1
|
Pražák V, Vasishtan D, Grünewald K, Douglas RG, Ferreira JL. Molecular architecture of glideosome and nuclear F-actin in Plasmodium falciparum. EMBO Rep 2025; 26:1984-1996. [PMID: 40128412 PMCID: PMC12019134 DOI: 10.1038/s44319-025-00415-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2024] [Revised: 01/30/2025] [Accepted: 02/21/2025] [Indexed: 03/26/2025] Open
Abstract
Actin-based motility is required for the transmission of malaria sporozoites. While this has been shown biochemically, filamentous actin has remained elusive and has not been directly visualised inside the parasite. Using focused ion beam milling and electron cryo-tomography, we studied dynamic actin filaments in unperturbed Plasmodium falciparum cells for the first time. This allowed us to dissect the assembly, path and fate of actin filaments during parasite gliding and determine a complete 3D model of F-actin within sporozoites. We observe micrometre long actin filaments, much longer than expected from in vitro studies. After their assembly at the parasite's apical end, actin filaments continue to grow as they are transported down the cell as part of the glideosome machinery, and are disassembled at the basal end in a rate-limiting step. Large pores in the IMC, constrained to the basal end, may facilitate actin exchange between the pellicular space and cytosol for recycling and maintenance of directional flow. The data also reveal striking actin bundles in the nucleus. Implications for motility and transmission are discussed.
Collapse
Affiliation(s)
- Vojtěch Pražák
- Leibniz-Institut für Virologie (LIV), Hamburg, 20251, Germany
- Centre for Structural Systems Biology, Hamburg, 22607, Germany
- Department of Biochemistry, University of Oxford, South Parks Road, Oxford, OX1 3QU, UK
| | - Daven Vasishtan
- Leibniz-Institut für Virologie (LIV), Hamburg, 20251, Germany
- Centre for Structural Systems Biology, Hamburg, 22607, Germany
- Department of Biochemistry, University of Oxford, South Parks Road, Oxford, OX1 3QU, UK
| | - Kay Grünewald
- Leibniz-Institut für Virologie (LIV), Hamburg, 20251, Germany
- Centre for Structural Systems Biology, Hamburg, 22607, Germany
- Department of Biochemistry, University of Oxford, South Parks Road, Oxford, OX1 3QU, UK
- Department of Chemistry, Universität Hamburg, Hamburg, 20148, Germany
| | - Ross G Douglas
- Biochemistry and Molecular Biology, Interdisciplinary Research Centre and Molecular Infection Biology, Biomedical Research Centre Seltersberg, Justus Liebig University Giessen, Giessen, 35392, Germany
- Institute of Veterinary Physiology and Biochemistry, Justus Liebig University Giessen, Giessen, 35392, Germany
| | - Josie L Ferreira
- Institute for Structural and Molecular Biology, Division of Biosciences, University College London, London, WC1E 6BT, UK.
| |
Collapse
|
2
|
Ren B, Haase R, Patray S, Nguyen Q, Maco B, Dos Santos Pacheco N, Chang YW, Soldati-Favre D. Architecture of the Toxoplasma gondii apical polar ring and its role in gliding motility and invasion. Proc Natl Acad Sci U S A 2024; 121:e2416602121. [PMID: 39514309 PMCID: PMC11573658 DOI: 10.1073/pnas.2416602121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2024] [Accepted: 10/10/2024] [Indexed: 11/16/2024] Open
Abstract
In Toxoplasma gondii, the conoid comprises a cone with spiraling tubulin fibers, preconoidal rings, and intraconoidal microtubules. This dynamic organelle undergoes extension and retraction through the apical polar ring (APR) during egress, gliding, and invasion. The forces involved in conoid extrusion are beginning to be understood, and its role in directing F-actin flux to the pellicular space, thereby controlling parasite motility, has been proposed. However, the contribution of the APR and its interactions with the conoid remain unclear. To gain insight into the APR architecture, ultrastructure expansion microscopy was applied to pinpoint known and newly identified APR proteins (APR2 to APR7). Our results revealed that the APR is constructed as a fixed multilayered structure. Notably, conditional depletion of APR2 resulted in significant impairments in motility and invasion. Electron microscopy and cryoelectron tomography revealed that depletion of APR2 alters APR integrity, affecting conoid extrusion and causing cytosolic leakage of F-actin. These findings implicate the APR structure in directing the apico-basal flux of F-actin to regulate parasite motility and invasion.
Collapse
Affiliation(s)
- Bingjian Ren
- Department of Microbiology and Molecular Medicine, Faculty of Medicine, University of Geneva, Geneva1206, Switzerland
| | - Romuald Haase
- Department of Microbiology and Molecular Medicine, Faculty of Medicine, University of Geneva, Geneva1206, Switzerland
| | - Sharon Patray
- Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA19104
- Institute of Structural Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA19104
| | - Quynh Nguyen
- Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA19104
- Institute of Structural Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA19104
| | - Bohumil Maco
- Department of Microbiology and Molecular Medicine, Faculty of Medicine, University of Geneva, Geneva1206, Switzerland
| | - Nicolas Dos Santos Pacheco
- Department of Microbiology and Molecular Medicine, Faculty of Medicine, University of Geneva, Geneva1206, Switzerland
| | - Yi-Wei Chang
- Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA19104
- Institute of Structural Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA19104
| | - Dominique Soldati-Favre
- Department of Microbiology and Molecular Medicine, Faculty of Medicine, University of Geneva, Geneva1206, Switzerland
| |
Collapse
|
3
|
Douglas RG, Moon RW, Frischknecht F. Cytoskeleton Organization in Formation and Motility of Apicomplexan Parasites. Annu Rev Microbiol 2024; 78:311-335. [PMID: 39094056 DOI: 10.1146/annurev-micro-041222-011539] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/04/2024]
Abstract
Apicomplexan parasites are a group of eukaryotic protozoans with diverse biology that have affected human health like no other group of parasites. These obligate intracellular parasites rely on their cytoskeletal structures for giving them form, enabling them to replicate in unique ways and to migrate across tissue barriers. Recent progress in transgenesis and imaging tools allowed detailed insights into the components making up and regulating the actin and microtubule cytoskeleton as well as the alveolate-specific intermediate filament-like cytoskeletal network. These studies revealed interesting details that deviate from the cell biology of canonical model organisms. Here we review the latest developments in the field and point to a number of open questions covering the most experimentally tractable parasites: Plasmodium, the causative agent of malaria; Toxoplasma gondii, the causative agent of toxoplasmosis; and Cryptosporidium, a major cause of diarrhea.
Collapse
Affiliation(s)
- Ross G Douglas
- Biochemistry and Molecular Biology, Interdisciplinary Research Centre and Molecular Infection Biology, Biomedical Research Centre Seltersberg, Justus Liebig University Giessen, Giessen, Germany
| | - Robert W Moon
- Department of Infection Biology, Faculty of Infectious and Tropical Disease, London School of Hygiene & Tropical Medicine, London, United Kingdom
| | - Friedrich Frischknecht
- German Center for Infection Research (DZIF), Partner Site Heidelberg, Heidelberg, Germany
- Parasitology, Center for Integrative Infectious Diseases Research at Heidelberg University, Heidelberg, Germany;
| |
Collapse
|
4
|
Hueschen CL, Segev-Zarko LA, Chen JH, LeGros MA, Larabell CA, Boothroyd JC, Phillips R, Dunn AR. Emergent actin flows explain distinct modes of gliding motility. NATURE PHYSICS 2024; 20:1989-1996. [PMID: 39669527 PMCID: PMC11631758 DOI: 10.1038/s41567-024-02652-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Accepted: 08/26/2024] [Indexed: 12/14/2024]
Abstract
During host infection, Toxoplasma gondii and related unicellular parasites move using gliding, which differs fundamentally from other known mechanisms of eukaryotic cell motility. Gliding is thought to be powered by a thin layer of flowing filamentous (F)-actin sandwiched between the plasma membrane and a myosin-covered inner membrane complex. How this surface actin layer drives the various gliding modes observed in experiments-helical, circular, twirling and patch, pendulum or rolling-is unclear. Here we suggest that F-actin flows arise through self-organization and develop a continuum model of emergent F-actin flow within the confines provided by Toxoplasma geometry. In the presence of F-actin turnover, our model predicts the emergence of a steady-state mode in which actin transport is largely directed rearward. Removing F-actin turnover leads to actin patches that recirculate up and down the cell, which we observe experimentally for drug-stabilized actin bundles in live Toxoplasma gondii parasites. These distinct self-organized actin states can account for observed gliding modes, illustrating how different forms of gliding motility can emerge as an intrinsic consequence of the self-organizing properties of F-actin flow in a confined geometry.
Collapse
Affiliation(s)
- Christina L. Hueschen
- Dept. of Chemical Engineering, Stanford University, Palo Alto, CA USA
- Present Address: Dept. of Cell and Developmental Biology, University of California San Diego, La Jolla, CA USA
| | - Li-av Segev-Zarko
- Dept. of Microbiology and Immunology, Stanford University, Palo Alto, CA USA
| | - Jian-Hua Chen
- Dept. of Anatomy, University of California San Francisco, San Francisco, CA USA
- National Center for X-ray Tomography, Lawrence Berkeley National Laboratory, Berkeley, CA USA
| | - Mark A. LeGros
- Dept. of Anatomy, University of California San Francisco, San Francisco, CA USA
- National Center for X-ray Tomography, Lawrence Berkeley National Laboratory, Berkeley, CA USA
- Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, CA USA
| | - Carolyn A. Larabell
- Dept. of Anatomy, University of California San Francisco, San Francisco, CA USA
- National Center for X-ray Tomography, Lawrence Berkeley National Laboratory, Berkeley, CA USA
- Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, CA USA
| | - John C. Boothroyd
- Dept. of Microbiology and Immunology, Stanford University, Palo Alto, CA USA
| | - Rob Phillips
- Dept. of Physics, California Institute of Technology, Pasadena, CA USA
- Div. of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA USA
| | - Alexander R. Dunn
- Dept. of Chemical Engineering, Stanford University, Palo Alto, CA USA
| |
Collapse
|
5
|
Le Dréan ME, Le Berre-Scoul C, Paillé V, Caillaud M, Oullier T, Gonzales J, Hulin P, Neunlist M, Talon S, Boudin H. The regulation of enteric neuron connectivity by semaphorin 5A is affected by the autism-associated S956G missense mutation. iScience 2024; 27:109638. [PMID: 38650986 PMCID: PMC11033180 DOI: 10.1016/j.isci.2024.109638] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2023] [Revised: 02/29/2024] [Accepted: 03/26/2024] [Indexed: 04/25/2024] Open
Abstract
The neural network of the enteric nervous system (ENS) underlies gastrointestinal functions. However, the molecular mechanisms involved in enteric neuronal connectivity are poorly characterized. Here, we studied the role of semaphorin 5A (Sema5A), previously characterized in the central nervous system, on ENS neuronal connectivity. Sema5A is linked to autism spectrum disorder (ASD), a neurodevelopmental disorder frequently associated with gastrointestinal comorbidities, and potentially associated with ENS impairments. This study investigated in rat enteric neuron cultures and gut explants the role of Sema5A on enteric neuron connectivity and the impact of ASD-associated mutations on Sema5A activity. Our findings demonstrated that Sema5A promoted axonal complexity and reduced functional connectivity in enteric neurons. Strikingly, the ASD-associated mutation S956G in Sema5A strongly affected these activities. This study identifies a critical role of Sema5A in the ENS as a regulator of neuronal connectivity that might be compromised in ASD.
Collapse
Affiliation(s)
- Morgane E. Le Dréan
- Nantes Université, Inserm, TENS, The Enteric Nervous System in Gut and Brain Diseases, IMAD, Nantes, France
| | - Catherine Le Berre-Scoul
- Nantes Université, Inserm, TENS, The Enteric Nervous System in Gut and Brain Diseases, IMAD, Nantes, France
| | - Vincent Paillé
- Nantes Université, INRAE, UMR 1280, PhAN, IMAD, 44000 Nantes, France
| | - Martial Caillaud
- Nantes Université, Inserm, TENS, The Enteric Nervous System in Gut and Brain Diseases, IMAD, Nantes, France
| | - Thibauld Oullier
- Nantes Université, Inserm, TENS, The Enteric Nervous System in Gut and Brain Diseases, IMAD, Nantes, France
| | - Jacques Gonzales
- Nantes Université, Inserm, TENS, The Enteric Nervous System in Gut and Brain Diseases, IMAD, Nantes, France
| | - Philippe Hulin
- Plateforme MicroPICell Nantes Université, CHU Nantes, CNRS, INSERM, BioCore, US16, SFR Bonamy, Nantes, France
| | - Michel Neunlist
- Nantes Université, Inserm, TENS, The Enteric Nervous System in Gut and Brain Diseases, IMAD, Nantes, France
| | - Sophie Talon
- Nantes Université, Inserm, TENS, The Enteric Nervous System in Gut and Brain Diseases, IMAD, Nantes, France
| | - Hélène Boudin
- Nantes Université, Inserm, TENS, The Enteric Nervous System in Gut and Brain Diseases, IMAD, Nantes, France
| |
Collapse
|
6
|
Tell I Puig A, Soldati-Favre D. Roles of the tubulin-based cytoskeleton in the Toxoplasma gondii apical complex. Trends Parasitol 2024; 40:401-415. [PMID: 38531711 DOI: 10.1016/j.pt.2024.02.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Revised: 02/26/2024] [Accepted: 02/28/2024] [Indexed: 03/28/2024]
Abstract
Microtubules (MTs) play a vital role as key components of the eukaryotic cytoskeleton. The phylum Apicomplexa comprises eukaryotic unicellular parasitic organisms defined by the presence of an apical complex which consists of specialized secretory organelles and tubulin-based cytoskeletal elements. One apicomplexan parasite, Toxoplasma gondii, is an omnipresent opportunistic pathogen with significant medical and veterinary implications. To ensure successful infection and widespread dissemination, T. gondii heavily relies on the tubulin structures present in the apical complex. Recent advances in high-resolution imaging, coupled with reverse genetics, have offered deeper insights into the composition, functionality, and dynamics of these tubulin-based structures. The apicomplexan tubulins differ from those of their mammalian hosts, endowing them with unique attributes and susceptibility to specific classes of inhibitory compounds.
Collapse
Affiliation(s)
- Albert Tell I Puig
- Department of Microbiology and Molecular Medicine, CMU, University of Geneva, Geneva, Switzerland.
| | - Dominique Soldati-Favre
- Department of Microbiology and Molecular Medicine, CMU, University of Geneva, Geneva, Switzerland
| |
Collapse
|
7
|
Kellermeier JA, Heaslip AT. Myosin F controls actin organization and dynamics in Toxoplasma gondii. Mol Biol Cell 2024; 35:ar57. [PMID: 38416592 PMCID: PMC11064658 DOI: 10.1091/mbc.e23-12-0510] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Revised: 02/14/2024] [Accepted: 02/21/2024] [Indexed: 03/01/2024] Open
Abstract
Intracellular cargo transport is a ubiquitous cellular process in all eukaryotes. In many cell types, membrane bound cargo is associated with molecular motors which transport cargo along microtubule and actin tracks. In Toxoplasma gondii (T. gondii), an obligate intracellular parasite in the phylum Apicomplexa, organization of the endomembrane pathway depends on actin and an unconventional myosin motor, myosin F (MyoF). Loss of MyoF and actin disrupts vesicle transport, organelle positioning, and division of the apicoplast, a nonphotosynthetic plastid organelle. How this actomyosin system contributes to these cellular functions is still unclear. Using live-cell imaging, we observed that MyoF-EmeraldFP (MyoF-EmFP) displayed a dynamic and filamentous-like organization in the parasite cytosol, reminiscent of cytosolic actin filament dynamics. MyoF was not associated with the Golgi, apicoplast or dense granule surfaces, suggesting that it does not function using the canonical cargo transport mechanism. Instead, we found that loss of MyoF resulted in a dramatic rearrangement of the actin cytoskeleton in interphase parasites accompanied by significantly reduced actin dynamics. However, actin organization during parasite replication and motility was unaffected by the loss of MyoF. These findings revealed that MyoF is an actin organizing protein in Toxoplasma and facilitates cargo movement using an unconventional transport mechanism.
