1
|
Capek M, Arenas OM, Alpert MH, Zaharieva EE, Méndez-González ID, Simões JM, Gil H, Acosta A, Su Y, Para A, Gallio M. Evolution of temperature preference in flies of the genus Drosophila. Nature 2025; 641:447-455. [PMID: 40044866 PMCID: PMC12070719 DOI: 10.1038/s41586-025-08682-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Accepted: 01/22/2025] [Indexed: 04/03/2025]
Abstract
The preference for a particular thermal range is a key determinant of the distribution of animal species. However, we know little on how temperature preference behaviour evolves during the colonization of new environments. Here we show that at least two distinct neurobiological mechanisms drive the evolution of temperature preference in flies of the genus Drosophila. Fly species from mild climates (D. melanogaster and D. persimilis) avoid both innocuous and noxious heat, and we show that the thermal activation threshold of the molecular heat receptor Gr28b.d precisely matches species-specific thresholds of behavioural heat avoidance. We find that desert-dwelling D. mojavensis are instead actively attracted to innocuous heat. Notably, heat attraction is also mediated by Gr28b.d (and by the antennal neurons that express it) and matches its threshold of heat activation. Rather, the switch in valence from heat aversion to attraction correlates with specific changes in thermosensory input to the lateral horn, the main target of central thermosensory pathways and a region of the fly brain implicated in the processing of innate valence1-5. Together, our results demonstrate that, in Drosophila, the adaptation to different thermal niches involves changes in thermal preference behaviour, and that this can be accomplished using distinct neurobiological solutions, ranging from shifts in the activation threshold of peripheral thermosensory receptor proteins to a substantial change in the way temperature valence is processed in the brain.
Collapse
Affiliation(s)
- Matthew Capek
- Department of Neurobiology, Northwestern University, Evanston, IL, USA
| | - Oscar M Arenas
- Department of Neurobiology, Northwestern University, Evanston, IL, USA
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA, USA
| | - Michael H Alpert
- Department of Neurobiology, Northwestern University, Evanston, IL, USA
- NSF-Simons National Institute for Theory and Mathematics in Biology, Chicago, IL, USA
| | | | | | - José Miguel Simões
- Department of Neurobiology, Northwestern University, Evanston, IL, USA
- Department of Biology, Reed College, Portland, OR, USA
| | - Hamin Gil
- Department of Neurobiology, Northwestern University, Evanston, IL, USA
| | - Aldair Acosta
- Department of Neurobiology, Northwestern University, Evanston, IL, USA
| | - Yuqing Su
- Department of Neurobiology, Northwestern University, Evanston, IL, USA
| | - Alessia Para
- Department of Neurobiology, Northwestern University, Evanston, IL, USA.
| | - Marco Gallio
- Department of Neurobiology, Northwestern University, Evanston, IL, USA.
- NSF-Simons National Institute for Theory and Mathematics in Biology, Chicago, IL, USA.
| |
Collapse
|
2
|
Dürr BR, Bertolini E, Takagi S, Pascual J, Abuin L, Lucarelli G, Benton R, Auer TO. Olfactory projection neuron rewiring in the brain of an ecological specialist. Cell Rep 2025; 44:115615. [PMID: 40287940 DOI: 10.1016/j.celrep.2025.115615] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2024] [Revised: 12/24/2024] [Accepted: 04/03/2025] [Indexed: 04/29/2025] Open
Abstract
Animal behaviors can differ greatly between closely related species. These behavioral changes are frequently linked to sensory system modifications, but central brain cell-type alterations might also be involved. Here, we develop advanced genetic tools to compare homologous central neurons in Drosophila sechellia, an ecological specialist, with the generalist Drosophila melanogaster. Through systematic morphological analysis of olfactory projection neurons (PNs), we reveal that the global anatomy of these second-order neurons is conserved. However, high-resolution, quantitative comparisons identify a striking case of convergent rewiring of PNs in two olfactory pathways critical for D. sechellia's host location. Calcium imaging and labeling of pre-synaptic sites in these evolved D. sechellia PNs indicate that species-specific connections with third-order partners are formed. This work demonstrates that peripheral sensory evolution is accompanied by selective wiring changes in the central brain to facilitate ecological specialization and paves the way to compare other cell types throughout the nervous system.
Collapse
Affiliation(s)
- Benedikt R Dürr
- Center for Integrative Genomics, Faculty of Biology and Medicine, University of Lausanne, 1015 Lausanne, Switzerland; Centre for Organismal Studies, Heidelberg University, 69120 Heidelberg, Germany
| | - Enrico Bertolini
- Center for Integrative Genomics, Faculty of Biology and Medicine, University of Lausanne, 1015 Lausanne, Switzerland; Department of Biology, University of Fribourg, 1700 Fribourg, Switzerland
| | - Suguru Takagi
- Center for Integrative Genomics, Faculty of Biology and Medicine, University of Lausanne, 1015 Lausanne, Switzerland
| | - Justine Pascual
- Center for Integrative Genomics, Faculty of Biology and Medicine, University of Lausanne, 1015 Lausanne, Switzerland; Department of Biology, University of Fribourg, 1700 Fribourg, Switzerland
| | - Liliane Abuin
- Center for Integrative Genomics, Faculty of Biology and Medicine, University of Lausanne, 1015 Lausanne, Switzerland
| | - Giovanna Lucarelli
- Center for Integrative Genomics, Faculty of Biology and Medicine, University of Lausanne, 1015 Lausanne, Switzerland
| | - Richard Benton
- Center for Integrative Genomics, Faculty of Biology and Medicine, University of Lausanne, 1015 Lausanne, Switzerland
| | - Thomas O Auer
- Center for Integrative Genomics, Faculty of Biology and Medicine, University of Lausanne, 1015 Lausanne, Switzerland; Department of Biology, University of Fribourg, 1700 Fribourg, Switzerland.
| |
Collapse
|
3
|
Wachowiak M, Dewan A, Bozza T, O'Connell TF, Hong EJ. Recalibrating Olfactory Neuroscience to the Range of Naturally Occurring Odor Concentrations. J Neurosci 2025; 45:e1872242024. [PMID: 40044450 PMCID: PMC11884396 DOI: 10.1523/jneurosci.1872-24.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Revised: 11/15/2024] [Accepted: 11/25/2024] [Indexed: 03/09/2025] Open
Abstract
Sensory systems enable organisms to detect and respond to environmental signals relevant for their survival and reproduction. A crucial aspect of any sensory signal is its intensity; understanding how sensory signals guide behavior requires probing sensory system function across the range of stimulus intensities naturally experienced by an organism. In olfaction, defining the range of natural odorant concentrations is difficult. Odors are complex mixtures of airborne chemicals emitting from a source in an irregular pattern that varies across time and space, necessitating specialized methods to obtain an accurate measurement of concentration. Perhaps as a result, experimentalists often choose stimulus concentrations based on empirical considerations rather than with respect to ecological or behavioral context. Here, we attempt to determine naturally relevant concentration ranges for olfactory stimuli by reviewing and integrating data from diverse disciplines. We compare odorant concentrations used in experimental studies in rodents and insects with those reported in different settings including ambient natural environments, the headspace of natural sources, and within the sources themselves. We also compare these values to psychophysical measurements of odorant detection threshold in rodents, where thresholds have been extensively measured. Odorant concentrations in natural regimes rarely exceed a few parts per billion, while most experimental studies investigating olfactory coding and behavior exceed these concentrations by several orders of magnitude. We discuss the implications of this mismatch and the importance of testing odorants in their natural concentration range for understanding neural mechanisms underlying olfactory sensation and odor-guided behaviors.
Collapse
Affiliation(s)
- Matt Wachowiak
- Department of Neurobiology, University of Utah School of Medicine, Salt Lake City, Utah 84112
| | - Adam Dewan
- Department of Psychology and Program in Neuroscience, Florida State University, Tallahassee, Florida 32306
| | - Thomas Bozza
- Department of Neurobiology, Northwestern University, Evanston, Illinois 60208
| | - Tom F O'Connell
- Division of Biology & Biological Engineering, California Institute of Technology, Pasadena, California 91125
| | - Elizabeth J Hong
- Division of Biology & Biological Engineering, California Institute of Technology, Pasadena, California 91125
| |
Collapse
|
4
|
Fisher JD, Crown AM, Sorkaç A, Martinez-Machado S, Snell NJ, Vishwanath N, Monje S, Vo A, Wu AH, Moșneanu RA, Okoro AM, Savaş D, Nkera B, Iturralde P, Kumari A, Chou-Freed C, Hartmann GG, Talay M, Barnea G. Convergent olfactory circuits for courtship in Drosophila revealed by ds-Tango. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.10.23.619891. [PMID: 39484479 PMCID: PMC11527207 DOI: 10.1101/2024.10.23.619891] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/03/2024]
Abstract
Animals exhibit sex-specific behaviors that are governed by sexually dimorphic circuits. One such behavior in male Drosophila melanogaster, courtship, is regulated by various sensory modalities, including olfaction. Here, we reveal how sexually dimorphic olfactory pathways in male flies converge at the third-order, onto lateral horn output neurons, to regulate courtship. To achieve this, we developed ds-Tango, a modified version of the monosynaptic tracing and manipulation tool trans-Tango. In ds-Tango, two distinct configurations of trans-Tango are positioned in series, thus providing selective genetic access not only to the monosynaptic partners of starter neurons but also to their disynaptic connections. Using ds-Tango, we identified a node of convergence for three sexually dimorphic olfactory pathways. Silencing this node results in deficits in sex recognition of potential partners. Our results identify lateral horn output neurons required for proper courtship behavior in male flies and establish ds-Tango as a tool for disynaptic circuit tracing.
Collapse
Affiliation(s)
- John D. Fisher
- These authors contributed equally
- Department of Neuroscience, Brown University, Providence, RI, USA
- Carney Institute for Brain Science, Brown University, Providence, RI, USA
- Present Address: Nanite Inc., Boston, MA, USA
| | - Anthony M. Crown
- These authors contributed equally
- Department of Neuroscience, Brown University, Providence, RI, USA
- Carney Institute for Brain Science, Brown University, Providence, RI, USA
| | - Altar Sorkaç
- These authors contributed equally
- Department of Neuroscience, Brown University, Providence, RI, USA
- Carney Institute for Brain Science, Brown University, Providence, RI, USA
| | - Sasha Martinez-Machado
- Department of Neuroscience, Brown University, Providence, RI, USA
- Carney Institute for Brain Science, Brown University, Providence, RI, USA
- Present Address: Department of Neurology, Rhode Island Hospital, Providence, RI, USA
| | - Nathaniel J. Snell
- Department of Neuroscience, Brown University, Providence, RI, USA
- Carney Institute for Brain Science, Brown University, Providence, RI, USA
- Present Address: Nanite Inc., Boston, MA, USA
| | - Neel Vishwanath
- Department of Neuroscience, Brown University, Providence, RI, USA
- Carney Institute for Brain Science, Brown University, Providence, RI, USA
- Present Address: Department of Plastic and Reconstructive Surgery, Cleveland Clinic Foundation, Cleveland, OH, USA
| | - Silas Monje
- Department of Neuroscience, Brown University, Providence, RI, USA
- Carney Institute for Brain Science, Brown University, Providence, RI, USA
- Present Address: The Warren Alpert Medical School, Brown University, Providence, RI, USA
| | - An Vo
- Department of Neuroscience, Brown University, Providence, RI, USA
- Carney Institute for Brain Science, Brown University, Providence, RI, USA
- Present Address: Department of Cognitive and Psychological Sciences, Brown University, Providence, RI, USA
| | - Annie H. Wu
- Department of Neuroscience, Brown University, Providence, RI, USA
- Carney Institute for Brain Science, Brown University, Providence, RI, USA
- Present Address: Weill Cornell Medical College, Cornell University, New York, NY, USA
| | - Rareș A. Moșneanu
- Department of Neuroscience, Brown University, Providence, RI, USA
- Carney Institute for Brain Science, Brown University, Providence, RI, USA
| | - Angel M. Okoro
- Department of Neuroscience, Brown University, Providence, RI, USA
- Carney Institute for Brain Science, Brown University, Providence, RI, USA
| | - Doruk Savaş
- Department of Neuroscience, Brown University, Providence, RI, USA
- Carney Institute for Brain Science, Brown University, Providence, RI, USA
| | - Bahati Nkera
- Department of Neuroscience, Brown University, Providence, RI, USA
- Carney Institute for Brain Science, Brown University, Providence, RI, USA
| | - Pablo Iturralde
- Department of Neuroscience, Brown University, Providence, RI, USA
- Carney Institute for Brain Science, Brown University, Providence, RI, USA
| | - Aastha Kumari
- Department of Neuroscience, Brown University, Providence, RI, USA
- Carney Institute for Brain Science, Brown University, Providence, RI, USA
| | - Cambria Chou-Freed
- Department of Neuroscience, Brown University, Providence, RI, USA
- Carney Institute for Brain Science, Brown University, Providence, RI, USA
- Present Address: Department of Department of Cell and Tissue Biology, UCSF, San Francisco, CA, USA
| | - Griffin G. Hartmann
- Department of Neuroscience, Brown University, Providence, RI, USA
- Carney Institute for Brain Science, Brown University, Providence, RI, USA
- Present Address: Cancer Biology Program, Stanford University, Stanford, CA, USA
| | - Mustafa Talay
- Department of Neuroscience, Brown University, Providence, RI, USA
- Carney Institute for Brain Science, Brown University, Providence, RI, USA
- Present Address: Howard Hughes Medical Institute, Department of Molecular and Cellular Biology, Harvard University, Cambridge, MA,, USA
| | - Gilad Barnea
- Department of Neuroscience, Brown University, Providence, RI, USA
- Carney Institute for Brain Science, Brown University, Providence, RI, USA
| |
Collapse
|
5
|
Frank DD, Kronauer DJC. The Budding Neuroscience of Ant Social Behavior. Annu Rev Neurosci 2024; 47:167-185. [PMID: 38603564 DOI: 10.1146/annurev-neuro-083023-102101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/13/2024]
Abstract
Ant physiology has been fashioned by 100 million years of social evolution. Ants perform many sophisticated social and collective behaviors yet possess nervous systems similar in schematic and scale to that of the fruit fly Drosophila melanogaster, a popular solitary model organism. Ants are thus attractive complementary subjects to investigate adaptations pertaining to complex social behaviors that are absent in flies. Despite research interest in ant behavior and the neurobiological foundations of sociality more broadly, our understanding of the ant nervous system is incomplete. Recent technical advances have enabled cutting-edge investigations of the nervous system in a fashion that is less dependent on model choice, opening the door for mechanistic social insect neuroscience. In this review, we revisit important aspects of what is known about the ant nervous system and behavior, and we look forward to how functional circuit neuroscience in ants will help us understand what distinguishes solitary animals from highly social ones.
Collapse
Affiliation(s)
- Dominic D Frank
- Laboratory of Social Evolution and Behavior, The Rockefeller University, New York, NY, USA; ,
| | - Daniel J C Kronauer
- Howard Hughes Medical Institute, New York, NY, USA
- Laboratory of Social Evolution and Behavior, The Rockefeller University, New York, NY, USA; ,
| |
Collapse
|
6
|
Ganguly I, Heckman EL, Litwin-Kumar A, Clowney EJ, Behnia R. Diversity of visual inputs to Kenyon cells of the Drosophila mushroom body. Nat Commun 2024; 15:5698. [PMID: 38972924 PMCID: PMC11228034 DOI: 10.1038/s41467-024-49616-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Accepted: 06/11/2024] [Indexed: 07/09/2024] Open
Abstract
The arthropod mushroom body is well-studied as an expansion layer representing olfactory stimuli and linking them to contingent events. However, 8% of mushroom body Kenyon cells in Drosophila melanogaster receive predominantly visual input, and their function remains unclear. Here, we identify inputs to visual Kenyon cells using the FlyWire adult whole-brain connectome. Input repertoires are similar across hemispheres and connectomes with certain inputs highly overrepresented. Many visual neurons presynaptic to Kenyon cells have large receptive fields, while interneuron inputs receive spatially restricted signals that may be tuned to specific visual features. Individual visual Kenyon cells randomly sample sparse inputs from combinations of visual channels, including multiple optic lobe neuropils. These connectivity patterns suggest that visual coding in the mushroom body, like olfactory coding, is sparse, distributed, and combinatorial. However, the specific input repertoire to the smaller population of visual Kenyon cells suggests a constrained encoding of visual stimuli.
