1
|
Ampuja M, Ericsson S, Paatero I, Chowdhury I, Villman J, Broberg M, Ramste A, Balboa D, Ojala T, Chong JX, Bamshad MJ, Priest JR, Varjosalo M, Kivelä R, Helle E. The ERBB2 c.1795C>T, p.Arg599Cys variant is associated with left ventricular outflow tract obstruction defects in humans. HGG ADVANCES 2025; 6:100446. [PMID: 40329538 DOI: 10.1016/j.xhgg.2025.100446] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Revised: 04/30/2025] [Accepted: 04/30/2025] [Indexed: 05/08/2025] Open
Abstract
Non-syndromic congenital heart defects (CHDs) are occasionally familial and left ventricular outflow tract obstruction (LVOTO) defects are among the subtypes with the highest hereditability. The aim of this study was to evaluate the pathogenicity of a heterozygous ERBB2 variant c.1795C>T, p.Arg599Cys identified in three families with LVOTO defects. Variant detection was done with exome sequencing. Western blotting, digital PCR, mass spectrometry (MS), MS microscopy, and flow cytometry were used to study the function of the ERBB2 variant c.1795C>T. Cardiac structure and function were studied in zebrafish embryos expressing human ERBB2 wild type or c.1795C>T. Proband-derived human induced pluripotent stem cell cardiomyocytes (hiPS-CMs) and endothelial cells (hiPS-ECs) were used for transcriptomic analyses. While phosphorylation of the ERBB2 p.Arg599Cys receptor was not altered, the variant affected dramatically the binding partners of the protein, indicating mislocalization of the mutant ERBB2 from plasma membrane to endoplasmic reticulum. Expression of human ERBB2 p.Arg599Cys in zebrafish embryos resulted in cardiomyocyte hypertrophy, increased cardiac wall thickness, and impaired fractional shortening. Transcriptomic analyses of hiPS-ECs and hiPS-CMs from an individual with the c.1795C>T variant showed aberrant expression of genes related to cardiovascular system development and abnormal response to oxidative stress in both cell types. In conclusion, the heterozygous variant ERBB2 c.1795C>T, p.Arg599Cys leads to abnormal cellular localization of the ERBB2 receptor and induces structural changes and dysfunction in the zebrafish embryo heart. This evidence expands previous findings from animal studies to humans and suggests variants in ERBB2 may be associated with CHD.
Collapse
Affiliation(s)
- Minna Ampuja
- Stem Cells and Metabolism Research Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Sabina Ericsson
- Stem Cells and Metabolism Research Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Ilkka Paatero
- Turku Bioscience Centre, University of Turku and Åbo Akademi University, Turku, Finland
| | - Iftekhar Chowdhury
- Institute of Biotechnology, HiLIFE Helsinki Institute of Life Science, University of Helsinki, Helsinki, Finland
| | - Jenna Villman
- Turku Bioscience Centre, University of Turku and Åbo Akademi University, Turku, Finland
| | - Martin Broberg
- Stem Cells and Metabolism Research Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland; Institute for Molecular Medicine Finland, Helsinki, Finland
| | - Amanda Ramste
- Stem Cells and Metabolism Research Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Diego Balboa
- Stem Cells and Metabolism Research Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Tiina Ojala
- Children's Hospital, Paediatric Research Centre, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | - Jessica X Chong
- Division of Genetic Medicine, Department of Pediatrics, University of Washington, Seattle, WA, USA
| | - Michael J Bamshad
- Division of Genetic Medicine, Department of Pediatrics, University of Washington, Seattle, WA, USA
| | - James R Priest
- Tenaya Therapeutics, 171 Oyster Point Boulevard Suite 500, South San Francisco, CA, USA; Department of Pediatrics, Stanford University School of Medicine, Stanford, CA, USA
| | - Markku Varjosalo
- Institute of Biotechnology, HiLIFE Helsinki Institute of Life Science, University of Helsinki, Helsinki, Finland
| | - Riikka Kivelä
- Stem Cells and Metabolism Research Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland; Wihuri Research Institute, Helsinki, Finland; Faculty of Sport and Health Sciences, University of Jyväskylä, Jyväskylä, Finland
| | - Emmi Helle
- Stem Cells and Metabolism Research Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland; Children's Hospital, Paediatric Research Centre, University of Helsinki and Helsinki University Hospital, Helsinki, Finland; Population Health Unit, Finnish Institute for Health and Welfare, Helsinki, Finland.
| |
Collapse
|
2
|
Chen X, Wang J, Chan P, Zhu Q, Zhu Z, Zheng M, Chen X, Wu H, Cui M, Zhang Y. Metabolic Reprogramming in Spinal Cord Injury and Analysis of Potential Therapeutic Targets. J Mol Neurosci 2025; 75:50. [PMID: 40237957 DOI: 10.1007/s12031-025-02343-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2025] [Accepted: 04/04/2025] [Indexed: 04/18/2025]
Abstract
Spinal cord injury (SCI) is a critical neurological disorder that frequently leads to permanent disability, profoundly affecting the quality of life of individuals with SCI. In this research, we examined the varied expression of genes associated with metabolic reprogramming-related genes in SCI. By employing the Gene Expression Omnibus datasets GSE5296 and GSE47681, 1001 differentially expressed genes (DEGs) were identified through the limma R package. Among these, 871 and 130 genes were upregulated and downregulated, respectively. A subset of 10 metabolic reprogramming-related differentially expressed genes (MRRDEGs) was recognized as key players in metabolic reprogramming. Analyses of enrichment performed using Gene Ontology and Kyoto Encyclopedia of Genes and Genomes indicated that the identified MRRDEGs predominantly participated in processes related to pyruvate metabolism and carbohydrate degradation. Nine hub genes were discerned using a protein-protein interaction network. Subsequently, an SCI mouse model was established using the LISA SCI modeling device, and preliminary validation was conducted through quantitative real-time PCR experiments at various time points after SCI, specifically on days 1, 3, and 7, suggesting their central role in SCI. Receiver operating characteristic curve analysis indicated that these MRRDEGs could be used to diagnose SCI. The CIBERSORT algorithm analysis of immune infiltration identified an inverse relationship between M0 and M2 macrophages. Furthermore, a positive relationship was observed between Ucp2 and M0 macrophages, underscoring their essential function in the immune response following SCI. These results highlight MRRDEGs' importance in SCI and propose their potential roles as targets for therapeutic interventions.
Collapse
Affiliation(s)
- Xiangjun Chen
- Department of Human Anatomy, Nanjing Medical University, 101 Longmian Avenue, Jiangning District, Nanjing, 211166, P.R. China
- Key Laboratory for Aging & Diseases of Nanjing Medical University, Nanjing Medical University, 101 Longmian Avenue, Jiangning District, Nanjing, 211166, P.R. China
| | - Juan Wang
- Department of Human Anatomy, Nanjing Medical University, 101 Longmian Avenue, Jiangning District, Nanjing, 211166, P.R. China
- Key Laboratory for Aging & Diseases of Nanjing Medical University, Nanjing Medical University, 101 Longmian Avenue, Jiangning District, Nanjing, 211166, P.R. China
| | - Peiran Chan
- Department of Human Anatomy, Nanjing Medical University, 101 Longmian Avenue, Jiangning District, Nanjing, 211166, P.R. China
- Key Laboratory for Aging & Diseases of Nanjing Medical University, Nanjing Medical University, 101 Longmian Avenue, Jiangning District, Nanjing, 211166, P.R. China
| | - Qian Zhu
- Department of Human Anatomy, Nanjing Medical University, 101 Longmian Avenue, Jiangning District, Nanjing, 211166, P.R. China
- Key Laboratory for Aging & Diseases of Nanjing Medical University, Nanjing Medical University, 101 Longmian Avenue, Jiangning District, Nanjing, 211166, P.R. China
| | - Ziyan Zhu
- Department of Human Anatomy, Nanjing Medical University, 101 Longmian Avenue, Jiangning District, Nanjing, 211166, P.R. China
- Key Laboratory for Aging & Diseases of Nanjing Medical University, Nanjing Medical University, 101 Longmian Avenue, Jiangning District, Nanjing, 211166, P.R. China
| | - Mingming Zheng
- Department of Human Anatomy, Nanjing Medical University, 101 Longmian Avenue, Jiangning District, Nanjing, 211166, P.R. China
- Key Laboratory for Aging & Diseases of Nanjing Medical University, Nanjing Medical University, 101 Longmian Avenue, Jiangning District, Nanjing, 211166, P.R. China
| | - Xinyi Chen
- The First Medical School of Nanjing Medical University, Nanjing Medical University, 101 Longmian Avenue, Jiangning District, Nanjing, 211166, P.R. China
| | - Haozhen Wu
- National Demonstration Center for Experimental Basic Medical Education, Nanjing Medical University, 101 Longmian Avenue, Jiangning District, Nanjing, 211166, P.R. China
| | - Min Cui
- Key Laboratory for Aging & Diseases of Nanjing Medical University, Nanjing Medical University, 101 Longmian Avenue, Jiangning District, Nanjing, 211166, P.R. China.
- National Demonstration Center for Experimental Basic Medical Education, Nanjing Medical University, 101 Longmian Avenue, Jiangning District, Nanjing, 211166, P.R. China.
| | - Yongjie Zhang
- Department of Human Anatomy, Nanjing Medical University, 101 Longmian Avenue, Jiangning District, Nanjing, 211166, P.R. China.
- Key Laboratory for Aging & Diseases of Nanjing Medical University, Nanjing Medical University, 101 Longmian Avenue, Jiangning District, Nanjing, 211166, P.R. China.
| |
Collapse
|
3
|
Gao J, Yu L, Qi H, Qi J, Zheng Z. The Application of scRNA-Seq in Heart Development and Regeneration. Genesis 2025; 63:e70013. [PMID: 40300044 DOI: 10.1002/dvg.70013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2024] [Revised: 03/02/2025] [Accepted: 03/07/2025] [Indexed: 05/01/2025]
Abstract
Single-cell RNA sequencing (scRNA-seq) is a rapidly developing and useful technique for elucidating biological mechanisms and characterizing individual cells. Tens of millions of patients worldwide suffer from heart injuries and other types of heart disease. Neonatal mammalian hearts and certain adult vertebrate species, such as zebrafish, can fully regenerate after myocardial injury. However, the adult mammalian heart is unable to regenerate the damaged myocardium. scRNA-seq provides many new insights into pathological and normal hearts and facilitates our understanding of cellular responses to cardiac injury and repair at different stages, which may provide critical clues for effective therapies for adult heart regeneration. In this review, we summarize the application of scRNA-seq in heart development and regeneration and describe how important molecular mechanisms can be harnessed to promote heart regeneration.
Collapse
Affiliation(s)
- Junying Gao
- Institute of Evolution & Marine Biodiversity, Ocean University of China, Qingdao, China
| | - Lindong Yu
- Institute of Evolution & Marine Biodiversity, Ocean University of China, Qingdao, China
| | - Haoran Qi
- Department of Spine Surgery, Spinal Deformity Center, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Jun Qi
- Laboratory Department, Shandong Public Health Clinical Center Affiliated to Shandong University, Jinan, China
| | - Zhaodi Zheng
- School of Forensics and Laboratory Medicine, Jining Medical University, Jining, China
| |
Collapse
|
4
|
Li X, He X, Zhang Y, Hao X, Xiong A, Huang J, Jiang B, Tong Z, Huang H, Yi L, Chen W. Uncovering Hippo pathway-related biomarkers in acute myocardial infarction via scRNA-seq binding transcriptomics. Sci Rep 2025; 15:10368. [PMID: 40133574 PMCID: PMC11937457 DOI: 10.1038/s41598-025-94820-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2024] [Accepted: 03/17/2025] [Indexed: 03/27/2025] Open
Abstract
This study investigated Hippo signaling pathway-related biomarkers in acute myocardial infarction (AMI). First, differentially expressed genes (DEGs) between AMI patients and controls were identified. Consensus clustering then classified AMI subtypes, followed by subtype-specific DEG screening. Candidate genes were derived from intersecting initial DEGs with subtype-associated DEGs. Three machine-learning algorithms prioritized five biomarkers (NAMPT, CXCL1, CREM, GIMAP6, and GIMAP7), validated through multi-dataset analyses and cellular expression profiling. qRT-PCR and Western blot confirmed differential expression patterns between AMI and controls across experimental models. Notably, NAMPT, CXCL1, and GIMAP6 exhibited cell-type-specific expression in endothelial cells and macrophages. We further predicted 179 potential therapeutic agents targeting these biomarkers. Niclosamide and eugenol were observed to mitigate hypoxia-induced injury in neonatal mouse ventricular cardiomyocytes. In vivo experiments demonstrated upregulated NAMPT/CXCL1 and downregulated GIMAP6/GIMAP7 in AMI myocardial tissues, with significant NAMPT protein elevation. These biomarkers show clinical diagnostic potential and provide mechanistic insights into AMI pathogenesis.
Collapse
Affiliation(s)
- Xingda Li
- National Key Laboratory of Frigid Zone Cardiovascular Diseases, Department of Pharmacology (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education; International Cooperation Base for Major Cardiovascular Diseases in Cold Regions, China), College of Pharmacy, Harbin Medical University, Harbin, 150086, Heilongjiang, People's Republic of China
- Department of Pharmacy at the Second Affiliated Hospital, and Department of Pharmacology at College of Pharmacy (The Key Laboratory of Cardiovascular Research, Ministry of Education), Harbin Medical University, Harbin, 150086, People's Republic of China
| | - Xueqi He
- Department of Pharmacy at the Second Affiliated Hospital, and Department of Pharmacology at College of Pharmacy (The Key Laboratory of Cardiovascular Research, Ministry of Education), Harbin Medical University, Harbin, 150086, People's Republic of China
| | - Yu Zhang
- Department of Pharmacy at the Second Affiliated Hospital, and Department of Pharmacology at College of Pharmacy (The Key Laboratory of Cardiovascular Research, Ministry of Education), Harbin Medical University, Harbin, 150086, People's Republic of China
| | - Xinyuan Hao
- Department of Pharmacy at the Second Affiliated Hospital, and Department of Pharmacology at College of Pharmacy (The Key Laboratory of Cardiovascular Research, Ministry of Education), Harbin Medical University, Harbin, 150086, People's Republic of China
| | - Anqi Xiong
- Department of Cardiology, First Affiliated Hospital of Harbin Medical University, No. 23, YouZheng Street, NanGang District, Harbin, 150001, Heilongjiang Province, People's Republic of China
| | - Jiayu Huang
- Department of Cardiology, First Affiliated Hospital of Harbin Medical University, No. 23, YouZheng Street, NanGang District, Harbin, 150001, Heilongjiang Province, People's Republic of China
| | - Biying Jiang
- Department of Cardiology, First Affiliated Hospital of Harbin Medical University, No. 23, YouZheng Street, NanGang District, Harbin, 150001, Heilongjiang Province, People's Republic of China
| | - Zaiyu Tong
- Department of Cardiology, First Affiliated Hospital of Harbin Medical University, No. 23, YouZheng Street, NanGang District, Harbin, 150001, Heilongjiang Province, People's Republic of China
| | - Haiyan Huang
- Department of Neurology, First Affiliated Hospital of Harbin Medical University, Harbin, 150001, People's Republic of China
| | - Lian Yi
- Department of Neurology, First Affiliated Hospital of Harbin Medical University, Harbin, 150001, People's Republic of China.
| | - Wenjia Chen
- Department of Cardiology, First Affiliated Hospital of Harbin Medical University, No. 23, YouZheng Street, NanGang District, Harbin, 150001, Heilongjiang Province, People's Republic of China.
| |
Collapse
|
5
|
Spurlock BM, Xie Y, Song Y, Ricketts SN, Hua JR, Chi HR, Nishtala M, Salmenov R, Liu J, Qian L. Mitochondrial fusion and cristae reorganization facilitate acquisition of cardiomyocyte identity during reprogramming of murine fibroblasts. Cell Rep 2025; 44:115377. [PMID: 40048433 PMCID: PMC11973714 DOI: 10.1016/j.celrep.2025.115377] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2024] [Revised: 12/12/2024] [Accepted: 02/10/2025] [Indexed: 03/19/2025] Open
Abstract
Cardiomyocytes (CMs) rely on mitochondrial energy produced in highly interconnected mitochondrial networks. Direct reprogramming of cardiac fibroblasts (CFs) into induced CMs (iCMs) shows promise for treating cardiac injury, but little work has investigated mitochondrial energetics and morphology during the conversion of CFs to iCMs. We characterized mitochondria during direct cardiac reprogramming of murine neonatal CFs (mnCFs). Reprogramming increased mitochondrial respiration and interconnectivity but not to the levels of native CMs. We therefore investigated whether perturbations to mitochondrial dynamics impacted reprogramming. Mitochondrial fusion (joining) was essential for iCM generation, while various fission (dividing) genes were reprogramming barriers. In particular, the loss of mitochondrial fission regulator 1 like (Mtfr1l) significantly increased the yield of functionally mature iCMs and induced mitochondrial fusion and respiration. These changes were countered by the concomitant loss of fusion effector optical atrophy protein 1 (Opa1). The present study advances our understanding of mitochondrial barriers to and mechanisms of direct cardiac reprogramming.
Collapse
Affiliation(s)
- Brian M Spurlock
- McAllister Heart Institute, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Yifang Xie
- McAllister Heart Institute, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Yiran Song
- McAllister Heart Institute, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Shea N Ricketts
- McAllister Heart Institute, University of North Carolina, Chapel Hill, NC 27599, USA; Department of Pathology and Laboratory Medicine, University of North Carolina, Chapel Hill, NC 27599, USA
| | - James Rock Hua
- McAllister Heart Institute, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Haley R Chi
- McAllister Heart Institute, University of North Carolina, Chapel Hill, NC 27599, USA; Department of Pathology and Laboratory Medicine, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Meenakshi Nishtala
- McAllister Heart Institute, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Rustem Salmenov
- McAllister Heart Institute, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Jiandong Liu
- McAllister Heart Institute, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Li Qian
- McAllister Heart Institute, University of North Carolina, Chapel Hill, NC 27599, USA.
| |
Collapse
|
6
|
Cai D, Liu C, Li H, Wang C, Bai L, Feng J, Hu M, Wang H, Song S, Xie Y, Chen Z, Zhong J, Lian H, Yang Z, Zhang Y, Nie Y. Foxk1 and Foxk2 promote cardiomyocyte proliferation and heart regeneration. Nat Commun 2025; 16:2877. [PMID: 40128196 PMCID: PMC11933303 DOI: 10.1038/s41467-025-57996-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2024] [Accepted: 03/10/2025] [Indexed: 03/26/2025] Open
Abstract
Promoting endogenous cardiomyocyte proliferation is a promising strategy for cardiac repair. Identifying key factors that regulate cardiomyocyte proliferation can advance the development of novel therapies for heart regeneration. Here, we identify Foxk1 and Foxk2 as key regulators of cardiomyocyte proliferation, whose expression declines during postnatal heart development. Cardiomyocyte-specific knockout of Foxk1 or Foxk2 impairs neonatal heart regeneration after myocardial infarction (MI) injury. AAV9-mediated Foxk1 or Foxk2 overexpression extends the postnatal cardiomyocyte proliferative window and enhances cardiac repair in adult mice after MI. Mechanistically, Foxk1 and Foxk2 drive cardiomyocyte cell cycle progression by directly activating CCNB1 and CDK1 expression, forming the CCNB1/CDK1 complex that facilitates G2/M transition. Moreover, Foxk1 and Foxk2 promote cardiomyocyte proliferation by upregulating HIF1α expression, which enhances glycolysis and the pentose phosphate pathway (PPP), which further favors cardiomyocyte proliferation. These findings establish Foxk1 and Foxk2 as promising therapeutic targets for cardiac injury.
