1
|
Chaudhary P, Magotra A, Alex R, Bangar YC, Sindhu P, Rose MK, Garg AR. Dairy Cattle Reproduction, Production, and Disease Resistance in the Omics Era: Genome-Wide Selection Signatures Identify Candidate Genes in Sahiwal Cattle. OMICS : A JOURNAL OF INTEGRATIVE BIOLOGY 2025; 29:191-205. [PMID: 40256796 DOI: 10.1089/omi.2024.0188] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/22/2025]
Abstract
Climate emergency and ecological sustainability call for new ways of thinking livestock health, including the dairy cattle. This study unpacks the genetic diversity and selection sweeps of Sahiwal cattle in relation to adaptability, production, and disease resistance. Using nucleotide diversity (π) calculated from 10 kb windows across the genome with VCFtools, 716 regions of genetic diversity were identified across 29 chromosomes, and importantly, with chromosome 15 showing the highest density. A total of 92 quantitative trait loci (QTL) linked genes were analyzed, with chromosome 1 harboring the highest number. Trait association analysis using the Cattle QTL database showed that 14 genes were linked to production traits, 10 to reproduction traits, and 8 to disease susceptibility. Notable genes included CSMD2 and EFNA1, which influence milk production traits such as fat percentage and yield, and PCBP3 and SGCD, which affect reproductive traits. Additionally, the genes TBXAS1 and ASTN2 were associated with disease traits such as bovine respiratory disease and sole ulcers. Selection sweeps, identified using Tajima's D, revealed 728 sweeps across the genome, with chromosomes 6 and 8 showing the highest frequencies. These sweeps indicate regions under strong selective pressure, likely due to the breed's adaptation to arid environments and specific trait selection. The present study highlights how genetic diversity and selection sweeps contribute to Sahiwal cattle's adaptability, production efficiency, and disease resistance. The insights reported here provide a foundation for livestock health and targeted breeding strategies in the case of Sahiwal cattle under diverse ecological conditions such as tropical climate.
Collapse
Affiliation(s)
- Pradeep Chaudhary
- Department of Animal Genetics and Breeding, Lala Lajpat Rai University of Veterinary and Animal Sciences, Hisar, India
| | - Ankit Magotra
- Department of Animal Genetics and Breeding, Lala Lajpat Rai University of Veterinary and Animal Sciences, Hisar, India
- Sher-e-Kashmir University of Agricultural Sciences and Technology of Jammu (SKUAST-Jammu), Jammu, India
| | - Rani Alex
- ICAR-National Dairy Research Institute, Karnal, India
| | - Yogesh C Bangar
- Department of Animal Genetics and Breeding, Lala Lajpat Rai University of Veterinary and Animal Sciences, Hisar, India
| | - Pushpa Sindhu
- Department of Animal Genetics and Breeding, Lala Lajpat Rai University of Veterinary and Animal Sciences, Hisar, India
| | - Manoj K Rose
- Department of Animal Genetics and Breeding, Lala Lajpat Rai University of Veterinary and Animal Sciences, Hisar, India
| | - Asha R Garg
- Department of Animal Genetics and Breeding, Lala Lajpat Rai University of Veterinary and Animal Sciences, Hisar, India
| |
Collapse
|
2
|
Ma Y, Li Q, Wang X, Yan X, Li Z, Gu W, Ning M, Meng Q. Phosphorylated Eriocheir sinensis Rab10 regulates apoptosis and phagocytosis to defense Spiroplasma eriocheiris infection. Int J Biol Macromol 2025; 306:141527. [PMID: 40020833 DOI: 10.1016/j.ijbiomac.2025.141527] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2024] [Revised: 02/23/2025] [Accepted: 02/25/2025] [Indexed: 03/03/2025]
Abstract
The Rab GTPases play a crucial role in the regulation of immune responses towards viruses and bacteria infection in invertebrates. The proteomic data revealed Eriocheir sinensis Rab10 (EsRab10) phosphorylation was strongly decreased following Spiroplasma eriocheiris infection. However, the regulatory mechanism by which Rab10 modulates the innate immunity of E. sinensis against S. eriocheiris infection remains to be elucidated. In the present study, the coding sequence of EsRab10 identified as 609 bp, encoding a protein of 203 amino acids. EsRab10 was highly transcribed in diverse immune-related tissues of crab, including hepatopancreas, gills, and hemocytes, with a notable downregulation observed after S. eriocheiris infection. Knockdown of EsRab10 via RNA interference (RNAi) led to a significant increase in hemocyte apoptosis and a marked reduction in the phagocytic capacity of hemocytes against S. eriocheiris. Furthermore, EsRab10 RNAi resulted in an elevated S. eriocheiris load in hemocytes and a significant decrease in crab survival rates. Overexpression of EsRab10 in Drosophila Schneider 2 (S2) cells demonstrated that phosphorylation of EsRab10 enhanced cell viability, reduced apoptosis, increased phagocytic activity, and decreased the S. eriocheiris load in S2 cells. Conversely, dephosphorylation of EsRab10 exerted opposite effects. In summary, these results demonstrated that EsRab10 played a crucial role in the resistance of E. sinensis to S. eriocheiris infection by modulating apoptosis and phagocytosis through phosphorylation.
Collapse
Affiliation(s)
- Yubo Ma
- Jiangsu Key Laboratory for Aquatic Crustacean Diseases, College of Marine Science and Engineering, Nanjing Normal University, 1 Wenyuan Road, Nanjing 210023, China
| | - Qing Li
- Jiangsu Key Laboratory for Aquatic Crustacean Diseases, College of Marine Science and Engineering, Nanjing Normal University, 1 Wenyuan Road, Nanjing 210023, China; Laboratory of Quality and Safety Risk Assessment for Agro-Products of the Ministry of Agriculture (Jinan), Institute of Quality Standard and Testing Technology for Agro-Products, Shandong Academy of Agricultural Sciences, Jinan 250100, China
| | - Xiaotong Wang
- Jiangsu Key Laboratory for Aquatic Crustacean Diseases, College of Marine Science and Engineering, Nanjing Normal University, 1 Wenyuan Road, Nanjing 210023, China
| | - Xinru Yan
- Jiangsu Key Laboratory for Aquatic Crustacean Diseases, College of Marine Science and Engineering, Nanjing Normal University, 1 Wenyuan Road, Nanjing 210023, China
| | - Zhuoqing Li
- Jiangsu Key Laboratory for Aquatic Crustacean Diseases, College of Marine Science and Engineering, Nanjing Normal University, 1 Wenyuan Road, Nanjing 210023, China
| | - Wei Gu
- Jiangsu Key Laboratory for Aquatic Crustacean Diseases, College of Marine Science and Engineering, Nanjing Normal University, 1 Wenyuan Road, Nanjing 210023, China; Co-Innovation Center for Marine Bio-Industry Technology of Jiangsu Province, Lianyungang, Jiangsu 222005, China
| | - Mingxiao Ning
- Laboratory of Quality and Safety Risk Assessment for Agro-Products of the Ministry of Agriculture (Jinan), Institute of Quality Standard and Testing Technology for Agro-Products, Shandong Academy of Agricultural Sciences, Jinan 250100, China.
| | - Qingguo Meng
- Jiangsu Key Laboratory for Aquatic Crustacean Diseases, College of Marine Science and Engineering, Nanjing Normal University, 1 Wenyuan Road, Nanjing 210023, China; Co-Innovation Center for Marine Bio-Industry Technology of Jiangsu Province, Lianyungang, Jiangsu 222005, China.
| |
Collapse
|
3
|
Chiang CY, Pratuseviciute N, Lin YE, Adhikari A, Yeshaw WM, Flitton C, Sherpa PL, Tonelli F, Rektorova I, Lynch T, Siuda J, Rudzińska-Bar M, Pulyk O, Bauer P, Beetz C, Dickson DW, Ross OA, Wszolek ZK, Klein C, Zimprich A, Alessi DR, Sammler EM, Pfeffer SR. PPM1M, a LRRK2-counteracting, phosphoRab12-preferring phosphatase with potential link to Parkinson's disease. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.03.19.644182. [PMID: 40166354 PMCID: PMC11957146 DOI: 10.1101/2025.03.19.644182] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/02/2025]
Abstract
Leucine-rich repeat kinase 2 (LRRK2) phosphorylates a subset of Rab GTPases that regulate receptor trafficking; activating mutations in LRRK2 are linked to Parkinson's disease. Rab phosphorylation is a transient event that can be reversed by phosphatases, including PPM1H, that acts on phosphoRab8A and phosphoRab10. Here we report a phosphatome-wide siRNA screen that identified PPM1M as a phosphoRab12-preferring phosphatase that also acts on phosphoRab8A and phosphoRab10. Upon knockout from cells or mice, PPM1M displays selectivity for phosphoRab12. As shown previously for mice harboring LRRK2 pathway mutations, knockout of Ppm1m leads to primary cilia loss in striatal cholinergic interneurons. We have also identified a rare PPM1M mutation in patients with Parkinson's disease that is catalytically inactive when tested in vitro and in cells. These findings identify PPM1M as a key player in the LRRK2 signaling pathway and provide a new therapeutic target for the possible benefit of patients with Parkinson's disease.
Collapse
Affiliation(s)
- Claire Y Chiang
- Department of Biochemistry, Stanford University School of Medicine; Stanford, USA
- Aligning Science Across Parkinson's (ASAP) Collaborative Research Network; Chevy Chase, USA
| | - Neringa Pratuseviciute
- MRC Protein Phosphorylation and Ubiquitylation Unit, University of Dundee; Dundee, United Kingdom
| | - Yu-En Lin
- Department of Biochemistry, Stanford University School of Medicine; Stanford, USA
- Aligning Science Across Parkinson's (ASAP) Collaborative Research Network; Chevy Chase, USA
| | - Ayan Adhikari
- Department of Biochemistry, Stanford University School of Medicine; Stanford, USA
- Aligning Science Across Parkinson's (ASAP) Collaborative Research Network; Chevy Chase, USA
| | - Wondwossen M Yeshaw
- Department of Biochemistry, Stanford University School of Medicine; Stanford, USA
- Aligning Science Across Parkinson's (ASAP) Collaborative Research Network; Chevy Chase, USA
| | - Chloe Flitton
- Aligning Science Across Parkinson's (ASAP) Collaborative Research Network; Chevy Chase, USA
- MRC Protein Phosphorylation and Ubiquitylation Unit, University of Dundee; Dundee, United Kingdom
| | - Pemba L Sherpa
- Department of Biochemistry, Stanford University School of Medicine; Stanford, USA
- Aligning Science Across Parkinson's (ASAP) Collaborative Research Network; Chevy Chase, USA
| | - Francesca Tonelli
- Aligning Science Across Parkinson's (ASAP) Collaborative Research Network; Chevy Chase, USA
- MRC Protein Phosphorylation and Ubiquitylation Unit, University of Dundee; Dundee, United Kingdom
| | - Irena Rektorova
- School of Medicine and St Anne's Hospital,1st Department of Neurology, Pekarska 53, Czech Republic
| | - Timothy Lynch
- Department of Neurology, Dublin Neurological Institute, Dublin, Ireland
| | - Joanna Siuda
- Śląski Uniwersytet Medyczny w Katowicach, Katowice, Poland
| | | | - Oleksandr Pulyk
- Uzhhorod Regional Center of Neurosurgery & Neurology, Uzhhorod, Ukraine
| | | | | | - Dennis W Dickson
- Mayo Clinic Florida, Department of Neuroscience, Jacksonville FL 32224, USA
| | - Owen A Ross
- Mayo Clinic Florida, Department of Neuroscience, Jacksonville FL 32224, USA
| | - Zbigniew K Wszolek
- Mayo Clinic Florida, Department of Neuroscience, Jacksonville FL 32224, USA
| | | | | | - Dario R Alessi
- Aligning Science Across Parkinson's (ASAP) Collaborative Research Network; Chevy Chase, USA
- MRC Protein Phosphorylation and Ubiquitylation Unit, University of Dundee; Dundee, United Kingdom
| | - Esther M Sammler
- Aligning Science Across Parkinson's (ASAP) Collaborative Research Network; Chevy Chase, USA
- MRC Protein Phosphorylation and Ubiquitylation Unit, University of Dundee; Dundee, United Kingdom
| | - Suzanne R Pfeffer
- Department of Biochemistry, Stanford University School of Medicine; Stanford, USA
- Aligning Science Across Parkinson's (ASAP) Collaborative Research Network; Chevy Chase, USA
| |
Collapse
|
4
|
Zhu H, Sydor AM, Yan BR, Li R, Boniecki MT, Lyons C, Cygler M, Muise AM, Maxson ME, Grinstein S, Raught B, Brumell JH. Salmonella exploits LRRK2-dependent plasma membrane dynamics to invade host cells. Nat Commun 2025; 16:2329. [PMID: 40057496 PMCID: PMC11890592 DOI: 10.1038/s41467-025-57453-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Accepted: 02/21/2025] [Indexed: 05/13/2025] Open
Abstract
Salmonella utilizes type 3 secreted effector proteins to induce plasma membrane (PM) perturbations during invasion of host cells1. The effectors drive mobilization of host membranes to generate cell surface ruffles, followed by invagination and scission of the PM to generate Salmonella-containing vacuoles (SCVs)2. Here, we show that LRRK2 kinase generates membrane reservoirs exploited by Salmonella during invasion. The reservoirs are tubular compartments associated with the PM under basal conditions and are formed through the phosphorylation of RAB10 GTPase by LRRK2. Mobilization of membrane reservoirs to generate invasion ruffles mediates delivery of phosphorylated RAB10 to invasion sites. Subsequently, RAB10 dephosphorylation is required for its inactivation by a bacterial GTPase activating protein and subsequent scission of the PM. RAB10 dephosphorylation is mediated by a TLR4/PIEZO1/TMEM16F-dependent pathway and is inhibited by hyperactive variants of LRRK2. Our findings reveal how Salmonella exploits LRRK2-dependent PM dynamics during invasion and provide new insight into how LRRK2 variants can protect against bacterial infection3,4.
Collapse
Affiliation(s)
- Hongxian Zhu
- Cell Biology Program, Hospital for Sick Children, Toronto, ON, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, ON, Canada
| | - Andrew M Sydor
- Cell Biology Program, Hospital for Sick Children, Toronto, ON, Canada
| | - Bing-Ru Yan
- Cell Biology Program, Hospital for Sick Children, Toronto, ON, Canada
| | - Ren Li
- Cell Biology Program, Hospital for Sick Children, Toronto, ON, Canada
| | - Michal T Boniecki
- Department of Biochemistry, Microbiology and Immunology, University of Saskatchewan, Saskatoon, SK, Canada
| | - Carina Lyons
- Cell Biology Program, Hospital for Sick Children, Toronto, ON, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, ON, Canada
| | - Miroslaw Cygler
- Department of Biochemistry, Microbiology and Immunology, University of Saskatchewan, Saskatoon, SK, Canada
| | - Aleixo M Muise
- Cell Biology Program, Hospital for Sick Children, Toronto, ON, Canada
- Department of Biochemistry, University of Toronto, Toronto, ON, Canada
- Division of Gastroenterology, Hepatology and Nutrition, Department of Pediatrics, Hospital for Sick Children, Toronto, ON, Canada
- SickKids IBD Centre, Hospital for Sick Children, Toronto, ON, Canada
| | - Michelle E Maxson
- Cell Biology Program, Hospital for Sick Children, Toronto, ON, Canada
- Department of Immunology, University of Toronto, Toronto, ON, Canada
| | - Sergio Grinstein
- Cell Biology Program, Hospital for Sick Children, Toronto, ON, Canada
- Department of Biochemistry, University of Toronto, Toronto, ON, Canada
- Institute of Medical Science, University of Toronto, Toronto, ON, Canada
| | - Brian Raught
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada
- Department of Medical Biophysics, University of Toronto, Toronto, ON, Canada
| | - John H Brumell
- Cell Biology Program, Hospital for Sick Children, Toronto, ON, Canada.
- Department of Molecular Genetics, University of Toronto, Toronto, ON, Canada.
- SickKids IBD Centre, Hospital for Sick Children, Toronto, ON, Canada.
- Institute of Medical Science, University of Toronto, Toronto, ON, Canada.
| |
Collapse
|
5
|
Bagnoli E, Lin YE, Burel S, Jaimon E, Antico O, Themistokleous C, Nikoloff JM, Squires S, Morella I, Watzlawik JO, Fiesel FC, Springer W, Tonelli F, Lis P, Brooks SP, Dunnett SB, Brambilla R, Alessi DR, Pfeffer SR, Muqit MMK. Endogenous LRRK2 and PINK1 function in a convergent neuroprotective ciliogenesis pathway in the brain. Proc Natl Acad Sci U S A 2025; 122:e2412029122. [PMID: 39874296 PMCID: PMC11804522 DOI: 10.1073/pnas.2412029122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Accepted: 12/08/2024] [Indexed: 01/30/2025] Open
Abstract
Mutations in Leucine-rich repeat kinase 2 (LRRK2) and PTEN-induced kinase 1 (PINK1) are associated with familial Parkinson's disease (PD). LRRK2 phosphorylates Rab guanosine triphosphatase (GTPases) within the Switch II domain while PINK1 directly phosphorylates Parkin and ubiquitin (Ub) and indirectly induces phosphorylation of a subset of Rab GTPases. Herein we have crossed LRRK2 [R1441C] mutant knock-in mice with PINK1 knock-out (KO) mice and report that loss of PINK1 does not impact endogenous LRRK2-mediated Rab phosphorylation nor do we see significant effect of mutant LRRK2 on PINK1-mediated Rab and Ub phosphorylation. In addition, we observe that a pool of the Rab-specific, protein phosphatase family member 1H phosphatase, is transcriptionally up-regulated and recruited to damaged mitochondria, independent of PINK1 or LRRK2 activity. Parallel signaling of LRRK2 and PINK1 pathways is supported by assessment of motor behavioral studies that show no evidence of genetic interaction in crossed mouse lines. Previously we showed loss of cilia in LRRK2 R1441C mice and herein we show that PINK1 KO mice exhibit a ciliogenesis defect in striatal cholinergic interneurons and astrocytes that interferes with Hedgehog induction of glial derived-neurotrophic factor transcription. This is not exacerbated in double-mutant LRRK2 and PINK1 mice. Overall, our analysis indicates that LRRK2 activation and/or loss of PINK1 function along parallel pathways to impair ciliogenesis, suggesting a convergent mechanism toward PD. Our data suggest that reversal of defects downstream of ciliogenesis offers a common therapeutic strategy for LRRK2 or PINK1 PD patients, whereas LRRK2 inhibitors that are currently in clinical trials are unlikely to benefit PINK1 PD patients.