Collapse
Affiliation(s)
- Jacob A. Kellermeier
- Department of Molecular and Cell Biology, University of Connecticut, Storrs, CT 06269
| | - Aoife T. Heaslip
- Department of Molecular and Cell Biology, University of Connecticut, Storrs, CT 06269
| |
Collapse
|
8
|
Hvorecny KL, Sladewski TE, De La Cruz EM, Kollman JM, Heaslip AT. Toxoplasma gondii actin filaments are tuned for rapid disassembly and turnover. Nat Commun 2024; 15:1840. [PMID: 38418447 PMCID: PMC10902351 DOI: 10.1038/s41467-024-46111-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Accepted: 02/14/2024] [Indexed: 03/01/2024] Open
Abstract
The cytoskeletal protein actin plays a critical role in the pathogenicity of the intracellular parasite, Toxoplasma gondii, mediating invasion and egress, cargo transport, and organelle inheritance. Advances in live cell imaging have revealed extensive filamentous actin networks in the Apicomplexan parasite, but there are conflicting data regarding the biochemical and biophysical properties of Toxoplasma actin. Here, we imaged the in vitro assembly of individual Toxoplasma actin filaments in real time, showing that native, unstabilized filaments grow tens of microns in length. Unlike skeletal muscle actin, Toxoplasma filaments intrinsically undergo rapid treadmilling due to a high critical concentration, fast monomer dissociation, and rapid nucleotide exchange. Cryo-EM structures of jasplakinolide-stabilized and native (i.e. unstabilized) filaments show an architecture like skeletal actin, with differences in assembly contacts in the D-loop that explain the dynamic nature of the filament, likely a conserved feature of Apicomplexan actin. This work demonstrates that evolutionary changes at assembly interfaces can tune the dynamic properties of actin filaments without disrupting their conserved structure.
Collapse
Affiliation(s)
- Kelli L Hvorecny
- Department of Biochemistry, University of Washington, Seattle, WA, USA
| | - Thomas E Sladewski
- Department of Department of Molecular and Cell Biology, University of Connecticut, Storrs, CT, USA
| | - Enrique M De La Cruz
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT, USA
| | - Justin M Kollman
- Department of Biochemistry, University of Washington, Seattle, WA, USA.
| | - Aoife T Heaslip
- Department of Department of Molecular and Cell Biology, University of Connecticut, Storrs, CT, USA.
| |
Collapse
|
9
|
Reber S, Singer M, Frischknecht F. Cytoskeletal dynamics in parasites. Curr Opin Cell Biol 2024; 86:102277. [PMID: 38048658 DOI: 10.1016/j.ceb.2023.102277] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 10/12/2023] [Accepted: 10/17/2023] [Indexed: 12/06/2023]
Abstract
Cytoskeletal dynamics are essential for cellular homeostasis and development for both metazoans and protozoans. The function of cytoskeletal elements in protozoans can diverge from that of metazoan cells, with microtubules being more stable and actin filaments being more dynamic. This is particularly striking in protozoan parasites that evolved to enter metazoan cells. Here, we review recent progress towards understanding cytoskeletal dynamics in protozoan parasites, with a focus on divergent properties compared to classic model organisms.
Collapse
Affiliation(s)
- Simone Reber
- Max Planck Institute for Infection Biology, 10117 Berlin, Germany; University of Applied Sciences Berlin, 13353 Berlin, Germany
| | - Mirko Singer
- Integrative Parasitology, Center for Infectious Diseases, Heidelberg University Medical Faculty, Im Neuenheimer Feld 324, 69120 Heidelberg, Germany; German Center for Infection Research, DZIF Partner Site Heidelberg, Heidelberg, Germany.
| | - Friedrich Frischknecht
- Integrative Parasitology, Center for Infectious Diseases, Heidelberg University Medical Faculty, Im Neuenheimer Feld 324, 69120 Heidelberg, Germany; German Center for Infection Research, DZIF Partner Site Heidelberg, Heidelberg, Germany
| |
Collapse
|
10
|
Chan AW, Broncel M, Yifrach E, Haseley NR, Chakladar S, Andree E, Herneisen AL, Shortt E, Treeck M, Lourido S. Analysis of CDPK1 targets identifies a trafficking adaptor complex that regulates microneme exocytosis in Toxoplasma. eLife 2023; 12:RP85654. [PMID: 37933960 PMCID: PMC10629828 DOI: 10.7554/elife.85654] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2023] Open
Abstract
Apicomplexan parasites use Ca2+-regulated exocytosis to secrete essential virulence factors from specialized organelles called micronemes. Ca2+-dependent protein kinases (CDPKs) are required for microneme exocytosis; however, the molecular events that regulate trafficking and fusion of micronemes with the plasma membrane remain unresolved. Here, we combine sub-minute resolution phosphoproteomics and bio-orthogonal labeling of kinase substrates in Toxoplasma gondii to identify 163 proteins phosphorylated in a CDPK1-dependent manner. In addition to known regulators of secretion, we identify uncharacterized targets with predicted functions across signaling, gene expression, trafficking, metabolism, and ion homeostasis. One of the CDPK1 targets is a putative HOOK activating adaptor. In other eukaryotes, HOOK homologs form the FHF complex with FTS and FHIP to activate dynein-mediated trafficking of endosomes along microtubules. We show the FHF complex is partially conserved in T. gondii, consisting of HOOK, an FTS homolog, and two parasite-specific proteins (TGGT1_306920 and TGGT1_316650). CDPK1 kinase activity and HOOK are required for the rapid apical trafficking of micronemes as parasites initiate motility. Moreover, parasites lacking HOOK or FTS display impaired microneme protein secretion, leading to a block in the invasion of host cells. Taken together, our work provides a comprehensive catalog of CDPK1 targets and reveals how vesicular trafficking has been tuned to support a parasitic lifestyle.
Collapse
Affiliation(s)
- Alex W Chan
- Whitehead Institute for Biomedical ResearchCambridgeUnited States
- Biology Department, Massachusetts Institute of TechnologyCambridgeUnited States
| | - Malgorzata Broncel
- Signaling in Apicomplexan Parasites Laboratory, The Francis Crick InstituteLondonUnited Kingdom
| | - Eden Yifrach
- Whitehead Institute for Biomedical ResearchCambridgeUnited States
| | - Nicole R Haseley
- Whitehead Institute for Biomedical ResearchCambridgeUnited States
| | | | - Elena Andree
- Whitehead Institute for Biomedical ResearchCambridgeUnited States
| | - Alice L Herneisen
- Whitehead Institute for Biomedical ResearchCambridgeUnited States
- Biology Department, Massachusetts Institute of TechnologyCambridgeUnited States
| | - Emily Shortt
- Whitehead Institute for Biomedical ResearchCambridgeUnited States
| | - Moritz Treeck
- Signaling in Apicomplexan Parasites Laboratory, The Francis Crick InstituteLondonUnited Kingdom
| | - Sebastian Lourido
- Whitehead Institute for Biomedical ResearchCambridgeUnited States
- Biology Department, Massachusetts Institute of TechnologyCambridgeUnited States
| |
Collapse
|
11
|
Devarakonda PM, Sarmiento V, Heaslip AT. F-actin and myosin F control apicoplast elongation dynamics which drive apicoplast-centrosome association in Toxoplasma gondii. mBio 2023; 14:e0164023. [PMID: 37732764 PMCID: PMC10653800 DOI: 10.1128/mbio.01640-23] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Accepted: 07/26/2023] [Indexed: 09/22/2023] Open
Abstract
IMPORTANCE Toxoplasma gondii and most other parasites in the phylum Apicomplexa contain an apicoplast, a non-photosynthetic plastid organelle required for fatty acid, isoprenoid, iron-sulfur cluster, and heme synthesis. Perturbation of apicoplast function results in parasite death. Thus, parasite survival critically depends on two cellular processes: apicoplast division to ensure every daughter parasite inherits a single apicoplast, and trafficking of nuclear encoded proteins to the apicoplast. Despite the importance of these processes, there are significant knowledge gaps in regards to the molecular mechanisms which control these processes; this is particularly true for trafficking of nuclear-encoded apicoplast proteins. This study provides crucial new insight into the timing of apicoplast protein synthesis and trafficking to the apicoplast. In addition, this study demonstrates how apicoplast-centrosome association, a key step in the apicoplast division cycle, is controlled by the actomyosin cytoskeleton.
Collapse
Affiliation(s)
| | - Valeria Sarmiento
- Department of Molecular and Cell Biology, University of Connecticut, Storrs, Connecticut, USA
| | - Aoife T. Heaslip
- Department of Molecular and Cell Biology, University of Connecticut, Storrs, Connecticut, USA
| |
Collapse
|
12
|
Vigetti L, Tardieux I. Fostering innovation to solve the biomechanics of microbe-host interactions: Focus on the adhesive forces underlying Apicomplexa parasite biology. Biol Cell 2023; 115:e202300016. [PMID: 37227253 DOI: 10.1111/boc.202300016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Revised: 05/19/2023] [Accepted: 05/22/2023] [Indexed: 05/26/2023]
Abstract
The protozoa, Toxoplasma gondii and Plasmodium spp., are preeminent members of the Apicomplexa parasitic phylum in large part due to their public health and economic impact. Hence, they serve as model unicellular eukaryotes with which to explore the repertoire of molecular and cellular strategies that specific developmental morphotypes deploy to timely adjust to their host(s) in order to perpetuate. In particular, host tissue- and cell-invasive morphotypes termed zoites alternate extracellular and intracellular lifestyles, thereby sensing and reacting to a wealth of host-derived biomechanical cues over their partnership. In the recent years, biophysical tools especially related to real time force measurement have been introduced, teaching us how creative are these microbes to shape a unique motility system that powers fast gliding through a variety of extracellular matrices, across cellular barriers, in vascular systems or into host cells. Equally performant was this toolkit to start illuminating how parasites manipulate their hosting cell adhesive and rheological properties to their advantage. In this review, besides highlighting major discoveries along the way, we discuss the most promising development, synergy, and multimodal integration in active noninvasive force microscopy methods. These should in the near future unlock current limitations and allow capturing, from molecules to tissues, the many biomechanical and biophysical interplays over the dynamic host and microbe partnership.
Collapse
Affiliation(s)
- Luis Vigetti
- Team Biomechanics of Host-Parasite Interactions, Institute for Advanced Biosciences, CNRS UMR5309, INSERM U1209, University of Grenoble Alpes, Grenoble, France
| | - Isabelle Tardieux
- Team Biomechanics of Host-Parasite Interactions, Institute for Advanced Biosciences, CNRS UMR5309, INSERM U1209, University of Grenoble Alpes, Grenoble, France
| |
Collapse
|
13
|
Tengganu IF, Arias Padilla LF, Munera Lopez J, Liu J, Brown PT, Murray JM, Hu K. The cortical microtubules of Toxoplasma gondii underlie the helicity of parasite movement. J Cell Sci 2023; 136:jcs261270. [PMID: 37675776 PMCID: PMC10499027 DOI: 10.1242/jcs.261270] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2023] [Accepted: 08/04/2023] [Indexed: 09/08/2023] Open
Abstract
Motility is essential for apicomplexan parasites to infect their hosts. In a three-dimensional (3D) environment, the apicomplexan parasite Toxoplasma gondii moves along a helical path. The cortical microtubules, which are ultra-stable and spirally arranged, have been considered to be a structure that guides the long-distance movement of the parasite. Here, we address the role of the cortical microtubules in parasite motility, invasion and egress by utilizing a previously generated mutant (dubbed 'TKO') in which these microtubules are destabilized in mature parasites. We found that the cortical microtubules in ∼80% of the non-dividing (i.e. daughter-free) TKO parasites are much shorter than normal. The extent of depolymerization was further exacerbated upon commencement of daughter formation or cold treatment, but parasite replication was not affected. In a 3D Matrigel matrix, the TKO mutant moved directionally over long distances, but along trajectories that were significantly more linear (i.e. less helical) than those of wild-type parasites. Interestingly, this change in trajectory did not impact either movement speed in the matrix or the speed and behavior of the parasite during entry into and egress from the host cell.
Collapse
Affiliation(s)
- Isadonna F. Tengganu
- Biodesign Center for Mechanisms of Evolution/School of Life Sciences, Arizona State University, Tempe, AZ 85284, USA
| | - Luisa F. Arias Padilla
- Biodesign Center for Mechanisms of Evolution/School of Life Sciences, Arizona State University, Tempe, AZ 85284, USA
| | - Jonathan Munera Lopez
- Biodesign Center for Mechanisms of Evolution/School of Life Sciences, Arizona State University, Tempe, AZ 85284, USA
| | - Jun Liu
- Department of Biology, Indiana University, Bloomington, ID 47405, USA
| | - Peter T. Brown
- Department of Physics and Center for Biological Physics, Arizona State University, Tempe, AZ 85284, USA
| | - John M. Murray
- Biodesign Center for Mechanisms of Evolution/School of Life Sciences, Arizona State University, Tempe, AZ 85284, USA
| | - Ke Hu
- Biodesign Center for Mechanisms of Evolution/School of Life Sciences, Arizona State University, Tempe, AZ 85284, USA
| |
Collapse
|
14
|
Hvorecny KL, Sladewski TE, De La Cruz EM, Kollman JM, Heaslip AT. Toxoplasma gondii actin filaments are tuned for rapid disassembly and turnover. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.08.29.555340. [PMID: 37693530 PMCID: PMC10491163 DOI: 10.1101/2023.08.29.555340] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/12/2023]
Abstract
The cytoskeletal protein actin plays a critical role in the pathogenicity of Toxoplasma gondii, mediating invasion and egress, cargo transport, and organelle inheritance. Advances in live cell imaging have revealed extensive filamentous actin networks in the Apicomplexan parasite, but there is conflicting data regarding the biochemical and biophysical properties of Toxoplasma actin. Here, we imaged the in vitro assembly of individual Toxoplasma actin filaments in real time, showing that native, unstabilized filaments grow tens of microns in length. Unlike skeletal muscle actin, Toxoplasma filaments intrinsically undergo rapid treadmilling due to a high critical concentration, fast monomer dissociation, and rapid nucleotide exchange. Cryo-EM structures of stabilized and unstabilized filaments show an architecture like skeletal actin, with differences in assembly contacts in the D-loop that explain the dynamic nature of the filament, likely a conserved feature of Apicomplexan actin. This work demonstrates that evolutionary changes at assembly interfaces can tune dynamic properties of actin filaments without disrupting their conserved structure.
