1
|
Tyagi S, Higerd-Rusli GP, Akin EJ, Waxman SG, Dib-Hajj SD. Sculpting excitable membranes: voltage-gated ion channel delivery and distribution. Nat Rev Neurosci 2025; 26:313-332. [PMID: 40175736 DOI: 10.1038/s41583-025-00917-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/07/2025] [Indexed: 04/04/2025]
Abstract
The polarized and domain-specific distribution of membrane ion channels is essential for neuronal homeostasis, but delivery of these proteins to distal neuronal compartments (such as the axonal ends of peripheral sensory neurons) presents a logistical challenge. Recent developments have enabled the real-time imaging of single protein trafficking and the investigation of the life cycle of ion channels across neuronal compartments. These studies have revealed a highly regulated process involving post-translational modifications, vesicular sorting, motor protein-driven transport and targeted membrane insertion. Emerging evidence suggests that neuronal activity and disease states can dynamically modulate ion channel localization, directly influencing excitability. This Review synthesizes current knowledge on the spatiotemporal regulation of ion channel trafficking in both central and peripheral nervous system neurons. Understanding these processes not only advances our fundamental knowledge of neuronal excitability, but also reveals potential therapeutic targets for disorders involving aberrant ion channel distribution, such as chronic pain and neurodegenerative diseases.
Collapse
Affiliation(s)
- Sidharth Tyagi
- Department of Neurology, Yale School of Medicine, New Haven, CT, USA.
- Center for Neuroscience and Regeneration Research, Yale School of Medicine, West Haven, CT, USA.
- Center for Restoration of Nervous System Function, VA Connecticut Healthcare System, West Haven, CT, USA.
- Medical Scientist Training Program, Yale School of Medicine, New Haven, CT, USA.
| | - Grant P Higerd-Rusli
- Department of Neurology, Yale School of Medicine, New Haven, CT, USA
- Center for Neuroscience and Regeneration Research, Yale School of Medicine, West Haven, CT, USA
- Center for Restoration of Nervous System Function, VA Connecticut Healthcare System, West Haven, CT, USA
- Medical Scientist Training Program, Yale School of Medicine, New Haven, CT, USA
- Department of Pathology, Stanford University, Stanford, CA, USA
| | - Elizabeth J Akin
- Department of Neurology, Yale School of Medicine, New Haven, CT, USA
- Center for Restoration of Nervous System Function, VA Connecticut Healthcare System, West Haven, CT, USA
- Department of Pharmacology, University of Nevada, Reno School of Medicine, Reno, NV, USA
| | - Stephen G Waxman
- Department of Neurology, Yale School of Medicine, New Haven, CT, USA
- Center for Neuroscience and Regeneration Research, Yale School of Medicine, West Haven, CT, USA
- Center for Restoration of Nervous System Function, VA Connecticut Healthcare System, West Haven, CT, USA
| | - Sulayman D Dib-Hajj
- Department of Neurology, Yale School of Medicine, New Haven, CT, USA.
- Center for Neuroscience and Regeneration Research, Yale School of Medicine, West Haven, CT, USA.
- Center for Restoration of Nervous System Function, VA Connecticut Healthcare System, West Haven, CT, USA.
| |
Collapse
|
2
|
Ali S, Suris A, Huang Y, Zhou Y. Modulating ion channels with nanobodies. Synth Syst Biotechnol 2025; 10:593-599. [PMID: 40103710 PMCID: PMC11916719 DOI: 10.1016/j.synbio.2025.02.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2024] [Revised: 02/11/2025] [Accepted: 02/11/2025] [Indexed: 03/20/2025] Open
Abstract
Ion channels play instrumental roles in regulating membrane potential and cross-membrane signal transduction, thus making them attractive targets for understanding various physiological processes and associated diseases. Gaining a deeper understanding of their structural and functional properties has significant implications for developing therapeutic interventions. In recent years, nanobodies, single-domain antibody fragments derived from camelids, have emerged as powerful tools in ion channel and synthetic biology research. Their small size, high specificity, and ability to recognize difficult-to-reach epitopes offer advantages over conventional antibodies and biologics. Furthermore, their resemblance to the variable region of human IgG family III reduces immunogenicity concerns. Nanobodies have introduced new opportunities for exploring ion channel structure-function relationships and offer a promising alternative to conventional drugs, which often face challenges such as off-target effects and toxicity. This review highlights recent progress in applying nanobodies to interrogate and modulate ion channel activity, with an emphasis on their potential to overcome current technical and therapeutic limitations.
Collapse
Affiliation(s)
- Sher Ali
- Center for Translational Cancer Research, Institute of Biosciences and Technology, Texas A&M University, Houston, TX 77030, USA
| | - Ashley Suris
- Center for Epigenetics and Disease Prevention, Institute of Biosciences and Technology, Texas A&M University, Houston, TX 77030, USA
| | - Yun Huang
- Center for Epigenetics and Disease Prevention, Institute of Biosciences and Technology, Texas A&M University, Houston, TX 77030, USA
- Department of Translational Medical Sciences, College of Medicine, Texas A&M University, Houston, TX 77030, USA
| | - Yubin Zhou
- Center for Translational Cancer Research, Institute of Biosciences and Technology, Texas A&M University, Houston, TX 77030, USA
- Department of Translational Medical Sciences, College of Medicine, Texas A&M University, Houston, TX 77030, USA
| |
Collapse
|
3
|
Jayaraman S, Kochiss A, Alcalay TL, Del Rivero Morfin PJ, Ben-Johny M. Engineered depalmitoylases enable selective manipulation of protein localization and function. Nat Commun 2025; 16:3514. [PMID: 40223127 PMCID: PMC11994768 DOI: 10.1038/s41467-025-58908-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Accepted: 04/03/2025] [Indexed: 04/15/2025] Open
Abstract
S-Palmitoylation is a reversible post-translational modification that tunes the localization, stability, and function of an impressive array of proteins including ion channels, G-proteins, and synaptic proteins. Indeed, altered protein palmitoylation is linked to various human diseases including cancers, neurodevelopmental and neurodegenerative diseases. As such, strategies to selectively manipulate protein palmitoylation with enhanced temporal and subcellular precision are sought after to both delineate physiological functions and as potential therapeutics. Here, we develop chemogenetically and optogenetically inducible engineered depalmitoylases to manipulate the palmitoylation status of target proteins. We demonstrate that this strategy is programmable allowing selective depalmitoylation in specific organelles, triggered by cell-signaling events, and of individual protein complexes. Application of this methodology revealed bidirectional tuning of neuronal excitability by distinct depalmitoylases. Overall, this strategy represents a versatile and powerful method for manipulating protein palmitoylation in live cells, providing insights into their regulation in distinct physiological contexts.
Collapse
Affiliation(s)
- Srinidhi Jayaraman
- Department of Physiology and Cellular Biophysics, Columbia University, New York, NY, USA
| | - Audrey Kochiss
- Department of Physiology and Cellular Biophysics, Columbia University, New York, NY, USA
| | | | | | - Manu Ben-Johny
- Department of Physiology and Cellular Biophysics, Columbia University, New York, NY, USA.
| |
Collapse
|
4
|
Kuo CW, Gök C, Fulton H, Dickson-Murray E, Adu S, Gallen EK, Mary S, Robertson AD, Jordan F, Dunning E, Mullen W, Smith GL, Fuller W. Nanobody-thioesterase chimeras to specifically target protein palmitoylation. Nat Commun 2025; 16:1445. [PMID: 39920166 PMCID: PMC11805987 DOI: 10.1038/s41467-025-56716-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2024] [Accepted: 01/27/2025] [Indexed: 02/09/2025] Open
Abstract
The complexity of the cellular proteome is massively expanded by a repertoire of chemically distinct reversible post-translational modifications (PTMs) that control protein localisation, interactions, and function. The temporal and spatial control of these PTMs is central to organism physiology, and mis-regulation of PTMs is a hallmark of many diseases. Here we present an approach to manipulate PTMs on target proteins using nanobodies fused to enzymes that control these PTMs. Anti-GFP nanobodies fused to thioesterases (which depalmitoylate protein cysteines) depalmitoylate GFP tagged substrates. A chemogenetic approach to enhance nanobody affinity for its target enables temporal control of target depalmitoylation. Using a thioesterase fused to a nanobody directed against the Ca(v)1.2 beta subunit we reduce palmitoylation of the Ca(v)1.2 alpha subunit, modifying the channel's voltage dependence and arrhythmia susceptibility in stem cell derived cardiac myocytes. We conclude that nanobody enzyme chimeras represent an approach to specifically manipulate PTMs, with applications in both the laboratory and the clinic.