Collapse
Affiliation(s)
- Enrico Bagnoli
- Medical Research Council Protein Phosphorylation and Ubiquitylation Unit, School of Life Sciences, University of Dundee, DundeeDD1 5EH, United Kingdom
- Aligning Science Across Parkinson’s Collaborative Research Network, Chevy Chase, MD20815
| | - Yu-En Lin
- Aligning Science Across Parkinson’s Collaborative Research Network, Chevy Chase, MD20815
- Department of Biochemistry, Stanford University School of Medicine, Stanford, CA94305-5307
| | - Sophie Burel
- Medical Research Council Protein Phosphorylation and Ubiquitylation Unit, School of Life Sciences, University of Dundee, DundeeDD1 5EH, United Kingdom
| | - Ebsy Jaimon
- Aligning Science Across Parkinson’s Collaborative Research Network, Chevy Chase, MD20815
- Department of Biochemistry, Stanford University School of Medicine, Stanford, CA94305-5307
| | - Odetta Antico
- Medical Research Council Protein Phosphorylation and Ubiquitylation Unit, School of Life Sciences, University of Dundee, DundeeDD1 5EH, United Kingdom
- Aligning Science Across Parkinson’s Collaborative Research Network, Chevy Chase, MD20815
| | - Christos Themistokleous
- Medical Research Council Protein Phosphorylation and Ubiquitylation Unit, School of Life Sciences, University of Dundee, DundeeDD1 5EH, United Kingdom
- Aligning Science Across Parkinson’s Collaborative Research Network, Chevy Chase, MD20815
| | - Jonas M. Nikoloff
- Aligning Science Across Parkinson’s Collaborative Research Network, Chevy Chase, MD20815
- Department of Biochemistry, Stanford University School of Medicine, Stanford, CA94305-5307
| | - Samuel Squires
- Medical Research Council Protein Phosphorylation and Ubiquitylation Unit, School of Life Sciences, University of Dundee, DundeeDD1 5EH, United Kingdom
| | - Ilaria Morella
- Department of Biology and Biotechnology “Lazzaro Spallanzani”, University of Pavia, Pavia27100, Italy
- Neuroscience and Mental Health Innovation Institute, School of Biosciences, Cardiff University, CardiffCF10 3AX, Wales, United Kingdom
| | | | - Fabienne C. Fiesel
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL32224
- Neuroscience PhD Program, Mayo Clinic, Graduate School of Biomedical Sciences, Jacksonville, FL32224
| | - Wolfdieter Springer
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL32224
- Neuroscience PhD Program, Mayo Clinic, Graduate School of Biomedical Sciences, Jacksonville, FL32224
| | - Francesca Tonelli
- Medical Research Council Protein Phosphorylation and Ubiquitylation Unit, School of Life Sciences, University of Dundee, DundeeDD1 5EH, United Kingdom
- Aligning Science Across Parkinson’s Collaborative Research Network, Chevy Chase, MD20815
| | - Pawel Lis
- Medical Research Council Protein Phosphorylation and Ubiquitylation Unit, School of Life Sciences, University of Dundee, DundeeDD1 5EH, United Kingdom
- Aligning Science Across Parkinson’s Collaborative Research Network, Chevy Chase, MD20815
| | - Simon P. Brooks
- The Brain Repair Group, Division of Neuroscience, School of Biosciences, Cardiff University, CardiffCF10 3AX, Wales, United Kingdom
| | - Stephen B. Dunnett
- The Brain Repair Group, Division of Neuroscience, School of Biosciences, Cardiff University, CardiffCF10 3AX, Wales, United Kingdom
| | - Riccardo Brambilla
- Department of Biology and Biotechnology “Lazzaro Spallanzani”, University of Pavia, Pavia27100, Italy
- Neuroscience and Mental Health Innovation Institute, School of Biosciences, Cardiff University, CardiffCF10 3AX, Wales, United Kingdom
| | - Dario R. Alessi
- Medical Research Council Protein Phosphorylation and Ubiquitylation Unit, School of Life Sciences, University of Dundee, DundeeDD1 5EH, United Kingdom
- Aligning Science Across Parkinson’s Collaborative Research Network, Chevy Chase, MD20815
| | - Suzanne R. Pfeffer
- Aligning Science Across Parkinson’s Collaborative Research Network, Chevy Chase, MD20815
- Department of Biochemistry, Stanford University School of Medicine, Stanford, CA94305-5307
| | - Miratul M. K. Muqit
- Medical Research Council Protein Phosphorylation and Ubiquitylation Unit, School of Life Sciences, University of Dundee, DundeeDD1 5EH, United Kingdom
- Aligning Science Across Parkinson’s Collaborative Research Network, Chevy Chase, MD20815
| |
Collapse
|
6
|
Tian Z, Zhang Y, Xu J, Yang Q, Hu D, Feng J, Gai C. Primary cilia in Parkinson's disease: summative roles in signaling pathways, genes, defective mitochondrial function, and substantia nigra dopaminergic neurons. Front Aging Neurosci 2024; 16:1451655. [PMID: 39364348 PMCID: PMC11447156 DOI: 10.3389/fnagi.2024.1451655] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Accepted: 09/02/2024] [Indexed: 10/05/2024] Open
Abstract
Primary cilia (PC) are microtubules-based, independent antennal-like sensory organelles, that are seen in most vertebrate cells of different types, including astrocytes and neurons. They send signals to cells to control many physiological and cellular processes by detecting changes in the extracellular environment. Parkinson's disease (PD), a neurodegenerative disease that progresses over time, is primarily caused by a gradual degradation of the dopaminergic pathway in the striatum nigra, which results in a large loss of neurons in the substantia nigra compact (SNpc) and a depletion of dopamine (DA). PD samples have abnormalities in the structure and function of PC. The alterations contribute to the cause, development, and recovery of PD via influencing signaling pathways (SHH, Wnt, Notch-1, α-syn, and TGFβ), genes (MYH10 and LRRK2), defective mitochondrial function, and substantia nigra dopaminergic neurons. Thus, restoring the normal structure and physiological function of PC and neurons in the brain are effective treatment for PD. This review summarizes the function of PC in neurodegenerative diseases and explores the pathological mechanisms caused by PC alterations in PD, in order to provide references and ideas for future research.
Collapse
Affiliation(s)
- Zijiao Tian
- Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Yixin Zhang
- College of Acupuncture and Massage, Beijing University of Chinese Medicine, Beijing, China
| | - Jing Xu
- Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Qianwen Yang
- Dongfang Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Die Hu
- College of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Jing Feng
- College of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Cong Gai
- College of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| |
Collapse
|
7
|
Morez M, Lara Ordóñez AJ, Melnyk P, Liberelle M, Lebègue N, Taymans JM. Leucine-rich repeat kinase 2 (LRRK2) inhibitors for Parkinson's disease: a patent review of the literature to date. Expert Opin Ther Pat 2024; 34:773-788. [PMID: 39023243 DOI: 10.1080/13543776.2024.2378076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Accepted: 07/04/2024] [Indexed: 07/20/2024]
Abstract
INTRODUCTION Nearly two decades after leucine rich repeat kinase 2 (LRRK2) was discovered as a genetic determinant of Parkinson's disease (PD), LRRK2 has emerged a priority therapeutic target in PD and inhibition of its activity is hypothesized to be beneficial. AREAS COVERED LRRK2 targeting agents, in particular kinase inhibitors and agents reducing LRRK2 expression show promise in model systems and have progressed to phase I and phase II clinical testing for PD. Several additional targeting strategies for LRRK2 are emerging, based on promoting specific 'healthy' LRRK2 quaternary structures, heteromeric complexes and conformations. EXPERT OPINION It can be expected that LRRK2 targeting strategies may proceed to phase III clinical testing for PD in the next five years, allowing the field to discover the real clinical value of LRRK2 targeting strategies.
Collapse
Affiliation(s)
- Margaux Morez
- University Lille, Inserm, CHU Lille, U1172 - LilNCog - Lille Neuroscience & Cognition, Lille, France
| | | | - Patricia Melnyk
- University Lille, Inserm, CHU Lille, U1172 - LilNCog - Lille Neuroscience & Cognition, Lille, France
| | - Maxime Liberelle
- University Lille, Inserm, CHU Lille, U1172 - LilNCog - Lille Neuroscience & Cognition, Lille, France
| | - Nicolas Lebègue
- University Lille, Inserm, CHU Lille, U1172 - LilNCog - Lille Neuroscience & Cognition, Lille, France
| | - Jean-Marc Taymans
- University Lille, Inserm, CHU Lille, U1172 - LilNCog - Lille Neuroscience & Cognition, Lille, France
| |
Collapse
|
8
|
Brewer A, Zhao JF, Fasimoye R, Shpiro N, Macartney TJ, Wood NT, Wightman M, Alessi DR, Sapkota GP. Targeted dephosphorylation of SMAD3 as an approach to impede TGF-β signaling. iScience 2024; 27:110423. [PMID: 39104417 PMCID: PMC11298613 DOI: 10.1016/j.isci.2024.110423] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Revised: 05/09/2024] [Accepted: 06/27/2024] [Indexed: 08/07/2024] Open
Abstract
TGF-β (transforming growth factor-β) signaling is involved in a myriad of cellular processes and its dysregulation has been implicated in many human diseases, including fibrosis and cancer. TGF-β transcriptional responses are controlled by tail phosphorylation of transcription factors SMAD2 and SMAD3 (mothers against decapentaplegic homolog 2/3). Therefore, targeted dephosphorylation of phospho-SMAD3 could provide an innovative mechanism to block some TGF-β-induced transcriptional responses, such as the transcription of SERPINE-1, which encodes plasminogen activator inhibitor 1 (PAI-1). Here, by developing and employing a bifunctional molecule, BDPIC (bromoTAG-dTAG proximity-inducing chimera), we redirected multiple phosphatases, tagged with bromoTAG, to dephosphorylate phospho-SMAD3, tagged with dTAG. Using CRISPR-Cas9 technology, we generated homozygous double knock-in A549 bromoTAG/bromoTAG PPM1H/ dTAG/dTAG SMAD3 cells, in which the BDPIC-induced proximity between bromoTAG-PPM1H and dTAG-SMAD3 led to a robust dephosphorylation of dTAG-SMAD3 and a significant decrease in SERPINE-1 transcription. Our work demonstrates targeted dephosphorylation of phospho-proteins as an exciting modality for rewiring cell signaling.
Collapse
Affiliation(s)
- Abigail Brewer
- Medical Research Council (MRC) Protein Phosphorylation & Ubiquitylation Unit, School of Life Sciences, University of Dundee, Dundee DD1 5EH, UK
| | - Jin-Feng Zhao
- Medical Research Council (MRC) Protein Phosphorylation & Ubiquitylation Unit, School of Life Sciences, University of Dundee, Dundee DD1 5EH, UK
| | - Rotimi Fasimoye
- Medical Research Council (MRC) Protein Phosphorylation & Ubiquitylation Unit, School of Life Sciences, University of Dundee, Dundee DD1 5EH, UK
| | - Natalia Shpiro
- Medical Research Council (MRC) Protein Phosphorylation & Ubiquitylation Unit, School of Life Sciences, University of Dundee, Dundee DD1 5EH, UK
| | - Thomas J. Macartney
- Medical Research Council (MRC) Protein Phosphorylation & Ubiquitylation Unit, School of Life Sciences, University of Dundee, Dundee DD1 5EH, UK
| | - Nicola T. Wood
- Medical Research Council (MRC) Protein Phosphorylation & Ubiquitylation Unit, School of Life Sciences, University of Dundee, Dundee DD1 5EH, UK
| | - Melanie Wightman
- Medical Research Council (MRC) Protein Phosphorylation & Ubiquitylation Unit, School of Life Sciences, University of Dundee, Dundee DD1 5EH, UK
| | - Dario R. Alessi
- Medical Research Council (MRC) Protein Phosphorylation & Ubiquitylation Unit, School of Life Sciences, University of Dundee, Dundee DD1 5EH, UK
| | - Gopal P. Sapkota
- Medical Research Council (MRC) Protein Phosphorylation & Ubiquitylation Unit, School of Life Sciences, University of Dundee, Dundee DD1 5EH, UK
| |
Collapse
|
9
|
Khan SS, Jaimon E, Lin YE, Nikoloff J, Tonelli F, Alessi DR, Pfeffer SR. Loss of primary cilia and dopaminergic neuroprotection in pathogenic LRRK2-driven and idiopathic Parkinson's disease. Proc Natl Acad Sci U S A 2024; 121:e2402206121. [PMID: 39088390 PMCID: PMC11317616 DOI: 10.1073/pnas.2402206121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Accepted: 06/13/2024] [Indexed: 08/03/2024] Open
Abstract
Activating leucine-rich repeat kinase 2 (LRRK2) mutations cause Parkinson's and phosphorylation of Rab10 by pathogenic LRRK2 blocks primary ciliogenesis in cultured cells. In the mouse brain, LRRK2 blockade of primary cilia is highly cell type specific: For example, cholinergic interneurons and astrocytes but not medium spiny neurons of the dorsal striatum lose primary cilia in LRRK2-pathway mutant mice. We show here that the cell type specificity of LRRK2-mediated cilia loss is also seen in human postmortem striatum from patients with LRRK2 pathway mutations and idiopathic Parkinson's. Single nucleus RNA sequencing shows that cilia loss in mouse cholinergic interneurons is accompanied by decreased glial-derived neurotrophic factor transcription, decreasing neuroprotection for dopamine neurons. Nevertheless, LRRK2 expression differences cannot explain the unique vulnerability of cholinergic neurons to LRRK2 kinase as much higher LRRK2 expression is seen in medium spiny neurons that have normal cilia. In parallel with decreased striatal dopaminergic neurite density, LRRK2 G2019S neurons show increased autism-linked CNTN5 adhesion protein expression; glial cells show significant loss of ferritin heavy chain. These data strongly suggest that loss of cilia in specific striatal cell types decreases neuroprotection for dopamine neurons in mice and human Parkinson's.
Collapse
Affiliation(s)
- Shahzad S. Khan
- Department of Biochemistry, Stanford University School of Medicine, Stanford, CA94305-5307
- Aligning Science Across Parkinson’s Collaborative Research Network, Chevy Chase, MD20815
| | - Ebsy Jaimon
- Department of Biochemistry, Stanford University School of Medicine, Stanford, CA94305-5307
- Aligning Science Across Parkinson’s Collaborative Research Network, Chevy Chase, MD20815
| | - Yu-En Lin
- Department of Biochemistry, Stanford University School of Medicine, Stanford, CA94305-5307
- Aligning Science Across Parkinson’s Collaborative Research Network, Chevy Chase, MD20815
| | - Jonas Nikoloff
- Department of Biochemistry, Stanford University School of Medicine, Stanford, CA94305-5307
- Aligning Science Across Parkinson’s Collaborative Research Network, Chevy Chase, MD20815
| | - Francesca Tonelli
- Aligning Science Across Parkinson’s Collaborative Research Network, Chevy Chase, MD20815
- Medical Research Council Protein Phosphorylation and Ubiquitylation Unit, University of Dundee, DundeeDD1 5EH, Scotland, United Kingdom
| | - Dario R. Alessi
- Aligning Science Across Parkinson’s Collaborative Research Network, Chevy Chase, MD20815
- Medical Research Council Protein Phosphorylation and Ubiquitylation Unit, University of Dundee, DundeeDD1 5EH, Scotland, United Kingdom
| | - Suzanne R. Pfeffer
- Department of Biochemistry, Stanford University School of Medicine, Stanford, CA94305-5307
- Aligning Science Across Parkinson’s Collaborative Research Network, Chevy Chase, MD20815
| |
Collapse
|
10
|
Kumar JP, Kosek D, Durell SR, Miller Jenkins LM, Debnath S, Coussens NP, Hall MD, Appella DH, Dyda F, Mazur SJ, Appella E. Crystal structure and mechanistic studies of the PPM1D serine/threonine phosphatase catalytic domain. J Biol Chem 2024; 300:107561. [PMID: 39002674 PMCID: PMC11342775 DOI: 10.1016/j.jbc.2024.107561] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 06/28/2024] [Accepted: 07/03/2024] [Indexed: 07/15/2024] Open
Abstract
Protein phosphatase 1D (PPM1D, Wip1) is induced by the tumor suppressor p53 during DNA damage response signaling and acts as an oncoprotein in several human cancers. Although PPM1D is a potential therapeutic target, insights into its atomic structure were challenging due to flexible regions unique to this family member. Here, we report the first crystal structure of the PPM1D catalytic domain to 1.8 Å resolution. The structure reveals the active site with two Mg2+ ions bound, similar to other structures. The flap subdomain and B-loop, which are crucial for substrate recognition and catalysis, were also resolved, with the flap forming two short helices and three short β-strands that are followed by an irregular loop. Unexpectedly, a nitrogen-oxygen-sulfur bridge was identified in the catalytic domain. Molecular dynamics simulations and kinetic studies provided further mechanistic insights into the regulation of PPM1D catalytic activity. In particular, the kinetic experiments demonstrated a magnesium concentration-dependent lag in PPM1D attaining steady-state velocity, a feature of hysteretic enzymes that show slow transitions compared with catalytic turnover. All combined, these results advance the understanding of PPM1D function and will support the development of PPM1D-targeted therapeutics.
Collapse
Affiliation(s)
- Jay Prakash Kumar
- Laboratory of Cell Biology, NCI, National Institutes of Health, Bethesda, Maryland, United States
| | - Dalibor Kosek
- Laboratory of Molecular Biology, NIDDK, National Institutes of Health, Bethesda, Maryland, United States
| | - Stewart R Durell
- Laboratory of Cell Biology, NCI, National Institutes of Health, Bethesda, Maryland, United States
| | - Lisa M Miller Jenkins
- Laboratory of Cell Biology, NCI, National Institutes of Health, Bethesda, Maryland, United States
| | - Subrata Debnath
- Laboratory of Cell Biology, NCI, National Institutes of Health, Bethesda, Maryland, United States
| | - Nathan P Coussens
- National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, Maryland, United States
| | - Matthew D Hall
- National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, Maryland, United States
| | - Daniel H Appella
- Laboratory of Bioorganic Chemistry, NIDDK, National Institutes of Health, Bethesda, Maryland, United States
| | - Fred Dyda
- Laboratory of Molecular Biology, NIDDK, National Institutes of Health, Bethesda, Maryland, United States
| | - Sharlyn J Mazur
- Laboratory of Cell Biology, NCI, National Institutes of Health, Bethesda, Maryland, United States
| | - Ettore Appella
- Laboratory of Cell Biology, NCI, National Institutes of Health, Bethesda, Maryland, United States.
| |
Collapse
|
11
|
Alessi DR, Pfeffer SR. Leucine-Rich Repeat Kinases. Annu Rev Biochem 2024; 93:261-287. [PMID: 38621236 DOI: 10.1146/annurev-biochem-030122-051144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/17/2024]
Abstract
Activating mutations in leucine-rich repeat kinase 2 (LRRK2) represent the most common cause of monogenic Parkinson's disease. LRRK2 is a large multidomain protein kinase that phosphorylates a specific subset of the ∼65 human Rab GTPases, which are master regulators of the secretory and endocytic pathways. After phosphorylation by LRRK2, Rabs lose the capacity to bind cognate effector proteins and guanine nucleotide exchange factors. Moreover, the phosphorylated Rabs cannot interact with their cognate prenyl-binding retrieval proteins (also known as guanine nucleotide dissociation inhibitors) and, thus, they become trapped on membrane surfaces. Instead, they gain the capacity to bind phospho-Rab-specific effector proteins, such as RILPL1, with resulting pathological consequences. Rab proteins also act upstream of LRRK2 by controlling its activation and recruitment onto membranes. LRRK2 signaling is counteracted by the phosphoprotein phosphatase PPM1H, which selectively dephosphorylates phospho-Rab proteins. We present here our current understanding of the structure, biochemical properties, and cell biology of LRRK2 and its related paralog LRRK1 and discuss how this information guides the generation of LRRK2 inhibitors for the potential benefit of patients.
