcriptome and DNA Methylation Profiles of Mouse Fetus and Placenta Generated by Round Spermatid Injection. Front Cell Dev Biol 2021; 9:632183. [PMID: 33796527 PMCID: PMC8009284 DOI: 10.3389/fcell.2021.632183] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Accepted: 02/24/2021] [Indexed: 02/05/2023] Open
Abstract
Low birth efficiency and developmental abnormalities in embryos derived using round spermatid injection (ROSI) limit the clinical application of this method. Further, the underlying molecular mechanisms remain elusive and warrant further in-depth study. In this study, the embryonic day (E) 11.5 mouse fetuses and corresponding placentas derived upon using ROSI, intracytoplasmic sperm injection (ICSI), and natural in vivo fertilized (control) embryos were collected. Transcriptome and DNA methylation profiles were analyzed and compared using RNA-sequencing (RNA-seq) and whole-genome bisulfite sequencing, respectively. RNA-seq results revealed similar gene expression profiles in the ROSI, ICSI, and control fetuses and placentas. Compared with the other two groups, seven differentially expressed genes (DEGs) were identified in ROSI fetuses, and ten DEGs were identified in the corresponding placentas. However, no differences in CpG methylation were observed in fetuses and placentas from the three groups. Imprinting control region methylation and imprinted gene expression were the same between the three fetus and placenta groups. Although 49 repetitive DNA sequences (RS) were abnormally activated in ROSI fetuses, RS DNA methylation did not differ between the three groups. Interestingly, abnormal hypermethylation in promoter regions and low expression of Fggy and Rec8 were correlated with a crown-rump length less than 6 mm in one ROSI fetus. Our study demonstrates that the transcriptome and DNA methylation in ROSI-derived E11.5 mouse fetuses and placentas were comparable with those in the other two groups. However, some abnormally expressed genes in the ROSI fetus and placenta warrant further investigation to elucidate their effect on the development of ROSI-derived embryos.
Collapse
Affiliation(s)
- Haibo Zhu
- Center of Reproductive Medicine, Center of Prenatal Diagnosis, First Hospital, Jilin University, Changchun, China
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- Key Laboratory of Organ Regeneration and Transplantation of the Ministry of Education, First Hospital, Jilin University, Changchun, China
| | - Hao Sun
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- Institute of Stem Cell and Regenerative Medicine, Chinese Academy of Sciences, Beijing, China
| | - Dawei Yu
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- Institute of Stem Cell and Regenerative Medicine, Chinese Academy of Sciences, Beijing, China
| | - Tianda Li
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- Institute of Stem Cell and Regenerative Medicine, Chinese Academy of Sciences, Beijing, China
| | - Tang Hai
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- Institute of Stem Cell and Regenerative Medicine, Chinese Academy of Sciences, Beijing, China
| | - Chao Liu
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- Institute of Stem Cell and Regenerative Medicine, Chinese Academy of Sciences, Beijing, China
| | - Ying Zhang
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- Institute of Stem Cell and Regenerative Medicine, Chinese Academy of Sciences, Beijing, China
| | - Yurong Chen
- Key Laboratory of Organ Regeneration and Transplantation of the Ministry of Education, First Hospital, Jilin University, Changchun, China
| | - Xiangpeng Dai
- Key Laboratory of Organ Regeneration and Transplantation of the Ministry of Education, First Hospital, Jilin University, Changchun, China
| | - Ziyi Li
- Key Laboratory of Organ Regeneration and Transplantation of the Ministry of Education, First Hospital, Jilin University, Changchun, China
| | - Wei Li
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- Institute of Stem Cell and Regenerative Medicine, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Ruizhi Liu
- Center of Reproductive Medicine, Center of Prenatal Diagnosis, First Hospital, Jilin University, Changchun, China
| | - Guihai Feng
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- Institute of Stem Cell and Regenerative Medicine, Chinese Academy of Sciences, Beijing, China
| | - Qi Zhou
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- Key Laboratory of Organ Regeneration and Transplantation of the Ministry of Education, First Hospital, Jilin University, Changchun, China
- Institute of Stem Cell and Regenerative Medicine, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
39
|
|
40
|
Assisted reproductive technology and long-term ophthalmic morbidity of the offspring. J Dev Orig Health Dis 2020; 12:627-631. [PMID: 33213597 DOI: 10.1017/s2040174420000938] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