Collapse
Affiliation(s)
- Kelli L Hvorecny
- Department of Biochemistry, University of Washington, Seattle, WA, USA
| | - Thomas E Sladewski
- Department of Department of Molecular and Cell Biology, University of Connecticut, Storrs, Connecticut, USA
| | - Enrique M De La Cruz
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT 06520
| | - Justin M Kollman
- Department of Biochemistry, University of Washington, Seattle, WA, USA
| | - Aoife T Heaslip
- Department of Department of Molecular and Cell Biology, University of Connecticut, Storrs, Connecticut, USA
| |
Collapse
|
15
|
Chan AW, Broncel M, Yifrach E, Haseley N, Chakladar S, Andree E, Herneisen AL, Shortt E, Treeck M, Lourido S. Analysis of CDPK1 targets identifies a trafficking adaptor complex that regulates microneme exocytosis in Toxoplasma. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.01.11.523553. [PMID: 36712004 PMCID: PMC9882037 DOI: 10.1101/2023.01.11.523553] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Apicomplexan parasites use Ca2+-regulated exocytosis to secrete essential virulence factors from specialized organelles called micronemes. Ca2+-dependent protein kinases (CDPKs) are required for microneme exocytosis; however, the molecular events that regulate trafficking and fusion of micronemes with the plasma membrane remain unresolved. Here, we combine sub-minute resolution phosphoproteomics and bio-orthogonal labeling of kinase substrates in Toxoplasma gondii to identify 163 proteins phosphorylated in a CDPK1-dependent manner. In addition to known regulators of secretion, we identify uncharacterized targets with predicted functions across signaling, gene expression, trafficking, metabolism, and ion homeostasis. One of the CDPK1 targets is a putative HOOK activating adaptor. In other eukaryotes, HOOK homologs form the FHF complex with FTS and FHIP to activate dynein-mediated trafficking of endosomes along microtubules. We show the FHF complex is partially conserved in T. gondii, consisting of HOOK, an FTS homolog, and two parasite-specific proteins (TGGT1_306920 and TGGT1_316650). CDPK1 kinase activity and HOOK are required for the rapid apical trafficking of micronemes as parasites initiate motility. Moreover, parasites lacking HOOK or FTS display impaired microneme protein secretion, leading to a block in the invasion of host cells. Taken together, our work provides a comprehensive catalog of CDPK1 targets and reveals how vesicular trafficking has been tuned to support a parasitic lifestyle.
Collapse
Affiliation(s)
- Alex W Chan
- Whitehead Institute for Biomedical Research, Cambridge, MA, USA
- Biology Department, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Malgorzata Broncel
- Signaling in Apicomplexan Parasites Laboratory, The Francis Crick Institute, London, UK
| | - Eden Yifrach
- Whitehead Institute for Biomedical Research, Cambridge, MA, USA
| | - Nicole Haseley
- Whitehead Institute for Biomedical Research, Cambridge, MA, USA
| | | | - Elena Andree
- Whitehead Institute for Biomedical Research, Cambridge, MA, USA
| | - Alice L Herneisen
- Whitehead Institute for Biomedical Research, Cambridge, MA, USA
- Biology Department, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Emily Shortt
- Whitehead Institute for Biomedical Research, Cambridge, MA, USA
| | - Moritz Treeck
- Signaling in Apicomplexan Parasites Laboratory, The Francis Crick Institute, London, UK
| | - Sebastian Lourido
- Whitehead Institute for Biomedical Research, Cambridge, MA, USA
- Biology Department, Massachusetts Institute of Technology, Cambridge, MA, USA
| |
Collapse
|
16
|
Collier S, Pietsch E, Dans M, Ling D, Tavella TA, Lopaticki S, Marapana DS, Shibu MA, Andrew D, Tiash S, McMillan PJ, Gilson P, Tilley L, Dixon MWA. Plasmodium falciparum formins are essential for invasion and sexual stage development. Commun Biol 2023; 6:861. [PMID: 37596377 PMCID: PMC10439200 DOI: 10.1038/s42003-023-05233-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Accepted: 08/09/2023] [Indexed: 08/20/2023] Open
Abstract
The malaria parasite uses actin-based mechanisms throughout its lifecycle to control a range of biological processes including intracellular trafficking, gene regulation, parasite motility and invasion. In this work we assign functions to the Plasmodium falciparum formins 1 and 2 (FRM1 and FRM2) proteins in asexual and sexual blood stage development. We show that FRM1 is essential for merozoite invasion and FRM2 is required for efficient cell division. We also observed divergent functions for FRM1 and FRM2 in gametocyte development. Conditional deletion of FRM1 leads to a delay in gametocyte stage progression. We show that FRM2 controls the actin and microtubule cytoskeletons in developing gametocytes, with premature removal of the protein resulting in a loss of transmissible stage V gametocytes. Lastly, we show that targeting formin proteins with the small molecule inhibitor of formin homology domain 2 (SMIFH2) leads to a multistage block in asexual and sexual stage parasite development.
Collapse
Affiliation(s)
- Sophie Collier
- Department of Biochemistry and Molecular Biology, University of Melbourne, Parkville, VIC, 3010, Australia
- Bio21 Molecular Science and Biotechnology Institute, University of Melbourne, Parkville, VIC, 3010, Australia
| | - Emma Pietsch
- Department of Biochemistry and Molecular Biology, University of Melbourne, Parkville, VIC, 3010, Australia
- Bio21 Molecular Science and Biotechnology Institute, University of Melbourne, Parkville, VIC, 3010, Australia
| | - Madeline Dans
- The Macfarlane Burnet Institute for Medical Research, 85 Commercial Road, Melbourne, VIC, 3004, Australia
| | - Dawson Ling
- The Macfarlane Burnet Institute for Medical Research, 85 Commercial Road, Melbourne, VIC, 3004, Australia
| | - Tatyana A Tavella
- Department of Biochemistry and Molecular Biology, University of Melbourne, Parkville, VIC, 3010, Australia
- Bio21 Molecular Science and Biotechnology Institute, University of Melbourne, Parkville, VIC, 3010, Australia
| | - Sash Lopaticki
- Department of Infectious Diseases, Doherty Institute, University of Melbourne, Parkville, VIC, 3010, Australia
- Walter and Eliza Hall Institute, 1G Royal Parade, Parkville, VIC, 3052, Australia
| | - Danushka S Marapana
- Walter and Eliza Hall Institute, 1G Royal Parade, Parkville, VIC, 3052, Australia
| | - Mohini A Shibu
- Department of Biochemistry and Molecular Biology, University of Melbourne, Parkville, VIC, 3010, Australia
- Bio21 Molecular Science and Biotechnology Institute, University of Melbourne, Parkville, VIC, 3010, Australia
| | - Dean Andrew
- Department of Biochemistry and Molecular Biology, University of Melbourne, Parkville, VIC, 3010, Australia
- Bio21 Molecular Science and Biotechnology Institute, University of Melbourne, Parkville, VIC, 3010, Australia
| | - Snigdha Tiash
- Department of Biochemistry and Molecular Biology, University of Melbourne, Parkville, VIC, 3010, Australia
- Bio21 Molecular Science and Biotechnology Institute, University of Melbourne, Parkville, VIC, 3010, Australia
| | - Paul J McMillan
- Biological Optical Microscopy Platform, University of Melbourne, Parkville, VIC, 3010, Australia
| | - Paul Gilson
- The Macfarlane Burnet Institute for Medical Research, 85 Commercial Road, Melbourne, VIC, 3004, Australia
| | - Leann Tilley
- Department of Biochemistry and Molecular Biology, University of Melbourne, Parkville, VIC, 3010, Australia
- Bio21 Molecular Science and Biotechnology Institute, University of Melbourne, Parkville, VIC, 3010, Australia
| | - Matthew W A Dixon
- Department of Infectious Diseases, Doherty Institute, University of Melbourne, Parkville, VIC, 3010, Australia.
- Walter and Eliza Hall Institute, 1G Royal Parade, Parkville, VIC, 3052, Australia.
| |
Collapse
|
17
|
Martinez M, Mageswaran SK, Guérin A, Chen WD, Thompson CP, Chavin S, Soldati-Favre D, Striepen B, Chang YW. Origin and arrangement of actin filaments for gliding motility in apicomplexan parasites revealed by cryo-electron tomography. Nat Commun 2023; 14:4800. [PMID: 37558667 PMCID: PMC10412601 DOI: 10.1038/s41467-023-40520-6] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Accepted: 07/26/2023] [Indexed: 08/11/2023] Open
Abstract
The phylum Apicomplexa comprises important eukaryotic parasites that invade host tissues and cells using a unique mechanism of gliding motility. Gliding is powered by actomyosin motors that translocate host-attached surface adhesins along the parasite cell body. Actin filaments (F-actin) generated by Formin1 play a central role in this critical parasitic activity. However, their subcellular origin, path and ultrastructural arrangement are poorly understood. Here we used cryo-electron tomography to image motile Cryptosporidium parvum sporozoites and reveal the cellular architecture of F-actin at nanometer-scale resolution. We demonstrate that F-actin nucleates at the apically positioned preconoidal rings and is channeled into the pellicular space between the parasite plasma membrane and the inner membrane complex in a conoid extrusion-dependent manner. Within the pellicular space, filaments on the inner membrane complex surface appear to guide the apico-basal flux of F-actin. F-actin concordantly accumulates at the basal end of the parasite. Finally, analyzing a Formin1-depleted Toxoplasma gondii mutant pinpoints the upper preconoidal ring as the conserved nucleation hub for F-actin in Cryptosporidium and Toxoplasma. Together, we provide an ultrastructural model for the life cycle of F-actin for apicomplexan gliding motility.
Collapse
Affiliation(s)
- Matthew Martinez
- Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Shrawan Kumar Mageswaran
- Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Institute of Structural Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Amandine Guérin
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - William David Chen
- Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Cameron Parker Thompson
- Pennsylvania Muscle Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Sabine Chavin
- Department of Physics and Astronomy, University of Pennsylvania, Philadelphia, PA, USA
| | - Dominique Soldati-Favre
- Department of Microbiology and Molecular Medicine, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Boris Striepen
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Yi-Wei Chang
- Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.
- Institute of Structural Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.
- Pennsylvania Muscle Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.
| |
Collapse
|
18
|
Tengganu IF, Padilla LFA, Lopez JM, Liu J, Brown PT, Murray JM, Hu K. The cortical microtubules of Toxoplasma gondii underlie the helicity of parasite movement. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.04.23.538011. [PMID: 37162829 PMCID: PMC10168230 DOI: 10.1101/2023.04.23.538011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
Motility is essential for apicomplexan parasites to infect their hosts. In a three-dimensional (3-D) environment, the apicomplexan parasite Toxoplasma gondii moves along a helical path. The cortical microtubules, which are ultra-stable and spirally arranged, have been considered to be a structure that guides the long-distance movement of the parasite. Here we address the role of the cortical microtubules in parasite motility, invasion, and egress by utilizing a previously generated mutant (dubbed "TKO") in which these microtubules are destabilized in mature parasites. We found that the cortical microtubules in ~ 80% of the non-dividing (i.e. daughter-free) TKO parasites are much shorter than normal. The extent of depolymerization is further exacerbated upon commencement of daughter formation or cold treatment, but parasite replication is not affected. In a 3-D Matrigel matrix, the TKO mutant moves directionally over long distances, but along trajectories significantly more linear (i.e. less helical) than those of wild-type parasites. Interestingly, this change in trajectory does not impact either movement speed in the matrix or the speed and behavior of the parasite's entry into and egress from the host cell.
Collapse
|
19
|
Devarakonda PM, Sarmiento V, Heaslip AT. F-actin and Myosin F control apicoplast elongation dynamics which drive apicoplast-centrosome association in Toxoplasma gondii. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.01.01.521342. [PMID: 36711828 PMCID: PMC9881852 DOI: 10.1101/2023.01.01.521342] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Toxoplasma gondii contains an essential plastid organelle called the apicoplast that is necessary for fatty acid, isoprenoid, and heme synthesis. Perturbations affecting apicoplast function or inheritance lead to parasite death. The apicoplast is a single copy organelle and therefore must be divided so that each daughter parasite inherits an apicoplast during cell division. In this study we identify new roles for F-actin and an unconventional myosin motor, TgMyoF, in this process. First, loss of TgMyoF and actin lead to an accumulation of apicoplast vesicles in the cytosol indicating a role for this actomyosin system in apicoplast protein trafficking or morphological integrity of the organelle. Second, live cell imaging reveals that during division the apicoplast is highly dynamic, exhibiting branched, U-shaped and linear morphologies that are dependent on TgMyoF and actin. In parasites where movement was inhibited by the depletion of TgMyoF, the apicoplast fails to associate with the parasite centrosomes. Thus, this study provides crucial new insight into mechanisms controlling apicoplast-centrosome association, a vital step in the apicoplast division cycle, which ensures that each daughter inherits a single apicoplast.
Collapse
|
20
|
O’Shaughnessy WJ, Hu X, Henriquez SA, Reese ML. Toxoplasma ERK7 protects the apical complex from premature degradation. J Cell Biol 2023; 222:e202209098. [PMID: 37027006 PMCID: PMC10083718 DOI: 10.1083/jcb.202209098] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2022] [Revised: 02/01/2023] [Accepted: 03/17/2023] [Indexed: 04/08/2023] Open
Abstract
Accurate cellular replication balances the biogenesis and turnover of complex structures. In the apicomplexan parasite Toxoplasma gondii, daughter cells form within an intact mother cell, creating additional challenges to ensuring fidelity of division. The apical complex is critical to parasite infectivity and consists of apical secretory organelles and specialized cytoskeletal structures. We previously identified the kinase ERK7 as required for maturation of the apical complex in Toxoplasma. Here, we define the Toxoplasma ERK7 interactome, including a putative E3 ligase, CSAR1. Genetic disruption of CSAR1 fully suppresses loss of the apical complex upon ERK7 knockdown. Furthermore, we show that CSAR1 is normally responsible for turnover of maternal cytoskeleton during cytokinesis, and that its aberrant function is driven by mislocalization from the parasite residual body to the apical complex. These data identify a protein homeostasis pathway critical for Toxoplasma replication and fitness and suggest an unappreciated role for the parasite residual body in compartmentalizing processes that threaten the fidelity of parasite development.
Collapse
Affiliation(s)
| | - Xiaoyu Hu
- Department of Pharmacology, University of Texas, Southwestern Medical Center, Dallas, TX, USA
| | - Sarah Ana Henriquez
- Department of Pharmacology, University of Texas, Southwestern Medical Center, Dallas, TX, USA
| | - Michael L. Reese
- Department of Pharmacology, University of Texas, Southwestern Medical Center, Dallas, TX, USA
- Department of Biochemistry, University of Texas, Southwestern Medical Center, Dallas, TX, USA
| |
Collapse
|
21
|
Kumar A, Vadas O, Dos Santos Pacheco N, Zhang X, Chao K, Darvill N, Rasmussen HØ, Xu Y, Lin GMH, Stylianou FA, Pedersen JS, Rouse SL, Morgan ML, Soldati-Favre D, Matthews S. Structural and regulatory insights into the glideosome-associated connector from Toxoplasma gondii. eLife 2023; 12:e86049. [PMID: 37014051 PMCID: PMC10125020 DOI: 10.7554/elife.86049] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Accepted: 04/03/2023] [Indexed: 04/05/2023] Open
Abstract
The phylum of Apicomplexa groups intracellular parasites that employ substrate-dependent gliding motility to invade host cells, egress from the infected cells, and cross biological barriers. The glideosome-associated connector (GAC) is a conserved protein essential to this process. GAC facilitates the association of actin filaments with surface transmembrane adhesins and the efficient transmission of the force generated by myosin translocation of actin to the cell surface substrate. Here, we present the crystal structure of Toxoplasma gondii GAC and reveal a unique, supercoiled armadillo repeat region that adopts a closed ring conformation. Characterisation of the solution properties together with membrane and F-actin binding interfaces suggests that GAC adopts several conformations from closed to open and extended. A multi-conformational model for assembly and regulation of GAC within the glideosome is proposed.