Collapse
Affiliation(s)
- Dario R Alessi
- Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, Maryland, USA
- Medical Research Council Protein Phosphorylation and Ubiquitylation Unit, University of Dundee, United Kingdom;
| | - Suzanne R Pfeffer
- Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, Maryland, USA
- Department of Biochemistry, Stanford University School of Medicine, Stanford, California, USA
| |
Collapse
|
12
|
Dou D, Aiken J, Holzbaur EL. RAB3 phosphorylation by pathogenic LRRK2 impairs trafficking of synaptic vesicle precursors. J Cell Biol 2024; 223:e202307092. [PMID: 38512027 PMCID: PMC10959120 DOI: 10.1083/jcb.202307092] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 02/01/2024] [Accepted: 03/04/2024] [Indexed: 03/22/2024] Open
Abstract
Gain-of-function mutations in the LRRK2 gene cause Parkinson's disease (PD), characterized by debilitating motor and non-motor symptoms. Increased phosphorylation of a subset of RAB GTPases by LRRK2 is implicated in PD pathogenesis. We find that increased phosphorylation of RAB3A, a cardinal synaptic vesicle precursor (SVP) protein, disrupts anterograde axonal transport of SVPs in iPSC-derived human neurons (iNeurons) expressing hyperactive LRRK2-p.R1441H. Knockout of the opposing protein phosphatase 1H (PPM1H) in iNeurons phenocopies this effect. In these models, the compartmental distribution of synaptic proteins is altered; synaptophysin and synaptobrevin-2 become sequestered in the neuronal soma with decreased delivery to presynaptic sites along the axon. We find that RAB3A phosphorylation disrupts binding to the motor adaptor MADD, potentially preventing the formation of the RAB3A-MADD-KIF1A/1Bβ complex driving anterograde SVP transport. RAB3A hyperphosphorylation also disrupts interactions with RAB3GAP and RAB-GDI1. Our results reveal a mechanism by which pathogenic hyperactive LRRK2 may contribute to the altered synaptic homeostasis associated with characteristic non-motor and cognitive manifestations of PD.
Collapse
Affiliation(s)
- Dan Dou
- Department of Physiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Aligning Science Across Parkinson’s (ASAP) Collaborative Research Network, Chevy Chase, MD, USA
- Neuroscience Graduate Group, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Jayne Aiken
- Department of Physiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Erika L.F. Holzbaur
- Department of Physiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Aligning Science Across Parkinson’s (ASAP) Collaborative Research Network, Chevy Chase, MD, USA
- Neuroscience Graduate Group, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| |
Collapse
|
13
|
Schrӧder LF, Peng W, Gao G, Wong YC, Schwake M, Krainc D. VPS13C regulates phospho-Rab10-mediated lysosomal function in human dopaminergic neurons. J Cell Biol 2024; 223:e202304042. [PMID: 38358348 PMCID: PMC10868123 DOI: 10.1083/jcb.202304042] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Revised: 12/14/2023] [Accepted: 01/31/2024] [Indexed: 02/16/2024] Open
Abstract
Loss-of-function mutations in VPS13C are linked to early-onset Parkinson's disease (PD). While VPS13C has been previously studied in non-neuronal cells, the neuronal role of VPS13C in disease-relevant human dopaminergic neurons has not been elucidated. Using live-cell microscopy, we investigated the role of VPS13C in regulating lysosomal dynamics and function in human iPSC-derived dopaminergic neurons. Loss of VPS13C in dopaminergic neurons disrupts lysosomal morphology and dynamics with increased inter-lysosomal contacts, leading to impaired lysosomal motility and cellular distribution, as well as defective lysosomal hydrolytic activity and acidification. We identified Rab10 as a phospho-dependent interactor of VPS13C on lysosomes and observed a decreased phospho-Rab10-mediated lysosomal stress response upon loss of VPS13C. These findings highlight an important role of VPS13C in regulating lysosomal homeostasis in human dopaminergic neurons and suggest that disruptions in Rab10-mediated lysosomal stress response contribute to disease pathogenesis in VPS13C-linked PD.
Collapse
Affiliation(s)
- Leonie F. Schrӧder
- Department of Neurology, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
- Biochemistry III/Faculty of Chemistry, Bielefeld University, Bielefeld, Germany
| | - Wesley Peng
- Department of Neurology, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Ge Gao
- Department of Neurology, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Yvette C. Wong
- Department of Neurology, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Michael Schwake
- Biochemistry III/Faculty of Chemistry, Bielefeld University, Bielefeld, Germany
| | - Dimitri Krainc
- Department of Neurology, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| |
Collapse
|
14
|
Brewer A, Sathe G, Pflug BE, Clarke RG, Macartney TJ, Sapkota GP. Mapping the substrate landscape of protein phosphatase 2A catalytic subunit PPP2CA. iScience 2024; 27:109302. [PMID: 38450154 PMCID: PMC10915630 DOI: 10.1016/j.isci.2024.109302] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 12/18/2023] [Accepted: 02/16/2024] [Indexed: 03/08/2024] Open
Abstract
Protein phosphatase 2A (PP2A) is an essential Ser/Thr phosphatase. The PP2A holoenzyme complex comprises a scaffolding (A), regulatory (B), and catalytic (C) subunit, with PPP2CA being the principal catalytic subunit. The full scope of PP2A substrates in cells remains to be defined. To address this, we employed dTAG proteolysis-targeting chimeras to efficiently and selectively degrade dTAG-PPP2CA in homozygous knock-in HEK293 cells. Unbiased global phospho-proteomics identified 2,204 proteins with significantly increased phosphorylation upon dTAG-PPP2CA degradation, implicating them as potential PPP2CA substrates. A vast majority of these are novel. Bioinformatic analyses revealed involvement of the potential PPP2CA substrates in spliceosome function, cell cycle, RNA transport, and ubiquitin-mediated proteolysis. We identify a pSP/pTP motif as a predominant target for PPP2CA and confirm some of our phospho-proteomic data with immunoblotting. We provide an in-depth atlas of potential PPP2CA substrates and establish targeted degradation as a robust tool to unveil phosphatase substrates in cells.
Collapse
Affiliation(s)
- Abigail Brewer
- Medical Research Council (MRC) Protein Phosphorylation & Ubiquitylation Unit, School of Life Sciences, University of Dundee, Dundee DD1 5EH, UK
| | - Gajanan Sathe
- Medical Research Council (MRC) Protein Phosphorylation & Ubiquitylation Unit, School of Life Sciences, University of Dundee, Dundee DD1 5EH, UK
| | - Billie E. Pflug
- Medical Research Council (MRC) Protein Phosphorylation & Ubiquitylation Unit, School of Life Sciences, University of Dundee, Dundee DD1 5EH, UK
| | - Rosemary G. Clarke
- Medical Research Council (MRC) Protein Phosphorylation & Ubiquitylation Unit, School of Life Sciences, University of Dundee, Dundee DD1 5EH, UK
| | - Thomas J. Macartney
- Medical Research Council (MRC) Protein Phosphorylation & Ubiquitylation Unit, School of Life Sciences, University of Dundee, Dundee DD1 5EH, UK
| | - Gopal P. Sapkota
- Medical Research Council (MRC) Protein Phosphorylation & Ubiquitylation Unit, School of Life Sciences, University of Dundee, Dundee DD1 5EH, UK
| |
Collapse
|
15
|
Phung TK, Berndsen K, Shastry R, Phan TLCHB, Muqit MMK, Alessi DR, Nirujogi RS. CURTAIN-A unique web-based tool for exploration and sharing of MS-based proteomics data. Proc Natl Acad Sci U S A 2024; 121:e2312676121. [PMID: 38324566 PMCID: PMC10873628 DOI: 10.1073/pnas.2312676121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Accepted: 12/14/2023] [Indexed: 02/09/2024] Open
Abstract
To facilitate analysis and sharing of mass spectrometry (MS)-based proteomics data, we created online tools called CURTAIN (https://curtain.proteo.info) and CURTAIN-PTM (https://curtainptm.proteo.info) with an accompanying series of video tutorials (https://www.youtube.com/@CURTAIN-me6hl). These are designed to enable non-MS experts to interactively peruse volcano plots and deconvolute primary experimental data so that replicates can be visualized in bar charts or violin plots and exported in publication-ready format. They also allow assessment of overall experimental quality by correlation matrix and profile plot analysis. After making a selection of protein "hits", the user can analyze known domain structure, AlphaFold predicted structure, reported interactors, relative expression as well as disease links. CURTAIN-PTM permits analysis of all identified PTM sites on protein(s) of interest with selected databases. CURTAIN-PTM also links with the Kinase Library to predict upstream kinases that may phosphorylate sites of interest. We provide examples of the utility of CURTAIN and CURTAIN-PTM in analyzing how targeted degradation of the PPM1H Rab phosphatase that counteracts the Parkinson's LRRK2 kinase impacts cellular protein levels and phosphorylation sites. We also reanalyzed a ubiquitylation dataset, characterizing the PINK1-Parkin pathway activation in primary neurons, revealing data of interest not highlighted previously. CURTAIN and CURTAIN-PTM are free to use and open source, enabling researchers to share and maximize the impact of their proteomics data. We advocate that MS data published in volcano plot format be reported containing a shareable CURTAIN weblink, thereby allowing readers to better analyze and exploit the data.
Collapse
Affiliation(s)
- Toan K. Phung
- Medical Research Council Protein Phosphorylation and Ubiquitylation Unit, School of Life Sciences, University of Dundee, DundeeDD1 5EH, United Kingdom
- Aligning Science Across Parkinson’s Collaborative Research Network, Chevy Chase, MD20815
| | - Kerryn Berndsen
- Medical Research Council Protein Phosphorylation and Ubiquitylation Unit, School of Life Sciences, University of Dundee, DundeeDD1 5EH, United Kingdom
- Aligning Science Across Parkinson’s Collaborative Research Network, Chevy Chase, MD20815
| | - Rosamund Shastry
- Medical Research Council Protein Phosphorylation and Ubiquitylation Unit, School of Life Sciences, University of Dundee, DundeeDD1 5EH, United Kingdom
- Aligning Science Across Parkinson’s Collaborative Research Network, Chevy Chase, MD20815
| | - Tran L. C. H. B. Phan
- Medical Research Council Protein Phosphorylation and Ubiquitylation Unit, School of Life Sciences, University of Dundee, DundeeDD1 5EH, United Kingdom
| | - Miratul M. K. Muqit
- Medical Research Council Protein Phosphorylation and Ubiquitylation Unit, School of Life Sciences, University of Dundee, DundeeDD1 5EH, United Kingdom
- Aligning Science Across Parkinson’s Collaborative Research Network, Chevy Chase, MD20815
| | - Dario R. Alessi
- Medical Research Council Protein Phosphorylation and Ubiquitylation Unit, School of Life Sciences, University of Dundee, DundeeDD1 5EH, United Kingdom
- Aligning Science Across Parkinson’s Collaborative Research Network, Chevy Chase, MD20815
| | - Raja S. Nirujogi
- Medical Research Council Protein Phosphorylation and Ubiquitylation Unit, School of Life Sciences, University of Dundee, DundeeDD1 5EH, United Kingdom
- Aligning Science Across Parkinson’s Collaborative Research Network, Chevy Chase, MD20815
| |
Collapse
|
16
|
Khan SS, Jaimon E, Lin YE, Nikoloff J, Tonelli F, Alessi DR, Pfeffer SR. Loss of primary cilia and dopaminergic neuroprotection in pathogenic LRRK2-driven and idiopathic Parkinson's disease. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.01.15.575737. [PMID: 38293195 PMCID: PMC10827083 DOI: 10.1101/2024.01.15.575737] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2024]
Abstract
Activating LRRK2 mutations cause Parkinson's disease. Previously, we showed that cholinergic interneurons and astrocytes but not medium spiny neurons of the dorsal striatum lose primary cilia in LRRK2 mutant mice. Single nucleus RNA sequencing shows that cilia loss in cholinergic interneurons correlates with higher LRRK2 expression and decreased glial derived neurotrophic factor transcription. Nevertheless, much higher LRRK2 expression is seen in medium spiny neurons that have normal cilia in mice and humans. In parallel with decreased striatal dopaminergic neurite density, LRRK2 G2019S neurons show increased autism-linked CNTN5 adhesion protein expression; glial cells show significant loss of ferritin heavy chain. Human striatal tissue from LRRK2 pathway mutation carriers and idiopathic Parkinson's disease show similar cilia loss in cholinergic interneurons and astrocytes and overall loss of such neurons. These data strongly suggest that loss of cilia in specific striatal cell types decreases neuroprotection for dopamine neurons in mice and human Parkinson's disease.
Collapse
Affiliation(s)
- Shahzad S. Khan
- Department of Biochemistry, Stanford University School of Medicine, United States
- Aligning Science Across Parkinson’s (ASAP) Collaborative Research Network, United States
- Current address: Departments of Cell Biology & Physiology and Neurology, University of North Carolina, Chapel Hill, United States
| | - Ebsy Jaimon
- Department of Biochemistry, Stanford University School of Medicine, United States
- Aligning Science Across Parkinson’s (ASAP) Collaborative Research Network, United States
| | - Yu-En Lin
- Department of Biochemistry, Stanford University School of Medicine, United States
- Aligning Science Across Parkinson’s (ASAP) Collaborative Research Network, United States
| | - Jonas Nikoloff
- Department of Biochemistry, Stanford University School of Medicine, United States
- Aligning Science Across Parkinson’s (ASAP) Collaborative Research Network, United States
| | - Francesca Tonelli
- Aligning Science Across Parkinson’s (ASAP) Collaborative Research Network, United States
- MRC Protein Phosphorylation and Ubiquitylation Unit, University of Dundee, United Kingdom
| | - Dario R. Alessi
- Aligning Science Across Parkinson’s (ASAP) Collaborative Research Network, United States
- MRC Protein Phosphorylation and Ubiquitylation Unit, University of Dundee, United Kingdom
| | - Suzanne R. Pfeffer
- Department of Biochemistry, Stanford University School of Medicine, United States
- Aligning Science Across Parkinson’s (ASAP) Collaborative Research Network, United States
| |
Collapse
|
17
|
Singh V, Menard MA, Serrano GE, Beach TG, Zhao HT, Riley-DiPaolo A, Subrahmanian N, LaVoie MJ, Volpicelli-Daley LA. Cellular and subcellular localization of Rab10 and phospho-T73 Rab10 in the mouse and human brain. Acta Neuropathol Commun 2023; 11:201. [PMID: 38110990 PMCID: PMC10726543 DOI: 10.1186/s40478-023-01704-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Accepted: 12/03/2023] [Indexed: 12/20/2023] Open
Abstract
Autosomal dominant pathogenic mutations in Leucine-rich repeat kinase 2 (LRRK2) cause Parkinson's disease (PD). The most common mutation, G2019S-LRRK2, increases the kinase activity of LRRK2 causing hyper-phosphorylation of its substrates. One of these substrates, Rab10, is phosphorylated at a conserved Thr73 residue (pRab10), and is one of the most abundant LRRK2 Rab GTPases expressed in various tissues. The involvement of Rab10 in neurodegenerative disease, including both PD and Alzheimer's disease makes pinpointing the cellular and subcellular localization of Rab10 and pRab10 in the brain an important step in understanding its functional role, and how post-translational modifications could impact function. To establish the specificity of antibodies to the phosphorylated form of Rab10 (pRab10), Rab10 specific antisense oligonucleotides were intraventricularly injected into the brains of mice. Further, Rab10 knock out induced neurons, differentiated from human induced pluripotent stem cells were used to test the pRab10 antibody specificity. To amplify the weak immunofluorescence signal of pRab10, tyramide signal amplification was utilized. Rab10 and pRab10 were expressed in the cortex, striatum and the substantia nigra pars compacta. Immunofluorescence for pRab10 was increased in G2019S-LRRK2 knockin mice. Neurons, astrocytes, microglia and oligodendrocytes all showed Rab10 and pRab10 expression. While Rab10 colocalized with endoplasmic reticulum, lysosome and trans-Golgi network markers, pRab10 did not localize to these organelles. However, pRab10, did overlap with markers of the presynaptic terminal in both mouse and human cortex, including α-synuclein. Results from this study suggest Rab10 and pRab10 are expressed in all brain areas and cell types tested in this study, but pRab10 is enriched at the presynaptic terminal. As Rab10 is a LRRK2 kinase substrate, increased kinase activity of G2019S-LRRK2 in PD may affect Rab10 mediated membrane trafficking at the presynaptic terminal in neurons in disease.
Collapse
Affiliation(s)
- Vijay Singh
- Center for Neurodegeneration and Experimental Therapeutics, University of Alabama at Birmingham, Birmingham, AL, 35294, USA
| | - Marissa A Menard
- Center for Neurodegeneration and Experimental Therapeutics, University of Alabama at Birmingham, Birmingham, AL, 35294, USA
| | - Geidy E Serrano
- Department of Neuropathology, Banner Sun Health Research Institute, Sun City, AZ, 85351, USA
| | - Thomas G Beach
- Department of Neuropathology, Banner Sun Health Research Institute, Sun City, AZ, 85351, USA
| | - Hien T Zhao
- Ionis Pharmaceuticals Inc, Carlsbad, CA, 92010, USA
| | - Alexis Riley-DiPaolo
- Department of Neuroscience at the University of Florida, Gainesville, FL, 32611, USA
| | - Nitya Subrahmanian
- Department of Neurology, Center for Translational Research in Neurodegenerative Disease, Fixel Institute for Neurologic Disease, University of Florida, Gainesville, FL, 32610, USA
| | - Matthew J LaVoie
- Department of Neurology, Center for Translational Research in Neurodegenerative Disease, Fixel Institute for Neurologic Disease, University of Florida, Gainesville, FL, 32610, USA
| | - Laura A Volpicelli-Daley
- Center for Neurodegeneration and Experimental Therapeutics, University of Alabama at Birmingham, Birmingham, AL, 35294, USA.
| |
Collapse
|
18
|
Pal P, Taylor M, Lam PY, Tonelli F, Hecht CA, Lis P, Nirujogi RS, Phung TK, Yeshaw WM, Jaimon E, Fasimoye R, Dickie EA, Wightman M, Macartney T, Pfeffer SR, Alessi DR. Parkinson's VPS35[D620N] mutation induces LRRK2-mediated lysosomal association of RILPL1 and TMEM55B. SCIENCE ADVANCES 2023; 9:eadj1205. [PMID: 38091401 PMCID: PMC10848721 DOI: 10.1126/sciadv.adj1205] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Accepted: 11/13/2023] [Indexed: 12/18/2023]
Abstract
We demonstrate that the Parkinson's VPS35[D620N] mutation alters the expression of ~220 lysosomal proteins and stimulates recruitment and phosphorylation of Rab proteins at the lysosome. This recruits the phospho-Rab effector protein RILPL1 to the lysosome where it binds to the lysosomal integral membrane protein TMEM55B. We identify highly conserved regions of RILPL1 and TMEM55B that interact and design mutations that block binding. In mouse fibroblasts, brain, and lung, we demonstrate that the VPS35[D620N] mutation reduces RILPL1 levels, in a manner reversed by LRRK2 inhibition and proteasome inhibitors. Knockout of RILPL1 enhances phosphorylation of Rab substrates, and knockout of TMEM55B increases RILPL1 levels. The lysosomotropic agent LLOMe also induced LRRK2 kinase-mediated association of RILPL1 to the lysosome, but to a lower extent than the D620N mutation. Our study uncovers a pathway through which dysfunctional lysosomes resulting from the VPS35[D620N] mutation recruit and activate LRRK2 on the lysosomal surface, driving assembly of the RILPL1-TMEM55B complex.
