1
|
Lechner M, Kolz A, Herre K, Matzek D, Schomburg A, Popper B. Custom-made 3D-printed X-ray shield for tumor-specific irradiation of xenograft mice. 3D Print Med 2025; 11:17. [PMID: 40192872 PMCID: PMC11974114 DOI: 10.1186/s41205-025-00264-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Accepted: 03/20/2025] [Indexed: 04/10/2025] Open
Abstract
BACKGROUND Xenograft mouse models play an important role in preclinical cancer research, particularly in the development of new therapeutics. To test the efficacy of a combination therapy consisting of radiation and new drug candidates, it is crucial that only the tumor area is irradiated, while other parts of the body are shielded. In this study, a 3D-printed radiopaque back shield was designed for tumor-specific irradiation and evaluated in a xenograft mouse model. METHODS Different radiopaque materials were initially tested for their shielding properties using the Multirad 225 X-ray irradiator and the most suitable material was used for printing a back shield with a tumor site-specific opening of the cover. Tumor bearing mice were irradiated four times with a dose of 3.5 Gy. To evaluate proper body shielding, blood samples, spleens and bone marrow were examined at the end of the experiment. RESULTS A tungsten filament was identified to be most efficient for shielding and used to 3D print a pie-slice-shaped back shield with a tumor-site specific opening, while polylactic acid was used to print a scaffold that ensured proper positioning of the shield. The simple design allowed cost-efficient and fast 3D printing, easy handling and individual modifications of the tumor site openings. In terms of animal safety, the product provided sufficient shielding in the low-dose irradiation protocols of xenograft mice. CONCLUSION The custom-designed 3D-printed tungsten back shields provide proper shielding of the animals body and allow for subcutaneous tumor irradiation under standardized conditions.
Collapse
Affiliation(s)
- Markus Lechner
- Eisbach Bio GmbH, Am Klopferspitz 19, 82152, Planegg-Martinsried, Germany
| | - Anna Kolz
- Eisbach Bio GmbH, Am Klopferspitz 19, 82152, Planegg-Martinsried, Germany
| | - Kristina Herre
- Biomedical Center, Core Facility Animal Models, Faculty of Medicine, Ludwig- Maximilians-Universität München, Großhaderner Straße 9, 82152, Planegg-Martinsried, Germany
| | - Dana Matzek
- Biomedical Center, Core Facility Animal Models, Faculty of Medicine, Ludwig- Maximilians-Universität München, Großhaderner Straße 9, 82152, Planegg-Martinsried, Germany
| | - Adrian Schomburg
- Eisbach Bio GmbH, Am Klopferspitz 19, 82152, Planegg-Martinsried, Germany
- Biomedical Center, Department of Physiological Chemistry, Faculty of Medicine, Ludwig-Maximilians-Universität München, Großhaderner Straße 9, 82152, Planegg- Martinsried, Germany
| | - Bastian Popper
- Biomedical Center, Core Facility Animal Models, Faculty of Medicine, Ludwig- Maximilians-Universität München, Großhaderner Straße 9, 82152, Planegg-Martinsried, Germany.
| |
Collapse
|
2
|
Mossenta M, Argenziano M, Capolla S, Busato D, Durigutto P, Mangogna A, Polano M, Sblattero D, Cavalli R, Macor P, Toffoli G, Dal Bo M. Idarubicin-loaded chitosan nanobubbles to improve survival and decrease drug side effects in hepatocellular carcinoma. Nanomedicine (Lond) 2025; 20:255-270. [PMID: 39815170 PMCID: PMC11792799 DOI: 10.1080/17435889.2025.2452154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Accepted: 01/08/2025] [Indexed: 01/18/2025] Open
Abstract
BACKGROUND Drug delivery strategies using chitosan nanobubbles (CS-NBs) could be used to reduce drug side effects and improve outcomes in hepatocellular carcinoma (HCC) treatment. To enhance their action, a targeting agent, such as the humanized anti-GPC3 antibody GC33 (condrituzumab), could be attached to their surface. Here, we investigated the use of idarubicin-loaded CS-NBs for HCC treatment and a GC33-derived minibody (that we named 4A1) to enhance CS-NB delivery. METHODS Various CS-NB formulations were prepared with or without 4A1 conjugation and idarubicin loading. RESULTS CS-NBs had a positive charge and a diameter of about 360 nm. In in-vitro experiments using the HCC-like HUH7 cell line, CS-NBs showed a cytotoxic effect once loaded with idarubicin. In-vivo biodistribution in HUH7 tumor-bearing xenograft mice demonstrated that CS-NBs can accumulate in the tumor mass. This effect was enhanced by 4A1 conjugation (p = 0.0317). In HUH7 tumor-bearing xenograft mice, CS-NBs loaded with idarubicin and conjugated or not conjugated with 4A1 were both able to slow tumor growth, to increase mouse survival time compared to free idarubicin (p = 0.00044 and 0.0018, respectively) as well as to reduce drug side effects. CONCLUSIONS CS-NBs loaded with idarubicin can be a useful drug delivery strategy for HCC treatment.
Collapse
Affiliation(s)
- Monica Mossenta
- Experimental and Clinical Pharmacology, Centro di Riferimento Oncologico (CRO) di Aviano IRCCS, Aviano, Italy
- Department of Life Sciences, University of Trieste, Trieste, Italy
| | - Monica Argenziano
- Department of Drug Science and Technology, University of Turin, Turin, Italy
| | - Sara Capolla
- Experimental and Clinical Pharmacology, Centro di Riferimento Oncologico (CRO) di Aviano IRCCS, Aviano, Italy
| | - Davide Busato
- Experimental and Clinical Pharmacology, Centro di Riferimento Oncologico (CRO) di Aviano IRCCS, Aviano, Italy
- Department of Life Sciences, University of Trieste, Trieste, Italy
| | - Paolo Durigutto
- Department of Life Sciences, University of Trieste, Trieste, Italy
| | - Alessandro Mangogna
- Department of Life Sciences, University of Trieste, Trieste, Italy
- Institute of Pathological Anatomy, Department of Medicine, University of Udine, Udine, Italy
| | - Maurizio Polano
- Experimental and Clinical Pharmacology, Centro di Riferimento Oncologico (CRO) di Aviano IRCCS, Aviano, Italy
| | | | - Roberta Cavalli
- Department of Drug Science and Technology, University of Turin, Turin, Italy
| | - Paolo Macor
- Department of Life Sciences, University of Trieste, Trieste, Italy
| | - Giuseppe Toffoli
- Experimental and Clinical Pharmacology, Centro di Riferimento Oncologico (CRO) di Aviano IRCCS, Aviano, Italy
| | - Michele Dal Bo
- Experimental and Clinical Pharmacology, Centro di Riferimento Oncologico (CRO) di Aviano IRCCS, Aviano, Italy
| |
Collapse
|
3
|
Sarkar H, Lee E, Lopez-Darwin SL, Kang Y. Deciphering normal and cancer stem cell niches by spatial transcriptomics: opportunities and challenges. Genes Dev 2025; 39:64-85. [PMID: 39496456 PMCID: PMC11789490 DOI: 10.1101/gad.351956.124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2024]
Abstract
Cancer stem cells (CSCs) often exhibit stem-like attributes that depend on an intricate stemness-promoting cellular ecosystem within their niche. The interplay between CSCs and their niche has been implicated in tumor heterogeneity and therapeutic resistance. Normal stem cells (NSCs) and CSCs share stemness features and common microenvironmental components, displaying significant phenotypic and functional plasticity. Investigating these properties across diverse organs during normal development and tumorigenesis is of paramount research interest and translational potential. Advancements in next-generation sequencing (NGS), single-cell transcriptomics, and spatial transcriptomics have ushered in a new era in cancer research, providing high-resolution and comprehensive molecular maps of diseased tissues. Various spatial technologies, with their unique ability to measure the location and molecular profile of a cell within tissue, have enabled studies on intratumoral architecture and cellular cross-talk within the specific niches. Moreover, delineation of spatial patterns for niche-specific properties such as hypoxia, glucose deprivation, and other microenvironmental remodeling are revealed through multilevel spatial sequencing. This tremendous progress in technology has also been paired with the advent of computational tools to mitigate technology-specific bottlenecks. Here we discuss how different spatial technologies are used to identify NSCs and CSCs, as well as their associated niches. Additionally, by exploring related public data sets, we review the current challenges in characterizing such niches, which are often hindered by technological limitations, and the computational solutions used to address them.
Collapse
Affiliation(s)
- Hirak Sarkar
- Department of Molecular Biology, Princeton University, Princeton, New Jersey 08544, USA
- Ludwig Institute for Cancer Research Princeton Branch, Princeton, New Jersey 08544, USA
- Department of Computer Science, Princeton, New Jersey 08544, USA
| | - Eunmi Lee
- Department of Molecular Biology, Princeton University, Princeton, New Jersey 08544, USA
| | - Sereno L Lopez-Darwin
- Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, New Jersey 08544, USA
| | - Yibin Kang
- Department of Molecular Biology, Princeton University, Princeton, New Jersey 08544, USA;
- Ludwig Institute for Cancer Research Princeton Branch, Princeton, New Jersey 08544, USA
- Cancer Metabolism and Growth Program, Rutgers Cancer Institute of New Jersey, New Brunswick, New Jersey 08903, USA
| |
Collapse
|
4
|
Zhu T, Xiao Y, Chen Z, Ding H, Chen S, Jiang G, Huang X. Inhalable nanovesicles loaded with a STING agonist enhance CAR-T cell activity against solid tumors in the lung. Nat Commun 2025; 16:262. [PMID: 39747173 PMCID: PMC11695690 DOI: 10.1038/s41467-024-55751-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Accepted: 12/23/2024] [Indexed: 01/04/2025] Open
Abstract
Suppression of chimeric antigen receptor-modified T (CAR-T) cells by the immunosuppressive tumor microenvironment remains a major barrier to their efficacy against solid tumors. To address this, we develop an anti-PD-L1-expressing nanovesicle loaded with the STING agonist cGAMP (aPD-L1 NVs@cGAMP) to remodel the tumor microenvironment and thereby enhance CAR-T cell activity. Following pulmonary delivery, the nanovesicles rapidly accumulate in the lung and selectively deliver STING agonists to PD-L1-overexpressing cells via the PD-1/PD-L1 interaction. This targeted delivery effectively avoids the systemic inflammation and poor cellular uptake that plague free STING agonists. Internalized STING agonists trigger STING signaling and induce interferon responses, which diminish immunosuppressive cell populations such as myeloid-derived suppressor cells in the tumor microenvironment and promote CAR-T cell infiltration. Importantly, the anti-PD-L1 single chain variable fragment on the nanovesicle surface blocks PD-L1 upregulation induced by STING agonists and prevents CAR-T cell exhaustion. In both orthotopic lung cancer and lung metastasis model, combined therapy with CAR-T cells and aPD-L1 NVs@cGAMP potently inhibits tumor growth and prevents recurrence. Therefore, aPD-L1 NVs@cGAMP is expected to serve as an effective CAR-T cell enhancer to improve the efficacy of CAR-T cells against solid tumors.