Collapse
Affiliation(s)
- Chien-Wen Kuo
- School of Cardiovascular & Metabolic Health, College of Medical Veterinary and Life Sciences, University of Glasgow, Glasgow, UK
| | - Caglar Gök
- School of Cardiovascular & Metabolic Health, College of Medical Veterinary and Life Sciences, University of Glasgow, Glasgow, UK
- School of Natural Sciences, College of Health and Science, University of Lincoln, Lincoln, UK
| | - Hannah Fulton
- School of Cardiovascular & Metabolic Health, College of Medical Veterinary and Life Sciences, University of Glasgow, Glasgow, UK
| | - Eleanor Dickson-Murray
- School of Cardiovascular & Metabolic Health, College of Medical Veterinary and Life Sciences, University of Glasgow, Glasgow, UK
| | - Samuel Adu
- School of Cardiovascular & Metabolic Health, College of Medical Veterinary and Life Sciences, University of Glasgow, Glasgow, UK
| | - Emily K Gallen
- School of Cardiovascular & Metabolic Health, College of Medical Veterinary and Life Sciences, University of Glasgow, Glasgow, UK
- Harvard Medical School, Boston, MA, USA
| | - Sheon Mary
- School of Cardiovascular & Metabolic Health, College of Medical Veterinary and Life Sciences, University of Glasgow, Glasgow, UK
| | - Alan D Robertson
- School of Cardiovascular & Metabolic Health, College of Medical Veterinary and Life Sciences, University of Glasgow, Glasgow, UK
| | - Fiona Jordan
- School of Cardiovascular & Metabolic Health, College of Medical Veterinary and Life Sciences, University of Glasgow, Glasgow, UK
| | - Emma Dunning
- School of Cardiovascular & Metabolic Health, College of Medical Veterinary and Life Sciences, University of Glasgow, Glasgow, UK
| | - William Mullen
- School of Cardiovascular & Metabolic Health, College of Medical Veterinary and Life Sciences, University of Glasgow, Glasgow, UK
| | - Godfrey L Smith
- School of Cardiovascular & Metabolic Health, College of Medical Veterinary and Life Sciences, University of Glasgow, Glasgow, UK
| | - William Fuller
- School of Cardiovascular & Metabolic Health, College of Medical Veterinary and Life Sciences, University of Glasgow, Glasgow, UK.
| |
Collapse
|
5
|
Tyagi S, Ghovanloo MR, Alsaloum M, Effraim P, Higerd-Rusli GP, Dib-Hajj F, Zhao P, Liu S, Waxman SG, Dib-Hajj SD. Targeted ubiquitination of Na V 1.8 reduces sensory neuronal excitability. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.02.04.636451. [PMID: 39975312 PMCID: PMC11838569 DOI: 10.1101/2025.02.04.636451] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/21/2025]
Abstract
Chronic pain and addiction are a significant global health challenge. Voltage-gated sodium channel Na V 1.8, a pivotal driver of pain signaling, is a clinically validated target for the development of novel, non-addictive pain therapeutics. Small molecule inhibitors against Na V 1.8 have shown promise in acute pain indications, but large clinical effect sizes have not yet been demonstrated and efficacy in chronic pain indications are lacking. An alternative strategy to target Na V 1.8 channels for analgesia is to reduce the number of channels that are present on nociceptor membranes. We generated a therapeutic heterobifunctional protein, named UbiquiNa V , that contains a Na V 1.8-selective binding module and the catalytic subunit of the NEDD4 E3 Ubiquitin ligase. We show that UbiquiNav significantly reduces channel expression in the plasma membrane and reduces Na V 1.8 currents in rodent sensory neurons. We demonstrate that UbiquiNa V is selective for Na V 1.8 over other Na V isoforms and other components of the sensory neuronal electrogenisome. We then show that UbiquiNa V normalizes the distribution of Na V 1.8 protein to distal axons, and that UbiquiNa V normalizes the neuronal hyperexcitability in in vitro models of inflammatory and chemotherapy-induced neuropathic pain. Our results serve as a blueprint for the design of therapeutics that leverage the selective ubiquitination of Na V 1.8 channels for analgesia.
Collapse
|
6
|
del Rivero Morfin PJ, Chavez DS, Jayaraman S, Yang L, Geisler SM, Kochiss AL, Tuluc P, Colecraft HM, Marx SO, Liu XS, Rajadhyaksha AM, Ben-Johny M. A genetically encoded actuator boosts L-type calcium channel function in diverse physiological settings. SCIENCE ADVANCES 2024; 10:eadq3374. [PMID: 39475605 PMCID: PMC11524184 DOI: 10.1126/sciadv.adq3374] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Accepted: 09/24/2024] [Indexed: 11/02/2024]
Abstract
L-type Ca2+ channels (CaV1.2/1.3) convey influx of calcium ions that orchestrate a bevy of biological responses including muscle contraction, neuronal function, and gene transcription. Deficits in CaV1 function play a vital role in cardiac and neurodevelopmental disorders. Here, we develop a genetically encoded enhancer of CaV1.2/1.3 channels (GeeCL) to manipulate Ca2+ entry in distinct physiological settings. We functionalized a nanobody that targets the CaV complex by attaching a minimal effector domain from an endogenous CaV modulator-leucine-rich repeat containing protein 10 (Lrrc10). In cardiomyocytes, GeeCL selectively increased L-type current amplitude. In neurons in vitro and in vivo, GeeCL augmented excitation-transcription (E-T) coupling. In all, GeeCL represents a powerful strategy to boost CaV1.2/1.3 function and lays the groundwork to illuminate insights on neuronal and cardiac physiology and disease.
Collapse
Affiliation(s)
| | - Diego Scala Chavez
- Pediatric Neurology, Department of Pediatrics, Weill Cornell Medicine, New York, NY, USA
| | - Srinidhi Jayaraman
- Department of Physiology and Cellular Biophysics, Columbia University, New York, NY, USA
| | - Lin Yang
- Division of Cardiology, Department of Medicine, Columbia University, Vagelos College of Physicians and Surgeons, New York, NY, USA
| | - Stefanie M. Geisler
- Department of Pharmacology and Toxicology, University of Innsbruck, Innsbruck, Tyrol, Austria
| | - Audrey L. Kochiss
- Department of Physiology and Cellular Biophysics, Columbia University, New York, NY, USA
| | - Petronel Tuluc
- Department of Pharmacology and Toxicology, University of Innsbruck, Innsbruck, Tyrol, Austria
| | - Henry M. Colecraft
- Department of Physiology and Cellular Biophysics, Columbia University, New York, NY, USA
- Department of Molecular Pharmacology and Therapeutics, Columbia University, New York, NY, USA
| | - Steven O. Marx
- Division of Cardiology, Department of Medicine, Columbia University, Vagelos College of Physicians and Surgeons, New York, NY, USA
- Department of Molecular Pharmacology and Therapeutics, Columbia University, New York, NY, USA
| | - X. Shawn Liu
- Department of Physiology and Cellular Biophysics, Columbia University, New York, NY, USA
- Herbert Irving Comprehensive Cancer Center, Columbia University Medical Center, New York, NY, USA
| | - Anjali M. Rajadhyaksha
- Pediatric Neurology, Department of Pediatrics, Weill Cornell Medicine, New York, NY, USA
- Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY, USA
- Weill Cornell Autism Research Program, Weill Cornell Medicine, New York, NY, USA
| | - Manu Ben-Johny
- Department of Physiology and Cellular Biophysics, Columbia University, New York, NY, USA
| |
Collapse
|
7
|
Wang J, Wang Z, Zhang K, Cui Y, Zhou J, Liu J, Li H, Zhao M, Jiang J. The role of the ubiquitin system in the onset and reversal of neuropathic pain. Biomed Pharmacother 2024; 179:117127. [PMID: 39191026 DOI: 10.1016/j.biopha.2024.117127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Revised: 07/07/2024] [Accepted: 07/10/2024] [Indexed: 08/29/2024] Open
Abstract
Neuropathic pain (NP) remains one of the world's most difficult problems, and people suffering from NP have their quality of life affected to a great extent and constantly suffer from pain. Sensitization of injurious receptors, ectopic firing of afferent nerves after nerve injury, and coupling between sympathetic and sensory neurons are involved in the onset or development of NP, but the pathogenesis of NP is still not well understood. We found that the ubiquitin system is involved in the pathogenesis of NP and has a crucial role in it. The ubiquitin system can be involved in the onset or reversal of NP by affecting ion channels, cellular signal transduction, glial cells, and the regulation of non-coding RNAs. This provides new ideas for the treatment of NP. The ubiquitin system may be a new effective target for the treatment of NP. A continued, in-depth understanding of the mechanisms of the ubiquitin system involved in NP could further refine the study of analgesic targets and improve pharmacological studies.