Collapse
Affiliation(s)
- Prosenjit Pal
- MRC Protein Phosphorylation and Ubiquitylation Unit, School of Life Sciences, University of Dundee, Dundee DD1 5EH, UK
- Aligning Science Across Parkinson’s (ASAP) Collaborative Research Network, Chevy Chase, MD 20815, USA
| | - Matthew Taylor
- MRC Protein Phosphorylation and Ubiquitylation Unit, School of Life Sciences, University of Dundee, Dundee DD1 5EH, UK
| | - Pui Yiu Lam
- MRC Protein Phosphorylation and Ubiquitylation Unit, School of Life Sciences, University of Dundee, Dundee DD1 5EH, UK
- Aligning Science Across Parkinson’s (ASAP) Collaborative Research Network, Chevy Chase, MD 20815, USA
| | - Francesca Tonelli
- MRC Protein Phosphorylation and Ubiquitylation Unit, School of Life Sciences, University of Dundee, Dundee DD1 5EH, UK
- Aligning Science Across Parkinson’s (ASAP) Collaborative Research Network, Chevy Chase, MD 20815, USA
| | - Chloe A. Hecht
- Department of Biochemistry, Stanford University School of Medicine, Stanford, CA 94305-5307, USA
| | - Pawel Lis
- MRC Protein Phosphorylation and Ubiquitylation Unit, School of Life Sciences, University of Dundee, Dundee DD1 5EH, UK
- Aligning Science Across Parkinson’s (ASAP) Collaborative Research Network, Chevy Chase, MD 20815, USA
| | - Raja S. Nirujogi
- MRC Protein Phosphorylation and Ubiquitylation Unit, School of Life Sciences, University of Dundee, Dundee DD1 5EH, UK
- Aligning Science Across Parkinson’s (ASAP) Collaborative Research Network, Chevy Chase, MD 20815, USA
| | - Toan K. Phung
- MRC Protein Phosphorylation and Ubiquitylation Unit, School of Life Sciences, University of Dundee, Dundee DD1 5EH, UK
- Aligning Science Across Parkinson’s (ASAP) Collaborative Research Network, Chevy Chase, MD 20815, USA
| | - Wondwossen M. Yeshaw
- Aligning Science Across Parkinson’s (ASAP) Collaborative Research Network, Chevy Chase, MD 20815, USA
- Department of Biochemistry, Stanford University School of Medicine, Stanford, CA 94305-5307, USA
| | - Ebsy Jaimon
- Aligning Science Across Parkinson’s (ASAP) Collaborative Research Network, Chevy Chase, MD 20815, USA
- Department of Biochemistry, Stanford University School of Medicine, Stanford, CA 94305-5307, USA
| | - Rotimi Fasimoye
- MRC Protein Phosphorylation and Ubiquitylation Unit, School of Life Sciences, University of Dundee, Dundee DD1 5EH, UK
- Aligning Science Across Parkinson’s (ASAP) Collaborative Research Network, Chevy Chase, MD 20815, USA
| | - Emily A. Dickie
- MRC Protein Phosphorylation and Ubiquitylation Unit, School of Life Sciences, University of Dundee, Dundee DD1 5EH, UK
- Aligning Science Across Parkinson’s (ASAP) Collaborative Research Network, Chevy Chase, MD 20815, USA
| | - Melanie Wightman
- MRC Protein Phosphorylation and Ubiquitylation Unit, School of Life Sciences, University of Dundee, Dundee DD1 5EH, UK
| | - Thomas Macartney
- MRC Protein Phosphorylation and Ubiquitylation Unit, School of Life Sciences, University of Dundee, Dundee DD1 5EH, UK
| | - Suzanne R. Pfeffer
- Aligning Science Across Parkinson’s (ASAP) Collaborative Research Network, Chevy Chase, MD 20815, USA
- Department of Biochemistry, Stanford University School of Medicine, Stanford, CA 94305-5307, USA
| | - Dario R. Alessi
- MRC Protein Phosphorylation and Ubiquitylation Unit, School of Life Sciences, University of Dundee, Dundee DD1 5EH, UK
- Aligning Science Across Parkinson’s (ASAP) Collaborative Research Network, Chevy Chase, MD 20815, USA
| |
Collapse
|
19
|
Heo S, Kang T, Bygrave AM, Larsen MR, Huganir RL. Experience-Induced Remodeling of the Hippocampal Post-synaptic Proteome and Phosphoproteome. Mol Cell Proteomics 2023; 22:100661. [PMID: 37806341 PMCID: PMC10652125 DOI: 10.1016/j.mcpro.2023.100661] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Revised: 09/25/2023] [Accepted: 10/05/2023] [Indexed: 10/10/2023] Open
Abstract
The postsynaptic density (PSD) of excitatory synapses contains a highly organized protein network with thousands of proteins and is a key node in the regulation of synaptic plasticity. To gain new mechanistic insight into experience-induced changes in the PSD, we examined the global dynamics of the hippocampal PSD proteome and phosphoproteome in mice following four different types of experience. Mice were trained using an inhibitory avoidance (IA) task and hippocampal PSD fractions were isolated from individual mice to investigate molecular mechanisms underlying experience-dependent remodeling of synapses. We developed a new strategy to identify and quantify the relatively low level of site-specific phosphorylation of PSD proteome from the hippocampus, by using a modified iTRAQ-based TiSH protocol. In the PSD, we identified 3938 proteins and 2761 phosphoproteins in the sequential strategy covering a total of 4968 unique protein groups (at least two peptides including a unique peptide). On the phosphoproteins, we identified a total of 6188 unambiguous phosphosites (75%
Collapse
Affiliation(s)
- Seok Heo
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA; Kavli Neuroscience Discovery Institute, Johns Hopkins University, Baltimore, Maryland, USA
| | - Taewook Kang
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, Odense, Denmark
| | - Alexei M Bygrave
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA; Kavli Neuroscience Discovery Institute, Johns Hopkins University, Baltimore, Maryland, USA
| | - Martin R Larsen
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, Odense, Denmark.
| | - Richard L Huganir
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA; Kavli Neuroscience Discovery Institute, Johns Hopkins University, Baltimore, Maryland, USA.
| |
Collapse
|
20
|
Yeshaw WM, Adhikari A, Chiang CY, Dhekne HS, Wawro PS, Pfeffer SR. Localization of PPM1H phosphatase tunes Parkinson's disease-linked LRRK2 kinase-mediated Rab GTPase phosphorylation and ciliogenesis. Proc Natl Acad Sci U S A 2023; 120:e2315171120. [PMID: 37889931 PMCID: PMC10622911 DOI: 10.1073/pnas.2315171120] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Accepted: 09/23/2023] [Indexed: 10/29/2023] Open
Abstract
PPM1H phosphatase reverses Parkinson's disease-associated, Leucine Rich Repeat Kinase 2-mediated Rab GTPase phosphorylation. We show here that PPM1H relies on an N-terminal amphipathic helix for Golgi localization. The amphipathic helix enables PPM1H to bind to liposomes in vitro, and small, highly curved liposomes stimulate PPM1H activity. We artificially anchored PPM1H to the Golgi, mitochondria, or mother centriole. Our data show that regulation of Rab10 GTPase phosphorylation requires PPM1H access to Rab10 at or near the mother centriole. Moreover, poor colocalization of Rab12 explains in part why it is a poor substrate for PPM1H in cells but not in vitro. These data support a model in which localization drives PPM1H substrate selection and centriolar PPM1H is critical for regulation of Rab GTPase-regulated ciliogenesis. Moreover, Golgi localized PPM1H may maintain active Rab GTPases on the Golgi to carry out their nonciliogenesis-related functions in membrane trafficking.
Collapse
Affiliation(s)
- Wondwossen M. Yeshaw
- Department of Biochemistry, Stanford University School of Medicine, Stanford, CA94305-5307
- Aligning Science Across Parkinson’s Collaborative Research Network, Chevy Chase, MD20815
| | - Ayan Adhikari
- Department of Biochemistry, Stanford University School of Medicine, Stanford, CA94305-5307
- Aligning Science Across Parkinson’s Collaborative Research Network, Chevy Chase, MD20815
| | - Claire Y. Chiang
- Department of Biochemistry, Stanford University School of Medicine, Stanford, CA94305-5307
- Aligning Science Across Parkinson’s Collaborative Research Network, Chevy Chase, MD20815
| | - Herschel S. Dhekne
- Department of Biochemistry, Stanford University School of Medicine, Stanford, CA94305-5307
- Aligning Science Across Parkinson’s Collaborative Research Network, Chevy Chase, MD20815
| | - Paulina S. Wawro
- Department of Biochemistry, Stanford University School of Medicine, Stanford, CA94305-5307
| | - Suzanne R. Pfeffer
- Department of Biochemistry, Stanford University School of Medicine, Stanford, CA94305-5307
- Aligning Science Across Parkinson’s Collaborative Research Network, Chevy Chase, MD20815
| |
Collapse
|
21
|
Wang X, Bondar VV, Davis OB, Maloney MT, Agam M, Chin MY, Cheuk-Nga Ho A, Ghosh R, Leto DE, Joy D, Calvert MEK, Lewcock JW, Di Paolo G, Thorne RG, Sweeney ZK, Henry AG. Rab12 is a regulator of LRRK2 and its activation by damaged lysosomes. eLife 2023; 12:e87255. [PMID: 37874617 PMCID: PMC10708889 DOI: 10.7554/elife.87255] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Accepted: 10/23/2023] [Indexed: 10/25/2023] Open
Abstract
Leucine-rich repeat kinase 2 (LRRK2) variants associated with Parkinson's disease (PD) and Crohn's disease lead to increased phosphorylation of its Rab substrates. While it has been recently shown that perturbations in cellular homeostasis including lysosomal damage can increase LRRK2 activity and localization to lysosomes, the molecular mechanisms by which LRRK2 activity is regulated have remained poorly defined. We performed a targeted siRNA screen to identify regulators of LRRK2 activity and identified Rab12 as a novel modulator of LRRK2-dependent phosphorylation of one of its substrates, Rab10. Using a combination of imaging and immunopurification methods to isolate lysosomes, we demonstrated that Rab12 is actively recruited to damaged lysosomes and leads to a local and LRRK2-dependent increase in Rab10 phosphorylation. PD-linked variants, including LRRK2 R1441G and VPS35 D620N, lead to increased recruitment of LRRK2 to the lysosome and a local elevation in lysosomal levels of pT73 Rab10. Together, these data suggest a conserved mechanism by which Rab12, in response to damage or expression of PD-associated variants, facilitates the recruitment of LRRK2 and phosphorylation of its Rab substrate(s) at the lysosome.
Collapse
Affiliation(s)
- Xiang Wang
- Denali TherapeuticsSouth San FranciscoUnited States
| | | | | | | | - Maayan Agam
- Denali TherapeuticsSouth San FranciscoUnited States
| | | | | | | | - Dara E Leto
- Denali TherapeuticsSouth San FranciscoUnited States
| | - David Joy
- Denali TherapeuticsSouth San FranciscoUnited States
| | | | | | | | - Robert G Thorne
- Denali TherapeuticsSouth San FranciscoUnited States
- Department of Pharmaceutics, University of MinnesotaMinneapolisUnited States
| | | | | |
Collapse
|
22
|
Dhekne HS, Tonelli F, Yeshaw WM, Chiang CY, Limouse C, Jaimon E, Purlyte E, Alessi DR, Pfeffer SR. Genome-wide screen reveals Rab12 GTPase as a critical activator of Parkinson's disease-linked LRRK2 kinase. eLife 2023; 12:e87098. [PMID: 37874635 PMCID: PMC10708890 DOI: 10.7554/elife.87098] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Accepted: 06/22/2023] [Indexed: 10/25/2023] Open
Abstract
Activating mutations in the leucine-rich repeat kinase 2 (LRRK2) cause Parkinson's disease. LRRK2 phosphorylates a subset of Rab GTPases, particularly Rab10 and Rab8A, and we showed previously that these phosphoRabs play an important role in LRRK2 membrane recruitment and activation (Vides et al., 2022). To learn more about LRRK2 pathway regulation, we carried out an unbiased, CRISPR-based genome-wide screen to identify modifiers of cellular phosphoRab10 levels. A flow cytometry assay was developed to detect changes in phosphoRab10 levels in pools of mouse NIH-3T3 cells harboring unique CRISPR guide sequences. Multiple negative and positive regulators were identified; surprisingly, knockout of the Rab12 gene was especially effective in decreasing phosphoRab10 levels in multiple cell types and knockout mouse tissues. Rab-driven increases in phosphoRab10 were specific for Rab12, LRRK2-dependent and PPM1H phosphatase-reversible, and did not require Rab12 phosphorylation; they were seen with wild type and pathogenic G2019S and R1441C LRRK2. As expected for a protein that regulates LRRK2 activity, Rab12 also influenced primary cilia formation. AlphaFold modeling revealed a novel Rab12 binding site in the LRRK2 Armadillo domain, and we show that residues predicted to be essential for Rab12 interaction at this site influence phosphoRab10 and phosphoRab12 levels in a manner distinct from Rab29 activation of LRRK2. Our data show that Rab12 binding to a new site in the LRRK2 Armadillo domain activates LRRK2 kinase for Rab phosphorylation and could serve as a new therapeutic target for a novel class of LRRK2 inhibitors that do not target the kinase domain.
Collapse
Affiliation(s)
- Herschel S Dhekne
- Department of Biochemistry, Stanford University School of MedicineStanfordUnited States
- Aligning Science Across Parkinson’s (ASAP) Collaborative Research NetworkStanfordUnited States
| | - Francesca Tonelli
- Aligning Science Across Parkinson’s (ASAP) Collaborative Research NetworkStanfordUnited States
- MRC Protein Phosphorylation and Ubiquitylation Unit, University of DundeeDundeeUnited Kingdom
| | - Wondwossen M Yeshaw
- Department of Biochemistry, Stanford University School of MedicineStanfordUnited States
- Aligning Science Across Parkinson’s (ASAP) Collaborative Research NetworkStanfordUnited States
| | - Claire Y Chiang
- Department of Biochemistry, Stanford University School of MedicineStanfordUnited States
- Aligning Science Across Parkinson’s (ASAP) Collaborative Research NetworkStanfordUnited States
| | - Charles Limouse
- Department of Biochemistry, Stanford University School of MedicineStanfordUnited States
| | - Ebsy Jaimon
- Department of Biochemistry, Stanford University School of MedicineStanfordUnited States
- Aligning Science Across Parkinson’s (ASAP) Collaborative Research NetworkStanfordUnited States
| | - Elena Purlyte
- MRC Protein Phosphorylation and Ubiquitylation Unit, University of DundeeDundeeUnited Kingdom
| | - Dario R Alessi
- Aligning Science Across Parkinson’s (ASAP) Collaborative Research NetworkStanfordUnited States
- MRC Protein Phosphorylation and Ubiquitylation Unit, University of DundeeDundeeUnited Kingdom
| | - Suzanne R Pfeffer
- Department of Biochemistry, Stanford University School of MedicineStanfordUnited States
- Aligning Science Across Parkinson’s (ASAP) Collaborative Research NetworkStanfordUnited States
| |
Collapse
|
23
|
Vissers MFJM, Troyer MD, Thijssen E, Pereira DR, Heuberger |JAAC, Groeneveld GJ, Huntwork‐Rodriguez S. A leucine-rich repeat kinase 2 (LRRK2) pathway biomarker characterization study in patients with Parkinson's disease with and without LRRK2 mutations and healthy controls. Clin Transl Sci 2023; 16:1408-1420. [PMID: 37177855 PMCID: PMC10432885 DOI: 10.1111/cts.13541] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Revised: 04/15/2023] [Accepted: 04/27/2023] [Indexed: 05/15/2023] Open
Abstract
Increased leucine-rich repeat kinase 2 (LRRK2) kinase activity is an established risk factor for Parkinson's disease (PD), and several LRRK2 kinase inhibitors are in clinical development as potential novel disease-modifying therapeutics. This biomarker characterization study explored within- and between-subject variability of multiple LRRK2 pathway biomarkers (total LRRK2 [tLRRK2], phosphorylation of the serine 935 (Ser935) residue on LRRK2 [pS935], phosphorylation of Rab10 [pRab10], and total Rab10 [tRab10]) in different biological sources (whole blood, peripheral blood mononuclear cells [PBMCs], neutrophils) as candidate human target engagement and pharmacodynamic biomarkers for implementation in phase I/II pharmacological studies of LRRK2 inhibitors. PD patients with a LRRK2 mutation (n = 6), idiopathic PD patients (n = 6), and healthy matched control subjects (n = 10) were recruited for repeated blood and cerebrospinal fluid (CSF) sampling split over 2 days. Within-subject variability (geometric coefficient of variation [CV], %) of these biomarkers was lowest in whole blood and neutrophils (range: 12.64%-51.32%) and considerably higher in PBMCs (range: 34.81%-273.88%). Between-subject variability displayed a similar pattern, with relatively lower variability in neutrophils (range: 61.30%-66.26%) and whole blood (range: 44.94%-123.11%), and considerably higher variability in PBMCs (range: 189.60%-415.19%). Group-level differences were observed with elevated mean pRab10 levels in neutrophils and a reduced mean pS935/tLRRK2 ratio in PBMCs in PD LRRK2-mutation carriers compared to healthy controls. These findings suggest that the evaluated biomarkers and assays could be used to verify pharmacological mechanisms of action and help explore the dose-response of LRRK2 inhibitors in early-phase clinical studies. In addition, comparable α-synuclein aggregation in CSF was observed in LRRK2-mutation carriers compared to idiopathic PD patients.