In this study, we investigate if children born following assisted reproduction technologies (ARTs) are at an increased risk for long-term ophthalmic complications. For this purpose, a population-based cohort analysis was conducted which included all deliveries between 1991 and 2014 at a single tertiary medical center. Offspring were classified relative to conception method as ART or spontaneous pregnancies. Offspring hospitalizations up to the age of 18 years involving ophthalmic morbidities were evaluated according to a predefined set of ICD-9 codes. A Kaplan-Meier survival curve was used to compare cumulative hospitalization rates in exposed (ART) and unexposed offspring (spontaneous), and a Cox proportional hazards model was used to control for potential confounders. A total of 243,682 deliveries were included in the study. In that, 1.8% of the deliveries (4364) were of mothers who underwent fertility treatments and 98.2% (239,318) were conceived spontaneously. Offspring born to mothers who underwent fertility treatments had a significantly higher hospitalization rate involving ophthalmic morbidity, as compared to spontaneously conceived offspring (1.2% vs. 1.0%, p = 0.04). The Kaplan-Meier survival curve pointed to a significantly higher cumulative incidence of ophthalmic morbidity following ART (log rank p = 0.02). Cox proportional hazards model was adjusted for maternal age, preterm delivery, maternal hypertensive disorders, diabetes, and mode of delivery which demonstrated ART as an independent risk factor for long-term pediatric ophthalmic morbidity (adjusted hazard ratio = 1.37, CI 1.04-1.80, p-value = 0.02). We concluded that ART is an independent risk factor for long-term ophthalmic morbidity of the offspring.
Collapse
|
41
|
Pignata L, Palumbo O, Cerrato F, Acurzio B, de Álava E, Roma J, Gallego S, Mora J, Carella M, Riccio A, Verde G. Both Epimutations and Chromosome Aberrations Affect Multiple Imprinted Loci in Aggressive Wilms Tumors. Cancers (Basel) 2020; 12:cancers12113411. [PMID: 33217932 PMCID: PMC7698742 DOI: 10.3390/cancers12113411] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Revised: 11/11/2020] [Accepted: 11/16/2020] [Indexed: 12/21/2022] Open
Abstract
The embryonal renal cancer Wilms tumor (WT) accounts for 7% of all children's malignancies. Its most frequent molecular defect is represented by DNA methylation abnormalities at the imprinted 11p15.5 region. Multiple imprinted methylation alterations dictated by chromosome copy-number variations have been recently demonstrated in adult cancers, raising the question of whether multiple imprinted loci were also affected in WT. To address this issue, we analyzed DNA methylation and chromosome profiles of 7 imprinted loci in 48 WT samples. The results demonstrated that methylation abnormalities of multiple imprinted loci occurred in 35% of the cases, but that they were associated with either chromosome aberrations or normal chromosome profiles. Multiple imprinted methylation changes were correlated with tumor stage and presence of metastasis, indicating that these epimutations were more frequent in highly aggressive tumors. When chromosome profiles were affected, these alterations were extended to flanking cancer driver genes. Overall, this study demonstrates the presence of multiple imprinted methylation defects in aggressive WTs and suggests that the mechanism by which they arise in embryonal and adult cancers is different.
Collapse
Affiliation(s)
- Laura Pignata
- Department of Environmental Biological and Pharmaceutical Sciences and Technologies, University of Campania ‘Luigi Vanvitelli’, 81100 Caserta, Italy; (L.P.); (F.C.)
- Institute of Genetics and Biophysics ‘Adriano Buzzati-Traverso’ CNR, 80131-Napoli, Italy;
| | - Orazio Palumbo
- Division of Medical Genetics, Fondazione IRCCS “Casa Sollievo della Sofferenza”, 71013 San Giovanni Rotondo (FG), Italy; (O.P.); (M.C.)
| | - Flavia Cerrato
- Department of Environmental Biological and Pharmaceutical Sciences and Technologies, University of Campania ‘Luigi Vanvitelli’, 81100 Caserta, Italy; (L.P.); (F.C.)
| | - Basilia Acurzio
- Institute of Genetics and Biophysics ‘Adriano Buzzati-Traverso’ CNR, 80131-Napoli, Italy;
| | - Enrique de Álava
- Department of Pathology, Institute of Biomedicine of Sevilla (IBiS), Virgen del Rocio University Hospital/CSIC/University of Sevilla/CIBERONC, 41013 Seville, Spain;
- Department of Normal and Pathological Cytology and Histology, School of Medicine, University of Seville, 08035 Seville, Spain
| | - Josep Roma
- Group of Translational Research in Child and Adolescent Cancer, Vall d’Hebron Research Institute-Universitat Autònoma de Barcelona, 08193 Barcelona, Spain; (J.R.); (S.G.)