Collapse
Affiliation(s)
- Tianchuan Zhu
- Center for Infection and Immunity, Guangdong Engineering Research Center of Molecular Imaging, The Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai, 519000, Guangdong, China
| | - Yuchen Xiao
- Center for Infection and Immunity, Guangdong Engineering Research Center of Molecular Imaging, The Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai, 519000, Guangdong, China
| | - Zhenxing Chen
- Center for Infection and Immunity, Guangdong Engineering Research Center of Molecular Imaging, The Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai, 519000, Guangdong, China
| | - Hanxi Ding
- Center for Infection and Immunity, Guangdong Engineering Research Center of Molecular Imaging, The Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai, 519000, Guangdong, China
| | - Shoudeng Chen
- Guangdong Engineering Research Center of Molecular Imaging, The Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai, 519000, Guangdong, China.
| | - Guanmin Jiang
- Department of Clinical laboratory, The Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai, Guangdong, 519000, China.
| | - Xi Huang
- Center for Infection and Immunity, Guangdong Engineering Research Center of Molecular Imaging, The Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai, 519000, Guangdong, China.
| |
Collapse
|
5
|
Harary PM, Rajaram S, Chen MS, Hori YS, Park DJ, Chang SD. Genomic predictors of radiation response: recent progress towards personalized radiotherapy for brain metastases. Cell Death Discov 2024; 10:501. [PMID: 39695143 DOI: 10.1038/s41420-024-02270-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2024] [Revised: 12/03/2024] [Accepted: 12/09/2024] [Indexed: 12/20/2024] Open
Abstract
Radiotherapy remains a key treatment modality for both primary and metastatic brain tumors. Significant technological advances in precision radiotherapy, such as stereotactic radiosurgery and intensity-modulated radiotherapy, have contributed to improved clinical outcomes. Notably, however, molecular genetics is not yet widely used to inform brain radiotherapy treatment. By comparison, genetic testing now plays a significant role in guiding targeted therapies and immunotherapies, particularly for brain metastases (BM) of lung cancer, breast cancer, and melanoma. Given increasing evidence of the importance of tumor genetics to radiation response, this may represent a currently under-utilized means of enhancing treatment outcomes. In addition, recent studies have shown potentially actionable mutations in BM which are not present in the primary tumor. Overall, this suggests that further investigation into the pathways mediating radiation response variability is warranted. Here, we provide an overview of key mechanisms implicated in BM radiation resistance, including intrinsic and acquired resistance and intratumoral heterogeneity. We then discuss advances in tumor sampling methods, such as a collection of cell-free DNA and RNA, as well as progress in genomic analysis. We further consider how these tools may be applied to provide personalized radiotherapy for BM, including patient stratification, detection of radiotoxicity, and use of radiosensitization agents. In addition, we describe recent developments in preclinical models of BM and consider their relevance to investigating radiation response. Given the increase in clinical trials evaluating the combination of radiotherapy and targeted therapies, as well as the rising incidence of BM, it is essential to develop genomically informed approaches to enhance radiation response.
Collapse
Affiliation(s)
- Paul M Harary
- Department of Neurosurgery, Stanford University School of Medicine, Stanford, CA, USA
| | - Sanjeeth Rajaram
- Department of Neurosurgery, Stanford University School of Medicine, Stanford, CA, USA
| | - Maggie S Chen
- Department of Neurosurgery, Stanford University School of Medicine, Stanford, CA, USA
- Medical Scientist Training Program, Stanford University School of Medicine, Stanford, CA, USA
| | - Yusuke S Hori
- Department of Neurosurgery, Stanford University School of Medicine, Stanford, CA, USA
| | - David J Park
- Department of Neurosurgery, Stanford University School of Medicine, Stanford, CA, USA.
| | - Steven D Chang
- Department of Neurosurgery, Stanford University School of Medicine, Stanford, CA, USA
| |
Collapse
|
6
|
Chakravarti B, Rajput S, Srivastava A, Sharma LK, Sinha RA, Chattopadhyay N, Siddiqui JA. A Systematic Review and Meta-Analysis of the Effects of Dietary Isoflavones on Female Hormone-Dependent Cancers for Benefit-Risk Evaluation. Phytother Res 2024; 38:6062-6081. [PMID: 39480044 DOI: 10.1002/ptr.8358] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Revised: 07/22/2024] [Accepted: 09/30/2024] [Indexed: 11/02/2024]
Abstract
Female hormone-dependent cancers depend on estrogen for their growth. Numerous studies have explored the antitumor effect of dietary isoflavones on female hormone-dependent cancers. Still, few clinical evidence supports the use of isoflavones in female hormone-dependent cancer patients. This study was performed to examine the impact of dietary isoflavones on tumor growth of female hormone-dependent cancers and accelerate the transformation of research from bench to bedside. We searched PubMed Medline, Web of Science, and Google Scholar for relevant articles related to the effect of dietary isoflavone on tumor growth of experimental animal models of female hormone-dependent cancers from 1998 to 2024. The effects of dietary isoflavones on tumor growth were analyzed between the control and treatment groups using comprehensive meta-analysis software (CMA). We included 30 studies describing tumor growth focused on female hormone-dependent cancer types, including breast, ovarian, and uterine cancers. Overall, a pooled analysis revealed that dietary isoflavones reduced tumor volume (Hedge's g = -1.151, 95% CI = -1.717 to -0.585, p = 0.000) and tumor weight (Hedge's g = -2.584, 95% CI = -3.618 to -1.549, p = 0.000). On the other hand, dietary isoflavones increased tumor area (Hedge's g = 1.136, 95% CI = 0.752 to 1.520, p = 0.000). Dietary isoflavones have potential benefits and risks in female hormone-dependent cancers. Therefore, caution should be exercised when considering the intake of dietary isoflavones in female hormone-dependent cancer patients, particularly in the form of supplements.
Collapse
Affiliation(s)
- Bandana Chakravarti
- Stem Cell/Cell culture lab Unit, Center for Advance Research, King George's Medical University, Lucknow, India
| | - Swati Rajput
- Division of Endocrinology and Center for Research in Anabolic Skeletal Target in Health and Illness (ASTHI), CSIR-Central Drug Research Institute, Council of Scientific and Industrial Research, Lucknow, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - Anubhav Srivastava
- Department of Molecular Medicine and Biotechnology, Sanjay Gandhi Postgraduate Institute of Medical Sciences Lucknow, Lucknow, Uttar Pradesh, India
| | - Lokendra Kumar Sharma
- Department of Molecular Medicine and Biotechnology, Sanjay Gandhi Postgraduate Institute of Medical Sciences Lucknow, Lucknow, Uttar Pradesh, India
| | - Rohit Anthony Sinha
- Stem Cell/Cell culture lab Unit, Center for Advance Research, King George's Medical University, Lucknow, India
| | - Naibedya Chattopadhyay
- Division of Endocrinology and Center for Research in Anabolic Skeletal Target in Health and Illness (ASTHI), CSIR-Central Drug Research Institute, Council of Scientific and Industrial Research, Lucknow, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - Jawed Akhtar Siddiqui
- Department of Cell and Molecular Biology, University of Mississippi Medical Center, Jackson, MS, USA
- Cancer Center and Research Institute, University of Mississippi Medical Center, Jackson, MS, USA
| |
Collapse
|
7
|
Valenzano G, Russell SN, Go S, O'Neill E, Jones KI. Using Spectral Flow Cytometry to Characterize Anti-Tumor Immunity in Orthotopic and Subcutaneous Mouse Models of Cancer. Curr Protoc 2024; 4:e70032. [PMID: 39432378 DOI: 10.1002/cpz1.70032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2024]
Abstract
Mouse models remain at the forefront of immuno-oncology research, providing invaluable insights into the complex interactions between the immune system and developing tumors. While several flow cytometry panels have been developed to study cancer immunity in mice, most are limited in their capacity to address the complexity of anti-cancer immune responses. For example, many of the panels developed to date focus on a restricted number of leukocyte populations (T cells or antigen-presenting cells), failing to include the multitude of other subsets that participate in anti-cancer immunity. In addition, these panels were developed using blood or splenic leukocytes. While the immune composition of the blood or spleen can provide information on systemic immune responses to cancer, it is in the tumor microenvironment (TME) that local immunity takes place. Therefore, we optimized this spectral flow cytometry panel to identify the chief cell types that take part in cancer immunity using immune cells from cancer tissue. We used pancreatic tumors implanted both orthotopically and subcutaneously to demonstrate the panel's flexibility and suitability in diverse mouse models. The panel was also validated in peripheral immune districts (the blood, spleen, and liver of tumor-bearing mice) to allow comparisons between local and systemic anti-tumor immunity. © 2024 The Author(s). Current Protocols published by Wiley Periodicals LLC. Basic Protocol 1: Tumor induction-Orthotopic Alternate Protocol: Tumor induction-Subcutaneous Basic Protocol 2: Preparation of single-cell suspensions from the tumor, spleen, liver, and blood of tumor-bearing mice Basic Protocol 3: Staining single-cell suspensions from the tumor, spleen, liver, and blood of tumor-bearing mice.
Collapse
Affiliation(s)
| | | | - Simei Go
- Department of Oncology, University of Oxford, Oxford, UK
| | - Eric O'Neill
- Department of Oncology, University of Oxford, Oxford, UK
| | - Keaton I Jones
- Nuffield Department of Surgical Sciences, University of Oxford, Oxford, UK
| |
Collapse
|
8
|
Brown RB. Statins in the Cause and Prevention of Cancer: Confounding by Indication and Mediation by Rhabdomyolysis and Phosphate Toxicity. J Cardiovasc Dev Dis 2024; 11:296. [PMID: 39330354 PMCID: PMC11432391 DOI: 10.3390/jcdd11090296] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2024] [Revised: 09/13/2024] [Accepted: 09/17/2024] [Indexed: 09/28/2024] Open
Abstract
Statins are drugs used in cardiovascular pharmacotherapy to decrease hypercholesterolemia and lower the risk of atherosclerosis. Statins also increase the risk of rhabdomyolysis, which is often minimized in comparison with large relative risk reductions of cardiovascular disease reported in clinical trials. By contrast, absolute risk reductions of cardiovascular disease are often clinically insignificant and unreported in statin clinical trials. Additionally, cytotoxic effects of statins inhibit cancer cell proliferation and reduce cancer risk, but other studies found that statins are carcinogenic. Due to an inverse association between incidence of cancer and atherosclerosis, the indication to prescribe statins likely biases the association of statins with cancer prevention. Dietary patterns associated with atherosclerosis and cancer contain inverse amounts of cholesterol and phosphate, an essential mineral that stimulates tumorigenesis. Accordingly, lower cancer risk is associated with high dietary cholesterol intake and increased risk of atherosclerosis. Furthermore, serum is exposed to excessive inorganic phosphate that could increase cancer risk as rhabdomyolysis induced by statins releases phosphate from skeletal muscle breakdown. Increased risk of comorbid conditions associated with statins may share the mediating factor of phosphate toxicity. More research is warranted on statins in the cause and prevention of cancer.
Collapse
Affiliation(s)
- Ronald B Brown
- School of Public Health Sciences, University of Waterloo, Waterloo, ON N2L 3G1, Canada
| |
Collapse
|
9
|
Cahill JA, Smith LA, Gottipati S, Torabi TS, Graim K. Bringing the Genomic Revolution to Comparative Oncology: Human and Dog Cancers. Annu Rev Biomed Data Sci 2024; 7:107-129. [PMID: 38648188 PMCID: PMC11343685 DOI: 10.1146/annurev-biodatasci-102423-111936] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/25/2024]
Abstract
Dogs are humanity's oldest friend, the first species we domesticated 20,000-40,000 years ago. In this unequaled collaboration, dogs have inadvertently but serendipitously been molded into a potent human cancer model. Unlike many common model species, dogs are raised in the same environment as humans and present with spontaneous tumors with human-like comorbidities, immunocompetency, and heterogeneity. In breast, bladder, blood, and several pediatric cancers, in-depth profiling of dog and human tumors has established the benefits of the dog model. In addition to this clinical and molecular similarity, veterinary studies indicate that domestic dogs have relatively high tumor incidence rates. As a result, there are a plethora of data for analysis, the statistical power of which is bolstered by substantial breed-specific variability. As such, dog tumors provide a unique opportunity to interrogate the molecular factors underpinning cancer and facilitate the modeling of new therapeutic targets. This review discusses the emerging field of comparative oncology, how it complements human and rodent cancer studies, and where challenges remain, given the rapid proliferation of genomic resources. Increasingly, it appears that human's best friend is becoming an irreplaceable component of oncology research.