Collapse
Affiliation(s)
- Maurits F. J. M. Vissers
- Centre for Human Drug ResearchLeidenThe Netherlands
- Leiden University Medical CenterLeidenThe Netherlands
| | | | - Eva Thijssen
- Centre for Human Drug ResearchLeidenThe Netherlands
- Leiden University Medical CenterLeidenThe Netherlands
| | | | | | - Geert Jan Groeneveld
- Centre for Human Drug ResearchLeidenThe Netherlands
- Leiden University Medical CenterLeidenThe Netherlands
| | | |
Collapse
|
24
|
Zhao S, Gu T, Weng K, Zhang Y, Cao Z, Zhang Y, Zhao W, Chen G, Xu Q. Phosphoproteome Reveals Extracellular Regulated Protein Kinase Phosphorylation Mediated by Mitogen-Activated Protein Kinase Kinase-Regulating Granulosa Cell Apoptosis in Broody Geese. Int J Mol Sci 2023; 24:12278. [PMID: 37569653 PMCID: PMC10418642 DOI: 10.3390/ijms241512278] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 07/27/2023] [Accepted: 07/29/2023] [Indexed: 08/13/2023] Open
Abstract
Geese have strong brooding abilities, which severely affect their egg-laying performance. Phosphorylation is widely involved in regulating reproductive activities, but its role in goose brooding behavior is unclear. In this study, we investigated differences in the phosphoprotein composition of ovarian tissue between laying and brooding geese. Brooding geese exhibited ovarian and follicular atrophy, as well as significant oxidative stress and granulosa cell apoptosis. We identified 578 highly phosphorylated proteins and 281 lowly phosphorylated proteins, and a KEGG pathway analysis showed that these differentially phosphorylated proteins were mainly involved in cell apoptosis, adhesion junctions, and other signaling pathways related to goose brooding behavior. The extracellular regulated protein kinase (ERK)-B-Cell Lymphoma 2(BCL2) signaling pathway was identified as playing an important role in regulating cell apoptosis. The phosphorylation levels of ERK proteins were significantly lower in brooding geese than in laying geese, and the expression of mitogen-activated protein kinase kinase (MEK) was downregulated. Overexpression of MEK led to a significant increase in ERK phosphorylation and BCL2 transcription in H2O2-induced granulosa cells (p < 0.05), partially rescuing cell death. Conversely, granulosa cells receiving MEK siRNA exhibited the opposite trend. In conclusion, geese experience significant oxidative stress and granulosa cell apoptosis during brooding, with downregulated MEK expression, decreased phosphorylation of ERK protein, and inhibited expression of BCL2.
Collapse
Affiliation(s)
- Shuai Zhao
- Jiangsu Key Laboratory for Animal Genetic, Breeding and Molecular Design, Yangzhou University, Yangzhou 225009, China; (S.Z.)
| | - Tiantian Gu
- Jiangsu Key Laboratory for Animal Genetic, Breeding and Molecular Design, Yangzhou University, Yangzhou 225009, China; (S.Z.)
| | - Kaiqi Weng
- Jiangsu Key Laboratory for Animal Genetic, Breeding and Molecular Design, Yangzhou University, Yangzhou 225009, China; (S.Z.)
| | - Yu Zhang
- Jiangsu Key Laboratory for Animal Genetic, Breeding and Molecular Design, Yangzhou University, Yangzhou 225009, China; (S.Z.)
| | - Zhengfeng Cao
- Jiangsu Key Laboratory for Animal Genetic, Breeding and Molecular Design, Yangzhou University, Yangzhou 225009, China; (S.Z.)
| | - Yang Zhang
- Jiangsu Key Laboratory for Animal Genetic, Breeding and Molecular Design, Yangzhou University, Yangzhou 225009, China; (S.Z.)
| | - Wenming Zhao
- Jiangsu Key Laboratory for Animal Genetic, Breeding and Molecular Design, Yangzhou University, Yangzhou 225009, China; (S.Z.)
| | - Guohong Chen
- Jiangsu Key Laboratory for Animal Genetic, Breeding and Molecular Design, Yangzhou University, Yangzhou 225009, China; (S.Z.)
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, The Ministry of Education of China, Yangzhou University, Yangzhou 225009, China
| | - Qi Xu
- Jiangsu Key Laboratory for Animal Genetic, Breeding and Molecular Design, Yangzhou University, Yangzhou 225009, China; (S.Z.)
| |
Collapse
|
25
|
Dou D, Aiken J, Holzbaur ELF. RAB3 phosphorylation by pathogenic LRRK2 impairs trafficking of synaptic vesicle precursors. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.07.25.550521. [PMID: 37546777 PMCID: PMC10402060 DOI: 10.1101/2023.07.25.550521] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/08/2023]
Abstract
Gain-of-function mutations in the LRRK2 gene cause Parkinson's disease (PD), characterized by debilitating motor and non-motor symptoms. Increased phosphorylation of a subset of RAB GTPases by LRRK2 is implicated in PD pathogenesis. We find that increased phosphorylation of RAB3A, a cardinal synaptic vesicle precursor (SVP) protein, disrupts anterograde axonal transport of SVPs in iPSC-derived human neurons (iNeurons) expressing hyperactive LRRK2-p.R1441H. Knockout of the opposing protein phosphatase 1H (PPM1H) in iNeurons phenocopies this effect. In these models, the compartmental distribution of synaptic proteins is altered; synaptophysin and synaptobrevin-2 become sequestered in the neuronal soma with decreased delivery to presynaptic sites along the axon. We find that RAB3A phosphorylation disrupts binding to the motor adapter MADD, potentially preventing formation of the RAB3A-MADD-KIF1A/1Bβ complex driving anterograde SVP transport. RAB3A hyperphosphorylation also disrupts interactions with RAB3GAP and RAB-GDI1. Our results reveal a mechanism by which pathogenic hyperactive LRRK2 may contribute to the altered synaptic homeostasis associated with characteristic non-motor and cognitive manifestations of PD.
Collapse
Affiliation(s)
- Dan Dou
- Department of Physiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
- Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD 20815, USA
- Neuroscience Graduate Group, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA
| | - Jayne Aiken
- Department of Physiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Erika L F Holzbaur
- Department of Physiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
- Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD 20815, USA
- Neuroscience Graduate Group, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA
| |
Collapse
|
26
|
Dou D, Smith EM, Evans CS, Boecker CA, Holzbaur ELF. Regulatory imbalance between LRRK2 kinase, PPM1H phosphatase, and ARF6 GTPase disrupts the axonal transport of autophagosomes. Cell Rep 2023; 42:112448. [PMID: 37133994 PMCID: PMC10304398 DOI: 10.1016/j.celrep.2023.112448] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Revised: 03/15/2023] [Accepted: 04/13/2023] [Indexed: 05/04/2023] Open
Abstract
Gain-of-function mutations in the LRRK2 gene cause Parkinson's disease (PD), increasing phosphorylation of RAB GTPases through hyperactive kinase activity. We find that LRRK2-hyperphosphorylated RABs disrupt the axonal transport of autophagosomes by perturbing the coordinated regulation of cytoplasmic dynein and kinesin. In iPSC-derived human neurons, knockin of the strongly hyperactive LRRK2-p.R1441H mutation causes striking impairments in autophagosome transport, inducing frequent directional reversals and pauses. Knockout of the opposing protein phosphatase 1H (PPM1H) phenocopies the effect of hyperactive LRRK2. Overexpression of ADP-ribosylation factor 6 (ARF6), a GTPase that acts as a switch for selective activation of dynein or kinesin, attenuates transport defects in both p.R1441H knockin and PPM1H knockout neurons. Together, these findings support a model where a regulatory imbalance between LRRK2-hyperphosphorylated RABs and ARF6 induces an unproductive "tug-of-war" between dynein and kinesin, disrupting processive autophagosome transport. This disruption may contribute to PD pathogenesis by impairing the essential homeostatic functions of axonal autophagy.
Collapse
Affiliation(s)
- Dan Dou
- Department of Physiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD 20815, USA; Neuroscience Graduate Group, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA
| | - Erin M Smith
- Department of Physiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Chantell S Evans
- Duke University Medical Center, Duke University, Durham, NC 27710, USA
| | - C Alexander Boecker
- Department of Neurology, University Medical Center Goettingen, 37077 Goettingen, Germany.
| | - Erika L F Holzbaur
- Department of Physiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD 20815, USA; Neuroscience Graduate Group, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA.
| |
Collapse
|
27
|
Pathak P, Alexander KK, Helton LG, Kentros M, LeClair TJ, Zhang X, Ho FY, Moore TT, Hall S, Guaitoli G, Gloeckner CJ, Kortholt A, Rideout H, Kennedy EJ. Doubly Constrained C-terminal of Roc (COR) Domain-Derived Peptides Inhibit Leucine-Rich Repeat Kinase 2 (LRRK2) Dimerization. ACS Chem Neurosci 2023. [PMID: 37200505 DOI: 10.1021/acschemneuro.3c00259] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/20/2023] Open
Abstract
Missense mutations along the leucine-rich repeat kinase 2 (LRRK2) protein are a major contributor to Parkinson's Disease (PD), the second most commonly occurring neurodegenerative disorder worldwide. We recently reported the development of allosteric constrained peptide inhibitors that target and downregulate LRRK2 activity through disruption of LRRK2 dimerization. In this study, we designed doubly constrained peptides with the objective of inhibiting C-terminal of Roc (COR)-COR mediated dimerization at the LRRK2 dimer interface. We show that the doubly constrained peptides are cell-permeant, bind wild-type and pathogenic LRRK2, inhibit LRRK2 dimerization and kinase activity, and inhibit LRRK2-mediated neuronal apoptosis, and in contrast to ATP-competitive LRRK2 kinase inhibitors, they do not induce the mislocalization of LRRK2 to skein-like structures in cells. This work highlights the significance of COR-mediated dimerization in LRRK2 activity while also highlighting the use of doubly constrained peptides to stabilize discrete secondary structural folds within a peptide sequence.
Collapse
Affiliation(s)
- Pragya Pathak
- Department of Cell Biochemistry, University of Groningen, Nijenborgh 7, 9747AG Groningen, Netherlands
| | - Krista K Alexander
- Department of Pharmaceutical and Biomedical Sciences, College of Pharmacy, University of Georgia, Athens, Georgia 30602, United States
| | - Leah G Helton
- Department of Pharmaceutical and Biomedical Sciences, College of Pharmacy, University of Georgia, Athens, Georgia 30602, United States
| | - Michalis Kentros
- Center for Clinical, Experimental Surgery, and Translational Research, Biomedical Research Foundation of the Academy of Athens, 11527 Athens, Greece
| | - Timothy J LeClair
- Department of Pharmaceutical and Biomedical Sciences, College of Pharmacy, University of Georgia, Athens, Georgia 30602, United States
| | - Xiaojuan Zhang
- Department of Cell Biochemistry, University of Groningen, Nijenborgh 7, 9747AG Groningen, Netherlands
| | - Franz Y Ho
- Department of Cell Biochemistry, University of Groningen, Nijenborgh 7, 9747AG Groningen, Netherlands
| | - Timothy T Moore
- Department of Pharmaceutical and Biomedical Sciences, College of Pharmacy, University of Georgia, Athens, Georgia 30602, United States
| | - Scotty Hall
- Department of Pharmaceutical and Biomedical Sciences, College of Pharmacy, University of Georgia, Athens, Georgia 30602, United States
| | | | - Christian Johannes Gloeckner
- DZNE German Center for Neurodegenerative Diseases, 72076 Tübingen, Germany
- Core Facility for Medical Bioanalytics, Center for Ophthalmology, Institute for Ophthalmic Research, University of Tübingen, 72076 Tübingen, Germany
| | - Arjan Kortholt
- Department of Cell Biochemistry, University of Groningen, Nijenborgh 7, 9747AG Groningen, Netherlands
- YETEM-Innovative Technologies Application and Research Centre, Suleyman Demirel University, 32260 Isparta, Turkey
| | - Hardy Rideout
- Center for Clinical, Experimental Surgery, and Translational Research, Biomedical Research Foundation of the Academy of Athens, 11527 Athens, Greece
| | - Eileen J Kennedy
- Department of Pharmaceutical and Biomedical Sciences, College of Pharmacy, University of Georgia, Athens, Georgia 30602, United States
| |
Collapse
|
28
|
Fasimoye R, Dong W, Nirujogi RS, Rawat ES, Iguchi M, Nyame K, Phung TK, Bagnoli E, Prescott AR, Alessi DR, Abu-Remaileh M. Golgi-IP, a tool for multimodal analysis of Golgi molecular content. Proc Natl Acad Sci U S A 2023; 120:e2219953120. [PMID: 37155866 PMCID: PMC10193996 DOI: 10.1073/pnas.2219953120] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Accepted: 04/05/2023] [Indexed: 05/10/2023] Open
Abstract
The Golgi is a membrane-bound organelle that is essential for protein and lipid biosynthesis. It represents a central trafficking hub that sorts proteins and lipids to various destinations or for secretion from the cell. The Golgi has emerged as a docking platform for cellular signaling pathways including LRRK2 kinase whose deregulation leads to Parkinson disease. Golgi dysfunction is associated with a broad spectrum of diseases including cancer, neurodegeneration, and cardiovascular diseases. To allow the study of the Golgi at high resolution, we report a rapid Golgi immunoprecipitation technique (Golgi-IP) to isolate intact Golgi mini-stacks for subsequent analysis of their content. By fusing the Golgi-resident protein TMEM115 to three tandem HA epitopes (GolgiTAG), we purified the Golgi using Golgi-IP with minimal contamination from other compartments. We then established an analysis pipeline using liquid chromatography coupled with mass spectrometry to characterize the human Golgi proteome, metabolome, and lipidome. Subcellular proteomics confirmed known Golgi proteins and identified proteins not previously associated with the Golgi. Metabolite profiling established the human Golgi metabolome and revealed the enrichment of uridine-diphosphate (UDP) sugars and their derivatives, which is consistent with their roles in protein and lipid glycosylation. Furthermore, targeted metabolomics validated SLC35A2 as the subcellular transporter for UDP-hexose. Finally, lipidomics analysis showed that phospholipids including phosphatidylcholine, phosphatidylinositol, and phosphatidylserine are the most abundant Golgi lipids and that glycosphingolipids are enriched in this compartment. Altogether, our work establishes a comprehensive molecular map of the human Golgi and provides a powerful method to study the Golgi with high precision in health and disease.
Collapse
Affiliation(s)
- Rotimi Fasimoye
- Medical Research Council Protein Phosphorylation and Ubiquitylation Unit, School of Life Sciences, University of Dundee, DundeeDD1 5EH, United Kingdom
- Aligning Science Across Parkinson’s Collaborative Research Network, Chevy Chase, MD20815
| | - Wentao Dong
- Aligning Science Across Parkinson’s Collaborative Research Network, Chevy Chase, MD20815
- Department of Chemical Engineering, Stanford University, Stanford, CA94305
- Department of Genetics, Stanford University, Stanford, CA94305
- The Institute for Chemistry, Engineering & Medicine for Human Health, Stanford University, Stanford, CA94305
| | - Raja S. Nirujogi
- Medical Research Council Protein Phosphorylation and Ubiquitylation Unit, School of Life Sciences, University of Dundee, DundeeDD1 5EH, United Kingdom
- Aligning Science Across Parkinson’s Collaborative Research Network, Chevy Chase, MD20815
| | - Eshaan S. Rawat
- Aligning Science Across Parkinson’s Collaborative Research Network, Chevy Chase, MD20815
- Department of Chemical Engineering, Stanford University, Stanford, CA94305
- Department of Genetics, Stanford University, Stanford, CA94305
- The Institute for Chemistry, Engineering & Medicine for Human Health, Stanford University, Stanford, CA94305
| | - Miharu Iguchi
- Aligning Science Across Parkinson’s Collaborative Research Network, Chevy Chase, MD20815
- Department of Chemical Engineering, Stanford University, Stanford, CA94305
- Department of Genetics, Stanford University, Stanford, CA94305
- The Institute for Chemistry, Engineering & Medicine for Human Health, Stanford University, Stanford, CA94305
| | - Kwamina Nyame
- Aligning Science Across Parkinson’s Collaborative Research Network, Chevy Chase, MD20815
- Department of Chemical Engineering, Stanford University, Stanford, CA94305
- Department of Genetics, Stanford University, Stanford, CA94305
- The Institute for Chemistry, Engineering & Medicine for Human Health, Stanford University, Stanford, CA94305
- Department of Biochemistry, Stanford University School of Medicine, Stanford, CA94305
| | - Toan K. Phung
- Medical Research Council Protein Phosphorylation and Ubiquitylation Unit, School of Life Sciences, University of Dundee, DundeeDD1 5EH, United Kingdom
- Aligning Science Across Parkinson’s Collaborative Research Network, Chevy Chase, MD20815
| | - Enrico Bagnoli
- Medical Research Council Protein Phosphorylation and Ubiquitylation Unit, School of Life Sciences, University of Dundee, DundeeDD1 5EH, United Kingdom
- Aligning Science Across Parkinson’s Collaborative Research Network, Chevy Chase, MD20815
| | - Alan R. Prescott
- Dundee Imaging Facility, School of Life Sciences, University of Dundee, DundeeDD1 5EH, United Kingdom
| | - Dario R. Alessi
- Medical Research Council Protein Phosphorylation and Ubiquitylation Unit, School of Life Sciences, University of Dundee, DundeeDD1 5EH, United Kingdom
- Aligning Science Across Parkinson’s Collaborative Research Network, Chevy Chase, MD20815
| | - Monther Abu-Remaileh
- Aligning Science Across Parkinson’s Collaborative Research Network, Chevy Chase, MD20815
- Department of Chemical Engineering, Stanford University, Stanford, CA94305
- Department of Genetics, Stanford University, Stanford, CA94305
- The Institute for Chemistry, Engineering & Medicine for Human Health, Stanford University, Stanford, CA94305
| |
Collapse
|
29
|
Hu J, Zhang D, Tian K, Ren C, Li H, Lin C, Huang X, Liu J, Mao W, Zhang J. Small-molecule LRRK2 inhibitors for PD therapy: Current achievements and future perspectives. Eur J Med Chem 2023; 256:115475. [PMID: 37201428 DOI: 10.1016/j.ejmech.2023.115475] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 05/08/2023] [Accepted: 05/08/2023] [Indexed: 05/20/2023]
Abstract
Leucine-rich repeat kinase 2 (LRRK2) is a multifunctional protein that orchestrates a diverse array of cellular processes, including vesicle transport, autophagy, lysosome degradation, neurotransmission, and mitochondrial activity. Hyperactivation of LRRK2 triggers vesicle transport dysfunction, neuroinflammation, accumulation of α-synuclein, mitochondrial dysfunction, and the loss of cilia, ultimately leading to Parkinson's disease (PD). Therefore, targeting LRRK2 protein is a promising therapeutic strategy for PD. The clinical translation of LRRK2 inhibitors was historically impeded by issues surrounding tissue specificity. Recent studies have identified LRRK2 inhibitors that have no effect on peripheral tissues. Currently, there are four small-molecule LRRK2 inhibitors undergoing clinical trials. This review provides a summary of the structure and biological functions of LRRK2, along with an overview of the binding modes and structure-activity relationships (SARs) of small-molecule inhibitors targeting LRRK2. It offers valuable references for developing novel drugs targeting LRRK2.