Collapse
Affiliation(s)
- Dongcheng Cai
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Disease, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, PR China
| | - Chungeng Liu
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Disease, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, PR China
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, PR China
- Department of Spine Surgery and Institute for Orthopaedic Research, The Second Clinical Medical College of Jinan University (Shenzhen People's Hospital), Shenzhen, PR China
- Department of Cardiovascular Surgery, Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Southern Medical University, Guangzhou, PR China
| | - Haotong Li
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Disease, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, PR China
| | - Chiyin Wang
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Disease, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, PR China
- Department of Cardiac Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, PR China
| | - Lina Bai
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Disease, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, PR China
| | - Jie Feng
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Disease, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, PR China
| | - Miaoqing Hu
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Disease, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, PR China
| | - Hao Wang
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Disease, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, PR China
| | - Shen Song
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Disease, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, PR China
| | - Yifan Xie
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Disease, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, PR China
| | - Ziwei Chen
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Disease, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, PR China
| | - Jiajun Zhong
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Disease, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, PR China
- Department of Cardiac Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, PR China
| | - Hong Lian
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Disease, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, PR China
| | - Zhiwei Yang
- National Health Commission Key Laboratory of Human Disease Comparative Medicine, Institute of Laboratory Animal Sciences, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, PR China
| | - Yuhui Zhang
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Disease, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, PR China
| | - Yu Nie
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Disease, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, PR China.
- National Health Commission Key Laboratory of Cardiovascular Regenerative Medicine, Fuwai Central-China Hospital, Central China Branch of National Center for Cardiovascular Diseases, Zhengzhou, PR China.
- Shenzhen Key Laboratory of Cardiovascular Disease, Fuwai Hospital Chinese Academy of Medical Sciences, Shenzhen, PR China.
| |
Collapse
|
7
|
Dittrich A, Andersson SA, Busk M, Hansen K, Foldager CB, Palmfeldt J, Andersen A, Pedersen M, Vendelbo M, Nielsen KL, Lauridsen H. Metabolic changes during cardiac regeneration in the axolotl. Dev Dyn 2025. [PMID: 40119743 DOI: 10.1002/dvdy.70020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Revised: 01/11/2025] [Accepted: 02/26/2025] [Indexed: 03/24/2025] Open
Abstract
BACKGROUND The axolotl is a prominent model organism of heart regeneration due to its ability to anatomically and functionally repair the heart after an injury that mimics human myocardial infarction. In humans, such an injury leads to permanent scarring. Cardiac regeneration has been linked to metabolism and the oxygenation state, but so far, these factors remain to be detailed in the axolotl model. In this descriptive study, we have investigated metabolic changes that occurred during cardiac regeneration in the axolotl. RESULTS We describe systemic and local cardiac metabolic changes after injury involving an early upregulation of glucose uptake and nucleotide biosynthesis followed by a later increase in acetate uptake. We detect several promising factors and metabolites for future studies and show that, unlike other popular animal models capable of intrinsic regeneration, the axolotl maintains its cardiac regenerative ability under hyperoxic conditions. CONCLUSIONS Axolotls undergo dynamic metabolic changes during the process of heart regeneration and display a robust reparative response to cardiac cryo-injury, which is unaffected by hyperoxia.
Collapse
Affiliation(s)
- Anita Dittrich
- Comparative Medicine Lab, Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | - Sofie Amalie Andersson
- Comparative Medicine Lab, Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | - Morten Busk
- Department of Clinical Medicine, Experimental Clinical Oncology, Aarhus University, Aarhus, Denmark
| | - Kasper Hansen
- Department of Forensic Medicine, Aarhus University, Aarhus, Denmark
| | - Casper Bindzus Foldager
- Comparative Medicine Lab, Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
- Orthopaedic Research Lab, Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | - Johan Palmfeldt
- Research Unit for Molecular Medicine, Department of Clinical Medicine, Aarhus University and Aarhus University Hospital, Aarhus, Denmark
| | - Asger Andersen
- Comparative Medicine Lab, Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
- Department of Cardiology, Aarhus University Hospital, Aarhus, Denmark
| | - Michael Pedersen
- Comparative Medicine Lab, Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | - Mikkel Vendelbo
- Department of Nuclear Medicine and PET-Center, Aarhus University Hospital, Aarhus, Denmark
- Department of Biomedicine, Aarhus University, Aarhus, Denmark
| | | | - Henrik Lauridsen
- Comparative Medicine Lab, Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| |
Collapse
|
8
|
Liang J, Jiang P, Yan S, Cheng T, Chen S, Xian K, Xu P, Xiong JW, He A, Li J, Han P. Genetically encoded tension heterogeneity sculpts cardiac trabeculation. SCIENCE ADVANCES 2025; 11:eads2998. [PMID: 40053597 PMCID: PMC11887796 DOI: 10.1126/sciadv.ads2998] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Accepted: 02/03/2025] [Indexed: 03/09/2025]
Abstract
The myocardial wall arises from a single layer of cardiomyocytes, some delaminate to create trabeculae while others remain in the compact layer. However, the mechanisms governing cardiomyocyte fate decisions remain unclear. Using single-cell RNA sequencing, genetically encoded biosensors, and in toto live imaging, we observe intrinsic variations in erbb2 expression and its association with trabecular fate. Specifically, erbb2 promotes PI3K activity and recruits the Arp2/3 complex, inducing a polarized accumulation of the actomyosin network to drive cell delamination. Subsequently, the lineage-committed nascent trabeculae trigger Notch activity in neighboring cardiomyocytes to suppress erbb2 expression and reduce cell tension, thereby confining them to the compact layer. Overall, this genetic and cellular interplay governs compact and trabecular cell fate determination to orchestrate myocardial pattern formation.
Collapse
Affiliation(s)
- Jinxiu Liang
- Department of Cardiology, Center for Genetic Medicine, the Fourth Affiliated Hospital, Zhejiang University School of Medicine, Yiwu, Zhejiang, China
- International School of Medicine, International Institutes of Medicine, Zhejiang University, Yiwu 322000, China
- Institute of Genetics, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Peijun Jiang
- Department of Cardiology, Center for Genetic Medicine, the Fourth Affiliated Hospital, Zhejiang University School of Medicine, Yiwu, Zhejiang, China
- International School of Medicine, International Institutes of Medicine, Zhejiang University, Yiwu 322000, China
- Institute of Genetics, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Shuaifang Yan
- Institute of Molecular Medicine, National Biomedical Imaging Center, College of Future Technology, Peking-Tsinghua Center for Life Sciences, Peking University, Beijing 100871, China
| | - Tao Cheng
- Department of Cardiology, Center for Genetic Medicine, the Fourth Affiliated Hospital, Zhejiang University School of Medicine, Yiwu, Zhejiang, China
- International School of Medicine, International Institutes of Medicine, Zhejiang University, Yiwu 322000, China
- Women's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Shuo Chen
- Department of Cardiology, Center for Genetic Medicine, the Fourth Affiliated Hospital, Zhejiang University School of Medicine, Yiwu, Zhejiang, China
- International School of Medicine, International Institutes of Medicine, Zhejiang University, Yiwu 322000, China
- Institute of Genetics, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Kexin Xian
- Institute of Molecular Medicine, National Biomedical Imaging Center, College of Future Technology, Peking-Tsinghua Center for Life Sciences, Peking University, Beijing 100871, China
| | - Pengfei Xu
- Department of Cardiology, Center for Genetic Medicine, the Fourth Affiliated Hospital, Zhejiang University School of Medicine, Yiwu, Zhejiang, China
- International School of Medicine, International Institutes of Medicine, Zhejiang University, Yiwu 322000, China
- Women's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Jing-Wei Xiong
- Beijing Key Laboratory of Cardiometabolic Molecular Medicine, Institute of Molecular Medicine, College of Future Technology, and State Key Laboratory of Natural and Biomimetic Drugs, Peking University, Beijing 100871, China
| | - Aibin He
- Institute of Molecular Medicine, National Biomedical Imaging Center, College of Future Technology, Peking-Tsinghua Center for Life Sciences, Peking University, Beijing 100871, China
| | - Jia Li
- Institute of Neuroscience, State Key Laboratory of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai 200031, China
| | - Peidong Han
- Department of Cardiology, Center for Genetic Medicine, the Fourth Affiliated Hospital, Zhejiang University School of Medicine, Yiwu, Zhejiang, China
- International School of Medicine, International Institutes of Medicine, Zhejiang University, Yiwu 322000, China
- Institute of Genetics, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| |
Collapse
|
9
|
Wang Y, Wang X, Fang J, Chen X, Xu T, Zhuang T, Peng S, Bao W, Wu W, Lu Y, Wang H, Tomlinson B, Chan P, Zhuang S, Zhang Q, Zhang L, Liu Z, Pi J, Zhang Y, Liu J. Cardiomyocyte Foxp1-Specific Deletion Promotes Post-injury Heart Regeneration via Targeting Usp20-HIF1ɑ-Hand1 Signaling Pathway. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025; 12:e2412124. [PMID: 39899693 PMCID: PMC11948019 DOI: 10.1002/advs.202412124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2024] [Revised: 12/19/2024] [Indexed: 02/05/2025]
Abstract
The adult mammalian heart has limited regenerative capacity to replace lost tissue after a major injury. Forkhead box P1 (Foxp1) regulates embryonic cardiomyocyte proliferation and heart development. However, whether Foxp1 participates in postnatal-injury cardiomyocyte proliferation and heart regeneration remains unclear. This study demonstrates that Foxp1 is downregulated at border zone cardiomyocytes of both neonatal apical resection and adult myocardial infarction. Analysis of the Single-cell transcriptome database reveals reduced Foxp1 expression in the cardiomyocyte population with high regenerative capacity. Cardiomyocyte-Foxp1 loss-of-function significantly promotes, whereas cardiomyocytes-Foxp1 gain-of-function suppresses cardiomyocyte proliferation. Mechanistically, Foxp1 directly regulates ubiquitin specific peptidase 20 (USP20), a de-ubiquitinase that prevents hypoxia inducible factor 1ɑ (HIF1α) degradation. Thus, Foxp1 regulates HIF1α and downstream heart and neural crest derivatives expressed 1 (Hand1) to control the cardiomyocyte proliferation via metabolic transition from fatty acid oxidation to glycolysis. Finally, cardiac type troponin T2 (cTnT)-promoter-driven adeno-associated virus 9 (AAV9) for Hand1 induction in cardiomyocytes significantly promoted cardiac regeneration and functional recovery. These findings may provide novel molecular strategies to promote heart regeneration and therapeutic interventions for heart failure.
Collapse
Affiliation(s)
- Yanfang Wang
- State Key Laboratory of Cardiovascular Diseases and Medical Innovation CenterShanghai Heart Failure Research CenterDepartment of Cardiovascular SurgeryShanghai East HospitalTongji University School of MedicineShanghai200120China
- Department of CardiologyThe First Affiliated Hospital of Wannan Medical College (Yijishan Hospital of Wannan Medical College)WuhuAnhui241001China
| | - Xiaoyu Wang
- State Key Laboratory of Cardiovascular Diseases and Medical Innovation CenterShanghai Heart Failure Research CenterDepartment of Cardiovascular SurgeryShanghai East HospitalTongji University School of MedicineShanghai200120China
| | - Ji Fang
- State Key Laboratory of Cardiovascular Diseases and Medical Innovation CenterShanghai Heart Failure Research CenterDepartment of Cardiovascular SurgeryShanghai East HospitalTongji University School of MedicineShanghai200120China
| | - Xiaoli Chen
- State Key Laboratory of Cardiovascular Diseases and Medical Innovation CenterShanghai Heart Failure Research CenterDepartment of Cardiovascular SurgeryShanghai East HospitalTongji University School of MedicineShanghai200120China
| | - Teng Xu
- State Key Laboratory of Cardiovascular Diseases and Medical Innovation CenterShanghai Heart Failure Research CenterDepartment of Cardiovascular SurgeryShanghai East HospitalTongji University School of MedicineShanghai200120China
- Institute of Translational MedicineBaotou Central HospitalBaotouInner Mongolia014040China
| | - Tao Zhuang
- State Key Laboratory of Cardiovascular Diseases and Medical Innovation CenterShanghai Heart Failure Research CenterDepartment of Cardiovascular SurgeryShanghai East HospitalTongji University School of MedicineShanghai200120China
- Department of Physiology and PathophysiologySchool of Basic Medical SciencesFudan UniversityShanghai200032China
| | - Sheng Peng
- Department of TraumaShanghai East HospitalTongji University School of MedicineShanghai200120China
| | - Wenzhen Bao
- State Key Laboratory of Cardiovascular Diseases and Medical Innovation CenterShanghai Heart Failure Research CenterDepartment of Cardiovascular SurgeryShanghai East HospitalTongji University School of MedicineShanghai200120China
| | - Wenrun Wu
- State Key Laboratory of Cardiovascular Diseases and Medical Innovation CenterShanghai Heart Failure Research CenterDepartment of Cardiovascular SurgeryShanghai East HospitalTongji University School of MedicineShanghai200120China
| | - Yushi Lu
- State Key Laboratory of Cardiovascular Diseases and Medical Innovation CenterShanghai Heart Failure Research CenterDepartment of Cardiovascular SurgeryShanghai East HospitalTongji University School of MedicineShanghai200120China
| | - Haikun Wang
- State Key Laboratory of Cardiovascular Diseases and Medical Innovation CenterShanghai Heart Failure Research CenterDepartment of Cardiovascular SurgeryShanghai East HospitalTongji University School of MedicineShanghai200120China
| | - Brian Tomlinson
- Faculty of MedicineMacau University of Science and TechnologyMacau SAR999078China
| | - Paul Chan
- Division of CardiologyDepartment of Internal MedicineWan Fang HospitalTaipei Medical UniversityTaipeiTaiwan11696China
| | - Shougang Zhuang
- Depeartment of NephrologyShanghai East HospitalShanghai200120China
- Department of MedicineRhode Island Hospital and Warren Alpert Medical School of Brown UniversityProvidenceRhode IslandUSA
| | - Qi Zhang
- State Key Laboratory of Cardiovascular Diseases and Medical Innovation CenterShanghai Heart Failure Research CenterDepartment of Cardiovascular SurgeryShanghai East HospitalTongji University School of MedicineShanghai200120China
| | - Lin Zhang
- State Key Laboratory of Cardiovascular Diseases and Medical Innovation CenterShanghai Heart Failure Research CenterDepartment of Cardiovascular SurgeryShanghai East HospitalTongji University School of MedicineShanghai200120China
| | - Zhongmin Liu
- State Key Laboratory of Cardiovascular Diseases and Medical Innovation CenterShanghai Heart Failure Research CenterDepartment of Cardiovascular SurgeryShanghai East HospitalTongji University School of MedicineShanghai200120China
| | - Jingjiang Pi
- State Key Laboratory of Cardiovascular Diseases and Medical Innovation CenterShanghai Heart Failure Research CenterDepartment of Cardiovascular SurgeryShanghai East HospitalTongji University School of MedicineShanghai200120China
- Shenzhen Ruipuxun Academy for Stem Cell and Regenerative MedicineShenzhenGuangdong518122China
| | - Yuzhen Zhang
- State Key Laboratory of Cardiovascular Diseases and Medical Innovation CenterShanghai Heart Failure Research CenterDepartment of Cardiovascular SurgeryShanghai East HospitalTongji University School of MedicineShanghai200120China
| | - Jie Liu
- State Key Laboratory of Cardiovascular Diseases and Medical Innovation CenterShanghai Heart Failure Research CenterDepartment of Cardiovascular SurgeryShanghai East HospitalTongji University School of MedicineShanghai200120China
- Shenzhen Ruipuxun Academy for Stem Cell and Regenerative MedicineShenzhenGuangdong518122China
| |
Collapse
|
10
|
Li Q, Zhao Y, Geng F, Tuniyazi X, Yu C, Lv H, Yang H, Zhang R. Identification and regulation of a novel leptin receptor-linked enhancer during zebrafish ventricle regeneration. Life Sci 2025; 363:123415. [PMID: 39864617 DOI: 10.1016/j.lfs.2025.123415] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2024] [Revised: 01/13/2025] [Accepted: 01/23/2025] [Indexed: 01/28/2025]
Abstract
AIMS Vertebrates vary greatly in their abilities to regenerate injured hearts. Zebrafish possess a remarkable capacity for cardiac regeneration, making them an excellent model for regeneration research. Recent studies have reported the activation and underlying regulatory mechanisms of leptin b (lepb) and the leptin b-linked enhancer (LEN) in injured hearts. However, the regenerative response activity of the leptin receptor (lepr) and its regulatory mechanisms still warrant further exploration. MATERIALS AND METHODS We identified a novel lepr-linked enhancer (leprEnh) and generated a stable transgenic zebrafish line for validation. We also employed a genetic ventricle ablation system to elucidate the mechanisms governing its activation. Immunofluorescence, in situ hybridization and confocal imaging of larvae treated with various inhibitors during ventricle regeneration were performed. KEY FINDINGS Our results revealed that both lepr expression and leprEnh-directed EGFP fluorescence were weakly expressed in the ventricle during early heart development but displayed a sharp increase after ventricle ablation. Strong injury response activity was also observed in the atrium. Furthermore, the regeneration-responsive activity was attenuated by hemodynamic force alteration and was modulated by Notch, ErbB2 and BMP signaling pathways. SIGNIFICANCE Our study sheds light on the regulation of lepr and leprEnh during heart regeneration and provide a basis for screening for novel therapeutic targets for myocardial infarction.
Collapse
Affiliation(s)
- Qi Li
- TaiKang Medical School (School of Basic Medical Sciences), Wuhan University, Wuhan, China
| | - Yan Zhao
- TaiKang Medical School (School of Basic Medical Sciences), Wuhan University, Wuhan, China
| | - Fang Geng
- School of Life Sciences, Fudan University, Shanghai, China
| | - Xiamisiya Tuniyazi
- TaiKang Medical School (School of Basic Medical Sciences), Wuhan University, Wuhan, China
| | - Chunxiao Yu
- TaiKang Medical School (School of Basic Medical Sciences), Wuhan University, Wuhan, China
| | - Hongbo Lv
- TaiKang Medical School (School of Basic Medical Sciences), Wuhan University, Wuhan, China
| | - Hongbo Yang
- Obstetrics and Gynecology Hospital, Institute of Reproduction and Development, Fudan University, Shanghai, China.
| | - Ruilin Zhang
- TaiKang Medical School (School of Basic Medical Sciences), Wuhan University, Wuhan, China; Hubei Provincial Key Laboratory of Developmentally Originated Disease, Wuhan, China.
| |
Collapse
|
11
|
Yang X, Zhou B. Unleashing metabolic power for axonal regeneration. Trends Endocrinol Metab 2025; 36:161-175. [PMID: 39069446 DOI: 10.1016/j.tem.2024.07.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Revised: 06/13/2024] [Accepted: 07/03/2024] [Indexed: 07/30/2024]
Abstract
Axon regeneration requires the mobilization of intracellular resources, including proteins, lipids, and nucleotides. After injury, neurons need to adapt their metabolism to meet the biosynthetic demands needed to achieve axonal regeneration. However, the exact contribution of cellular metabolism to this process remains elusive. Insights into the metabolic characteristics of proliferative cells may illuminate similar mechanisms operating in axon regeneration; therefore, unraveling previously unappreciated roles of metabolic adaptation is critical to achieving neuron regrowth, which is connected to the therapeutic strategies for neurological conditions necessitating nerve repairs, such as spinal cord injury and stroke. Here, we outline the metabolic role in axon regeneration and discuss factors enhancing nerve regrowth, highlighting potential novel metabolic treatments for restoring nerve function.