| | - Soledad Gallego
- Group of Translational Research in Child and Adolescent Cancer, Vall d’Hebron Research Institute-Universitat Autònoma de Barcelona, 08193 Barcelona, Spain; (J.R.); (S.G.)
| | - Jaume Mora
- Pediatric Cancer Center Barcelona (PCCB), Hospital Sant Joan de Déu, Esplugues de Llobregat, 08950 Barcelona, Spain;
| | - Massimo Carella
- Division of Medical Genetics, Fondazione IRCCS “Casa Sollievo della Sofferenza”, 71013 San Giovanni Rotondo (FG), Italy; (O.P.); (M.C.)
| | - Andrea Riccio
- Department of Environmental Biological and Pharmaceutical Sciences and Technologies, University of Campania ‘Luigi Vanvitelli’, 81100 Caserta, Italy; (L.P.); (F.C.)
- Institute of Genetics and Biophysics ‘Adriano Buzzati-Traverso’ CNR, 80131-Napoli, Italy;
- Correspondence: (A.R.); (G.V.)
| | - Gaetano Verde
- Department of Environmental Biological and Pharmaceutical Sciences and Technologies, University of Campania ‘Luigi Vanvitelli’, 81100 Caserta, Italy; (L.P.); (F.C.)
- Institute of Genetics and Biophysics ‘Adriano Buzzati-Traverso’ CNR, 80131-Napoli, Italy;
- Correspondence: (A.R.); (G.V.)
| |
Collapse
|
42
|
Ewing AD, Smits N, Sanchez-Luque FJ, Faivre J, Brennan PM, Richardson SR, Cheetham SW, Faulkner GJ. Nanopore Sequencing Enables Comprehensive Transposable Element Epigenomic Profiling. Mol Cell 2020; 80:915-928.e5. [PMID: 33186547 DOI: 10.1016/j.molcel.2020.10.024] [Citation(s) in RCA: 117] [Impact Index Per Article: 23.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Revised: 10/14/2020] [Accepted: 10/15/2020] [Indexed: 12/12/2022]
Abstract
Transposable elements (TEs) drive genome evolution and are a notable source of pathogenesis, including cancer. While CpG methylation regulates TE activity, the locus-specific methylation landscape of mobile human TEs has to date proven largely inaccessible. Here, we apply new computational tools and long-read nanopore sequencing to directly infer CpG methylation of novel and extant TE insertions in hippocampus, heart, and liver, as well as paired tumor and non-tumor liver. As opposed to an indiscriminate stochastic process, we find pronounced demethylation of young long interspersed element 1 (LINE-1) retrotransposons in cancer, often distinct to the adjacent genome and other TEs. SINE-VNTR-Alu (SVA) retrotransposons, including their internal tandem repeat-associated CpG island, are near-universally methylated. We encounter allele-specific TE methylation and demethylation of aberrantly expressed young LINE-1s in normal tissues. Finally, we recover the complete sequences of tumor-specific LINE-1 insertions and their retrotransposition hallmarks, demonstrating how long-read sequencing can simultaneously survey the epigenome and detect somatic TE mobilization.
Collapse
Affiliation(s)
- Adam D Ewing
- Mater Research Institute, University of Queensland, Woolloongabba, QLD 4102, Australia.
| | - Nathan Smits
- Mater Research Institute, University of Queensland, Woolloongabba, QLD 4102, Australia
| | - Francisco J Sanchez-Luque
- GENYO, Pfizer-University of Granada-Andalusian Government Centre for Genomics and Oncological Research, PTS Granada 18016, Spain; MRC Human Genetics Unit, Institute of Genetics and Molecular Medicine (IGMM), University of Edinburgh, Western General Hospital, Edinburgh EH4 2XU, UK
| | - Jamila Faivre
- INSERM, U1193, Paul-Brousse University Hospital, Hepatobiliary Centre, Villejuif 94800, France
| | - Paul M Brennan
- Translational Neurosurgery, Centre for Clinical Brain Sciences, Edinburgh EH16 4SB, UK
| | - Sandra R Richardson
- Mater Research Institute, University of Queensland, Woolloongabba, QLD 4102, Australia
| | - Seth W Cheetham
- Mater Research Institute, University of Queensland, Woolloongabba, QLD 4102, Australia.