Collapse
Affiliation(s)
- James A Cahill
- University of Florida Genetics Institute, University of Florida, Gainesville, Florida, USA;
- Department of Environmental Engineering Sciences, University of Florida, Gainesville, Florida, USA
| | - Leslie A Smith
- Department of Computer and Information Science and Engineering, University of Florida, Gainesville, Florida, USA
| | - Soumya Gottipati
- Department of Computer Science, Princeton University, Princeton, New Jersey, USA
| | - Tina Salehi Torabi
- Department of Computer and Information Science and Engineering, University of Florida, Gainesville, Florida, USA
| | - Kiley Graim
- Department of Computer and Information Science and Engineering, University of Florida, Gainesville, Florida, USA
- University of Florida Health Cancer Center, University of Florida, Gainesville, Florida, USA
- University of Florida Genetics Institute, University of Florida, Gainesville, Florida, USA;
| |
Collapse
|
10
|
Ludwig J, Ritzmann F, Kamyschnikow A, Herr C, Bals R, Beisswenger C. An easy-to-perform protocol for culturing primary murine lung tumor cells as organoids. Ann Anat 2024; 255:152298. [PMID: 38971450 DOI: 10.1016/j.aanat.2024.152298] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Accepted: 07/03/2024] [Indexed: 07/08/2024]
Abstract
Cancer research involves significant animal consumption and suffering. Tumor cells can be differentiated in vitro into three-dimensional organoids that resemble the primary tumor. In basic cancer research, however, tumor organoids are usually only used alongside animal experiments. We have established an easy-to-perform protocol that allows to culture KRAS-driven lung tumor cells as organoids for extended periods of time. Like the corresponding tumors in mice, the organoids produce surfactant protein C but no markers of airway epithelial cells (e.g. SCGB1A1, KRT5). The organoids can be passaged as single cell suspensions. Our organoid model contributes to replace animal experiments with cell culture systems and can be used for drug testing or functional studies in cancer research.
Collapse
Affiliation(s)
- Jannis Ludwig
- Department of Internal Medicine V - Pulmonology, Allergology and Critical Care Medicine, Saarland University, Homburg 66421, Germany
| | - Felix Ritzmann
- Department of Internal Medicine V - Pulmonology, Allergology and Critical Care Medicine, Saarland University, Homburg 66421, Germany; Department of Drug Delivery (DDEL), Helmholtz-Institute for Pharmaceutical Research Saarland (HIPS), Helmholtz Centre for Infection Research (HZI), Saarbrücken, Germany
| | - Andreas Kamyschnikow
- Department of Internal Medicine V - Pulmonology, Allergology and Critical Care Medicine, Saarland University, Homburg 66421, Germany
| | - Christian Herr
- Department of Internal Medicine V - Pulmonology, Allergology and Critical Care Medicine, Saarland University, Homburg 66421, Germany
| | - Robert Bals
- Department of Internal Medicine V - Pulmonology, Allergology and Critical Care Medicine, Saarland University, Homburg 66421, Germany; Department of Drug Delivery (DDEL), Helmholtz-Institute for Pharmaceutical Research Saarland (HIPS), Helmholtz Centre for Infection Research (HZI), Saarbrücken, Germany
| | - Christoph Beisswenger
- Department of Internal Medicine V - Pulmonology, Allergology and Critical Care Medicine, Saarland University, Homburg 66421, Germany.
| |
Collapse
|
11
|
Choi J, Park G, Lee SSY, Dominici E, Becker L, Macleod KF, Kron SJ, Hwang S. Context-dependent roles for autophagy in myeloid cells in tumor progression. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.07.12.603292. [PMID: 39071306 PMCID: PMC11275940 DOI: 10.1101/2024.07.12.603292] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 07/30/2024]
Abstract
Autophagy is known to suppress tumor initiation by removing genotoxic stresses in normal cells. Conversely, autophagy is also known to support tumor progression by alleviating metabolic stresses in neoplastic cells. Centered on this pro-tumor role of autophagy, there have been many clinical trials to treat cancers through systemic blocking of autophagy. Such systemic inhibition affects both tumor cells and non-tumor cells, and the consequence of blocked autophagy in non-tumor cells in the context of tumor microenvironment is relatively understudied. Here, we examined the effect of autophagy-deficient myeloid cells on the progression of autophagy-competent tumors. We found that blocking autophagy only in myeloid cells modulated tumor progression markedly but such effects were context dependent. In a tumor implantation model, the growth of implanted tumor cells was substantially reduced in mice with autophagy-deficient myeloid cells; T cells infiltrated deeper into the tumors and were responsible for the reduced growth of the implanted tumor cells. In an oncogene-driven tumor induction model, however, tumors grew faster and metastasized more in mice with autophagy-deficient myeloid cells. These data demonstrate that the autophagy status of myeloid cells plays a critical role in tumor progression, promoting or suppressing tumor growth depending on the context of tumor-myeloid cell interactions. This study indicates that systemic use of autophagy inhibitors in cancer therapy may have differential effects on rates of tumor progression in patients due to effects on myeloid cells and that this warrants more targeted use of selective autophagy inhibitors in a cancer therapy in a clinical setting.
Collapse
Affiliation(s)
- Jayoung Choi
- Department of Pathology, The University of Chicago, Chicago, IL 60637, USA
| | - Gayoung Park
- Department of Pathology, The University of Chicago, Chicago, IL 60637, USA
| | - Steve Seung-Young Lee
- Ludwig Center for Metastasis Research, Department of Molecular Genetics and Cell Biology, The University of Chicago, Chicago, IL 60637, USA
| | - Erin Dominici
- Department of Pathology, The University of Chicago, Chicago, IL 60637, USA
| | - Lev Becker
- The Ben May Department for Cancer Research, The University of Chicago, Chicago, IL 60637, USA
| | - Kay F Macleod
- The Ben May Department for Cancer Research, The University of Chicago, Chicago, IL 60637, USA
| | - Stephen J Kron
- Ludwig Center for Metastasis Research, Department of Molecular Genetics and Cell Biology, The University of Chicago, Chicago, IL 60637, USA
| | - Seungmin Hwang
- Department of Pathology, The University of Chicago, Chicago, IL 60637, USA
| |
Collapse
|
12
|
Saha PS, Yan J, Zhu C. Diffuse reflectance spectroscopy for optical characterizations of orthotopic head and neck cancer models in vivo. BIOMEDICAL OPTICS EXPRESS 2024; 15:4176-4189. [PMID: 39022549 PMCID: PMC11249676 DOI: 10.1364/boe.528608] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Revised: 05/30/2024] [Accepted: 05/31/2024] [Indexed: 07/20/2024]
Abstract
We demonstrated an easy-to-build, portable diffuse reflectance spectroscopy device along with a Monte Carlo inverse model to quantify tissue absorption and scattering-based parameters of orthotopic head and neck cancer models in vivo. Both tissue-mimicking phantom studies and animal studies were conducted to verify the optical spectroscopy system and Monte Carlo inverse model for the accurate extraction of tissue optical properties. For the first time, we reported the tissue absorption and scattering coefficients of mouse normal tongue tissues and tongue tumor tissues. Our in vivo animal studies showed reduced total hemoglobin concentration, lower tissue vascular oxygen saturation, and increased tissue scattering in the orthotopic tongue tumors compared to the normal tongue tissues. Our data also showed that mice tongue tumors with different sizes may have significantly different tissue absorption and scattering-based parameters. Small tongue tumors (volume was ∼60 mm3) had increased absorption coefficients, decreased reduced-scattering coefficients, and increased total hemoglobin concentrations compared to tiny tongue tumors (volume was ∼18 mm3). These results demonstrated the potential of diffuse reflectance spectroscopy to noninvasively evaluate tumor biology using orthotopic tongue cancer models for future head and neck cancer research.
Collapse
Affiliation(s)
- Pranto Soumik Saha
- Department of Biomedical Engineering, University of Kentucky
, Lexington, KY 40506, USA
| | - Jing Yan
- Department of Biomedical Engineering, University of Kentucky
, Lexington, KY 40506, USA
| | - Caigang Zhu
- Department of Biomedical Engineering, University of Kentucky
, Lexington, KY 40506, USA
| |
Collapse
|
13
|
Ghosh LD, Mathur T, Tronolone JJ, Chuong A, Rangel K, Corvigno S, Sood AK, Jain A. Angiogenesis-Enabled Human Ovarian Tumor Microenvironment-Chip Evaluates Pathophysiology of Platelets in Microcirculation. Adv Healthc Mater 2024; 13:e2304263. [PMID: 38553940 PMCID: PMC11281868 DOI: 10.1002/adhm.202304263] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Revised: 03/25/2024] [Indexed: 04/09/2024]
Abstract
The tumor microenvironment (TME) promotes angiogenesis for its growth through the recruitment of multiple cells and signaling mechanisms. For example, TME actively recruits and activates platelets from the microcirculation to facilitate metastasis, but platelets may simultaneously also support tumor angiogenesis. Here, to model this complex pathophysiology within the TME that involves a signaling triad of cancer cells, sprouting endothelial cells, and platelets, an angiogenesis-enabled tumor microenvironment chip (aTME-Chip) is presented. This platform recapitulates the convergence of physiology of angiogenesis and platelet function within the ovarian TME and describes the contribution of platelets in promoting angiogenesis within an ovarian TME. By including three distinct human ovarian cancer cell-types, the aTME-Chip quantitatively reveals the following outcomes-first, introduction of platelets significantly increases angiogenesis; second, the temporal dynamics of angiogenic signaling is dependent on cancer cell type; and finally, tumor-educated platelets either activated exogenously by cancer cells or derived clinically from a cancer patient accelerate tumor angiogenesis. Further, analysis of effluents available from aTME-Chip validate functional outcomes by revealing changes in cytokine expression and several angiogenic and metastatic signaling pathways due to platelets. Collectively, this tumor microphysiological system may be deployed to derive antiangiogenic targets combined with antiplatelet treatments to arrest cancer metastasis.
Collapse
Affiliation(s)
- Lopamudra D. Ghosh
- Department of Biomedical Engineering, College of Engineering, Texas A&M University, College Station, Texas, USA
| | - Tanmay Mathur
- Department of Biomedical Engineering, College of Engineering, Texas A&M University, College Station, Texas, USA
| | - James J Tronolone
- Department of Biomedical Engineering, College of Engineering, Texas A&M University, College Station, Texas, USA
| | - Ashley Chuong
- Department of Biomedical Engineering, College of Engineering, Texas A&M University, College Station, Texas, USA
| | - Kelly Rangel
- Department of Gynecologic Oncology and Reproductive Medicine, UT MD Anderson Cancer Center, Houston, Texas, USA
| | - Sara Corvigno
- Department of Gynecologic Oncology and Reproductive Medicine, UT MD Anderson Cancer Center, Houston, Texas, USA
| | - Anil K. Sood
- Department of Gynecologic Oncology and Reproductive Medicine, UT MD Anderson Cancer Center, Houston, Texas, USA
| | - Abhishek Jain
- Department of Biomedical Engineering, College of Engineering, Texas A&M University, College Station, Texas, USA
- Department of Medical Physiology, College of Medicine, Texas A&M Health Science Center, Bryan, Texas, USA
- Department of Cardiovascular Sciences, Houston Methodist Academic Institute, Houston, Texas, USA
| |
Collapse
|
14
|
Aladelokun O, Lu L, Zheng J, Yan H, Jain A, Gibson J, Khan SA, Johnson CH. Growth characteristics of HCT116 xenografts lacking asparagine synthetase vary according to sex. Hum Genomics 2024; 18:67. [PMID: 38886847 PMCID: PMC11184737 DOI: 10.1186/s40246-024-00635-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Accepted: 06/06/2024] [Indexed: 06/20/2024] Open
Abstract
BACKGROUND Sex-related differences in colorectal (CRC) incidence and mortality are well-documented. However, the impact of sex on metabolic pathways that drive cancer growth is not well understood. High expression of asparagine synthetase (ASNS) is associated with inferior survival for female CRC patients only. Here, we used a CRISPR/Cas9 technology to generate HCT116 ASNS-/- and HCT 116 ASNS+/+ cancer cell lines. We examine the effects of ASNS deletion on tumor growth and the subsequent rewiring of metabolic pathways in male and female Rag2/IL2RG mice. RESULTS ASNS loss reduces cancer burden in male and female tumor-bearing mice (40% reduction, q < 0.05), triggers metabolic reprogramming including gluconeogenesis, but confers a survival improvement (30 days median survival, q < 0.05) in female tumor-bearing mice alone. Transcriptomic analyses revealed upregulation of G-protein coupled estrogen receptor (GPER1) in tumors from male and female mice with HCT116 ASNS-/- xenograft. Estradiol activates GPER1 in vitro in the presence of ASNS and suppresses tumor growth. CONCLUSIONS Our study indicates that inferior survival for female CRC patients with high ASNS may be due to metabolic reprogramming that sustains tumor growth. These findings have translational relevance as ASNS/GPER1 signaling could be a future therapeutic target to improve the survival of female CRC patients.