Collapse
Affiliation(s)
- Ishani Ganguly
- Department of Neuroscience, Columbia University, New York, NY, USA
- Center for Theoretical Neuroscience, Columbia University, New York, NY, USA
- Zuckerman Institute, Columbia University, New York, NY, USA
| | - Emily L Heckman
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, MI, USA
| | - Ashok Litwin-Kumar
- Department of Neuroscience, Columbia University, New York, NY, USA
- Center for Theoretical Neuroscience, Columbia University, New York, NY, USA
- Zuckerman Institute, Columbia University, New York, NY, USA
| | - E Josephine Clowney
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, MI, USA.
- Michigan Neuroscience Institute, University of Michigan, Ann Arbor, MI, USA.
| | - Rudy Behnia
- Department of Neuroscience, Columbia University, New York, NY, USA.
- Zuckerman Institute, Columbia University, New York, NY, USA.
- Kavli Institute for Brain Science, Columbia University, New York, NY, USA.
| |
Collapse
|
7
|
Fulton KA, Zimmerman D, Samuel A, Vogt K, Datta SR. Common principles for odour coding across vertebrates and invertebrates. Nat Rev Neurosci 2024; 25:453-472. [PMID: 38806946 DOI: 10.1038/s41583-024-00822-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/30/2024] [Indexed: 05/30/2024]
Abstract
The olfactory system is an ideal and tractable system for exploring how the brain transforms sensory inputs into behaviour. The basic tasks of any olfactory system include odour detection, discrimination and categorization. The challenge for the olfactory system is to transform the high-dimensional space of olfactory stimuli into the much smaller space of perceived objects and valence that endows odours with meaning. Our current understanding of how neural circuits address this challenge has come primarily from observations of the mechanisms of the brain for processing other sensory modalities, such as vision and hearing, in which optimized deep hierarchical circuits are used to extract sensory features that vary along continuous physical dimensions. The olfactory system, by contrast, contends with an ill-defined, high-dimensional stimulus space and discrete stimuli using a circuit architecture that is shallow and parallelized. Here, we present recent observations in vertebrate and invertebrate systems that relate the statistical structure and state-dependent modulation of olfactory codes to mechanisms of perception and odour-guided behaviour.
Collapse
Affiliation(s)
- Kara A Fulton
- Department of Neuroscience, Harvard Medical School, Boston, MA, USA
| | - David Zimmerman
- Department of Physics, Harvard University, Cambridge, MA, USA
| | - Aravi Samuel
- Department of Physics, Harvard University, Cambridge, MA, USA
| | - Katrin Vogt
- Department of Physics, Harvard University, Cambridge, MA, USA.
- Department of Biology, University of Konstanz, Konstanz, Germany.
- Centre for the Advanced Study of Collective Behaviour, University of Konstanz, Konstanz, Germany.
| | | |
Collapse
|
8
|
Eckstein N, Bates AS, Champion A, Du M, Yin Y, Schlegel P, Lu AKY, Rymer T, Finley-May S, Paterson T, Parekh R, Dorkenwald S, Matsliah A, Yu SC, McKellar C, Sterling A, Eichler K, Costa M, Seung S, Murthy M, Hartenstein V, Jefferis GSXE, Funke J. Neurotransmitter classification from electron microscopy images at synaptic sites in Drosophila melanogaster. Cell 2024; 187:2574-2594.e23. [PMID: 38729112 PMCID: PMC11106717 DOI: 10.1016/j.cell.2024.03.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2023] [Revised: 10/04/2023] [Accepted: 03/13/2024] [Indexed: 05/12/2024]
Abstract
High-resolution electron microscopy of nervous systems has enabled the reconstruction of synaptic connectomes. However, we do not know the synaptic sign for each connection (i.e., whether a connection is excitatory or inhibitory), which is implied by the released transmitter. We demonstrate that artificial neural networks can predict transmitter types for presynapses from electron micrographs: a network trained to predict six transmitters (acetylcholine, glutamate, GABA, serotonin, dopamine, octopamine) achieves an accuracy of 87% for individual synapses, 94% for neurons, and 91% for known cell types across a D. melanogaster whole brain. We visualize the ultrastructural features used for prediction, discovering subtle but significant differences between transmitter phenotypes. We also analyze transmitter distributions across the brain and find that neurons that develop together largely express only one fast-acting transmitter (acetylcholine, glutamate, or GABA). We hope that our publicly available predictions act as an accelerant for neuroscientific hypothesis generation for the fly.
Collapse
Affiliation(s)
- Nils Eckstein
- HHMI Janelia Research Campus, Ashburn, VA, USA; Institute of Neuroinformatics UZH/ETHZ, Zurich, Switzerland
| | - Alexander Shakeel Bates
- Neurobiology Division, MRC Laboratory of Molecular Biology, Cambridge, UK; Centre for Neural Circuits and Behaviour, The University of Oxford, Tinsley Building, Mansfield Road, Oxford OX1 3SR, UK; Department of Neurobiology and Howard Hughes Medical Institute, Harvard Medical School, Boston, MA, USA
| | - Andrew Champion
- Drosophila Connectomics Group, Department of Zoology, University of Cambridge, Cambridge, UK
| | - Michelle Du
- HHMI Janelia Research Campus, Ashburn, VA, USA
| | - Yijie Yin
- Drosophila Connectomics Group, Department of Zoology, University of Cambridge, Cambridge, UK
| | - Philipp Schlegel
- Neurobiology Division, MRC Laboratory of Molecular Biology, Cambridge, UK; Drosophila Connectomics Group, Department of Zoology, University of Cambridge, Cambridge, UK
| | | | | | | | | | | | - Sven Dorkenwald
- Princeton Neuroscience Institute, Princeton University, Princeton, NJ, USA
| | - Arie Matsliah
- Princeton Neuroscience Institute, Princeton University, Princeton, NJ, USA
| | - Szi-Chieh Yu
- Princeton Neuroscience Institute, Princeton University, Princeton, NJ, USA
| | - Claire McKellar
- Princeton Neuroscience Institute, Princeton University, Princeton, NJ, USA
| | - Amy Sterling
- Princeton Neuroscience Institute, Princeton University, Princeton, NJ, USA
| | - Katharina Eichler
- Drosophila Connectomics Group, Department of Zoology, University of Cambridge, Cambridge, UK
| | - Marta Costa
- Drosophila Connectomics Group, Department of Zoology, University of Cambridge, Cambridge, UK
| | - Sebastian Seung
- Princeton Neuroscience Institute, Princeton University, Princeton, NJ, USA
| | - Mala Murthy
- Princeton Neuroscience Institute, Princeton University, Princeton, NJ, USA
| | - Volker Hartenstein
- Department of Molecular Cell and Developmental Biology, University of California, Los Angeles, Los Angeles, CA, USA
| | - Gregory S X E Jefferis
- Neurobiology Division, MRC Laboratory of Molecular Biology, Cambridge, UK; Drosophila Connectomics Group, Department of Zoology, University of Cambridge, Cambridge, UK.
| | - Jan Funke
- HHMI Janelia Research Campus, Ashburn, VA, USA.
| |
Collapse
|
9
|
Parnas M, Manoim JE, Lin AC. Sensory encoding and memory in the mushroom body: signals, noise, and variability. Learn Mem 2024; 31:a053825. [PMID: 38862174 PMCID: PMC11199953 DOI: 10.1101/lm.053825.123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2023] [Accepted: 11/21/2023] [Indexed: 06/13/2024]
Abstract
To survive in changing environments, animals need to learn to associate specific sensory stimuli with positive or negative valence. How do they form stimulus-specific memories to distinguish between positively/negatively associated stimuli and other irrelevant stimuli? Solving this task is one of the functions of the mushroom body, the associative memory center in insect brains. Here we summarize recent work on sensory encoding and memory in the Drosophila mushroom body, highlighting general principles such as pattern separation, sparse coding, noise and variability, coincidence detection, and spatially localized neuromodulation, and placing the mushroom body in comparative perspective with mammalian memory systems.
Collapse
Affiliation(s)
- Moshe Parnas
- Department of Physiology and Pharmacology, Faculty of Medicine, Tel Aviv University, Tel Aviv 69978, Israel
- Sagol School of Neuroscience, Tel Aviv University, Tel Aviv 69978, Israel
| | - Julia E Manoim
- Department of Physiology and Pharmacology, Faculty of Medicine, Tel Aviv University, Tel Aviv 69978, Israel
| | - Andrew C Lin
- School of Biosciences, University of Sheffield, Sheffield S10 2TN, United Kingdom
- Neuroscience Institute, University of Sheffield, Sheffield S10 2TN, United Kingdom
| |
Collapse
|
10
|
Barth-Maron A, D'Alessandro I, Wilson RI. Interactions between specialized gain control mechanisms in olfactory processing. Curr Biol 2023; 33:5109-5120.e7. [PMID: 37967554 DOI: 10.1016/j.cub.2023.10.041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Revised: 08/16/2023] [Accepted: 10/23/2023] [Indexed: 11/17/2023]
Abstract
Gain control is a process that adjusts a system's sensitivity when input levels change. Neural systems contain multiple mechanisms of gain control, but we do not understand why so many mechanisms are needed or how they interact. Here, we investigate these questions in the Drosophila antennal lobe, where we identify several types of inhibitory interneurons with specialized gain control functions. We find that some interneurons are nonspiking, with compartmentalized calcium signals, and they specialize in intra-glomerular gain control. Conversely, we find that other interneurons are recruited by strong and widespread network input; they specialize in global presynaptic gain control. Using computational modeling and optogenetic perturbations, we show how these mechanisms can work together to improve stimulus discrimination while also minimizing temporal distortions in network activity. Our results demonstrate how the robustness of neural network function can be increased by interactions among diverse and specialized mechanisms of gain control.
Collapse
Affiliation(s)
- Asa Barth-Maron
- Department of Neurobiology, Harvard Medical School, 220 Longwood Avenue, Boston, MA 02115, USA
| | - Isabel D'Alessandro
- Department of Neurobiology, Harvard Medical School, 220 Longwood Avenue, Boston, MA 02115, USA
| | - Rachel I Wilson
- Department of Neurobiology, Harvard Medical School, 220 Longwood Avenue, Boston, MA 02115, USA.
| |
Collapse
|
11
|
Tao L, Wechsler SP, Bhandawat V. Sensorimotor transformation underlying odor-modulated locomotion in walking Drosophila. Nat Commun 2023; 14:6818. [PMID: 37884581 PMCID: PMC10603174 DOI: 10.1038/s41467-023-42613-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Accepted: 10/17/2023] [Indexed: 10/28/2023] Open
Abstract
Most real-world behaviors - such as odor-guided locomotion - are performed with incomplete information. Activity in olfactory receptor neuron (ORN) classes provides information about odor identity but not the location of its source. In this study, we investigate the sensorimotor transformation that relates ORN activation to locomotion changes in Drosophila by optogenetically activating different combinations of ORN classes and measuring the resulting changes in locomotion. Three features describe this sensorimotor transformation: First, locomotion depends on both the instantaneous firing frequency (f) and its change (df); the two together serve as a short-term memory that allows the fly to adapt its motor program to sensory context automatically. Second, the mapping between (f, df) and locomotor parameters such as speed or curvature is distinct for each pattern of activated ORNs. Finally, the sensorimotor mapping changes with time after odor exposure, allowing information integration over a longer timescale.
Collapse
Affiliation(s)
- Liangyu Tao
- School of Biomedical Engineering and Health Sciences, Drexel University, Philadelphia, PA, USA
| | - Samuel P Wechsler
- School of Biomedical Engineering and Health Sciences, Drexel University, Philadelphia, PA, USA
- Department of Neurobiology and Anatomy, Drexel University, Philadelphia, PA, USA
| | - Vikas Bhandawat
- School of Biomedical Engineering and Health Sciences, Drexel University, Philadelphia, PA, USA.
| |
Collapse
|
12
|
Sizemore TR, Jonaitis J, Dacks AM. Heterogeneous receptor expression underlies non-uniform peptidergic modulation of olfaction in Drosophila. Nat Commun 2023; 14:5280. [PMID: 37644052 PMCID: PMC10465596 DOI: 10.1038/s41467-023-41012-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Accepted: 08/21/2023] [Indexed: 08/31/2023] Open
Abstract
Sensory systems are dynamically adjusted according to the animal's ongoing needs by neuromodulators, such as neuropeptides. Neuropeptides are often widely-distributed throughout sensory networks, but it is unclear whether such neuropeptides uniformly modulate network activity. Here, we leverage the Drosophila antennal lobe (AL) to resolve whether myoinhibitory peptide (MIP) uniformly modulates AL processing. Despite being uniformly distributed across the AL, MIP decreases olfactory input to some glomeruli, while increasing olfactory input to other glomeruli. We reveal that a heterogeneous ensemble of local interneurons (LNs) are the sole source of AL MIP, and show that differential expression of the inhibitory MIP receptor across glomeruli allows MIP to act on distinct intraglomerular substrates. Our findings demonstrate how even a seemingly simple case of modulation can have complex consequences on network processing by acting non-uniformly within different components of the overall network.
Collapse
Affiliation(s)
- Tyler R Sizemore
- Department of Biology, Life Sciences Building, West Virginia University, Morgantown, WV, 26506, USA.
- Department of Molecular, Cellular, and Developmental Biology, Yale Science Building, Yale University, New Haven, CT, 06520-8103, USA.
| | - Julius Jonaitis
- Department of Biology, Life Sciences Building, West Virginia University, Morgantown, WV, 26506, USA
| | - Andrew M Dacks
- Department of Biology, Life Sciences Building, West Virginia University, Morgantown, WV, 26506, USA.
- Department of Neuroscience, West Virginia University, Morgantown, WV, 26506, USA.
| |
Collapse
|
13
|
Steele TJ, Lanz AJ, Nagel KI. Olfactory navigation in arthropods. J Comp Physiol A Neuroethol Sens Neural Behav Physiol 2023; 209:467-488. [PMID: 36658447 PMCID: PMC10354148 DOI: 10.1007/s00359-022-01611-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2022] [Revised: 12/26/2022] [Accepted: 12/31/2022] [Indexed: 01/21/2023]
Abstract
Using odors to find food and mates is one of the most ancient and highly conserved behaviors. Arthropods from flies to moths to crabs use broadly similar strategies to navigate toward odor sources-such as integrating flow information with odor information, comparing odor concentration across sensors, and integrating odor information over time. Because arthropods share many homologous brain structures-antennal lobes for processing olfactory information, mechanosensors for processing flow, mushroom bodies (or hemi-ellipsoid bodies) for associative learning, and central complexes for navigation, it is likely that these closely related behaviors are mediated by conserved neural circuits. However, differences in the types of odors they seek, the physics of odor dispersal, and the physics of locomotion in water, air, and on substrates mean that these circuits must have adapted to generate a wide diversity of odor-seeking behaviors. In this review, we discuss common strategies and specializations observed in olfactory navigation behavior across arthropods, and review our current knowledge about the neural circuits subserving this behavior. We propose that a comparative study of arthropod nervous systems may provide insight into how a set of basic circuit structures has diversified to generate behavior adapted to different environments.