Collapse
Affiliation(s)
- Jialin Wang
- Department of Anesthesiology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Zhijing Wang
- Department of Anesthesiology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Kexin Zhang
- Department of Anesthesiology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Yanping Cui
- Department of Anesthesiology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Jingruo Zhou
- Department of Anesthesiology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Jiazhou Liu
- Department of Anesthesiology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Huanyi Li
- Department of Anesthesiology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Mingxia Zhao
- Department of Anesthesiology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Jingjing Jiang
- Department of Anesthesiology, Shengjing Hospital of China Medical University, Shenyang, China.
| |
Collapse
|
8
|
Morgenstern TJ, Darko-Boateng A, Afriyie E, Shanmugam SK, Zhou X, Choudhury P, Desai M, Kass RS, Clarke OB, Colecraft HM. Ion channel inhibition by targeted recruitment of NEDD4-2 with divalent nanobodies. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.28.596281. [PMID: 38854018 PMCID: PMC11160594 DOI: 10.1101/2024.05.28.596281] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2024]
Abstract
Targeted recruitment of E3 ubiquitin ligases to degrade traditionally undruggable proteins is a disruptive paradigm for developing new therapeutics. Two salient limitations are that <2% of the ~600 E3 ligases in the human genome have been exploited to produce proteolysis targeting chimeras (PROTACs), and the efficacy of the approach has not been demonstrated for a vital class of complex multi-subunit membrane proteins- ion channels. NEDD4-1 and NEDD4-2 are physiological regulators of myriad ion channels, and belong to the 28-member HECT (homologous to E6AP C-terminus) family of E3 ligases with widespread roles in cell/developmental biology and diverse diseases including various cancers, immunological and neurological disorders, and chronic pain. The potential efficacy of HECT E3 ligases for targeted protein degradation is unexplored, constrained by a lack of appropriate binders, and uncertain due to their complex regulation by layered intra-molecular and posttranslational mechanisms. Here, we identified a nanobody that binds with high affinity and specificity to a unique site on the N-lobe of the NEDD4-2 HECT domain at a location physically separate from sites critical for catalysis- the E2 binding site, the catalytic cysteine, and the ubiquitin exosite- as revealed by a 3.1 Å cryo-electron microscopy reconstruction. Recruiting endogenous NEDD4-2 to diverse ion channel proteins (KCNQ1, ENaC, and CaV2.2) using a divalent (DiVa) nanobody format strongly reduced their functional expression with minimal off-target effects as assessed by global proteomics, compared to simple NEDD4-2 overexpression. The results establish utility of a HECT E3 ligase for targeted protein downregulation, validate a class of complex multi-subunit membrane proteins as susceptible to this modality, and introduce endogenous E3 ligase recruitment with DiVa nanobodies as a general method to generate novel genetically-encoded ion channel inhibitors.
Collapse
Affiliation(s)
- Travis J. Morgenstern
- Department of Molecular Pharmacology and Therapeutics, Columbia University Irving Medical Center, New York, NY
| | - Arden Darko-Boateng
- Department of Physiology and Cellular Biophysics, Columbia University Irving Medical Center, New York, NY
| | - Emmanuel Afriyie
- Department of Physiology and Cellular Biophysics, Columbia University Irving Medical Center, New York, NY
| | - Sri Karthika Shanmugam
- Department of Physiology and Cellular Biophysics, Columbia University Irving Medical Center, New York, NY
| | - Xinle Zhou
- Department of Molecular Pharmacology and Therapeutics, Columbia University Irving Medical Center, New York, NY
| | - Papiya Choudhury
- Department of Physiology and Cellular Biophysics, Columbia University Irving Medical Center, New York, NY
| | | | - Robert S. Kass
- Department of Molecular Pharmacology and Therapeutics, Columbia University Irving Medical Center, New York, NY
| | - Oliver B. Clarke
- Department of Physiology and Cellular Biophysics, Columbia University Irving Medical Center, New York, NY
- Department of Anesthesiology, Columbia University Irving Medical Center, New York, NY
| | - Henry M. Colecraft
- Department of Molecular Pharmacology and Therapeutics, Columbia University Irving Medical Center, New York, NY
- Department of Physiology and Cellular Biophysics, Columbia University Irving Medical Center, New York, NY
| |
Collapse
|
9
|
Bai M, Gallen E, Memarzadeh S, Howie J, Gao X, Kuo CWS, Brown E, Swingler S, Wilson SJ, Shattock MJ, France DJ, Fuller W. Targeted degradation of zDHHC-PATs decreases substrate S-palmitoylation. PLoS One 2024; 19:e0299665. [PMID: 38512906 PMCID: PMC10956751 DOI: 10.1371/journal.pone.0299665] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Accepted: 02/14/2024] [Indexed: 03/23/2024] Open
Abstract
Reversible S-palmitoylation of protein cysteines, catalysed by a family of integral membrane zDHHC-motif containing palmitoyl acyl transferases (zDHHC-PATs), controls the localisation, activity, and interactions of numerous integral and peripheral membrane proteins. There are compelling reasons to want to inhibit the activity of individual zDHHC-PATs in both the laboratory and the clinic, but the specificity of existing tools is poor. Given the extensive conservation of the zDHHC-PAT active site, development of isoform-specific competitive inhibitors is highly challenging. We therefore hypothesised that proteolysis-targeting chimaeras (PROTACs) may offer greater specificity to target this class of enzymes. In proof-of-principle experiments we engineered cell lines expressing tetracycline-inducible Halo-tagged zDHHC5 or zDHHC20, and evaluated the impact of Halo-PROTACs on zDHHC-PAT expression and substrate palmitoylation. In HEK-derived FT-293 cells, Halo-zDHHC5 degradation significantly decreased palmitoylation of its substrate phospholemman, and Halo-zDHHC20 degradation significantly diminished palmitoylation of its substrate IFITM3, but not of the SARS-CoV-2 spike protein. In contrast, in a second kidney derived cell line, Vero E6, Halo-zDHHC20 degradation did not alter palmitoylation of either IFITM3 or SARS-CoV-2 spike. We conclude from these experiments that PROTAC-mediated targeting of zDHHC-PATs to decrease substrate palmitoylation is feasible. However, given the well-established degeneracy in the zDHHC-PAT family, in some settings the activity of non-targeted zDHHC-PATs may substitute and preserve substrate palmitoylation.
Collapse
Affiliation(s)
- Mingjie Bai
- School of Cardiovascular & Metabolic Health, College of Medical Veterinary and Life Sciences, University of Glasgow, Glasgow, United Kingdom
| | - Emily Gallen
- School of Cardiovascular & Metabolic Health, College of Medical Veterinary and Life Sciences, University of Glasgow, Glasgow, United Kingdom
| | - Sarah Memarzadeh
- School of Chemistry, University of Glasgow, Glasgow, United Kingdom
| | - Jacqueline Howie
- School of Cardiovascular & Metabolic Health, College of Medical Veterinary and Life Sciences, University of Glasgow, Glasgow, United Kingdom
| | - Xing Gao
- School of Cardiovascular & Metabolic Health, College of Medical Veterinary and Life Sciences, University of Glasgow, Glasgow, United Kingdom
| | - Chien-Wen S. Kuo
- School of Cardiovascular & Metabolic Health, College of Medical Veterinary and Life Sciences, University of Glasgow, Glasgow, United Kingdom
| | - Elaine Brown
- School of Cardiovascular & Metabolic Health, College of Medical Veterinary and Life Sciences, University of Glasgow, Glasgow, United Kingdom
| | - Simon Swingler
- Medical Research Council–University of Glasgow Centre for Virus Research, College of Medical Veterinary and Life Sciences, University of Glasgow, Glasgow, United Kingdom
| | - Sam J. Wilson
- Medical Research Council–University of Glasgow Centre for Virus Research, College of Medical Veterinary and Life Sciences, University of Glasgow, Glasgow, United Kingdom
| | - Michael J. Shattock
- School of Cardiovascular and Metabolic Medicine & Sciences, King’s College London, London, United Kingdom
| | - David J. France
- School of Chemistry, University of Glasgow, Glasgow, United Kingdom
| | - William Fuller
- School of Cardiovascular & Metabolic Health, College of Medical Veterinary and Life Sciences, University of Glasgow, Glasgow, United Kingdom
| |
Collapse
|
10
|
Wright KM, Nathan S, Jiang H, Xia W, Kim H, Chakouri N, Nwafor JN, Fossier L, Srinivasan L, Chen Z, Boronina T, Post J, Paul S, Cole RN, Ben-Johny M, Cole PA, Gabelli SB. NEDD4L intramolecular interactions regulate its auto and substrate Na V1.5 ubiquitination. J Biol Chem 2024; 300:105715. [PMID: 38309503 PMCID: PMC10933555 DOI: 10.1016/j.jbc.2024.105715] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Revised: 01/13/2024] [Accepted: 01/17/2024] [Indexed: 02/05/2024] Open
Abstract
NEDD4L is a HECT-type E3 ligase that catalyzes the addition of ubiquitin to intracellular substrates such as the cardiac voltage-gated sodium channel, NaV1.5. The intramolecular interactions of NEDD4L regulate its enzymatic activity which is essential for proteostasis. For NaV1.5, this process is critical as alterations in Na+ current is involved in cardiac diseases including arrhythmias and heart failure. In this study, we perform extensive biochemical and functional analyses that implicate the C2 domain and the first WW-linker (1,2-linker) in the autoregulatory mechanism of NEDD4L. Through in vitro and electrophysiological experiments, the NEDD4L 1,2-linker was determined to be important in substrate ubiquitination of NaV1.5. We establish the preferred sites of ubiquitination of NEDD4L to be in the second WW-linker (2,3-linker). Interestingly, NEDD4L ubiquitinates the cytoplasmic linker between the first and second transmembrane domains of the channel (DI-DII) of NaV1.5. Moreover, we design a genetically encoded modulator of Nav1.5 that achieves Na+ current reduction using the NEDD4L HECT domain as cargo of a NaV1.5-binding nanobody. These investigations elucidate the mechanisms regulating the NEDD4 family and furnish a new molecular framework for understanding NaV1.5 ubiquitination.