| | - Geoffrey J Faulkner
- Mater Research Institute, University of Queensland, Woolloongabba, QLD 4102, Australia; Queensland Brain Institute, University of Queensland, St. Lucia, QLD 4067, Australia.
| |
Collapse
|
43
|
Sadeghiyeh T, Dastgheib SA, Lookzadeh MH, Noori-Shadkam M, Akbarian-Bafghi MJ, Zare-Shehneh M, Poursharif Z, Neamatzadeh H. Association of MTHFR 677C > T and 1298A > C polymorphisms with susceptibility to attention deficit and hyperactivity disorder. Fetal Pediatr Pathol 2020; 39:422-429. [PMID: 31573368 DOI: 10.1080/15513815.2019.1666330] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
Background: The associations of MTHFR polymorphisms with risk of attention deficit and hyperactivity disorder (ADHD) are poorly elucidated. This study was performed to evaluate the association of MTHFR polymorphisms with ADHD risk in Iranian children.Methods: This case-control study included 214 children with ADHD and 220 healthy subjects. The MTHFR 677C > T and 1298A > C polymorphisms were genotyped by an ABI PRISMs 7500 real-time PCR System. The odds ratios (ORs) with 95% confidence intervals (CIs) were used to assess the strength of the association.Results: The MTHFR 1298A > C polymorphism CC genotype (OR= 1.526, 95% CI 1.004-2.320, p = 0.048) and C allele (OR= 1.336, 95% CI 0.1023-1.745, p = 0.034) were associated with an increased risk of ADHD. There was no significant association between MTHFR 677C > T polymorphism and increased risk of ADHD.Conclusions: Our results revealed that the MTHFR 1298A > C polymorphism but not the MTHFR 677 C > T is associated with increased risk of ADHD in Iranian children.
Collapse
Affiliation(s)
- Tahereh Sadeghiyeh
- Child and Adolescent Psychiatric Research Center of Additional Behavioral Sciences, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Seyed Alireza Dastgheib
- Department of Medical Genetics, School of Medicine, Shiraz university of Medical Sciences, Shiraz, Iran
| | | | - Mahmood Noori-Shadkam
- Department of Pediatrics, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | | | - Masoud Zare-Shehneh
- Department of Medical Genetics, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Zahra Poursharif
- Department of Psychology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Hossein Neamatzadeh
- Department of Medical Genetics, Shahid Sadoughi University of Medical Sciences, Yazd, Iran.,Mother and Newborn Health Research Center, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| |
Collapse
|
44
|
Daigneault BW. Dynamics of paternal contributions to early embryo development in large animals. Biol Reprod 2020; 104:274-281. [PMID: 32997138 DOI: 10.1093/biolre/ioaa182] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Revised: 09/21/2020] [Accepted: 09/25/2020] [Indexed: 12/31/2022] Open
Abstract
This review focuses on current knowledge of paternal contributions to preimplantation embryonic development with particular emphasis on large animals. Specifically, the included content aims to summarize genomic and epigenomic contributions of paternally expressed genes, their regulation, and chromatin structure that are indispensable for early embryo development. The accumulation of current knowledge will summarize conserved allelic function among species to include functional molecular and genomic studies across large domestic animals in context with reference to founding experimental models.