Collapse
Affiliation(s)
- Theresa J Steele
- Neuroscience Institute, NYU School of Medicine, 435 E 30th St., New York, NY, 10016, USA
| | - Aaron J Lanz
- Neuroscience Institute, NYU School of Medicine, 435 E 30th St., New York, NY, 10016, USA
| | - Katherine I Nagel
- Neuroscience Institute, NYU School of Medicine, 435 E 30th St., New York, NY, 10016, USA.
| |
Collapse
|
14
|
Singh P, Goyal S, Gupta S, Garg S, Tiwari A, Rajput V, Bates AS, Gupta AK, Gupta N. Combinatorial encoding of odors in the mosquito antennal lobe. Nat Commun 2023; 14:3539. [PMID: 37322224 PMCID: PMC10272161 DOI: 10.1038/s41467-023-39303-w] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Accepted: 06/06/2023] [Indexed: 06/17/2023] Open
Abstract
Among the cues that a mosquito uses to find a host for blood-feeding, the smell of the host plays an important role. Previous studies have shown that host odors contain hundreds of chemical odorants, which are detected by different receptors on the peripheral sensory organs of mosquitoes. But how individual odorants are encoded by downstream neurons in the mosquito brain is not known. We developed an in vivo preparation for patch-clamp electrophysiology to record from projection neurons and local neurons in the antennal lobe of Aedes aegypti. Combining intracellular recordings with dye-fills, morphological reconstructions, and immunohistochemistry, we identify different sub-classes of antennal lobe neurons and their putative interactions. Our recordings show that an odorant can activate multiple neurons innervating different glomeruli, and that the stimulus identity and its behavioral preference are represented in the population activity of the projection neurons. Our results provide a detailed description of the second-order olfactory neurons in the central nervous system of mosquitoes and lay a foundation for understanding the neural basis of their olfactory behaviors.
Collapse
Affiliation(s)
- Pranjul Singh
- Department of Biological Sciences and Bioengineering, Indian Institute of Technology Kanpur, Kanpur, Uttar Pradesh, 208016, India
| | - Shefali Goyal
- Department of Biological Sciences and Bioengineering, Indian Institute of Technology Kanpur, Kanpur, Uttar Pradesh, 208016, India
| | - Smith Gupta
- Department of Biological Sciences and Bioengineering, Indian Institute of Technology Kanpur, Kanpur, Uttar Pradesh, 208016, India
| | - Sanket Garg
- Department of Biological Sciences and Bioengineering, Indian Institute of Technology Kanpur, Kanpur, Uttar Pradesh, 208016, India
- Department of Economic Sciences, Indian Institute of Technology Kanpur, Kanpur, Uttar Pradesh, 208016, India
| | - Abhinav Tiwari
- Department of Biological Sciences and Bioengineering, Indian Institute of Technology Kanpur, Kanpur, Uttar Pradesh, 208016, India
| | - Varad Rajput
- Department of Biological Sciences and Bioengineering, Indian Institute of Technology Kanpur, Kanpur, Uttar Pradesh, 208016, India
| | - Alexander Shakeel Bates
- Department of Neurobiology and Howard Hughes Medical Institute, Harvard Medical School, Boston, MA, USA
| | - Arjit Kant Gupta
- Department of Biological Sciences and Bioengineering, Indian Institute of Technology Kanpur, Kanpur, Uttar Pradesh, 208016, India
| | - Nitin Gupta
- Department of Biological Sciences and Bioengineering, Indian Institute of Technology Kanpur, Kanpur, Uttar Pradesh, 208016, India.
- Mehta Family Center for Engineering in Medicine, Indian Institute of Technology Kanpur, Kanpur, Uttar Pradesh, 208016, India.
| |
Collapse
|
15
|
Yang JY, O'Connell TF, Hsu WMM, Bauer MS, Dylla KV, Sharpee TO, Hong EJ. Restructuring of olfactory representations in the fly brain around odor relationships in natural sources. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.02.15.528627. [PMID: 36824890 PMCID: PMC9949042 DOI: 10.1101/2023.02.15.528627] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
A core challenge of olfactory neuroscience is to understand how neural representations of odor are generated and progressively transformed across different layers of the olfactory circuit into formats that support perception and behavior. The encoding of odor by odorant receptors in the input layer of the olfactory system reflects, at least in part, the chemical relationships between odor compounds. Neural representations of odor in higher order associative olfactory areas, generated by random feedforward networks, are expected to largely preserve these input odor relationships1-3. We evaluated these ideas by examining how odors are represented at different stages of processing in the olfactory circuit of the vinegar fly D. melanogaster. We found that representations of odor in the mushroom body (MB), a third-order associative olfactory area in the fly brain, are indeed structured and invariant across flies. However, the structure of MB representational space diverged significantly from what is expected in a randomly connected network. In addition, odor relationships encoded in the MB were better correlated with a metric of the similarity of their distribution across natural sources compared to their similarity with respect to chemical features, and the converse was true for odor relationships encoded in primary olfactory receptor neurons (ORNs). Comparison of odor coding at primary, secondary, and tertiary layers of the circuit revealed that odors were significantly regrouped with respect to their representational similarity across successive stages of olfactory processing, with the largest changes occurring in the MB. The non-linear reorganization of odor relationships in the MB indicates that unappreciated structure exists in the fly olfactory circuit, and this structure may facilitate the generalization of odors with respect to their co-occurence in natural sources.
Collapse
Affiliation(s)
- Jie-Yoon Yang
- These authors contributed equally
- Division of Biology & Biological Engineering, California Institute of Technology, Pasadena, CA, USA
| | - Thomas F O'Connell
- These authors contributed equally
- Division of Biology & Biological Engineering, California Institute of Technology, Pasadena, CA, USA
| | - Wei-Mien M Hsu
- Computational Neurobiology Laboratory, Salk Institute for Biological Studies, La Jolla, CA, USA; Department of Physics, University of California, San Diego, La Jolla, CA, USA
| | - Matthew S Bauer
- Division of Biology & Biological Engineering, California Institute of Technology, Pasadena, CA, USA
| | - Kristina V Dylla
- Division of Biology & Biological Engineering, California Institute of Technology, Pasadena, CA, USA
| | - Tatyana O Sharpee
- Computational Neurobiology Laboratory, Salk Institute for Biological Studies, La Jolla, CA, USA; Department of Physics, University of California, San Diego, La Jolla, CA, USA
| | - Elizabeth J Hong
- Division of Biology & Biological Engineering, California Institute of Technology, Pasadena, CA, USA
- Lead contact
| |
Collapse
|
16
|
Wechsler SP, Bhandawat V. Behavioral algorithms and neural mechanisms underlying odor-modulated locomotion in insects. J Exp Biol 2023; 226:jeb200261. [PMID: 36637433 PMCID: PMC10086387 DOI: 10.1242/jeb.200261] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Odors released from mates and resources such as a host and food are often the first sensory signals that an animal can detect. Changes in locomotion in response to odors are an important mechanism by which animals access resources important to their survival. Odor-modulated changes in locomotion in insects constitute a whole suite of flexible behaviors that allow insects to close in on these resources from long distances and perform local searches to locate and subsequently assess them. Here, we review changes in odor-mediated locomotion across many insect species. We emphasize that changes in locomotion induced by odors are diverse. In particular, the olfactory stimulus is sporadic at long distances and becomes more continuous at short distances. This distance-dependent change in temporal profile produces a corresponding change in an insect's locomotory strategy. We also discuss the neural circuits underlying odor modulation of locomotion.
Collapse
Affiliation(s)
- Samuel P. Wechsler
- School of Biomedical Engineering, Sciences and Health Systems, Drexel University, Philadelphia, PA 19104, USA
| | - Vikas Bhandawat
- School of Biomedical Engineering, Sciences and Health Systems, Drexel University, Philadelphia, PA 19104, USA
| |
Collapse
|
17
|
Abstract
Among the many wonders of nature, the sense of smell of the fly Drosophila melanogaster might seem, at first glance, of esoteric interest. Nevertheless, for over a century, the 'nose' of this insect has been an extraordinary system to explore questions in animal behaviour, ecology and evolution, neuroscience, physiology and molecular genetics. The insights gained are relevant for our understanding of the sensory biology of vertebrates, including humans, and other insect species, encompassing those detrimental to human health. Here, I present an overview of our current knowledge of D. melanogaster olfaction, from molecules to behaviours, with an emphasis on the historical motivations of studies and illustration of how technical innovations have enabled advances. I also highlight some of the pressing and long-term questions.
Collapse
Affiliation(s)
- Richard Benton
- Center for Integrative Genomics, Faculty of Biology and Medicine, University of Lausanne, CH-1015 Lausanne, Switzerland
| |
Collapse
|
18
|
Marquis M, Wilson RI. Locomotor and olfactory responses in dopamine neurons of the Drosophila superior-lateral brain. Curr Biol 2022; 32:5406-5414.e5. [PMID: 36450284 DOI: 10.1016/j.cub.2022.11.008] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Revised: 08/17/2022] [Accepted: 11/03/2022] [Indexed: 12/03/2022]
Abstract
The Drosophila brain contains about 50 distinct morphological types of dopamine neurons.1,2,3,4 Physiological studies of Drosophila dopamine neurons have been largely limited to one brain region, the mushroom body,5,6,7,8,9,10,11,12,13 where they are implicated in learning.14,15,16,17,18 By comparison, we know little about the physiology of other Drosophila dopamine neurons. Interestingly, a recent whole-brain imaging study found that dopamine neuron activity in several fly brain regions is correlated with locomotion.19 This is notable because many dopamine neurons in the rodent brain are also correlated with locomotion or other movements20,21,22,23,24,25,26,27,28,29,30; however, most rodent studies have focused on learned and rewarded behaviors, and few have investigated dopamine neuron activity during spontaneous (self-timed) movements. In this study, we monitored dopamine neurons in the Drosophila brain during self-timed locomotor movements, focusing on several previously uncharacterized cell types that arborize in the superior-lateral brain, specifically the lateral horn and superior-lateral protocerebrum. We found that activity of all of these dopamine neurons correlated with spontaneous fluctuations in walking speed, with different cell types showing different speed correlations. Some dopamine neurons also responded to odors, but these responses were suppressed by repeated odor encounters. Finally, we found that the same identifiable dopamine neuron can encode different combinations of locomotion and odor in different individuals. If these dopamine neurons promote synaptic plasticity-like the dopamine neurons of the mushroom body-then, their tuning profiles would imply that plasticity depends on a flexible integration of sensory signals, motor signals, and recent experience.
Collapse
Affiliation(s)
- Michael Marquis
- Department of Neurobiology, Harvard Medical School, 220 Longwood Avenue, Boston, MA 02115, USA
| | - Rachel I Wilson
- Department of Neurobiology, Harvard Medical School, 220 Longwood Avenue, Boston, MA 02115, USA.
| |
Collapse
|
19
|
Abstract
Modern humans live in real and digital environments dominated by sight and sound, but the vast majority of organisms on the planet rely on information received through air- or water-borne molecules to find food, avoid danger, and reproduce. Olfaction is at once both the primitive sensory modality and one of the hardest to understand, in large part due to the complexity of olfactory stimulus space. Whereas light and sound are easily ordered along natural physical axes that are reflected in their respective sensory codes, the organizational axes of odor space are not obvious. The search for systematic relationships between physicochemical characteristics of monomolecular odorants (carbon chain length, bond numbers, functional groups, etc.) and human perception of odorants suggests that olfactory perceptual space is a relatively low-dimensional structure. Odor descriptors provided by human observers are often significantly correlated. For instance, odors perceived as 'woody' are also likely to be described as 'warm', and many studies converge on hedonic valence or 'pleasantness' as being one of the most important dimensions of how people perceive odors. The identification of additional perceptual 'primaries' around which olfaction is organized is an active area of investigation, and a useful account of olfactory coding must explain this transformation of odor stimuli from the high dimensional chemical space to a lower dimensional perceptual space.
Collapse
Affiliation(s)
- George Barnum
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | - Elizabeth J Hong
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA.
| |
Collapse
|
20
|
Boehm AC, Friedrich AB, Hunt S, Bandow P, Siju KP, De Backer JF, Claussen J, Link MH, Hofmann TF, Dawid C, Grunwald Kadow IC. A dopamine-gated learning circuit underpins reproductive state-dependent odor preference in Drosophila females. eLife 2022; 11:e77643. [PMID: 36129174 PMCID: PMC9536836 DOI: 10.7554/elife.77643] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Accepted: 09/20/2022] [Indexed: 11/13/2022] Open
Abstract
Motherhood induces a drastic, sometimes long-lasting, change in internal state and behavior in many female animals. How a change in reproductive state or the discrete event of mating modulates specific female behaviors is still incompletely understood. Using calcium imaging of the whole brain of Drosophila females, we find that mating does not induce a global change in brain activity. Instead, mating modulates the pheromone response of dopaminergic neurons innervating the fly's learning and memory center, the mushroom body (MB). Using the mating-induced increased attraction to the odor of important nutrients, polyamines, we show that disruption of the female fly's ability to smell, for instance the pheromone cVA, during mating leads to a reduction in polyamine preference for days later indicating that the odor environment at mating lastingly influences female perception and choice behavior. Moreover, dopaminergic neurons including innervation of the β'1 compartment are sufficient to induce the lasting behavioral increase in polyamine preference. We further show that MB output neurons (MBON) of the β'1 compartment are activated by pheromone odor and their activity during mating bidirectionally modulates preference behavior in mated and virgin females. Their activity is not required, however, for the expression of polyamine attraction. Instead, inhibition of another type of MBON innervating the β'2 compartment enables expression of high odor attraction. In addition, the response of a lateral horn (LH) neuron, AD1b2, which output is required for the expression of polyamine attraction, shows a modulated polyamine response after mating. Taken together, our data in the fly suggests that mating-related sensory experience regulates female odor perception and expression of choice behavior through a dopamine-gated learning circuit.
Collapse
Affiliation(s)
- Ariane C Boehm
- Technical University Munich, School of Life Sciences, Neuronal Control of MetabolismFreisingGermany
- Graduate School of Systemic Neurosciences, Ludwig Maximilian UniversityMartinsriedGermany
| | - Anja B Friedrich
- Technical University Munich, School of Life Sciences, Neuronal Control of MetabolismFreisingGermany
| | - Sydney Hunt
- Technical University Munich, School of Life Sciences, Neuronal Control of MetabolismFreisingGermany
| | - Paul Bandow
- Technical University Munich, School of Life Sciences, Neuronal Control of MetabolismFreisingGermany
- Graduate School of Systemic Neurosciences, Ludwig Maximilian UniversityMartinsriedGermany
- ZIEL – Institute for Food and Health, Technical University Munich, School of Life SciencesFreisingGermany
| | - KP Siju
- Technical University Munich, School of Life Sciences, Neuronal Control of MetabolismFreisingGermany
| | - Jean Francois De Backer
- Technical University Munich, School of Life Sciences, Neuronal Control of MetabolismFreisingGermany
| | - Julia Claussen
- Technical University Munich, School of Life Sciences, Neuronal Control of MetabolismFreisingGermany
| | - Marie Helen Link
- Technical University Munich, School of Life Sciences, Neuronal Control of MetabolismFreisingGermany
| | - Thomas F Hofmann
- ZIEL – Institute for Food and Health, Technical University Munich, School of Life SciencesFreisingGermany
- Technical University Munich, School of Life Sciences, Chair of Food Chemistry and Molecular Sensory ScienceFreisingGermany
| | - Corinna Dawid
- ZIEL – Institute for Food and Health, Technical University Munich, School of Life SciencesFreisingGermany
- Technical University Munich, School of Life Sciences, Chair of Food Chemistry and Molecular Sensory ScienceFreisingGermany
| | - Ilona C Grunwald Kadow
- Technical University Munich, School of Life Sciences, Neuronal Control of MetabolismFreisingGermany
- Graduate School of Systemic Neurosciences, Ludwig Maximilian UniversityMartinsriedGermany
- ZIEL – Institute for Food and Health, Technical University Munich, School of Life SciencesFreisingGermany
- University of Bonn, Faculty of Medicine, Institute of Physiology IIBonnGermany
| |
Collapse
|
21
|
Das Chakraborty S, Chang H, Hansson BS, Sachse S. Higher-order olfactory neurons in the lateral horn support odor valence and odor identity coding in Drosophila. eLife 2022; 11:74637. [PMID: 35621267 PMCID: PMC9142144 DOI: 10.7554/elife.74637] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Accepted: 05/03/2022] [Indexed: 11/15/2022] Open
Abstract
Understanding neuronal representations of odor-evoked activities and their progressive transformation from the sensory level to higher brain centers features one of the major aims in olfactory neuroscience. Here, we investigated how odor information is transformed and represented in higher-order neurons of the lateral horn, one of the higher olfactory centers implicated in determining innate behavior, using Drosophila melanogaster. We focused on a subset of third-order glutamatergic lateral horn neurons (LHNs) and characterized their odor coding properties in relation to their presynaptic partner neurons, the projection neurons (PNs) by two-photon functional imaging. We show that odors evoke reproducible, stereotypic, and odor-specific response patterns in LHNs. Notably, odor-evoked responses in these neurons are valence-specific in a way that their response amplitude is positively correlated with innate odor preferences. We postulate that this valence-specific activity is the result of integrating inputs from multiple olfactory channels through second-order neurons. GRASP and micro-lesioning experiments provide evidence that glutamatergic LHNs obtain their major excitatory input from uniglomerular PNs, while they receive an odor-specific inhibition through inhibitory multiglomerular PNs. In summary, our study indicates that odor representations in glutamatergic LHNs encode hedonic valence and odor identity and primarily retain the odor coding properties of second-order neurons.