Collapse
Affiliation(s)
- Amit Kumar
- Department of Life Sciences, Imperial College LondonLondonUnited Kingdom
| | - Oscar Vadas
- Department of Microbiology and Molecular Medicine, Faculty of Medicine, University of GenevaGenevaSwitzerland
| | - Nicolas Dos Santos Pacheco
- Department of Microbiology and Molecular Medicine, Faculty of Medicine, University of GenevaGenevaSwitzerland
| | - Xu Zhang
- Department of Life Sciences, Imperial College LondonLondonUnited Kingdom
| | - Kin Chao
- Department of Life Sciences, Imperial College LondonLondonUnited Kingdom
| | - Nicolas Darvill
- Department of Life Sciences, Imperial College LondonLondonUnited Kingdom
| | - Helena Ø Rasmussen
- Interdisciplinary Nanoscience Center (iNANO) and Department of Chemistry, Aarhus UniversityAarhusDenmark
| | - Yingqi Xu
- Department of Life Sciences, Imperial College LondonLondonUnited Kingdom
| | - Gloria Meng-Hsuan Lin
- Department of Microbiology and Molecular Medicine, Faculty of Medicine, University of GenevaGenevaSwitzerland
| | | | - Jan Skov Pedersen
- Interdisciplinary Nanoscience Center (iNANO) and Department of Chemistry, Aarhus UniversityAarhusDenmark
| | - Sarah L Rouse
- Department of Life Sciences, Imperial College LondonLondonUnited Kingdom
| | - Marc L Morgan
- Department of Life Sciences, Imperial College LondonLondonUnited Kingdom
| | - Dominique Soldati-Favre
- Department of Microbiology and Molecular Medicine, Faculty of Medicine, University of GenevaGenevaSwitzerland
| | - Stephen Matthews
- Department of Life Sciences, Imperial College LondonLondonUnited Kingdom
| |
Collapse
|
22
|
Gui L, O'Shaughnessy WJ, Cai K, Reetz E, Reese ML, Nicastro D. Cryo-tomography reveals rigid-body motion and organization of apicomplexan invasion machinery. Nat Commun 2023; 14:1775. [PMID: 36997532 PMCID: PMC10063558 DOI: 10.1038/s41467-023-37327-w] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Accepted: 03/10/2023] [Indexed: 04/03/2023] Open
Abstract
The apical complex is a specialized collection of cytoskeletal and secretory machinery in apicomplexan parasites, which include the pathogens that cause malaria and toxoplasmosis. Its structure and mechanism of motion are poorly understood. We used cryo-FIB-milling and cryo-electron tomography to visualize the 3D-structure of the apical complex in its protruded and retracted states. Averages of conoid-fibers revealed their polarity and unusual nine-protofilament arrangement with associated proteins connecting and likely stabilizing the fibers. Neither the structure of the conoid-fibers nor the architecture of the spiral-shaped conoid complex change during protrusion or retraction. Thus, the conoid moves as a rigid body, and is not spring-like and compressible, as previously suggested. Instead, the apical-polar-rings (APR), previously considered rigid, dilate during conoid protrusion. We identified actin-like filaments connecting the conoid and APR during protrusion, suggesting a role during conoid movements. Furthermore, our data capture the parasites in the act of secretion during conoid protrusion.
Collapse
Affiliation(s)
- Long Gui
- Department of Cell Biology, University of Texas, Southwestern Medical Center, Dallas, TX, USA
| | - William J O'Shaughnessy
- Department of Pharmacology, University of Texas, Southwestern Medical Center, Dallas, TX, USA
| | - Kai Cai
- Department of Cell Biology, University of Texas, Southwestern Medical Center, Dallas, TX, USA
- Department of Biophysics, University of Texas, Southwestern Medical Center, Dallas, TX, USA
| | - Evan Reetz
- Department of Cell Biology, University of Texas, Southwestern Medical Center, Dallas, TX, USA
| | - Michael L Reese
- Department of Pharmacology, University of Texas, Southwestern Medical Center, Dallas, TX, USA.
- Department of Biochemistry, University of Texas, Southwestern Medical Center, Dallas, TX, USA.
| | - Daniela Nicastro
- Department of Cell Biology, University of Texas, Southwestern Medical Center, Dallas, TX, USA.
| |
Collapse
|
23
|
Morrissette N, Abbaali I, Ramakrishnan C, Hehl AB. The Tubulin Superfamily in Apicomplexan Parasites. Microorganisms 2023; 11:microorganisms11030706. [PMID: 36985278 PMCID: PMC10056924 DOI: 10.3390/microorganisms11030706] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Revised: 03/03/2023] [Accepted: 03/06/2023] [Indexed: 03/11/2023] Open
Abstract
Microtubules and specialized microtubule-containing structures are assembled from tubulins, an ancient superfamily of essential eukaryotic proteins. Here, we use bioinformatic approaches to analyze features of tubulins in organisms from the phylum Apicomplexa. Apicomplexans are protozoan parasites that cause a variety of human and animal infectious diseases. Individual species harbor one to four genes each for α- and β-tubulin isotypes. These may specify highly similar proteins, suggesting functional redundancy, or exhibit key differences, consistent with specialized roles. Some, but not all apicomplexans harbor genes for δ- and ε-tubulins, which are found in organisms that construct appendage-containing basal bodies. Critical roles for apicomplexan δ- and ε-tubulin are likely to be limited to microgametes, consistent with a restricted requirement for flagella in a single developmental stage. Sequence divergence or the loss of δ- and ε-tubulin genes in other apicomplexans appears to be associated with diminished requirements for centrioles, basal bodies, and axonemes. Finally, because spindle microtubules and flagellar structures have been proposed as targets for anti-parasitic therapies and transmission-blocking strategies, we discuss these ideas in the context of tubulin-based structures and tubulin superfamily properties.
Collapse
Affiliation(s)
- Naomi Morrissette
- Molecular Biology and Biochemistry, University of California Irvine, Irvine, CA 92697, USA
- Correspondence: ; Tel.: +1-949-824-9243
| | - Izra Abbaali
- Molecular Biology and Biochemistry, University of California Irvine, Irvine, CA 92697, USA
| | - Chandra Ramakrishnan
- Institute for Parasitology, University of Zurich, Winterthurerstrasse 266a, 8057 Zürich, Switzerland
| | - Adrian B. Hehl
- Institute for Parasitology, University of Zurich, Winterthurerstrasse 266a, 8057 Zürich, Switzerland
| |
Collapse
|
24
|
Duan S, Jiang X, Li J, Fu M, Li Z, Cheng Y, Zhuang Y, Yang M, Xiao W, Ping H, Xie Y, Xie X, Zhang X. The RXFP2-PLC/PKC signaling pathway mediates INSL3-induced regulation of the proliferation, migration and apoptosis of mouse gubernacular cells. Cell Mol Biol Lett 2023; 28:16. [PMID: 36849880 PMCID: PMC9972740 DOI: 10.1186/s11658-023-00433-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Accepted: 02/20/2023] [Indexed: 03/01/2023] Open
Abstract
BACKGROUND Testicular hypoplasia can affect the sexual and reproductive ability in adulthood, and even increase the risk of cancer. Abnormal development of the gubernaculum is one of the important factors of testicular hypoplasia. Therefore, a study of the structure and function of the gubernaculum is an important but neglected new breakthrough point for investigating the normal/abnormal development of the testis. Previous findings showed that Insulin like factor 3 (INSL3) is a key factor regulating the growth of gubernaculum, however, the mechanism by which INSL3 acts on the gubernaculum remains unknown. Therefore, we probed the mechanism associated with INSL3-induced the proliferation, migration, and apoptosis of gubernacular cells in mice. METHODS A culture cell model of neonatal mice gubernaculum is established by INSL3 intervention. We blocked PLC/PKC signaling pathway with U73122 pretreat to investigate the role of the PLC/PKC signaling pathway. The changes of cell proliferation, migration, and apoptosis were detected by molecular biological methods. In addition, the levels of PCNA and F-action were detected by immunofluorescence and western blotting. RESULTS We found that INSL3 can promote the proliferation and migration of gubernacular cells and inhibit their apoptosis, meanwhile, INSL3 significantly up-regulated PLC/PKC protein phosphorylation. However, treatment with the PLC/PKC signaling pathway inhibitor U73122 significantly inhibited these effects of INSL3. Besides, we found that INSL3 could up-regulate the protein expression level of PCNA and F-actin, while the PCNA and F-actin expression was significantly weakened after U73122 pretreatment. CONCLUSIONS This research revealed that INSL3 binding to RXFP2 may up-regulate the expression levels of PCNA and F-actin by activating the PLC/PKC signaling pathway to promote the proliferation and migration of gubernacular cells. It suggests that the RXFP2-PLC/PKC axis may serve as a novel molecular mechanism by which INSL3 regulates growth of the gubernaculum.
Collapse
Affiliation(s)
- Shouxing Duan
- Department of Pediatric Surgery, Huazhong University of Science and Technology Union Shenzhen Hospital (Nanshan Hospital), No. 89 Taoyuan Road, Shenzhen, 518052, Guangdong, China
- Department of Pediatric Surgery, The First Affiliated Hospital of Shantou University Medical College, No. 57 Changping Road, Shantou, 515041, Guangdong, China
| | - Xuewu Jiang
- Department of Pediatric Surgery, Pingshan District Maternal and Child Healthcare Hospital of Shenzhen, Pingshan General Hospital of Southern Medical University, No. 6 Longxingnan Road, Shenzhen, 518118, Guangdong, China
| | - Jianhong Li
- Department of Pediatric Surgery, The Second Affiliated Hospital of Shantou University Medical College, No. 69 Dongxiabei Road, Shantou, 515041, Guangdong, China
| | - Maxian Fu
- Department of Pediatric Surgery, Huazhong University of Science and Technology Union Shenzhen Hospital (Nanshan Hospital), No. 89 Taoyuan Road, Shenzhen, 518052, Guangdong, China
| | - Zhuo Li
- Department of Pediatric Surgery, Huazhong University of Science and Technology Union Shenzhen Hospital (Nanshan Hospital), No. 89 Taoyuan Road, Shenzhen, 518052, Guangdong, China
| | - Yiyi Cheng
- Department of Pediatric Surgery, The First Affiliated Hospital of Shantou University Medical College, No. 57 Changping Road, Shantou, 515041, Guangdong, China
| | - Yangmu Zhuang
- Department of Pediatric Surgery, The First Affiliated Hospital of Shantou University Medical College, No. 57 Changping Road, Shantou, 515041, Guangdong, China
| | - Ming Yang
- Department of Pediatric Surgery, The First Affiliated Hospital of Shantou University Medical College, No. 57 Changping Road, Shantou, 515041, Guangdong, China
| | - Wenfeng Xiao
- Department of Pediatric Surgery, The Second Affiliated Hospital of Shantou University Medical College, No. 69 Dongxiabei Road, Shantou, 515041, Guangdong, China
| | - Hongyan Ping
- Department of Pediatric Surgery, Pingshan District Maternal and Child Healthcare Hospital of Shenzhen, Pingshan General Hospital of Southern Medical University, No. 6 Longxingnan Road, Shenzhen, 518118, Guangdong, China
| | - Yao Xie
- Department of Radiology, Cancer Hospital of Shantou University Medical College, No. 7 Raoping Road, Shantou, 515041, Guangdong, China.
| | - Xiaojun Xie
- Department of General Surgery, The First Affiliated Hospital of Shantou University Medical College, No. 57 Changping Road, Shantou, 515041, Guangdong, China.
| | - Xuan Zhang
- Department of Pediatric Surgery, Pingshan District Maternal and Child Healthcare Hospital of Shenzhen, Pingshan General Hospital of Southern Medical University, No. 6 Longxingnan Road, Shenzhen, 518118, Guangdong, China.
| |
Collapse
|
25
|
Haase R, Dos Santos Pacheco N, Soldati-Favre D. Nanoscale imaging of the conoid and functional dissection of its dynamics in Apicomplexa. Curr Opin Microbiol 2022; 70:102226. [PMID: 36332501 DOI: 10.1016/j.mib.2022.102226] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Revised: 09/27/2022] [Accepted: 10/03/2022] [Indexed: 11/08/2022]
Abstract
Members of the Apicomplexa phylum are unified by an apical complex tailored for motility and host cell invasion. It includes regulated secretory organelles and a conoid attached to the apical polar ring (APR) from which subpellicular microtubules emerge. In coccidia, the conoid is composed of a cone of spiraling tubulin fibers, two preconoidal rings, and two intraconoidal microtubules. The conoid extrudes through the APR in motile parasites. Recent advances in proteomics, cryo-electron tomography, super-resolution, and expansion microscopy provide a more comprehensive view of the spatial and temporal resolution of proteins belonging to the conoid subcomponents. In combination with the phenotyping of targeted mutants, the biogenesis, turnover, dynamics, and function of the conoid begin to be elucidated.
Collapse
Affiliation(s)
- Romuald Haase
- Department of Microbiology and Molecular Medicine, Faculty of Medicine, University of Geneva, Switzerland
| | - Nicolas Dos Santos Pacheco
- Department of Microbiology and Molecular Medicine, Faculty of Medicine, University of Geneva, Switzerland
| | - Dominique Soldati-Favre
- Department of Microbiology and Molecular Medicine, Faculty of Medicine, University of Geneva, Switzerland.
| |
Collapse
|
26
|
Roumégous C, Abou Hammoud A, Fuster D, Dupuy JW, Blancard C, Salin B, Robinson DR, Renesto P, Tardieux I, Frénal K. Identification of new components of the basal pole of Toxoplasma gondii provides novel insights into its molecular organization and functions. Front Cell Infect Microbiol 2022; 12:1010038. [PMID: 36310866 PMCID: PMC9613666 DOI: 10.3389/fcimb.2022.1010038] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Accepted: 09/20/2022] [Indexed: 11/13/2022] Open
Abstract
The Toxoplasma gondii tachyzoite is a singled-cell obligate intracellular parasite responsible for the acute phase of toxoplasmosis. This polarized cell exhibits an apical complex, a hallmark of the phylum Apicomplexa, essential for motility, invasion, and egress from the host cell. Located on the opposite end of the cell is the basal complex, an elaborated cytoskeletal structure that also plays critical roles in the lytic cycle of the parasite, being involved in motility, cell division, constriction and cytokinesis, as well as intravacuolar cell-cell communication. Nevertheless, only a few proteins of this structure have been described and functionally assessed. In this study, we used spatial proteomics to identify new basal complex components (BCC), and in situ imaging, including ultrastructure expansion microscopy, to position them. We thus confirmed the localization of nine BCCs out of the 12 selected candidates and assigned them to different sub-compartments of the basal complex, including two new domains located above the basal ring and below the posterior cup. Their functional investigation revealed that none of these BCCs are essential for parasite growth in vitro. However, one BCC is critical for constricting of the basal complex, likely through direct interaction with the class VI myosin heavy chain J (MyoJ), and for gliding motility. Four other BCCs, including a phosphatase and a guanylate-binding protein, are involved in the formation and/or maintenance of the intravacuolar parasite connection, which is required for the rosette organization and synchronicity of cell division.