Collapse
|
45
|
Bina M. Discovering candidate imprinted genes and imprinting control regions in the human genome. BMC Genomics 2020; 21:378. [PMID: 32475352 PMCID: PMC7262774 DOI: 10.1186/s12864-020-6688-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2019] [Accepted: 03/18/2020] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND Genomic imprinting is a process thereby a subset of genes is expressed in a parent-of-origin specific manner. This evolutionary novelty is restricted to mammals and controlled by genomic DNA segments known as Imprinting Control Regions (ICRs) and germline Differentially Methylated Regions (gDMRs). Previously, I showed that in the mouse genome, the fully characterized ICRs/gDMRs often includes clusters of 2 or more of a set of composite-DNA-elements known as ZFBS-morph overlaps. RESULTS Because of the importance of the ICRs to regulating parent-of-origin specific gene expression, I developed a genome-wide strategy for predicting their positions in the human genome. My strategy consists of creating plots to display the density of ZFBS-morph overlaps along the entire chromosomal DNA sequences. In initial evaluations, I found that peaks in these plots pinpointed several of the known ICRs/gDMRs along the DNA in chromosomal bands. I deduced that in density-plots, robust peaks corresponded to actual or candidate ICRs in the DNA. By locating the genes in the vicinity of candidate ICRs, I could discover potential imprinting genes. Additionally, my assessments revealed a connection between several of the potential imprinted genes and human developmental anomalies. Examples include Leber congenital amaurosis 11, Coffin-Siris syndrome, progressive myoclonic epilepsy-10, microcephalic osteodysplastic primordial dwarfism type II, and microphthalmia, cleft lip and palate, and agenesis of the corpus callosum. CONCLUSION With plots displaying the density of ZFBS-morph overlaps, researchers could locate candidate ICRs and imprinted genes. Since the datafiles are available for download and display at the UCSC genome browser, it is possible to examine the plots in the context of Single nucleotide polymorphisms (SNPs) to design experiments to discover novel ICRs and imprinted genes in the human genome.
Collapse
Affiliation(s)
- Minou Bina
- Department of Chemistry, Purdue University, 560 Oval Dr., West Lafayette, IN, 47907, USA.
| |
Collapse
|
46
|
Schrott R, Murphy SK. Cannabis use and the sperm epigenome: a budding concern? ENVIRONMENTAL EPIGENETICS 2020; 6:dvaa002. [PMID: 32211199 PMCID: PMC7081939 DOI: 10.1093/eep/dvaa002] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Revised: 02/04/2020] [Accepted: 02/06/2020] [Indexed: 05/13/2023]
Abstract
The United States is swiftly moving toward increased legalization of medical and recreational cannabis. Currently considered the most commonly used illicit psychoactive drug, recreational cannabis is legal in 11 states and Washington, DC, and male use is an important and understudied concern. Questions remain, however, about the potential long-term consequences of this exposure and how cannabis might impact the epigenetic integrity of sperm in such a way that could influence the health and development of offspring. This review summarizes cannabis use and potency in the USA, provides a brief overview of DNA methylation as an epigenetic mechanism that is vulnerable in sperm to environmental exposures including cannabis, and summarizes studies that have examined the effects of parental exposure to cannabis or delta-9 tetrahydrocannabinol (THC, the main psychoactive component of cannabis) on the epigenetic profile of the gametes and behavior of offspring. These studies have demonstrated significant changes to the sperm DNA methylome following cannabis use in humans, and THC exposure in rats. Furthermore, the use of rodent models has shown methylation and behavioral changes in rats born to fathers exposed to THC or synthetic cannabinoids, or to parents who were both exposed to THC. These data substantiate an urgent need for additional studies assessing the effects of cannabis exposure on childhood health and development. This is especially true given the current growing state of cannabis use in the USA.
Collapse
Affiliation(s)
- Rose Schrott
- Department of Obstetrics and Gynecology, Division of Reproductive Sciences, Duke University Medical Center, The Chesterfield, 701 W. Main Street, Suite 510, Durham, NC 27701 USA
- Integrated Toxicology and Environmental Health Program, Nicholas School of the Environment, Duke University, Circuit Dr, Durham, NC 27710 USA
| | - Susan K Murphy
- Department of Obstetrics and Gynecology, Division of Reproductive Sciences, Duke University Medical Center, The Chesterfield, 701 W. Main Street, Suite 510, Durham, NC 27701 USA
- Integrated Toxicology and Environmental Health Program, Nicholas School of the Environment, Duke University, Circuit Dr, Durham, NC 27710 USA
- Correspondence address: Duke University Medical Center, The Chesterfield, 701 W. Main Street, Suite 510, Durham, NC 27701, USA. Tel: 919-681-3423; Fax: 919-385-9358; E-mail:
| |
Collapse
|
47
|
Baranov VS, Kogan IY, Kuznetzova TV. Advances in Developmental Genetics and Achievements in Assisted Reproductive Technology. RUSS J GENET+ 2019. [DOI: 10.1134/s1022795419100028] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
48
|
El Khoury D, Fayjaloun S, Nassar M, Sahakian J, Aad PY. Updates on the Effect of Mycotoxins on Male Reproductive Efficiency in Mammals. Toxins (Basel) 2019; 11:E515. [PMID: 31484408 PMCID: PMC6784030 DOI: 10.3390/toxins11090515] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2019] [Revised: 08/19/2019] [Accepted: 08/30/2019] [Indexed: 12/15/2022] Open
Abstract
Mycotoxins are ubiquitous and unavoidable harmful fungal products with the ability to cause disease in both animals and humans, and are found in almost all types of foods, with a greater prevalence in hot humid environments. These mycotoxins vary greatly in structure and biochemical effects; therefore, by better understanding the toxicological and pathological aspects of mycotoxins, we can be better equipped to fight the diseases, as well as the biological and economic devastations, they induce. Multiple studies point to the association between a recent increase in male infertility and the increased occurrence of these mycotoxins in the environment. Furthermore, understanding how mycotoxins may induce an accumulation of epimutations during parental lifetimes can shed light on their implications with respect to fertility and reproductive efficiency. By acknowledging the diversity of mycotoxin molecular function and mode of action, this review aims to address the current limited knowledge on the effects of these chemicals on spermatogenesis and the various endocrine and epigenetics patterns associated with their disruptions.