Collapse
Affiliation(s)
- Jiarui Hu
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy and Joint Research Institution of Altitude Health and National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Dan Zhang
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy and Joint Research Institution of Altitude Health and National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Keyue Tian
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China
| | - Changyu Ren
- Chengdu Fifth People's Hospital, Chengdu, 611130, Sichuan, China
| | - Heng Li
- Chengdu Fifth People's Hospital, Chengdu, 611130, Sichuan, China
| | - Congcong Lin
- Department of Medicinal Chemistry and Natural Medicine Chemistry, College of Pharmacy, Harbin Medical University, Harbin, 150081, China
| | - Xiaoli Huang
- Department of Respiratory and Critical Care Medicine, Institute of Respiratory Health, Center of Gerontology and Geriatrics, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Jie Liu
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy and Joint Research Institution of Altitude Health and National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, 610041, China.
| | - Wuyu Mao
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy and Joint Research Institution of Altitude Health and National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, 610041, China; Department of Respiratory and Critical Care Medicine, Institute of Respiratory Health, Center of Gerontology and Geriatrics, West China Hospital, Sichuan University, Chengdu, 610041, China.
| | - Jifa Zhang
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy and Joint Research Institution of Altitude Health and National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, 610041, China.
| |
Collapse
|
30
|
Rinaldi C, Waters CS, Li Z, Kumbier K, Rao L, Nichols RJ, Jacobson MP, Wu LF, Altschuler SJ. Dissecting the effects of GTPase and kinase domain mutations on LRRK2 endosomal localization and activity. Cell Rep 2023; 42:112447. [PMID: 37141099 DOI: 10.1016/j.celrep.2023.112447] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Revised: 03/21/2023] [Accepted: 04/13/2023] [Indexed: 05/05/2023] Open
Abstract
Parkinson's disease-causing leucine-rich repeat kinase 2 (LRRK2) mutations lead to varying degrees of Rab GTPase hyperphosphorylation. Puzzlingly, LRRK2 GTPase-inactivating mutations-which do not affect intrinsic kinase activity-lead to higher levels of cellular Rab phosphorylation than kinase-activating mutations. Here, we investigate whether mutation-dependent differences in LRRK2 cellular localization could explain this discrepancy. We discover that blocking endosomal maturation leads to the rapid formation of mutant LRRK2+ endosomes on which LRRK2 phosphorylates substrate Rabs. LRRK2+ endosomes are maintained through positive feedback, which mutually reinforces membrane localization of LRRK2 and phosphorylated Rab substrates. Furthermore, across a panel of mutants, cells expressing GTPase-inactivating mutants form strikingly more LRRK2+ endosomes than cells expressing kinase-activating mutants, resulting in higher total cellular levels of phosphorylated Rabs. Our study suggests that the increased probability that LRRK2 GTPase-inactivating mutants are retained on intracellular membranes compared to kinase-activating mutants leads to higher substrate phosphorylation.
Collapse
Affiliation(s)
- Capria Rinaldi
- Department of Pharmaceutical Chemistry, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Christopher S Waters
- Department of Pharmaceutical Chemistry, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Zizheng Li
- Department of Pharmaceutical Chemistry, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Karl Kumbier
- Department of Pharmaceutical Chemistry, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Lee Rao
- Department of Pharmaceutical Chemistry, University of California, San Francisco, San Francisco, CA 94158, USA
| | - R Jeremy Nichols
- Department of Pathology, Stanford University, 300 Pasteur Drive, Stanford, CA 94305, USA
| | - Matthew P Jacobson
- Department of Pharmaceutical Chemistry, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Lani F Wu
- Department of Pharmaceutical Chemistry, University of California, San Francisco, San Francisco, CA 94158, USA.
| | - Steven J Altschuler
- Department of Pharmaceutical Chemistry, University of California, San Francisco, San Francisco, CA 94158, USA.
| |
Collapse
|
31
|
Banerjee P, Mehta AR, Nirujogi RS, Cooper J, James OG, Nanda J, Longden J, Burr K, McDade K, Salzinger A, Paza E, Newton J, Story D, Pal S, Smith C, Alessi DR, Selvaraj BT, Priller J, Chandran S. Cell-autonomous immune dysfunction driven by disrupted autophagy in C9orf72-ALS iPSC-derived microglia contributes to neurodegeneration. SCIENCE ADVANCES 2023; 9:eabq0651. [PMID: 37083530 PMCID: PMC10121169 DOI: 10.1126/sciadv.abq0651] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Accepted: 03/20/2023] [Indexed: 05/03/2023]
Abstract
Although microglial activation is widely found in amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD), the underlying mechanism(s) are poorly understood. Here, using human-induced pluripotent stem cell-derived microglia-like cells (hiPSC-MG) harboring the most common ALS/FTD mutation (C9orf72, mC9-MG), gene-corrected isogenic controls (isoC9-MG), and C9orf72 knockout hiPSC-MG (C9KO-MG), we show that reduced C9ORF72 protein is associated with impaired phagocytosis and an exaggerated immune response upon stimulation with lipopolysaccharide. Analysis of the C9ORF72 interactome revealed that C9ORF72 interacts with regulators of autophagy and functional studies showed impaired initiation of autophagy in mC9-MG and C9KO-MG. Coculture studies with motor neurons (MNs) demonstrated that the autophagy deficit in mC9-MG drives increased vulnerability of mC9-MNs to excitotoxic stimulus. Pharmacological activation of autophagy ameliorated both cell-autonomous functional deficits in hiPSC-MG and MN death in MG-MN coculture. Together, these findings reveal an important role for C9ORF72 in regulating immune homeostasis and identify dysregulation in myeloid cells as a contributor to neurodegeneration in ALS/FTD.
Collapse
Affiliation(s)
- Poulomi Banerjee
- UK Dementia Research Institute at University of Edinburgh, University of Edinburgh, Edinburgh bioQuarter, Chancellor’s Building, 49 Little France Crescent, Edinburgh EH16 4SB, UK
- Centre for Clinical Brain Sciences, University of Edinburgh, Edinburgh EH16 4SB, UK
- Euan MacDonald Centre for MND Research, University of Edinburgh, Edinburgh EH16 4SB, UK
| | - Arpan R. Mehta
- UK Dementia Research Institute at University of Edinburgh, University of Edinburgh, Edinburgh bioQuarter, Chancellor’s Building, 49 Little France Crescent, Edinburgh EH16 4SB, UK
- Centre for Clinical Brain Sciences, University of Edinburgh, Edinburgh EH16 4SB, UK
- Euan MacDonald Centre for MND Research, University of Edinburgh, Edinburgh EH16 4SB, UK
- Anne Rowling Regenerative Neurology Clinic, University of Edinburgh, Edinburgh EH16 4SB, UK
| | - Raja S. Nirujogi
- Medical Research Council (MRC) Protein Phosphorylation and Ubiquitylation Unit, School of Life Sciences, University of Dundee, Dow Street, Dundee DD1 5EH, UK
| | - James Cooper
- UK Dementia Research Institute at University of Edinburgh, University of Edinburgh, Edinburgh bioQuarter, Chancellor’s Building, 49 Little France Crescent, Edinburgh EH16 4SB, UK
- Centre for Clinical Brain Sciences, University of Edinburgh, Edinburgh EH16 4SB, UK
- Euan MacDonald Centre for MND Research, University of Edinburgh, Edinburgh EH16 4SB, UK
| | - Owen G. James
- UK Dementia Research Institute at University of Edinburgh, University of Edinburgh, Edinburgh bioQuarter, Chancellor’s Building, 49 Little France Crescent, Edinburgh EH16 4SB, UK
- Centre for Clinical Brain Sciences, University of Edinburgh, Edinburgh EH16 4SB, UK
- Euan MacDonald Centre for MND Research, University of Edinburgh, Edinburgh EH16 4SB, UK
| | - Jyoti Nanda
- UK Dementia Research Institute at University of Edinburgh, University of Edinburgh, Edinburgh bioQuarter, Chancellor’s Building, 49 Little France Crescent, Edinburgh EH16 4SB, UK
- Centre for Clinical Brain Sciences, University of Edinburgh, Edinburgh EH16 4SB, UK
- Euan MacDonald Centre for MND Research, University of Edinburgh, Edinburgh EH16 4SB, UK
| | - James Longden
- UK Dementia Research Institute at University of Edinburgh, University of Edinburgh, Edinburgh bioQuarter, Chancellor’s Building, 49 Little France Crescent, Edinburgh EH16 4SB, UK
- Centre for Clinical Brain Sciences, University of Edinburgh, Edinburgh EH16 4SB, UK
| | - Karen Burr
- UK Dementia Research Institute at University of Edinburgh, University of Edinburgh, Edinburgh bioQuarter, Chancellor’s Building, 49 Little France Crescent, Edinburgh EH16 4SB, UK
- Centre for Clinical Brain Sciences, University of Edinburgh, Edinburgh EH16 4SB, UK
- Euan MacDonald Centre for MND Research, University of Edinburgh, Edinburgh EH16 4SB, UK
| | - Karina McDade
- UK Dementia Research Institute at University of Edinburgh, University of Edinburgh, Edinburgh bioQuarter, Chancellor’s Building, 49 Little France Crescent, Edinburgh EH16 4SB, UK
- Centre for Clinical Brain Sciences, University of Edinburgh, Edinburgh EH16 4SB, UK
- Edinburgh Brain Bank, Academic Department of Neuropathology, University of Edinburgh, Edinburgh, UK
- Edinburgh Pathology, University of Edinburgh, Edinburgh, UK
| | - Andrea Salzinger
- UK Dementia Research Institute at University of Edinburgh, University of Edinburgh, Edinburgh bioQuarter, Chancellor’s Building, 49 Little France Crescent, Edinburgh EH16 4SB, UK
- Centre for Clinical Brain Sciences, University of Edinburgh, Edinburgh EH16 4SB, UK
- Euan MacDonald Centre for MND Research, University of Edinburgh, Edinburgh EH16 4SB, UK
| | - Evdokia Paza
- UK Dementia Research Institute at University of Edinburgh, University of Edinburgh, Edinburgh bioQuarter, Chancellor’s Building, 49 Little France Crescent, Edinburgh EH16 4SB, UK
- Centre for Clinical Brain Sciences, University of Edinburgh, Edinburgh EH16 4SB, UK
| | - Judith Newton
- Euan MacDonald Centre for MND Research, University of Edinburgh, Edinburgh EH16 4SB, UK
- Anne Rowling Regenerative Neurology Clinic, University of Edinburgh, Edinburgh EH16 4SB, UK
| | - David Story
- UK Dementia Research Institute at University of Edinburgh, University of Edinburgh, Edinburgh bioQuarter, Chancellor’s Building, 49 Little France Crescent, Edinburgh EH16 4SB, UK
- Centre for Clinical Brain Sciences, University of Edinburgh, Edinburgh EH16 4SB, UK
- Euan MacDonald Centre for MND Research, University of Edinburgh, Edinburgh EH16 4SB, UK
| | - Suvankar Pal
- Centre for Clinical Brain Sciences, University of Edinburgh, Edinburgh EH16 4SB, UK
- Euan MacDonald Centre for MND Research, University of Edinburgh, Edinburgh EH16 4SB, UK
- Anne Rowling Regenerative Neurology Clinic, University of Edinburgh, Edinburgh EH16 4SB, UK
| | - Colin Smith
- Centre for Clinical Brain Sciences, University of Edinburgh, Edinburgh EH16 4SB, UK
- Euan MacDonald Centre for MND Research, University of Edinburgh, Edinburgh EH16 4SB, UK
- Edinburgh Brain Bank, Academic Department of Neuropathology, University of Edinburgh, Edinburgh, UK
- Edinburgh Pathology, University of Edinburgh, Edinburgh, UK
| | - Dario R. Alessi
- Medical Research Council (MRC) Protein Phosphorylation and Ubiquitylation Unit, School of Life Sciences, University of Dundee, Dow Street, Dundee DD1 5EH, UK
| | - Bhuvaneish T. Selvaraj
- UK Dementia Research Institute at University of Edinburgh, University of Edinburgh, Edinburgh bioQuarter, Chancellor’s Building, 49 Little France Crescent, Edinburgh EH16 4SB, UK
- Centre for Clinical Brain Sciences, University of Edinburgh, Edinburgh EH16 4SB, UK
- Euan MacDonald Centre for MND Research, University of Edinburgh, Edinburgh EH16 4SB, UK
- Anne Rowling Regenerative Neurology Clinic, University of Edinburgh, Edinburgh EH16 4SB, UK
| | - Josef Priller
- UK Dementia Research Institute at University of Edinburgh, University of Edinburgh, Edinburgh bioQuarter, Chancellor’s Building, 49 Little France Crescent, Edinburgh EH16 4SB, UK
- Centre for Clinical Brain Sciences, University of Edinburgh, Edinburgh EH16 4SB, UK
- Department of Psychiatry and Psychotherapy; School of Medicine, Technical University of Munich, Ismaninger Str. 22, 81675 Munich, Germany
- Neuropsychiatry, Charité–Universitätsmedizin Berlin and DZNE, Charitéplatz 1, 10117 Berlin, Germany
| | - Siddharthan Chandran
- UK Dementia Research Institute at University of Edinburgh, University of Edinburgh, Edinburgh bioQuarter, Chancellor’s Building, 49 Little France Crescent, Edinburgh EH16 4SB, UK
- Centre for Clinical Brain Sciences, University of Edinburgh, Edinburgh EH16 4SB, UK
- Euan MacDonald Centre for MND Research, University of Edinburgh, Edinburgh EH16 4SB, UK
- Anne Rowling Regenerative Neurology Clinic, University of Edinburgh, Edinburgh EH16 4SB, UK
| |
Collapse
|
32
|
Insights into the cellular consequences of LRRK2-mediated Rab protein phosphorylation. Biochem Soc Trans 2023; 51:587-595. [PMID: 36929701 DOI: 10.1042/bst20201145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Revised: 02/24/2023] [Accepted: 02/28/2023] [Indexed: 03/18/2023]
Abstract
Point mutations in leucine-rich repeat kinase 2 (LRRK2) which cause Parkinson's disease increase its kinase activity, and a subset of Rab GTPases have been identified as endogenous LRRK2 kinase substrates. Their phosphorylation correlates with a loss-of-function for the membrane trafficking steps they are normally involved in, but it also allows them to bind to a novel set of effector proteins with dominant cellular consequences. In this brief review, we will summarize novel findings related to the LRRK2-mediated phosphorylation of Rab GTPases and its various cellular consequences in vitro and in the intact brain, and we will highlight major outstanding questions in the field.
Collapse
|
33
|
Arora S, Rana M, Sachdev A, D’Souza JS. Appearing and disappearing acts of cilia. J Biosci 2023. [DOI: 10.1007/s12038-023-00326-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/12/2023]
|
34
|
Boecker CA. The Role of LRRK2 in Intracellular Organelle Dynamics. J Mol Biol 2023:167998. [PMID: 36764357 DOI: 10.1016/j.jmb.2023.167998] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Revised: 02/02/2023] [Accepted: 02/02/2023] [Indexed: 02/11/2023]
Abstract
Pathogenic mutations in the leucine-rich repeat kinase 2 (LRRK2) gene hyperactivate LRRK2 kinase activity and lead to the development of Parkinson's disease (PD). Membrane recruitment of LRRK2 and the identification of RAB GTPases as bona fide LRRK2 substrates strongly indicate that LRRK2 regulates intracellular trafficking. This review highlights the current literature on the role of LRRK2 in intracellular organelle dynamics. With a focus on the effects of LRRK2 on microtubule function, mitochondrial dynamics, the autophagy-lysosomal pathway, and synaptic vesicle trafficking, it summarizes our current understanding of how intracellular dynamics are altered upon pathogenic LRRK2 hyperactivation.
Collapse
Affiliation(s)
- C Alexander Boecker
- Department of Neurology, University Medical Center Goettingen, Robert-Koch-Strasse 40, 37075 Goettingen, Germany.
| |
Collapse
|
35
|
Is Glial Dysfunction the Key Pathogenesis of LRRK2-Linked Parkinson's Disease? Biomolecules 2023; 13:biom13010178. [PMID: 36671564 PMCID: PMC9856048 DOI: 10.3390/biom13010178] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 01/12/2023] [Accepted: 01/13/2023] [Indexed: 01/18/2023] Open
Abstract
Leucine rich-repeat kinase 2 (LRRK2) is the most well-known etiologic gene for familial Parkinson's disease (PD). Its gene product is a large kinase with multiple functional domains that phosphorylates a subset of Rab small GTPases. However, studies of autopsy cases with LRRK2 mutations indicate a varied pathology, and the molecular functions of LRRK2 and its relationship to PD pathogenesis are largely unknown. Recently, non-autonomous neurodegeneration associated with glial cell dysfunction has attracted attention as a possible mechanism of dopaminergic neurodegeneration. Molecular studies of LRRK2 in astrocytes and microglia have also suggested that LRRK2 is involved in the regulation of lysosomal and other organelle dynamics and inflammation. In this review, we describe the proposed functions of LRRK2 in glial cells and discuss its involvement in the pathomechanisms of PD.
Collapse
|
36
|
Arora S, Rana M, Sachdev A, D'Souza JS. Appearing and disappearing acts of cilia. J Biosci 2023; 48:8. [PMID: 36924208 PMCID: PMC10005925] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/18/2023]
Abstract
The past few decades have seen a rise in research on vertebrate cilia and ciliopathy, with interesting collaborations between basic and clinical scientists. This work includes studies on ciliary architecture, composition, evolution, and organelle generation and its biological role. The human body has cells that harbour any of the following four types of cilia: 9+0 motile, 9+0 immotile, 9+2 motile, and 9+2 immotile. Depending on the type, cilia play an important role in cell/fluid movement, mating, sensory perception, and development. Defects in cilia are associated with a wide range of human diseases afflicting the brain, heart, kidneys, respiratory tract, and reproductive system. These are commonly known as ciliopathies and affect millions of people worldwide. Due to their complex genetic etiology, diagnosis and therapy have remained elusive. Although model organisms like Chlamydomonas reinhardtii have been a useful source for ciliary research, reports of a fascinating and rewarding translation of this research into mammalian systems, especially humans, are seen. The current review peeks into one of the complex features of this organelle, namely its birth, the common denominators across the formation of both 9+0 and 9+2 ciliary types, the molecules involved in ciliogenesis, and the steps that go towards regulating their assembly and disassembly.