Collapse
Affiliation(s)
- Xiaoyan Yang
- Beijing Advanced Innovation Center for Big Data-Based Precision Medicine, Beihang University, Beijing 100191, China
| | - Bing Zhou
- Beijing Advanced Innovation Center for Big Data-Based Precision Medicine, Beihang University, Beijing 100191, China; School of Engineering Medicine, Beihang University, Beijing 100191, China.
| |
Collapse
|
12
|
Xu C, Wang S, Meng D, Wang M, Yan R, Dai Y. Neuregulin1 ameliorates metabolic dysfunction-associated fatty liver disease via the ERK/SIRT1 signaling pathways. BMC Gastroenterol 2025; 25:47. [PMID: 39885382 PMCID: PMC11783944 DOI: 10.1186/s12876-025-03632-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/08/2024] [Accepted: 01/20/2025] [Indexed: 02/01/2025] Open
Abstract
BACKGROUND Neuregulin (NRG) family is involved in energy metabolism, among which NRG1 is a neuregulin proved to play a protective role in MAFLD cells. But the presice echanism has not been fully illustrated. This study aimed to investigate the role of NRG1 via the ERK/SIRT1 signaling in the pathogenesis of MAFLD. METHODS C57BL/6 mice were fed with high-fat diet for 8 weeks, and then injected with NRG1 (0.3 mg/kg/d) and PD98059 (0.3 mg/kg/d) via tail vein for 5 weeks. HepG2 cells induced by oleic acid and palmitic acid were treated with 20ng/mL NRG1 and 10µmol/L PD98059. The changes of histopathological, biochemical indexes, inflammatory factors, lipid metabolism, apoptosis and autophagy parameters were measured. RESULTS The expressions of NRG1 in MAFLD cell and animal models were significantly lower than that in the control group. After the intervention of ERK inhibitor PD98059, the expression of NRG1 decreased significantly in vivo, but no significant change was observed in vitro. Moreover, NRG1 ameliorated hepatic steatosis, enhanced cell viability, reduced cell apoptosis, and attenuated liver injury both in vitro and in vivo. After NRG1 intervention, the expressions of ERBB2, ERBB3, p-ERK1/2, SIRT1 and p-FOXO1 as well as the LC3II/I ratio in MAFLD cells and liver tissues of MAFLD mice were significantly increased, while the expression of SREBP1c was decreased. The aforementioned therapeutic effect of NRG1 was lost after the intervention of PD98059. CONCLUSION NRG1 might play a protective role in the pathogenesis of MAFLD by activating the downstream ERK1/2 through ErbB2-ErbB3, which promotes the expression of SIRT1 and autophagy markers. This study might indicate a new therapeutic strategy for MAFLD.
Collapse
Affiliation(s)
- Chengan Xu
- Center for General Practice Medicine, Department of Infectious Diseases, Zhejiang Provincial People's Hospital (Affiliated People's Hospital, Hangzhou Medical College), Hangzhou, Zhejiang, China
| | - Shouhao Wang
- Hepatology Diagnosis and Treatment Center, Zhejiang Provincial Key Laboratory for Accurate Diagnosis and Treatment of Chronic Liver Diseases, The First Affiliated Hospital of Wenzhou Medical University, Ouhai District, Wenzhou, Zhejiang, 325035, China
| | - Di Meng
- Department of Thoracic Surgery, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, 310003, China
| | - Mingshan Wang
- Center for General Practice Medicine, Department of Infectious Diseases, Zhejiang Provincial People's Hospital (Affiliated People's Hospital, Hangzhou Medical College), Hangzhou, Zhejiang, China
| | - Rong Yan
- Center for General Practice Medicine, Department of Infectious Diseases, Zhejiang Provincial People's Hospital (Affiliated People's Hospital, Hangzhou Medical College), Hangzhou, Zhejiang, China
| | - Yining Dai
- Center for General Practice Medicine, Department of Infectious Diseases, Zhejiang Provincial People's Hospital (Affiliated People's Hospital, Hangzhou Medical College), Hangzhou, Zhejiang, China.
| |
Collapse
|
13
|
Wang X, Kulik K, Wan TC, Lough JW, Auchampach JA. Histone H2A.Z Deacetylation and Dedifferentiation in Infarcted/Tip60-depleted Cardiomyocytes. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2024.01.11.575312. [PMID: 38260622 PMCID: PMC10802610 DOI: 10.1101/2024.01.11.575312] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/24/2024]
Abstract
Myocardial infarction (MI) results in the loss of billions of cardiomyocytes (CMs), resulting in cardiac dysfunction. To re-muscularize injured myocardium, new CMs must be generated via renewed proliferation of surviving CMs. Approaches to induce proliferation of CMs after injury have been insufficient. Toward this end we are targeting the acetyltransferase Tip60, encoded by the Kat5 gene, based on the rationale that its pleiotropic functions combine to block CM proliferation at multiple checkpoints. We previously demonstrated that genetic depletion of Tip60 in a mouse model after MI reduces scarring, retains cardiac function, and activates the CM cell-cycle, although it remains unclear whether this culminates in the generation of daughter CMs. In order for pre-existing CMs in the adult heart to undergo proliferation, it has become accepted that they must first dedifferentiate, a process highlighted by loss of maturity, epithelial to mesenchymal transitioning (EMT), and reversion from fatty acid oxidation to glycolytic metabolism, accompanied by softening of the myocardial extracellular matrix (ECM). Based on recently published findings that Tip60 induces and maintains the differentiated state of hematopoietic stem cells and neurons via site-specific acetylation of the histone variant H2A.Z, we assessed levels of acetylated H2A.Z and dedifferentiation markers after depleting Tip60 in CMs post-MI. We report that genetic depletion of Tip60 from CMs after MI results in the near obliteration of acetylated H2A.Z in CM nuclei, accompanied by the altered expression of genes indicative of EMT induction, ECM softening, decreased fatty acid oxidation, and depressed expression of genes that regulate the TCA cycle. In accord with the possibility that site-specific acetylation of H2A.Z maintains adult CMs in a mature state of differentiation, CUT&Tag revealed enrichment of H2A.ZacK4/K7 in genetic motifs and in GO terms respectively associated with CM transcription factor binding and muscle development/differentiation. Along with our previous findings, these results support the notion that Tip60 has multiple targets in CMs that combine to maintain the differentiated state and prevent proliferation.
Collapse
Affiliation(s)
- Xinrui Wang
- Department of Pharmacology and Toxicology
- Cardiovascular Center Medical College of Wisconsin Milwaukee, WI 53226
| | - Katherine Kulik
- Department of Cell Biology Neurobiology and Anatomy
- Cardiovascular Center Medical College of Wisconsin Milwaukee, WI 53226
| | - Tina C. Wan
- Department of Pharmacology and Toxicology
- Cardiovascular Center Medical College of Wisconsin Milwaukee, WI 53226
| | - John W. Lough
- Department of Cell Biology Neurobiology and Anatomy
- Cardiovascular Center Medical College of Wisconsin Milwaukee, WI 53226
| | - John A. Auchampach
- Department of Pharmacology and Toxicology
- Cardiovascular Center Medical College of Wisconsin Milwaukee, WI 53226
| |
Collapse
|
14
|
Liu S, Deshmukh V, Meng F, Wang Y, Morikawa Y, Steimle JD, Li RG, Wang J, Martin JF. Microtubules Sequester Acetylated YAP in the Cytoplasm and Inhibit Heart Regeneration. Circulation 2025; 151:59-75. [PMID: 39185559 PMCID: PMC11671299 DOI: 10.1161/circulationaha.123.067646] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Accepted: 07/30/2024] [Indexed: 08/27/2024]
Abstract
BACKGROUND The Hippo pathway effector YAP (Yes-associated protein) plays an essential role in cardiomyocyte proliferation and heart regeneration. In response to physiological changes, YAP moves in and out of the nucleus. The pathophysiological mechanisms regulating YAP subcellular localization after myocardial infarction remain poorly defined. METHODS We identified YAP acetylation at site K265 by in vitro acetylation followed by mass spectrometry analysis. We used adeno-associated virus to express YAP-containing mutations that either abolished acetylation (YAP-K265R) or mimicked acetylation (YAP-K265Q) and studied how acetylation regulates YAP subcellular localization in mouse hearts. We generated a cell line with YAP-K265R mutation and investigated the protein-protein interactors by YAP immunoprecipitation followed by mass spectrometry, then validated the YAP interaction in neonatal rat ventricular myocytes. We examined colocalization of YAP and TUBA4A (tubulin α 4A) by superresolution imaging. Furthermore, we developed YAP-K265R and αMHC-MerCreMer (MCM); Yap-loxP/K265R mutant mice to examine the pathophysiological role of YAP acetylation in cardiomyocytes during cardiac regeneration. RESULTS We found that YAP is acetylated at K265 by CBP (CREB-binding protein)/P300 (E1A-binding protein P300) and is deacetylated by nicotinamide phosphoribosyltransferase/nicotinamide adenine dinucleotide/sirtuins axis in cardiomyocytes. After myocardial infarction, YAP acetylation is increased, which promotes YAP cytoplasmic localization. Compared with controls, mice that were genetically engineered to express a K265R mutation that prevents YAP K265 acetylation showed improved cardiac regenerative ability and increased YAP nuclear localization. Mechanistically, YAP acetylation facilitates its interaction with TUBA4A, a component of the microtubule network that sequesters acetylated YAP in the cytoplasm. After myocardial infarction, the microtubule network increased in cardiomyocytes, resulting in the accumulation of YAP in the cytoplasm. CONCLUSIONS After myocardial infarction, decreased sirtuin activity enriches YAP acetylation at K265. The growing TUBA4A network sequesters acetylated YAP within the cytoplasm, which is detrimental to cardiac regeneration.
Collapse
Affiliation(s)
- Shijie Liu
- Cardiomyocyte Renewal Laboratory, Texas Heart Institute, Houston, (S.L., Y.M., R.G.L., J.W., J.F.M.)
- Division of Molecular Cardiovascular Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH (S.L.)
| | - Vaibhav Deshmukh
- Department of Integrative Physiology, Baylor College of Medicine, Houston, TX (V.D., F.M., J.D.S., J.F.M.)
- Department of Cell Biology & Physiology, Washington University School of Medicine, St Louis, MO (V.D.)
| | - Fansen Meng
- Department of Integrative Physiology, Baylor College of Medicine, Houston, TX (V.D., F.M., J.D.S., J.F.M.)
| | | | - Yuka Morikawa
- Cardiomyocyte Renewal Laboratory, Texas Heart Institute, Houston, (S.L., Y.M., R.G.L., J.W., J.F.M.)
| | - Jeffrey D Steimle
- Department of Integrative Physiology, Baylor College of Medicine, Houston, TX (V.D., F.M., J.D.S., J.F.M.)
| | - Rich Gang Li
- Cardiomyocyte Renewal Laboratory, Texas Heart Institute, Houston, (S.L., Y.M., R.G.L., J.W., J.F.M.)
| | - Jun Wang
- Cardiomyocyte Renewal Laboratory, Texas Heart Institute, Houston, (S.L., Y.M., R.G.L., J.W., J.F.M.)
| | - James F Martin
- Cardiomyocyte Renewal Laboratory, Texas Heart Institute, Houston, (S.L., Y.M., R.G.L., J.W., J.F.M.)
- Department of Integrative Physiology, Baylor College of Medicine, Houston, TX (V.D., F.M., J.D.S., J.F.M.)
| |
Collapse
|
15
|
Bouwman M, de Bakker DEM, Honkoop H, Giovou AE, Versteeg D, Boender AR, Nguyen PD, Slotboom M, Colquhoun D, Vigil-Garcia M, Kooijman L, Janssen R, Hooijkaas IB, Günthel M, Visser KJ, Klerk M, Zentilin L, Giacca M, Kaslin J, Boink GJJ, van Rooij E, Christoffels VM, Bakkers J. Cross-species comparison reveals that Hmga1 reduces H3K27me3 levels to promote cardiomyocyte proliferation and cardiac regeneration. NATURE CARDIOVASCULAR RESEARCH 2025; 4:64-82. [PMID: 39747457 PMCID: PMC11738996 DOI: 10.1038/s44161-024-00588-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Accepted: 11/26/2024] [Indexed: 01/04/2025]
Abstract
In contrast to adult mammalian hearts, the adult zebrafish heart efficiently replaces cardiomyocytes lost after injury. Here we reveal shared and species-specific injury response pathways and a correlation between Hmga1, an architectural non-histone protein, and regenerative capacity, as Hmga1 is required and sufficient to induce cardiomyocyte proliferation and required for heart regeneration. In addition, Hmga1 was shown to reactivate developmentally silenced genes, likely through modulation of H3K27me3 levels, poising them for a pro-regenerative gene program. Furthermore, AAV-mediated Hmga1 expression in injured adult mouse hearts led to controlled cardiomyocyte proliferation in the border zone and enhanced heart function, without cardiomegaly and adverse remodeling. Histone modification mapping in mouse border zone cardiomyocytes revealed a similar modulation of H3K27me3 marks, consistent with findings in zebrafish. Our study demonstrates that Hmga1 mediates chromatin remodeling and drives a regenerative program, positioning it as a promising therapeutic target to enhance cardiac regeneration after injury.
Collapse
Affiliation(s)
- Mara Bouwman
- Hubrecht Institute, Royal Netherlands Academy of Arts and Sciences (KNAW) and University Medical Center Utrecht, Utrecht, The Netherlands
| | - Dennis E M de Bakker
- Hubrecht Institute, Royal Netherlands Academy of Arts and Sciences (KNAW) and University Medical Center Utrecht, Utrecht, The Netherlands
- Leibniz Institute on Aging, Fritz Lipmann Institute (FLI), Jena, Germany
| | - Hessel Honkoop
- Hubrecht Institute, Royal Netherlands Academy of Arts and Sciences (KNAW) and University Medical Center Utrecht, Utrecht, The Netherlands
| | - Alexandra E Giovou
- Department of Medical Biology, Amsterdam Cardiovascular Sciences, Amsterdam University Medical Centers, Amsterdam, The Netherlands
| | - Danielle Versteeg
- Hubrecht Institute, Royal Netherlands Academy of Arts and Sciences (KNAW) and University Medical Center Utrecht, Utrecht, The Netherlands
| | - Arie R Boender
- Department of Medical Biology, Amsterdam Cardiovascular Sciences, Amsterdam University Medical Centers, Amsterdam, The Netherlands
- PacingCure BV, Amsterdam, The Netherlands
| | - Phong D Nguyen
- Hubrecht Institute, Royal Netherlands Academy of Arts and Sciences (KNAW) and University Medical Center Utrecht, Utrecht, The Netherlands
- Institut Curie, Université PSL, CNRS UMR3215, INSERM U934, Paris, France
| | - Merel Slotboom
- Hubrecht Institute, Royal Netherlands Academy of Arts and Sciences (KNAW) and University Medical Center Utrecht, Utrecht, The Netherlands
| | - Daniel Colquhoun
- Australian Regenerative Medicine Institute, Monash University, Melbourne, VIC, Australia
| | - Marta Vigil-Garcia
- Hubrecht Institute, Royal Netherlands Academy of Arts and Sciences (KNAW) and University Medical Center Utrecht, Utrecht, The Netherlands
| | - Lieneke Kooijman
- Hubrecht Institute, Royal Netherlands Academy of Arts and Sciences (KNAW) and University Medical Center Utrecht, Utrecht, The Netherlands
| | - Rob Janssen
- Department of Medical Biology, Amsterdam Cardiovascular Sciences, Amsterdam University Medical Centers, Amsterdam, The Netherlands
| | - Ingeborg B Hooijkaas
- Department of Medical Biology, Amsterdam Cardiovascular Sciences, Amsterdam University Medical Centers, Amsterdam, The Netherlands
| | - Marie Günthel
- Department of Medical Biology, Amsterdam Cardiovascular Sciences, Amsterdam University Medical Centers, Amsterdam, The Netherlands
| | - Kimberly J Visser
- Hubrecht Institute, Royal Netherlands Academy of Arts and Sciences (KNAW) and University Medical Center Utrecht, Utrecht, The Netherlands
| | - Mischa Klerk
- Department of Medical Biology, Amsterdam Cardiovascular Sciences, Amsterdam University Medical Centers, Amsterdam, The Netherlands
| | - Lorena Zentilin
- International Centre for Genetic Engineering and Biotechnology (ICGEB), University of Trieste, Trieste, Italy
| | - Mauro Giacca
- International Centre for Genetic Engineering and Biotechnology (ICGEB), University of Trieste, Trieste, Italy
- School of Cardiovascular and Metabolic Medicine and Sciences, King's College London, London, UK
| | - Jan Kaslin
- Australian Regenerative Medicine Institute, Monash University, Melbourne, VIC, Australia
| | - Gerard J J Boink
- Department of Medical Biology, Amsterdam Cardiovascular Sciences, Amsterdam University Medical Centers, Amsterdam, The Netherlands
- PacingCure BV, Amsterdam, The Netherlands
- Department of Cardiology, Amsterdam Cardiovascular Sciences, Amsterdam University Medical Centers, Amsterdam, The Netherlands
| | - Eva van Rooij
- Hubrecht Institute, Royal Netherlands Academy of Arts and Sciences (KNAW) and University Medical Center Utrecht, Utrecht, The Netherlands
- Department of Cardiology, Division of Heart and Lungs, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Vincent M Christoffels
- Department of Medical Biology, Amsterdam Cardiovascular Sciences, Amsterdam University Medical Centers, Amsterdam, The Netherlands
| | - Jeroen Bakkers
- Hubrecht Institute, Royal Netherlands Academy of Arts and Sciences (KNAW) and University Medical Center Utrecht, Utrecht, The Netherlands.
- Department of Pediatric Cardiology, Division of Pediatrics, University Medical Center Utrecht, Utrecht, The Netherlands.
| |
Collapse
|
16
|
Long RRB, Bullingham OMN, Baylis B, Shaftoe JB, Dutcher JR, Gillis TE. The influence of triiodothyronine on the immune response and extracellular matrix remodeling during zebrafish heart regeneration. Comp Biochem Physiol A Mol Integr Physiol 2025; 299:111769. [PMID: 39490638 DOI: 10.1016/j.cbpa.2024.111769] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2024] [Revised: 09/30/2024] [Accepted: 10/01/2024] [Indexed: 11/05/2024]
Abstract
Damage to the human heart is an irreparable process that results in a permanent impairment in cardiac function. There are, however, a number of vertebrate species including zebrafish (Danio rerio) that can regenerate their hearts following significant injury. In contrast to these regenerative species, mammals are known to have high levels of thyroid hormones, which has been proposed to play a role in this difference in regenerative capacity. However, the mechanisms through which thyroid hormones effect heart regeneration are not fully understood. Here, zebrafish were exposed to exogenous triiodothyronine (T3) for two weeks and then their hearts were damaged through cryoinjury to investigate the effect of thyroid hormones on ECM remodeling and the components of the immune response during heart regeneration. Additionally, cardiac fibroblasts derived from trout, another species of fish known to display cardiac regenerative capacity, were exposed to T3in vitro to analyze any direct effects of T3 on collagen deposition. It was found that cryoinjury induction results in an increase in myocardial stiffness, but this response was muted in T3 exposed zebrafish. The measurement of relevant marker gene transcripts suggests that T3 exposure reduces the recruitment of macrophages to the damaged zebrafish heart immediately following injury but had no effect on the regulation of collagen deposition by cultured trout fibroblasts. These results suggest that T3 effects both the immune response and ECM remodeling in zebrafish following cardiac injury.
Collapse
Affiliation(s)
- Reece R B Long
- Department of Integrative Biology, University of Guelph, Guelph, Ontario, Canada
| | | | | | - Jared B Shaftoe
- Department of Integrative Biology, University of Guelph, Guelph, Ontario, Canada
| | | | - Todd E Gillis
- Department of Integrative Biology, University of Guelph, Guelph, Ontario, Canada.
| |
Collapse
|
17
|
Sada T, Kimura W. Transition from fetal to postnatal state in the heart: Crosstalk between metabolism and regeneration. Dev Growth Differ 2024; 66:438-451. [PMID: 39463005 DOI: 10.1111/dgd.12947] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2024] [Revised: 09/16/2024] [Accepted: 10/04/2024] [Indexed: 10/29/2024]
Abstract
Cardiovascular disease is the leading cause of mortality worldwide. Myocardial injury resulting from ischemia can be fatal because of the limited regenerative capacity of adult myocardium. Mammalian cardiomyocytes rapidly lose their proliferative capacities, with only a small fraction of adult myocardium remaining proliferative, which is insufficient to support post-injury recovery. Recent investigations have revealed that this decline in myocardial proliferative capacity is closely linked to perinatal metabolic shifts. Predominantly glycolytic fetal myocardial metabolism transitions towards mitochondrial fatty acid oxidation postnatally, which not only enables efficient production of ATP but also causes a dramatic reduction in cardiomyocyte proliferative capacity. Extensive research has elucidated the mechanisms behind this metabolic shift, as well as methods to modulate these metabolic pathways. Some of these methods have been successfully applied to enhance metabolic reprogramming and myocardial regeneration. This review discusses recently acquired insights into the interplay between metabolism and myocardial proliferation, emphasizing postnatal metabolic transitions.