Collapse
Affiliation(s)
- Chloé Roumégous
- Univ. Bordeaux, CNRS, Microbiologie Fondamentale et Pathogénicité, UMR 5234, Bordeaux, France
| | - Aya Abou Hammoud
- Univ. Bordeaux, CNRS, Microbiologie Fondamentale et Pathogénicité, UMR 5234, Bordeaux, France
| | - Damien Fuster
- Univ. Bordeaux, CNRS, Microbiologie Fondamentale et Pathogénicité, UMR 5234, Bordeaux, France
| | | | - Corinne Blancard
- Univ. Bordeaux, CNRS, Institut de Biochimie et Génétique Cellulaires, UMR 5095, Bordeaux, France
| | - Bénédicte Salin
- Univ. Bordeaux, CNRS, Institut de Biochimie et Génétique Cellulaires, UMR 5095, Bordeaux, France
| | - Derrick R. Robinson
- Univ. Bordeaux, CNRS, Microbiologie Fondamentale et Pathogénicité, UMR 5234, Bordeaux, France
| | - Patricia Renesto
- IAB, Team Biomechanics of Host-Apicomplexa Parasite, INSERM U1209, CNRS UMR5309, Grenoble Alpes University, Grenoble, France
| | - Isabelle Tardieux
- IAB, Team Biomechanics of Host-Apicomplexa Parasite, INSERM U1209, CNRS UMR5309, Grenoble Alpes University, Grenoble, France
| | - Karine Frénal
- Univ. Bordeaux, CNRS, Microbiologie Fondamentale et Pathogénicité, UMR 5234, Bordeaux, France
- *Correspondence: Karine Frénal,
| |
Collapse
|
27
|
A Signaling Factor Linked to Toxoplasma gondii Guanylate Cyclase Complex Controls Invasion and Egress during Acute and Chronic Infection. mBio 2022; 13:e0196522. [PMID: 36200777 PMCID: PMC9600588 DOI: 10.1128/mbio.01965-22] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Toxoplasma gondii is an intracellular apicomplexan parasite that relies on cyclic GMP (cGMP)-dependent signaling to trigger timely egress from host cells in response to extrinsic and intrinsic signals. A guanylate cyclase (GC) complex, conserved across the Apicomplexa, plays a pivotal role in integrating these signals, such as the key lipid mediator phosphatidic acid and changes in pH and ionic composition. This complex is composed of an atypical GC fused to a flippase-like P4-ATPase domain and assembled with the cell division control protein CDC50.1 and a unique GC organizer (UGO). While the dissemination of the fast-replicating tachyzoites responsible for acute infection is well understood, it is less clear if the cyst-forming bradyzoites can disseminate and contribute to cyst burden. Here, we characterized a novel component of the GC complex recently termed signaling linking factor (SLF). Tachyzoites conditionally depleted in SLF are impaired in microneme exocytosis, conoid extrusion, and motility and hence unable to invade and egress. A stage-specific promoter swap strategy allowed the generation of SLF- and GC-deficient bradyzoites that are viable as tachyzoites but show a reduction in cyst burden during the onset of chronic infection. Upon oral infection, SLF-deficient cysts failed to establish infection in mice, suggesting SLF's importance for the natural route of T. gondii infection. IMPORTANCE Toxoplasma gondii is an obligate intracellular parasite of the phylum Apicomplexa. This life-threatening opportunistic pathogen establishes a chronic infection in human and animals that is resistant to immune attacks and chemotherapeutic intervention. The slow-growing parasites persist in tissue cysts that constitute a predominant source of transmission. Host cell invasion and egress are two critical steps of the parasite lytic cycle that are governed by a guanylate cyclase complex conserved across the Apicomplexa. A signaling linked factor is characterized here as an additional component of the complex that not only is essential during acute infection but also plays a pivotal role during natural oral infection with tissue cysts' dissemination and persistence.
Collapse
|
28
|
Dos Santos Pacheco N, Brusini L, Haase R, Tosetti N, Maco B, Brochet M, Vadas O, Soldati-Favre D. Conoid extrusion regulates glideosome assembly to control motility and invasion in Apicomplexa. Nat Microbiol 2022; 7:1777-1790. [DOI: 10.1038/s41564-022-01212-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Accepted: 07/22/2022] [Indexed: 12/18/2022]
|
29
|
Nyonda MA, Kloehn J, Sosnowski P, Krishnan A, Lentini G, Maco B, Marq JB, Hannich JT, Hopfgartner G, Soldati-Favre D. Ceramide biosynthesis is critical for establishment of the intracellular niche of Toxoplasma gondii. Cell Rep 2022; 40:111224. [PMID: 35977499 PMCID: PMC9396527 DOI: 10.1016/j.celrep.2022.111224] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2021] [Revised: 06/06/2022] [Accepted: 07/26/2022] [Indexed: 11/15/2022] Open
Abstract
Toxoplasma gondii possesses sphingolipid synthesis capabilities and is equipped to salvage lipids from its host. The contribution of these two routes of lipid acquisition during parasite development is unclear. As part of a complete ceramide synthesis pathway, T. gondii expresses two serine palmitoyltransferases (TgSPT1 and TgSPT2) and a dihydroceramide desaturase. After deletion of these genes, we determine their role in parasite development in vitro and in vivo during acute and chronic infection. Detailed phenotyping through lipidomic approaches reveal a perturbed sphingolipidome in these mutants, characterized by a drastic reduction in ceramides and ceramide phosphoethanolamines but not sphingomyelins. Critically, parasites lacking TgSPT1 display decreased fitness, marked by reduced growth rates and a selective defect in rhoptry discharge in the form of secretory vesicles, causing an invasion defect. Disruption of de novo ceramide synthesis modestly affects acute infection in vivo but severely reduces cyst burden in the brain of chronically infected mice.
Collapse
Affiliation(s)
- Mary Akinyi Nyonda
- Department of Microbiology and Molecular Medicine, University of Geneva, Geneva, Switzerland
| | - Joachim Kloehn
- Department of Microbiology and Molecular Medicine, University of Geneva, Geneva, Switzerland
| | - Piotr Sosnowski
- Life Sciences Mass Spectrometry, Department of Inorganic and Analytical Chemistry, University of Geneva, 24 Quai Ernest Ansermet, 1211 Geneva 4, Switzerland
| | - Aarti Krishnan
- Department of Microbiology and Molecular Medicine, University of Geneva, Geneva, Switzerland
| | - Gaëlle Lentini
- Department of Microbiology and Molecular Medicine, University of Geneva, Geneva, Switzerland
| | - Bohumil Maco
- Department of Microbiology and Molecular Medicine, University of Geneva, Geneva, Switzerland
| | - Jean-Baptiste Marq
- Department of Microbiology and Molecular Medicine, University of Geneva, Geneva, Switzerland
| | - J Thomas Hannich
- Department of Biochemistry, NCCR Chemical Biology, University of Geneva, Quai Ernest-Ansermet 30, Geneva, Switzerland
| | - Gerard Hopfgartner
- Life Sciences Mass Spectrometry, Department of Inorganic and Analytical Chemistry, University of Geneva, 24 Quai Ernest Ansermet, 1211 Geneva 4, Switzerland
| | - Dominique Soldati-Favre
- Department of Microbiology and Molecular Medicine, University of Geneva, Geneva, Switzerland.
| |
Collapse
|
30
|
Munera Lopez J, Tengganu IF, Liu J, Murray JM, Arias Padilla LF, Zhang Y, Brown PT, Florens L, Hu K. An apical protein, Pcr2, is required for persistent movement by the human parasite Toxoplasma gondii. PLoS Pathog 2022; 18:e1010776. [PMID: 35994509 PMCID: PMC9436145 DOI: 10.1371/journal.ppat.1010776] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Revised: 09/01/2022] [Accepted: 07/28/2022] [Indexed: 11/18/2022] Open
Abstract
The phylum Apicomplexa includes thousands of species of unicellular parasites that cause a wide range of human and animal diseases such as malaria and toxoplasmosis. To infect, the parasite must first initiate active movement to disseminate through tissue and invade into a host cell, and then cease moving once inside. The parasite moves by gliding on a surface, propelled by an internal cortical actomyosin-based motility apparatus. One of the most effective invaders in Apicomplexa is Toxoplasma gondii, which can infect any nucleated cell and any warm-blooded animal. During invasion, the parasite first makes contact with the host cell "head-on" with the apical complex, which features an elaborate cytoskeletal apparatus and associated structures. Here we report the identification and characterization of a new component of the apical complex, Preconoidal region protein 2 (Pcr2). Pcr2 knockout parasites replicate normally, but they are severely diminished in their capacity for host tissue destruction due to significantly impaired invasion and egress, two vital steps in the lytic cycle. When stimulated for calcium-induced egress, Pcr2 knockout parasites become active, and secrete effectors to lyse the host cell. Calcium-induced secretion of the major adhesin, MIC2, also appears to be normal. However, the movement of the Pcr2 knockout parasite is spasmodic, which drastically compromises egress. In addition to faulty motility, the ability of the Pcr2 knockout parasite to assemble the moving junction is impaired. Both defects likely contribute to the poor efficiency of invasion. Interestingly, actomyosin activity, as indicated by the motion of mEmerald tagged actin chromobody, appears to be largely unperturbed by the loss of Pcr2, raising the possibility that Pcr2 may act downstream of or in parallel with the actomyosin machinery.
Collapse
Affiliation(s)
- Jonathan Munera Lopez
- Biodesign Center for Mechanisms of Evolution/School of Life Sciences, Arizona State University, Tempe, Arizona, United States of America
| | - Isadonna F. Tengganu
- Biodesign Center for Mechanisms of Evolution/School of Life Sciences, Arizona State University, Tempe, Arizona, United States of America
| | - Jun Liu
- Department of Biology, Indiana University, Bloomington, Indiana, United States of America
| | - John M. Murray
- Biodesign Center for Mechanisms of Evolution/School of Life Sciences, Arizona State University, Tempe, Arizona, United States of America
| | - Luisa F. Arias Padilla
- Biodesign Center for Mechanisms of Evolution/School of Life Sciences, Arizona State University, Tempe, Arizona, United States of America
| | - Ying Zhang
- Stowers Institute for Medical Research, Kansas City, Missouri, United States of America
| | - Peter T. Brown
- Department of Physics and Center for Biological Physics, Arizona State University, Tempe, Arizona, United States of America
| | - Laurence Florens
- Stowers Institute for Medical Research, Kansas City, Missouri, United States of America
| | - Ke Hu
- Biodesign Center for Mechanisms of Evolution/School of Life Sciences, Arizona State University, Tempe, Arizona, United States of America
- * E-mail:
| |
Collapse
|
31
|
Ripp J, Smyrnakou X, Neuhoff M, Hentzschel F, Frischknecht F. Phosphorylation of myosin A regulates gliding motility and is essential for
Plasmodium
transmission. EMBO Rep 2022; 23:e54857. [PMID: 35506479 PMCID: PMC9253774 DOI: 10.15252/embr.202254857] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Revised: 04/06/2022] [Accepted: 04/08/2022] [Indexed: 11/30/2022] Open
Abstract
Malaria‐causing parasites rely on an actin–myosin‐based motor for the invasion of different host cells and tissue traversal in mosquitoes and vertebrates. The unusual myosin A of Plasmodium spp. has a unique N‐terminal extension, which is important for red blood cell invasion by P. falciparum merozoites in vitro and harbors a phosphorylation site at serine 19. Here, using the rodent‐infecting P. berghei we show that phosphorylation of serine 19 increases ookinete but not sporozoite motility and is essential for efficient transmission of Plasmodium by mosquitoes as S19A mutants show defects in mosquito salivary gland entry. S19A along with E6R mutations slow ookinetes and salivary gland sporozoites in both 2D and 3D environments. In contrast to data from purified proteins, both E6R and S19D mutations lower force generation by sporozoites. Our data show that the phosphorylation cycle of S19 influences parasite migration and force generation and is critical for optimal migration of parasites during transmission from and to the mosquito.
Collapse
Affiliation(s)
- Johanna Ripp
- Integrative Parasitology Center for Infectious Diseases University of Heidelberg Medical School Heidelberg Germany
| | - Xanthoula Smyrnakou
- Integrative Parasitology Center for Infectious Diseases University of Heidelberg Medical School Heidelberg Germany
| | - Marie‐Therese Neuhoff
- Integrative Parasitology Center for Infectious Diseases University of Heidelberg Medical School Heidelberg Germany
| | - Franziska Hentzschel
- Integrative Parasitology Center for Infectious Diseases University of Heidelberg Medical School Heidelberg Germany
- German Center for Infection Research DZIF Partner Site Heidelberg Heidelberg Germany
| | - Friedrich Frischknecht
- Integrative Parasitology Center for Infectious Diseases University of Heidelberg Medical School Heidelberg Germany
- German Center for Infection Research DZIF Partner Site Heidelberg Heidelberg Germany
| |
Collapse
|
32
|
Boisard J, Duvernois-Berthet E, Duval L, Schrével J, Guillou L, Labat A, Le Panse S, Prensier G, Ponger L, Florent I. Marine gregarine genomes reveal the breadth of apicomplexan diversity with a partially conserved glideosome machinery. BMC Genomics 2022; 23:485. [PMID: 35780080 PMCID: PMC9250747 DOI: 10.1186/s12864-022-08700-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Accepted: 06/13/2022] [Indexed: 12/29/2022] Open
Abstract
Our current view of the evolutionary history, coding and adaptive capacities of Apicomplexa, protozoan parasites of a wide range of metazoan, is currently strongly biased toward species infecting humans, as data on early diverging apicomplexan lineages infecting invertebrates is extremely limited. Here, we characterized the genome of the marine eugregarine Porospora gigantea, intestinal parasite of Lobsters, remarkable for the macroscopic size of its vegetative feeding forms (trophozoites) and its gliding speed, the fastest so far recorded for Apicomplexa. Two highly syntenic genomes named A and B were assembled. Similar in size (~ 9 Mb) and coding capacity (~ 5300 genes), A and B genomes are 10.8% divergent at the nucleotide level, corresponding to 16-38 My in divergent time. Orthogroup analysis across 25 (proto)Apicomplexa species, including Gregarina niphandrodes, showed that A and B are highly divergent from all other known apicomplexan species, revealing an unexpected breadth of diversity. Phylogenetically these two species branch sisters to Cephaloidophoroidea, and thus expand the known crustacean gregarine superfamily. The genomes were mined for genes encoding proteins necessary for gliding, a key feature of apicomplexans parasites, currently studied through the molecular model called glideosome. Sequence analysis shows that actin-related proteins and regulatory factors are strongly conserved within apicomplexans. In contrast, the predicted protein sequences of core glideosome proteins and adhesion proteins are highly variable among apicomplexan lineages, especially in gregarines. These results confirm the importance of studying gregarines to widen our biological and evolutionary view of apicomplexan species diversity, and to deepen our understanding of the molecular bases of key functions such as gliding, well known to allow access to the intracellular parasitic lifestyle in Apicomplexa.