Collapse
Affiliation(s)
| | - Hetan Chang
- Department of Evolutionary Neuroethology, Max Planck Institute for Chemical Ecology, Jena, Germany
| | - Bill S Hansson
- Department of Evolutionary Neuroethology, Max Planck Institute for Chemical Ecology, Jena, Germany
| | - Silke Sachse
- Research Group Olfactory Coding, Max Planck Institute for Chemical Ecology, Jena, Germany
| |
Collapse
|
22
|
Rihani K, Sachse S. Shedding Light on Inter-Individual Variability of Olfactory Circuits in Drosophila. Front Behav Neurosci 2022; 16:835680. [PMID: 35548690 PMCID: PMC9084309 DOI: 10.3389/fnbeh.2022.835680] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Accepted: 03/29/2022] [Indexed: 12/25/2022] Open
Abstract
Inter-individual differences in behavioral responses, anatomy or functional properties of neuronal populations of animals having the same genotype were for a long time disregarded. The majority of behavioral studies were conducted at a group level, and usually the mean behavior of all individuals was considered. Similarly, in neurophysiological studies, data were pooled and normalized from several individuals. This approach is mostly suited to map and characterize stereotyped neuronal properties between individuals, but lacks the ability to depict inter-individual variability regarding neuronal wiring or physiological characteristics. Recent studies have shown that behavioral biases and preferences to olfactory stimuli can vary significantly among individuals of the same genotype. The origin and the benefit of these diverse "personalities" is still unclear and needs to be further investigated. A perspective taken into account the inter-individual differences is needed to explore the cellular mechanisms underlying this phenomenon. This review focuses on olfaction in the vinegar fly Drosophila melanogaster and summarizes previous and recent studies on odor-guided behavior and the underlying olfactory circuits in the light of inter-individual variability. We address the morphological and physiological variabilities present at each layer of the olfactory circuitry and attempt to link them to individual olfactory behavior. Additionally, we discuss the factors that might influence individuality with regard to olfactory perception.
Collapse
Affiliation(s)
- Karen Rihani
- Research Group Olfactory Coding, Max Planck Institute for Chemical Ecology, Jena, Germany
- Max Planck Center Next Generation Insect Chemical Ecology, Jena, Germany
| | - Silke Sachse
- Research Group Olfactory Coding, Max Planck Institute for Chemical Ecology, Jena, Germany
- Max Planck Center Next Generation Insect Chemical Ecology, Jena, Germany
| |
Collapse
|
23
|
Task D, Lin CC, Vulpe A, Afify A, Ballou S, Brbic M, Schlegel P, Raji J, Jefferis GSXE, Li H, Menuz K, Potter CJ. Chemoreceptor co-expression in Drosophila melanogaster olfactory neurons. eLife 2022; 11:e72599. [PMID: 35442190 PMCID: PMC9020824 DOI: 10.7554/elife.72599] [Citation(s) in RCA: 77] [Impact Index Per Article: 25.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Accepted: 03/07/2022] [Indexed: 12/20/2022] Open
Abstract
Drosophila melanogaster olfactory neurons have long been thought to express only one chemosensory receptor gene family. There are two main olfactory receptor gene families in Drosophila, the odorant receptors (ORs) and the ionotropic receptors (IRs). The dozens of odorant-binding receptors in each family require at least one co-receptor gene in order to function: Orco for ORs, and Ir25a, Ir8a, and Ir76b for IRs. Using a new genetic knock-in strategy, we targeted the four co-receptors representing the main chemosensory families in D. melanogaster (Orco, Ir8a, Ir76b, Ir25a). Co-receptor knock-in expression patterns were verified as accurate representations of endogenous expression. We find extensive overlap in expression among the different co-receptors. As defined by innervation into antennal lobe glomeruli, Ir25a is broadly expressed in 88% of all olfactory sensory neuron classes and is co-expressed in 82% of Orco+ neuron classes, including all neuron classes in the maxillary palp. Orco, Ir8a, and Ir76b expression patterns are also more expansive than previously assumed. Single sensillum recordings from Orco-expressing Ir25a mutant antennal and palpal neurons identify changes in olfactory responses. We also find co-expression of Orco and Ir25a in Drosophila sechellia and Anopheles coluzzii olfactory neurons. These results suggest that co-expression of chemosensory receptors is common in insect olfactory neurons. Together, our data present the first comprehensive map of chemosensory co-receptor expression and reveal their unexpected widespread co-expression in the fly olfactory system.
Collapse
Affiliation(s)
- Darya Task
- The Solomon H. Snyder Department of Neuroscience, Center for Sensory Biology, Johns Hopkins University School of MedicineBaltimoreUnited States
| | - Chun-Chieh Lin
- The Solomon H. Snyder Department of Neuroscience, Center for Sensory Biology, Johns Hopkins University School of MedicineBaltimoreUnited States
- Mortimer B. Zuckermann Mind Brain Behavior Institute, Columbia UniversityNew YorkUnited States
| | - Alina Vulpe
- Physiology & Neurobiology Department, University of ConnecticutMansfieldUnited States
| | - Ali Afify
- The Solomon H. Snyder Department of Neuroscience, Center for Sensory Biology, Johns Hopkins University School of MedicineBaltimoreUnited States
| | - Sydney Ballou
- Physiology & Neurobiology Department, University of ConnecticutMansfieldUnited States
| | - Maria Brbic
- Department of Computer Science, Stanford UniversityStanfordUnited States
| | - Philipp Schlegel
- Drosophila Connectomics Group, Department of Zoology, University of CambridgeCambridgeUnited Kingdom
| | - Joshua Raji
- The Solomon H. Snyder Department of Neuroscience, Center for Sensory Biology, Johns Hopkins University School of MedicineBaltimoreUnited States
| | - Gregory SXE Jefferis
- Drosophila Connectomics Group, Department of Zoology, University of CambridgeCambridgeUnited Kingdom
- Neurobiology Division, MRC Laboratory of Molecular BiologyCambridgeUnited Kingdom
| | - Hongjie Li
- Department of Biology, Howard Hughes Medical Institute, Stanford UniversityStanfordUnited States
| | - Karen Menuz
- Physiology & Neurobiology Department, University of ConnecticutMansfieldUnited States
| | - Christopher J Potter
- The Solomon H. Snyder Department of Neuroscience, Center for Sensory Biology, Johns Hopkins University School of MedicineBaltimoreUnited States
| |
Collapse
|
24
|
Endo K, Kazama H. Central organization of a high-dimensional odor space. Curr Opin Neurobiol 2022; 73:102528. [DOI: 10.1016/j.conb.2022.102528] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Revised: 02/17/2022] [Accepted: 02/24/2022] [Indexed: 11/03/2022]
|
25
|
Multimodal Information Processing and Associative Learning in the Insect Brain. INSECTS 2022; 13:insects13040332. [PMID: 35447774 PMCID: PMC9033018 DOI: 10.3390/insects13040332] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Revised: 03/23/2022] [Accepted: 03/25/2022] [Indexed: 02/04/2023]
Abstract
Simple Summary Insect behaviors are a great indicator of evolution and provide useful information about the complexity of organisms. The realistic sensory scene of an environment is complex and replete with multisensory inputs, making the study of sensory integration that leads to behavior highly relevant. We summarize the recent findings on multimodal sensory integration and the behaviors that originate from them in our review. Abstract The study of sensory systems in insects has a long-spanning history of almost an entire century. Olfaction, vision, and gustation are thoroughly researched in several robust insect models and new discoveries are made every day on the more elusive thermo- and mechano-sensory systems. Few specialized senses such as hygro- and magneto-reception are also identified in some insects. In light of recent advancements in the scientific investigation of insect behavior, it is not only important to study sensory modalities individually, but also as a combination of multimodal inputs. This is of particular significance, as a combinatorial approach to study sensory behaviors mimics the real-time environment of an insect with a wide spectrum of information available to it. As a fascinating field that is recently gaining new insight, multimodal integration in insects serves as a fundamental basis to understand complex insect behaviors including, but not limited to navigation, foraging, learning, and memory. In this review, we have summarized various studies that investigated sensory integration across modalities, with emphasis on three insect models (honeybees, ants and flies), their behaviors, and the corresponding neuronal underpinnings.
Collapse
|
26
|
Hiratani N, Latham PE. Developmental and evolutionary constraints on olfactory circuit selection. Proc Natl Acad Sci U S A 2022; 119:e2100600119. [PMID: 35263217 PMCID: PMC8931209 DOI: 10.1073/pnas.2100600119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Accepted: 01/14/2022] [Indexed: 11/18/2022] Open
Abstract
SignificanceIn this work, we explore the hypothesis that biological neural networks optimize their architecture, through evolution, for learning. We study early olfactory circuits of mammals and insects, which have relatively similar structure but a huge diversity in size. We approximate these circuits as three-layer networks and estimate, analytically, the scaling of the optimal hidden-layer size with input-layer size. We find that both longevity and information in the genome constrain the hidden-layer size, so a range of allometric scalings is possible. However, the experimentally observed allometric scalings in mammals and insects are consistent with biologically plausible values. This analysis should pave the way for a deeper understanding of both biological and artificial networks.
Collapse
Affiliation(s)
- Naoki Hiratani
- Gatsby Computational Neuroscience Unit, University College London, London W1T 4JG, United Kingdom
| | - Peter E. Latham
- Gatsby Computational Neuroscience Unit, University College London, London W1T 4JG, United Kingdom
| |
Collapse
|
27
|
Liu TX, Davoudian PA, Lizbinski KM, Jeanne JM. Connectomic features underlying diverse synaptic connection strengths and subcellular computation. Curr Biol 2022; 32:559-569.e5. [PMID: 34914905 PMCID: PMC8825683 DOI: 10.1016/j.cub.2021.11.056] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2021] [Revised: 11/02/2021] [Accepted: 11/23/2021] [Indexed: 11/28/2022]
Abstract
Connectomes generated from electron microscopy images of neural tissue unveil the complex morphology of every neuron and the locations of every synapse interconnecting them. These wiring diagrams may also enable inference of synaptic and neuronal biophysics, such as the functional weights of synaptic connections, but this requires integration with physiological data to properly parameterize. Working with a stereotyped olfactory network in the Drosophila brain, we make direct comparisons of the anatomy and physiology of diverse neurons and synapses with subcellular and subthreshold resolution. We find that synapse density and location jointly predict the amplitude of the somatic postsynaptic potential evoked by a single presynaptic spike. Biophysical models fit to data predict that electrical compartmentalization allows axon and dendrite arbors to balance independent and interacting computations. These findings begin to fill the gap between connectivity maps and activity maps, which should enable new hypotheses about how network structure constrains network function.
Collapse
Affiliation(s)
- Tony X. Liu
- Department of Neuroscience, Yale University. 333 Cedar Street, New Haven, CT 06510,These authors contributed equally
| | - Pasha A. Davoudian
- MD/PhD Program, Yale School of Medicine. 333 Cedar Street, New Haven, CT 06510,These authors contributed equally
| | - Kristyn M. Lizbinski
- Department of Neuroscience, Yale University. 333 Cedar Street, New Haven, CT 06510,These authors contributed equally
| | - James M. Jeanne
- Department of Neuroscience, Yale University. 333 Cedar Street, New Haven, CT 06510,Lead contact,Correspondence: , Twitter: @neurojeanne
| |
Collapse
|
28
|
Adel M, Griffith LC. The Role of Dopamine in Associative Learning in Drosophila: An Updated Unified Model. Neurosci Bull 2021; 37:831-852. [PMID: 33779893 PMCID: PMC8192648 DOI: 10.1007/s12264-021-00665-0] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Accepted: 09/25/2020] [Indexed: 10/21/2022] Open
Abstract
Learning to associate a positive or negative experience with an unrelated cue after the presentation of a reward or a punishment defines associative learning. The ability to form associative memories has been reported in animal species as complex as humans and as simple as insects and sea slugs. Associative memory has even been reported in tardigrades [1], species that diverged from other animal phyla 500 million years ago. Understanding the mechanisms of memory formation is a fundamental goal of neuroscience research. In this article, we work on resolving the current contradictions between different Drosophila associative memory circuit models and propose an updated version of the circuit model that predicts known memory behaviors that current models do not. Finally, we propose a model for how dopamine may function as a reward prediction error signal in Drosophila, a dopamine function that is well-established in mammals but not in insects [2, 3].
Collapse
Affiliation(s)
- Mohamed Adel
- Department of Biology, Volen National Center for Complex Systems and National Center for Behavioral Genomics, Brandeis University, Waltham, MA, 02454-9110, USA.
| | - Leslie C Griffith
- Department of Biology, Volen National Center for Complex Systems and National Center for Behavioral Genomics, Brandeis University, Waltham, MA, 02454-9110, USA
| |
Collapse
|
29
|
Schlegel P, Bates AS, Stürner T, Jagannathan SR, Drummond N, Hsu J, Serratosa Capdevila L, Javier A, Marin EC, Barth-Maron A, Tamimi IFM, Li F, Rubin GM, Plaza SM, Costa M, Jefferis GSXE. Information flow, cell types and stereotypy in a full olfactory connectome. eLife 2021; 10:e66018. [PMID: 34032214 PMCID: PMC8298098 DOI: 10.7554/elife.66018] [Citation(s) in RCA: 73] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Accepted: 05/24/2021] [Indexed: 12/19/2022] Open
Abstract
The hemibrain connectome provides large-scale connectivity and morphology information for the majority of the central brain of Drosophila melanogaster. Using this data set, we provide a complete description of the Drosophila olfactory system, covering all first, second and lateral horn-associated third-order neurons. We develop a generally applicable strategy to extract information flow and layered organisation from connectome graphs, mapping olfactory input to descending interneurons. This identifies a range of motifs including highly lateralised circuits in the antennal lobe and patterns of convergence downstream of the mushroom body and lateral horn. Leveraging a second data set we provide a first quantitative assessment of inter- versus intra-individual stereotypy. Comparing neurons across two brains (three hemispheres) reveals striking similarity in neuronal morphology across brains. Connectivity correlates with morphology and neurons of the same morphological type show similar connection variability within the same brain as across two brains.