Collapse
Affiliation(s)
- Shashank Arora
- School of Biological Sciences, UM-DAE Centre for Excellence in Basic Sciences, Kalina Campus, Santacruz (E), Mumbai 400098, India
| | | | | | | |
Collapse
|
37
|
Abstract
Mutations in LRRK2 are associated with Parkinson’s disease. We have recently shown that LRRK2 is recruited and activated on damaged lysosomes; however, the mechanism underlying this process remains unclear. Here, we observe that lysosomal positioning regulates the ability of LRRK2 to phosphorylate and recruit Rab10 but not Rab12 on lysosomes. pRab10 is present almost exclusively at perinuclear LRRK2+ lysosomes, which also regulates LYTL (lysosomal tubulation/sorting driven by LRRK2) by recruiting its effector, JIP4. Manipulation of lysosomal positioning by promoting anterograde transport reduces pRab10 and JIP4 on lysosomes, while induction of retrograde transport has the opposite effect. This finding provides insight into the mechanism of LRRK2-dependent lysosomal damage regulation and supports future study of the role of LRRK2 in lysosomal biology. Genetic variation at the leucine-rich repeat kinase 2 (LRRK2) locus contributes to an enhanced risk of familial and sporadic Parkinson’s disease. Previous data have demonstrated that recruitment to various membranes of the endolysosomal system results in LRRK2 activation. However, the mechanism(s) underlying LRRK2 activation at endolysosomal membranes and the cellular consequences of these events are still poorly understood. Here, we directed LRRK2 to lysosomes and early endosomes, triggering both LRRK2 autophosphorylation and phosphorylation of the direct LRRK2 substrates Rab10 and Rab12. However, when directed to the lysosomal membrane, pRab10 was restricted to perinuclear lysosomes, whereas pRab12 was visualized on both peripheral and perinuclear LRRK2+ lysosomes, suggesting that lysosomal positioning provides additional regulation of LRRK2-dependent Rab phosphorylation. Anterograde transport of lysosomes to the cell periphery by increasing the expression of ARL8B and SKIP or by knockdown of JIP4 blocked the recruitment and phosphorylation of Rab10 by LRRK2. The absence of pRab10 from the lysosomal membrane prevented the formation of a lysosomal tubulation and sorting process we previously named LYTL. Conversely, overexpression of RILP resulted in lysosomal clustering within the perinuclear area and increased LRRK2-dependent Rab10 recruitment and phosphorylation. The regulation of Rab10 phosphorylation in the perinuclear area depends on counteracting phosphatases, as the knockdown of phosphatase PPM1H significantly increased pRab10 signal and lysosomal tubulation in the perinuclear region. Our findings suggest that LRRK2 can be activated at multiple cellular membranes, including lysosomes, and that lysosomal positioning further provides the regulation of some Rab substrates likely via differential phosphatase activity or effector protein presence in nearby cellular compartments.
Collapse
|
38
|
Ravinther AI, Dewadas HD, Tong SR, Foo CN, Lin YE, Chien CT, Lim YM. Molecular Pathways Involved in LRRK2-Linked Parkinson’s Disease: A Systematic Review. Int J Mol Sci 2022; 23:ijms231911744. [PMID: 36233046 PMCID: PMC9569706 DOI: 10.3390/ijms231911744] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Revised: 09/15/2022] [Accepted: 09/20/2022] [Indexed: 11/24/2022] Open
Abstract
Parkinson’s disease is one of the most common neurodegenerative diseases affecting the ageing population, with a prevalence that has doubled over the last 30 years. As the mechanism of the disease is not fully elucidated, the current treatments are unable to effectively prevent neurodegeneration. Studies have found that mutations in Leucine-rich-repeat-kinase 2 (LRRK2) are the most common cause of familial Parkinson’s disease (PD). Moreover, aberrant (higher) LRRK2 kinase activity has an influence in idiopathic PD as well. Hence, the aim of this review is to categorize and synthesize current information related to LRRK2-linked PD and present the factors associated with LRRK2 that can be targeted therapeutically. A systematic review was conducted using the databases PubMed, Medline, SCOPUS, SAGE, and Cochrane (January 2016 to July 2021). Search terms included “Parkinson’s disease”, “mechanism”, “LRRK2”, and synonyms in various combinations. The search yielded a total of 988 abstracts for initial review, 80 of which met the inclusion criteria. Here, we emphasize molecular mechanisms revealed in recent in vivo and in vitro studies. By consolidating the recent updates in the field of LRRK2-linked PD, researchers can further evaluate targets for therapeutic application.
Collapse
Affiliation(s)
- Ailyn Irvita Ravinther
- Centre for Cancer Research, M. Kandiah Faculty of Medicine and Health Sciences, Universiti Tunku Abdul Rahman, Kajang 43000, Selangor, Malaysia
- Institute of Molecular Biology, Academia Sinica, Taipei 115, Taiwan
| | - Hemaniswarri Dewi Dewadas
- Centre for Biomedical and Nutrition Research, Faculty of Science, Universiti Tunku Abdul Rahman, Kampar 31900, Perak, Malaysia
| | - Shi Ruo Tong
- Centre for Cancer Research, M. Kandiah Faculty of Medicine and Health Sciences, Universiti Tunku Abdul Rahman, Kajang 43000, Selangor, Malaysia
| | - Chai Nien Foo
- Centre for Cancer Research, M. Kandiah Faculty of Medicine and Health Sciences, Universiti Tunku Abdul Rahman, Kajang 43000, Selangor, Malaysia
- Department of Population Medicine, M. Kandiah Faculty of Medicine and Health Sciences, Universiti Tunku Abdul Rahman, Kajang 43000, Selangor, Malaysia
| | - Yu-En Lin
- Institute of Molecular Biology, Academia Sinica, Taipei 115, Taiwan
| | - Cheng-Ting Chien
- Institute of Molecular Biology, Academia Sinica, Taipei 115, Taiwan
| | - Yang Mooi Lim
- Centre for Cancer Research, M. Kandiah Faculty of Medicine and Health Sciences, Universiti Tunku Abdul Rahman, Kajang 43000, Selangor, Malaysia
- Department of Pre-Clinical Sciences, M. Kandiah Faculty of Medicine and Health Sciences, Universiti Tunku Abdul Rahman, Kajang 43000, Selangor, Malaysia
- Correspondence:
| |
Collapse
|
39
|
Vides EG, Adhikari A, Chiang CY, Lis P, Purlyte E, Limouse C, Shumate JL, Spínola-Lasso E, Dhekne HS, Alessi DR, Pfeffer SR. A feed-forward pathway drives LRRK2 kinase membrane recruitment and activation. eLife 2022; 11:e79771. [PMID: 36149401 PMCID: PMC9576273 DOI: 10.7554/elife.79771] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Accepted: 09/22/2022] [Indexed: 12/30/2022] Open
Abstract
Activating mutations in the leucine-rich repeat kinase 2 (LRRK2) cause Parkinson's disease, and previously we showed that activated LRRK2 phosphorylates a subset of Rab GTPases (Steger et al., 2017). Moreover, Golgi-associated Rab29 can recruit LRRK2 to the surface of the Golgi and activate it there for both auto- and Rab substrate phosphorylation. Here, we define the precise Rab29 binding region of the LRRK2 Armadillo domain between residues 360-450 and show that this domain, termed 'site #1,' can also bind additional LRRK2 substrates, Rab8A and Rab10. Moreover, we identify a distinct, N-terminal, higher-affinity interaction interface between LRRK2 phosphorylated Rab8 and Rab10 termed 'site #2' that can retain LRRK2 on membranes in cells to catalyze multiple, subsequent phosphorylation events. Kinase inhibitor washout experiments demonstrate that rapid recovery of kinase activity in cells depends on the ability of LRRK2 to associate with phosphorylated Rab proteins, and phosphorylated Rab8A stimulates LRRK2 phosphorylation of Rab10 in vitro. Reconstitution of purified LRRK2 recruitment onto planar lipid bilayers decorated with Rab10 protein demonstrates cooperative association of only active LRRK2 with phospho-Rab10-containing membrane surfaces. These experiments reveal a feed-forward pathway that provides spatial control and membrane activation of LRRK2 kinase activity.
Collapse
Affiliation(s)
- Edmundo G Vides
- Department of Biochemistry, Stanford UniversityStanfordUnited States
- Aligning Science Across Parkinson’s (ASAP) Collaborative Research NetworkChevy ChaseUnited States
| | - Ayan Adhikari
- Department of Biochemistry, Stanford UniversityStanfordUnited States
- Aligning Science Across Parkinson’s (ASAP) Collaborative Research NetworkChevy ChaseUnited States
| | - Claire Y Chiang
- Department of Biochemistry, Stanford UniversityStanfordUnited States
- Aligning Science Across Parkinson’s (ASAP) Collaborative Research NetworkChevy ChaseUnited States
| | - Pawel Lis
- Aligning Science Across Parkinson’s (ASAP) Collaborative Research NetworkChevy ChaseUnited States
- MRC Protein Phosphorylation and Ubiquitylation Unit, University of DundeeDundeeUnited Kingdom
| | - Elena Purlyte
- MRC Protein Phosphorylation and Ubiquitylation Unit, University of DundeeDundeeUnited Kingdom
| | - Charles Limouse
- Department of Biochemistry, Stanford UniversityStanfordUnited States
| | - Justin L Shumate
- Department of Biochemistry, Stanford UniversityStanfordUnited States
| | - Elena Spínola-Lasso
- MRC Protein Phosphorylation and Ubiquitylation Unit, University of DundeeDundeeUnited Kingdom
- Instituto Universitario de Investigaciones Biomédicas y Sanitarias (IUIBS), Departamento de Bioquímica y Biología Molecular, Universidad de Las Palmas de Gran CanariaGran CanariaSpain
| | - Herschel S Dhekne
- Department of Biochemistry, Stanford UniversityStanfordUnited States
- Aligning Science Across Parkinson’s (ASAP) Collaborative Research NetworkChevy ChaseUnited States
| | - Dario R Alessi
- Aligning Science Across Parkinson’s (ASAP) Collaborative Research NetworkChevy ChaseUnited States
- MRC Protein Phosphorylation and Ubiquitylation Unit, University of DundeeDundeeUnited Kingdom
| | - Suzanne R Pfeffer
- Department of Biochemistry, Stanford UniversityStanfordUnited States
- Aligning Science Across Parkinson’s (ASAP) Collaborative Research NetworkChevy ChaseUnited States
| |
Collapse
|
40
|
Nandi N, Tracy C, Krämer H. In situ Dephosphorylation Assay with Recombinant Nil Phosphatase. Bio Protoc 2022; 12:e4513. [PMID: 36311349 PMCID: PMC9550347 DOI: 10.21769/bioprotoc.4513] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Revised: 07/22/2022] [Accepted: 07/28/2022] [Indexed: 12/29/2022] Open
Abstract
The activity of numerous autophagy-related proteins depends on their phosphorylation status, which places importance on understanding the responsible kinases and phosphatases. Great progress has been made in identifying kinases regulating autophagy, but much less is known about the phosphatases counteracting their function. Genetic screens and modern proteomic approaches provide powerful tools to identify candidate phosphatases, but further experiments are required to assign direct roles for candidates. We have devised a novel protocol to test the role of purified phosphatases in dephosphorylating specific targets in situ . This approach has the potential to visualize context-specific differences in target dephosphorylation that are not easily detected by lysate-based approaches such as Western blots. Graphical abstract.
Collapse
Affiliation(s)
- Nilay Nandi
- Department of Neuroscience, UT Southwestern Medical Center, Dallas, USA
| | - Charles Tracy
- Department of Neuroscience, UT Southwestern Medical Center, Dallas, USA
| | - Helmut Krämer
- Department of Neuroscience, UT Southwestern Medical Center, Dallas, USA
,
Department of Cell Biology, UT Southwestern Medical Center, Dallas, USA
,
*For correspondence:
| |
Collapse
|
41
|
Pfeffer SR. LRRK2
phosphorylation of Rab
GTPases
in Parkinson’s disease. FEBS Lett 2022; 597:811-818. [PMID: 36114007 DOI: 10.1002/1873-3468.14492] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Revised: 09/03/2022] [Accepted: 09/09/2022] [Indexed: 11/08/2022]
Abstract
Rab GTPases comprise a large family of conserved GTPases that are critical regulators of the secretory and endocytic pathways. The human genome encodes ~ 65 Rabs that localize to discrete membrane compartments and, when in their GTP-bound state, bind to effector proteins to carry out diverse functions. Activating mutations in LRRK2 kinase cause Parkinson's disease, and subsets of Rab GTPases are important LRRK2 substrates. LRRK2 phosphorylates a conserved threonine residue that is essential for Rab interaction with guanine nucleotide exchange factors, effectors, and GDI that recycles Rabs between membrane compartments. This brief review will highlight new findings related to LRRK2-mediated phosphorylation of Rab GTPases and its consequences. Remarkably, Rab phosphorylation flips a switch on Rab effector selection with dominant consequences for cell pathophysiology.
Collapse
Affiliation(s)
- Suzanne R. Pfeffer
- Department of Biochemistry Stanford University School of Medicine 279 Campus Drive Stanford CA 94305‐5307 USA
- Aligning Science Across Parkinson’s (ASAP) Collaborative Research Network Chevy Chase MD USA
| |
Collapse
|
42
|
Kalogeropulou AF, Purlyte E, Tonelli F, Lange SM, Wightman M, Prescott AR, Padmanabhan S, Sammler E, Alessi DR. Impact of 100 LRRK2 variants linked to Parkinson's disease on kinase activity and microtubule binding. Biochem J 2022; 479:1759-1783. [PMID: 35950872 PMCID: PMC9472821 DOI: 10.1042/bcj20220161] [Citation(s) in RCA: 61] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Revised: 08/01/2022] [Accepted: 08/11/2022] [Indexed: 11/17/2022]
Abstract
Mutations enhancing the kinase activity of leucine-rich repeat kinase-2 (LRRK2) cause Parkinson's disease (PD) and therapies that reduce LRRK2 kinase activity are being tested in clinical trials. Numerous rare variants of unknown clinical significance have been reported, but how the vast majority impact on LRRK2 function is unknown. Here, we investigate 100 LRRK2 variants linked to PD, including previously described pathogenic mutations. We identify 23 LRRK2 variants that robustly stimulate kinase activity, including variants within the N-terminal non-catalytic regions (ARM (E334K, A419V), ANK (R767H), LRR (R1067Q, R1325Q)), as well as variants predicted to destabilize the ROC:CORB interface (ROC (A1442P, V1447M), CORA (R1628P) CORB (S1761R, L1795F)) and COR:COR dimer interface (CORB (R1728H/L)). Most activating variants decrease LRRK2 biomarker site phosphorylation (pSer935/pSer955/pSer973), consistent with the notion that the active kinase conformation blocks their phosphorylation. We conclude that the impact of variants on kinase activity is best evaluated by deploying a cellular assay of LRRK2-dependent Rab10 substrate phosphorylation, compared with a biochemical kinase assay, as only a minority of activating variants (CORB (Y1699C, R1728H/L, S1761R) and kinase (G2019S, I2020T, T2031S)), enhance in vitro kinase activity of immunoprecipitated LRRK2. Twelve variants including several that activate LRRK2 and have been linked to PD, suppress microtubule association in the presence of a Type I kinase inhibitor (ARM (M712V), LRR (R1320S), ROC (A1442P, K1468E, S1508R), CORA (A1589S), CORB (Y1699C, R1728H/L) and WD40 (R2143M, S2350I, G2385R)). Our findings will stimulate work to better understand the mechanisms by which variants impact biology and provide rationale for variant carrier inclusion or exclusion in ongoing and future LRRK2 inhibitor clinical trials.
Collapse
Affiliation(s)
- Alexia F. Kalogeropulou
- MRC Protein Phosphorylation and Ubiquitylation Unit, School of Life Sciences, University of Dundee, Dow Street, Dundee, U.K
- Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD 20815, U.S.A
| | - Elena Purlyte
- MRC Protein Phosphorylation and Ubiquitylation Unit, School of Life Sciences, University of Dundee, Dow Street, Dundee, U.K
| | - Francesca Tonelli
- MRC Protein Phosphorylation and Ubiquitylation Unit, School of Life Sciences, University of Dundee, Dow Street, Dundee, U.K
- Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD 20815, U.S.A
| | - Sven M. Lange
- MRC Protein Phosphorylation and Ubiquitylation Unit, School of Life Sciences, University of Dundee, Dow Street, Dundee, U.K
| | - Melanie Wightman
- MRC Protein Phosphorylation and Ubiquitylation Unit, School of Life Sciences, University of Dundee, Dow Street, Dundee, U.K
| | - Alan R. Prescott
- Dundee Imaging Facility, School of Life Sciences, University of Dundee, Dundee DD1 5EH, U.K
| | | | - Esther Sammler
- MRC Protein Phosphorylation and Ubiquitylation Unit, School of Life Sciences, University of Dundee, Dow Street, Dundee, U.K
- Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD 20815, U.S.A
- Molecular and Clinical Medicine, Ninewells Hospital and Medical School, University of Dundee, Dundee DD1 9SY, U.K
| | - Dario R. Alessi
- MRC Protein Phosphorylation and Ubiquitylation Unit, School of Life Sciences, University of Dundee, Dow Street, Dundee, U.K
- Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD 20815, U.S.A
| |
Collapse
|
43
|
Thakur G, Kumar V, Lee KW, Won C. Structural Insights and Development of LRRK2 Inhibitors for Parkinson's Disease in the Last Decade. Genes (Basel) 2022; 13:1426. [PMID: 36011337 PMCID: PMC9408223 DOI: 10.3390/genes13081426] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Revised: 08/09/2022] [Accepted: 08/10/2022] [Indexed: 12/01/2022] Open
Abstract
Parkinson's disease (PD) is the second most prevalent neurodegenerative disease, characterized by the specific loss of dopaminergic neurons in the midbrain. The pathophysiology of PD is likely caused by a variety of environmental and hereditary factors. Many single-gene mutations have been linked to this disease, but a significant number of studies indicate that mutations in the gene encoding leucine-rich repeat kinase 2 (LRRK2) are a potential therapeutic target for both sporadic and familial forms of PD. Consequently, the identification of potential LRRK2 inhibitors has been the focus of drug discovery. Various investigations have been conducted in academic and industrial organizations to investigate the mechanism of LRRK2 in PD and further develop its inhibitors. This review summarizes the role of LRRK2 in PD and its structural details, especially the kinase domain. Furthermore, we reviewed in vitro and in vivo findings of selected inhibitors reported to date against wild-type and mutant versions of the LRRK2 kinase domain as well as the current trends researchers are employing in the development of LRRK2 inhibitors.
Collapse
Affiliation(s)
- Gunjan Thakur
- Institute of Animal Medicine, College of Veterinary Medicine, Gyeongsang National University, Jinju 52828, Korea
| | - Vikas Kumar
- Division of Life Sciences, Department of Bio & Medical Big Data (BK4 Program), Research Institute of Natural Science (RINS), Gyeongsang National University (GNU), 501 Jinju-daero, Jinju 52828, Korea
| | - Keun Woo Lee
- Division of Life Sciences, Department of Bio & Medical Big Data (BK4 Program), Research Institute of Natural Science (RINS), Gyeongsang National University (GNU), 501 Jinju-daero, Jinju 52828, Korea
| | - Chungkil Won
- Institute of Animal Medicine, College of Veterinary Medicine, Gyeongsang National University, Jinju 52828, Korea
| |
Collapse
|
44
|
Pathophysiological evaluation of the LRRK2 G2385R risk variant for Parkinson’s disease. NPJ Parkinsons Dis 2022; 8:97. [PMID: 35931783 PMCID: PMC9355991 DOI: 10.1038/s41531-022-00367-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Accepted: 07/20/2022] [Indexed: 11/13/2022] Open
Abstract
Missense variants in leucine-rich repeat kinase 2 (LRRK2) lead to familial and sporadic Parkinson’s disease (PD). The pathological features of PD patients with LRRK2 variants differ. Here, we report an autopsy case harboring the LRRK2 G2385R, a risk variant for PD occurring mainly in Asian populations. The patient exhibited levodopa-responsive parkinsonism at the early stage and visual hallucinations at the advanced stage. The pathological study revealed diffuse Lewy bodies with neurofibrillary tangles, amyloid plaques, and mild signs of neuroinflammation. Biochemically, detergent-insoluble phospho-α-synuclein was accumulated in the frontal, temporal, entorhinal cortexes, and putamen, consistent with the pathological observations. Elevated phosphorylation of Rab10, a substrate of LRRK2, was also prominent in various brain regions. In conclusion, G2385R appears to increase LRRK2 kinase activity in the human brain, inducing a deleterious brain environment that causes Lewy body pathology.