Collapse
Affiliation(s)
- Tai Sada
- Laboratory for Heart Regeneration, RIKEN Center for Biosystems Dynamics Research, Kobe, Japan
| | - Wataru Kimura
- Laboratory for Heart Regeneration, RIKEN Center for Biosystems Dynamics Research, Kobe, Japan
| |
Collapse
|
18
|
Chen H, Su X, Li Y, Dang C, Luo Z. Identification of metabolic reprogramming-related genes as potential diagnostic biomarkers for diabetic nephropathy based on bioinformatics. Diabetol Metab Syndr 2024; 16:287. [PMID: 39609849 PMCID: PMC11603941 DOI: 10.1186/s13098-024-01531-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/21/2024] [Accepted: 11/14/2024] [Indexed: 11/30/2024] Open
Abstract
BACKGROUND Diabetic nephropathy (DN) is a serious complication of diabetes mellitus, marked by progressive renal damage. Recent evidence indicates that metabolic reprogramming is crucial to DN pathogenesis, yet its underlying mechanisms are not well understood. This study aimed to examine how metabolic reprogramming-related genes (MRRGs) are differentially expressed and to explore their potential mechanisms in the development of DN. METHODS We analyzed the datasets GSE30528 and GSE96804 from the Gene Expression Omnibus (GEO), comprising 50 DN samples and 33 controls. MRRGs were sourced from GeneCards and PubMed. Data preprocessing included batch effect correction using the R package sva, followed by normalization and differential expression analysis with limma (|logFC|> 0.5, adj.p < 0.05). Functional enrichment analyses (GO, KEGG, GSEA) were performed using clusterProfiler. Protein-protein interaction (PPI) networks were constructed via STRING, identifying hub genes through CytoHubba. Regulatory networks (mRNA-TF, mRNA-miRNA) were derived from ChIPBase and StarBase. Validation of hub genes and ROC analysis assessed diagnostic performance. ssGSEA quantified immune cell infiltration. RESULTS Our analysis identified 708 differentially expressed genes (DEGs), including 119 metabolic reprogramming-related DEGs (MRRDEGs). Enrichment analyses revealed significant roles for MRRDEGs in processes such as wound healing and pathways like MAPK signaling. The PPI network identified nine hub genes: FN1, CD44, KDR, EGF, HSPG2, HGF, FGF9, IGF1, and ALB, which exhibited high diagnostic accuracy (AUC 0.7 to 0.9). Notably, FN1 and CD44 showed significant association with renal fibrosis and could serve as potential biomarkers for early diagnosis and therapeutic targets in DN. Immune infiltration analysis showed notable differences in immune cell composition between DN and control samples. CONCLUSION This study identifies hub genes such as FN1 and CD44, with potential diagnostic value in DN. It also reveals immune cell infiltration differences between DN patients and controls, offering insights into disease progression and potential therapeutic targets.
Collapse
Affiliation(s)
- Hong Chen
- Department of Endocrinology, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
- Department of Nephrology, The Second People's Hospital of Qinzhou, Guangxi, China
| | - Xiaoxia Su
- Department of Nephrology, The Second People's Hospital of Qinzhou, Guangxi, China
| | - Yan Li
- Department of Endocrinology, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Cui Dang
- Department of Endocrinology, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Zuojie Luo
- Department of Endocrinology, The First Affiliated Hospital of Guangxi Medical University, Nanning, China.
| |
Collapse
|
19
|
Costa A, Hunkler HJ, Chatterjee S, Cushman S, Hilbold E, Xiao K, Lu D, Leonardy J, Juchem M, Sansonetti M, Hoepfner J, Thum T, Bär C. A reporter system for live cell tracking of human cardiomyocyte proliferation. Cardiovasc Res 2024; 120:1660-1663. [PMID: 39177246 PMCID: PMC11587551 DOI: 10.1093/cvr/cvae175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Revised: 04/03/2024] [Accepted: 06/19/2024] [Indexed: 08/24/2024] Open
Affiliation(s)
- Alessia Costa
- Institute of Molecular and Translational Therapeutic Strategies (IMTTS), Hannover Medical School, Carl Neuberg Str.1, Hannover 30625, Germany
- Centre for Translational Regenerative Medicine, Hannover Medical School, Carl Neuberg Str.1, Hannover 30625, Germany
| | - Hannah Jill Hunkler
- Institute of Molecular and Translational Therapeutic Strategies (IMTTS), Hannover Medical School, Carl Neuberg Str.1, Hannover 30625, Germany
| | - Shambhabi Chatterjee
- Institute of Molecular and Translational Therapeutic Strategies (IMTTS), Hannover Medical School, Carl Neuberg Str.1, Hannover 30625, Germany
- Centre for Translational Regenerative Medicine, Hannover Medical School, Carl Neuberg Str.1, Hannover 30625, Germany
- Fraunhofer Institute for Toxicology and Experimental Medicine (ITEM), Nikolai-Fuchs Str.1, Hannover 30625, Germany
| | - Sarah Cushman
- Institute of Molecular and Translational Therapeutic Strategies (IMTTS), Hannover Medical School, Carl Neuberg Str.1, Hannover 30625, Germany
| | - Erika Hilbold
- Institute of Molecular and Translational Therapeutic Strategies (IMTTS), Hannover Medical School, Carl Neuberg Str.1, Hannover 30625, Germany
| | - Ke Xiao
- Institute of Molecular and Translational Therapeutic Strategies (IMTTS), Hannover Medical School, Carl Neuberg Str.1, Hannover 30625, Germany
- Fraunhofer Institute for Toxicology and Experimental Medicine (ITEM), Nikolai-Fuchs Str.1, Hannover 30625, Germany
| | - Dongchao Lu
- Institute of Molecular and Translational Therapeutic Strategies (IMTTS), Hannover Medical School, Carl Neuberg Str.1, Hannover 30625, Germany
- Centre for Translational Regenerative Medicine, Hannover Medical School, Carl Neuberg Str.1, Hannover 30625, Germany
| | - Julia Leonardy
- Institute of Molecular and Translational Therapeutic Strategies (IMTTS), Hannover Medical School, Carl Neuberg Str.1, Hannover 30625, Germany
| | - Malte Juchem
- Institute of Molecular and Translational Therapeutic Strategies (IMTTS), Hannover Medical School, Carl Neuberg Str.1, Hannover 30625, Germany
- Fraunhofer Institute for Toxicology and Experimental Medicine (ITEM), Nikolai-Fuchs Str.1, Hannover 30625, Germany
| | - Marida Sansonetti
- Institute of Molecular and Translational Therapeutic Strategies (IMTTS), Hannover Medical School, Carl Neuberg Str.1, Hannover 30625, Germany
| | - Jeannine Hoepfner
- Institute of Molecular and Translational Therapeutic Strategies (IMTTS), Hannover Medical School, Carl Neuberg Str.1, Hannover 30625, Germany
| | - Thomas Thum
- Institute of Molecular and Translational Therapeutic Strategies (IMTTS), Hannover Medical School, Carl Neuberg Str.1, Hannover 30625, Germany
- Centre for Translational Regenerative Medicine, Hannover Medical School, Carl Neuberg Str.1, Hannover 30625, Germany
| | - Christian Bär
- Institute of Molecular and Translational Therapeutic Strategies (IMTTS), Hannover Medical School, Carl Neuberg Str.1, Hannover 30625, Germany
- Centre for Translational Regenerative Medicine, Hannover Medical School, Carl Neuberg Str.1, Hannover 30625, Germany
- Fraunhofer Institute for Toxicology and Experimental Medicine (ITEM), Nikolai-Fuchs Str.1, Hannover 30625, Germany
| |
Collapse
|
20
|
Chen X, Zhong X, Huang GN. Heart regeneration from the whole-organism perspective to single-cell resolution. NPJ Regen Med 2024; 9:34. [PMID: 39548113 PMCID: PMC11568173 DOI: 10.1038/s41536-024-00378-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Accepted: 10/29/2024] [Indexed: 11/17/2024] Open
Abstract
Cardiac regenerative potential in the animal kingdom displays striking divergence across ontogeny and phylogeny. Here we discuss several fundamental questions in heart regeneration and provide both a holistic view of heart regeneration in the organism as a whole, as well as a single-cell perspective on intercellular communication among diverse cardiac cell populations. We hope to provide valuable insights that advance our understanding of organ regeneration and future therapeutic strategies.
Collapse
Affiliation(s)
- Xiaoxin Chen
- Cardiovascular Research Institute and Department of Physiology, University of California, San Francisco, San Francisco, CA, USA
- Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California, San Francisco, San Francisco, CA, USA
- Bakar Aging Research Institute, University of California, San Francisco, San Francisco, CA, USA
| | - Xiaochen Zhong
- Cardiovascular Research Institute and Department of Physiology, University of California, San Francisco, San Francisco, CA, USA
- Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California, San Francisco, San Francisco, CA, USA
- Bakar Aging Research Institute, University of California, San Francisco, San Francisco, CA, USA
| | - Guo N Huang
- Cardiovascular Research Institute and Department of Physiology, University of California, San Francisco, San Francisco, CA, USA.
- Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California, San Francisco, San Francisco, CA, USA.
- Bakar Aging Research Institute, University of California, San Francisco, San Francisco, CA, USA.
| |
Collapse
|
21
|
Duca S, Xia Y, Abd Elmagid L, Bakis I, Qiu M, Cao Y, Guo Y, Eichenbaum JV, McCain ML, Kang J, Harrison MRM, Cao J. Differential vegfc expression dictates lymphatic response during zebrafish heart development and regeneration. Development 2024; 151:dev202947. [PMID: 39514676 PMCID: PMC11607685 DOI: 10.1242/dev.202947] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Accepted: 10/21/2024] [Indexed: 11/16/2024]
Abstract
Vascular endothelial growth factor C (Vegfc) is crucial for lymphatic and blood vessel development, yet its cellular sources and specific functions in heart development remain unclear. To address this, we created a vegfc reporter and an inducible overexpression line in zebrafish. We found vegfc expression in large coronary arteries, circulating thrombocytes, cardiac adipocytes, and outflow tract smooth muscle cells. Notably, although coronary lymphangiogenesis aligns with Vegfc-expressing arteries in juveniles, it occurs only after coronary artery formation. Vegfc overexpression induced ectopic lymphatics on the ventricular surface prior to arterial formation, indicating that Vegfc abundance, rather than arterial presence, drives lymphatic development. However, this overexpression did not affect coronary artery coverage, suggesting a specific role for Vegfc in lymphatic, rather than arterial, development. Thrombocytes emerged as the initial Vegfc source during inflammation following heart injuries, transitioning to endocardial and myocardial expression during regeneration. Lower Vegfc levels in an amputation model corresponded with a lack of lymphatic expansion. Importantly, Vegfc overexpression enhanced lymphatic expansion and promoted scar resolution without affecting cardiomyocyte proliferation, highlighting its role in regulating lymphangiogenesis and promoting heart regeneration.
Collapse
Affiliation(s)
- Sierra Duca
- Cardiovascular Research Institute, Weill Cornell Medicine, 1300 York Avenue, New York, NY 10021, USA
- Department of Cell and Developmental Biology, Weill Cornell Medicine, 1300 York Avenue, New York, NY 10021, USA
| | - Yu Xia
- Cardiovascular Research Institute, Weill Cornell Medicine, 1300 York Avenue, New York, NY 10021, USA
- Department of Cell and Developmental Biology, Weill Cornell Medicine, 1300 York Avenue, New York, NY 10021, USA
| | - Laila Abd Elmagid
- Cardiovascular Research Institute, Weill Cornell Medicine, 1300 York Avenue, New York, NY 10021, USA
- Department of Cell and Developmental Biology, Weill Cornell Medicine, 1300 York Avenue, New York, NY 10021, USA
| | - Isaac Bakis
- Cardiovascular Research Institute, Weill Cornell Medicine, 1300 York Avenue, New York, NY 10021, USA
- Department of Cell and Developmental Biology, Weill Cornell Medicine, 1300 York Avenue, New York, NY 10021, USA
| | - Miaoyan Qiu
- Cardiovascular Research Institute, Weill Cornell Medicine, 1300 York Avenue, New York, NY 10021, USA
- Department of Cell and Developmental Biology, Weill Cornell Medicine, 1300 York Avenue, New York, NY 10021, USA
| | - Yingxi Cao
- Cardiovascular Research Institute, Weill Cornell Medicine, 1300 York Avenue, New York, NY 10021, USA
- Department of Cell and Developmental Biology, Weill Cornell Medicine, 1300 York Avenue, New York, NY 10021, USA
| | - Ylan Guo
- Cardiovascular Research Institute, Weill Cornell Medicine, 1300 York Avenue, New York, NY 10021, USA
- Department of Cell and Developmental Biology, Weill Cornell Medicine, 1300 York Avenue, New York, NY 10021, USA
| | - James V. Eichenbaum
- Alfred E. Mann Department of Biomedical Engineering, Viterbi School of Engineering, University of Southern California, Los Angeles, CA 90033, USA
| | - Megan L. McCain
- Alfred E. Mann Department of Biomedical Engineering, Viterbi School of Engineering, University of Southern California, Los Angeles, CA 90033, USA
- Department of Stem Cell Biology and Regenerative Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
| | - Junsu Kang
- Department of Cell and Regenerative Biology, School of Medicine and Public Health, University of Wisconsin – Madison, Madison, WI 53705, USA
| | - Michael R. M. Harrison
- Cardiovascular Research Institute, Weill Cornell Medicine, 1300 York Avenue, New York, NY 10021, USA
- Department of Cell and Developmental Biology, Weill Cornell Medicine, 1300 York Avenue, New York, NY 10021, USA
| | - Jingli Cao
- Cardiovascular Research Institute, Weill Cornell Medicine, 1300 York Avenue, New York, NY 10021, USA
- Department of Cell and Developmental Biology, Weill Cornell Medicine, 1300 York Avenue, New York, NY 10021, USA
| |
Collapse
|
22
|
Shin K, Rodriguez-Parks A, Kim C, Silaban IM, Xia Y, Sun J, Dong C, Keles S, Wang J, Cao J, Kang J. Harnessing the regenerative potential of interleukin11 to enhance heart repair. Nat Commun 2024; 15:9666. [PMID: 39516197 PMCID: PMC11549343 DOI: 10.1038/s41467-024-54060-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Accepted: 10/31/2024] [Indexed: 11/16/2024] Open
Abstract
Balancing between regenerative processes and fibrosis is crucial for heart repair, yet strategies regulating this balance remain a barrier to developing therapies. The role of Interleukin 11 (IL11) in heart regeneration remains controversial, as both regenerative and fibrotic functions have been reported. We uncovered that il11a, an Il11 homolog in zebrafish, can trigger robust regenerative programs in zebrafish hearts, including cardiomyocytes proliferation and coronary expansion, even in the absence of injury. Notably, il11a induction in uninjured hearts also activates the quiescent epicardium to produce epicardial progenitor cells, which later differentiate into cardiac fibroblasts. Consequently, prolonged il11a induction indirectly leads to persistent fibroblast emergence, resulting in cardiac fibrosis. While deciphering the regenerative and fibrotic effects of il11a, we found that il11-dependent fibrosis, but not regeneration, is mediated through ERK activity, suggesting to potentially uncouple il11a dual effects on regeneration and fibrosis. To harness the il11a's regenerative ability, we devised a combinatorial treatment through il11a induction with ERK inhibition. This approach enhances cardiomyocyte proliferation with mitigated fibrosis, achieving a balance between regenerative processes and fibrosis. Thus, we unveil the mechanistic insights into regenerative il11 roles, offering therapeutic avenues to foster cardiac repair without exacerbating fibrosis.
Collapse
Grants
- R01HL166518 U.S. Department of Health & Human Services | NIH | National Heart, Lung, and Blood Institute (NHLBI)
- R01 HL142762 NHLBI NIH HHS
- P30 CA014520 NCI NIH HHS
- R01 HL155607 NHLBI NIH HHS
- R01HL151522 U.S. Department of Health & Human Services | NIH | National Heart, Lung, and Blood Institute (NHLBI)
- R01HL142762 U.S. Department of Health & Human Services | NIH | National Heart, Lung, and Blood Institute (NHLBI)
- P30CA014520 U.S. Department of Health & Human Services | NIH | National Cancer Institute (NCI)
- R01HL155607 U.S. Department of Health & Human Services | NIH | National Heart, Lung, and Blood Institute (NHLBI)
- R35GM137878 U.S. Department of Health & Human Services | NIH | National Institute of General Medical Sciences (NIGMS)
- R35 GM137878 NIGMS NIH HHS
- R01 HL151522 NHLBI NIH HHS
- R01 HL166518 NHLBI NIH HHS
- U.S. Department of Health & Human Services | NIH | National Heart, Lung, and Blood Institute (NHLBI)
- U.S. Department of Health & Human Services | NIH | National Institute of General Medical Sciences (NIGMS)
- U.S. Department of Health & Human Services | NIH | National Cancer Institute (NCI)
- University of Wisconsin Institute for Clinical and Translational Research (UW ICTR) pilot grant
- Stem Cell and Regenerative Medicine Center Research Training Award
Collapse
Affiliation(s)
- Kwangdeok Shin
- Department of Cell and Regenerative Biology, School of Medicine and Public Health, University of Wisconsin - Madison, Madison, WI, USA
| | - Anjelica Rodriguez-Parks
- Department of Cell and Regenerative Biology, School of Medicine and Public Health, University of Wisconsin - Madison, Madison, WI, USA
| | - Chanul Kim
- Department of Cell and Regenerative Biology, School of Medicine and Public Health, University of Wisconsin - Madison, Madison, WI, USA
| | - Isabella M Silaban
- Department of Cell and Regenerative Biology, School of Medicine and Public Health, University of Wisconsin - Madison, Madison, WI, USA
| | - Yu Xia
- Cardiovascular Research Institute, Department of Cell and Developmental Biology, Weill Cornell Medical College, New York, NY, USA
| | - Jisheng Sun
- Cardiology Division, School of Medicine, Emory University, Atlanta, GA, USA
| | - Chenyang Dong
- Departments of Statistics and of Biostatistics and Medical Informatics, University of Wisconsin - Madison, Madison, WI, USA
| | - Sunduz Keles
- Departments of Statistics and of Biostatistics and Medical Informatics, University of Wisconsin - Madison, Madison, WI, USA
| | - Jinhu Wang
- Cardiology Division, School of Medicine, Emory University, Atlanta, GA, USA
| | - Jingli Cao
- Cardiovascular Research Institute, Department of Cell and Developmental Biology, Weill Cornell Medical College, New York, NY, USA
| | - Junsu Kang
- Department of Cell and Regenerative Biology, School of Medicine and Public Health, University of Wisconsin - Madison, Madison, WI, USA.
- UW Carbone Cancer Center, School of Medicine and Public Health, University of Wisconsin - Madison, Madison, WI, USA.
| |
Collapse
|
23
|
Cheng X, Ju J, Huang W, Duan Z, Han Y. cpt1b Regulates Cardiomyocyte Proliferation Through Modulation of Glutamine Synthetase in Zebrafish. J Cardiovasc Dev Dis 2024; 11:344. [PMID: 39590187 PMCID: PMC11594654 DOI: 10.3390/jcdd11110344] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Revised: 10/11/2024] [Accepted: 10/14/2024] [Indexed: 11/28/2024] Open
Abstract
Carnitine palmitoyltransferase 1b (Cpt1b) is a crucial rate-limiting enzyme in fatty acid metabolism, but its role and mechanism in early cardiac development remains unclear. Here, we show that cpt1b regulates cardiomyocyte proliferation during zebrafish development. Knocking out entire cpt1b coding sequences leads to impaired cardiomyocyte proliferation, while cardiomyocyte-specific overexpression of cpt1b promotes cardiomyocyte proliferation. RNA sequencing analysis and pharmacological studies identified glutamine synthetase as a key downstream effector of cpt1b in regulating cardiomyocyte proliferation. Our study elucidates a novel mechanism whereby cpt1b promotes zebrafish cardiomyocyte proliferation through glutamine synthetase, which provides new perspectives on the significance of fatty acid metabolism in heart development and the interplay between fatty acid and amino acid metabolic pathways.