Collapse
Affiliation(s)
- Philipp Schlegel
- Neurobiology Division, MRC Laboratory of Molecular BiologyCambridgeUnited Kingdom
- Department of Zoology, University of CambridgeCambridgeUnited Kingdom
| | | | - Tomke Stürner
- Department of Zoology, University of CambridgeCambridgeUnited Kingdom
| | | | - Nikolas Drummond
- Department of Zoology, University of CambridgeCambridgeUnited Kingdom
| | - Joseph Hsu
- Department of Zoology, University of CambridgeCambridgeUnited Kingdom
- Janelia Research Campus, Howard Hughes Medical InstituteAshburnUnited States
| | | | - Alexandre Javier
- Department of Zoology, University of CambridgeCambridgeUnited Kingdom
| | - Elizabeth C Marin
- Department of Zoology, University of CambridgeCambridgeUnited Kingdom
| | - Asa Barth-Maron
- Department of Neurobiology, Harvard Medical SchoolBostonUnited States
| | - Imaan FM Tamimi
- Department of Zoology, University of CambridgeCambridgeUnited Kingdom
| | - Feng Li
- Janelia Research Campus, Howard Hughes Medical InstituteAshburnUnited States
| | - Gerald M Rubin
- Janelia Research Campus, Howard Hughes Medical InstituteAshburnUnited States
| | - Stephen M Plaza
- Janelia Research Campus, Howard Hughes Medical InstituteAshburnUnited States
| | - Marta Costa
- Department of Zoology, University of CambridgeCambridgeUnited Kingdom
| | - Gregory S X E Jefferis
- Neurobiology Division, MRC Laboratory of Molecular BiologyCambridgeUnited Kingdom
- Department of Zoology, University of CambridgeCambridgeUnited Kingdom
| |
Collapse
|
30
|
Hsu CT, Choi JTY, Sehgal A. Manipulations of the olfactory circuit highlight the role of sensory stimulation in regulating sleep amount. Sleep 2021; 44:zsaa265. [PMID: 33313876 PMCID: PMC8343592 DOI: 10.1093/sleep/zsaa265] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2020] [Revised: 11/08/2020] [Indexed: 02/06/2023] Open
Abstract
STUDY OBJECTIVES While wake duration is a major sleep driver, an important question is if wake quality also contributes to controlling sleep. In particular, we sought to determine whether changes in sensory stimulation affect sleep in Drosophila. As Drosophila rely heavily on their sense of smell, we focused on manipulating olfactory input and the olfactory sensory pathway. METHODS Sensory deprivation was first performed by removing antennae or applying glue to antennae. We then measured sleep in response to neural activation, via expression of the thermally gated cation channel TRPA1, or inhibition, via expression of the inward rectifying potassium channel KIR2.1, of subpopulations of neurons in the olfactory pathway. Genetically restricting manipulations to adult animals prevented developmental effects. RESULTS We find that olfactory deprivation reduces sleep, largely independently of mushroom bodies that integrate olfactory signals for memory consolidation and have previously been implicated in sleep. However, specific neurons in the lateral horn, the other third-order target of olfactory input, affect sleep. Also, activation of inhibitory second-order projection neurons increases sleep. No single neuronal population in the olfactory processing pathway was found to bidirectionally regulate sleep, and reduced sleep in response to olfactory deprivation may be masked by temperature changes. CONCLUSIONS These findings demonstrate that Drosophila sleep is sensitive to sensory stimulation, and identify novel sleep-regulating neurons in the olfactory circuit. Scaling of signals across the circuit may explain the lack of bidirectional effects when neuronal activity is manipulated. We propose that olfactory inputs act through specific circuit components to modulate sleep in flies.
Collapse
Affiliation(s)
- Cynthia T Hsu
- Howard Hughes Medical Institute, Chronobiology and Sleep Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
| | - Juliana Tsz Yan Choi
- Howard Hughes Medical Institute, Chronobiology and Sleep Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
| | - Amita Sehgal
- Howard Hughes Medical Institute, Chronobiology and Sleep Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
| |
Collapse
|
31
|
Abstract
Three new studies use a whole adult brain electron microscopy volume to reveal new long-range connectivity maps of complete populations of neurons in olfactory, thermosensory, hygrosensory, and memory systems in the fly Drosophila melanogaster.
Collapse
Affiliation(s)
- Kristyn M Lizbinski
- Department of Neuroscience, Yale University School of Medicine, 333 Cedar Street, New Haven, CT 06510, USA
| | - James M Jeanne
- Department of Neuroscience, Yale University School of Medicine, 333 Cedar Street, New Haven, CT 06510, USA.
| |
Collapse
|
32
|
Pooryasin A, Maglione M, Schubert M, Matkovic-Rachid T, Hasheminasab SM, Pech U, Fiala A, Mielke T, Sigrist SJ. Unc13A and Unc13B contribute to the decoding of distinct sensory information in Drosophila. Nat Commun 2021; 12:1932. [PMID: 33771998 PMCID: PMC7997984 DOI: 10.1038/s41467-021-22180-6] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Accepted: 02/26/2021] [Indexed: 12/11/2022] Open
Abstract
The physical distance between presynaptic Ca2+ channels and the Ca2+ sensors triggering the release of neurotransmitter-containing vesicles regulates short-term plasticity (STP). While STP is highly diversified across synapse types, the computational and behavioral relevance of this diversity remains unclear. In the Drosophila brain, at nanoscale level, we can distinguish distinct coupling distances between Ca2+ channels and the (m)unc13 family priming factors, Unc13A and Unc13B. Importantly, coupling distance defines release components with distinct STP characteristics. Here, we show that while Unc13A and Unc13B both contribute to synaptic signalling, they play distinct roles in neural decoding of olfactory information at excitatory projection neuron (ePN) output synapses. Unc13A clusters closer to Ca2+ channels than Unc13B, specifically promoting fast phasic signal transfer. Reduction of Unc13A in ePNs attenuates responses to both aversive and appetitive stimuli, while reduction of Unc13B provokes a general shift towards appetitive values. Collectively, we provide direct genetic evidence that release components of distinct nanoscopic coupling distances differentially control STP to play distinct roles in neural decoding of sensory information. The physical distance between synaptic Ca2+ channels and sensors modulates short-term plasticity (STP). Here, the authors show that synaptic release factors Unc13A and Unc13B distinctly couple with Ca2+ channels and contribute to the neural decoding of distinct sensory information in Drosophila.
Collapse
Affiliation(s)
- Atefeh Pooryasin
- Institute for Biology/Genetics, Freie Universität Berlin, Berlin, Germany
| | - Marta Maglione
- Institute for Biology/Genetics, Freie Universität Berlin, Berlin, Germany.,NeuroCure Cluster of Excellence, Charité Universitätsmedizin, Berlin, Germany
| | - Marco Schubert
- Institute for Biology/Genetics, Freie Universität Berlin, Berlin, Germany
| | | | - Sayed-Mohammad Hasheminasab
- Department of Dermatology, Venereology and Allergology, Charité Universitätsmedizin, Berlin, Germany.,CCU Translational Radiation Oncology, DKTK, National Center for Tumor Diseases (NCT), Heidelberg University Hospital (UKHD) and German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Ulrike Pech
- Department of Molecular Neurobiology of Behavior, Johann-Friedrich-Blumenbach-Institute for Zoology and Anthropology, University of Göttingen, Göttingen, Germany.,Laboratory of Neuronal Communication, VIB Center for the Biology of Disease, K.U.Leuven, Leuven, Belgium
| | - André Fiala
- Department of Molecular Neurobiology of Behavior, Johann-Friedrich-Blumenbach-Institute for Zoology and Anthropology, University of Göttingen, Göttingen, Germany
| | - Thorsten Mielke
- Max Planck Institute for Molecular Genetics, Berlin, Microscopy and Cryo-Electron Microscopy Group, Berlin, Germany
| | - Stephan J Sigrist
- Institute for Biology/Genetics, Freie Universität Berlin, Berlin, Germany. .,NeuroCure Cluster of Excellence, Charité Universitätsmedizin, Berlin, Germany.
| |
Collapse
|
33
|
Nojima T, Rings A, Allen AM, Otto N, Verschut TA, Billeter JC, Neville MC, Goodwin SF. A sex-specific switch between visual and olfactory inputs underlies adaptive sex differences in behavior. Curr Biol 2021; 31:1175-1191.e6. [PMID: 33508219 PMCID: PMC7987718 DOI: 10.1016/j.cub.2020.12.047] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2020] [Revised: 12/15/2020] [Accepted: 12/24/2020] [Indexed: 01/05/2023]
Abstract
Although males and females largely share the same genome and nervous system, they differ profoundly in reproductive investments and require distinct behavioral, morphological, and physiological adaptations. How can the nervous system, while bound by both developmental and biophysical constraints, produce these sex differences in behavior? Here, we uncover a novel dimorphism in Drosophila melanogaster that allows deployment of completely different behavioral repertoires in males and females with minimum changes to circuit architecture. Sexual differentiation of only a small number of higher order neurons in the brain leads to a change in connectivity related to the primary reproductive needs of both sexes-courtship pursuit in males and communal oviposition in females. This study explains how an apparently similar brain generates distinct behavioral repertoires in the two sexes and presents a fundamental principle of neural circuit organization that may be extended to other species.
Collapse
Affiliation(s)
- Tetsuya Nojima
- Centre for Neural Circuits and Behaviour, University of Oxford, Oxford OX1 3SR, UK
| | - Annika Rings
- Centre for Neural Circuits and Behaviour, University of Oxford, Oxford OX1 3SR, UK
| | - Aaron M Allen
- Centre for Neural Circuits and Behaviour, University of Oxford, Oxford OX1 3SR, UK
| | - Nils Otto
- Centre for Neural Circuits and Behaviour, University of Oxford, Oxford OX1 3SR, UK
| | - Thomas A Verschut
- Groningen Institute for Evolutionary Life Sciences, University of Groningen, Groningen, the Netherlands
| | - Jean-Christophe Billeter
- Groningen Institute for Evolutionary Life Sciences, University of Groningen, Groningen, the Netherlands
| | - Megan C Neville
- Centre for Neural Circuits and Behaviour, University of Oxford, Oxford OX1 3SR, UK.
| | - Stephen F Goodwin
- Centre for Neural Circuits and Behaviour, University of Oxford, Oxford OX1 3SR, UK.
| |
Collapse
|
34
|
Scaplen KM, Talay M, Fisher JD, Cohn R, Sorkaç A, Aso Y, Barnea G, Kaun KR. Transsynaptic mapping of Drosophila mushroom body output neurons. eLife 2021; 10:e63379. [PMID: 33570489 PMCID: PMC7877909 DOI: 10.7554/elife.63379] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2020] [Accepted: 01/26/2021] [Indexed: 11/13/2022] Open
Abstract
The mushroom body (MB) is a well-characterized associative memory structure within the Drosophila brain. Analyzing MB connectivity using multiple approaches is critical for understanding the functional implications of this structure. Using the genetic anterograde transsynaptic tracing tool, trans-Tango, we identified divergent projections across the brain and convergent downstream targets of the MB output neurons (MBONs). Our analysis revealed at least three separate targets that receive convergent input from MBONs: other MBONs, the fan-shaped body (FSB), and the lateral accessory lobe (LAL). We describe, both anatomically and functionally, a multilayer circuit in which inhibitory and excitatory MBONs converge on the same genetic subset of FSB and LAL neurons. This circuit architecture enables the brain to update and integrate information with previous experience before executing appropriate behavioral responses. Our use of trans-Tango provides a genetically accessible anatomical framework for investigating the functional relevance of components within these complex and interconnected circuits.
Collapse
Affiliation(s)
- Kristin M Scaplen
- Department of Neuroscience, Brown UniversityProvidenceUnited States
- Department of Psychology, Bryant UniversitySmithfieldUnited States
- Center for Health and Behavioral Sciences, Bryant UniversitySmithfieldUnited States
| | - Mustafa Talay
- Department of Neuroscience, Brown UniversityProvidenceUnited States
| | - John D Fisher
- Department of Neuroscience, Brown UniversityProvidenceUnited States
| | - Raphael Cohn
- Laboratory of Neurophysiology and Behavior, The Rockefeller UniversityNew YorkUnited States
| | - Altar Sorkaç
- Department of Neuroscience, Brown UniversityProvidenceUnited States
| | - Yoshi Aso
- Janelia Research Campus, Howard Hughes Medical InstituteAshburnUnited States
| | - Gilad Barnea
- Department of Neuroscience, Brown UniversityProvidenceUnited States
| | - Karla R Kaun
- Department of Neuroscience, Brown UniversityProvidenceUnited States
| |
Collapse
|
35
|
Günzel Y, McCollum J, Paoli M, Galizia CG, Petelski I, Couzin-Fuchs E. Social modulation of individual preferences in cockroaches. iScience 2021; 24:101964. [PMID: 33437942 PMCID: PMC7788088 DOI: 10.1016/j.isci.2020.101964] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2020] [Revised: 09/24/2020] [Accepted: 12/15/2020] [Indexed: 01/10/2023] Open
Abstract
In social species, decision-making is both influenced by, and in turn influences, the social context. This reciprocal feedback introduces coupling across scales, from the neural basis of sensing, to individual and collective decision-making. Here, we adopt an integrative approach investigating decision-making in dynamical social contexts. When choosing shelters, isolated cockroaches prefer vanillin-scented (food-associated) shelters over unscented ones, yet in groups, this preference is inverted. We demonstrate that this inversion can be replicated by replacing the full social context with social odors: presented alone food and social odors are attractive, yet when presented as a mixture they are avoided. Via antennal lobe calcium imaging, we show that neural activity in vanillin-responsive regions reduces as social odor concentration increases. Thus, we suggest that the mixture is evaluated as a distinct olfactory object with opposite valence, providing a mechanism that would naturally result in individuals avoiding what they perceive as recently exploited resources.
Collapse
Affiliation(s)
- Yannick Günzel
- Department of Biology, University of Konstanz, 78457 Konstanz, Germany
- Centre for the Advanced Study of Collective Behaviour, University of Konstanz, 78464 Konstanz, Germany
- Department of Collective Behaviour, Max Planck Institute of Animal Behavior, 78464 Konstanz, Germany
| | - Jaclyn McCollum
- Department of Biology, University of Konstanz, 78457 Konstanz, Germany
| | - Marco Paoli
- Department of Biology, University of Konstanz, 78457 Konstanz, Germany
- CNRS, Research Centre for Animal Cognition, 31062 Toulouse Cedex 9, France
| | - C. Giovanni Galizia
- Department of Biology, University of Konstanz, 78457 Konstanz, Germany
- Centre for the Advanced Study of Collective Behaviour, University of Konstanz, 78464 Konstanz, Germany
| | - Inga Petelski
- Department of Biology, University of Konstanz, 78457 Konstanz, Germany
- Department of Collective Behaviour, Max Planck Institute of Animal Behavior, 78464 Konstanz, Germany
| | - Einat Couzin-Fuchs
- Department of Biology, University of Konstanz, 78457 Konstanz, Germany
- Centre for the Advanced Study of Collective Behaviour, University of Konstanz, 78464 Konstanz, Germany
- Department of Collective Behaviour, Max Planck Institute of Animal Behavior, 78464 Konstanz, Germany
| |
Collapse
|
36
|
Abstract
The olfactory system translates chemical signals into neuronal signals that inform behavioral decisions of the animal. Odors are cues for source identity, but if monitored long enough, they can also be used to localize the source. Odor representations should therefore be robust to changing conditions and flexible in order to drive an appropriate behavior. In this review, we aim at discussing the main computations that allow robust and flexible encoding of odor information in the olfactory neural pathway.
Collapse
|
37
|
Pacheco DA, Thiberge SY, Pnevmatikakis E, Murthy M. Auditory activity is diverse and widespread throughout the central brain of Drosophila. Nat Neurosci 2021; 24:93-104. [PMID: 33230320 PMCID: PMC7783861 DOI: 10.1038/s41593-020-00743-y] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2019] [Accepted: 10/19/2020] [Indexed: 11/09/2022]
Abstract
Sensory pathways are typically studied by starting at receptor neurons and following postsynaptic neurons into the brain. However, this leads to a bias in analyses of activity toward the earliest layers of processing. Here, we present new methods for volumetric neural imaging with precise across-brain registration to characterize auditory activity throughout the entire central brain of Drosophila and make comparisons across trials, individuals and sexes. We discover that auditory activity is present in most central brain regions and in neurons responsive to other modalities. Auditory responses are temporally diverse, but the majority of activity is tuned to courtship song features. Auditory responses are stereotyped across trials and animals in early mechanosensory regions, becoming more variable at higher layers of the putative pathway, and this variability is largely independent of ongoing movements. This study highlights the power of using an unbiased, brain-wide approach for mapping the functional organization of sensory activity.