Collapse
|
45
|
Ordóñez AJL, Fasiczka R, Fernández B, Naaldijk Y, Fdez E, Ramírez MB, Phan S, Boassa D, Hilfiker S. The LRRK2 signaling network converges on a centriolar phospho-Rab10/RILPL1 complex to cause deficits in centrosome cohesion and cell polarization. Biol Open 2022; 11:275880. [PMID: 35776681 PMCID: PMC9346292 DOI: 10.1242/bio.059468] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Accepted: 06/28/2022] [Indexed: 11/22/2022] Open
Abstract
The Parkinson's-disease-associated LRRK2 kinase phosphorylates multiple Rab GTPases including Rab8 and Rab10, which enhances their binding to RILPL1 and RILPL2. The nascent interaction between phospho-Rab10 and RILPL1 blocks ciliogenesis in vitro and in the intact brain, and interferes with the cohesion of duplicated centrosomes in dividing cells. We show here that regulators of the LRRK2 signaling pathway including vps35 and PPM1H converge upon causing centrosomal deficits. The cohesion alterations do not require the presence of other LRRK2 kinase substrates including Rab12, Rab35 and Rab43 or the presence of RILPL2. Rather, they depend on the RILPL1-mediated centrosomal accumulation of phosphorylated Rab10. RILPL1 localizes to the subdistal appendage of the mother centriole, followed by recruitment of the LRRK2-phosphorylated Rab proteins to cause the centrosomal defects. The centrosomal alterations impair cell polarization as monitored by scratch wound assays which is reverted by LRRK2 kinase inhibition. These data reveal a common molecular pathway by which enhanced LRRK2 kinase activity impacts upon centrosome-related events to alter the normal biology of a cell. Summary: The Parkinson's disease LRRK2 signaling pathway converges upon the formation of a complex at the subdistal appendage of the mother centriole which causes centrosomal deficits and impairs appropriate cell polarization.
Collapse
Affiliation(s)
- Antonio Jesús Lara Ordóñez
- Institute of Parasitology and Biomedicine "López-Neyra", Consejo Superior de Investigaciones Científicas (CSIC), Granada, Spain
| | - Rachel Fasiczka
- Department of Anesthesiology and Department of Physiology, Pharmacology and Neuroscience, New Jersey Medical School, Rutgers, The State University of New Jersey, Newark, NJ, USA
| | - Belén Fernández
- Institute of Parasitology and Biomedicine "López-Neyra", Consejo Superior de Investigaciones Científicas (CSIC), Granada, Spain
| | - Yahaira Naaldijk
- Department of Anesthesiology and Department of Physiology, Pharmacology and Neuroscience, New Jersey Medical School, Rutgers, The State University of New Jersey, Newark, NJ, USA
| | - Elena Fdez
- Institute of Parasitology and Biomedicine "López-Neyra", Consejo Superior de Investigaciones Científicas (CSIC), Granada, Spain
| | - Marian Blanca Ramírez
- Institute of Parasitology and Biomedicine "López-Neyra", Consejo Superior de Investigaciones Científicas (CSIC), Granada, Spain
| | - Sébastien Phan
- Department of Neurosciences and National Center for Microscopy and Imaging Research, University of California San Diego, La Jolla, CA, USA
| | - Daniela Boassa
- Department of Neurosciences and National Center for Microscopy and Imaging Research, University of California San Diego, La Jolla, CA, USA
| | - Sabine Hilfiker
- Department of Anesthesiology and Department of Physiology, Pharmacology and Neuroscience, New Jersey Medical School, Rutgers, The State University of New Jersey, Newark, NJ, USA
| |
Collapse
|
46
|
Petropoulou-Vathi L, Simitsi A, Valkimadi PE, Kedariti M, Dimitrakopoulos L, Koros C, Papadimitriou D, Papadimitriou A, Stefanis L, Alcalay RN, Rideout HJ. Distinct profiles of LRRK2 activation and Rab GTPase phosphorylation in clinical samples from different PD cohorts. NPJ Parkinsons Dis 2022; 8:73. [PMID: 35676398 PMCID: PMC9177829 DOI: 10.1038/s41531-022-00336-5] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Accepted: 05/18/2022] [Indexed: 11/09/2022] Open
Abstract
Despite several advances in the field, pharmacodynamic outcome measures reflective of LRRK2 kinase activity in clinical biofluids remain urgently needed. A variety of targets and approaches have been utilized including assessments of LRRK2 itself (levels, phosphorylation), or its substrates (e.g. Rab10 or other Rab GTPases). We have previously shown that intrinsic kinase activity of LRRK2 isolated from PBMCs of G2019S carriers is elevated, irrespective of disease status. In the present study we find that phosphorylation of Rab10 is also elevated in G2019S carriers, but only those with PD. Additionally, phosphorylation of this substrate is also elevated in two separate idiopathic PD cohorts, but not in carriers of the A53T mutation in α-synuclein. In contrast, Rab29 phosphorylation was specifically reduced in urinary exosomes from A53T and idiopathic PD patients. Taken together, our findings highlight the need for the assessment of multiple complimentary targets for a more comprehensive picture of the disease.
Collapse
Affiliation(s)
- Lilian Petropoulou-Vathi
- Center for Clinical, Experimental Surgery, and Translational Research, Biomedical Research Foundation of the Academy of Athens, Athens, Greece
| | - Athina Simitsi
- Department of Neurology, University of Athens Medical School, Athens, Greece
| | - Politymi-Eleni Valkimadi
- Center for Clinical, Experimental Surgery, and Translational Research, Biomedical Research Foundation of the Academy of Athens, Athens, Greece
| | - Maria Kedariti
- Center for Clinical, Experimental Surgery, and Translational Research, Biomedical Research Foundation of the Academy of Athens, Athens, Greece
| | - Lampros Dimitrakopoulos
- Center for Clinical, Experimental Surgery, and Translational Research, Biomedical Research Foundation of the Academy of Athens, Athens, Greece
| | - Christos Koros
- Department of Neurology, University of Athens Medical School, Athens, Greece
| | | | | | - Leonidas Stefanis
- Center for Clinical, Experimental Surgery, and Translational Research, Biomedical Research Foundation of the Academy of Athens, Athens, Greece.,Department of Neurology, University of Athens Medical School, Athens, Greece
| | - Roy N Alcalay
- Department of Neurology, Columbia University, York City, NY, USA
| | - Hardy J Rideout
- Center for Clinical, Experimental Surgery, and Translational Research, Biomedical Research Foundation of the Academy of Athens, Athens, Greece.
| |
Collapse
|
47
|
Trinh J, Schymanski EL, Smajic S, Kasten M, Sammler E, Grünewald A. Molecular mechanisms defining penetrance of LRRK2-associated Parkinson's disease. MED GENET-BERLIN 2022; 34:103-116. [PMID: 38835904 PMCID: PMC11006382 DOI: 10.1515/medgen-2022-2127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/06/2024]
Abstract
Mutations in Leucine-rich repeat kinase 2 (LRRK2) are the most frequent cause of dominantly inherited Parkinson's disease (PD). LRRK2 mutations, among which p.G2019S is the most frequent, are inherited with reduced penetrance. Interestingly, the disease risk associated with LRRK2 G2019S can vary dramatically depending on the ethnic background of the carrier. While this would suggest a genetic component in the definition of LRRK2-PD penetrance, only few variants have been shown to modify the age at onset of patients harbouring LRRK2 mutations, and the exact cellular pathways controlling the transition from a healthy to a diseased state currently remain elusive. In light of this knowledge gap, recent studies also explored environmental and lifestyle factors as potential modifiers of LRRK2-PD. In this article, we (i) describe the clinical characteristics of LRRK2 mutation carriers, (ii) review known genes linked to LRRK2-PD onset and (iii) summarize the cellular functions of LRRK2 with particular emphasis on potential penetrance-related molecular mechanisms. This section covers LRRK2's involvement in Rab GTPase and immune signalling as well as in the regulation of mitochondrial homeostasis and dynamics. Additionally, we explored the literature with regard to (iv) lifestyle and (v) environmental factors that may influence the penetrance of LRRK2 mutations, with a view towards further exposomics studies. Finally, based on this comprehensive overview, we propose potential future in vivo, in vitro and in silico studies that could provide a better understanding of the processes triggering PD in individuals with LRRK2 mutations.
Collapse
Affiliation(s)
- Joanne Trinh
- Institute of Neurogenetics, University of Lübeck, Lübeck, Germany
| | - Emma L. Schymanski
- Luxembourg Centre for Systems Biomedicine, University of Luxembourg, Esch-sur-Alzette, Luxembourg
| | - Semra Smajic
- Luxembourg Centre for Systems Biomedicine, University of Luxembourg, Esch-sur-Alzette, Luxembourg
| | - Meike Kasten
- Institute of Neurogenetics, University of Lübeck, Lübeck, Germany
- Department of Psychiatry and Psychotherapy, University of Lübeck, Lübeck, Germany
| | - Esther Sammler
- Medical Research Council (MRC) Protein Phosphorylation and Ubiquitylation Unit, School of Life Sciences, University of Dundee, Dundee, UK
- Department of Neurology, School of Medicine, Dundee, Ninewells Hospital, Dundee, UK
| | - Anne Grünewald
- Luxembourg Centre for Systems Biomedicine, University of Luxembourg, Esch-sur-Alzette, Luxembourg
- Institute of Neurogenetics, University of Lübeck, Lübeck, Germany
| |
Collapse
|
48
|
Rocha EM, Keeney MT, Di Maio R, De Miranda BR, Greenamyre JT. LRRK2 and idiopathic Parkinson's disease. Trends Neurosci 2022; 45:224-236. [PMID: 34991886 PMCID: PMC8854345 DOI: 10.1016/j.tins.2021.12.002] [Citation(s) in RCA: 90] [Impact Index Per Article: 30.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Revised: 11/30/2021] [Accepted: 12/09/2021] [Indexed: 12/22/2022]
Abstract
The etiology of idiopathic Parkinson's disease (iPD) is multifactorial, and both genetics and environmental exposures are risk factors. While mutations in leucine-rich repeat kinase-2 (LRRK2) that are associated with increased kinase activity are the most common cause of autosomal dominant PD, the role of LRRK2 in iPD, independent of mutations, remains uncertain. In this review, we discuss how the architecture of LRRK2 influences kinase activation and how enhanced LRRK2 substrate phosphorylation might contribute to pathogenesis. We describe how oxidative stress and endolysosomal dysfunction, both of which occur in iPD, can activate non-mutated LRRK2 to a similar degree as pathogenic mutations. Similarly, environmental toxicants that are linked epidemiologically to iPD risk can also activate LRRK2. In aggregate, current evidence suggests an important role for LRRK2 in iPD.
Collapse
Affiliation(s)
- Emily M Rocha
- Pittsburgh Institute for Neurodegenerative Diseases and Department of Neurology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Matthew T Keeney
- Pittsburgh Institute for Neurodegenerative Diseases and Department of Neurology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA; Molecular Pharmacology Graduate Program, University of Pittsburgh, Pittsburgh, PA, USA
| | - Roberto Di Maio
- Pittsburgh Institute for Neurodegenerative Diseases and Department of Neurology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Briana R De Miranda
- Center for Neurodegeneration and Experimental Therapeutics, Department of Neurology, The University of Alabama at Birmingham, Birmingham, AL, USA
| | - J Timothy Greenamyre
- Pittsburgh Institute for Neurodegenerative Diseases and Department of Neurology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA; Molecular Pharmacology Graduate Program, University of Pittsburgh, Pittsburgh, PA, USA.
| |
Collapse
|
49
|
Nahalka J. Transcription of the Envelope Protein by 1-L Protein-RNA Recognition Code Leads to Genes/Proteins That Are Relevant to the SARS-CoV-2 Life Cycle and Pathogenesis. Curr Issues Mol Biol 2022; 44:791-816. [PMID: 35723340 PMCID: PMC8928949 DOI: 10.3390/cimb44020055] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Revised: 01/21/2022] [Accepted: 02/03/2022] [Indexed: 12/02/2022] Open
Abstract
The theoretical protein-RNA recognition code was used in this study to research the compatibility of the SARS-CoV-2 envelope protein (E) with mRNAs in the human transcriptome. According to a review of the literature, the spectrum of identified genes showed that the virus post-transcriptionally promotes or represses the genes involved in the SARS-CoV-2 life cycle. The identified genes/proteins are also involved in adaptive immunity, in the function of the cilia and wound healing (EMT and MET) in the pulmonary epithelial tissue, in Alzheimer's and Parkinson's disease and in type 2 diabetes. For example, the E-protein promotes BHLHE40, which switches off the IL-10 inflammatory "brake" and inhibits antiviral THαβ cells. In the viral cycle, E supports the COPII-SCAP-SREBP-HSP90α transport complex by the lowering of cholesterol in the ER and by the repression of insulin signaling, which explains the positive effect of HSP90 inhibitors in COVID-19 (geldanamycin), and E also supports importin α/β-mediated transport to the nucleus, which explains the positive effect of ivermectin, a blocker of importins α/β. In summary, transcription of the envelope protein by the 1-L protein-RNA recognition code leads to genes/proteins that are relevant to the SARS-CoV-2 life cycle and pathogenesis.
Collapse
Affiliation(s)
- Jozef Nahalka
- Centre for Glycomics, Institute of Chemistry, Slovak Academy of Sciences, Dubravska Cesta 9, SK-84538 Bratislava, Slovakia
- Centre of Excellence for White-Green Biotechnology, Institute of Chemistry, Slovak Academy of Sciences, Trieda Andreja Hlinku 2, SK-94976 Nitra, Slovakia
| |
Collapse
|
50
|
Salguero AL, Chen M, Balana AT, Chu N, Jiang H, Palanski BA, Bae H, Wright KM, Nathan S, Zhu H, Gabelli SB, Pratt MR, Cole PA. Multifaceted Regulation of Akt by Diverse C-Terminal Post-translational Modifications. ACS Chem Biol 2022; 17:68-76. [PMID: 34941261 DOI: 10.1021/acschembio.1c00632] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Akt is a Ser/Thr protein kinase that regulates cell growth and metabolism and is considered a therapeutic target for cancer. Regulation of Akt by membrane recruitment and post-translational modifications (PTMs) has been extensively studied. The most well-established mechanism for cellular Akt activation involves phosphorylation on its activation loop on Thr308 by PDK1 and on its C-terminal tail on Ser473 by mTORC2. In addition, dual phosphorylation on Ser477 and Thr479 has been shown to activate Akt. Other C-terminal tail PTMs have been identified, but their functional impacts have not been well-characterized. Here, we investigate the regulatory effects of phosphorylation of Tyr474 and O-GlcNAcylation of Ser473 on Akt. We use expressed protein ligation as a tool to produce semisynthetic Akt proteins containing phosphoTyr474 and O-GlcNAcSer473 to dissect the enzymatic functions of these PTMs. We find that O-GlcNAcylation at Ser473 and phosphorylation at Tyr474 can also partially increase Akt's kinase activity toward both peptide and protein substrates. Additionally, we performed kinase assays employing human protein microarrays to investigate global substrate specificity of Akt, comparing phosphorylated versus O-GlcNAcylated Ser473 forms. We observed a high similarity in the protein substrates phosphorylated by phosphoSer473 Akt and O-GlcNAcSer473 Akt. Two Akt substrates identified using microarrays, PPM1H, a protein phosphatase, and NEDD4L, an E3 ubiquitin ligase, were validated in solution-phase assays and cell transfection experiments.
Collapse
Affiliation(s)
- Antonieta L. Salguero
- Division of Genetics, Department of Medicine, Brigham and Women’s Hospital, Boston, Massachusetts 02115, United States
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, Massachusetts 02115, United States
- Department of Pharmacology and Molecular Sciences, Johns Hopkins School of Medicine, Baltimore, Maryland 21205, United States
| | - Maggie Chen
- Division of Genetics, Department of Medicine, Brigham and Women’s Hospital, Boston, Massachusetts 02115, United States
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, Massachusetts 02115, United States
- Department of Chemistry and Chemical Biology, Harvard University, 12 Oxford Street, Cambridge, Massachusetts 02138, United States
| | - Aaron T. Balana
- Department of Chemistry, University of Southern California, Los Angeles, California 90089 United States
| | - Nam Chu
- Department of Cancer Biology and Genetics, and the Comprehensive Cancer Center, The Ohio State University, Columbus, Ohio 43210, United States
| | - Hanjie Jiang
- Division of Genetics, Department of Medicine, Brigham and Women’s Hospital, Boston, Massachusetts 02115, United States
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, Massachusetts 02115, United States
- Department of Pharmacology and Molecular Sciences, Johns Hopkins School of Medicine, Baltimore, Maryland 21205, United States
| | - Brad A. Palanski
- Division of Genetics, Department of Medicine, Brigham and Women’s Hospital, Boston, Massachusetts 02115, United States
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, Massachusetts 02115, United States
| | - Hwan Bae
- Division of Genetics, Department of Medicine, Brigham and Women’s Hospital, Boston, Massachusetts 02115, United States
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, Massachusetts 02115, United States
| | - Katharine M. Wright
- Department of Biophysics and Biophysical Chemistry, The Johns Hopkins School of Medicine, Baltimore, Maryland 21205, United States
| | - Sara Nathan
- Department of Biophysics and Biophysical Chemistry, The Johns Hopkins School of Medicine, Baltimore, Maryland 21205, United States
| | - Heng Zhu
- Department of Pharmacology and Molecular Sciences, Johns Hopkins School of Medicine, Baltimore, Maryland 21205, United States
- The Center for High-Throughput Biology, The Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, United States
| | - Sandra B. Gabelli
- Department of Biophysics and Biophysical Chemistry, The Johns Hopkins School of Medicine, Baltimore, Maryland 21205, United States
- Department of Medicine, The Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, United States
- Department of Oncology, The Johns Hopkins University School of Medicine, Baltimore, Maryland 21287, United States
| | - Matthew R. Pratt
- Departments of Chemistry and Biological Sciences, University of Southern California, Los Angeles, California 90089 United States
| | - Philip A. Cole
- Division of Genetics, Department of Medicine, Brigham and Women’s Hospital, Boston, Massachusetts 02115, United States
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, Massachusetts 02115, United States
- Department of Pharmacology and Molecular Sciences, Johns Hopkins School of Medicine, Baltimore, Maryland 21205, United States
| |
Collapse
|