Collapse
Affiliation(s)
- Oladimeji Aladelokun
- Department of Environmental Health Sciences, Yale School of Public Health, Yale University, New Haven, CT, USA
| | - Lingeng Lu
- Department of Chronic Disease Epidemiology, Yale School of Public Health, Yale University, New Haven, CT, 06510, USA
| | - Jie Zheng
- Department of Environmental Health Sciences, Yale School of Public Health, Yale University, New Haven, CT, USA
| | - Hong Yan
- Department of Environmental Health Sciences, Yale School of Public Health, Yale University, New Haven, CT, USA
| | - Abhishek Jain
- Department of Environmental Health Sciences, Yale School of Public Health, Yale University, New Haven, CT, USA
| | - Joanna Gibson
- Department of Pathology, Yale University, New Haven, CT, USA
| | - Sajid A Khan
- Division of Surgical Oncology, Department of Surgery, Yale School of Medicine, New Haven, CT, USA.
| | - Caroline H Johnson
- Department of Environmental Health Sciences, Yale School of Public Health, Yale University, New Haven, CT, USA.
| |
Collapse
|
15
|
Rickard AG, Mowery YM, Bassil A, Rouse DC, Williams NT, Charity T, Belloni R, Crouch B, Ramanujam N, Stevenson D, Castillo R, Blocker S, Epel B, Kotecha M, Palmer GM. Evaluating Tumor Hypoxia Radiosensitization Via Electron Paramagnetic Resonance Oxygen Imaging (EPROI). Mol Imaging Biol 2024; 26:435-447. [PMID: 37721686 DOI: 10.1007/s11307-023-01855-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Revised: 07/30/2023] [Accepted: 09/01/2023] [Indexed: 09/19/2023]
Abstract
PURPOSE Tumor hypoxia contributes to aggressive phenotypes and diminished therapeutic responses to radiation therapy (RT) with hypoxic tissue being 3-fold less radiosensitive than normoxic tissue. A major challenge in implementing hypoxic radiosensitizers is the lack of a high-resolution imaging modality that directly quantifies tissue-oxygen. The electron paramagnetic resonance oxygen-imager (EPROI) was used to quantify tumor oxygenation in two murine tumor models: E0771 syngeneic transplant breast cancers and primary p53/MCA soft tissue sarcomas, with the latter autochthonous model better recapitulating the tumor microenvironment in human malignancies. We hypothesized that tumor hypoxia differs between these models. We also aimed to quantify the absolute change in tumor hypoxia induced by the mitochondrial inhibitor papaverine (PPV) and its effect on RT response. PROCEDURES Tumor oxygenation was characterized in E0771 and primary p53/MCA sarcomas via EPROI, with the former model also being quantified indirectly via diffuse reflectance spectroscopy (DRS). After confirming PPV's effect on hypoxic fraction (via EPROI), we compared the effect of 0 versus 2 mg/kg PPV prior to 20 Gy on tumor growth delay and survival. RESULTS Hypoxic sarcomas were more radioresistant than normoxic sarcomas (p=0.0057, 2-way ANOVA), and high baseline hypoxic fraction was a significant (p=0.0063, Cox Regression Model) hazard in survivability regardless of treatment. Pre-treatment with PPV before RT did not radiosensitize tumors in the sarcoma or E0771 model. In the sarcoma model, EPROI successfully identified baseline hypoxic tumors. DRS quantification of total hemoglobin, saturated hemoglobin, changes in mitochondrial potential and glucose uptake showed no significant difference in E0771 tumors pre- and post-PPV. CONCLUSION EPROI provides 3D high-resolution pO2 quantification; EPR is better suited than DRS to characterize tumor hypoxia. PPV did not radiosensitize E0771 tumors nor p53/MCA sarcomas, which may be related to the complex pattern of vasculature in each tumor. Additionally, understanding model-dependent tumor hypoxia will provide a much-needed foundation for future therapeutic studies with hypoxic radiosensitizers.
Collapse
Affiliation(s)
- Ashlyn G Rickard
- Department of Radiation Oncology, Duke University Medical Center, Durham, NC, USA
| | - Yvonne M Mowery
- Department of Radiation Oncology, Duke University Medical Center, Durham, NC, USA.
- Department of Head and Neck Surgery & Communication Sciences, Duke University Medical Center, Durham, NC, USA.
| | - Alex Bassil
- Department of Radiation Oncology, Duke University Medical Center, Durham, NC, USA
| | - Douglas C Rouse
- Division of Laboratory Animal Resources, Duke University School of Medicine, Durham, NC, USA
| | - Nerissa T Williams
- Department of Radiation Oncology, Duke University Medical Center, Durham, NC, USA
| | - Theresa Charity
- Department of Radiation Oncology, Duke University Medical Center, Durham, NC, USA
| | - Rafaela Belloni
- Department of Radiation Oncology, Duke University Medical Center, Durham, NC, USA
| | - Brian Crouch
- Department of Biomedical Engineering, Duke University, Durham, NC, USA
| | - Nimmi Ramanujam
- Department of Biomedical Engineering, Duke University, Durham, NC, USA
| | | | - Rico Castillo
- Department of Radiation Oncology, Duke University Medical Center, Durham, NC, USA
| | - Stephanie Blocker
- Department of Radiology, Duke University Medical Center, Durham, NC, USA
| | - Boris Epel
- Department of Radiation and Cellular Oncology, University of Chicago, Chicago, IL, USA
- O2M Technologies LLC, Chicago, IL, USA
| | | | - Gregory M Palmer
- Department of Radiation Oncology, Duke University Medical Center, Durham, NC, USA.
| |
Collapse
|
16
|
Zhang J, Li AM, Kansler ER, Li MO. Cancer immunity by tissue-resident type 1 innate lymphoid cells and killer innate-like T cells. Immunol Rev 2024; 323:150-163. [PMID: 38506480 PMCID: PMC11102320 DOI: 10.1111/imr.13319] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/21/2024]
Abstract
Cancer progression can be restrained by tumor-infiltrating lymphocytes in a process termed cancer immunosurveillance. Based on how lymphocytes are activated and recruited to the tumor tissue, cancer immunity is either pre-wired, in which innate lymphocytes and innate-like T cells are directly recruited to and activated in tumors following their differentiation in primary lymphoid organs; or priming-dependent, in which conventional adaptive T cells are first primed by cognate antigens in secondary lymphoid organs before homing to and reactivated in tumors. While priming-dependent cancer immunity has been a focus of cancer immunology research for decades, in part due to historical preconception of cancer theory and tumor model choice as well as clinical success of conventional adaptive T cell-directed therapeutic programs, recent studies have revealed that pre-wired cancer immunity mediated by tissue-resident type 1 innate lymphoid cells (ILC1s) and killer innate-like T cells (ILTCKs) is an integral component of the cancer immunosurveillance process. Herein we review the distinct ontogenies and cancer-sensing mechanisms of ILC1s and ILTCKs in murine genetic cancer models as well as the conspicuously conserved responses in human malignancies. How ILC1s and ILTCKs may be targeted to broaden the scope of cancer immunotherapy beyond conventional adaptive T cells is also discussed.
Collapse
Affiliation(s)
- Jing Zhang
- Immunology Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Albert M. Li
- Immunology Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Emily R. Kansler
- Immunology Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Ming O. Li
- Immunology Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Louis V. Gerstner Jr. Graduate School of Biomedical Sciences, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Immunology and Microbial Pathogenesis Graduate Program, Weill Cornell Graduate School of Biomedical Sciences, Cornell University, New York, NY, USA
| |
Collapse
|
17
|
Saha P, Ettel P, Weichhart T. Leveraging macrophage metabolism for anticancer therapy: opportunities and pitfalls. Trends Pharmacol Sci 2024; 45:335-349. [PMID: 38494408 DOI: 10.1016/j.tips.2024.02.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Revised: 02/19/2024] [Accepted: 02/20/2024] [Indexed: 03/19/2024]
Abstract
Tumor-associated macrophages (TAMs) constitute an important part of the tumor microenvironment (TME) that regulates tumor progression. Tumor-derived signals, hypoxia, and competition for nutrients influence TAMs to reprogram their cellular metabolism. This altered metabolic profile creates a symbiotic communication between tumor and other immune cells to support tumor growth. In addition, the metabolic profile of TAMs regulates the expression of immune checkpoint molecules. The dynamic plasticity also allows TAMs to reshape their metabolism in response to modern therapeutic strategies. Therefore, over the years, a significant number of approaches have been implicated to reprogram cancer-promoting metabolism in TAMs. In this review, we discuss the current strategies and pitfalls, along with upcoming promising opportunities in leveraging TAM metabolism for developing better therapeutic approaches against cancer.
Collapse
Affiliation(s)
- Piyal Saha
- Institute for Medical Genetics, Center for Pathobiochemistry and Genetics, Medical University of Vienna, Währinger Straße 10, 1090 Vienna, Austria
| | - Paul Ettel
- Institute for Medical Genetics, Center for Pathobiochemistry and Genetics, Medical University of Vienna, Währinger Straße 10, 1090 Vienna, Austria
| | - Thomas Weichhart
- Institute for Medical Genetics, Center for Pathobiochemistry and Genetics, Medical University of Vienna, Währinger Straße 10, 1090 Vienna, Austria.
| |
Collapse
|
18
|
Longhini ALF, Fernández-Maestre I, Kennedy MC, Wereski MG, Mowla S, Xiao W, Lowe SW, Levine RL, Gardner R. Development of a customizable mouse backbone spectral flow cytometry panel to delineate immune cell populations in normal and tumor tissues. Front Immunol 2024; 15:1374943. [PMID: 38605953 PMCID: PMC11008467 DOI: 10.3389/fimmu.2024.1374943] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Accepted: 03/13/2024] [Indexed: 04/13/2024] Open
Abstract
Introduction In vivo studies of cancer biology and assessment of therapeutic efficacy are critical to advancing cancer research and ultimately improving patient outcomes. Murine cancer models have proven to be an invaluable tool in pre-clinical studies. In this context, multi-parameter flow cytometry is a powerful method for elucidating the profile of immune cells within the tumor microenvironment and/or play a role in hematological diseases. However, designing an appropriate multi-parameter panel to comprehensively profile the increasing diversity of immune cells across different murine tissues can be extremely challenging. Methods To address this issue, we designed a panel with 13 fixed markers that define the major immune populations -referred to as the backbone panel- that can be profiled in different tissues but with the option to incorporate up to seven additional fluorochromes, including any marker specific to the study in question. Results This backbone panel maintains its resolution across different spectral flow cytometers and organs, both hematopoietic and non-hematopoietic, as well as tumors with complex immune microenvironments. Discussion Having a robust backbone that can be easily customized with pre-validated drop-in fluorochromes saves time and resources and brings consistency and standardization, making it a versatile solution for immuno-oncology researchers. In addition, the approach presented here can serve as a guide to develop similar types of customizable backbone panels for different research questions requiring high-parameter flow cytometry panels.