Collapse
Affiliation(s)
- Katharine M Wright
- Department of Biophysics and Biophysical Chemistry, The Johns Hopkins School of Medicine, Baltimore, Maryland, USA
| | - Sara Nathan
- Department of Biophysics and Biophysical Chemistry, The Johns Hopkins School of Medicine, Baltimore, Maryland, USA
| | - Hanjie Jiang
- Division of Genetics, Department of Medicine, Brigham and Women's Hospital, Boston, Massachusetts, USA; Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, Massachusetts, USA; Department of Pharmacology and Molecular Sciences, Johns Hopkins School of Medicine, Baltimore, Maryland, USA
| | - Wendy Xia
- Department of Biophysics and Biophysical Chemistry, The Johns Hopkins School of Medicine, Baltimore, Maryland, USA
| | - HyoJeon Kim
- Division of Genetics, Department of Medicine, Brigham and Women's Hospital, Boston, Massachusetts, USA; Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, Massachusetts, USA
| | - Nourdine Chakouri
- Department of Physiology and Cellular Biophysics, Columbia University, New York, New York, USA
| | - Justin N Nwafor
- Department of Biophysics and Biophysical Chemistry, The Johns Hopkins School of Medicine, Baltimore, Maryland, USA
| | - Lucile Fossier
- Department of Physiology and Cellular Biophysics, Columbia University, New York, New York, USA
| | - Lakshmi Srinivasan
- Department of Biophysics and Biophysical Chemistry, The Johns Hopkins School of Medicine, Baltimore, Maryland, USA
| | - Zan Chen
- Department of Biophysics and Biophysical Chemistry, The Johns Hopkins School of Medicine, Baltimore, Maryland, USA
| | - Tatiana Boronina
- Mass Spectrometry and Proteomics Facility, Department of Biological Chemistry, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Jeremy Post
- Mass Spectrometry and Proteomics Facility, Department of Biological Chemistry, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Suman Paul
- Department of Oncology, The Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Robert N Cole
- Mass Spectrometry and Proteomics Facility, Department of Biological Chemistry, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Manu Ben-Johny
- Department of Physiology and Cellular Biophysics, Columbia University, New York, New York, USA
| | - Philip A Cole
- Division of Genetics, Department of Medicine, Brigham and Women's Hospital, Boston, Massachusetts, USA; Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, Massachusetts, USA
| | - Sandra B Gabelli
- Department of Biophysics and Biophysical Chemistry, The Johns Hopkins School of Medicine, Baltimore, Maryland, USA; Department of Oncology, The Johns Hopkins University School of Medicine, Baltimore, Maryland, USA; Department of Medicine, The Johns Hopkins University School of Medicine, Baltimore, Maryland, USA.
| |
Collapse
|
11
|
Del Rivero Morfin PJ, Chavez DS, Jayaraman S, Yang L, Kochiss AL, Colecraft HM, Liu XS, Marx SO, Rajadhyaksha AM, Ben-Johny M. A Genetically Encoded Actuator Selectively Boosts L-type Calcium Channels in Diverse Physiological Settings. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.09.22.558856. [PMID: 37790372 PMCID: PMC10542531 DOI: 10.1101/2023.09.22.558856] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/05/2023]
Abstract
L-type Ca 2+ channels (Ca V 1.2/1.3) convey influx of calcium ions (Ca 2+ ) that orchestrate a bevy of biological responses including muscle contraction and gene transcription. Deficits in Ca V 1 function play a vital role in cardiac and neurodevelopmental disorders. Yet conventional pharmacological approaches to upregulate Ca V 1 are limited, as excessive Ca 2+ influx leads to cytotoxicity. Here, we develop a genetically encoded enhancer of Ca V 1.2/1.3 channels (GeeC) to manipulate Ca 2+ entry in distinct physiological settings. Specifically, we functionalized a nanobody that targets the Ca V macromolecular complex by attaching a minimal effector domain from a Ca V enhancer-leucine rich repeat containing protein 10 (Lrrc10). In cardiomyocytes, GeeC evoked a 3-fold increase in L-type current amplitude. In neurons, GeeC augmented excitation-transcription (E-T) coupling. In all, GeeC represents a powerful strategy to boost Ca V 1.2/1.3 function in distinct physiological settings and, in so doing, lays the groundwork to illuminate new insights on neuronal and cardiac physiology and disease.
Collapse
|
12
|
Zeghal M, Matte K, Venes A, Patel S, Laroche G, Sarvan S, Joshi M, Rain JC, Couture JF, Giguère PM. Development of a V5-tag-directed nanobody and its implementation as an intracellular biosensor of GPCR signaling. J Biol Chem 2023; 299:105107. [PMID: 37517699 PMCID: PMC10470007 DOI: 10.1016/j.jbc.2023.105107] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Revised: 07/19/2023] [Accepted: 07/20/2023] [Indexed: 08/01/2023] Open
Abstract
Protein-protein interactions (PPIs) form the foundation of any cell signaling network. Considering that PPIs are highly dynamic processes, cellular assays are often essential for their study because they closely mimic the biological complexities of cellular environments. However, incongruity may be observed across different PPI assays when investigating a protein partner of interest; these discrepancies can be partially attributed to the fusion of different large functional moieties, such as fluorescent proteins or enzymes, which can yield disparate perturbations to the protein's stability, subcellular localization, and interaction partners depending on the given cellular assay. Owing to their smaller size, epitope tags may exhibit a diminished susceptibility to instigate such perturbations. However, while they have been widely used for detecting or manipulating proteins in vitro, epitope tags lack the in vivo traceability and functionality needed for intracellular biosensors. Herein, we develop NbV5, an intracellular nanobody binding the V5-tag, which is suitable for use in cellular assays commonly used to study PPIs such as BRET, NanoBiT, and Tango. The NbV5:V5 tag system has been applied to interrogate G protein-coupled receptor signaling, specifically by replacing larger functional moieties attached to the protein interactors, such as fluorescent or luminescent proteins (∼30 kDa), by the significantly smaller V5-tag peptide (1.4 kDa), and for microscopy imaging which is successfully detected by NbV5-based biosensors. Therefore, the NbV5:V5 tag system presents itself as a versatile tool for live-cell imaging and a befitting adaptation to existing cellular assays dedicated to probing PPIs.
Collapse
Affiliation(s)
- Manel Zeghal
- Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, Ontario, Canada
| | - Kevin Matte
- Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, Ontario, Canada
| | - Angelica Venes
- Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, Ontario, Canada
| | - Shivani Patel
- Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, Ontario, Canada
| | - Geneviève Laroche
- Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, Ontario, Canada
| | - Sabina Sarvan
- Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, Ontario, Canada; Ottawa Institute of Systems Biology, University of Ottawa, Ottawa, Ontario, Canada
| | - Monika Joshi
- Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, Ontario, Canada; Ottawa Institute of Systems Biology, University of Ottawa, Ottawa, Ontario, Canada
| | | | - Jean-François Couture
- Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, Ontario, Canada; Ottawa Institute of Systems Biology, University of Ottawa, Ottawa, Ontario, Canada
| | - Patrick M Giguère
- Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, Ontario, Canada; Brain and Mind Research Institute, University of Ottawa, Ottawa, Ontario, Canada.
| |
Collapse
|
13
|
Ovsepian SV, Waxman SG. Gene therapy for chronic pain: emerging opportunities in target-rich peripheral nociceptors. Nat Rev Neurosci 2023; 24:252-265. [PMID: 36658346 DOI: 10.1038/s41583-022-00673-7] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/22/2022] [Indexed: 01/20/2023]
Abstract
With sweeping advances in precision delivery systems and manipulation of the genomes and transcriptomes of various cell types, medical biotechnology offers unprecedented selectivity for and control of a wide variety of biological processes, forging new opportunities for therapeutic interventions. This perspective summarizes state-of-the-art gene therapies enabled by recent innovations, with an emphasis on the expanding universe of molecular targets that govern the activity and function of primary sensory neurons and which might be exploited to effectively treat chronic pain.
Collapse
Affiliation(s)
- Saak V Ovsepian
- School of Science, Faculty of Engineering and Science, University of Greenwich London, Chatham Maritime, UK.
| | - Stephen G Waxman
- Department of Neurology, Yale University School of Medicine, New Haven, CT, USA.
- Department of Neuroscience, Yale University School of Medicine, New Haven, CT, USA.