Collapse
Affiliation(s)
| | | | | | | | - Yanchao Han
- Institute for Cardiovascular Science and Department of Cardiovascular Surgery of the First Affiliated Hospital of Soochow University, Suzhou Medical College, Soochow University, Suzhou 215000, China
| |
Collapse
|
24
|
Fiorino E, Rossin D, Vanni R, Aubry M, Giachino C, Rastaldo R. Recent Insights into Endogenous Mammalian Cardiac Regeneration Post-Myocardial Infarction. Int J Mol Sci 2024; 25:11747. [PMID: 39519298 PMCID: PMC11546116 DOI: 10.3390/ijms252111747] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2024] [Revised: 10/29/2024] [Accepted: 10/30/2024] [Indexed: 11/16/2024] Open
Abstract
Myocardial infarction (MI) is a critical global health issue and a leading cause of heart failure. Indeed, while neonatal mammals can regenerate cardiac tissue mainly through cardiomyocyte proliferation, this ability is lost shortly after birth, resulting in the adult heart's inability to regenerate after injury effectively. In adult mammals, the adverse cardiac remodelling, which compensates for the loss of cardiac cells, impairs cardiac function due to the non-contractile nature of fibrotic tissue. Moreover, the neovascularisation after MI is inadequate to restore blood flow to the infarcted myocardium. This review aims to synthesise the most recent insights into the molecular and cellular players involved in endogenous myocardial and vascular regeneration, facilitating the identification of mechanisms that could be targeted to trigger cardiac regeneration, reduce fibrosis, and improve functional recovery post-MI. Reprogramming adult cardiomyocytes to regain their proliferative potential, along with the modulation of target cells responsible for neovascularisation, represents promising therapeutic strategies. An updated overview of endogenous mechanisms that regulate both myocardial and coronary vasculature regeneration-including stem and progenitor cells, growth factors, cell cycle regulators, and key signalling pathways-could help identify new critical intervention points for therapeutic applications.
Collapse
Affiliation(s)
| | | | | | | | | | - Raffaella Rastaldo
- Department of Clinical and Biological Sciences, University of Turin, Regione Gonzole 10, 10043 Orbassano, Italy; (E.F.); (D.R.); (R.V.); (M.A.); (C.G.)
| |
Collapse
|
25
|
Li Z, Dong X, Zhuang L, Jia K, Cheng H, Sun H, Cui Y, Ma W, Wei K, Zhang P, Xie H, Yi L, Chen Z, Lu L, Li T, Zhang R, Yan X. The de novo purine synthesis enzyme Adssl1 promotes cardiomyocyte proliferation and cardiac regeneration. Sci Signal 2024; 17:eadn3285. [PMID: 39471248 DOI: 10.1126/scisignal.adn3285] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Accepted: 10/08/2024] [Indexed: 11/01/2024]
Abstract
There is a short window during which the neonatal heart has the proliferative capacity to completely repair damage, an ability that is lost in adulthood. Inducing proliferation in adult cardiomyocytes by reactivating cell cycle reentry after myocardial infarction (MI) improves cardiac function. De novo purine synthesis is a critical source of nucleotides for cell proliferation. Here, using loss- and gain-of-function genetic approaches, we explored the role of the muscle-specific de novo purine synthesis enzyme Adssl1 in cardiac regeneration. Deletion of Adssl1 in mouse neonatal hearts reduced cardiomyocyte proliferation and attenuated heart regeneration after apical resection. Conversely, cardiomyocyte-specific Adssl1 overexpression extended the postnatal regenerative window and induced robust cell cycle reentry after MI, which decreased fibrotic scar size and improved cardiac function. RNA sequencing analysis suggested that Adssl1 overexpression induced strong dedifferentiation and cell cycle entry. Moreover, LC-MS/MS analysis showed that Adssl1 overexpression was associated with increased amounts of purine metabolites, including inosine, which is in clinical use. Administration of exogenous inosine promoted cardiac repair after MI in adult mice. At a molecular level, the increase in purine metabolite production mediated by Adssl1 enhanced the activity of the proliferation-promoting mTORC1 pathway. Our study identifies a role for Adssl1 in supporting cardiomyocyte proliferation and cardiac regeneration.
Collapse
Affiliation(s)
- Zhigang Li
- Department of Cardiovascular Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, PR China
- Institute of Cardiovascular Diseases, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, PR China
| | - Xiaxi Dong
- Department of Cardiovascular Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, PR China
- Institute of Cardiovascular Diseases, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, PR China
| | - Lingfang Zhuang
- Department of Cardiovascular Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, PR China
- Institute of Cardiovascular Diseases, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, PR China
| | - Kangni Jia
- Department of Cardiovascular Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, PR China
- Institute of Cardiovascular Diseases, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, PR China
| | - Haomai Cheng
- Department of Cardiovascular Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, PR China
- Institute of Cardiovascular Diseases, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, PR China
| | - Hang Sun
- Department of Cardiovascular Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, PR China
- Institute of Cardiovascular Diseases, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, PR China
| | - Yuke Cui
- Department of Cardiovascular Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, PR China
- Institute of Cardiovascular Diseases, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, PR China
| | - Wenqi Ma
- Department of Cardiovascular Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, PR China
- Institute of Cardiovascular Diseases, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, PR China
| | - Keying Wei
- Department of Cardiovascular Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, PR China
- Institute of Cardiovascular Diseases, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, PR China
| | - Pupu Zhang
- Department of Cardiovascular Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, PR China
- Institute of Cardiovascular Diseases, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, PR China
| | - Hongyang Xie
- Department of Cardiovascular Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, PR China
- Institute of Cardiovascular Diseases, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, PR China
| | - Lei Yi
- Department of Cardiovascular Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, PR China
- Institute of Cardiovascular Diseases, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, PR China
| | - Zhiyong Chen
- Department of Cardiovascular Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, PR China
- Institute of Cardiovascular Diseases, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, PR China
| | - Lin Lu
- Department of Cardiovascular Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, PR China
- Institute of Cardiovascular Diseases, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, PR China
| | - Tao Li
- Department of Anesthesiology, Laboratory of Mitochondrial Metabolism and Perioperative Medicine, West China Hospital, Sichuan University, Chengdu 610041, PR China
| | - Ruiyan Zhang
- Department of Cardiovascular Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, PR China
- Institute of Cardiovascular Diseases, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, PR China
| | - Xiaoxiang Yan
- Department of Cardiovascular Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, PR China
- Institute of Cardiovascular Diseases, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, PR China
| |
Collapse
|
26
|
Chen YX, Zhao AR, Wei TW, Wang H, Wang LS. Progress of Mitochondrial Function Regulation in Cardiac Regeneration. J Cardiovasc Transl Res 2024; 17:1097-1105. [PMID: 38647881 DOI: 10.1007/s12265-024-10514-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Accepted: 04/11/2024] [Indexed: 04/25/2024]
Abstract
Heart failure and myocardial infarction, global health concerns, stem from limited cardiac regeneration post-injury. Myocardial infarction, typically caused by coronary artery blockage, leads to cardiac muscle cell damage, progressing to heart failure. Addressing the adult heart's minimal self-repair capability is crucial, highlighting cardiac regeneration research's importance. Studies reveal a metabolic shift from anaerobic glycolysis to oxidative phosphorylation in neonates as a key factor in impaired cardiac regeneration, with mitochondria being central. The heart's high energy demands rely on a robust mitochondrial network, essential for cellular energy, cardiac health, and regenerative capacity. Mitochondria's influence extends to redox balance regulation, signaling molecule interactions, and apoptosis. Changes in mitochondrial morphology and quantity also impact cardiac cell regeneration. This article reviews mitochondria's multifaceted role in cardiac regeneration, particularly in myocardial infarction and heart failure models. Understanding mitochondrial function in cardiac regeneration aims to enhance myocardial infarction and heart failure treatment methods and insights.
Collapse
Affiliation(s)
- Yi-Xi Chen
- Department of Cardiology, the First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, China
| | - An-Ran Zhao
- Department of Cardiology, the First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, China
| | - Tian-Wen Wei
- Department of Cardiology, the First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, China
| | - Hao Wang
- Department of Cardiology, the First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, China
| | - Lian-Sheng Wang
- Department of Cardiology, the First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, China.
| |
Collapse
|
27
|
Ellman DG, Bjerre FA, Bak ST, Mathiesen SB, Harvald EB, Jensen CH, Andersen DC. Protocol to achieve high-resolution single-cell transcriptomics of cardiomyocytes in multiple species. STAR Protoc 2024; 5:103194. [PMID: 39096494 PMCID: PMC11345562 DOI: 10.1016/j.xpro.2024.103194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 05/17/2024] [Accepted: 06/21/2024] [Indexed: 08/05/2024] Open
Abstract
Single-cell RNA sequencing (scRNA-seq) remains state-of-the-art for transcriptomic cell-mapping. Here, we provide a protocol to generate high-resolution scRNA-seq of rare cardiomyocyte populations (e.g., regenerating/dividing, etc.) from mouse and zebrafish hearts as well as induced pluripotent stem cells, collected in time to achieve detailed transcriptomic insight. We describe the serial steps of viability staining, methanol fixation, storage, and cell sorting to preserve RNA integrity suited for scRNA-seq as well as the quality assessment of the data as shown by examples. For complete details on the use and execution of this protocol, please refer to Bak et al.1.
Collapse
Affiliation(s)
- Ditte Gry Ellman
- Andersen Group, Department of Clinical Biochemistry, Odense University Hospital, 5000 Odense C, Denmark; Clinical Institute, University of Southern Denmark, 5230 Odense M, Denmark.
| | - Frederik Adam Bjerre
- Andersen Group, Department of Clinical Biochemistry, Odense University Hospital, 5000 Odense C, Denmark; Clinical Institute, University of Southern Denmark, 5230 Odense M, Denmark; Amplexa Genetics, 5000 Odense C, Denmark
| | - Sara Thornby Bak
- Andersen Group, Department of Clinical Biochemistry, Odense University Hospital, 5000 Odense C, Denmark; Clinical Institute, University of Southern Denmark, 5230 Odense M, Denmark
| | - Sabrina Bech Mathiesen
- Andersen Group, Department of Clinical Biochemistry, Odense University Hospital, 5000 Odense C, Denmark; Clinical Institute, University of Southern Denmark, 5230 Odense M, Denmark
| | - Eva Bang Harvald
- Andersen Group, Department of Clinical Biochemistry, Odense University Hospital, 5000 Odense C, Denmark; Clinical Institute, University of Southern Denmark, 5230 Odense M, Denmark
| | - Charlotte Harken Jensen
- Andersen Group, Department of Clinical Biochemistry, Odense University Hospital, 5000 Odense C, Denmark; Clinical Institute, University of Southern Denmark, 5230 Odense M, Denmark
| | - Ditte Caroline Andersen
- Andersen Group, Department of Clinical Biochemistry, Odense University Hospital, 5000 Odense C, Denmark; Clinical Institute, University of Southern Denmark, 5230 Odense M, Denmark.
| |
Collapse
|
28
|
Poss KD, Tanaka EM. Hallmarks of regeneration. Cell Stem Cell 2024; 31:1244-1261. [PMID: 39163854 PMCID: PMC11410156 DOI: 10.1016/j.stem.2024.07.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Revised: 06/12/2024] [Accepted: 07/24/2024] [Indexed: 08/22/2024]
Abstract
Regeneration is a heroic biological process that restores tissue architecture and function in the face of day-to-day cell loss or the aftershock of injury. Capacities and mechanisms for regeneration can vary widely among species, organs, and injury contexts. Here, we describe "hallmarks" of regeneration found in diverse settings of the animal kingdom, including activation of a cell source, initiation of regenerative programs in the source, interplay with supporting cell types, and control of tissue size and function. We discuss these hallmarks with an eye toward major challenges and applications of regenerative biology.
Collapse
Affiliation(s)
- Kenneth D Poss
- Duke Regeneration Center and Department of Cell Biology, Duke University School of Medicine, Durham, NC 27710, USA.
| | - Elly M Tanaka
- Institute of Molecular Biotechnology (IMBA), Austrian Academy of Sciences, Vienna Biocenter (VBC), 1030 Vienna, Austria.
| |
Collapse
|
29
|
Boulgakoff L, Sturny R, Olejnickova V, Sedmera D, Kelly RG, Miquerol L. Participation of ventricular trabeculae in neonatal cardiac regeneration leads to ectopic recruitment of Purkinje-like cells. NATURE CARDIOVASCULAR RESEARCH 2024; 3:1140-1157. [PMID: 39198628 DOI: 10.1038/s44161-024-00530-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Accepted: 07/30/2024] [Indexed: 09/01/2024]
Abstract
Unlike adult mammals, newborn mice can regenerate a functional heart after myocardial infarction; however, the precise origin of the newly formed cardiomyocytes and whether the distal part of the conduction system (the Purkinje fiber (PF) network) is properly formed in regenerated hearts remains unclear. PFs, as well as subendocardial contractile cardiomyocytes, are derived from trabeculae, transient myocardial ridges on the inner ventricular surface. Here, using connexin 40-driven genetic tracing, we uncover a substantial participation of the trabecular lineage in myocardial regeneration through dedifferentiation and proliferation. Concomitantly, regeneration disrupted PF network maturation, resulting in permanent PF hyperplasia and impaired ventricular conduction. Proliferation assays, genetic impairment of PF recruitment, lineage tracing and clonal analysis revealed that PF network hyperplasia results from excessive recruitment of PFs due to increased trabecular fate plasticity. These data indicate that PF network hyperplasia is a consequence of trabeculae participation in myocardial regeneration.
Collapse
Affiliation(s)
- Lucie Boulgakoff
- Aix-Marseille Université, CNRS UMR 7288, Developmental Biology Institute of Marseille, Marseille, France
| | - Rachel Sturny
- Aix-Marseille Université, CNRS UMR 7288, Developmental Biology Institute of Marseille, Marseille, France
| | - Veronika Olejnickova
- Charles University, First Faculty of Medicine, Institute of Anatomy, Prague, Czech Republic
| | - David Sedmera
- Charles University, First Faculty of Medicine, Institute of Anatomy, Prague, Czech Republic
| | - Robert G Kelly
- Aix-Marseille Université, CNRS UMR 7288, Developmental Biology Institute of Marseille, Marseille, France
| | - Lucile Miquerol
- Aix-Marseille Université, CNRS UMR 7288, Developmental Biology Institute of Marseille, Marseille, France.
| |
Collapse
|
30
|
Alanova P, Alan L, Opletalova B, Bohuslavova R, Abaffy P, Matejkova K, Holzerova K, Benak D, Kaludercic N, Menabo R, Di Lisa F, Ostadal B, Kolar F, Pavlinkova G. HIF-1α limits myocardial infarction by promoting mitophagy in mouse hearts adapted to chronic hypoxia. Acta Physiol (Oxf) 2024; 240:e14202. [PMID: 39016532 DOI: 10.1111/apha.14202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 05/24/2024] [Accepted: 07/04/2024] [Indexed: 07/18/2024]
Abstract
AIM The transcriptional factor HIF-1α is recognized for its contribution to cardioprotection against acute ischemia/reperfusion injury. Adaptation to chronic hypoxia (CH) is known to stabilize HIF-1α and increase myocardial ischemic tolerance. However, the precise role of HIF-1α in mediating the protective effect remains incompletely understood. METHODS Male wild-type (WT) mice and mice with partial Hif1a deficiency (hif1a +/-) were exposed to CH for 4 weeks, while their respective controls were kept under normoxic conditions. Subsequently, their isolated perfused hearts were subjected to ischemia/reperfusion to determine infarct size, while RNA-sequencing of isolated cardiomyocytes was performed. Mitochondrial respiration was measured to evaluate mitochondrial function, and western blots were performed to assess mitophagy. RESULTS We demonstrated enhanced ischemic tolerance in WT mice induced by adaptation to CH compared with their normoxic controls and chronically hypoxic hif1a +/- mice. Through cardiomyocyte bulk mRNA sequencing analysis, we unveiled significant reprogramming of cardiomyocytes induced by CH emphasizing mitochondrial processes. CH reduced mitochondrial content and respiration and altered mitochondrial ultrastructure. Notably, the reduced mitochondrial content correlated with enhanced autophagosome formation exclusively in chronically hypoxic WT mice, supported by an increase in the LC3-II/LC3-I ratio, expression of PINK1, and degradation of SQSTM1/p62. Furthermore, pretreatment with the mitochondrial division inhibitor (mdivi-1) abolished the infarct size-limiting effect of CH in WT mice, highlighting the key role of mitophagy in CH-induced cardioprotection. CONCLUSION These findings provide new insights into the contribution of HIF-1α to cardiomyocyte survival during acute ischemia/reperfusion injury by activating the selective autophagy pathway.
Collapse
Affiliation(s)
- Petra Alanova
- Laboratory of Developmental Cardiology, Institute of Physiology of the Czech Academy of Sciences, Prague, Czech Republic
| | - Lukas Alan
- Laboratory of Bioenergetics, Institute of Physiology of the Czech Academy of Sciences, Prague, Czech Republic
- Department of Biology, University of Padova, Padova, Italy
| | - Barbora Opletalova
- Laboratory of Developmental Cardiology, Institute of Physiology of the Czech Academy of Sciences, Prague, Czech Republic
- Faculty of Science, Charles University, Prague, Czech Republic
| | - Romana Bohuslavova
- Laboratory of Molecular Pathogenetics, Institute of Biotechnology, Czech Academy of Sciences, Vestec, Czechia
| | - Pavel Abaffy
- Laboratory of Gene Expression, Institute of Biotechnology, Czech Academy of Sciences, Vestec, Czechia
| | - Katerina Matejkova
- Laboratory of Molecular Pathogenetics, Institute of Biotechnology, Czech Academy of Sciences, Vestec, Czechia
| | - Kristyna Holzerova
- Laboratory of Developmental Cardiology, Institute of Physiology of the Czech Academy of Sciences, Prague, Czech Republic
| | - Daniel Benak
- Laboratory of Developmental Cardiology, Institute of Physiology of the Czech Academy of Sciences, Prague, Czech Republic
| | - Nina Kaludercic
- Department of Biomedical Sciences, University of Padova, Padova, Italy
- Neuroscience Institute, National Research Council of Italy (CNR), Padova, Italy
- Fondazione Istituto di Ricerca Pediatrica Città della Speranza (IRP), Padova, Italy
| | - Roberta Menabo
- Neuroscience Institute, National Research Council of Italy (CNR), Padova, Italy
| | - Fabio Di Lisa
- Department of Biomedical Sciences, University of Padova, Padova, Italy
- Neuroscience Institute, National Research Council of Italy (CNR), Padova, Italy
| | - Bohuslav Ostadal
- Laboratory of Developmental Cardiology, Institute of Physiology of the Czech Academy of Sciences, Prague, Czech Republic
| | - Frantisek Kolar
- Laboratory of Developmental Cardiology, Institute of Physiology of the Czech Academy of Sciences, Prague, Czech Republic
| | - Gabriela Pavlinkova
- Laboratory of Molecular Pathogenetics, Institute of Biotechnology, Czech Academy of Sciences, Vestec, Czechia
| |
Collapse
|
31
|
Youssef KK, Nieto MA. Epithelial-mesenchymal transition in tissue repair and degeneration. Nat Rev Mol Cell Biol 2024; 25:720-739. [PMID: 38684869 DOI: 10.1038/s41580-024-00733-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/26/2024] [Indexed: 05/02/2024]
Abstract
Epithelial-mesenchymal transitions (EMTs) are the epitome of cell plasticity in embryonic development and cancer; during EMT, epithelial cells undergo dramatic phenotypic changes and become able to migrate to form different tissues or give rise to metastases, respectively. The importance of EMTs in other contexts, such as tissue repair and fibrosis in the adult, has become increasingly recognized and studied. In this Review, we discuss the function of EMT in the adult after tissue damage and compare features of embryonic and adult EMT. Whereas sustained EMT leads to adult tissue degeneration, fibrosis and organ failure, its transient activation, which confers phenotypic and functional plasticity on somatic cells, promotes tissue repair after damage. Understanding the mechanisms and temporal regulation of different EMTs provides insight into how some tissues heal and has the potential to open new therapeutic avenues to promote repair or regeneration of tissue damage that is currently irreversible. We also discuss therapeutic strategies that modulate EMT that hold clinical promise in ameliorating fibrosis, and how precise EMT activation could be harnessed to enhance tissue repair.