Collapse
Affiliation(s)
- Ana Leda F. Longhini
- Flow Cytometry Core Facility, Memorial Sloan Kettering Cancer Center (MSKCC), New York, NY, United States
| | - Inés Fernández-Maestre
- Memorial Sloan Kettering Cancer Center, New York, NY, United States
- Louis V. Gerstner Jr Graduate School of Biomedical Sciences, Memorial Sloan Kettering Cancer Center, New York, NY, United States
| | - Margaret C. Kennedy
- Louis V. Gerstner Jr Graduate School of Biomedical Sciences, Memorial Sloan Kettering Cancer Center, New York, NY, United States
- Department of Cancer Biology and Genetics, Memorial Sloan Kettering Cancer Center, New York, NY, United States
| | | | - Shoron Mowla
- Memorial Sloan Kettering Cancer Center, New York, NY, United States
| | - Wenbin Xiao
- Memorial Sloan Kettering Cancer Center, New York, NY, United States
- Center for Hematologic Malignancies, Memorial Sloan Kettering Cancer Center, New York, NY, United States
- Department of Pathology and Laboratory Medicine, Hematopathology Service, Memorial Sloan Kettering Cancer Center, New York, NY, United States
| | - Scott W. Lowe
- Department of Cancer Biology and Genetics, Memorial Sloan Kettering Cancer Center, New York, NY, United States
- Howard Hughes Medical Institute, Memorial Sloan Kettering Cancer Center, New York, NY, United States
| | - Ross L. Levine
- Memorial Sloan Kettering Cancer Center, New York, NY, United States
- Center for Hematologic Malignancies, Memorial Sloan Kettering Cancer Center, New York, NY, United States
- Department of Medicine, Leukemia Service, Memorial Sloan Kettering Cancer Center, New York, NY, United States
| | - Rui Gardner
- Flow Cytometry Core Facility, Memorial Sloan Kettering Cancer Center (MSKCC), New York, NY, United States
| |
Collapse
|
19
|
Paun RA, Jurchuk S, Tabrizian M. A landscape of recent advances in lipid nanoparticles and their translational potential for the treatment of solid tumors. Bioeng Transl Med 2024; 9:e10601. [PMID: 38435821 PMCID: PMC10905562 DOI: 10.1002/btm2.10601] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Revised: 08/30/2023] [Accepted: 09/05/2023] [Indexed: 03/05/2024] Open
Abstract
Lipid nanoparticles (LNPs) are biocompatible drug delivery systems that have found numerous applications in medicine. Their versatile nature enables the encapsulation and targeting of various types of medically relevant molecular cargo, including oligonucleotides, proteins, and small molecules for the treatment of diseases, such as cancer. Cancers that form solid tumors are particularly relevant for LNP-based therapeutics due to the enhanced permeation and retention effect that allows nanoparticles to accumulate within the tumor tissue. Additionally, LNPs can be formulated for both locoregional and systemic delivery depending on the tumor type and stage. To date, LNPs have been used extensively in the clinic to reduce systemic toxicity and improve outcomes in cancer patients by encapsulating chemotherapeutic drugs. Next-generation lipid nanoparticles are currently being developed to expand their use in gene therapy and immunotherapy, as well as to enable the co-encapsulation of multiple drugs in a single system. Other developments include the design of targeted LNPs to specific cells and tissues, and triggerable release systems to control cargo delivery at the tumor site. This review paper highlights recent developments in LNP drug delivery formulations and focuses on the treatment of solid tumors, while also discussing some of their current translational limitations and potential opportunities in the field.
Collapse
Affiliation(s)
- Radu A. Paun
- Department of Biomedical Engineering, Faculty of Medicine and Health SciencesMcGill UniversityMontrealQuebecCanada
| | - Sarah Jurchuk
- Department of Biomedical Engineering, Faculty of Medicine and Health SciencesMcGill UniversityMontrealQuebecCanada
| | - Maryam Tabrizian
- Department of Biomedical Engineering, Faculty of Medicine and Health SciencesMcGill UniversityMontrealQuebecCanada
- Faculty of Dentistry and Oral Health SciencesMcGill UniversityMontrealQuebecCanada
| |
Collapse
|
20
|
Zalatan JG, Petrini L, Geiger R. Engineering bacteria for cancer immunotherapy. Curr Opin Biotechnol 2024; 85:103061. [PMID: 38219524 PMCID: PMC10922846 DOI: 10.1016/j.copbio.2023.103061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Revised: 10/30/2023] [Accepted: 12/16/2023] [Indexed: 01/16/2024]
Abstract
Bacterial therapeutics have emerged as promising delivery systems to target tumors. These engineered live therapeutics can be harnessed to modulate the tumor microenvironment or to deliver and selectively release therapeutic payloads to tumors. A major challenge is to deliver bacteria systemically without causing widespread inflammation, which is critical for the many tumors that are not accessible to direct intratumoral injection. We describe potential strategies to address this challenge, along with approaches for specific payload delivery and biocontainment to ensure safety. These strategies will pave the way for the development of cost-effective, widely applicable next-generation cancer therapeutics.
Collapse
Affiliation(s)
- Jesse G Zalatan
- Department of Chemistry, University of Washington, Seattle, WA, United States.
| | - Lorenzo Petrini
- Institute for Research in Biomedicine, Università della Svizzera italiana, Bellinzona, Switzerland
| | - Roger Geiger
- Institute for Research in Biomedicine, Università della Svizzera italiana, Bellinzona, Switzerland; Institute of Oncology Research, Università della Svizzera italiana, Bellinzona, Switzerland.
| |
Collapse
|
21
|
Molière S, Martinet A, Jaulin A, Lodi M, Chamaraux-Tran TN, Alpy F, Bierry G, Tomasetto C. Fast Ultrasound Scanning is a Rapid, Sensitive, Precise and Cost-Effective Method to Monitor Tumor Grafts in Mice. J Mammary Gland Biol Neoplasia 2024; 29:2. [PMID: 38289494 PMCID: PMC10827948 DOI: 10.1007/s10911-024-09555-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Accepted: 01/22/2024] [Indexed: 02/01/2024] Open
Abstract
In preclinical studies, accurate monitoring of tumor dynamics is crucial for understanding cancer biology and evaluating therapeutic interventions. Traditional methods like caliper measurements and bioluminescence imaging (BLI) have limitations, prompting the need for improved imaging techniques. This study introduces a fast-scan high-frequency ultrasound (HFUS) protocol for the longitudinal assessment of syngeneic breast tumor grafts in mice, comparing its performance with caliper, BLI measurements and with histological analysis. The E0771 mammary gland tumor cell line, engineered to express luciferase, was orthotopically grafted into immunocompetent C57BL/6 mice. Tumor growth was monitored longitudinally at multiple timepoints using caliper measurement, HFUS, and BLI, with the latter two modalities assessed against histopathological standards post-euthanasia. The HFUS protocol was designed for rapid, anesthesia-free scanning, focusing on volume estimation, echogenicity, and necrosis visualization. All mice developed tumors, only 20.6% were palpable at day 4. HFUS detected tumors as small as 2.2 mm in average diameter from day 4 post-implantation, with an average scanning duration of 47 s per mouse. It provided a more accurate volume assessment than caliper, with a lower average bias relative to reference tumor volume. HFUS also revealed tumor necrosis, correlating strongly with BLI in terms of tumor volume and cellularity. Notable discrepancies between HFUS and BLI growth rates were attributed to immune cell infiltration. The fast HFUS protocol enables precise and efficient tumor assessment in preclinical studies, offering significant advantages over traditional methods in terms of speed, accuracy, and animal welfare, aligning with the 3R principle in animal research.
Collapse
Affiliation(s)
- Sébastien Molière
- Institute of Genetics and Molecular and Cellular Biology, Illkirch, France.
- Centre National de la Recherche Scientifique, UMR 7104, Illkirch, France.
- Institut National de la Santé et de la Recherche Médicale U1258, Illkirch, France.
- University of Strasbourg, Strasbourg, France.
- Department of Radiology, Strasbourg University Hospital, Hôpital de Hautepierre, Strasbourg, France.
- Breast and Thyroid Imaging Unit, ICANS, Strasbourg, France.
| | - Arthur Martinet
- Institute of Genetics and Molecular and Cellular Biology, Illkirch, France
- Centre National de la Recherche Scientifique, UMR 7104, Illkirch, France
- Institut National de la Santé et de la Recherche Médicale U1258, Illkirch, France
- University of Strasbourg, Strasbourg, France
| | - Amélie Jaulin
- Institute of Genetics and Molecular and Cellular Biology, Illkirch, France
- Centre National de la Recherche Scientifique, UMR 7104, Illkirch, France
- Institut National de la Santé et de la Recherche Médicale U1258, Illkirch, France
- University of Strasbourg, Strasbourg, France
| | - Massimo Lodi
- Institute of Genetics and Molecular and Cellular Biology, Illkirch, France
- Centre National de la Recherche Scientifique, UMR 7104, Illkirch, France
- Institut National de la Santé et de la Recherche Médicale U1258, Illkirch, France
- University of Strasbourg, Strasbourg, France
| | - Thien-Nga Chamaraux-Tran
- Institute of Genetics and Molecular and Cellular Biology, Illkirch, France
- Centre National de la Recherche Scientifique, UMR 7104, Illkirch, France
- Institut National de la Santé et de la Recherche Médicale U1258, Illkirch, France
- University of Strasbourg, Strasbourg, France
- Department of Anesthesiology, Groupe Hospitalier Saint Vincent, Clinique Sainte Barbe, Strasbourg, France
| | - Fabien Alpy
- Institute of Genetics and Molecular and Cellular Biology, Illkirch, France
- Centre National de la Recherche Scientifique, UMR 7104, Illkirch, France
- Institut National de la Santé et de la Recherche Médicale U1258, Illkirch, France
- University of Strasbourg, Strasbourg, France
| | - Guillaume Bierry
- University of Strasbourg, Strasbourg, France
- Department of Radiology, Strasbourg University Hospital, Hôpital de Hautepierre, Strasbourg, France
- Engineering Science, Computer Science and Imaging Laboratory (ICube), Integrative Multimodal Imaging in Healthcare, UMR 7357, University of Strasbourg-CNRS, Strasbourg, France
| | - Catherine Tomasetto
- Institute of Genetics and Molecular and Cellular Biology, Illkirch, France
- Centre National de la Recherche Scientifique, UMR 7104, Illkirch, France
- Institut National de la Santé et de la Recherche Médicale U1258, Illkirch, France
- University of Strasbourg, Strasbourg, France
| |
Collapse
|
22
|
Novitasari D, Nakamae I, Istighfari Jenie R, Yoneda-Kato N, Kato JY, Meiyanto E. Pentagamavunone-1 inhibits aggressive breast cancer cell proliferation through mitotic catastrophe and ROS-mediated activities: in vitro and in vivo studies. Saudi Pharm J 2024; 32:101892. [PMID: 38146327 PMCID: PMC10749286 DOI: 10.1016/j.jsps.2023.101892] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Accepted: 12/01/2023] [Indexed: 12/27/2023] Open
Abstract
Pentagamavunone-1 (PGV-1), an analog of curcumin, has been studied for its cytotoxic effects in 4T1, MCF7, MCF7/HER2, and T47D breast cancer cells. Its antiproliferative effect is partly mediated through G2/M arrest; however, its molecular mechanism during cell cycle progression remains unknown. In this study, we aimed to determine whether PGV-1 has any anticancer effects on highly aggressive breast cancer cells, with a focus on cell cycle regulatory activity, reactive oxygen species (ROS) generation, and their mediated effects on cancer cells. MDA-MB-231 (triple-negative) and HCC1954 (overexpressed HER2) immortalized human breast cancer cells were used in the study. PGV-1 exhibited cytotoxic activity with an irreversible antiproliferative impact on treated cells and had good selectivity when tested in fibroblast cells. Oral PGV-1 administration suppressed tumor growth in a cell-derived xenograft mouse model. PGV-1 induced the phosphorylation of Aurora A kinase and PLK1 in MDA-MB-231 cells, while PLK1 and cyclin B1 phosphorylation were enhanced in the PGV-1-treated HCC1954 cells during prometaphase arrest. Intracellular ROS production was substantially higher upon PGV-1 treatment following mitotic arrest, and this activity caused impairment of mitochondrial respiration, induced senescence, and subsequently triggered early-to-late apoptosis. Collectively, these results suggest that the molecular mechanism of PGV-1 involves the regulation of mitotic kinases to cause cell cycle arrest and the enhancement of ROS production to impair mitochondrial activity and induce cellular senescence. The therapeutic activities demonstrated by PGV-1 in this study show its potential as an appealing candidate for chemotherapy in breast cancer treatment.