- Department of Pharmacology, Yale University School of Medicine, New Haven, CT, USA.
| |
Collapse
|
14
|
Yong Joon Kim J, Sang Z, Xiang Y, Shen Z, Shi Y. Nanobodies: Robust miniprotein binders in biomedicine. Adv Drug Deliv Rev 2023; 195:114726. [PMID: 36754285 PMCID: PMC11725230 DOI: 10.1016/j.addr.2023.114726] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Revised: 12/30/2022] [Accepted: 02/02/2023] [Indexed: 02/10/2023]
Abstract
Variable domains of heavy chain-only antibodies (VHH), also known as nanobodies (Nbs), are monomeric antigen-binding domains derived from the camelid heavy chain-only antibodies. Nbs are characterized by small size, high target selectivity, and marked solubility and stability, which collectively facilitate high-quality drug development. In addition, Nbs are readily expressed from various expression systems, including E. coli and yeast cells. For these reasons, Nbs have emerged as preferred antibody fragments for protein engineering, disease diagnosis, and treatment. To date, two Nb-based therapies have been approved by the U.S. Food and Drug Administration (FDA). Numerous candidates spanning a wide spectrum of diseases such as cancer, immune disorders, infectious diseases, and neurodegenerative disorders are under preclinical and clinical investigation. Here, we discuss the structural features of Nbs that allow for specific, versatile, and strong target binding. We also summarize emerging technologies for identification, structural analysis, and humanization of Nbs. Our main focus is to review recent advances in using Nbs as a modular scaffold to facilitate the engineering of multivalent polymers for cutting-edge applications. Finally, we discuss remaining challenges for Nb development and envision new opportunities in Nb-based research.
Collapse
Affiliation(s)
- Jeffrey Yong Joon Kim
- Center of Protein Engineering and Therapeutics, Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, 1, Gustave L. Levy Pl, New York, NY 10029, USA; Medical Scientist Training Program, University of Pittsburgh School of Medicine and Carnegie Mellon University, Pittsburgh, PA, USA
| | - Zhe Sang
- Center of Protein Engineering and Therapeutics, Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, 1, Gustave L. Levy Pl, New York, NY 10029, USA
| | - Yufei Xiang
- Center of Protein Engineering and Therapeutics, Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, 1, Gustave L. Levy Pl, New York, NY 10029, USA
| | - Zhuolun Shen
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Yi Shi
- Center of Protein Engineering and Therapeutics, Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, 1, Gustave L. Levy Pl, New York, NY 10029, USA.
| |
Collapse
|
15
|
Loh KWZ, Liu C, Soong TW, Hu Z. β subunits of voltage-gated calcium channels in cardiovascular diseases. Front Cardiovasc Med 2023; 10:1119729. [PMID: 36818347 PMCID: PMC9931737 DOI: 10.3389/fcvm.2023.1119729] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Accepted: 01/16/2023] [Indexed: 02/05/2023] Open
Abstract
Calcium signaling is required in bodily functions essential for survival, such as muscle contractions and neuronal communications. Of note, the voltage-gated calcium channels (VGCCs) expressed on muscle and neuronal cells, as well as some endocrine cells, are transmembrane protein complexes that allow for the selective entry of calcium ions into the cells. The α1 subunit constitutes the main pore-forming subunit that opens in response to membrane depolarization, and its biophysical functions are regulated by various auxiliary subunits-β, α2δ, and γ subunits. Within the cardiovascular system, the γ-subunit is not expressed and is therefore not discussed in this review. Because the α1 subunit is the pore-forming subunit, it is a prominent druggable target and the focus of many studies investigating potential therapeutic interventions for cardiovascular diseases. While this may be true, it should be noted that the direct inhibition of the α1 subunit may result in limited long-term cardiovascular benefits coupled with undesirable side effects, and that its expression and biophysical properties may depend largely on its auxiliary subunits. Indeed, the α2δ subunit has been reported to be essential for the membrane trafficking and expression of the α1 subunit. Furthermore, the β subunit not only prevents proteasomal degradation of the α1 subunit, but also directly modulates the biophysical properties of the α1 subunit, such as its voltage-dependent activities and open probabilities. More importantly, various isoforms of the β subunit have been found to differentially modulate the α1 subunit, and post-translational modifications of the β subunits further add to this complexity. These data suggest the possibility of the β subunit as a therapeutic target in cardiovascular diseases. However, emerging studies have reported the presence of cardiomyocyte membrane α1 subunit trafficking and expression in a β subunit-independent manner, which would undermine the efficacy of β subunit-targeting drugs. Nevertheless, a better understanding of the auxiliary β subunit would provide a more holistic approach when targeting the calcium channel complexes in treating cardiovascular diseases. Therefore, this review focuses on the post-translational modifications of the β subunit, as well as its role as an auxiliary subunit in modulating the calcium channel complexes.
Collapse
Affiliation(s)
- Kelvin Wei Zhern Loh
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore,Cardiovascular Disease Translational Research Programme, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Cong Liu
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore,Cardiovascular Disease Translational Research Programme, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Tuck Wah Soong
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore,Cardiovascular Disease Translational Research Programme, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore,NUS Graduate School for Integrative Sciences and Engineering, Singapore, Singapore,Healthy Longevity Translational Research Programme, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore,*Correspondence: Tuck Wah Soong,
| | - Zhenyu Hu
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore,Cardiovascular Disease Translational Research Programme, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore,Zhenyu Hu,
| |
Collapse
|
16
|
Manning D, Santana LF. Regulating voltage-gated ion channels with nanobodies. Nat Commun 2022; 13:7557. [PMID: 36494383 PMCID: PMC9734093 DOI: 10.1038/s41467-022-35027-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Accepted: 11/15/2022] [Indexed: 12/13/2022] Open
Affiliation(s)
- Declan Manning
- Department of Physiology and Membrane Biology, University of California, Davis, One Shields Avenue, Davis, CA, USA
| | - L Fernando Santana
- Department of Physiology and Membrane Biology, University of California, Davis, One Shields Avenue, Davis, CA, USA.
| |
Collapse
|
17
|
Morgenstern TJ, Nirwan N, Hernández-Ochoa EO, Bibollet H, Choudhury P, Laloudakis YD, Ben Johny M, Bannister RA, Schneider MF, Minor DL, Colecraft HM. Selective posttranslational inhibition of Ca Vβ 1-associated voltage-dependent calcium channels with a functionalized nanobody. Nat Commun 2022; 13:7556. [PMID: 36494348 PMCID: PMC9734117 DOI: 10.1038/s41467-022-35025-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Accepted: 11/15/2022] [Indexed: 12/13/2022] Open
Abstract
Ca2+ influx through high-voltage-activated calcium channels (HVACCs) controls diverse cellular functions. A critical feature enabling a singular signal, Ca2+ influx, to mediate disparate functions is diversity of HVACC pore-forming α1 and auxiliary CaVβ1-CaVβ4 subunits. Selective CaVα1 blockers have enabled deciphering their unique physiological roles. By contrast, the capacity to post-translationally inhibit HVACCs based on CaVβ isoform is non-existent. Conventional gene knockout/shRNA approaches do not adequately address this deficit owing to subunit reshuffling and partially overlapping functions of CaVβ isoforms. Here, we identify a nanobody (nb.E8) that selectively binds CaVβ1 SH3 domain and inhibits CaVβ1-associated HVACCs by reducing channel surface density, decreasing open probability, and speeding inactivation. Functionalizing nb.E8 with Nedd4L HECT domain yielded Chisel-1 which eliminated current through CaVβ1-reconstituted CaV1/CaV2 and native CaV1.1 channels in skeletal muscle, strongly suppressed depolarization-evoked Ca2+ influx and excitation-transcription coupling in hippocampal neurons, but was inert against CaVβ2-associated CaV1.2 in cardiomyocytes. The results introduce an original method for probing distinctive functions of ion channel auxiliary subunit isoforms, reveal additional dimensions of CaVβ1 signaling in neurons, and describe a genetically-encoded HVACC inhibitor with unique properties.