Collapse
Affiliation(s)
| | - M Angela Nieto
- Instituto de Neurociencias (CSIC-UMH), Sant Joan d'Alacant, Spain.
- CIBERER, Centro de Investigación Biomédica en Red de Enfermedades Raras, ISCIII, Madrid, Spain.
| |
Collapse
|
32
|
Zhu W, Guo S, Sun J, Zhao Y, Liu C. Lactate and lactylation in cardiovascular diseases: current progress and future perspectives. Metabolism 2024; 158:155957. [PMID: 38908508 DOI: 10.1016/j.metabol.2024.155957] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 06/10/2024] [Accepted: 06/17/2024] [Indexed: 06/24/2024]
Abstract
Cardiovascular diseases (CVDs) are often linked to structural and functional impairments, such as heart defects and circulatory dysfunction, leading to compromised peripheral perfusion and heightened morbidity risks. Metabolic remodeling, particularly in the context of cardiac fibrosis and inflammation, is increasingly recognized as a pivotal factor in the pathogenesis of CVDs. Metabolic syndromes further predispose individuals to these conditions, underscoring the need to elucidate the metabolic underpinnings of CVDs. Lactate, a byproduct of glycolysis, is now recognized as a key molecule that connects cellular metabolism with the regulation of cellular activity. The transport of lactate between different cells is essential for metabolic homeostasis and signal transduction. Disruptions to lactate dynamics are implicated in various CVDs. Furthermore, lactylation, a novel post-translational modification, has been identified in cardiac cells, where it influences protein function and gene expression, thereby playing a significant role in CVD pathogenesis. In this review, we summarized recent advancements in understanding the role of lactate and lactylation in CVDs, offering fresh insights that could guide future research directions and therapeutic interventions. The potential of lactate metabolism and lactylation as innovative therapeutic targets for CVD is a promising avenue for exploration.
Collapse
Affiliation(s)
- Wengen Zhu
- Department of Cardiology, the First Affiliated Hospital of Sun Yat-Sen University, Guangzhou 510080, PR China; Key Laboratory of Assisted Circulation and Vascular Diseases, Chinese Academy of Medical Sciences, Guangzhou 510080, PR China.
| | - Siyu Guo
- Department of Cardiology, the First Affiliated Hospital of Sun Yat-Sen University, Guangzhou 510080, PR China; Key Laboratory of Assisted Circulation and Vascular Diseases, Chinese Academy of Medical Sciences, Guangzhou 510080, PR China
| | - Junyi Sun
- Department of Cardiology, the First Affiliated Hospital of Sun Yat-Sen University, Guangzhou 510080, PR China
| | - Yudan Zhao
- Department of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430023, PR China.
| | - Chen Liu
- Department of Cardiology, the First Affiliated Hospital of Sun Yat-Sen University, Guangzhou 510080, PR China; Key Laboratory of Assisted Circulation and Vascular Diseases, Chinese Academy of Medical Sciences, Guangzhou 510080, PR China.
| |
Collapse
|
33
|
Woo LA, Wintruba KL, Wissmann B, Tkachenko S, Kubicka E, Farber E, Engkvist O, Barrett I, Granberg KL, Plowright AT, Wolf MJ, Brautigan DL, Bekiranov S, Wang QD, Saucerman JJ. Multi-omic analysis reveals VEGFR2, PI3K, and JNK mediate the small molecule induction of human iPSC-derived cardiomyocyte proliferation. iScience 2024; 27:110485. [PMID: 39171295 PMCID: PMC11338145 DOI: 10.1016/j.isci.2024.110485] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Revised: 03/27/2024] [Accepted: 07/08/2024] [Indexed: 08/23/2024] Open
Abstract
Mammalian hearts lose their regenerative potential shortly after birth. Stimulating the proliferation of preexisting cardiomyocytes is a potential therapeutic strategy for cardiac damage. In a previous study, we identified 30 compounds that induced the bona-fide proliferation of human iPSC-derived cardiomyocytes (hiPSC-CM). Here, we selected five active compounds with diverse targets, including ALK5 and CB1R, and performed multi-omic analyses to identify common mechanisms mediating the cell cycle progression of hiPSC-CM. Transcriptome profiling revealed the top enriched pathways for all compounds including cell cycle, DNA repair, and kinesin pathways. Functional proteomic arrays found that the compounds collectively activated multiple receptor tyrosine kinases including ErbB2, IGF1R, and VEGFR2. Network analysis integrating common transcriptomic and proteomic signatures predicted that MAPK/PI3K pathways mediated compound responses. Furthermore, VEGFR2 negatively regulated endoreplication, enabling the completion of cell division. Thus, in this study, we applied high-content imaging and molecular profiling to establish mechanisms linking pro-proliferative agents to mechanisms of cardiomyocyte cell cycling.
Collapse
Affiliation(s)
- Laura A. Woo
- Department of Biomedical Engineering and Robert M. Berne Cardiovascular Research Center, University of Virginia, Charlottesville, VA 22903, USA
| | - Kaitlyn L. Wintruba
- Department of Biomedical Engineering and Robert M. Berne Cardiovascular Research Center, University of Virginia, Charlottesville, VA 22903, USA
| | - Bethany Wissmann
- Department of Biomedical Engineering and Robert M. Berne Cardiovascular Research Center, University of Virginia, Charlottesville, VA 22903, USA
| | - Svyatoslav Tkachenko
- Quantitative Health Sciences, Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, OH 44196, USA
| | - Ewa Kubicka
- Center for Cell Signaling, Department of Microbiology, Immunology & Cancer Biology, University of Virginia, Charlottesville, VA 22903, USA
| | - Emily Farber
- Department of Biochemistry and Molecular Genetics, University of Virginia, Charlottesville, VA 22903, USA
| | - Ola Engkvist
- Molecular AI, Discovery Sciences, R&D, AstraZeneca, 43150 Gothenburg, MöIndal, Sweden
| | - Ian Barrett
- Data Sciences & Quantitative Biology, Discovery Sciences, R&D, AstraZeneca, Cambridge CB40WG, England
| | - Kenneth L. Granberg
- Medicinal Chemistry, Research and Early Development, Cardiovascular, Renal and Metabolism, BioPharmaceuticals R&D, AstraZeneca, 43150 Gothenburg, MöIndal, Sweden
| | - Alleyn T. Plowright
- Medicinal Chemistry, Research and Early Development, Cardiovascular, Renal and Metabolism, BioPharmaceuticals R&D, AstraZeneca, 43150 Gothenburg, MöIndal, Sweden
| | - Matthew J. Wolf
- Department of Medicine and Robert M. Berne Cardiovascular Research Center, University of Virginia, Charlottesville, VA 22903, USA
| | - David L. Brautigan
- Center for Cell Signaling, Department of Microbiology, Immunology & Cancer Biology, University of Virginia, Charlottesville, VA 22903, USA
| | - Stefan Bekiranov
- Department of Biochemistry and Molecular Genetics, University of Virginia, Charlottesville, VA 22903, USA
| | - Qing-Dong Wang
- Bioscience Cardiovascular, Research and Early Development, Cardiovascular, Renal and Metabolism (CVRM), BioPharmaceuticals R&D, AstraZeneca, 43150 Gothenburg, MöIndal, Sweden
| | - Jeffrey J. Saucerman
- Department of Biomedical Engineering and Robert M. Berne Cardiovascular Research Center, University of Virginia, Charlottesville, VA 22903, USA
| |
Collapse
|
34
|
Devi K, Tomar MS, Barsain M, Shrivastava A, Moharana B. Regeneration capability of neonatal lung-derived decellularized extracellular matrix in an emphysema model. J Control Release 2024; 372:234-250. [PMID: 38821413 DOI: 10.1016/j.jconrel.2024.05.043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Revised: 05/21/2024] [Accepted: 05/22/2024] [Indexed: 06/02/2024]
Abstract
Impaired and limited alveolar regeneration upon injury advances pulmonary disorders and irreversibly affects millions of people worldwide. Adult mammals do not have a strong potential to regenerate functional lung tissues, while neonatal lungs robustly proliferate and regenerate the functional tissue within a week of birth upon injury. The differential composition of the extracellular matrix (ECM) of neonatal tissues favors cellular proliferation and migration, fostering lung regeneration. Regardless, conventional ECM therapies employ adult-derived tissues. Therefore, the potential differences in regenerative properties of adult and neonatal lung ECM were investigated using in vitro and in vivo lung emphysema model. Decellularization of the neonatal and adult lungs was performed using freeze-thaw cycle method. Decellularization process was structurally characterized using SEM and immunostaining. In vitro treatment of neonatal lung-derived ECM (NECM) significantly enhanced the cellular migration and proliferation compared to adult-lung derived ECM (AECM) treated cigarette smoke-extract (CSE)-stimulated A549 cells. Following the administration of AECM and NECM, we observed a significant decline in emphysematous features and an improvement in lung functions in NECM group. NECM treatment increased the ratio of HOPX+/SpC+ cells with an active proliferation in SpC+ cells shown by colocalization of SpC+/Ki67+ and SpC+/Brdu+ cells. Moreover, NECM treatment activated the Neureguline-1/Erbb2 signaling and fostered a regenerative environment by upregulating the expression of regenerative genes including FGF, WNTs and AXIN-2 as compared to AECM treatment. Our findings suggested the potential utilization of NECM as novel therapeutics in regenerative medicine, deviating from the conventional application of adult-derived ECM treatments in pre-clinical and clinical research.
Collapse
Affiliation(s)
- Kusum Devi
- Division of Pharmacology, CSIR-Central Drug Research Institute, Lucknow 226031, India; Academy of Scientific and Innovative Research, Kamla Nehru Nagar, Ghaziabad, UP, 201002, India
| | - Manendra Singh Tomar
- Centre for Advance Research (CFAR), Faculty of Medical Sciences, King George's Medical University, Lucknow, India
| | - Mohit Barsain
- Division of Pharmacology, CSIR-Central Drug Research Institute, Lucknow 226031, India
| | - Ashutosh Shrivastava
- Centre for Advance Research (CFAR), Faculty of Medical Sciences, King George's Medical University, Lucknow, India
| | - Baisakhi Moharana
- Division of Pharmacology, CSIR-Central Drug Research Institute, Lucknow 226031, India; Academy of Scientific and Innovative Research, Kamla Nehru Nagar, Ghaziabad, UP, 201002, India.
| |
Collapse
|
35
|
García-Poyatos C, Arora P, Calvo E, Marques IJ, Kirschke N, Galardi-Castilla M, Lembke C, Meer M, Fernández-Montes P, Ernst A, Haberthür D, Hlushchuk R, Vázquez J, Vermathen P, Enríquez JA, Mercader N. Cox7a1 controls skeletal muscle physiology and heart regeneration through complex IV dimerization. Dev Cell 2024; 59:1824-1841.e10. [PMID: 38701784 DOI: 10.1016/j.devcel.2024.04.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 01/30/2024] [Accepted: 04/12/2024] [Indexed: 05/05/2024]
Abstract
The oxidative phosphorylation (OXPHOS) system is intricately organized, with respiratory complexes forming super-assembled quaternary structures whose assembly mechanisms and physiological roles remain under investigation. Cox7a2l, also known as Scaf1, facilitates complex III and complex IV (CIII-CIV) super-assembly, enhancing energetic efficiency in various species. We examined the role of Cox7a1, another Cox7a family member, in supercomplex assembly and muscle physiology. Zebrafish lacking Cox7a1 exhibited reduced CIV2 formation, metabolic alterations, and non-pathological muscle performance decline. Additionally, cox7a1-/- hearts displayed a pro-regenerative metabolic profile, impacting cardiac regenerative response. The distinct phenotypic effects of cox7a1-/- and cox7a2l-/- underscore the diverse metabolic and physiological consequences of impaired supercomplex formation, emphasizing the significance of Cox7a1 in muscle maturation within the OXPHOS system.
Collapse
Affiliation(s)
- Carolina García-Poyatos
- Centro Nacional de Investigaciones Cardiovasculares Carlos III, Madrid, Spain; Centro de Investigación Biomédica en red en Fragilidad y Envejecimiento saludable (CIBERFES), Madrid, Spain
| | - Prateek Arora
- Department of Developmental Biology and Regeneration, Institute of Anatomy, University of Bern, Bern, Switzerland; Department for Biomedical Research, Cardiovascular Disease Program, University of Bern, Bern, Switzerland
| | - Enrique Calvo
- Centro Nacional de Investigaciones Cardiovasculares Carlos III, Madrid, Spain; Centro de Investigación Biomédica en red en Enfermedades Cardiovasculares (CIBERCV), Madrid, Spain
| | - Ines J Marques
- Department of Developmental Biology and Regeneration, Institute of Anatomy, University of Bern, Bern, Switzerland; Department for Biomedical Research, Cardiovascular Disease Program, University of Bern, Bern, Switzerland
| | - Nick Kirschke
- Department of Developmental Biology and Regeneration, Institute of Anatomy, University of Bern, Bern, Switzerland; Department for Biomedical Research, Cardiovascular Disease Program, University of Bern, Bern, Switzerland
| | | | - Carla Lembke
- Department of Developmental Biology and Regeneration, Institute of Anatomy, University of Bern, Bern, Switzerland; Department for Biomedical Research, Cardiovascular Disease Program, University of Bern, Bern, Switzerland
| | - Marco Meer
- Department of Developmental Biology and Regeneration, Institute of Anatomy, University of Bern, Bern, Switzerland; Department for Biomedical Research, Cardiovascular Disease Program, University of Bern, Bern, Switzerland
| | | | - Alexander Ernst
- Department of Developmental Biology and Regeneration, Institute of Anatomy, University of Bern, Bern, Switzerland
| | - David Haberthür
- MicroCT research group, Institute of Anatomy, University of Bern, Bern, Switzerland
| | - Ruslan Hlushchuk
- MicroCT research group, Institute of Anatomy, University of Bern, Bern, Switzerland
| | - Jesús Vázquez
- Centro Nacional de Investigaciones Cardiovasculares Carlos III, Madrid, Spain; Centro de Investigación Biomédica en red en Enfermedades Cardiovasculares (CIBERCV), Madrid, Spain
| | - Peter Vermathen
- University Institute of Diagnostic and Interventional Neuroradiology, Magnetic Resonance Methodology, University of Bern, Bern, Switzerland
| | - José Antonio Enríquez
- Centro Nacional de Investigaciones Cardiovasculares Carlos III, Madrid, Spain; Centro de Investigación Biomédica en red en Fragilidad y Envejecimiento saludable (CIBERFES), Madrid, Spain.
| | - Nadia Mercader
- Centro Nacional de Investigaciones Cardiovasculares Carlos III, Madrid, Spain; Department of Developmental Biology and Regeneration, Institute of Anatomy, University of Bern, Bern, Switzerland; Department for Biomedical Research, Cardiovascular Disease Program, University of Bern, Bern, Switzerland.
| |
Collapse
|
36
|
Aztekin C. Mechanisms of regeneration: to what extent do they recapitulate development? Development 2024; 151:dev202541. [PMID: 39045847 DOI: 10.1242/dev.202541] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/25/2024]
Abstract
One of the enduring debates in regeneration biology is the degree to which regeneration mirrors development. Recent technical advances, such as single-cell transcriptomics and the broad applicability of CRISPR systems, coupled with new model organisms in research, have led to the exploration of this longstanding concept from a broader perspective. In this Review, I outline the historical parallels between development and regeneration before focusing on recent research that highlights how dissecting the divergence between these processes can uncover previously unreported biological mechanisms. Finally, I discuss how these advances position regeneration as a more dynamic and variable process with expanded possibilities for morphogenesis compared with development. Collectively, these insights into mechanisms that orchestrate morphogenesis may reshape our understanding of the evolution of regeneration, reveal hidden biology activated by injury, and offer non-developmental strategies for restoring lost or damaged organs and tissues.
Collapse
Affiliation(s)
- Can Aztekin
- School of Life Sciences, Swiss Federal Institute of Technology Lausanne, EPFL, 1015 Lausanne, Switzerland
| |
Collapse
|
37
|
Zheng K, Hao Y, Xia C, Cheng S, Yu J, Chen Z, Li Y, Niu Y, Ran S, Wang S, Ye W, Luo Z, Li X, Zhao J, Li R, Zong J, Zhang H, Lai L, Huang P, Zhou C, Xia J, Zhang X, Wu J. Effects and mechanisms of the myocardial microenvironment on cardiomyocyte proliferation and regeneration. Front Cell Dev Biol 2024; 12:1429020. [PMID: 39050889 PMCID: PMC11266095 DOI: 10.3389/fcell.2024.1429020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Accepted: 06/20/2024] [Indexed: 07/27/2024] Open
Abstract
The adult mammalian cardiomyocyte has a limited capacity for self-renewal, which leads to the irreversible heart dysfunction and poses a significant threat to myocardial infarction patients. In the past decades, research efforts have been predominantly concentrated on the cardiomyocyte proliferation and heart regeneration. However, the heart is a complex organ that comprises not only cardiomyocytes but also numerous noncardiomyocyte cells, all playing integral roles in maintaining cardiac function. In addition, cardiomyocytes are exposed to a dynamically changing physical environment that includes oxygen saturation and mechanical forces. Recently, a growing number of studies on myocardial microenvironment in cardiomyocyte proliferation and heart regeneration is ongoing. In this review, we provide an overview of recent advances in myocardial microenvironment, which plays an important role in cardiomyocyte proliferation and heart regeneration.
Collapse
Affiliation(s)
- Kexiao Zheng
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yanglin Hao
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Chenkun Xia
- Department of Anesthesiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Shaoxian Cheng
- Jingshan Union Hospital, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jizhang Yu
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Zhang Chen
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yuan Li
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yuqing Niu
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Shuan Ran
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Song Wang
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Weicong Ye
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Zilong Luo
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xiaohan Li
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jiulu Zhao
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Ran Li
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Junjie Zong
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Han Zhang
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Longyong Lai
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Pinyan Huang
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Cheng Zhou
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jiahong Xia
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xi Zhang
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jie Wu
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
38
|
Viragova S, Li D, Klein OD. Activation of fetal-like molecular programs during regeneration in the intestine and beyond. Cell Stem Cell 2024; 31:949-960. [PMID: 38971147 PMCID: PMC11235077 DOI: 10.1016/j.stem.2024.05.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Revised: 05/10/2024] [Accepted: 05/24/2024] [Indexed: 07/08/2024]
Abstract
Tissue regeneration after damage is generally thought to involve the mobilization of adult stem cells that divide and differentiate into progressively specialized progeny. However, recent studies indicate that tissue regeneration can be accompanied by reversion to a fetal-like state. During this process, cells at the injury site reactivate programs that operate during fetal development but are typically absent in adult homeostasis. Here, we summarize our current understanding of the molecular signals and epigenetic mediators that orchestrate "fetal-like reversion" during intestinal regeneration. We also explore evidence for this phenomenon in other organs and species and highlight open questions that merit future examination.