Collapse
Affiliation(s)
- Dhania Novitasari
- Cancer Chemoprevention Research Center, Faculty of Pharmacy, Universitas Gadjah Mada, Yogyakarta 55281, Indonesia
| | - Ikuko Nakamae
- Laboratory of Tumor Cell Biology, Division of Biological Science, Graduate School of Science and Technology, Nara Institute of Science and Technology, Nara 630-0192, Japan
| | - Riris Istighfari Jenie
- Cancer Chemoprevention Research Center, Faculty of Pharmacy, Universitas Gadjah Mada, Yogyakarta 55281, Indonesia
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Universitas Gadjah Mada, Yogyakarta 55281, Indonesia
| | - Noriko Yoneda-Kato
- Laboratory of Tumor Cell Biology, Division of Biological Science, Graduate School of Science and Technology, Nara Institute of Science and Technology, Nara 630-0192, Japan
| | - Jun-ya Kato
- Laboratory of Tumor Cell Biology, Division of Biological Science, Graduate School of Science and Technology, Nara Institute of Science and Technology, Nara 630-0192, Japan
| | - Edy Meiyanto
- Cancer Chemoprevention Research Center, Faculty of Pharmacy, Universitas Gadjah Mada, Yogyakarta 55281, Indonesia
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Universitas Gadjah Mada, Yogyakarta 55281, Indonesia
| |
Collapse
|
23
|
Riviere-Cazaux C, Carlstrom LP, Neth BJ, Olson IE, Rajani K, Rahman M, Ikram S, Mansour MA, Mukherjee B, Warrington AE, Short SC, von Zglinicki T, Brown DA, Burma S, Tchkonia T, Schafer MJ, Baker DJ, Kizilbash SH, Kirkland JL, Burns TC. An untapped window of opportunity for glioma: targeting therapy-induced senescence prior to recurrence. NPJ Precis Oncol 2023; 7:126. [PMID: 38030881 PMCID: PMC10687268 DOI: 10.1038/s41698-023-00476-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2023] [Accepted: 10/24/2023] [Indexed: 12/01/2023] Open
Abstract
High-grade gliomas are primary brain tumors that are incredibly refractory long-term to surgery and chemoradiation, with no proven durable salvage therapies for patients that have failed conventional treatments. Post-treatment, the latent glioma and its microenvironment are characterized by a senescent-like state of mitotic arrest and a senescence-associated secretory phenotype (SASP) induced by prior chemoradiation. Although senescence was once thought to be irreversible, recent evidence has demonstrated that cells may escape this state and re-enter the cell cycle, contributing to tumor recurrence. Moreover, senescent tumor cells could spur the growth of their non-senescent counterparts, thereby accelerating recurrence. In this review, we highlight emerging evidence supporting the use of senolytic agents to ablate latent, senescent-like cells that could contribute to tumor recurrence. We also discuss how senescent cell clearance can decrease the SASP within the tumor microenvironment thereby reducing tumor aggressiveness at recurrence. Finally, senolytics could improve the long-term sequelae of prior therapy on cognition and bone marrow function. We critically review the senolytic drugs currently under preclinical and clinical investigation and the potential challenges that may be associated with deploying senolytics against latent glioma. In conclusion, senescence in glioma and the microenvironment are critical and potential targets for delaying or preventing tumor recurrence and improving patient functional outcomes through senotherapeutics.
Collapse
Affiliation(s)
| | | | | | - Ian E Olson
- Department of Neurological Surgery, Northwestern University, Chicago, IL, USA
| | | | - Masum Rahman
- Department of Neurological Surgery, Rochester, MN, USA
| | - Samar Ikram
- Department of Neurological Surgery, Rochester, MN, USA
| | | | - Bipasha Mukherjee
- Department of Neurosurgery, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA
| | - Arthur E Warrington
- Department of Neurological Surgery, Rochester, MN, USA
- Department of Neurology, Rochester, MN, USA
| | - Susan C Short
- Leeds Institute of Medical Research at St. James's, St. James's University Hospital, University of Leeds, Leeds, UK
| | - Thomas von Zglinicki
- Biosciences Institute, Faculty of Medical Sciences, Campus for Ageing and Vitality, Newcastle University, Newcastle upon Tyne, UK
| | - Desmond A Brown
- National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA
| | - Sandeep Burma
- Department of Neurosurgery, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA
| | - Tamar Tchkonia
- Department of Physiology and Biomedical Engineering, Rochester, MN, USA
| | - Marissa J Schafer
- Department of Physiology and Biomedical Engineering, Rochester, MN, USA
| | - Darren J Baker
- Department of Pediatric and Adolescent Medicine, Rochester, MN, USA
- Department of Biochemistry and Molecular Biology, Rochester, MN, USA
| | | | - James L Kirkland
- Department of Pediatric and Adolescent Medicine, Rochester, MN, USA
- Department of Medicine, Rochester, MN, USA
| | - Terry C Burns
- Department of Neurological Surgery, Rochester, MN, USA.
| |
Collapse
|
24
|
Busato D, Capolla S, Durigutto P, Mossenta M, Bozzer S, Sblattero D, Macor P, Dal Bo M, Toffoli G. A novel complement-fixing IgM antibody targeting GPC1 as a useful immunotherapeutic strategy for the treatment of pancreatic ductal adenocarcinoma. J Transl Med 2023; 21:864. [PMID: 38017492 PMCID: PMC10685509 DOI: 10.1186/s12967-023-04745-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Accepted: 11/20/2023] [Indexed: 11/30/2023] Open
Abstract
BACKGROUND Pancreatic ductal adenocarcinoma (PDAC) is one of the most aggressive cancers with a very low survival rate at 5 years. The use of chemotherapeutic agents results in only modest prolongation of survival and is generally associated with the occurrence of toxicity effects. Antibody-based immunotherapy has been proposed for the treatment of PDAC, but its efficacy has so far proved limited. The proteoglycan glypican-1 (GPC1) may be a useful immunotherapeutic target because it is highly expressed on the surface of PDAC cells, whereas it is not expressed or is expressed at very low levels in benign neoplastic lesions, chronic pancreatitis, and normal adult tissues. Here, we developed and characterized a specific mouse IgM antibody (AT101) targeting GPC1. METHODS We developed a mouse monoclonal antibody of the IgM class directed against an epitope of GPC1 in close proximity to the cell membrane. For this purpose, a 46 amino acid long peptide of the C-terminal region was used to immunize mice by an in-vivo electroporation protocol followed by serum titer and hybridoma formation. RESULTS The ability of AT101 to bind the GPC1 protein was demonstrated by ELISA, and by flow cytometry and immunofluorescence analysis in the GPC1-expressing "PDAC-like" BXPC3 cell line. In-vivo experiments in the BXPC3 xenograft model showed that AT101 was able to bind GPC1 on the cell surface and accumulate in the BXPC3 tumor masses. Ex-vivo analyses of BXPC3 tumor masses showed that AT101 was able to recruit immunological effectors (complement system components, NK cells, macrophages) to the tumor site and damage PDAC tumor tissue. In-vivo treatment with AT101 reduced tumor growth and prolonged survival of mice with BXPC3 tumor (p < 0.0001). CONCLUSIONS These results indicate that AT101, an IgM specific for an epitope of GPC1 close to PDAC cell surface, is a promising immunotherapeutic agent for GPC1-expressing PDAC, being able to selectively activate the complement system and recruit effector cells in the tumor microenvironment, thus allowing to reduce tumor mass growth and improve survival in treated mice.
Collapse
Affiliation(s)
- Davide Busato
- Experimental and Clinical Pharmacology, Centro Di Riferimento Oncologico (CRO) Di Aviano IRCCS, 33081, Aviano, Italy
- Department of Life Sciences, University of Trieste, 34127, Trieste, Italy
| | - Sara Capolla
- Experimental and Clinical Pharmacology, Centro Di Riferimento Oncologico (CRO) Di Aviano IRCCS, 33081, Aviano, Italy
| | - Paolo Durigutto
- Department of Life Sciences, University of Trieste, 34127, Trieste, Italy
| | - Monica Mossenta
- Experimental and Clinical Pharmacology, Centro Di Riferimento Oncologico (CRO) Di Aviano IRCCS, 33081, Aviano, Italy
- Department of Life Sciences, University of Trieste, 34127, Trieste, Italy
| | - Sara Bozzer
- Experimental and Clinical Pharmacology, Centro Di Riferimento Oncologico (CRO) Di Aviano IRCCS, 33081, Aviano, Italy
| | - Daniele Sblattero
- Department of Life Sciences, University of Trieste, 34127, Trieste, Italy
| | - Paolo Macor
- Department of Life Sciences, University of Trieste, 34127, Trieste, Italy
| | - Michele Dal Bo
- Experimental and Clinical Pharmacology, Centro Di Riferimento Oncologico (CRO) Di Aviano IRCCS, 33081, Aviano, Italy.
| | - Giuseppe Toffoli
- Experimental and Clinical Pharmacology, Centro Di Riferimento Oncologico (CRO) Di Aviano IRCCS, 33081, Aviano, Italy
| |
Collapse
|
25
|
Li Y, Mahadevan NR, Duplaquet L, Hong D, Durmaz YT, Jones KL, Cho H, Morrow M, Protti A, Poitras MJ, Springer BF, Bronson RT, Gong X, Hui YH, Du J, Southard J, Thai T, Li S, Lizotte PH, Gokhale PC, Nguyen QD, Oser MG. Aurora A kinase inhibition induces accumulation of SCLC tumor cells in mitosis with restored interferon signaling to increase response to PD-L1. Cell Rep Med 2023; 4:101282. [PMID: 37992688 PMCID: PMC10694667 DOI: 10.1016/j.xcrm.2023.101282] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Revised: 08/17/2023] [Accepted: 10/16/2023] [Indexed: 11/24/2023]
Abstract
Despite small cell lung cancers (SCLCs) having a high mutational burden, programmed death-ligand 1 (PD-L1) immunotherapy only modestly increases survival. A subset of SCLCs that lose their ASCL1 neuroendocrine phenotype and restore innate immune signaling (termed the "inflammatory" subtype) have durable responses to PD-L1. Some SCLCs are highly sensitive to Aurora kinase inhibitors, but early-phase trials show short-lived responses, suggesting effective therapeutic combinations are needed to increase their durability. Using immunocompetent SCLC genetically engineered mouse models (GEMMs) and syngeneic xenografts, we show durable efficacy with the combination of a highly specific Aurora A kinase inhibitor (LSN3321213) and PD-L1. LSN3321213 causes accumulation of tumor cells in mitosis with lower ASCL1 expression and higher expression of interferon target genes and antigen-presentation genes mimicking the inflammatory subtype in a cell-cycle-dependent manner. These data demonstrate that inflammatory gene expression is restored in mitosis in SCLC, which can be exploited by Aurora A kinase inhibition.