Collapse
Affiliation(s)
- Diego A Pacheco
- Princeton Neuroscience Institute, Princeton University, Princeton, NJ, USA
| | - Stephan Y Thiberge
- Princeton Neuroscience Institute, Princeton University, Princeton, NJ, USA
- Bezos Center for Neural Circuit Dynamics, Princeton Neuroscience Institute, Princeton University, Princeton, NJ, USA
| | - Eftychios Pnevmatikakis
- Center for Computational Mathematics, Flatiron Institute, Simons Foundation, New York, NY, USA
| | - Mala Murthy
- Princeton Neuroscience Institute, Princeton University, Princeton, NJ, USA.
- Bezos Center for Neural Circuit Dynamics, Princeton Neuroscience Institute, Princeton University, Princeton, NJ, USA.
| |
Collapse
|
38
|
Das Chakraborty S, Sachse S. Olfactory processing in the lateral horn of Drosophila. Cell Tissue Res 2021; 383:113-123. [PMID: 33475851 PMCID: PMC7873099 DOI: 10.1007/s00441-020-03392-6] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Accepted: 12/10/2020] [Indexed: 11/24/2022]
Abstract
Sensing olfactory signals in the environment represents a crucial and significant task of sensory systems in almost all organisms to facilitate survival and reproduction. Notably, the olfactory system of diverse animal phyla shares astonishingly many fundamental principles with regard to anatomical and functional properties. Binding of odor ligands by chemosensory receptors present in the olfactory peripheral organs leads to a neuronal activity that is conveyed to first and higher-order brain centers leading to a subsequent odor-guided behavioral decision. One of the key centers for integrating and processing innate olfactory behavior is the lateral horn (LH) of the protocerebrum in insects. In recent years the LH of Drosophila has garnered increasing attention and many studies have been dedicated to elucidate its circuitry. In this review we will summarize the recent advances in mapping and characterizing LH-specific cell types, their functional properties with respect to odor tuning, their neurotransmitter profiles, their connectivity to pre-synaptic and post-synaptic partner neurons as well as their impact for olfactory behavior as known so far.
Collapse
Affiliation(s)
- Sudeshna Das Chakraborty
- Department of Evolutionary Neuroethology, Max Planck Institute for Chemical Ecology, Hans-Knoell-Str. 8, 07745, Jena, Germany
| | - Silke Sachse
- Department of Evolutionary Neuroethology, Max Planck Institute for Chemical Ecology, Hans-Knoell-Str. 8, 07745, Jena, Germany.
| |
Collapse
|
39
|
Abstract
With less than a million neurons, the western honeybee Apis mellifera is capable of complex olfactory behaviors and provides an ideal model for investigating the neurophysiology of the olfactory circuit and the basis of olfactory perception and learning. Here, we review the most fundamental aspects of honeybee's olfaction: first, we discuss which odorants dominate its environment, and how bees use them to communicate and regulate colony homeostasis; then, we describe the neuroanatomy and the neurophysiology of the olfactory circuit; finally, we explore the cellular and molecular mechanisms leading to olfactory memory formation. The vastity of histological, neurophysiological, and behavioral data collected during the last century, together with new technological advancements, including genetic tools, confirm the honeybee as an attractive research model for understanding olfactory coding and learning.
Collapse
Affiliation(s)
- Marco Paoli
- Research Centre on Animal Cognition, Center for Integrative Biology, CNRS, University of Toulouse, 31062, Toulouse, France.
| | - Giovanni C Galizia
- Department of Neuroscience, University of Konstanz, 78457, Konstanz, Germany.
| |
Collapse
|
40
|
Li F, Lindsey JW, Marin EC, Otto N, Dreher M, Dempsey G, Stark I, Bates AS, Pleijzier MW, Schlegel P, Nern A, Takemura SY, Eckstein N, Yang T, Francis A, Braun A, Parekh R, Costa M, Scheffer LK, Aso Y, Jefferis GSXE, Abbott LF, Litwin-Kumar A, Waddell S, Rubin GM. The connectome of the adult Drosophila mushroom body provides insights into function. eLife 2020; 9:e62576. [PMID: 33315010 PMCID: PMC7909955 DOI: 10.7554/elife.62576] [Citation(s) in RCA: 207] [Impact Index Per Article: 41.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Accepted: 12/11/2020] [Indexed: 12/12/2022] Open
Abstract
Making inferences about the computations performed by neuronal circuits from synapse-level connectivity maps is an emerging opportunity in neuroscience. The mushroom body (MB) is well positioned for developing and testing such an approach due to its conserved neuronal architecture, recently completed dense connectome, and extensive prior experimental studies of its roles in learning, memory, and activity regulation. Here, we identify new components of the MB circuit in Drosophila, including extensive visual input and MB output neurons (MBONs) with direct connections to descending neurons. We find unexpected structure in sensory inputs, in the transfer of information about different sensory modalities to MBONs, and in the modulation of that transfer by dopaminergic neurons (DANs). We provide insights into the circuitry used to integrate MB outputs, connectivity between the MB and the central complex and inputs to DANs, including feedback from MBONs. Our results provide a foundation for further theoretical and experimental work.
Collapse
Affiliation(s)
- Feng Li
- Janelia Research Campus, Howard Hughes Medical InstituteAshburnUnited States
| | - Jack W Lindsey
- Department of Neuroscience, Columbia University, Zuckerman InstituteNew YorkUnited States
| | - Elizabeth C Marin
- Drosophila Connectomics Group, Department of Zoology, University of CambridgeCambridgeUnited Kingdom
| | - Nils Otto
- Drosophila Connectomics Group, Department of Zoology, University of CambridgeCambridgeUnited Kingdom
- Centre for Neural Circuits & Behaviour, University of OxfordOxfordUnited Kingdom
| | - Marisa Dreher
- Janelia Research Campus, Howard Hughes Medical InstituteAshburnUnited States
| | - Georgia Dempsey
- Drosophila Connectomics Group, Department of Zoology, University of CambridgeCambridgeUnited Kingdom
| | - Ildiko Stark
- Drosophila Connectomics Group, Department of Zoology, University of CambridgeCambridgeUnited Kingdom
| | - Alexander S Bates
- Neurobiology Division, MRC Laboratory of Molecular BiologyCambridgeUnited Kingdom
| | | | - Philipp Schlegel
- Drosophila Connectomics Group, Department of Zoology, University of CambridgeCambridgeUnited Kingdom
- Neurobiology Division, MRC Laboratory of Molecular BiologyCambridgeUnited Kingdom
| | - Aljoscha Nern
- Janelia Research Campus, Howard Hughes Medical InstituteAshburnUnited States
| | - Shin-ya Takemura
- Janelia Research Campus, Howard Hughes Medical InstituteAshburnUnited States
| | - Nils Eckstein
- Janelia Research Campus, Howard Hughes Medical InstituteAshburnUnited States
| | - Tansy Yang
- Janelia Research Campus, Howard Hughes Medical InstituteAshburnUnited States
| | - Audrey Francis
- Janelia Research Campus, Howard Hughes Medical InstituteAshburnUnited States
| | - Amalia Braun
- Drosophila Connectomics Group, Department of Zoology, University of CambridgeCambridgeUnited Kingdom
| | - Ruchi Parekh
- Janelia Research Campus, Howard Hughes Medical InstituteAshburnUnited States
| | - Marta Costa
- Drosophila Connectomics Group, Department of Zoology, University of CambridgeCambridgeUnited Kingdom
| | - Louis K Scheffer
- Janelia Research Campus, Howard Hughes Medical InstituteAshburnUnited States
| | - Yoshinori Aso
- Janelia Research Campus, Howard Hughes Medical InstituteAshburnUnited States
| | - Gregory SXE Jefferis
- Drosophila Connectomics Group, Department of Zoology, University of CambridgeCambridgeUnited Kingdom
- Neurobiology Division, MRC Laboratory of Molecular BiologyCambridgeUnited Kingdom
| | - Larry F Abbott
- Department of Neuroscience, Columbia University, Zuckerman InstituteNew YorkUnited States
| | - Ashok Litwin-Kumar
- Department of Neuroscience, Columbia University, Zuckerman InstituteNew YorkUnited States
| | - Scott Waddell
- Centre for Neural Circuits & Behaviour, University of OxfordOxfordUnited Kingdom
| | - Gerald M Rubin
- Janelia Research Campus, Howard Hughes Medical InstituteAshburnUnited States
| |
Collapse
|
41
|
Ferreira Castro A, Baltruschat L, Stürner T, Bahrami A, Jedlicka P, Tavosanis G, Cuntz H. Achieving functional neuronal dendrite structure through sequential stochastic growth and retraction. eLife 2020; 9:e60920. [PMID: 33241995 PMCID: PMC7837678 DOI: 10.7554/elife.60920] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Accepted: 11/15/2020] [Indexed: 02/06/2023] Open
Abstract
Class I ventral posterior dendritic arborisation (c1vpda) proprioceptive sensory neurons respond to contractions in the Drosophila larval body wall during crawling. Their dendritic branches run along the direction of contraction, possibly a functional requirement to maximise membrane curvature during crawling contractions. Although the molecular machinery of dendritic patterning in c1vpda has been extensively studied, the process leading to the precise elaboration of their comb-like shapes remains elusive. Here, to link dendrite shape with its proprioceptive role, we performed long-term, non-invasive, in vivo time-lapse imaging of c1vpda embryonic and larval morphogenesis to reveal a sequence of differentiation stages. We combined computer models and dendritic branch dynamics tracking to propose that distinct sequential phases of stochastic growth and retraction achieve efficient dendritic trees both in terms of wire and function. Our study shows how dendrite growth balances structure-function requirements, shedding new light on general principles of self-organisation in functionally specialised dendrites.
Collapse
Affiliation(s)
- André Ferreira Castro
- Frankfurt Institute for Advanced StudiesFrankfurt am MainGermany
- Ernst Strüngmann Institute (ESI) for Neuroscience in cooperation with Max Planck SocietyFrankfurt am MainGermany
- Center for Neurodegenerative Diseases (DZNE)BonnGermany
| | | | - Tomke Stürner
- Center for Neurodegenerative Diseases (DZNE)BonnGermany
- Department of Zoology, University of CambridgeCambridgeUnited Kingdom
| | | | - Peter Jedlicka
- Frankfurt Institute for Advanced StudiesFrankfurt am MainGermany
- Faculty of Medicine, ICAR3R – Interdisciplinary Centre for 3Rs in Animal Research, Justus Liebig University GiessenGiessenGermany
- Neuroscience Center, Institute of Clinical Neuroanatomy, Goethe UniversityFrankfurt am MainGermany
| | - Gaia Tavosanis
- Center for Neurodegenerative Diseases (DZNE)BonnGermany
- LIMES Institute, University of BonnBonnGermany
| | - Hermann Cuntz
- Frankfurt Institute for Advanced StudiesFrankfurt am MainGermany
- Ernst Strüngmann Institute (ESI) for Neuroscience in cooperation with Max Planck SocietyFrankfurt am MainGermany
| |
Collapse
|
42
|
Luan H, Diao F, Scott RL, White BH. The Drosophila Split Gal4 System for Neural Circuit Mapping. Front Neural Circuits 2020; 14:603397. [PMID: 33240047 PMCID: PMC7680822 DOI: 10.3389/fncir.2020.603397] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2020] [Accepted: 10/06/2020] [Indexed: 12/22/2022] Open
Abstract
The diversity and dense interconnectivity of cells in the nervous system present a huge challenge to understanding how brains work. Recent progress toward such understanding, however, has been fuelled by the development of techniques for selectively monitoring and manipulating the function of distinct cell types-and even individual neurons-in the brains of living animals. These sophisticated techniques are fundamentally genetic and have found their greatest application in genetic model organisms, such as the fruit fly Drosophila melanogaster. Drosophila combines genetic tractability with a compact, but cell-type rich, nervous system and has been the incubator for a variety of methods of neuronal targeting. One such method, called Split Gal4, is playing an increasingly important role in mapping neural circuits in the fly. In conjunction with functional perturbations and behavioral screens, Split Gal4 has been used to characterize circuits governing such activities as grooming, aggression, and mating. It has also been leveraged to comprehensively map and functionally characterize cells composing important brain regions, such as the central complex, lateral horn, and the mushroom body-the latter being the insect seat of learning and memory. With connectomics data emerging for both the larval and adult brains of Drosophila, Split Gal4 is also poised to play an important role in characterizing neurons of interest based on their connectivity. We summarize the history and current state of the Split Gal4 method and indicate promising areas for further development or future application.
Collapse
Affiliation(s)
| | | | | | - Benjamin H. White
- Laboratory of Molecular Biology, National Institute of Mental Health, NIH, Bethesda, MD, United States
| |
Collapse
|
43
|
Cachero S, Gkantia M, Bates AS, Frechter S, Blackie L, McCarthy A, Sutcliffe B, Strano A, Aso Y, Jefferis GSXE. BAcTrace, a tool for retrograde tracing of neuronal circuits in Drosophila. Nat Methods 2020; 17:1254-1261. [PMID: 33139893 PMCID: PMC7610425 DOI: 10.1038/s41592-020-00989-1] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2020] [Accepted: 10/05/2020] [Indexed: 11/26/2022]
Abstract
Animal behavior is encoded in neuronal circuits in the brain. To elucidate the function of these circuits, it is necessary to identify, record from and manipulate networks of connected neurons. Here we present BAcTrace (Botulinum Activated Tracer), a genetically encoded, retro-grade, transsynaptic labelling system. BAcTrace is based on C. botulinum neurotoxin A, Botox, which we have engineered to travel retrogradely between neurons to activate an otherwise silent transcription factor. We validate BAcTrace at three neuronal connections in the Drosophila olfactory system. We show that BAcTrace-mediated labeling allows electrophysiological recordings of connected neurons. Finally, in a challenging circuit with highly divergent connections, BAcTrace correctly identifies 12 out of 16 connections, which were previously observed by electron microscopy.
Collapse
Affiliation(s)
- Sebastian Cachero
- Neurobiology Division, MRC Laboratory of Molecular Biology, Cambridge, UK.