Collapse
Affiliation(s)
- Sara Viragova
- Program in Craniofacial Biology and Department of Orofacial Sciences, University of California, San Francisco, San Francisco, CA, USA
| | - Dong Li
- Department of Pediatrics, Cedars-Sinai Guerin Children's, Los Angeles, CA, USA
| | - Ophir D Klein
- Program in Craniofacial Biology and Department of Orofacial Sciences, University of California, San Francisco, San Francisco, CA, USA; Department of Pediatrics, Cedars-Sinai Guerin Children's, Los Angeles, CA, USA.
| |
Collapse
|
39
|
Zeng C, Wu J, Li J. Pyruvate Kinase M2: A Potential Regulator of Cardiac Injury Through Glycolytic and Non-glycolytic Pathways. J Cardiovasc Pharmacol 2024; 84:1-9. [PMID: 38560918 PMCID: PMC11230662 DOI: 10.1097/fjc.0000000000001568] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/21/2023] [Accepted: 03/18/2024] [Indexed: 04/04/2024]
Abstract
ABSTRACT Adult animals are unable to regenerate heart cells due to postnatal cardiomyocyte cycle arrest, leading to higher mortality rates in cardiomyopathy. However, reprogramming of energy metabolism in cardiomyocytes provides a new perspective on the contribution of glycolysis to repair, regeneration, and fibrosis after cardiac injury. Pyruvate kinase (PK) is a key enzyme in the glycolysis process. This review focuses on the glycolysis function of PKM2, although PKM1 and PKM2 both play significant roles in the process after cardiac injury. PKM2 exists in both low-activity dimer and high-activity tetramer forms. PKM2 dimers promote aerobic glycolysis but have low catalytic activity, leading to the accumulation of glycolytic intermediates. These intermediates enter the pentose phosphate pathway to promote cardiomyocyte proliferation and heart regeneration. Additionally, they activate adenosine triphosphate (ATP)-sensitive K + (K ATP ) channels, protecting the heart against ischemic damage. PKM2 tetramers function similar to PKM1 in glycolysis, promoting pyruvate oxidation and subsequently ATP generation to protect the heart from ischemic damage. They also activate KDM5 through the accumulation of αKG, thereby promoting cardiomyocyte proliferation and cardiac regeneration. Apart from glycolysis, PKM2 interacts with transcription factors like Jmjd4, RAC1, β-catenin, and hypoxia-inducible factor (HIF)-1α, playing various roles in homeostasis maintenance, remodeling, survival regulation, and neovascularization promotion. However, PKM2 has also been implicated in promoting cardiac fibrosis through mechanisms like sirtuin (SIRT) 3 deletion, TG2 expression enhancement, and activation of transforming growth factor-β1 (TGF-β1)/Smad2/3 and Jak2/Stat3 signals. Overall, PKM2 shows promising potential as a therapeutic target for promoting cardiomyocyte proliferation and cardiac regeneration and addressing cardiac fibrosis after injury.
Collapse
Affiliation(s)
- Chenxin Zeng
- The First College of Clinical Medical Sciences, China Three Gorges University, Yichang, China
- Yichang Central People's Hospital, The First College of Clinical Medical Science, China Three Gorges University, Yichang, Hubei, China
| | - Jiangfeng Wu
- The First College of Clinical Medical Sciences, China Three Gorges University, Yichang, China
- Institute of Organ Fibrosis and Targeted Drug Delivery, China Three Gorges University, Yichang, China; and
| | - Junming Li
- The First College of Clinical Medical Sciences, China Three Gorges University, Yichang, China
- Yichang Central People's Hospital, The First College of Clinical Medical Science, China Three Gorges University, Yichang, Hubei, China
| |
Collapse
|
40
|
Abu Nahia K, Sulej A, Migdał M, Ochocka N, Ho R, Kamińska B, Zagorski M, Winata CL. scRNA-seq reveals the diversity of the developing cardiac cell lineage and molecular players in heart rhythm regulation. iScience 2024; 27:110083. [PMID: 38872974 PMCID: PMC11170199 DOI: 10.1016/j.isci.2024.110083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Revised: 01/26/2024] [Accepted: 05/20/2024] [Indexed: 06/15/2024] Open
Abstract
We utilized scRNA-seq to delineate the diversity of cell types in the zebrafish heart. Transcriptome profiling of over 50,000 cells at 48 and 72 hpf defined at least 18 discrete cell lineages of the developing heart. Utilizing well-established gene signatures, we identified a population of cells likely to be the primary pacemaker and characterized the transcriptome profile defining this critical cell type. Two previously uncharacterized genes, atp1b3b and colec10, were found to be enriched in the sinoatrial cardiomyocytes. CRISPR/Cas9-mediated knockout of these two genes significantly reduced heart rate, implicating their role in cardiac development and conduction. Additionally, we describe other cardiac cell lineages, including the endothelial and neural cells, providing their expression profiles as a resource. Our results established a detailed atlas of the developing heart, providing valuable insights into cellular and molecular mechanisms, and pinpointed potential new players in heart rhythm regulation.
Collapse
Affiliation(s)
- Karim Abu Nahia
- International Institute of Molecular and Cell Biology, Warsaw, Poland
| | - Agata Sulej
- International Institute of Molecular and Cell Biology, Warsaw, Poland
| | - Maciej Migdał
- International Institute of Molecular and Cell Biology, Warsaw, Poland
| | - Natalia Ochocka
- Laboratory of Molecular Neurobiology, Nencki Institute of Experimental Biology, Warsaw, Poland
| | - Richard Ho
- Institute of Theoretical Physics and Mark Kac Center for Complex Systems Research, Jagiellonian University, Cracow, Poland
- The Njord Centre, Department of Physics, University of Oslo, Oslo, Norway
| | - Bożena Kamińska
- Laboratory of Molecular Neurobiology, Nencki Institute of Experimental Biology, Warsaw, Poland
| | - Marcin Zagorski
- Institute of Theoretical Physics and Mark Kac Center for Complex Systems Research, Jagiellonian University, Cracow, Poland
| | | |
Collapse
|
41
|
Shin K, Rodriguez-Parks A, Kim C, Silaban IM, Xia Y, Sun J, Dong C, Keles S, Wang J, Cao J, Kang J. Harnessing the regenerative potential of interleukin11 to enhance heart repair. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.01.29.577788. [PMID: 38352555 PMCID: PMC10862709 DOI: 10.1101/2024.01.29.577788] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/22/2024]
Abstract
Balancing between regenerative processes and fibrosis is crucial for heart repair, yet strategies regulating this balance remain a barrier to developing therapies. While Interleukin11 (IL11) is known as a fibrotic factor, its contribution to heart regeneration is poorly understood. We uncovered that il11a, an Il11 homolog in zebrafish, can trigger robust regenerative programs in zebrafish hearts, including cardiomyocytes proliferation and coronary expansion, even in the absence of injury. However, prolonged il11a induction in uninjured hearts causes persistent fibroblast emergence, resulting in fibrosis. While deciphering the regenerative and fibrotic effects of il11a, we found that il11-dependent fibrosis, but not regeneration, is mediated through ERK activity, suggesting to potentially uncouple il11a dual effects on regeneration and fibrosis. To harness the il11a's regenerative ability, we devised a combinatorial treatment through il11a induction with ERK inhibition. This approach enhances cardiomyocyte proliferation with mitigated fibrosis, achieving a balance between regenerative processes and fibrosis. Thus, we unveil the mechanistic insights into regenerative il11 roles, offering therapeutic avenues to foster cardiac repair without exacerbating fibrosis.
Collapse
Affiliation(s)
- Kwangdeok Shin
- Department of Cell and Regenerative Biology, School of Medicine and Public Health, University of Wisconsin - Madison, Madison, WI, 53705, USA
| | - Anjelica Rodriguez-Parks
- Department of Cell and Regenerative Biology, School of Medicine and Public Health, University of Wisconsin - Madison, Madison, WI, 53705, USA
| | - Chanul Kim
- Department of Cell and Regenerative Biology, School of Medicine and Public Health, University of Wisconsin - Madison, Madison, WI, 53705, USA
| | - Isabella M Silaban
- Department of Cell and Regenerative Biology, School of Medicine and Public Health, University of Wisconsin - Madison, Madison, WI, 53705, USA
| | - Yu Xia
- Cardiovascular Research Institute, Department of Cell and Developmental Biology, Weill Cornell Medical College, New York, NY, 10065, USA
| | - Jisheng Sun
- Cardiology Division, School of Medicine, Emory University, Atlanta, GA 30322, USA
| | - Chenyang Dong
- Departments of Statistics and of Biostatistics and Medical Informatics, University of Wisconsin - Madison, Madison, WI 53706, USA
| | - Sunduz Keles
- Departments of Statistics and of Biostatistics and Medical Informatics, University of Wisconsin - Madison, Madison, WI 53706, USA
| | - Jinhu Wang
- Cardiology Division, School of Medicine, Emory University, Atlanta, GA 30322, USA
| | - Jingli Cao
- Cardiovascular Research Institute, Department of Cell and Developmental Biology, Weill Cornell Medical College, New York, NY, 10065, USA
| | - Junsu Kang
- Department of Cell and Regenerative Biology, School of Medicine and Public Health, University of Wisconsin - Madison, Madison, WI, 53705, USA
- UW Carbone Cancer Center, School of Medicine and Public Health, University of Wisconsin - Madison, Madison, WI, 53705, USA
| |
Collapse
|
42
|
Thorp EB, Karlstaedt A. Intersection of Immunology and Metabolism in Myocardial Disease. Circ Res 2024; 134:1824-1840. [PMID: 38843291 PMCID: PMC11569846 DOI: 10.1161/circresaha.124.323660] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Accepted: 04/15/2024] [Indexed: 06/12/2024]
Abstract
Immunometabolism is an emerging field at the intersection of immunology and metabolism. Immune cell activation plays a critical role in the pathogenesis of cardiovascular diseases and is integral for regeneration during cardiac injury. We currently possess a limited understanding of the processes governing metabolic interactions between immune cells and cardiomyocytes. The impact of this intercellular crosstalk can manifest as alterations to the steady state flux of metabolites and impact cardiac contractile function. Although much of our knowledge is derived from acute inflammatory response, recent work emphasizes heterogeneity and flexibility in metabolism between cardiomyocytes and immune cells during pathological states, including ischemic, cardiometabolic, and cancer-associated disease. Metabolic adaptation is crucial because it influences immune cell activation, cytokine release, and potential therapeutic vulnerabilities. This review describes current concepts about immunometabolic regulation in the heart, focusing on intercellular crosstalk and intrinsic factors driving cellular regulation. We discuss experimental approaches to measure the cardio-immunologic crosstalk, which are necessary to uncover unknown mechanisms underlying the immune and cardiac interface. Deeper insight into these axes holds promise for therapeutic strategies that optimize cardioimmunology crosstalk for cardiac health.
Collapse
Affiliation(s)
- Edward B. Thorp
- Department of Pathology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
| | - Anja Karlstaedt
- Department of Cardiology, Smidt Heart Institute, Cedars Sinai Medical Center, Los Angeles, CA 90048, USA
| |
Collapse
|
43
|
Giovou AE, Gladka MM, Christoffels VM. The Impact of Natriuretic Peptides on Heart Development, Homeostasis, and Disease. Cells 2024; 13:931. [PMID: 38891063 PMCID: PMC11172276 DOI: 10.3390/cells13110931] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 05/24/2024] [Accepted: 05/24/2024] [Indexed: 06/21/2024] Open
Abstract
During mammalian heart development, the clustered genes encoding peptide hormones, Natriuretic Peptide A (NPPA; ANP) and B (NPPB; BNP), are transcriptionally co-regulated and co-expressed predominately in the atrial and ventricular trabecular cardiomyocytes. After birth, expression of NPPA and a natural antisense transcript NPPA-AS1 becomes restricted to the atrial cardiomyocytes. Both NPPA and NPPB are induced by cardiac stress and serve as markers for cardiovascular dysfunction or injury. NPPB gene products are extensively used as diagnostic and prognostic biomarkers for various cardiovascular disorders. Membrane-localized guanylyl cyclase receptors on many cell types throughout the body mediate the signaling of the natriuretic peptide ligands through the generation of intracellular cGMP, which interacts with and modulates the activity of cGMP-activated kinase and other enzymes and ion channels. The natriuretic peptide system plays a fundamental role in cardio-renal homeostasis, and its potent diuretic and vasodilatory effects provide compensatory mechanisms in cardiac pathophysiological conditions and heart failure. In addition, both peptides, but also CNP, have important intracardiac actions during heart development and homeostasis independent of the systemic functions. Exploration of the intracardiac functions may provide new leads for the therapeutic utility of natriuretic peptide-mediated signaling in heart diseases and rhythm disorders. Here, we review recent insights into the regulation of expression and intracardiac functions of NPPA and NPPB during heart development, homeostasis, and disease.
Collapse
Affiliation(s)
| | | | - Vincent M. Christoffels
- Department of Medical Biology, Amsterdam Cardiovascular Sciences, Amsterdam University Medical Centers, 1105AZ Amsterdam, The Netherlands; (A.E.G.); (M.M.G.)
| |
Collapse
|
44
|
Chen X, Wu H, Liu Y, Liu L, Houser SR, Wang WE. Metabolic Reprogramming: A Byproduct or a Driver of Cardiomyocyte Proliferation? Circulation 2024; 149:1598-1610. [PMID: 38739695 DOI: 10.1161/circulationaha.123.065880] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 05/16/2024]
Abstract
Defining mechanisms of cardiomyocyte proliferation should guide the understanding of endogenous cardiac regeneration and could lead to novel treatments for diseases such as myocardial infarction. In the neonatal heart, energy metabolic reprogramming (phenotypic alteration of glucose, fatty acid, and amino acid metabolism) parallels cell cycle arrest of cardiomyocytes. The metabolic reprogramming occurring shortly after birth is associated with alterations in blood oxygen levels, metabolic substrate availability, hemodynamic stress, and hormone release. In the adult heart, myocardial infarction causes metabolic reprogramming but these changes cannot stimulate sufficient cardiomyocyte proliferation to replace those lost by the ischemic injury. Some putative pro-proliferative interventions can induce the metabolic reprogramming. Recent data show that altering the metabolic enzymes PKM2 [pyruvate kinase 2], LDHA [lactate dehydrogenase A], PDK4 [pyruvate dehydrogenase kinase 4], SDH [succinate dehydrogenase], CPT1b [carnitine palmitoyl transferase 1b], or HMGCS2 [3-hydroxy-3-methylglutaryl-CoA synthase 2] is sufficient to partially reverse metabolic reprogramming and promotes adult cardiomyocyte proliferation. How metabolic reprogramming regulates cardiomyocyte proliferation is not clearly defined. The possible mechanisms involve biosynthetic pathways from the glycolysis shunts and the epigenetic regulation induced by metabolic intermediates. Metabolic manipulation could represent a new approach to stimulate cardiac regeneration; however, the efficacy of these manipulations requires optimization, and novel molecular targets need to be defined. In this review, we summarize the features, triggers, and molecular regulatory networks responsible for metabolic reprogramming and discuss the current understanding of metabolic reprogramming as a critical determinant of cardiomyocyte proliferation.
Collapse
Affiliation(s)
- Xiaokang Chen
- Department of Geriatrics (X.C., H.W., Y.L., L.L., W.E.W.), Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China
- Cardiovascular Center (X.C., H.W., Y.L., L.L., W.E.W.), Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China
| | - Hao Wu
- Department of Geriatrics (X.C., H.W., Y.L., L.L., W.E.W.), Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China
- Cardiovascular Center (X.C., H.W., Y.L., L.L., W.E.W.), Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China
| | - Ya Liu
- Department of Geriatrics (X.C., H.W., Y.L., L.L., W.E.W.), Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China
- Cardiovascular Center (X.C., H.W., Y.L., L.L., W.E.W.), Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China
| | - Lingyan Liu
- Department of Geriatrics (X.C., H.W., Y.L., L.L., W.E.W.), Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China
- Cardiovascular Center (X.C., H.W., Y.L., L.L., W.E.W.), Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China
| | - Steven R Houser
- Independence Blue Cross Cardiovascular Research Center, Lewis Katz School of Medicine, Temple University, Philadelphia, PA (S.R.H.)
| | - Wei Eric Wang
- Department of Geriatrics (X.C., H.W., Y.L., L.L., W.E.W.), Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China
- Cardiovascular Center (X.C., H.W., Y.L., L.L., W.E.W.), Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China
| |
Collapse
|
45
|
Yan Z, Yang J, Wei WT, Zhou ML, Mo DX, Wan X, Ma R, Wu MM, Huang JH, Liu YJ, Lv FH, Li MH. A time-resolved multi-omics atlas of transcriptional regulation in response to high-altitude hypoxia across whole-body tissues. Nat Commun 2024; 15:3970. [PMID: 38730227 PMCID: PMC11087590 DOI: 10.1038/s41467-024-48261-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Accepted: 04/23/2024] [Indexed: 05/12/2024] Open
Abstract
High-altitude hypoxia acclimatization requires whole-body physiological regulation in highland immigrants, but the underlying genetic mechanism has not been clarified. Here we use sheep as an animal model for low-to-high altitude translocation. We generate multi-omics data including whole-genome sequences, time-resolved bulk RNA-Seq, ATAC-Seq and single-cell RNA-Seq from multiple tissues as well as phenotypic data from 20 bio-indicators. We characterize transcriptional changes of all genes in each tissue, and examine multi-tissue temporal dynamics and transcriptional interactions among genes. Particularly, we identify critical functional genes regulating the short response to hypoxia in each tissue (e.g., PARG in the cerebellum and HMOX1 in the colon). We further identify TAD-constrained cis-regulatory elements, which suppress the transcriptional activity of most genes under hypoxia. Phenotypic and transcriptional evidence indicate that antenatal hypoxia could improve hypoxia tolerance in offspring. Furthermore, we provide time-series expression data of candidate genes associated with human mountain sickness (e.g., BMPR2) and high-altitude adaptation (e.g., HIF1A). Our study provides valuable resources and insights for future hypoxia-related studies in mammals.
Collapse
Affiliation(s)
- Ze Yan
- State Key Laboratory of Animal Biotech Breeding, China Agricultural University, Beijing, 100193, China
- College of Animal Science and Technology, China Agricultural University, Beijing, 100193, China
| | - Ji Yang
- State Key Laboratory of Animal Biotech Breeding, China Agricultural University, Beijing, 100193, China
- College of Animal Science and Technology, China Agricultural University, Beijing, 100193, China
| | - Wen-Tian Wei
- State Key Laboratory of Animal Biotech Breeding, China Agricultural University, Beijing, 100193, China
- College of Animal Science and Technology, China Agricultural University, Beijing, 100193, China
| | - Ming-Liang Zhou
- Sichuan Academy of Grassland Science, Chengdu, 611743, China
| | - Dong-Xin Mo
- State Key Laboratory of Animal Biotech Breeding, China Agricultural University, Beijing, 100193, China
- College of Animal Science and Technology, China Agricultural University, Beijing, 100193, China
| | - Xing Wan
- State Key Laboratory of Animal Biotech Breeding, China Agricultural University, Beijing, 100193, China
- College of Animal Science and Technology, China Agricultural University, Beijing, 100193, China
| | - Rui Ma
- State Key Laboratory of Animal Biotech Breeding, China Agricultural University, Beijing, 100193, China
- College of Animal Science and Technology, China Agricultural University, Beijing, 100193, China
| | - Mei-Ming Wu
- State Key Laboratory of Animal Biotech Breeding, China Agricultural University, Beijing, 100193, China
- College of Animal Science and Technology, China Agricultural University, Beijing, 100193, China
| | - Jia-Hui Huang
- State Key Laboratory of Animal Biotech Breeding, China Agricultural University, Beijing, 100193, China
- College of Animal Science and Technology, China Agricultural University, Beijing, 100193, China
| | - Ya-Jing Liu
- State Key Laboratory of Animal Biotech Breeding, China Agricultural University, Beijing, 100193, China
- College of Animal Science and Technology, China Agricultural University, Beijing, 100193, China
| | - Feng-Hua Lv
- State Key Laboratory of Animal Biotech Breeding, China Agricultural University, Beijing, 100193, China
- College of Animal Science and Technology, China Agricultural University, Beijing, 100193, China
| | - Meng-Hua Li
- State Key Laboratory of Animal Biotech Breeding, China Agricultural University, Beijing, 100193, China.