Collapse
Affiliation(s)
- Travis J. Morgenstern
- grid.239585.00000 0001 2285 2675Department of Molecular Pharmacology and Therapeutics, Columbia University Irving Medical Center, New York, NY USA
| | - Neha Nirwan
- grid.266102.10000 0001 2297 6811Cardiovascular Research Institute, University of California, San Francisco, CA USA
| | - Erick O. Hernández-Ochoa
- grid.411024.20000 0001 2175 4264Department of Biochemistry and Biology, University of Maryland School of Medicine, Baltimore, MD USA
| | - Hugo Bibollet
- grid.411024.20000 0001 2175 4264Department of Biochemistry and Biology, University of Maryland School of Medicine, Baltimore, MD USA
| | - Papiya Choudhury
- grid.239585.00000 0001 2285 2675Department of Physiology and Cellular Biophysics, Columbia University Irving Medical Center, New York, NY USA
| | - Yianni D. Laloudakis
- grid.239585.00000 0001 2285 2675Vagelos College of Physicians and Surgeons, Columbia University Irving Medical Center, New York, NY USA
| | - Manu Ben Johny
- grid.239585.00000 0001 2285 2675Department of Physiology and Cellular Biophysics, Columbia University Irving Medical Center, New York, NY USA
| | - Roger A. Bannister
- grid.411024.20000 0001 2175 4264Department of Biochemistry and Biology, University of Maryland School of Medicine, Baltimore, MD USA ,grid.411024.20000 0001 2175 4264Department of Pathology, University of Maryland School of Medicine, Baltimore, MD USA
| | - Martin F. Schneider
- grid.411024.20000 0001 2175 4264Department of Biochemistry and Biology, University of Maryland School of Medicine, Baltimore, MD USA
| | - Daniel L. Minor
- grid.266102.10000 0001 2297 6811Cardiovascular Research Institute, University of California, San Francisco, CA USA ,grid.266102.10000 0001 2297 6811Department of Biochemistry and Biophysics, University of California, San Francisco, CA USA ,grid.266102.10000 0001 2297 6811Department of Cellular and Molecular Pharmacology, University of California, San Francisco, CA USA ,grid.266102.10000 0001 2297 6811California Institute for Quantitative Biomedical Research, University of California, San Francisco, CA USA ,grid.266102.10000 0001 2297 6811Kavli Institute for Fundamental Neuroscience, University of California, San Francisco, CA USA ,grid.184769.50000 0001 2231 4551Molecular Biophysics and Integrated Bio-imaging Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720 USA
| | - Henry M. Colecraft
- grid.239585.00000 0001 2285 2675Department of Molecular Pharmacology and Therapeutics, Columbia University Irving Medical Center, New York, NY USA ,grid.239585.00000 0001 2285 2675Department of Physiology and Cellular Biophysics, Columbia University Irving Medical Center, New York, NY USA
| |
Collapse
|
18
|
Ren X, Zhang HXB. Uncovering a new route to pain therapy. Cell Calcium 2022; 106:102635. [PMID: 35944383 DOI: 10.1016/j.ceca.2022.102635] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Accepted: 07/21/2022] [Indexed: 11/19/2022]
Abstract
High-voltage-activated calcium channels (HVACCs) are promising targets for developing analgesics given their roles in controlling synaptic transmission, neuronal excitability and neuropeptide release in primary nociceptive neurons. Despite previous efforts in developing HVACCs inhibitors of various drug modalities, it remains undetermined whether targeting HVACCs directly by a gene therapy approach could lead to pain alleviation in vivo. To test this, Sun and colleagues adopted a post-translational ubiquitination-based knockdown method targeting HVACCs in primary sensory neurons. They showed ablation of HVACC currents in a subset of primary sensory neurons, dampened hyperexcitability of sensory neurons after nerve injury and reduced pain behavior with no apparent adverse effects [1]. The results open the possibility of targeting ion channels with ubiquitination-based knockdown as a promising gene therapy candidate for pain treatment in future clinical studies.
Collapse
Affiliation(s)
- Xiangyu Ren
- Molecular Neuroscience Laboratory, Salk Institute for Biological Studies, La Jolla, CA 92037, United States of America.
| | - Han-Xiong Bear Zhang
- Department of Neurobiology, Harvard Medical School, Boston, MA 02115, United States of America.
| |
Collapse
|
19
|
Siller A, Hofer NT, Tomagra G, Burkert N, Hess S, Benkert J, Gaifullina A, Spaich D, Duda J, Poetschke C, Vilusic K, Fritz EM, Schneider T, Kloppenburg P, Liss B, Carabelli V, Carbone E, Ortner NJ, Striessnig J. β2-subunit alternative splicing stabilizes Cav2.3 Ca 2+ channel activity during continuous midbrain dopamine neuron-like activity. eLife 2022; 11:e67464. [PMID: 35792082 PMCID: PMC9307272 DOI: 10.7554/elife.67464] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2021] [Accepted: 07/04/2022] [Indexed: 11/13/2022] Open
Abstract
In dopaminergic (DA) Substantia nigra (SN) neurons Cav2.3 R-type Ca2+-currents contribute to somatodendritic Ca2+-oscillations. This activity may contribute to the selective degeneration of these neurons in Parkinson's disease (PD) since Cav2.3-knockout is neuroprotective in a PD mouse model. Here, we show that in tsA-201-cells the membrane-anchored β2-splice variants β2a and β2e are required to stabilize Cav2.3 gating properties allowing sustained Cav2.3 availability during simulated pacemaking and enhanced Ca2+-currents during bursts. We confirmed the expression of β2a- and β2e-subunit transcripts in the mouse SN and in identified SN DA neurons. Patch-clamp recordings of mouse DA midbrain neurons in culture and SN DA neurons in brain slices revealed SNX-482-sensitive R-type Ca2+-currents with voltage-dependent gating properties that suggest modulation by β2a- and/or β2e-subunits. Thus, β-subunit alternative splicing may prevent a fraction of Cav2.3 channels from inactivation in continuously active, highly vulnerable SN DA neurons, thereby also supporting Ca2+ signals contributing to the (patho)physiological role of Cav2.3 channels in PD.
Collapse
Affiliation(s)
- Anita Siller
- Department of Pharmacology and Toxicology, Institute of Pharmacy, Center for Molecular Biosciences Innsbruck, University of InnsbruckInnsbruckAustria
| | - Nadja T Hofer
- Department of Pharmacology and Toxicology, Institute of Pharmacy, Center for Molecular Biosciences Innsbruck, University of InnsbruckInnsbruckAustria
| | - Giulia Tomagra
- Department of Drug Science, NIS Centre, University of TorinoTorinoItaly
| | - Nicole Burkert
- Institute of Applied Physiology, University of Ulm, Ulm, GermanyUlmGermany
| | - Simon Hess
- Institute for Zoology, Biocenter, University of CologneCologneGermany
| | - Julia Benkert
- Institute of Applied Physiology, University of Ulm, Ulm, GermanyUlmGermany
| | - Aisylu Gaifullina
- Institute of Applied Physiology, University of Ulm, Ulm, GermanyUlmGermany
| | - Desiree Spaich
- Institute of Applied Physiology, University of Ulm, Ulm, GermanyUlmGermany
| | - Johanna Duda
- Institute of Applied Physiology, University of Ulm, Ulm, GermanyUlmGermany
| | | | - Kristina Vilusic
- Department of Pharmacology and Toxicology, Institute of Pharmacy, Center for Molecular Biosciences Innsbruck, University of InnsbruckInnsbruckAustria
| | - Eva Maria Fritz
- Department of Pharmacology and Toxicology, Institute of Pharmacy, Center for Molecular Biosciences Innsbruck, University of InnsbruckInnsbruckAustria
| | - Toni Schneider
- Institute of Neurophysiology, University of CologneCologneGermany
| | - Peter Kloppenburg
- Institute for Zoology, Biocenter, University of CologneCologneGermany
| | - Birgit Liss
- Institute of Applied Physiology, University of Ulm, Ulm, GermanyUlmGermany
- Linacre College & New College, University of OxfordOxfordUnited Kingdom
| | | | - Emilio Carbone
- Department of Drug Science, NIS Centre, University of TorinoTorinoItaly
| | - Nadine Jasmin Ortner
- Department of Pharmacology and Toxicology, Institute of Pharmacy, Center for Molecular Biosciences Innsbruck, University of InnsbruckInnsbruckAustria
| | - Jörg Striessnig
- Department of Pharmacology and Toxicology, Institute of Pharmacy, Center for Molecular Biosciences Innsbruck, University of InnsbruckInnsbruckAustria
| |
Collapse
|
20
|
Harding EK, Zamponi GW. The calcium channel terminator: hasta la vista pain. Trends Pharmacol Sci 2022; 43:801-803. [PMID: 35753846 DOI: 10.1016/j.tips.2022.06.004] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Revised: 06/03/2022] [Accepted: 06/07/2022] [Indexed: 10/17/2022]
Abstract
Chronic pain remains a major burden and is difficult to treat. N-type calcium channels may be a suitable therapeutic target for analgesics, and a new study from Colecraft and colleagues utilizes a clever new way to modulate their expression to achieve therapeutic benefits in preclinical models of neuropathic pain.
Collapse
Affiliation(s)
- Erika K Harding
- Department of Physiology and Pharmacology, Alberta Children's Hospital Research Institute, Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - Gerald W Zamponi
- Department of Physiology and Pharmacology, Alberta Children's Hospital Research Institute, Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada.
| |
Collapse
|
21
|
Sun L, Tong CK, Morgenstern TJ, Zhou H, Yang G, Colecraft HM. Targeted ubiquitination of sensory neuron calcium channels reduces the development of neuropathic pain. Proc Natl Acad Sci U S A 2022; 119:e2118129119. [PMID: 35561213 PMCID: PMC9171802 DOI: 10.1073/pnas.2118129119] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Accepted: 04/01/2022] [Indexed: 11/18/2022] Open
Abstract
Neuropathic pain caused by lesions to somatosensory neurons due to injury or disease is a widespread public health problem that is inadequately managed by small-molecule therapeutics due to incomplete pain relief and devastating side effects. Genetically encoded molecules capable of interrupting nociception have the potential to confer long-lasting analgesia with minimal off-target effects. Here, we utilize a targeted ubiquitination approach to achieve a unique posttranslational functional knockdown of high-voltage-activated calcium channels (HVACCs) that are obligatory for neurotransmission in dorsal root ganglion (DRG) neurons. CaV-aβlator comprises a nanobody targeted to CaV channel cytosolic auxiliary β subunits fused to the catalytic HECT domain of the Nedd4-2 E3 ubiquitin ligase. Subcutaneous injection of adeno-associated virus serotype 9 encoding CaV-aβlator in the hind paw of mice resulted in the expression of the protein in a subset of DRG neurons that displayed a concomitant ablation of CaV currents and also led to an increase in the frequency of spontaneous inhibitory postsynaptic currents in the dorsal horn of the spinal cord. Mice subjected to spare nerve injury displayed a characteristic long-lasting mechanical, thermal, and cold hyperalgesia underlain by a dramatic increase in coordinated phasic firing of DRG neurons as reported by in vivo Ca2+ spike recordings. CaV-aβlator significantly dampened the integrated Ca2+ spike activity and the hyperalgesia in response to nerve injury. The results advance the principle of targeting HVACCs as a gene therapy for neuropathic pain and demonstrate the therapeutic potential of posttranslational functional knockdown of ion channels achieved by exploiting the ubiquitin-proteasome system.