Collapse
Affiliation(s)
- Diala El Khoury
- Department of Sciences, Faculty of Natural and Applied Sciences, Notre Dame University-Louaize, Zouk Mosbeh 2207, Lebanon
| | - Salma Fayjaloun
- Department of Sciences, Faculty of Natural and Applied Sciences, Notre Dame University-Louaize, Zouk Mosbeh 2207, Lebanon
| | - Marc Nassar
- Department of Sciences, Faculty of Natural and Applied Sciences, Notre Dame University-Louaize, Zouk Mosbeh 2207, Lebanon
| | - Joseph Sahakian
- Department of Sciences, Faculty of Natural and Applied Sciences, Notre Dame University-Louaize, Zouk Mosbeh 2207, Lebanon
| | - Pauline Y Aad
- Department of Sciences, Faculty of Natural and Applied Sciences, Notre Dame University-Louaize, Zouk Mosbeh 2207, Lebanon.
| |
Collapse
|
49
|
Harris C, Cloutier M, Trotter M, Hinten M, Gayen S, Du Z, Xie W, Kalantry S. Conversion of random X-inactivation to imprinted X-inactivation by maternal PRC2. eLife 2019; 8:e44258. [PMID: 30938678 PMCID: PMC6541438 DOI: 10.7554/elife.44258] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2018] [Accepted: 04/01/2019] [Indexed: 01/15/2023] Open
Abstract
Imprinted X-inactivation silences genes exclusively on the paternally-inherited X-chromosome and is a paradigm of transgenerational epigenetic inheritance in mammals. Here, we test the role of maternal vs. zygotic Polycomb repressive complex 2 (PRC2) protein EED in orchestrating imprinted X-inactivation in mouse embryos. In maternal-null (Eedm-/-) but not zygotic-null (Eed-/-) early embryos, the maternal X-chromosome ectopically induced Xist and underwent inactivation. Eedm-/- females subsequently stochastically silenced Xist from one of the two X-chromosomes and displayed random X-inactivation. This effect was exacerbated in embryos lacking both maternal and zygotic EED (Eedmz-/-), suggesting that zygotic EED can also contribute to the onset of imprinted X-inactivation. Xist expression dynamics in Eedm-/- embryos resemble that of early human embryos, which lack oocyte-derived maternal PRC2 and only undergo random X-inactivation. Thus, expression of PRC2 in the oocyte and transmission of the gene products to the embryo may dictate the occurrence of imprinted X-inactivation in mammals.