Collapse
Affiliation(s)
- Yixiang Li
- Department of Medical Oncology, Dana-Farber Cancer Institute and Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02215, USA
| | - Navin R Mahadevan
- Department of Medical Oncology, Dana-Farber Cancer Institute and Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02215, USA; Department of Pathology, Brigham and Women's Hospital, Boston, MA 02115, USA
| | - Leslie Duplaquet
- Department of Medical Oncology, Dana-Farber Cancer Institute and Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02215, USA
| | - Deli Hong
- Department of Medical Oncology, Dana-Farber Cancer Institute and Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02215, USA
| | - Yavuz T Durmaz
- Department of Medical Oncology, Dana-Farber Cancer Institute and Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02215, USA
| | - Kristen L Jones
- Department of Medical Oncology, Dana-Farber Cancer Institute and Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02215, USA; Lurie Family Imaging Center, Center for Biomedical Imaging in Oncology, Dana-Farber Cancer Institute, Boston, MA 02210, USA
| | - Hyeonseo Cho
- Department of Medical Oncology, Dana-Farber Cancer Institute and Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02215, USA
| | - Murry Morrow
- Department of Medical Oncology, Dana-Farber Cancer Institute and Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02215, USA; Lurie Family Imaging Center, Center for Biomedical Imaging in Oncology, Dana-Farber Cancer Institute, Boston, MA 02210, USA
| | - Andrea Protti
- Department of Medical Oncology, Dana-Farber Cancer Institute and Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02215, USA; Lurie Family Imaging Center, Center for Biomedical Imaging in Oncology, Dana-Farber Cancer Institute, Boston, MA 02210, USA
| | - Michael J Poitras
- Department of Medical Oncology, Dana-Farber Cancer Institute and Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02215, USA; Belfer Center for Applied Cancer Science, Dana-Farber Cancer Institute, Boston, MA 02215, USA; Experimental Therapeutics Core, Dana-Farber Cancer Institute, Boston, MA 02210, USA
| | - Benjamin F Springer
- Department of Medical Oncology, Dana-Farber Cancer Institute and Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02215, USA; Belfer Center for Applied Cancer Science, Dana-Farber Cancer Institute, Boston, MA 02215, USA; Experimental Therapeutics Core, Dana-Farber Cancer Institute, Boston, MA 02210, USA
| | - Roderick T Bronson
- Division of Immunology, Department of Microbiology and Immunobiology, Harvard Medical School, Boston, MA 02215, USA
| | | | | | - Jian Du
- Loxo@Lilly, Indianapolis, IN 46225, USA
| | - Jackson Southard
- Department of Medical Oncology, Dana-Farber Cancer Institute and Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02215, USA; Translational Immunogenomics Lab, Dana Farber Cancer Institute, Boston, MA, USA
| | - Tran Thai
- Department of Medical Oncology, Dana-Farber Cancer Institute and Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02215, USA
| | - Shuqiang Li
- Department of Medical Oncology, Dana-Farber Cancer Institute and Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02215, USA; Translational Immunogenomics Lab, Dana Farber Cancer Institute, Boston, MA, USA
| | - Patrick H Lizotte
- Department of Medical Oncology, Dana-Farber Cancer Institute and Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02215, USA; Belfer Center for Applied Cancer Science, Dana-Farber Cancer Institute, Boston, MA 02215, USA
| | - Prafulla C Gokhale
- Department of Medical Oncology, Dana-Farber Cancer Institute and Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02215, USA; Belfer Center for Applied Cancer Science, Dana-Farber Cancer Institute, Boston, MA 02215, USA; Experimental Therapeutics Core, Dana-Farber Cancer Institute, Boston, MA 02210, USA
| | - Quang-De Nguyen
- Department of Medical Oncology, Dana-Farber Cancer Institute and Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02215, USA; Lurie Family Imaging Center, Center for Biomedical Imaging in Oncology, Dana-Farber Cancer Institute, Boston, MA 02210, USA
| | - Matthew G Oser
- Department of Medical Oncology, Dana-Farber Cancer Institute and Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02215, USA; Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA.
| |
Collapse
|
26
|
Mahmoudian RA, Farshchian M, Golyan FF, Mahmoudian P, Alasti A, Moghimi V, Maftooh M, Khazaei M, Hassanian SM, Ferns GA, Mahaki H, Shahidsales S, Avan A. Preclinical tumor mouse models for studying esophageal cancer. Crit Rev Oncol Hematol 2023; 189:104068. [PMID: 37468084 DOI: 10.1016/j.critrevonc.2023.104068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Revised: 07/13/2023] [Accepted: 07/14/2023] [Indexed: 07/21/2023] Open
Abstract
Preclinical models are extensively employed in cancer research because they can be manipulated in terms of their environment, genome, molecular biology, organ systems, and physical activity to mimic human behavior and conditions. The progress made in in vivo cancer research has resulted in significant advancements, enabling the creation of spontaneous, metastatic, and humanized mouse models. Most recently, the remarkable and extensive developments in genetic engineering, particularly the utilization of CRISPR/Cas9, transposable elements, epigenome modifications, and liquid biopsies, have further facilitated the design and development of numerous mouse models for studying cancer. In this review, we have elucidated the production and usage of current mouse models, such as xenografts, chemical-induced models, and genetically engineered mouse models (GEMMs), for studying esophageal cancer. Additionally, we have briefly discussed various gene-editing tools that could potentially be employed in the future to create mouse models specifically for esophageal cancer research.
Collapse
Affiliation(s)
- Reihaneh Alsadat Mahmoudian
- Cancer Research Center, Mashhad University of Medical Sciences, Mashhad, Iran; Basic Sciences Research Institute, Mashhad University of Medical Sciences, Mashhad, Iran; Metabolic Syndrome Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Moein Farshchian
- Division of Oncology, Laboratory of Cellular Therapy, Department of Medical and Surgical Sciences for Children and Adults, University Hospital of Modena and Reggio Emilia, Modena, Italy
| | - Fatemeh Fardi Golyan
- Medical Genetics Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Parvaneh Mahmoudian
- Medical Genetics Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Ali Alasti
- Medical Genetics Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Vahid Moghimi
- Department of Biology, Faculty of Science, Hakim Sabzevari University, Sabzevar, Iran
| | - Mina Maftooh
- Metabolic Syndrome Research Center, Mashhad University of Medical Sciences, Mashhad, Iran; Medical Genetics Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Majid Khazaei
- Basic Sciences Research Institute, Mashhad University of Medical Sciences, Mashhad, Iran; Metabolic Syndrome Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Seyed Mahdi Hassanian
- Basic Sciences Research Institute, Mashhad University of Medical Sciences, Mashhad, Iran; Metabolic Syndrome Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Gordon A Ferns
- Brighton & Sussex Medical School, Department of Medical Education, Falmer, Brighton, Sussex BN1 9PH, UK
| | - Hanie Mahaki
- Vascular & Endovascular Surgery Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | | | - Amir Avan
- Metabolic Syndrome Research Center, Mashhad University of Medical Sciences, Mashhad, Iran; College of Medicine, University of Warith Al-Anbiyaa, Karbala, Iraq; Faculty of Health, School of Biomedical Sciences, Queensland University of Technology, Brisbane, Australia.
| |
Collapse
|
27
|
Simon Davis DA, Ritchie M, Hammill D, Garrett J, Slater RO, Otoo N, Orlov A, Gosling K, Price J, Yip D, Jung K, Syed FM, Atmosukarto II, Quah BJC. Identifying cancer-associated leukocyte profiles using high-resolution flow cytometry screening and machine learning. Front Immunol 2023; 14:1211064. [PMID: 37600768 PMCID: PMC10435879 DOI: 10.3389/fimmu.2023.1211064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Accepted: 06/26/2023] [Indexed: 08/22/2023] Open
Abstract
BACKGROUND Machine learning (ML) is a valuable tool with the potential to aid clinical decision making. Adoption of ML to this end requires data that reliably correlates with the clinical outcome of interest; the advantage of ML is that it can model these correlations from complex multiparameter data sets that can be difficult to interpret conventionally. While currently available clinical data can be used in ML for this purpose, there exists the potential to discover new "biomarkers" that will enhance the effectiveness of ML in clinical decision making. Since the interaction of the immune system and cancer is a hallmark of tumor establishment and progression, one potential area for cancer biomarker discovery is through the investigation of cancer-related immune cell signatures. Hence, we hypothesize that blood immune cell signatures can act as a biomarker for cancer progression. METHODS To probe this, we have developed and tested a multiparameter cell-surface marker screening pipeline, using flow cytometry to obtain high-resolution systemic leukocyte population profiles that correlate with detection and characterization of several cancers in murine syngeneic tumor models. RESULTS We discovered a signature of several blood leukocyte subsets, the most notable of which were monocyte subsets, that could be used to train CATboost ML models to predict the presence and type of cancer present in the animals. CONCLUSIONS Our findings highlight the potential utility of a screening approach to identify robust leukocyte biomarkers for cancer detection and characterization. This pipeline can easily be adapted to screen for cancer specific leukocyte markers from the blood of cancer patient.
Collapse
Affiliation(s)
- David A. Simon Davis
- Irradiation Immunity Interaction Lab, Australian National University, Canberra, ACT, Australia
| | - Melissa Ritchie
- Irradiation Immunity Interaction Lab, Australian National University, Canberra, ACT, Australia
| | - Dillon Hammill
- Division of Genome Sciences & Cancer, John Curtin School of Medical Research, Australian National University, Canberra, ACT, Australia
| | - Jessica Garrett
- Division of Genome Sciences & Cancer, John Curtin School of Medical Research, Australian National University, Canberra, ACT, Australia
| | - Robert O. Slater
- Division of Genome Sciences & Cancer, John Curtin School of Medical Research, Australian National University, Canberra, ACT, Australia
| | - Naomi Otoo
- Division of Genome Sciences & Cancer, John Curtin School of Medical Research, Australian National University, Canberra, ACT, Australia
| | - Anna Orlov
- Division of Genome Sciences & Cancer, John Curtin School of Medical Research, Australian National University, Canberra, ACT, Australia
| | - Katharine Gosling
- Irradiation Immunity Interaction Lab, Australian National University, Canberra, ACT, Australia
| | - Jason Price
- Division of Genome Sciences & Cancer, John Curtin School of Medical Research, Australian National University, Canberra, ACT, Australia
| | - Desmond Yip
- Australian National University, Canberra, ACT, Australia
- Department of Medical Oncology, Canberra Hospital & Health Services, Canberra, ACT, Australia
| | - Kylie Jung
- Irradiation Immunity Interaction Lab, Australian National University, Canberra, ACT, Australia
- Radiation Oncology Department, Canberra Hospital & Health Services, Canberra, ACT, Australia
| | - Farhan M. Syed
- Irradiation Immunity Interaction Lab, Australian National University, Canberra, ACT, Australia
- Radiation Oncology Department, Canberra Hospital & Health Services, Canberra, ACT, Australia
| | - Ines I. Atmosukarto
- Irradiation Immunity Interaction Lab, Australian National University, Canberra, ACT, Australia
- Division of Genome Sciences & Cancer, John Curtin School of Medical Research, Australian National University, Canberra, ACT, Australia
| | - Ben J. C. Quah
- Irradiation Immunity Interaction Lab, Australian National University, Canberra, ACT, Australia
- Radiation Oncology Department, Canberra Hospital & Health Services, Canberra, ACT, Australia
| |
Collapse
|
28
|
Closset L, Gultekin O, Salehi S, Sarhan D, Lehti K, Gonzalez-Molina J. The extracellular matrix - immune microenvironment crosstalk in cancer therapy: Challenges and opportunities. Matrix Biol 2023; 121:217-228. [PMID: 37524251 DOI: 10.1016/j.matbio.2023.07.003] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Revised: 07/28/2023] [Accepted: 07/28/2023] [Indexed: 08/02/2023]
Abstract
Targeting the tumour immune microenvironment (TIME) by cancer immunotherapy has led to improved patient outcomes. However, response to these treatments is heterogeneous and cancer-type dependant. The therapeutic activity of classical cancer therapies such as chemotherapy, radiotherapy, and surgical oncology is modulated by alterations of the TIME. A major regulator of immune cell function and resistance to both immune and classical therapies is the extracellular matrix (ECM). Concurrently, cancer therapies reshape the TIME as well as the ECM, causing both pro- and anti-tumour responses. Accordingly, the TIME-ECM crosstalk presents attractive opportunities to improve therapy outcomes. Here, we review the molecular crosstalk between the TIME and the ECM in cancer and its implications in cancer progression and clinical intervention. Additionally, we discuss examples and future directions of ECM and TIME co-targeting in combination with oncological therapies including surgery, chemotherapy, and radiotherapy.