Collapse
Affiliation(s)
- Julie Boisard
- Département Adaptations du Vivant (AVIV), Molécules de Communication et Adaptation des Microorganismes (MCAM, UMR 7245 CNRS), Muséum National d'Histoire Naturelle, CNRS, CP 52, 57 rue Cuvier, 75231 Cedex 05, Paris, France. .,Département Adaptations du Vivant (AVIV), Structure et instabilité des génomes (STRING UMR 7196 CNRS/INSERM U1154), Muséum National d'Histoire Naturelle, CNRS, INSERM, CP 26, 57 rue Cuvier, 75231 Cedex 05, Paris, France. .,Department of Biology, Lund University, Sölvegatan 35, 223 62, Lund, Sweden.
| | - Evelyne Duvernois-Berthet
- Département Adaptations du Vivant (AVIV), Physiologie Moléculaire et Adaptation (PhyMA UMR 7221 CNRS), Muséum national d'Histoire naturelle, CNRS, CP 32, 7 rue Cuvier, 75005, Paris, France
| | - Linda Duval
- Département Adaptations du Vivant (AVIV), Molécules de Communication et Adaptation des Microorganismes (MCAM, UMR 7245 CNRS), Muséum National d'Histoire Naturelle, CNRS, CP 52, 57 rue Cuvier, 75231 Cedex 05, Paris, France
| | - Joseph Schrével
- Département Adaptations du Vivant (AVIV), Molécules de Communication et Adaptation des Microorganismes (MCAM, UMR 7245 CNRS), Muséum National d'Histoire Naturelle, CNRS, CP 52, 57 rue Cuvier, 75231 Cedex 05, Paris, France
| | - Laure Guillou
- CNRS, UMR7144 Adaptation et Diversité en Milieu Marin, Ecology of Marine Plankton (ECOMAP), Station Biologique de Roscoff SBR, Sorbonne Université, 29680, Roscoff, France
| | - Amandine Labat
- Département Adaptations du Vivant (AVIV), Molécules de Communication et Adaptation des Microorganismes (MCAM, UMR 7245 CNRS), Muséum National d'Histoire Naturelle, CNRS, CP 52, 57 rue Cuvier, 75231 Cedex 05, Paris, France
| | - Sophie Le Panse
- Plateforme d'Imagerie Merimage, FR2424, Centre National de la Recherche Scientifique, Station Biologique de Roscoff, 29680, Roscoff, France
| | - Gérard Prensier
- Cell biology and Electron Microscopy Laboratory, François Rabelais University, 10 Boulevard Tonnellé, 3223 Cedex, Tours, BP, France
| | - Loïc Ponger
- Département Adaptations du Vivant (AVIV), Structure et instabilité des génomes (STRING UMR 7196 CNRS/INSERM U1154), Muséum National d'Histoire Naturelle, CNRS, INSERM, CP 26, 57 rue Cuvier, 75231 Cedex 05, Paris, France.
| | - Isabelle Florent
- Département Adaptations du Vivant (AVIV), Molécules de Communication et Adaptation des Microorganismes (MCAM, UMR 7245 CNRS), Muséum National d'Histoire Naturelle, CNRS, CP 52, 57 rue Cuvier, 75231 Cedex 05, Paris, France.
| |
Collapse
|
33
|
Cova MM, Lamarque MH, Lebrun M. How Apicomplexa Parasites Secrete and Build Their Invasion Machinery. Annu Rev Microbiol 2022; 76:619-640. [PMID: 35671531 DOI: 10.1146/annurev-micro-041320-021425] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Apicomplexa are obligatory intracellular parasites that sense and actively invade host cells. Invasion is a conserved process that relies on the timely and spatially controlled exocytosis of unique specialized secretory organelles termed micronemes and rhoptries. Microneme exocytosis starts first and likely controls the intricate mechanism of rhoptry secretion. To assemble the invasion machinery, micronemal proteins-associated with the surface of the parasite-interact and form complexes with rhoptry proteins, which in turn are targeted into the host cell. This review covers the molecular advances regarding microneme and rhoptry exocytosis and focuses on how the proteins discharged from these two compartments work in synergy to drive a successful invasion event. Particular emphasis is given to the structure and molecular components of the rhoptry secretion apparatus, and to the current conceptual framework of rhoptry exocytosis that may constitute an unconventional eukaryotic secretory machinery closely related to the one described in ciliates. Expected final online publication date for the Annual Review of Microbiology, Volume 76 is September 2022. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.
Collapse
Affiliation(s)
- Marta Mendonça Cova
- Laboratory of Pathogen Host Interactions (LPHI), CNRS, University of Montpellier, Montpellier, France;
| | - Mauld H Lamarque
- Laboratory of Pathogen Host Interactions (LPHI), CNRS, University of Montpellier, Montpellier, France;
| | - Maryse Lebrun
- Laboratory of Pathogen Host Interactions (LPHI), CNRS, University of Montpellier, Montpellier, France;
| |
Collapse
|
34
|
Smith TA, Lopez-Perez GS, Herneisen AL, Shortt E, Lourido S. Screening the Toxoplasma kinome with high-throughput tagging identifies a regulator of invasion and egress. Nat Microbiol 2022; 7:868-881. [PMID: 35484233 PMCID: PMC9167752 DOI: 10.1038/s41564-022-01104-0] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Accepted: 03/11/2022] [Indexed: 12/26/2022]
Abstract
Protein kinases regulate fundamental aspects of eukaryotic cell biology, making them attractive chemotherapeutic targets in parasites like Plasmodium spp. and Toxoplasma gondii. To systematically examine the parasite kinome, we developed a high-throughput tagging (HiT) strategy to endogenously label protein kinases with an auxin-inducible degron and fluorophore. Hundreds of tagging vectors were assembled from synthetic sequences in a single reaction and used to generate pools of mutants to determine localization and function. Examining 1,160 arrayed clones, we assigned 40 protein localizations and associated 15 kinases with distinct defects. The fitness of tagged alleles was also measured by pooled screening, distinguishing delayed from acute phenotypes. A previously unstudied kinase, associated with a delayed phenotype, was shown to be a regulator of invasion and egress. We named the kinase Store Potentiating/Activating Regulatory Kinase (SPARK), based on its impact on intracellular Ca2+ stores. Despite homology to mammalian 3-phosphoinositide-dependent protein kinase-1 (PDK1), SPARK lacks a lipid-binding domain, suggesting a rewiring of the pathway in parasites. HiT screening extends genome-wide approaches into complex cellular phenotypes, providing a scalable and versatile platform to dissect parasite biology.
Collapse
Affiliation(s)
- Tyler A Smith
- Whitehead Institute for Biomedical Research, Cambridge, MA, USA
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA, USA
| | | | - Alice L Herneisen
- Whitehead Institute for Biomedical Research, Cambridge, MA, USA
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Emily Shortt
- Whitehead Institute for Biomedical Research, Cambridge, MA, USA
| | - Sebastian Lourido
- Whitehead Institute for Biomedical Research, Cambridge, MA, USA.
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA, USA.
| |
Collapse
|
35
|
Gubbels MJ, Ferguson DJP, Saha S, Romano JD, Chavan S, Primo VA, Michaud C, Coppens I, Engelberg K. Toxoplasma gondii's Basal Complex: The Other Apicomplexan Business End Is Multifunctional. Front Cell Infect Microbiol 2022; 12:882166. [PMID: 35573773 PMCID: PMC9103881 DOI: 10.3389/fcimb.2022.882166] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Accepted: 03/30/2022] [Indexed: 01/08/2023] Open
Abstract
The Apicomplexa are famously named for their apical complex, a constellation of organelles at their apical end dedicated to invasion of their host cells. In contrast, at the other end of the cell, the basal complex (BC) has been overshadowed since it is much less prominent and specific functions were not immediately obvious. However, in the past decade a staggering array of functions have been associated with the BC and strides have been made in understanding its structure. Here, these collective insights are supplemented with new data to provide an overview of the understanding of the BC in Toxoplasma gondii. The emerging picture is that the BC is a dynamic and multifunctional complex, with a series of (putative) functions. The BC has multiple roles in cell division: it is the site where building blocks are added to the cytoskeleton scaffold; it exerts a two-step stretch and constriction mechanism as contractile ring; and it is key in organelle division. Furthermore, the BC has numerous putative roles in 'import', such as the recycling of mother cell remnants, the acquisition of host-derived vesicles, possibly the uptake of lipids derived from the extracellular medium, and the endocytosis of micronemal proteins. The latter process ties the BC to motility, whereas an additional role in motility is conferred by Myosin C. Furthermore, the BC acts on the assembly and/or function of the intravacuolar network, which may directly or indirectly contribute to the establishment of chronic tissue cysts. Here we provide experimental support for molecules acting in several of these processes and identify several new BC proteins critical to maintaining the cytoplasmic bridge between divided parasites. However, the dispensable nature of many BC components leaves many questions unanswered regarding its function. In conclusion, the BC in T. gondii is a dynamic and multifunctional structure at the posterior end of the parasite.
Collapse
Affiliation(s)
- Marc-Jan Gubbels
- Department of Biology, Boston College, Chestnut Hill, MA, United States
| | - David J. P. Ferguson
- Nuffield Department of Clinical Laboratory Science, University of Oxford John Radcliffe Hospital, Oxford, United Kingdom
- Department of Biological and Medical Sciences, Faculty of Health and Life Science, Oxford Brookes University, Oxford, United Kingdom
| | - Sudeshna Saha
- Department of Biology, Boston College, Chestnut Hill, MA, United States
| | - Julia D. Romano
- Department of Molecular Microbiology and Immunology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD, United States
| | - Suyog Chavan
- Department of Biology, Boston College, Chestnut Hill, MA, United States
| | - Vincent A. Primo
- Department of Biology, Boston College, Chestnut Hill, MA, United States
| | - Cynthia Michaud
- Department of Biology, Boston College, Chestnut Hill, MA, United States
| | - Isabelle Coppens
- Department of Molecular Microbiology and Immunology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD, United States
| | - Klemens Engelberg
- Department of Biology, Boston College, Chestnut Hill, MA, United States
| |
Collapse
|
36
|
Steele-Ogus MC, Obenaus AM, Sniadecki NJ, Paredez AR. Disc and Actin Associated Protein 1 influences attachment in the intestinal parasite Giardia lamblia. PLoS Pathog 2022; 18:e1010433. [PMID: 35333908 PMCID: PMC8986099 DOI: 10.1371/journal.ppat.1010433] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Revised: 04/06/2022] [Accepted: 03/10/2022] [Indexed: 02/01/2023] Open
Abstract
The deep-branching eukaryote Giardia lamblia is an extracellular parasite that attaches to the host intestine via a microtubule-based structure called the ventral disc. Control of attachment is mediated in part by the movement of two regions of the ventral disc that either permit or exclude the passage of fluid under the disc. Several known disc-associated proteins (DAPs) contribute to disc structure and function, but no force-generating protein has been identified among them. We recently identified several Giardia actin (GlActin) interacting proteins at the ventral disc, which could potentially employ actin polymerization for force generation and disc conformational changes. One of these proteins, Disc and Actin Associated Protein 1 (DAAP1), is highly enriched at the two regions of the disc previously shown to be important for fluid flow during attachment. In this study, we investigate the role of both GlActin and DAAP1 in ventral disc morphology and function. We confirmed interaction between GlActin and DAAP1 through coimmunoprecipitation, and used immunofluorescence to localize both proteins throughout the cell cycle and during trophozoite attachment. Similar to other DAPs, the association of DAAP1 with the disc is stable, except during cell division when the disc disassembles. Depletion of GlActin by translation-blocking antisense morpholinos resulted in both impaired attachment and defects in the ventral disc, indicating that GlActin contributes to disc-mediated attachment. Depletion of DAAP1 through CRISPR interference resulted in intact discs but impaired attachment, gating, and flow under the disc. As attachment is essential for infection, elucidation of these and other molecular mediators is a promising area for development of new therapeutics against a ubiquitous parasite.
Collapse
Affiliation(s)
- Melissa C. Steele-Ogus
- Department of Biology, University of Washington, Seattle, Washington, United States of America
| | - Ava M. Obenaus
- Department of Mechanical Engineering, University of Washington, Seattle, Washington, United States of America
| | - Nathan J. Sniadecki
- Department of Mechanical Engineering, University of Washington, Seattle, Washington, United States of America
| | - Alexander R. Paredez
- Department of Biology, University of Washington, Seattle, Washington, United States of America
| |
Collapse
|
37
|
Bisio H, Krishnan A, Marq JB, Soldati-Favre D. Toxoplasma gondii phosphatidylserine flippase complex ATP2B-CDC50.4 critically participates in microneme exocytosis. PLoS Pathog 2022; 18:e1010438. [PMID: 35325010 PMCID: PMC8982854 DOI: 10.1371/journal.ppat.1010438] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2021] [Revised: 04/05/2022] [Accepted: 03/11/2022] [Indexed: 12/22/2022] Open
Abstract
Regulated microneme secretion governs motility, host cell invasion and egress in the obligate intracellular apicomplexans. Intracellular calcium oscillations and phospholipid dynamics critically regulate microneme exocytosis. Despite its importance for the lytic cycle of these parasites, molecular mechanistic details about exocytosis are still missing. Some members of the P4-ATPases act as flippases, changing the phospholipid distribution by translocation from the outer to the inner leaflet of the membrane. Here, the localization and function of the repertoire of P4-ATPases was investigated across the lytic cycle of Toxoplasma gondii. Of relevance, ATP2B and the non-catalytic subunit cell division control protein 50.4 (CDC50.4) form a stable heterocomplex at the parasite plasma membrane, essential for microneme exocytosis. This complex is responsible for flipping phosphatidylserine, which presumably acts as a lipid mediator for organelle fusion with the plasma membrane. Overall, this study points toward the importance of phosphatidylserine asymmetric distribution at the plasma membrane for microneme exocytosis. Biological membranes display diverse functions, including membrane fusion, which are conferred by a defined composition and organization of proteins and lipids. Apicomplexan parasites possess specialized secretory organelles (micronemes), implicated in motility, invasion and egress from host cells. Microneme exocytosis is already known to depend on phosphatidic acid for its fusion with the plasma membrane. Here we identify a type P4-ATPase and its CDC50 chaperone (ATP2B-CDC50.4) that act as a flippase and contribute to the enrichment of phosphatidylserine (PS) in the inner leaflet of the parasite plasma membrane. The disruption of PS asymmetric distribution at the plasma membrane impacts microneme exocytosis. Overall, our results shed light on the importance of membrane homeostasis and lipid composition in controlling microneme secretion.
Collapse
Affiliation(s)
- Hugo Bisio
- Department of Microbiology and Molecular Medicine, CMU, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Aarti Krishnan
- Department of Microbiology and Molecular Medicine, CMU, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Jean-Baptiste Marq
- Department of Microbiology and Molecular Medicine, CMU, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Dominique Soldati-Favre
- Department of Microbiology and Molecular Medicine, CMU, Faculty of Medicine, University of Geneva, Geneva, Switzerland
- * E-mail:
| |
Collapse
|
38
|
Stadler RV, Nelson SR, Warshaw DM, Ward GE. A circular zone of attachment to the extracellular matrix provides directionality to the motility of Toxoplasma gondii in 3D. eLife 2022; 11:85171. [PMID: 36519527 PMCID: PMC9839348 DOI: 10.7554/elife.85171] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Accepted: 11/29/2022] [Indexed: 12/23/2022] Open
Abstract
Toxoplasma gondii is a protozoan parasite that infects 30-40% of the world's population. Infections are typically subclinical but can be severe and, in some cases, life threatening. Central to the virulence of T. gondii is an unusual form of substrate-dependent motility that enables the parasite to invade cells of its host and to disseminate throughout the body. A hetero-oligomeric complex of proteins that functions in motility has been characterized, but how these proteins work together to drive forward motion of the parasite remains controversial. A key piece of information needed to understand the underlying mechanism(s) is the directionality of the forces that a moving parasite exerts on the external environment. The linear motor model of motility, which has dominated the field for the past two decades, predicts continuous anterior-to-posterior force generation along the length of the parasite. We show here using three-dimensional traction force mapping that the predominant forces exerted by a moving parasite are instead periodic and directed in toward the parasite at a fixed circular location within the extracellular matrix. These highly localized forces, which are generated by the parasite pulling on the matrix, create a visible constriction in the parasite's plasma membrane. We propose that the ring of inward-directed force corresponds to a circumferential attachment zone between the parasite and the matrix, through which the parasite propels itself to move forward. The combined data suggest a closer connection between the mechanisms underlying parasite motility and host cell invasion than previously recognized. In parasites lacking the major surface adhesin, TgMIC2, neither the inward-directed forces nor the constriction of the parasite membrane are observed. The trajectories of the TgMIC2-deficient parasites are less straight than those of wild-type parasites, suggesting that the annular zone of TgMIC2-mediated attachment to the extracellular matrix normally constrains the directional options available to the parasite as it migrates through its surrounding environment.