Collapse
Affiliation(s)
- Linlin Sun
- Department of Anesthesiology, Columbia University Medical Center, New York, NY 10032
| | - Chi-Kun Tong
- Department of Physiology and Cellular Biophysics, Columbia University Medical Center, New York, NY 10032
| | - Travis J. Morgenstern
- Department of Molecular Pharmacology and Therapeutics, Columbia University Medical Center, New York, NY 10032
| | - Hang Zhou
- Department of Anesthesiology, Columbia University Medical Center, New York, NY 10032
| | - Guang Yang
- Department of Anesthesiology, Columbia University Medical Center, New York, NY 10032
| | - Henry M. Colecraft
- Department of Physiology and Cellular Biophysics, Columbia University Medical Center, New York, NY 10032
- Department of Molecular Pharmacology and Therapeutics, Columbia University Medical Center, New York, NY 10032
| |
Collapse
|
22
|
Colecraft HM, Trimmer JS. Controlling ion channel function with renewable recombinant antibodies. J Physiol 2022; 600:2023-2036. [PMID: 35238051 PMCID: PMC9058206 DOI: 10.1113/jp282403] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Accepted: 02/11/2022] [Indexed: 11/08/2022] Open
Abstract
Selective ion channel modulators play a critical role in physiology in defining the contribution of specific ion channels to physiological function and as proof of concept for novel therapeutic strategies. Antibodies are valuable research tools that have broad uses including defining the expression and localization of ion channels in native tissue, and capturing ion channel proteins for subsequent analyses. In this review, we detail how renewable and recombinant antibodies can be used to control ion channel function. We describe the different forms of renewable and recombinant antibodies that have been used and the mechanisms by which they modulate ion channel function. We highlight the use of recombinant antibodies that are expressed intracellularly (intrabodies) as genetically-encoded tools to control ion channel function. We also offer perspectives of avenues of future research that may be opened by the application of emerging technologies for engineering recombinant antibodies for enhanced utility in ion channel research. Overall, this review provides insights that may help stimulate and guide interested researchers to develop and incorporate renewable and recombinant antibodies as valuable tools to control ion channel function. Abstract figure legend Two different approaches for controlling ion channel function using renewable recombinant antibodies. On the left, an externally applied intact IgG antibody (purple) binds to an extracellular domain of an ion channel (light blue) to control ion channel function. On the right, a genetically-encoded intrabody, in this example a camelid nanobody (green) fused to an effector molecule (red) binds to an intracellular auxiliary subunit of an ion channel (dark blue) to control ion channel function. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Henry M Colecraft
- Department of Physiology and Cellular Biophysics, Columbia University Vagelos College of Physicians and Surgeons, New York, NY, 10032, USA
| | - James S Trimmer
- Department of Department of Physiology and Membrane Biology, University of California Davis School of Medicine, Davis, CA, 95616, USA
| |
Collapse
|
23
|
Development of High affinity Nanobodies Specific for Na V1.4 and Na V1.5 Voltage-Gated Sodium Channel Isoforms. J Biol Chem 2022; 298:101763. [PMID: 35202650 PMCID: PMC8935509 DOI: 10.1016/j.jbc.2022.101763] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Revised: 02/16/2022] [Accepted: 02/18/2022] [Indexed: 11/22/2022] Open
Abstract
Voltage-gated sodium channels, NaVs, are responsible for the rapid rise of action potentials in excitable tissues. NaV channel mutations have been implicated in several human genetic diseases, such as hypokalemic periodic paralysis, myotonia, and long-QT and Brugada syndromes. Here, we generated high-affinity anti-NaV nanobodies (Nbs), Nb17 and Nb82, that recognize the NaV1.4 (skeletal muscle) and NaV1.5 (cardiac muscle) channel isoforms. These Nbs were raised in llama (Lama glama) and selected from a phage display library for high affinity to the C-terminal (CT) region of NaV1.4. The Nbs were expressed in Escherichia coli, purified, and biophysically characterized. Development of high-affinity Nbs specifically targeting a given human NaV isoform has been challenging because they usually show undesired crossreactivity for different NaV isoforms. Our results show, however, that Nb17 and Nb82 recognize the CTNaV1.4 or CTNaV1.5 over other CTNav isoforms. Kinetic experiments by biolayer interferometry determined that Nb17 and Nb82 bind to the CTNaV1.4 and CTNaV1.5 with high affinity (KD ∼ 40–60 nM). In addition, as proof of concept, we show that Nb82 could detect NaV1.4 and NaV1.5 channels in mammalian cells and tissues by Western blot. Furthermore, human embryonic kidney cells expressing holo NaV1.5 channels demonstrated a robust FRET-binding efficiency for Nb17 and Nb82. Our work lays the foundation for developing Nbs as anti-NaV reagents to capture NaVs from cell lysates and as molecular visualization agents for NaVs.
Collapse
|
24
|
Genetically encoded intrabodies as high-precision tools to visualize and manipulate neuronal function. Semin Cell Dev Biol 2021; 126:117-124. [PMID: 34782184 DOI: 10.1016/j.semcdb.2021.11.004] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2021] [Revised: 11/01/2021] [Accepted: 11/05/2021] [Indexed: 11/24/2022]
Abstract
Basic neuroscience research employs numerous forms of antibodies as key reagents in diverse applications. While the predominant use of antibodies is as immunolabeling reagents, neuroscientists are making increased use of intracellular antibodies or intrabodies. Intrabodies are recombinant antibodies genetically encoded for expression within neurons. These can be used to target various cargo (fluorescent proteins, reporters, enzymes, etc.) to specific molecules and subcellular domains to report on and manipulate neuronal function with high precision. Intrabodies have the advantages inherent in all genetically encoded recombinant antibodies but represent a distinct subclass in that their structure allows for their expression and function within cells. The high precision afforded by the ability to direct their expression to specific cell types, and the selective binding of intrabodies to targets within these allows intrabodies to offer unique advantages for neuroscience research, given the tremendous molecular, cellular and morphological complexity of brain neurons. Intrabodies expressed within neurons have been used for a variety of purposes in basic neuroscience research. Here I provide a general background to intrabodies and their development, and examples of their emerging utility as valuable basic neuroscience research tools.
Collapse
|
25
|
Mechanisms and Regulation of Cardiac Ca V1.2 Trafficking. Int J Mol Sci 2021; 22:ijms22115927. [PMID: 34072954 PMCID: PMC8197997 DOI: 10.3390/ijms22115927] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Revised: 05/28/2021] [Accepted: 05/29/2021] [Indexed: 01/05/2023] Open
Abstract
During cardiac excitation contraction coupling, the arrival of an action potential at the ventricular myocardium triggers voltage-dependent L-type Ca2+ (CaV1.2) channels in individual myocytes to open briefly. The level of this Ca2+ influx tunes the amplitude of Ca2+-induced Ca2+ release from ryanodine receptors (RyR2) on the junctional sarcoplasmic reticulum and thus the magnitude of the elevation in intracellular Ca2+ concentration and ultimately the downstream contraction. The number and activity of functional CaV1.2 channels at the t-tubule dyads dictates the amplitude of the Ca2+ influx. Trafficking of these channels and their auxiliary subunits to the cell surface is thus tightly controlled and regulated to ensure adequate sarcolemmal expression to sustain this critical process. To that end, recent discoveries have revealed the existence of internal reservoirs of preformed CaV1.2 channels that can be rapidly mobilized to enhance sarcolemmal expression in times of acute stress when hemodynamic and metabolic demand increases. In this review, we provide an overview of the current thinking on CaV1.2 channel trafficking dynamics in the heart. We highlight the numerous points of control including the biosynthetic pathway, the endosomal recycling pathway, ubiquitination, and lysosomal and proteasomal degradation pathways, and discuss the effects of β-adrenergic and angiotensin receptor signaling cascades on this process.