| | - Marina Gkantia
- Neurobiology Division, MRC Laboratory of Molecular Biology, Cambridge, UK
| | - Alexander S Bates
- Neurobiology Division, MRC Laboratory of Molecular Biology, Cambridge, UK
| | - Shahar Frechter
- Neurobiology Division, MRC Laboratory of Molecular Biology, Cambridge, UK
| | - Laura Blackie
- Neurobiology Division, MRC Laboratory of Molecular Biology, Cambridge, UK.,MRC London Institute of Medical Sciences, Imperial College London, London, UK
| | - Amy McCarthy
- Neurobiology Division, MRC Laboratory of Molecular Biology, Cambridge, UK.,Cancer Research UK Manchester Institute, The University of Manchester, Manchester, UK
| | - Ben Sutcliffe
- Neurobiology Division, MRC Laboratory of Molecular Biology, Cambridge, UK
| | - Alessio Strano
- Neurobiology Division, MRC Laboratory of Molecular Biology, Cambridge, UK.,Department of Cancer and Developmental Biology & Zayed Centre for Research into Rare Disease in Children, University College London, London, UK
| | - Yoshinori Aso
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA, USA
| | | |
Collapse
|
44
|
Scheffer LK, Xu CS, Januszewski M, Lu Z, Takemura SY, Hayworth KJ, Huang GB, Shinomiya K, Maitlin-Shepard J, Berg S, Clements J, Hubbard PM, Katz WT, Umayam L, Zhao T, Ackerman D, Blakely T, Bogovic J, Dolafi T, Kainmueller D, Kawase T, Khairy KA, Leavitt L, Li PH, Lindsey L, Neubarth N, Olbris DJ, Otsuna H, Trautman ET, Ito M, Bates AS, Goldammer J, Wolff T, Svirskas R, Schlegel P, Neace E, Knecht CJ, Alvarado CX, Bailey DA, Ballinger S, Borycz JA, Canino BS, Cheatham N, Cook M, Dreher M, Duclos O, Eubanks B, Fairbanks K, Finley S, Forknall N, Francis A, Hopkins GP, Joyce EM, Kim S, Kirk NA, Kovalyak J, Lauchie SA, Lohff A, Maldonado C, Manley EA, McLin S, Mooney C, Ndama M, Ogundeyi O, Okeoma N, Ordish C, Padilla N, Patrick CM, Paterson T, Phillips EE, Phillips EM, Rampally N, Ribeiro C, Robertson MK, Rymer JT, Ryan SM, Sammons M, Scott AK, Scott AL, Shinomiya A, Smith C, Smith K, Smith NL, Sobeski MA, Suleiman A, Swift J, Takemura S, Talebi I, Tarnogorska D, Tenshaw E, Tokhi T, Walsh JJ, Yang T, Horne JA, Li F, Parekh R, Rivlin PK, Jayaraman V, Costa M, Jefferis GSXE, et alScheffer LK, Xu CS, Januszewski M, Lu Z, Takemura SY, Hayworth KJ, Huang GB, Shinomiya K, Maitlin-Shepard J, Berg S, Clements J, Hubbard PM, Katz WT, Umayam L, Zhao T, Ackerman D, Blakely T, Bogovic J, Dolafi T, Kainmueller D, Kawase T, Khairy KA, Leavitt L, Li PH, Lindsey L, Neubarth N, Olbris DJ, Otsuna H, Trautman ET, Ito M, Bates AS, Goldammer J, Wolff T, Svirskas R, Schlegel P, Neace E, Knecht CJ, Alvarado CX, Bailey DA, Ballinger S, Borycz JA, Canino BS, Cheatham N, Cook M, Dreher M, Duclos O, Eubanks B, Fairbanks K, Finley S, Forknall N, Francis A, Hopkins GP, Joyce EM, Kim S, Kirk NA, Kovalyak J, Lauchie SA, Lohff A, Maldonado C, Manley EA, McLin S, Mooney C, Ndama M, Ogundeyi O, Okeoma N, Ordish C, Padilla N, Patrick CM, Paterson T, Phillips EE, Phillips EM, Rampally N, Ribeiro C, Robertson MK, Rymer JT, Ryan SM, Sammons M, Scott AK, Scott AL, Shinomiya A, Smith C, Smith K, Smith NL, Sobeski MA, Suleiman A, Swift J, Takemura S, Talebi I, Tarnogorska D, Tenshaw E, Tokhi T, Walsh JJ, Yang T, Horne JA, Li F, Parekh R, Rivlin PK, Jayaraman V, Costa M, Jefferis GSXE, Ito K, Saalfeld S, George R, Meinertzhagen IA, Rubin GM, Hess HF, Jain V, Plaza SM. A connectome and analysis of the adult Drosophila central brain. eLife 2020; 9:e57443. [PMID: 32880371 PMCID: PMC7546738 DOI: 10.7554/elife.57443] [Show More Authors] [Citation(s) in RCA: 552] [Impact Index Per Article: 110.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Accepted: 09/01/2020] [Indexed: 12/26/2022] Open
Abstract
The neural circuits responsible for animal behavior remain largely unknown. We summarize new methods and present the circuitry of a large fraction of the brain of the fruit fly Drosophila melanogaster. Improved methods include new procedures to prepare, image, align, segment, find synapses in, and proofread such large data sets. We define cell types, refine computational compartments, and provide an exhaustive atlas of cell examples and types, many of them novel. We provide detailed circuits consisting of neurons and their chemical synapses for most of the central brain. We make the data public and simplify access, reducing the effort needed to answer circuit questions, and provide procedures linking the neurons defined by our analysis with genetic reagents. Biologically, we examine distributions of connection strengths, neural motifs on different scales, electrical consequences of compartmentalization, and evidence that maximizing packing density is an important criterion in the evolution of the fly's brain.
Collapse
Affiliation(s)
- Louis K Scheffer
- Janelia Research Campus, Howard Hughes Medical InstituteAshburnUnited States
| | - C Shan Xu
- Janelia Research Campus, Howard Hughes Medical InstituteAshburnUnited States
| | | | - Zhiyuan Lu
- Janelia Research Campus, Howard Hughes Medical InstituteAshburnUnited States
- Life Sciences Centre, Dalhousie UniversityHalifaxCanada
| | - Shin-ya Takemura
- Janelia Research Campus, Howard Hughes Medical InstituteAshburnUnited States
| | - Kenneth J Hayworth
- Janelia Research Campus, Howard Hughes Medical InstituteAshburnUnited States
| | - Gary B Huang
- Janelia Research Campus, Howard Hughes Medical InstituteAshburnUnited States
| | - Kazunori Shinomiya
- Janelia Research Campus, Howard Hughes Medical InstituteAshburnUnited States
| | | | - Stuart Berg
- Janelia Research Campus, Howard Hughes Medical InstituteAshburnUnited States
| | - Jody Clements
- Janelia Research Campus, Howard Hughes Medical InstituteAshburnUnited States
| | - Philip M Hubbard
- Janelia Research Campus, Howard Hughes Medical InstituteAshburnUnited States
| | - William T Katz
- Janelia Research Campus, Howard Hughes Medical InstituteAshburnUnited States
| | - Lowell Umayam
- Janelia Research Campus, Howard Hughes Medical InstituteAshburnUnited States
| | - Ting Zhao
- Janelia Research Campus, Howard Hughes Medical InstituteAshburnUnited States
| | - David Ackerman
- Janelia Research Campus, Howard Hughes Medical InstituteAshburnUnited States
| | | | - John Bogovic
- Janelia Research Campus, Howard Hughes Medical InstituteAshburnUnited States
| | - Tom Dolafi
- Janelia Research Campus, Howard Hughes Medical InstituteAshburnUnited States
| | - Dagmar Kainmueller
- Janelia Research Campus, Howard Hughes Medical InstituteAshburnUnited States
| | - Takashi Kawase
- Janelia Research Campus, Howard Hughes Medical InstituteAshburnUnited States
| | - Khaled A Khairy
- Janelia Research Campus, Howard Hughes Medical InstituteAshburnUnited States
| | | | - Peter H Li
- Google ResearchMountain ViewUnited States
| | | | - Nicole Neubarth
- Janelia Research Campus, Howard Hughes Medical InstituteAshburnUnited States
| | - Donald J Olbris
- Janelia Research Campus, Howard Hughes Medical InstituteAshburnUnited States
| | - Hideo Otsuna
- Janelia Research Campus, Howard Hughes Medical InstituteAshburnUnited States
| | - Eric T Trautman
- Janelia Research Campus, Howard Hughes Medical InstituteAshburnUnited States
| | - Masayoshi Ito
- Janelia Research Campus, Howard Hughes Medical InstituteAshburnUnited States
- Institute for Quantitative Biosciences, University of TokyoTokyoJapan
| | | | - Jens Goldammer
- Janelia Research Campus, Howard Hughes Medical InstituteAshburnUnited States
- Institute of Zoology, Biocenter Cologne, University of CologneCologneGermany
| | - Tanya Wolff
- Janelia Research Campus, Howard Hughes Medical InstituteAshburnUnited States
| | - Robert Svirskas
- Janelia Research Campus, Howard Hughes Medical InstituteAshburnUnited States
| | | | - Erika Neace
- Janelia Research Campus, Howard Hughes Medical InstituteAshburnUnited States
| | | | - Chelsea X Alvarado
- Janelia Research Campus, Howard Hughes Medical InstituteAshburnUnited States
| | - Dennis A Bailey
- Janelia Research Campus, Howard Hughes Medical InstituteAshburnUnited States
| | - Samantha Ballinger
- Janelia Research Campus, Howard Hughes Medical InstituteAshburnUnited States
| | | | - Brandon S Canino
- Janelia Research Campus, Howard Hughes Medical InstituteAshburnUnited States
| | - Natasha Cheatham
- Janelia Research Campus, Howard Hughes Medical InstituteAshburnUnited States
| | - Michael Cook
- Janelia Research Campus, Howard Hughes Medical InstituteAshburnUnited States
| | - Marisa Dreher
- Janelia Research Campus, Howard Hughes Medical InstituteAshburnUnited States
| | - Octave Duclos
- Janelia Research Campus, Howard Hughes Medical InstituteAshburnUnited States
| | - Bryon Eubanks
- Janelia Research Campus, Howard Hughes Medical InstituteAshburnUnited States
| | - Kelli Fairbanks
- Janelia Research Campus, Howard Hughes Medical InstituteAshburnUnited States
| | - Samantha Finley
- Janelia Research Campus, Howard Hughes Medical InstituteAshburnUnited States
| | - Nora Forknall
- Janelia Research Campus, Howard Hughes Medical InstituteAshburnUnited States
| | - Audrey Francis
- Janelia Research Campus, Howard Hughes Medical InstituteAshburnUnited States
| | | | - Emily M Joyce
- Janelia Research Campus, Howard Hughes Medical InstituteAshburnUnited States
| | - SungJin Kim
- Janelia Research Campus, Howard Hughes Medical InstituteAshburnUnited States
| | - Nicole A Kirk
- Janelia Research Campus, Howard Hughes Medical InstituteAshburnUnited States
| | - Julie Kovalyak
- Janelia Research Campus, Howard Hughes Medical InstituteAshburnUnited States
| | - Shirley A Lauchie
- Janelia Research Campus, Howard Hughes Medical InstituteAshburnUnited States
| | - Alanna Lohff
- Janelia Research Campus, Howard Hughes Medical InstituteAshburnUnited States
| | - Charli Maldonado
- Janelia Research Campus, Howard Hughes Medical InstituteAshburnUnited States
| | - Emily A Manley
- Janelia Research Campus, Howard Hughes Medical InstituteAshburnUnited States
| | - Sari McLin
- Life Sciences Centre, Dalhousie UniversityHalifaxCanada
| | - Caroline Mooney
- Janelia Research Campus, Howard Hughes Medical InstituteAshburnUnited States
| | - Miatta Ndama
- Janelia Research Campus, Howard Hughes Medical InstituteAshburnUnited States
| | - Omotara Ogundeyi
- Janelia Research Campus, Howard Hughes Medical InstituteAshburnUnited States
| | - Nneoma Okeoma
- Janelia Research Campus, Howard Hughes Medical InstituteAshburnUnited States
| | - Christopher Ordish
- Janelia Research Campus, Howard Hughes Medical InstituteAshburnUnited States
| | - Nicholas Padilla
- Janelia Research Campus, Howard Hughes Medical InstituteAshburnUnited States
| | | | - Tyler Paterson
- Janelia Research Campus, Howard Hughes Medical InstituteAshburnUnited States
| | - Elliott E Phillips
- Janelia Research Campus, Howard Hughes Medical InstituteAshburnUnited States
| | - Emily M Phillips
- Janelia Research Campus, Howard Hughes Medical InstituteAshburnUnited States
| | - Neha Rampally
- Janelia Research Campus, Howard Hughes Medical InstituteAshburnUnited States
| | - Caitlin Ribeiro
- Janelia Research Campus, Howard Hughes Medical InstituteAshburnUnited States
| | | | - Jon Thomson Rymer
- Janelia Research Campus, Howard Hughes Medical InstituteAshburnUnited States
| | - Sean M Ryan
- Janelia Research Campus, Howard Hughes Medical InstituteAshburnUnited States
| | - Megan Sammons
- Janelia Research Campus, Howard Hughes Medical InstituteAshburnUnited States
| | - Anne K Scott
- Janelia Research Campus, Howard Hughes Medical InstituteAshburnUnited States
| | - Ashley L Scott
- Janelia Research Campus, Howard Hughes Medical InstituteAshburnUnited States
| | - Aya Shinomiya
- Janelia Research Campus, Howard Hughes Medical InstituteAshburnUnited States
| | - Claire Smith
- Janelia Research Campus, Howard Hughes Medical InstituteAshburnUnited States
| | - Kelsey Smith
- Janelia Research Campus, Howard Hughes Medical InstituteAshburnUnited States
| | - Natalie L Smith
- Janelia Research Campus, Howard Hughes Medical InstituteAshburnUnited States
| | - Margaret A Sobeski
- Janelia Research Campus, Howard Hughes Medical InstituteAshburnUnited States
| | - Alia Suleiman
- Janelia Research Campus, Howard Hughes Medical InstituteAshburnUnited States
| | - Jackie Swift
- Janelia Research Campus, Howard Hughes Medical InstituteAshburnUnited States
| | - Satoko Takemura
- Janelia Research Campus, Howard Hughes Medical InstituteAshburnUnited States
| | - Iris Talebi
- Janelia Research Campus, Howard Hughes Medical InstituteAshburnUnited States
| | | | - Emily Tenshaw
- Janelia Research Campus, Howard Hughes Medical InstituteAshburnUnited States
| | - Temour Tokhi
- Janelia Research Campus, Howard Hughes Medical InstituteAshburnUnited States
| | - John J Walsh
- Janelia Research Campus, Howard Hughes Medical InstituteAshburnUnited States
| | - Tansy Yang
- Janelia Research Campus, Howard Hughes Medical InstituteAshburnUnited States
| | | | - Feng Li
- Janelia Research Campus, Howard Hughes Medical InstituteAshburnUnited States
| | - Ruchi Parekh
- Janelia Research Campus, Howard Hughes Medical InstituteAshburnUnited States
| | - Patricia K Rivlin
- Janelia Research Campus, Howard Hughes Medical InstituteAshburnUnited States
| | - Vivek Jayaraman
- Janelia Research Campus, Howard Hughes Medical InstituteAshburnUnited States
| | - Marta Costa
- Department of Zoology, University of CambridgeCambridgeUnited Kingdom
| | - Gregory SXE Jefferis
- MRC Laboratory of Molecular BiologyCambridgeUnited States
- Department of Zoology, University of CambridgeCambridgeUnited Kingdom
| | - Kei Ito
- Janelia Research Campus, Howard Hughes Medical InstituteAshburnUnited States
- Institute for Quantitative Biosciences, University of TokyoTokyoJapan
- Institute of Zoology, Biocenter Cologne, University of CologneCologneGermany
| | - Stephan Saalfeld
- Janelia Research Campus, Howard Hughes Medical InstituteAshburnUnited States
| | - Reed George
- Janelia Research Campus, Howard Hughes Medical InstituteAshburnUnited States
| | - Ian A Meinertzhagen
- Janelia Research Campus, Howard Hughes Medical InstituteAshburnUnited States
- Life Sciences Centre, Dalhousie UniversityHalifaxCanada
| | - Gerald M Rubin
- Janelia Research Campus, Howard Hughes Medical InstituteAshburnUnited States
| | - Harald F Hess
- Janelia Research Campus, Howard Hughes Medical InstituteAshburnUnited States
| | - Viren Jain
- Google Research, Google LLCZurichSwitzerland
| | - Stephen M Plaza
- Janelia Research Campus, Howard Hughes Medical InstituteAshburnUnited States
| |
Collapse
|
45
|
Bates AS, Schlegel P, Roberts RJV, Drummond N, Tamimi IFM, Turnbull R, Zhao X, Marin EC, Popovici PD, Dhawan S, Jamasb A, Javier A, Serratosa Capdevila L, Li F, Rubin GM, Waddell S, Bock DD, Costa M, Jefferis GSXE. Complete Connectomic Reconstruction of Olfactory Projection Neurons in the Fly Brain. Curr Biol 2020; 30:3183-3199.e6. [PMID: 32619485 PMCID: PMC7443706 DOI: 10.1016/j.cub.2020.06.042] [Citation(s) in RCA: 108] [Impact Index Per Article: 21.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2020] [Revised: 05/07/2020] [Accepted: 06/12/2020] [Indexed: 12/21/2022]
Abstract
Nervous systems contain sensory neurons, local neurons, projection neurons, and motor neurons. To understand how these building blocks form whole circuits, we must distil these broad classes into neuronal cell types and describe their network connectivity. Using an electron micrograph dataset for an entire Drosophila melanogaster brain, we reconstruct the first complete inventory of olfactory projections connecting the antennal lobe, the insect analog of the mammalian olfactory bulb, to higher-order brain regions in an adult animal brain. We then connect this inventory to extant data in the literature, providing synaptic-resolution "holotypes" both for heavily investigated and previously unknown cell types. Projection neurons are approximately twice as numerous as reported by light level studies; cell types are stereotyped, but not identical, in cell and synapse numbers between brain hemispheres. The lateral horn, the insect analog of the mammalian cortical amygdala, is the main target for this olfactory information and has been shown to guide innate behavior. Here, we find new connectivity motifs, including axo-axonic connectivity between projection neurons, feedback, and lateral inhibition of these axons by a large population of neurons, and the convergence of different inputs, including non-olfactory inputs and memory-related feedback onto third-order olfactory neurons. These features are less prominent in the mushroom body calyx, the insect analog of the mammalian piriform cortex and a center for associative memory. Our work provides a complete neuroanatomical platform for future studies of the adult Drosophila olfactory system.