Collapse
Affiliation(s)
- Rachel V Stadler
- Department of Microbiology and Molecular Genetics, University of Vermont Larner College of MedicineBurlingtonUnited States
| | - Shane R Nelson
- Department of Molecular Physiology and Biophysics, University of Vermont Larner College of MedicineBurlingtonUnited States
| | - David M Warshaw
- Department of Molecular Physiology and Biophysics, University of Vermont Larner College of MedicineBurlingtonUnited States
| | - Gary E Ward
- Department of Microbiology and Molecular Genetics, University of Vermont Larner College of MedicineBurlingtonUnited States
| |
Collapse
|
39
|
Wagner TR, Rothbauer U. Nanobodies - Little helpers unravelling intracellular signaling. Free Radic Biol Med 2021; 176:46-61. [PMID: 34536541 DOI: 10.1016/j.freeradbiomed.2021.09.005] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Revised: 08/26/2021] [Accepted: 09/08/2021] [Indexed: 11/21/2022]
Abstract
The identification of diagnostic and therapeutic targets requires a comprehensive understanding of cellular processes, for which advanced technologies in biomedical research are needed. The emergence of nanobodies (Nbs) derived from antibody fragments of camelid heavy chain-only antibodies as intracellular research tools offers new possibilities to study and modulate target antigens in living cells. Here we summarize this rapidly changing field, beginning with a brief introduction of Nbs, followed by an overview of how target-specific Nbs can be generated, and introduce the selection of intrabodies as research tools. Intrabodies, by definition, are intracellular functional Nbs that target ectopic or endogenous intracellular antigens within living cells. Such binders can be applied in various formats, e.g. as chromobodies for live cell microscopy or as biosensors to decipher complex intracellular signaling pathways. In addition, protein knockouts can be achieved by target-specific Nbs, while modulating Nbs have the potential as future therapeutics. The development of fine-tunable and switchable Nb-based systems that simultaneously provide spatial and temporal control has recently taken the application of these binders to the next level.
Collapse
Affiliation(s)
- Teresa R Wagner
- Pharmaceutical Biotechnology, Eberhard Karls University, Tübingen, Germany; NMI Natural and Medical Sciences Institute at the University of Tübingen, Reutlingen, Germany
| | - Ulrich Rothbauer
- Pharmaceutical Biotechnology, Eberhard Karls University, Tübingen, Germany; NMI Natural and Medical Sciences Institute at the University of Tübingen, Reutlingen, Germany; Cluster of Excellence iFIT (EXC2180) "Image-Guided and Functionally Instructed Tumor Therapies", Eberhard Karls University, Tübingen, Germany.
| |
Collapse
|
40
|
Mallo N, Ovciarikova J, Martins-Duarte ES, Baehr SC, Biddau M, Wilde ML, Uboldi AD, Lemgruber L, Tonkin CJ, Wideman JG, Harding CR, Sheiner L. Depletion of a Toxoplasma porin leads to defects in mitochondrial morphology and contacts with the endoplasmic reticulum. J Cell Sci 2021; 134:272536. [PMID: 34523684 PMCID: PMC8572010 DOI: 10.1242/jcs.255299] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Accepted: 09/06/2021] [Indexed: 01/21/2023] Open
Abstract
The voltage-dependent anion channel (VDAC) is a ubiquitous channel in the outer membrane of the mitochondrion with multiple roles in protein, metabolite and small molecule transport. In mammalian cells, VDAC protein, as part of a larger complex including the inositol triphosphate receptor, has been shown to have a role in mediating contacts between the mitochondria and endoplasmic reticulum (ER). We identify VDAC of the pathogenic apicomplexan Toxoplasma gondii and demonstrate its importance for parasite growth. We show that VDAC is involved in protein import and metabolite transfer to mitochondria. Further, depletion of VDAC resulted in significant morphological changes in the mitochondrion and ER, suggesting a role in mediating contacts between these organelles in T. gondii. This article has an associated First Person interview with the first author of the paper. Summary: Depletion of the Toxoplasma voltage-dependent anion channel highlights the importance of endoplasmic reticulum–mitochondria membrane contact sites in maintaining organelle morphology.
Collapse
Affiliation(s)
- Natalia Mallo
- Wellcome Centre for Integrative Parasitology, University of Glasgow, Glasgow G12 8TA, UK
| | - Jana Ovciarikova
- Wellcome Centre for Integrative Parasitology, University of Glasgow, Glasgow G12 8TA, UK
| | - Erica S Martins-Duarte
- Departamento de Parasitologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte 486 31270-901, Brazil
| | - Stephan C Baehr
- Biodesign Center for Mechanisms of Evolution, School of Life Sciences, Arizona State University, Tempe, AZ 85287, USA
| | - Marco Biddau
- Wellcome Centre for Integrative Parasitology, University of Glasgow, Glasgow G12 8TA, UK
| | - Mary-Louise Wilde
- The Walter and Eliza Hall Institute of Medical Research, Melbourne, VIC 3086, Australia.,Department of Medical Biology, The University of Melbourne, Melbourne, VIC 3010, Australia
| | - Alessandro D Uboldi
- The Walter and Eliza Hall Institute of Medical Research, Melbourne, VIC 3086, Australia.,Department of Medical Biology, The University of Melbourne, Melbourne, VIC 3010, Australia
| | - Leandro Lemgruber
- Wellcome Centre for Integrative Parasitology, University of Glasgow, Glasgow G12 8TA, UK.,Glasgow Imaging Facility, University of Glasgow, Glasgow G12 8TA, UK
| | - Christopher J Tonkin
- The Walter and Eliza Hall Institute of Medical Research, Melbourne, VIC 3086, Australia.,Department of Medical Biology, The University of Melbourne, Melbourne, VIC 3010, Australia
| | - Jeremy G Wideman
- Biodesign Center for Mechanisms of Evolution, School of Life Sciences, Arizona State University, Tempe, AZ 85287, USA
| | - Clare R Harding
- Wellcome Centre for Integrative Parasitology, University of Glasgow, Glasgow G12 8TA, UK
| | - Lilach Sheiner
- Wellcome Centre for Integrative Parasitology, University of Glasgow, Glasgow G12 8TA, UK
| |
Collapse
|
41
|
Cairns BR, Jevans B, Chanpong A, Moulding D, McCann CJ. Automated computational analysis reveals structural changes in the enteric nervous system of nNOS deficient mice. Sci Rep 2021; 11:17189. [PMID: 34433854 PMCID: PMC8387485 DOI: 10.1038/s41598-021-96677-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Accepted: 08/13/2021] [Indexed: 12/11/2022] Open
Abstract
Neuronal nitric oxide synthase (nNOS) neurons play a fundamental role in inhibitory neurotransmission, within the enteric nervous system (ENS), and in the establishment of gut motility patterns. Clinically, loss or disruption of nNOS neurons has been shown in a range of enteric neuropathies. However, the effects of nNOS loss on the composition and structure of the ENS remain poorly understood. The aim of this study was to assess the structural and transcriptional consequences of loss of nNOS neurons within the murine ENS. Expression analysis demonstrated compensatory transcriptional upregulation of pan neuronal and inhibitory neuronal subtype targets within the Nos1-/- colon, compared to control C57BL/6J mice. Conventional confocal imaging; combined with novel machine learning approaches, and automated computational analysis, revealed increased interconnectivity within the Nos1-/- ENS, compared to age-matched control mice, with increases in network density, neural projections and neuronal branching. These findings provide the first direct evidence of structural and molecular remodelling of the ENS, upon loss of nNOS signalling. Further, we demonstrate the utility of machine learning approaches, and automated computational image analysis, in revealing previously undetected; yet potentially clinically relevant, changes in ENS structure which could provide improved understanding of pathological mechanisms across a host of enteric neuropathies.
Collapse
Affiliation(s)
- Ben R Cairns
- Stem Cells and Regenerative Medicine, UCL Great Ormond Street Institute of Child Health, 30 Guilford Street, London, WC1N, UK
| | - Benjamin Jevans
- Stem Cells and Regenerative Medicine, UCL Great Ormond Street Institute of Child Health, 30 Guilford Street, London, WC1N, UK
| | - Atchariya Chanpong
- Stem Cells and Regenerative Medicine, UCL Great Ormond Street Institute of Child Health, 30 Guilford Street, London, WC1N, UK
| | - Dale Moulding
- Stem Cells and Regenerative Medicine, UCL Great Ormond Street Institute of Child Health, 30 Guilford Street, London, WC1N, UK
| | - Conor J McCann
- Stem Cells and Regenerative Medicine, UCL Great Ormond Street Institute of Child Health, 30 Guilford Street, London, WC1N, UK.
| |
Collapse
|
42
|
Fecal Supernatant from Adult with Autism Spectrum Disorder Alters Digestive Functions, Intestinal Epithelial Barrier, and Enteric Nervous System. Microorganisms 2021; 9:microorganisms9081723. [PMID: 34442802 PMCID: PMC8399841 DOI: 10.3390/microorganisms9081723] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Revised: 07/30/2021] [Accepted: 08/01/2021] [Indexed: 12/26/2022] Open
Abstract
Autism Spectrum Disorders (ASDs) are neurodevelopmental disorders defined by impaired social interactions and communication with repetitive behaviors, activities, or interests. Gastrointestinal (GI) disturbances and gut microbiota dysbiosis are frequently associated with ASD in childhood. However, it is not known whether microbiota dysbiosis in ASD patients also occurs in adulthood. Further, the consequences of altered gut microbiota on digestive functions and the enteric nervous system (ENS) remain unexplored. Therefore, we studied, in mice, the ability offecal supernatant (FS) from adult ASD patients to induce GI dysfunctions and ENS remodeling. First, the analyses of the fecal microbiota composition in adult ASD patients indicated a reduced α-diversity and increased abundance of three bacterial 16S rRNA gene amplicon sequence variants compared to healthy controls (HC). The transfer of FS from ASD patients (FS-ASD) to mice decreased colonic barrier permeability by 29% and 58% compared to FS-HC for paracellular and transcellular permeability, respectively. These effects are associated with the reduced expression of the tight junction proteins JAM-A, ZO-2, cingulin, and proinflammatory cytokines TNFα and IL1β. In addition, the expression of glial and neuronal molecules was reduced by FS-ASD as compared to FS-HC in particular for those involved in neuronal connectivity (βIII-tubulin and synapsin decreased by 31% and 67%, respectively). Our data suggest that changes in microbiota composition in ASD may contribute to GI alterations, and in part, via ENS remodeling.
Collapse
|
43
|
Das S, Stortz JF, Meissner M, Periz J. The multiple functions of actin in apicomplexan parasites. Cell Microbiol 2021; 23:e13345. [PMID: 33885206 DOI: 10.1111/cmi.13345] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Revised: 03/30/2021] [Accepted: 03/31/2021] [Indexed: 11/29/2022]
Abstract
The cytoskeletal protein actin is highly abundant and conserved in eukaryotic cells. It occurs in two different states- the globular (G-actin) form, which can polymerise into the filamentous (F-actin) form, fulfilling various critical functions including cytokinesis, cargo trafficking and cellular motility. In higher eukaryotes, there are several actin isoforms with nearly identical amino acid sequences. Despite the high level of amino acid identity, they display regulated expression patterns and unique non-redundant roles. The number of actin isoforms together with conserved sequences may reflect the selective pressure exerted by scores of actin binding proteins (ABPs) in higher eukaryotes. In contrast, in many protozoans such as apicomplexan parasites which possess only a few ABPs, the regulatory control of actin and its multiple functions are still obscure. Here, we provide a summary of the regulation and biological functions of actin in higher eukaryotes and compare it with the current knowledge in apicomplexans. We discuss future experiments that will help us understand the multiple, critical roles of this fascinating system in apicomplexans.
Collapse
Affiliation(s)
- Sujaan Das
- Faculty of Veterinary Medicine, Experimental Parasitology, Ludwig Maximilian University, Munich, Germany
| | - Johannes Felix Stortz
- Department Metabolism of Infection, Max Planck Institute for Biology of Ageing, Cologne, Germany
| | - Markus Meissner
- Faculty of Veterinary Medicine, Experimental Parasitology, Ludwig Maximilian University, Munich, Germany
| | - Javier Periz
- Faculty of Veterinary Medicine, Experimental Parasitology, Ludwig Maximilian University, Munich, Germany
| |
Collapse
|
44
|
Guevara RB, Fox BA, Bzik DJ. A Family of Toxoplasma gondii Genes Related to GRA12 Regulate Cyst Burdens and Cyst Reactivation. mSphere 2021; 6:e00182-21. [PMID: 33883265 PMCID: PMC8546695 DOI: 10.1128/msphere.00182-21] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Accepted: 03/26/2021] [Indexed: 11/20/2022] Open
Abstract
Toxoplasma gondii causes a chronic infection that renders the immunocompromised human host susceptible to toxoplasmic encephalitis triggered by cyst reactivation in the central nervous system. The dense granule protein GRA12 is a major parasite virulence factor required for parasite survival during acute infection. Here, we characterized the role of four GRA12-related genes in acute and chronic stages of infection. While GRA12A, GRA12B, and GRA12D were highly expressed in asexual stage tachyzoites and bradyzoites, expression of GRA12C appeared to be restricted to the sexual stages. In contrast to deletion of GRA12 (Δgra12), no major defects in acute virulence were observed in Δgra12A, Δgra12B, or Δgra12D parasites, though Δgra12B parasites exhibited an increased tachyzoite replication rate. Bradyzoites secreted GRA12A, GRA12B, and GRA12D and incorporated these molecules into the developing cyst wall, as well as the cyst matrix in distinct patterns. Similar to GRA12, GRA12A, GRA12B, and GRA12D colocalized with the dense granules in extracellular tachyzoites, with GRA2 and the intravacuolar network in the tachyzoite stage parasitophorous vacuole and with GRA2 in the cyst matrix and cyst wall. Chronic stage cyst burdens were decreased in mice infected with Δgra12A parasites and were increased in mice infected with Δgra12B parasites. However, Δgra12B cysts were not efficiently maintained in vivo Δgra12A, Δgra12B, and Δgra12D in vitro cysts displayed a reduced reactivation efficiency, and reactivation of Δgra12A cysts was delayed. Collectively, our results suggest that a family of genes related to GRA12 play significant roles in the formation, maintenance, and reactivation of chronic stage cysts.IMPORTANCE If host immunity weakens, Toxoplasma gondii cysts recrudesce in the central nervous system and cause a severe toxoplasmic encephalitis. Current therapies target acute stage infection but do not eliminate chronic cysts. Parasite molecules that mediate the development and persistence of chronic infection are poorly characterized. Dense granule (GRA) proteins such as GRA12 are key virulence factors during acute infection. Here, we investigated four GRA12-related genes. GRA12-related genes were not major virulence factors during acute infection. Instead, GRA12-related proteins localized at the cyst wall and cyst matrix and played significant roles in cyst development, persistence, and reactivation during chronic infection. Similar to GRA12, the GRA12-related proteins selectively associated with the intravacuolar network of membranes inside the vacuole. Collectively, our results support the hypothesis that GRA12 proteins associated with the intravacuolar membrane system support parasite virulence during acute infection and cyst development, persistence, and reactivation during chronic infection.