Collapse
|
26
|
Morgenstern TJ, Colecraft HM. Controlling ion channel trafficking by targeted ubiquitination and deubiquitination. Methods Enzymol 2021; 654:139-167. [PMID: 34120711 DOI: 10.1016/bs.mie.2021.03.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Plasma membrane-localized ion channels are essential for diverse physiological processes such as neurotransmission, muscle contraction, and osmotic homeostasis. The surface density of such ion channels is a major determinant of their function, and tuning this variable is a powerful way to regulate physiology. Dysregulation of ion channel surface density due to inherited or de novo mutations underlies many serious diseases, and molecules that can correct trafficking deficits are potential therapeutics and useful research tools. We have developed targeted ubiquitination and deubiquitination approaches that enable selective posttranslational down- or up-regulation, respectively, of desired ion channels. The method employs bivalent molecules comprised of an ion-channel-targeted nanobody fused to catalytic domains of either an E3 ubiquitin ligase or a deubiquitinase. Here, we use two examples to provide detailed protocols that illustrate the utility of the approach-rescued surface expression of a trafficking-deficient mutant KV7.1 (KCNQ1) channel that causes long QT syndrome, and selective elimination of the CaV2.2 voltage-gated calcium channel from the plasma membrane using targeted ubiquitination. Important aspects of the approach include having a robust assay to measure ion channel surface density and generating nanobody binders to cytosolic domains or subunits of targeted ion channels. Accordingly, we also review available methods for determining ion channel surface density and nanobody selection.
Collapse
Affiliation(s)
- Travis J Morgenstern
- Department of Molecular Pharmacology and Therapeutics, Columbia University, Vagelos College of Physicians and Surgeons, New York, NY, United States
| | - Henry M Colecraft
- Department of Molecular Pharmacology and Therapeutics, Columbia University, Vagelos College of Physicians and Surgeons, New York, NY, United States; Department of Physiology and Cellular Biophysics, Columbia University, Vagelos College of Physicians and Surgeons, New York, NY, United States.
| |
Collapse
|
27
|
Wagner TR, Rothbauer U. Nanobodies Right in the Middle: Intrabodies as Toolbox to Visualize and Modulate Antigens in the Living Cell. Biomolecules 2020; 10:biom10121701. [PMID: 33371447 PMCID: PMC7767433 DOI: 10.3390/biom10121701] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 12/15/2020] [Accepted: 12/18/2020] [Indexed: 01/01/2023] Open
Abstract
In biomedical research, there is an ongoing demand for new technologies to elucidate disease mechanisms and develop novel therapeutics. This requires comprehensive understanding of cellular processes and their pathophysiology based on reliable information on abundance, localization, post-translational modifications and dynamic interactions of cellular components. Traceable intracellular binding molecules provide new opportunities for real-time cellular diagnostics. Most prominently, intrabodies derived from antibody fragments of heavy-chain only antibodies of camelids (nanobodies) have emerged as highly versatile and attractive probes to study and manipulate antigens within the context of living cells. In this review, we provide an overview on the selection, delivery and usage of intrabodies to visualize and monitor cellular antigens in living cells and organisms. Additionally, we summarize recent advances in the development of intrabodies as cellular biosensors and their application to manipulate disease-related cellular processes. Finally, we highlight switchable intrabodies, which open entirely new possibilities for real-time cell-based diagnostics including live-cell imaging, target validation and generation of precisely controllable binding reagents for future therapeutic applications.
Collapse
Affiliation(s)
- Teresa R. Wagner
- Pharmaceutical Biotechnology, Eberhard Karls University Tuebingen, 72076 Tuebingen, Germany;
- Natural and Medical Sciences Institute, University of Tuebingen, 72770 Reutlingen, Germany
| | - Ulrich Rothbauer
- Pharmaceutical Biotechnology, Eberhard Karls University Tuebingen, 72076 Tuebingen, Germany;
- Natural and Medical Sciences Institute, University of Tuebingen, 72770 Reutlingen, Germany
- Correspondence: ; Tel.: +49-7121-5153-0415; Fax: +49-7121-5153-0816
| |
Collapse
|
28
|
Trimmer JS. Recombinant Antibodies in Basic Neuroscience Research. CURRENT PROTOCOLS IN NEUROSCIENCE 2020; 94:e106. [PMID: 33151027 PMCID: PMC7665837 DOI: 10.1002/cpns.106] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Basic neuroscience research employs antibodies as key reagents to label, capture, and modulate the function of proteins of interest. Antibodies are immunoglobulin proteins. Recombinant antibodies are immunoglobulin proteins whose nucleic acid coding regions, or fragments thereof, have been cloned into expression plasmids that allow for unlimited production. Recombinant antibodies offer many advantages over conventional antibodies including their unambiguous identification and digital archiving via DNA sequencing, reliable expression, ease and reliable distribution as DNA sequences and as plasmids, and the opportunity for numerous forms of engineering to enhance their utility. Recombinant antibodies exist in many different forms, each of which offers potential advantages and disadvantages for neuroscience research applications. I provide an overview of recombinant antibodies and their development. Examples of their emerging use as valuable reagents in basic neuroscience research are also discussed. Many of these examples employ recombinant antibodies in innovative experimental approaches that cannot be pursued with conventional antibodies. © 2020 Wiley Periodicals LLC.
Collapse
Affiliation(s)
- James S Trimmer
- Department of Physiology and Membrane Biology, University of California Davis School of Medicine, Davis, California
| |
Collapse
|
29
|
Cheloha RW, Harmand TJ, Wijne C, Schwartz TU, Ploegh HL. Exploring cellular biochemistry with nanobodies. J Biol Chem 2020; 295:15307-15327. [PMID: 32868455 PMCID: PMC7650250 DOI: 10.1074/jbc.rev120.012960] [Citation(s) in RCA: 64] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2020] [Revised: 08/27/2020] [Indexed: 12/21/2022] Open
Abstract
Reagents that bind tightly and specifically to biomolecules of interest remain essential in the exploration of biology and in their ultimate application to medicine. Besides ligands for receptors of known specificity, agents commonly used for this purpose are monoclonal antibodies derived from mice, rabbits, and other animals. However, such antibodies can be expensive to produce, challenging to engineer, and are not necessarily stable in the context of the cellular cytoplasm, a reducing environment. Heavy chain-only antibodies, discovered in camelids, have been truncated to yield single-domain antibody fragments (VHHs or nanobodies) that overcome many of these shortcomings. Whereas they are known as crystallization chaperones for membrane proteins or as simple alternatives to conventional antibodies, nanobodies have been applied in settings where the use of standard antibodies or their derivatives would be impractical or impossible. We review recent examples in which the unique properties of nanobodies have been combined with complementary methods, such as chemical functionalization, to provide tools with unique and useful properties.
Collapse
Affiliation(s)
- Ross W Cheloha
- Program in Cellular and Molecular Medicine, Boston Children's Hospital, Boston, Massachusetts, USA; Harvard Medical School, Boston, Massachusetts, USA
| | - Thibault J Harmand
- Program in Cellular and Molecular Medicine, Boston Children's Hospital, Boston, Massachusetts, USA; Harvard Medical School, Boston, Massachusetts, USA
| | - Charlotte Wijne
- Program in Cellular and Molecular Medicine, Boston Children's Hospital, Boston, Massachusetts, USA; Harvard Medical School, Boston, Massachusetts, USA
| | - Thomas U Schwartz
- Department of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
| | - Hidde L Ploegh
- Program in Cellular and Molecular Medicine, Boston Children's Hospital, Boston, Massachusetts, USA; Harvard Medical School, Boston, Massachusetts, USA.
| |
Collapse
|
30
|
Colecraft HM. Designer genetically encoded voltage-dependent calcium channel inhibitors inspired by RGK GTPases. J Physiol 2020; 598:1683-1693. [PMID: 32104913 PMCID: PMC7195252 DOI: 10.1113/jp276544] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2019] [Accepted: 02/07/2020] [Indexed: 12/28/2022] Open
Abstract
High‐voltage‐activated calcium (CaV1/CaV2) channels translate action potentials into Ca2+ influx in excitable cells to control essential biological processes that include; muscle contraction, synaptic transmission, hormone secretion and activity‐dependent regulation of gene expression. Modulation of CaV1/CaV2 channel activity is a powerful mechanism to regulate physiology, and there are a host of intracellular signalling molecules that tune different aspects of CaV channel trafficking and gating for this purpose. Beyond normal physiological regulation, the diverse CaV channel modulatory mechanisms may potentially be co‐opted or interfered with for therapeutic benefits. CaV1/CaV2 channels are potently inhibited by a four‐member sub‐family of Ras‐like GTPases known as RGK (Rad, Rem, Rem2, Gem/Kir) proteins. Understanding the mechanisms by which RGK proteins inhibit CaV1/CaV2 channels has led to the development of novel genetically encoded CaV channel blockers with unique properties; including, chemo‐ and optogenetic control of channel activity, and blocking channels either on the basis of their subcellular localization or by targeting an auxiliary subunit. These genetically encoded CaV channel inhibitors have outstanding utility as enabling research tools and potential therapeutics.
![]()
Collapse
Affiliation(s)
- Henry M Colecraft
- Department of Physiology and Cellular Biophysics, Department of Pharmacology and Molecular Signaling, Columbia University Vagelos College of Physicians and Surgeons, New York, NY, USA
| |
Collapse
|