- College of Animal Science and Technology, China Agricultural University, Beijing, 100193, China.
| |
Collapse
|
46
|
Jang J, Accornero F, Li D. Epigenetic determinants and non-myocardial signaling pathways contributing to heart growth and regeneration. Pharmacol Ther 2024; 257:108638. [PMID: 38548089 PMCID: PMC11931646 DOI: 10.1016/j.pharmthera.2024.108638] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Revised: 03/14/2024] [Accepted: 03/21/2024] [Indexed: 04/04/2024]
Abstract
Congenital heart disease is the most common birth defect worldwide. Defective cardiac myogenesis is either a major presentation or associated with many types of congenital heart disease. Non-myocardial tissues, including endocardium and epicardium, function as a supporting hub for myocardial growth and maturation during heart development. Recent research findings suggest an emerging role of epigenetics in nonmyocytes supporting myocardial development. Understanding how growth signaling pathways in non-myocardial tissues are regulated by epigenetic factors will likely identify new disease mechanisms for congenital heart diseases and shed lights for novel therapeutic strategies for heart regeneration.
Collapse
Affiliation(s)
- Jihyun Jang
- Center for Cardiovascular Research, Abigail Wexner Research Institute, Nationwide Children's Hospital, Columbus, OH 43215, USA; Department of Pediatrics, The Ohio State University College of Medicine, Columbus, OH 43215, USA.
| | - Federica Accornero
- Department of Molecular Biology, Cell Biology and Biochemistry, Brown University, Providence, RI 02912, USA
| | - Deqiang Li
- Center for Cardiovascular Research, Abigail Wexner Research Institute, Nationwide Children's Hospital, Columbus, OH 43215, USA; Department of Pediatrics, The Ohio State University College of Medicine, Columbus, OH 43215, USA.
| |
Collapse
|
47
|
Cardeira-da-Silva J, Wang Q, Sagvekar P, Mintcheva J, Latting S, Günther S, Ramadass R, Yekelchyk M, Preussner J, Looso M, Junker JP, Stainier DYR. Antigen presentation plays positive roles in the regenerative response to cardiac injury in zebrafish. Nat Commun 2024; 15:3637. [PMID: 38684665 PMCID: PMC11058276 DOI: 10.1038/s41467-024-47430-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Accepted: 03/28/2024] [Indexed: 05/02/2024] Open
Abstract
In contrast to adult mammals, adult zebrafish can fully regenerate injured cardiac tissue, and this regeneration process requires an adequate and tightly controlled immune response. However, which components of the immune response are required during regeneration is unclear. Here, we report positive roles for the antigen presentation-adaptive immunity axis during zebrafish cardiac regeneration. We find that following the initial innate immune response, activated endocardial cells (EdCs), as well as immune cells, start expressing antigen presentation genes. We also observe that T helper cells, a.k.a. Cd4+ T cells, lie in close physical proximity to these antigen-presenting EdCs. We targeted Major Histocompatibility Complex (MHC) class II antigen presentation by generating cd74a; cd74b mutants, which display a defective immune response. In these mutants, Cd4+ T cells and activated EdCs fail to efficiently populate the injured tissue and EdC proliferation is significantly decreased. cd74a; cd74b mutants exhibit additional defects in cardiac regeneration including reduced cardiomyocyte dedifferentiation and proliferation. Notably, Cd74 also becomes activated in neonatal mouse EdCs following cardiac injury. Altogether, these findings point to positive roles for antigen presentation during cardiac regeneration, potentially involving interactions between activated EdCs, classical antigen-presenting cells, and Cd4+ T cells.
Collapse
Affiliation(s)
- João Cardeira-da-Silva
- Department of Developmental Genetics, Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany.
- DZHK German Centre for Cardiovascular Research, Partner Site Rhine-Main, Bad Nauheim, Germany.
- Cardio-Pulmonary Institute (CPI), Bad Nauheim, Germany.
| | - Qianchen Wang
- Department of Developmental Genetics, Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany
- DZHK German Centre for Cardiovascular Research, Partner Site Rhine-Main, Bad Nauheim, Germany
- Cardio-Pulmonary Institute (CPI), Bad Nauheim, Germany
| | - Pooja Sagvekar
- Department of Developmental Genetics, Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany
- DZHK German Centre for Cardiovascular Research, Partner Site Rhine-Main, Bad Nauheim, Germany
| | - Janita Mintcheva
- Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Berlin Institute for Medical Systems Biology, Berlin, Germany
- Humboldt University of Berlin, Berlin, Germany
| | - Stephan Latting
- Department of Developmental Genetics, Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany
| | - Stefan Günther
- DZHK German Centre for Cardiovascular Research, Partner Site Rhine-Main, Bad Nauheim, Germany
- Cardio-Pulmonary Institute (CPI), Bad Nauheim, Germany
- Bioinformatics and Deep Sequencing Platform, Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany
| | - Radhan Ramadass
- Department of Developmental Genetics, Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany
| | - Michail Yekelchyk
- Cardio-Pulmonary Institute (CPI), Bad Nauheim, Germany
- Bioinformatics and Deep Sequencing Platform, Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany
| | - Jens Preussner
- Cardio-Pulmonary Institute (CPI), Bad Nauheim, Germany
- Bioinformatics Core Unit (BCU), Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany
| | - Mario Looso
- DZHK German Centre for Cardiovascular Research, Partner Site Rhine-Main, Bad Nauheim, Germany
- Cardio-Pulmonary Institute (CPI), Bad Nauheim, Germany
- Bioinformatics Core Unit (BCU), Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany
| | - Jan Philipp Junker
- Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Berlin Institute for Medical Systems Biology, Berlin, Germany
- DZHK German Centre for Cardiovascular Research, Partner Site Berlin, Berlin, Germany
- Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Didier Y R Stainier
- Department of Developmental Genetics, Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany.
- DZHK German Centre for Cardiovascular Research, Partner Site Rhine-Main, Bad Nauheim, Germany.
- Cardio-Pulmonary Institute (CPI), Bad Nauheim, Germany.
| |
Collapse
|
48
|
Paquette SE, Oduor CI, Gaulke A, Stefan S, Bronk P, Dafonseca V, Barulin N, Lee C, Carley R, Morrison AR, Choi BR, Bailey JA, Plavicki JS. Loss of developmentally derived Irf8+ macrophages promotes hyperinnervation and arrhythmia in the adult zebrafish heart. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.04.17.589909. [PMID: 38659956 PMCID: PMC11042273 DOI: 10.1101/2024.04.17.589909] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/26/2024]
Abstract
Recent developments in cardiac macrophage biology have broadened our understanding of the critical functions of macrophages in the heart. As a result, there is further interest in understanding the independent contributions of distinct subsets of macrophage to cardiac development and function. Here, we demonstrate that genetic loss of interferon regulatory factor 8 (Irf8)-positive embryonic-derived macrophages significantly disrupts cardiac conduction, chamber function, and innervation in adult zebrafish. At 4 months post-fertilization (mpf), homozygous irf8st96/st96 mutants have significantly shortened atrial action potential duration and significant differential expression of genes involved in cardiac contraction. Functional in vivo assessments via electro- and echocardiograms at 12 mpf reveal that irf8 mutants are arrhythmogenic and exhibit diastolic dysfunction and ventricular stiffening. To identify the molecular drivers of the functional disturbances in irf8 null zebrafish, we perform single cell RNA sequencing and immunohistochemistry, which reveal increased leukocyte infiltration, epicardial activation, mesenchymal gene expression, and fibrosis. Irf8 null hearts are also hyperinnervated and have aberrant axonal patterning, a phenotype not previously assessed in the context of cardiac macrophage loss. Gene ontology analysis supports a novel role for activated epicardial-derived cells (EPDCs) in promoting neurogenesis and neuronal remodeling in vivo. Together, these data uncover significant cardiac abnormalities following embryonic macrophage loss and expand our knowledge of critical macrophage functions in heart physiology and governing homeostatic heart health.
Collapse
Affiliation(s)
- Shannon E. Paquette
- Department of Pathology & Laboratory Medicine, Brown University, Providence, RI, 02912, USA
| | - Cliff I. Oduor
- Department of Pathology & Laboratory Medicine, Brown University, Providence, RI, 02912, USA
| | - Amy Gaulke
- Department of Pathology & Laboratory Medicine, Brown University, Providence, RI, 02912, USA
| | - Sabina Stefan
- Department of Pediatric Oncology, Dana-Farber Cancer Institute, Boston, MA, 02215, USA
| | - Peter Bronk
- Cardiovascular Research Center, Brown University Warren Alpert Medical School, Providence, RI, 02912, USA
| | - Vanny Dafonseca
- Department of Pathology & Laboratory Medicine, Brown University, Providence, RI, 02912, USA
| | - Nikolai Barulin
- Department of Pathology & Laboratory Medicine, Brown University, Providence, RI, 02912, USA
| | - Cadence Lee
- Vascular Research Laboratory, Providence VA Medical Center, Providence, RI, 02908, USA
- Ocean State Research Institute, Inc., Providence, RI, 02908, USA
| | - Rachel Carley
- Vascular Research Laboratory, Providence VA Medical Center, Providence, RI, 02908, USA
- Ocean State Research Institute, Inc., Providence, RI, 02908, USA
| | - Alan R. Morrison
- Vascular Research Laboratory, Providence VA Medical Center, Providence, RI, 02908, USA
- Ocean State Research Institute, Inc., Providence, RI, 02908, USA
- Department of Internal Medicine, Alpert Medical School of Brown University, Providence, RI, 02903, USA
| | - Bum-Rak Choi
- Cardiovascular Research Center, Brown University Warren Alpert Medical School, Providence, RI, 02912, USA
| | - Jeffrey A. Bailey
- Department of Pathology & Laboratory Medicine, Brown University, Providence, RI, 02912, USA
| | - Jessica S. Plavicki
- Department of Pathology & Laboratory Medicine, Brown University, Providence, RI, 02912, USA
| |
Collapse
|
49
|
Zeng C, Xiao K, Shi Q, Zhan X, Li C. TMT-Based Quantitative Proteomic Analysis Reveals the Key Role of Cell Proliferation and Apoptosis in Intestine Regeneration of Apostichopus japonicus. Int J Mol Sci 2024; 25:4250. [PMID: 38673840 PMCID: PMC11050598 DOI: 10.3390/ijms25084250] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Revised: 04/05/2024] [Accepted: 04/10/2024] [Indexed: 04/28/2024] Open
Abstract
Sea cucumbers are widely known for their powerful regenerative abilities, which allow them to regenerate a complete digestive tract within a relatively short time following injury or autotomy. Recently, even though the histological changes and cellular events in the processes of intestinal regeneration have been extensively studied, the molecular machinery behind this faculty remains unclear. In this study, tandem mass tag (TMT)-based quantitation was utilized to investigate protein abundance changes during the process of intestine regeneration. Approximately 538, 445, 397, 1012, and 966 differential proteins (DEPs) were detected (p < 0.05) between the normal and 2, 7, 12, 20, and 28 dpe stages, respectively. These DEPs also mainly focus on pathways of cell proliferation and apoptosis, which were further validated by 5-Ethynyl-2'-deoxyuridine (EdU) or Tunel-based flow cytometry assay. These findings provide a reference for a comprehensive understanding of the regulatory mechanisms of various stages of intestinal regeneration and provide a foundation for subsequent research on changes in cell fate in echinoderms.
Collapse
Affiliation(s)
- Chuili Zeng
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Ningbo University, Ningbo 315211, China; (C.Z.); (K.X.); (Q.S.); (X.Z.)
| | - Ke Xiao
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Ningbo University, Ningbo 315211, China; (C.Z.); (K.X.); (Q.S.); (X.Z.)
| | - Qilin Shi
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Ningbo University, Ningbo 315211, China; (C.Z.); (K.X.); (Q.S.); (X.Z.)
| | - Xu Zhan
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Ningbo University, Ningbo 315211, China; (C.Z.); (K.X.); (Q.S.); (X.Z.)
| | - Chenghua Li
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Ningbo University, Ningbo 315211, China; (C.Z.); (K.X.); (Q.S.); (X.Z.)
- Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266071, China
| |
Collapse
|
50
|
Ji X, Chen Z, Wang Q, Li B, Wei Y, Li Y, Lin J, Cheng W, Guo Y, Wu S, Mao L, Xiang Y, Lan T, Gu S, Wei M, Zhang JZ, Jiang L, Wang J, Xu J, Cao N. Sphingolipid metabolism controls mammalian heart regeneration. Cell Metab 2024; 36:839-856.e8. [PMID: 38367623 DOI: 10.1016/j.cmet.2024.01.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Revised: 08/23/2023] [Accepted: 01/29/2024] [Indexed: 02/19/2024]
Abstract
Utilization of lipids as energy substrates after birth causes cardiomyocyte (CM) cell-cycle arrest and loss of regenerative capacity in mammalian hearts. Beyond energy provision, proper management of lipid composition is crucial for cellular and organismal health, but its role in heart regeneration remains unclear. Here, we demonstrate widespread sphingolipid metabolism remodeling in neonatal hearts after injury and find that SphK1 and SphK2, isoenzymes producing the same sphingolipid metabolite sphingosine-1-phosphate (S1P), differently regulate cardiac regeneration. SphK2 is downregulated during heart development and determines CM proliferation via nuclear S1P-dependent modulation of histone acetylation. Reactivation of SphK2 induces adult CM cell-cycle re-entry and cytokinesis, thereby enhancing regeneration. Conversely, SphK1 is upregulated during development and promotes fibrosis through an S1P autocrine mechanism in cardiac fibroblasts. By fine-tuning the activity of each SphK isoform, we develop a therapy that simultaneously promotes myocardial repair and restricts fibrotic scarring to regenerate the infarcted adult hearts.
Collapse
Affiliation(s)
- Xiaoqian Ji
- Advanced Medical Technology Center, Zhongshan School of Medicine and the First Affiliated Hospital, Sun Yat-Sen University, Guangdong 510080, China; Institute of Neurological and Psychiatric Disorders, Shenzhen Bay Laboratory, Shenzhen 518132, China; Key Laboratory for Stem Cells and Tissue Engineering (Sun Yat-Sen University), Ministry of Education, Guangdong 510080, China; NHC Key Laboratory of Assisted Circulation (Sun Yat-Sen University), Guangdong 510080, China
| | - Zihao Chen
- Advanced Medical Technology Center, Zhongshan School of Medicine and the First Affiliated Hospital, Sun Yat-Sen University, Guangdong 510080, China; Key Laboratory for Stem Cells and Tissue Engineering (Sun Yat-Sen University), Ministry of Education, Guangdong 510080, China; NHC Key Laboratory of Assisted Circulation (Sun Yat-Sen University), Guangdong 510080, China
| | - Qiyuan Wang
- Advanced Medical Technology Center, Zhongshan School of Medicine and the First Affiliated Hospital, Sun Yat-Sen University, Guangdong 510080, China; Key Laboratory for Stem Cells and Tissue Engineering (Sun Yat-Sen University), Ministry of Education, Guangdong 510080, China; NHC Key Laboratory of Assisted Circulation (Sun Yat-Sen University), Guangdong 510080, China
| | - Bin Li
- Advanced Medical Technology Center, Zhongshan School of Medicine and the First Affiliated Hospital, Sun Yat-Sen University, Guangdong 510080, China; Key Laboratory for Stem Cells and Tissue Engineering (Sun Yat-Sen University), Ministry of Education, Guangdong 510080, China; NHC Key Laboratory of Assisted Circulation (Sun Yat-Sen University), Guangdong 510080, China
| | - Yan Wei
- Advanced Medical Technology Center, Zhongshan School of Medicine and the First Affiliated Hospital, Sun Yat-Sen University, Guangdong 510080, China; Key Laboratory for Stem Cells and Tissue Engineering (Sun Yat-Sen University), Ministry of Education, Guangdong 510080, China; NHC Key Laboratory of Assisted Circulation (Sun Yat-Sen University), Guangdong 510080, China
| | - Yun Li
- China National Center for Bioinformation, Beijing 100101, China; CAS Key Laboratory of Genome Sciences and Information, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jianqing Lin
- Advanced Medical Technology Center, Zhongshan School of Medicine and the First Affiliated Hospital, Sun Yat-Sen University, Guangdong 510080, China; Key Laboratory for Stem Cells and Tissue Engineering (Sun Yat-Sen University), Ministry of Education, Guangdong 510080, China; NHC Key Laboratory of Assisted Circulation (Sun Yat-Sen University), Guangdong 510080, China
| | - Weisheng Cheng
- Advanced Medical Technology Center, Zhongshan School of Medicine and the First Affiliated Hospital, Sun Yat-Sen University, Guangdong 510080, China; Key Laboratory for Stem Cells and Tissue Engineering (Sun Yat-Sen University), Ministry of Education, Guangdong 510080, China; NHC Key Laboratory of Assisted Circulation (Sun Yat-Sen University), Guangdong 510080, China
| | - Yijie Guo
- Advanced Medical Technology Center, Zhongshan School of Medicine and the First Affiliated Hospital, Sun Yat-Sen University, Guangdong 510080, China; Key Laboratory for Stem Cells and Tissue Engineering (Sun Yat-Sen University), Ministry of Education, Guangdong 510080, China; NHC Key Laboratory of Assisted Circulation (Sun Yat-Sen University), Guangdong 510080, China
| | - Shilin Wu
- Advanced Medical Technology Center, Zhongshan School of Medicine and the First Affiliated Hospital, Sun Yat-Sen University, Guangdong 510080, China; Key Laboratory for Stem Cells and Tissue Engineering (Sun Yat-Sen University), Ministry of Education, Guangdong 510080, China; NHC Key Laboratory of Assisted Circulation (Sun Yat-Sen University), Guangdong 510080, China
| | - Longkun Mao
- Advanced Medical Technology Center, Zhongshan School of Medicine and the First Affiliated Hospital, Sun Yat-Sen University, Guangdong 510080, China; Key Laboratory for Stem Cells and Tissue Engineering (Sun Yat-Sen University), Ministry of Education, Guangdong 510080, China; NHC Key Laboratory of Assisted Circulation (Sun Yat-Sen University), Guangdong 510080, China
| | - Yuzhou Xiang
- Advanced Medical Technology Center, Zhongshan School of Medicine and the First Affiliated Hospital, Sun Yat-Sen University, Guangdong 510080, China; Key Laboratory for Stem Cells and Tissue Engineering (Sun Yat-Sen University), Ministry of Education, Guangdong 510080, China; NHC Key Laboratory of Assisted Circulation (Sun Yat-Sen University), Guangdong 510080, China
| | - Tian Lan
- School of Pharmacy, Guangdong Pharmaceutical University, Guangdong 510006, China
| | - Shanshan Gu
- Advanced Medical Technology Center, Zhongshan School of Medicine and the First Affiliated Hospital, Sun Yat-Sen University, Guangdong 510080, China; Key Laboratory for Stem Cells and Tissue Engineering (Sun Yat-Sen University), Ministry of Education, Guangdong 510080, China; NHC Key Laboratory of Assisted Circulation (Sun Yat-Sen University), Guangdong 510080, China
| | - Meng Wei
- Advanced Medical Technology Center, Zhongshan School of Medicine and the First Affiliated Hospital, Sun Yat-Sen University, Guangdong 510080, China; Key Laboratory for Stem Cells and Tissue Engineering (Sun Yat-Sen University), Ministry of Education, Guangdong 510080, China; NHC Key Laboratory of Assisted Circulation (Sun Yat-Sen University), Guangdong 510080, China
| | - Joe Z Zhang
- Institute of Neurological and Psychiatric Disorders, Shenzhen Bay Laboratory, Shenzhen 518132, China
| | - Lan Jiang
- China National Center for Bioinformation, Beijing 100101, China; CAS Key Laboratory of Genome Sciences and Information, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jia Wang
- School of Health and Life Sciences, University of Health and Rehabilitation Sciences, Shandong 266071, China
| | - Jin Xu
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-Sen University, Guangdong 510080, China
| | - Nan Cao
- Advanced Medical Technology Center, Zhongshan School of Medicine and the First Affiliated Hospital, Sun Yat-Sen University, Guangdong 510080, China; Key Laboratory for Stem Cells and Tissue Engineering (Sun Yat-Sen University), Ministry of Education, Guangdong 510080, China; NHC Key Laboratory of Assisted Circulation (Sun Yat-Sen University), Guangdong 510080, China.
| |
Collapse
|