Collapse
Affiliation(s)
- Clair Harris
- Department of Human GeneticsUniversity of MichiganAnn ArborUnited States
| | - Marissa Cloutier
- Department of Human GeneticsUniversity of MichiganAnn ArborUnited States
| | - Megan Trotter
- Department of Human GeneticsUniversity of MichiganAnn ArborUnited States
| | - Michael Hinten
- Department of Human GeneticsUniversity of MichiganAnn ArborUnited States
| | - Srimonta Gayen
- Department of Human GeneticsUniversity of MichiganAnn ArborUnited States
| | - Zhenhai Du
- Center for Stem Cell Biology and Regenerative Medicine, MOE Key Laboratory of Bioinformatics, School of Life Sciences, THU-PKU Center for Life ScienceTsinghua UniversityBeijingChina
| | - Wei Xie
- Center for Stem Cell Biology and Regenerative Medicine, MOE Key Laboratory of Bioinformatics, School of Life Sciences, THU-PKU Center for Life ScienceTsinghua UniversityBeijingChina
| | - Sundeep Kalantry
- Department of Human GeneticsUniversity of MichiganAnn ArborUnited States
| |
Collapse
|
50
|
Lobo J, Gillis AJM, Jerónimo C, Henrique R, Looijenga LHJ. Human Germ Cell Tumors are Developmental Cancers: Impact of Epigenetics on Pathobiology and Clinic. Int J Mol Sci 2019; 20:E258. [PMID: 30634670 PMCID: PMC6359418 DOI: 10.3390/ijms20020258] [Citation(s) in RCA: 88] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2018] [Revised: 12/25/2018] [Accepted: 01/07/2019] [Indexed: 02/03/2023] Open
Abstract
Current (high throughput omics-based) data support the model that human (malignant) germ cell tumors are not initiated by somatic mutations, but, instead through a defined locked epigenetic status, representative of their cell of origin. This elegantly explains the role of both genetic susceptibility as well as environmental factors in the pathogenesis, referred to as 'genvironment'. Moreover, it could also explain various epidemiological findings, including the rising incidence of this type of cancer in Western societies. In addition, it allows for identification of clinically relevant and informative biomarkers both for diagnosis and follow-up of individual patients. The current status of these findings will be discussed, including the use of high throughput DNA methylation profiling for determination of differentially methylated regions (DMRs) as well as chromosomal copy number variation (CNV). Finally, the potential value of methylation-specific tumor DNA fragments (i.e., XIST promotor) as well as embryonic microRNAs as molecular biomarkers for cancer detection in liquid biopsies will be presented.
Collapse
Affiliation(s)
- João Lobo
- Cancer Biology and Epigenetics Group, Research Center of Portuguese Oncology Institute of Porto (GEBC CI-IPOP), R. Dr. António Bernardino de Almeida, 4200-072 Porto, Portugal.
- Department of Pathology, Portuguese Oncology Institute of Porto (IPOP), R. Dr. António Bernardino de Almeida, 4200-072 Porto, Portugal.
- Department of Pathology and Molecular Immunology, Institute of Biomedical Sciences Abel Salazar, University of Porto (ICBAS-UP), Rua Jorge Viterbo Ferreira 228, 4050-513 Porto, Portugal;.
| | - Ad J M Gillis
- Laboratory of Experimental Patho-Oncology (LEPO), Josephine Nefkens Building, Erasmus MC, Department of Pathology, University Medical Center, Cancer Institute, Be-432A, PO Box 2040, 3000 CA Rotterdam, The Netherlands.
- Princess Máxima Center for Pediatric Oncology, Heidelberglaan 25, 3584 CS Utrecht, The Netherlands.
| | - Carmen Jerónimo
- Cancer Biology and Epigenetics Group, Research Center of Portuguese Oncology Institute of Porto (GEBC CI-IPOP), R. Dr. António Bernardino de Almeida, 4200-072 Porto, Portugal.
- Department of Pathology and Molecular Immunology, Institute of Biomedical Sciences Abel Salazar, University of Porto (ICBAS-UP), Rua Jorge Viterbo Ferreira 228, 4050-513 Porto, Portugal;.
| | - Rui Henrique
- Cancer Biology and Epigenetics Group, Research Center of Portuguese Oncology Institute of Porto (GEBC CI-IPOP), R. Dr. António Bernardino de Almeida, 4200-072 Porto, Portugal.
- Department of Pathology, Portuguese Oncology Institute of Porto (IPOP), R. Dr. António Bernardino de Almeida, 4200-072 Porto, Portugal.
- Department of Pathology and Molecular Immunology, Institute of Biomedical Sciences Abel Salazar, University of Porto (ICBAS-UP), Rua Jorge Viterbo Ferreira 228, 4050-513 Porto, Portugal;.
| | - Leendert H J Looijenga
- Laboratory of Experimental Patho-Oncology (LEPO), Josephine Nefkens Building, Erasmus MC, Department of Pathology, University Medical Center, Cancer Institute, Be-432A, PO Box 2040, 3000 CA Rotterdam, The Netherlands.
- Princess Máxima Center for Pediatric Oncology, Heidelberglaan 25, 3584 CS Utrecht, The Netherlands.
| |
Collapse
|