Collapse
Affiliation(s)
- Rebekah B Guevara
- Department of Microbiology and Immunology, The Geisel School of Medicine at Dartmouth, Lebanon, New Hampshire, USA
| | - Barbara A Fox
- Department of Microbiology and Immunology, The Geisel School of Medicine at Dartmouth, Lebanon, New Hampshire, USA
| | - David J Bzik
- Department of Microbiology and Immunology, The Geisel School of Medicine at Dartmouth, Lebanon, New Hampshire, USA
| |
Collapse
|
45
|
Koreny L, Zeeshan M, Barylyuk K, Tromer EC, van Hooff JJE, Brady D, Ke H, Chelaghma S, Ferguson DJP, Eme L, Tewari R, Waller RF. Molecular characterization of the conoid complex in Toxoplasma reveals its conservation in all apicomplexans, including Plasmodium species. PLoS Biol 2021; 19:e3001081. [PMID: 33705380 PMCID: PMC7951837 DOI: 10.1371/journal.pbio.3001081] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Accepted: 12/17/2020] [Indexed: 12/14/2022] Open
Abstract
The apical complex is the instrument of invasion used by apicomplexan parasites, and the conoid is a conspicuous feature of this apparatus found throughout this phylum. The conoid, however, is believed to be heavily reduced or missing from Plasmodium species and other members of the class Aconoidasida. Relatively few conoid proteins have previously been identified, making it difficult to address how conserved this feature is throughout the phylum, and whether it is genuinely missing from some major groups. Moreover, parasites such as Plasmodium species cycle through 3 invasive forms, and there is the possibility of differential presence of the conoid between these stages. We have applied spatial proteomics and high-resolution microscopy to develop a more complete molecular inventory and understanding of the organisation of conoid-associated proteins in the model apicomplexan Toxoplasma gondii. These data revealed molecular conservation of all conoid substructures throughout Apicomplexa, including Plasmodium, and even in allied Myzozoa such as Chromera and dinoflagellates. We reporter-tagged and observed the expression and location of several conoid complex proteins in the malaria model P. berghei and revealed equivalent structures in all of its zoite forms, as well as evidence of molecular differentiation between blood-stage merozoites and the ookinetes and sporozoites of the mosquito vector. Collectively, we show that the conoid is a conserved apicomplexan element at the heart of the invasion mechanisms of these highly successful and often devastating parasites.
Collapse
Affiliation(s)
- Ludek Koreny
- Department of Biochemistry, University of Cambridge, Cambridge, United Kingdom
| | - Mohammad Zeeshan
- School of Life Sciences, Queens Medical Centre, University of Nottingham, Nottingham, United Kingdom
| | - Konstantin Barylyuk
- Department of Biochemistry, University of Cambridge, Cambridge, United Kingdom
| | - Eelco C. Tromer
- Department of Biochemistry, University of Cambridge, Cambridge, United Kingdom
| | - Jolien J. E. van Hooff
- Université Paris-Saclay, CNRS, AgroParisTech, Ecologie Systématique Evolution, Orsay, France
| | - Declan Brady
- School of Life Sciences, Queens Medical Centre, University of Nottingham, Nottingham, United Kingdom
| | - Huiling Ke
- Department of Biochemistry, University of Cambridge, Cambridge, United Kingdom
| | - Sara Chelaghma
- Department of Biochemistry, University of Cambridge, Cambridge, United Kingdom
| | - David J. P. Ferguson
- Nuffield Department of Clinical Laboratory Science, University of Oxford, John Radcliffe Hospital, Oxford, United Kingdom
- Department of Biological and Medical Sciences, Faculty of Health and Life Science, Oxford Brookes University, Oxford, United Kingdom
| | - Laura Eme
- Université Paris-Saclay, CNRS, AgroParisTech, Ecologie Systématique Evolution, Orsay, France
| | - Rita Tewari
- School of Life Sciences, Queens Medical Centre, University of Nottingham, Nottingham, United Kingdom
| | - Ross F. Waller
- Department of Biochemistry, University of Cambridge, Cambridge, United Kingdom
| |
Collapse
|
46
|
Multivalent Interactions Drive the Toxoplasma AC9:AC10:ERK7 Complex To Concentrate ERK7 in the Apical Cap. mBio 2021; 13:e0286421. [PMID: 35130732 PMCID: PMC8822341 DOI: 10.1128/mbio.02864-21] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
The Toxoplasma inner membrane complex (IMC) is a specialized organelle that is crucial for the parasite to establish an intracellular lifestyle and ultimately cause disease. The IMC is composed of both membrane and cytoskeletal components, further delineated into the apical cap, body, and basal subcompartments. The apical cap cytoskeleton was recently demonstrated to govern the stability of the apical complex, which controls parasite motility, invasion, and egress. While this role was determined by individually assessing the apical cap proteins AC9, AC10, and the mitogen-activated protein kinase ERK7, how the three proteins collaborate to stabilize the apical complex is unknown. In this study, we use a combination of deletion analyses and yeast two-hybrid experiments to establish that these proteins form an essential complex in the apical cap. We show that AC10 is a foundational component of the AC9:AC10:ERK7 complex and demonstrate that the interactions among them are critical to maintaining the apical complex. Importantly, we identify multiple independent regions of pairwise interaction between each of the three proteins, suggesting that the AC9:AC10:ERK7 complex is organized by multivalent interactions. Together, these data support a model in which multiple interacting domains enable the oligomerization of the AC9:AC10:ERK7 complex and its assembly into the cytoskeletal IMC, which serves as a structural scaffold that concentrates ERK7 kinase activity in the apical cap. IMPORTANCE The phylum Apicomplexa consists of obligate, intracellular parasites, including the causative agents of toxoplasmosis, malaria, and cryptosporidiosis. Hallmarks of these parasites are the IMC and the apical complex, both of which are unique structures that are conserved throughout the phylum and required for parasite survival. The apical cap portion of the IMC has previously been shown to stabilize the apical complex. Here, we expand on those studies to determine the precise protein-protein interactions of the apical cap complex that confer this essential function. We describe the multivalent nature of these interactions and show that the resulting protein oligomers likely tether ERK7 in the apical cap. This study represents the first description of the architecture of the apical cap at a molecular level, expanding our understanding of the unique cell biology that drives Toxoplasma infections.
Collapse
|
47
|
Wang X, Tang D, Wang F, Jin G, Wang L, Liu Q, Liu J. Microneme Protein 6 Is Involved in Invasion and Egress by Neospora caninum. Pathogens 2021; 10:pathogens10020201. [PMID: 33668497 PMCID: PMC7918358 DOI: 10.3390/pathogens10020201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Revised: 02/04/2021] [Accepted: 02/10/2021] [Indexed: 11/16/2022] Open
Abstract
BACKGROUND Neospora caninum, is the etiological agent of neosporosis, an infection that causes abortions in cattle and nervous system dysfunction in dogs. Invasion and egress are the key steps of the pathogenesis of N. caninum infection. Microneme proteins (MICs) play important roles in the recognition, adhesion, and invasion of host cells in other apicomplexan parasites. However, some MICs and their functions in N. caninum infection have rarely been reported. METHODS The homologous recombination strategy was used to investigate the function of MIC6 in N. caninum infection. RESULTS ΔNcMIC6 showed a smaller plaque size and weakened capacities of invasion and egress than Nc1. Transcription levels of the egress-related genes CDPK1, PLP1, and AMA1 of ΔNcMIC6 were downregulated. Due to the lack of NcMIC6, virulence of the pathogen in the infected mouse was weakened. The subcellular localization of NcMIC1 and NcMIC4 in ΔNcMIC6, however, did not change. Nevertheless, the transcription levels of MIC1 and MIC4 in ΔNcMIC6 were downregulated, and the expression and secretion of MIC1 and MIC4 in ΔNcMIC6 were reduced compared with that in Nc1. Furthermore, the absence of NcMIC6 weakened the virulence in mice and lower parasite load detected in mice brains. CONCLUSIONS NcMIC6 is involved in host cell invasion and egress in N. caninum and may work synergistically with other MICs to regulate the virulence of the pathogen. These data lay a foundation for further research into the function and application of NcMIC6.
Collapse
|
48
|
Carmeille R, Schiano Lomoriello P, Devarakonda PM, Kellermeier JA, Heaslip AT. Actin and an unconventional myosin motor, TgMyoF, control the organization and dynamics of the endomembrane network in Toxoplasma gondii. PLoS Pathog 2021; 17:e1008787. [PMID: 33529198 PMCID: PMC7880465 DOI: 10.1371/journal.ppat.1008787] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Revised: 02/12/2021] [Accepted: 01/07/2021] [Indexed: 12/25/2022] Open
Abstract
Toxoplasma gondii is an obligate intracellular parasite that relies on three distinct secretory organelles, the micronemes, rhoptries, and dense granules, for parasite survival and disease pathogenesis. Secretory proteins destined for these organelles are synthesized in the endoplasmic reticulum (ER) and sequentially trafficked through a highly polarized endomembrane network that consists of the Golgi and multiple post-Golgi compartments. Currently, little is known about how the parasite cytoskeleton controls the positioning of the organelles in this pathway, or how vesicular cargo is trafficked between organelles. Here we show that F-actin and an unconventional myosin motor, TgMyoF, control the dynamics and organization of the organelles in the secretory pathway, specifically ER tubule movement, apical positioning of the Golgi and post-Golgi compartments, apical positioning of the rhoptries, and finally, the directed transport of Rab6-positive and Rop1-positive vesicles. Thus, this study identifies TgMyoF and actin as the key cytoskeletal components that organize the endomembrane system in T. gondii. Endomembrane trafficking is a vital cellular process in all eukaryotic cells. In most cases the molecular motors myosin, kinesin, and dynein transport cargo including vesicles, organelles and transcripts along actin and microtubule filaments in a manner analogous to a train moving on its tracks. For the unicellular eukaryote Toxoplasma gondii, the accurate trafficking of proteins through the endomembrane system is vital for parasite survival and pathogenicity. However, the mechanisms of cargo transport in this parasite are poorly understood. In this study, we fluorescently labeled multiple endomembrane organelles and imaged their movements using live cell microscopy. We demonstrate that filamentous actin and an unconventional myosin motor named TgMyoF control both the positioning of organelles in this pathway and the movement of transport vesicles throughout the parasite cytosol. This data provides new insight into the mechanisms of cargo transport in this important pathogen and expands our understanding of the biological roles of actin in the intracellular phase of the parasite’s growth cycle.
Collapse
Affiliation(s)
- Romain Carmeille
- Department of Cell and Molecular Biology, University of Connecticut, Storrs, Connecticut, United States of America
| | - Porfirio Schiano Lomoriello
- Department of Cell and Molecular Biology, University of Connecticut, Storrs, Connecticut, United States of America
| | - Parvathi M. Devarakonda
- Department of Cell and Molecular Biology, University of Connecticut, Storrs, Connecticut, United States of America
| | - Jacob A. Kellermeier
- Department of Cell and Molecular Biology, University of Connecticut, Storrs, Connecticut, United States of America
| | - Aoife T. Heaslip
- Department of Cell and Molecular Biology, University of Connecticut, Storrs, Connecticut, United States of America
- * E-mail:
| |
Collapse
|
49
|
Uboldi AD, Wilde ML, Bader SM, Tonkin CJ. Environmental sensing and regulation of motility in Toxoplasma. Mol Microbiol 2020; 115:916-929. [PMID: 33278047 DOI: 10.1111/mmi.14661] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Revised: 11/27/2020] [Accepted: 12/01/2020] [Indexed: 12/28/2022]
Abstract
Toxoplasma and other apicomplexan parasites undergo a unique form of cellular locomotion referred to as "gliding motility." Gliding motility is crucial for parasite survival as it powers tissue dissemination, host cell invasion and egress. Distinct environmental cues lead to activation of gliding motility and have become a prominent focus of recent investigation. Progress has been made toward understanding what environmental cues are sensed and how these signals are transduced in order to regulate the machinery and cellular events powering gliding motility. In this review, we will discuss new findings and integrate these into our current understanding to propose a model of how environmental sensing is achieved to regulate gliding motility in Toxoplasma. Collectively, these findings also have implications for the understanding of gliding motility across Apicomplexa more broadly.
Collapse
Affiliation(s)
- Alessandro D Uboldi
- Division of Infectious Disease and Immune Defense, The Walter and Eliza Hall Institute of Medical Research, Melbourne, VIC, Australia.,The Department of Medical Biology, The University of Melbourne, Melbourne, VIC, Australia
| | - Mary-Louise Wilde
- Division of Infectious Disease and Immune Defense, The Walter and Eliza Hall Institute of Medical Research, Melbourne, VIC, Australia.,The Department of Medical Biology, The University of Melbourne, Melbourne, VIC, Australia
| | - Stefanie M Bader
- Division of Infectious Disease and Immune Defense, The Walter and Eliza Hall Institute of Medical Research, Melbourne, VIC, Australia
| | - Christopher J Tonkin
- Division of Infectious Disease and Immune Defense, The Walter and Eliza Hall Institute of Medical Research, Melbourne, VIC, Australia.,The Department of Medical Biology, The University of Melbourne, Melbourne, VIC, Australia
| |
Collapse
|
50
|
Soetens E, Ballegeer M, Saelens X. An Inside Job: Applications of Intracellular Single Domain Antibodies. Biomolecules 2020; 10:biom10121663. [PMID: 33322697 PMCID: PMC7764588 DOI: 10.3390/biom10121663] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2020] [Revised: 12/09/2020] [Accepted: 12/10/2020] [Indexed: 02/06/2023] Open
Abstract
Sera of camelid species contain a special kind of antibody that consists only of heavy chains. The variable antigen binding domain of these heavy chain antibodies can be expressed as a separate entity, called a single domain antibody that is characterized by its small size, high solubility and oftentimes exceptional stability. Because of this, most single domain antibodies fold correctly when expressed in the reducing environment of the cytoplasm, and thereby retain their antigen binding specificity. Single domain antibodies can thus be used to target a broad range of intracellular proteins. Such intracellular single domain antibodies are also known as intrabodies, and have proven to be highly useful tools for basic research by allowing visualization, disruption and even targeted degradation of intracellular proteins. Furthermore, intrabodies can be used to uncover prospective new therapeutic targets and have the potential to be applied in therapeutic settings in the future. In this review we provide a brief overview of recent advances in the field of intracellular single domain antibodies, focusing on their use as research tools and potential therapeutic applications. Special attention is given to the available methods that allow delivery of single domain antibodies into cells.
Collapse
Affiliation(s)
- Eline Soetens
- VIB-UGent Center for Medical Biotechnology, VIB, B-9052 Ghent, Belgium; (E.S.); (M.B.)
- Department of Biochemistry and Microbiology, Ghent University, B-9000 Ghent, Belgium
| | - Marlies Ballegeer
- VIB-UGent Center for Medical Biotechnology, VIB, B-9052 Ghent, Belgium; (E.S.); (M.B.)
- Department of Biochemistry and Microbiology, Ghent University, B-9000 Ghent, Belgium
| | - Xavier Saelens
- VIB-UGent Center for Medical Biotechnology, VIB, B-9052 Ghent, Belgium; (E.S.); (M.B.)
- Department of Biochemistry and Microbiology, Ghent University, B-9000 Ghent, Belgium
- Correspondence:
| |
Collapse
|