Collapse
Affiliation(s)
- Alexander S Bates
- Neurobiology Division, MRC Laboratory of Molecular Biology, Cambridge CB2 0QH, UK
| | - Philipp Schlegel
- Neurobiology Division, MRC Laboratory of Molecular Biology, Cambridge CB2 0QH, UK; Department of Zoology, University of Cambridge, Cambridge CB2 3EJ, UK
| | | | - Nikolas Drummond
- Department of Zoology, University of Cambridge, Cambridge CB2 3EJ, UK
| | - Imaan F M Tamimi
- Department of Zoology, University of Cambridge, Cambridge CB2 3EJ, UK
| | - Robert Turnbull
- Department of Zoology, University of Cambridge, Cambridge CB2 3EJ, UK
| | - Xincheng Zhao
- Department of Zoology, University of Cambridge, Cambridge CB2 3EJ, UK; Department of Entomology, College of Plant Protection, Henan Agricultural University, Zhengzhou 450002, China
| | - Elizabeth C Marin
- Department of Zoology, University of Cambridge, Cambridge CB2 3EJ, UK
| | - Patricia D Popovici
- Neurobiology Division, MRC Laboratory of Molecular Biology, Cambridge CB2 0QH, UK
| | - Serene Dhawan
- Department of Zoology, University of Cambridge, Cambridge CB2 3EJ, UK
| | - Arian Jamasb
- Department of Zoology, University of Cambridge, Cambridge CB2 3EJ, UK
| | - Alexandre Javier
- Department of Zoology, University of Cambridge, Cambridge CB2 3EJ, UK
| | | | - Feng Li
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA 20147, USA
| | - Gerald M Rubin
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA 20147, USA
| | - Scott Waddell
- Centre for Neural Circuits and Behaviour, The University of Oxford, Oxford OX1 3SR, UK
| | - Davi D Bock
- Department of Neurological Sciences, Larner College of Medicine, University of Vermont, VT 05405, USA
| | - Marta Costa
- Department of Zoology, University of Cambridge, Cambridge CB2 3EJ, UK
| | - Gregory S X E Jefferis
- Neurobiology Division, MRC Laboratory of Molecular Biology, Cambridge CB2 0QH, UK; Department of Zoology, University of Cambridge, Cambridge CB2 3EJ, UK.
| |
Collapse
|
46
|
Marin EC, Büld L, Theiss M, Sarkissian T, Roberts RJV, Turnbull R, Tamimi IFM, Pleijzier MW, Laursen WJ, Drummond N, Schlegel P, Bates AS, Li F, Landgraf M, Costa M, Bock DD, Garrity PA, Jefferis GSXE. Connectomics Analysis Reveals First-, Second-, and Third-Order Thermosensory and Hygrosensory Neurons in the Adult Drosophila Brain. Curr Biol 2020; 30:3167-3182.e4. [PMID: 32619476 PMCID: PMC7443704 DOI: 10.1016/j.cub.2020.06.028] [Citation(s) in RCA: 62] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2020] [Revised: 05/08/2020] [Accepted: 06/08/2020] [Indexed: 01/08/2023]
Abstract
Animals exhibit innate and learned preferences for temperature and humidity-conditions critical for their survival and reproduction. Leveraging a whole-brain electron microscopy volume, we studied the adult Drosophila melanogaster circuitry associated with antennal thermo- and hygrosensory neurons. We have identified two new target glomeruli in the antennal lobe, in addition to the five known ones, and the ventroposterior projection neurons (VP PNs) that relay thermo- and hygrosensory information to higher brain centers, including the mushroom body and lateral horn, seats of learned and innate behavior. We present the first connectome of a thermo- and hygrosensory neuropil, the lateral accessory calyx (lACA), by reconstructing neurons downstream of heating- and cooling-responsive VP PNs. A few mushroom body-intrinsic neurons solely receive thermosensory input from the lACA, while most receive additional olfactory and thermo- and/or hygrosensory PN inputs. Furthermore, several classes of lACA-associated neurons form a local network with outputs to other brain neuropils, suggesting that the lACA serves as a hub for thermo- and hygrosensory circuitry. For example, DN1a neurons link thermosensory PNs in the lACA to the circadian clock via the accessory medulla. Finally, we survey strongly connected downstream partners of VP PNs across the protocerebrum; these include a descending neuron targeted by dry-responsive VP PNs, meaning that just two synapses might separate hygrosensory inputs from motor circuits. These data provide a comprehensive first- and second-order layer analysis of Drosophila thermo- and hygrosensory systems and an initial survey of third-order neurons that could directly modulate behavior.
Collapse
Affiliation(s)
- Elizabeth C Marin
- Department of Zoology, University of Cambridge, Cambridge CB2 3EJ, UK
| | - Laurin Büld
- Department of Zoology, University of Cambridge, Cambridge CB2 3EJ, UK
| | - Maria Theiss
- Department of Zoology, University of Cambridge, Cambridge CB2 3EJ, UK
| | | | | | - Robert Turnbull
- Department of Zoology, University of Cambridge, Cambridge CB2 3EJ, UK
| | - Imaan F M Tamimi
- Department of Zoology, University of Cambridge, Cambridge CB2 3EJ, UK
| | - Markus W Pleijzier
- Division of Neurobiology, MRC Laboratory of Molecular Biology, Cambridge, Cambridgeshire CB2 0QH, UK
| | - Willem J Laursen
- Department of Biology, Brandeis University, Waltham, MA 02454, USA
| | - Nik Drummond
- Department of Zoology, University of Cambridge, Cambridge CB2 3EJ, UK
| | - Philipp Schlegel
- Department of Zoology, University of Cambridge, Cambridge CB2 3EJ, UK; Division of Neurobiology, MRC Laboratory of Molecular Biology, Cambridge, Cambridgeshire CB2 0QH, UK
| | - Alexander S Bates
- Division of Neurobiology, MRC Laboratory of Molecular Biology, Cambridge, Cambridgeshire CB2 0QH, UK
| | - Feng Li
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA 20147, USA
| | - Matthias Landgraf
- Department of Zoology, University of Cambridge, Cambridge CB2 3EJ, UK
| | - Marta Costa
- Department of Zoology, University of Cambridge, Cambridge CB2 3EJ, UK
| | - Davi D Bock
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA 20147, USA; Larner College of Medicine, University of Vermont, Burlington, VT 05405, USA
| | - Paul A Garrity
- Department of Biology, Brandeis University, Waltham, MA 02454, USA
| | - Gregory S X E Jefferis
- Department of Zoology, University of Cambridge, Cambridge CB2 3EJ, UK; Division of Neurobiology, MRC Laboratory of Molecular Biology, Cambridge, Cambridgeshire CB2 0QH, UK.
| |
Collapse
|
47
|
Coates KE, Calle-Schuler SA, Helmick LM, Knotts VL, Martik BN, Salman F, Warner LT, Valla SV, Bock DD, Dacks AM. The Wiring Logic of an Identified Serotonergic Neuron That Spans Sensory Networks. J Neurosci 2020; 40:6309-6327. [PMID: 32641403 PMCID: PMC7424878 DOI: 10.1523/jneurosci.0552-20.2020] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2020] [Revised: 06/16/2020] [Accepted: 06/25/2020] [Indexed: 12/21/2022] Open
Abstract
Serotonergic neurons project widely throughout the brain to modulate diverse physiological and behavioral processes. However, a single-cell resolution understanding of the connectivity of serotonergic neurons is currently lacking. Using a whole-brain EM dataset of a female Drosophila, we comprehensively determine the wiring logic of a broadly projecting serotonergic neuron (the CSDn) that spans several olfactory regions. Within the antennal lobe, the CSDn differentially innervates each glomerulus, yet surprisingly, this variability reflects a diverse set of presynaptic partners, rather than glomerulus-specific differences in synaptic output, which is predominately to local interneurons. Moreover, the CSDn has distinct connectivity relationships with specific local interneuron subtypes, suggesting that the CSDn influences distinct aspects of local network processing. Across olfactory regions, the CSDn has different patterns of connectivity, even having different connectivity with individual projection neurons that also span these regions. Whereas the CSDn targets inhibitory local neurons in the antennal lobe, the CSDn has more distributed connectivity in the LH, preferentially synapsing with principal neuron types based on transmitter content. Last, we identify individual novel synaptic partners associated with other sensory domains that provide strong, top-down input to the CSDn. Together, our study reveals the complex connectivity of serotonergic neurons, which combine the integration of local and extrinsic synaptic input in a nuanced, region-specific manner.SIGNIFICANCE STATEMENT All sensory systems receive serotonergic modulatory input. However, a comprehensive understanding of the synaptic connectivity of individual serotonergic neurons is lacking. In this study, we use a whole-brain EM microscopy dataset to comprehensively determine the wiring logic of a broadly projecting serotonergic neuron in the olfactory system of Drosophila Collectively, our study demonstrates, at a single-cell level, the complex connectivity of serotonergic neurons within their target networks, identifies specific cell classes heavily targeted for serotonergic modulation in the olfactory system, and reveals novel extrinsic neurons that provide strong input to this serotonergic system outside of the context of olfaction. Elucidating the connectivity logic of individual modulatory neurons provides a ground plan for the seemingly heterogeneous effects of modulatory systems.
Collapse
Affiliation(s)
- Kaylynn E Coates
- Department of Biology, West Virginia University, Morgantown, West Virginia 26506
| | | | - Levi M Helmick
- Department of Biology, West Virginia University, Morgantown, West Virginia 26506
| | - Victoria L Knotts
- Department of Biology, West Virginia University, Morgantown, West Virginia 26506
| | - Brennah N Martik
- Department of Biology, West Virginia University, Morgantown, West Virginia 26506
| | - Farzaan Salman
- Department of Biology, West Virginia University, Morgantown, West Virginia 26506
| | - Lauren T Warner
- Department of Biology, West Virginia University, Morgantown, West Virginia 26506
| | - Sophia V Valla
- Department of Biology, West Virginia University, Morgantown, West Virginia 26506
| | - Davi D Bock
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, Virginia 20147
- Department of Neurological Sciences, Larner College of Medicine, University of Vermont, Burlington, Vermont 05405
| | - Andrew M Dacks
- Department of Biology, West Virginia University, Morgantown, West Virginia 26506
- Department of Neuroscience, West Virginia University, Morgantown, West Virginia 26506
| |
Collapse
|
48
|
Oltmanns S, Abben FS, Ender A, Aimon S, Kovacs R, Sigrist SJ, Storace DA, Geiger JRP, Raccuglia D. NOSA, an Analytical Toolbox for Multicellular Optical Electrophysiology. Front Neurosci 2020; 14:712. [PMID: 32765213 PMCID: PMC7381214 DOI: 10.3389/fnins.2020.00712] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2020] [Accepted: 06/12/2020] [Indexed: 11/23/2022] Open
Abstract
Understanding how neural networks generate activity patterns and communicate with each other requires monitoring the electrical activity from many neurons simultaneously. Perfectly suited tools for addressing this challenge are genetically encoded voltage indicators (GEVIs) because they can be targeted to specific cell types and optically report the electrical activity of individual, or populations of neurons. However, analyzing and interpreting the data from voltage imaging experiments is challenging because high recording speeds and properties of current GEVIs yield only low signal-to-noise ratios, making it necessary to apply specific analytical tools. Here, we present NOSA (Neuro-Optical Signal Analysis), a novel open source software designed for analyzing voltage imaging data and identifying temporal interactions between electrical activity patterns of different origin. In this work, we explain the challenges that arise during voltage imaging experiments and provide hands-on analytical solutions. We demonstrate how NOSA's baseline fitting, filtering algorithms and movement correction can compensate for shifts in baseline fluorescence and extract electrical patterns from low signal-to-noise recordings. NOSA allows to efficiently identify oscillatory frequencies in electrical patterns, quantify neuronal response parameters and moreover provides an option for analyzing simultaneously recorded optical and electrical data derived from patch-clamp or other electrode-based recordings. To identify temporal relations between electrical activity patterns we implemented different options to perform cross correlation analysis, demonstrating their utility during voltage imaging in Drosophila and mice. All features combined, NOSA will facilitate the first steps into using GEVIs and help to realize their full potential for revealing cell-type specific connectivity and functional interactions.
Collapse
Affiliation(s)
- Sebastian Oltmanns
- Institute of Neurophysiology, Charité – Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Frauke Sophie Abben
- Institute of Neurophysiology, Charité – Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Anatoli Ender
- German Center for Neurodegenerative Diseases, Charité – Universitätsmedizin Berlin, Berlin, Germany
| | - Sophie Aimon
- School of Life Sciences, Technical University of Munich, Freising, Germany
| | - Richard Kovacs
- Institute of Neurophysiology, Charité – Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Stephan J. Sigrist
- German Center for Neurodegenerative Diseases, Charité – Universitätsmedizin Berlin, Berlin, Germany
- Institute of Biology/Genetics, Freie Universität Berlin, Berlin, Germany
- NeuroCure, Charité – Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Douglas A. Storace
- Department of Biological Science, Florida State University, Tallahassee, FL, United States
| | - Jörg R. P. Geiger
- Institute of Neurophysiology, Charité – Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Davide Raccuglia
- Institute of Neurophysiology, Charité – Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| |
Collapse
|
49
|
Abstract
How animals maintain and switch between distinct motivational states is an important question in neuroscience. New work in Drosophila identifies an excitatory neuronal circuit that builds up mating drive while priming itself for satiety.
Collapse
Affiliation(s)
- Osama M Ahmed
- Princeton Neuroscience Institute, Princeton University, Princeton, NJ 08544, USA
| | - Mala Murthy
- Princeton Neuroscience Institute, Princeton University, Princeton, NJ 08544, USA.
| |
Collapse
|
50
|
Zhao Z, McBride CS. Evolution of olfactory circuits in insects. J Comp Physiol A Neuroethol Sens Neural Behav Physiol 2020; 206:353-367. [PMID: 31984441 PMCID: PMC7192870 DOI: 10.1007/s00359-020-01399-6] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2019] [Revised: 12/12/2019] [Accepted: 01/06/2020] [Indexed: 02/07/2023]
Abstract
Recent years have seen an explosion of interest in the evolution of neural circuits. Comparison of animals from different families, orders, and phyla reveals fascinating variation in brain morphology, circuit structure, and neural cell types. However, it can be difficult to connect the complex changes that occur across long evolutionary distances to behavior. Luckily, these changes accumulate through processes that should also be observable in recent time, making more tractable comparisons of closely related species relevant and complementary. Here, we review several decades of research on the evolution of insect olfactory circuits across short evolutionary time scales. We describe two well-studied systems, Drosophila sechellia flies and Heliothis moths, in detailed case studies. We then move through key types of circuit evolution, cataloging examples from other insects and looking for general patterns. The literature is dominated by changes in sensory neuron number and tuning at the periphery-often enhancing neural response to odorants with new ecological or social relevance. However, changes in the way olfactory information is processed by central circuits is clearly important in a few cases, and we suspect the development of genetic tools in non-model species will reveal a broad role for central circuit evolution. Moving forward, such tools should also be used to rigorously test causal links between brain evolution and behavior.
Collapse
Affiliation(s)
- Zhilei Zhao
- Department of Ecology and Evolutionary Biology, Princeton University, Princeton, NJ, 08544, USA.
- Princeton Neuroscience Institute, Princeton University, Princeton, NJ, 08544, USA.
| | - Carolyn S McBride
- Department of Ecology and Evolutionary Biology, Princeton University, Princeton, NJ, 08544, USA.
- Princeton Neuroscience Institute, Princeton University, Princeton, NJ, 08544, USA.
| |
Collapse
|