Collapse
Affiliation(s)
- Lara Closset
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Solnavägen 9, Stockholm 171 65, Sweden; Saint-Antoine Research center (CRSA), UMR_S 938, INSERM, Sorbonne Université, Paris F-75012, France
| | - Okan Gultekin
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Solnavägen 9, Stockholm 171 65, Sweden
| | - Sahar Salehi
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Solnavägen 9, Stockholm 171 65, Sweden; Department of Women's and Children's Health, Division of Obstetrics and Gynecology, Karolinska Institutet, Stockholm, Sweden; Department of Pelvic Cancer, Theme Cancer, Karolinska University Hospital, Stockholm, Sweden
| | - Dhifaf Sarhan
- Department of Laboratory Medicine, Division of Pathology, Karolinska Institutet, Stockholm, Sweden
| | - Kaisa Lehti
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Solnavägen 9, Stockholm 171 65, Sweden; Department of Biomedical Laboratory Science, Norwegian University of Science and Technology, Trondheim, Norway
| | - Jordi Gonzalez-Molina
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Solnavägen 9, Stockholm 171 65, Sweden.
| |
Collapse
|
29
|
Whitt AG, Neely AM, Sarkar OS, Meng S, Arumugam S, Yaddanapudi K, Li C. Paraoxonase 2 (PON2) plays a limited role in murine lung tumorigenesis. Sci Rep 2023; 13:9929. [PMID: 37337025 PMCID: PMC10279720 DOI: 10.1038/s41598-023-37146-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Accepted: 06/16/2023] [Indexed: 06/21/2023] Open
Abstract
Paraoxonase 2 (PON2) is a multifunctional intracellular enzyme that has received growing attention for its ability to modulate various aspects of normal and malignant cellular physiology. Recent research has revealed that PON2 is upregulated in tissues from patients with various types of solid tumors and hematologic cancers, likely due to its ability to suppress oxidative stress and evade apoptosis. However, the effects of PON2 on pulmonary oncogenesis are unknown. Here, we conducted studies to investigate how PON2 influences lung cancer cell proliferation in vitro and lung tumorigenesis in vivo using a variety of cellular and animal models. It was found that PON2 expression deficiency hampered the proliferation of cultured lung cancer cells with concomitant cell cycle arrest at the G1 phase. In addition, the loss of endogenous PON2 expression impaired key aspects of oxidative metabolism in lung adenocarcinoma cells. Moreover, we investigated how the interplay between PON2 expression in lung tumors and host mice influences lung tumor initiation and progression. PON2 status in both transplanted tumor cells and mice failed to influence the development of subcutaneously grafted Lewis lung carcinoma (LLC) tumors, orthotopically implanted LLC tumors, and oncogenic Kras-driven primary lung adenocarcinoma tumors. Importantly, the frequencies of tumor-infiltrating myeloid subsets that include myeloid-derived suppressor cells (MDSCs) and tumor-associated macrophages were not impacted by PON2 expression in LLC tumor-bearing mice. Overall, our studies indicate that PON2 plays a limited role in murine lung tumorigenesis.
Collapse
Affiliation(s)
- Aaron G Whitt
- Department of Pharmacology and Toxicology, University of Louisville, Louisville, KY, 40202, USA
- Experimental Therapeutics Group, Brown Cancer Center, Department of Medicine, University of Louisville, Louisville, KY, 40202, USA
| | - Aaron M Neely
- Department of Pharmacology and Toxicology, University of Louisville, Louisville, KY, 40202, USA
- Experimental Therapeutics Group, Brown Cancer Center, Department of Medicine, University of Louisville, Louisville, KY, 40202, USA
- Department of Translational Genomics, University of Southern California, Los Angeles, CA, USA
| | - Omar Sadi Sarkar
- Department of Microbiology and Immunology, University of Louisville, Louisville, KY, USA
| | - Shuhan Meng
- Department of Pharmacology and Toxicology, University of Louisville, Louisville, KY, 40202, USA
- Experimental Therapeutics Group, Brown Cancer Center, Department of Medicine, University of Louisville, Louisville, KY, 40202, USA
| | - Sengodagounder Arumugam
- NMR Facility, Brown Cancer Center, Department of Medicine, University of Louisville, Louisville, KY, USA
| | - Kavitha Yaddanapudi
- Department of Microbiology and Immunology, University of Louisville, Louisville, KY, USA
- Immuno-Oncology Program, Brown Cancer Center, Department of Medicine, University of Louisville, Louisville, KY, USA
- Division of Immunotherapy, Department of Surgery, University of Louisville, Louisville, KY, USA
| | - Chi Li
- Department of Pharmacology and Toxicology, University of Louisville, Louisville, KY, 40202, USA.
- Experimental Therapeutics Group, Brown Cancer Center, Department of Medicine, University of Louisville, Louisville, KY, 40202, USA.
| |
Collapse
|
30
|
Haraoka Y, Miyake M, Ishitani T. Zebrafish imaging reveals hidden oncogenic-normal cell communication during primary tumorigenesis. Cell Struct Funct 2023; 48:113-121. [PMID: 37164759 PMCID: PMC10721949 DOI: 10.1247/csf.23026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Accepted: 05/08/2023] [Indexed: 05/12/2023] Open
Abstract
Oncogenic mutations drive tumorigenesis, and single cells with oncogenic mutations act as the tumor seeds that gradually evolve into fully transformed tumors. However, oncogenic cell behavior and communication with neighboring cells during primary tumorigenesis remain poorly understood. We used the zebrafish, a small vertebrate model suitable for in vivo cell biology, to address these issues. We describe the cooperative and competitive communication between oncogenic cells and neighboring cells, as revealed by our recent zebrafish imaging studies. Newly generated oncogenic cells are actively eliminated by neighboring cells in healthy epithelia, whereas oncogenic cells cooperate with their neighbors to prime tumorigenesis in unhealthy epithelia via additional mutations or inflammation. In addition, we discuss the potential of zebrafish in vivo imaging to determine the initial steps of human tumorigenesis.Key words: zebrafish, imaging, cell-cell communication, cell competition, EDAC, senescence, primary tumorigenesis.
Collapse
Affiliation(s)
- Yukinari Haraoka
- Department of Homeostatic Regulation, Research Institute for Microbial Diseases, Osaka University, Suita, Osaka 565-0871, Japan
| | - Mai Miyake
- Department of Homeostatic Regulation, Research Institute for Microbial Diseases, Osaka University, Suita, Osaka 565-0871, Japan
| | - Tohru Ishitani
- Department of Homeostatic Regulation, Research Institute for Microbial Diseases, Osaka University, Suita, Osaka 565-0871, Japan
- Center for Infectious Disease Education and Research (CiDER), Osaka University, Suita, Osaka 565-0871, Japan
| |
Collapse
|
31
|
Kurnikov A, Volkov G, Orlova A, Kovalchuk A, Khochenkova Y, Razansky D, Subochev P. Fisheye piezo polymer detector for scanning optoacoustic angiography of experimental neoplasms. PHOTOACOUSTICS 2023; 31:100507. [PMID: 37252652 PMCID: PMC10212753 DOI: 10.1016/j.pacs.2023.100507] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Revised: 04/14/2023] [Accepted: 05/06/2023] [Indexed: 05/31/2023]
Abstract
A number of optoacoustic (or photoacoustic) microscopy and mesoscopy techniques have successfully been employed for non-invasive tumor angiography. However, accurate rendering of tortuous and multidirectional neoplastic vessels is commonly hindered by the limited aperture size, narrow bandwidth and insufficient angular coverage of commercially available ultrasound transducers. We exploited the excellent flexibility and elasticity of a piezo polymer (PVDF) material to devise a fisheye-shape ultrasound detector with a high numerical aperture of 0.9, wide 1-30 MHz detection bandwidth and 27 mm diameter aperture suitable for imaging tumors of various size. We show theoretically and experimentally that the wide detector's view-angle and bandwidth are paramount for achieving a detailed visualization of the intricate arbitrarily-oriented neovasculature in experimental tumors. The developed approach is shown to be well adapted to the tasks of experimental oncology thus allows to better exploit the angiographic potential of optoacoustics.
Collapse
Affiliation(s)
- Alexey Kurnikov
- Institute of Applied Physics, Russian Academy of Sciences, 46 Ulyanov Str., Nizhny Novgorod 603950, Russia
| | - Grigory Volkov
- Institute of Applied Physics, Russian Academy of Sciences, 46 Ulyanov Str., Nizhny Novgorod 603950, Russia
| | - Anna Orlova
- Institute of Applied Physics, Russian Academy of Sciences, 46 Ulyanov Str., Nizhny Novgorod 603950, Russia
| | - Andrey Kovalchuk
- Institute of Applied Physics, Russian Academy of Sciences, 46 Ulyanov Str., Nizhny Novgorod 603950, Russia
| | - Yulia Khochenkova
- National Medical Research Center of Oncology named after N. N. Blokhin, Kashirskoe highway 23, Moscow 115522, Russia
| | - Daniel Razansky
- Institute of Pharmacology and Toxicology, Faculty of Medicine, UZH Zurich, Rämistrasse 71, Zurich 8006, Switzerland
- Institute for Biomedical Engineering, Department of Information Technology and Electrical Engineering, ETH Zurich, Gloriastrasse 35, Zurich 8092, Switzerland
| | - Pavel Subochev
- Institute of Applied Physics, Russian Academy of Sciences, 46 Ulyanov Str., Nizhny Novgorod 603950, Russia
| |
Collapse
|
32
|
Nixon BG, Gao S, Wang X, Li MO. TGFβ control of immune responses in cancer: a holistic immuno-oncology perspective. Nat Rev Immunol 2023; 23:346-362. [PMID: 36380023 PMCID: PMC10634249 DOI: 10.1038/s41577-022-00796-z] [Citation(s) in RCA: 45] [Impact Index Per Article: 22.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/10/2022] [Indexed: 11/16/2022]
Abstract
The immune system responds to cancer in two main ways. First, there are prewired responses involving myeloid cells, innate lymphocytes and innate-like adaptive lymphocytes that either reside in premalignant tissues or migrate directly to tumours, and second, there are antigen priming-dependent responses, in which adaptive lymphocytes are primed in secondary lymphoid organs before homing to tumours. Transforming growth factor-β (TGFβ) - one of the most potent and pleiotropic regulatory cytokines - controls almost every stage of the tumour-elicited immune response, from leukocyte development in primary lymphoid organs to their priming in secondary lymphoid organs and their effector functions in the tumour itself. The complexity of TGFβ-regulated immune cell circuitries, as well as the contextual roles of TGFβ signalling in cancer cells and tumour stromal cells, necessitates the use of rigorous experimental systems that closely recapitulate human cancer, such as autochthonous tumour models, to uncover the underlying immunobiology. The diverse functions of TGFβ in healthy tissues further complicate the search for effective and safe cancer therapeutics targeting the TGFβ pathway. Here we discuss the contextual complexity of TGFβ signalling in tumour-elicited immune responses and explain how understanding this may guide the development of mechanism-based cancer immunotherapy.
Collapse
Affiliation(s)
- Briana G Nixon
- Immunology Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Immunology and Microbial Pathogenesis Graduate Program, Weill Cornell Graduate School of Biomedical Sciences, Cornell University, New York, NY, USA
| | - Shengyu Gao
- Immunology Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Louis V. Gerstner, Jr. Graduate School of Biomedical Sciences, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Xinxin Wang
- Immunology Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Immunology and Microbial Pathogenesis Graduate Program, Weill Cornell Graduate School of Biomedical Sciences, Cornell University, New York, NY, USA
| | - Ming O Li
- Immunology Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA.
- Immunology and Microbial Pathogenesis Graduate Program, Weill Cornell Graduate School of Biomedical Sciences, Cornell University, New York, NY, USA.
- Louis V. Gerstner, Jr. Graduate School of Biomedical Sciences, Memorial Sloan Kettering Cancer Center, New York, NY, USA.
| |
Collapse
|
33
|
Singhal SS, Garg R, Mohanty A, Garg P, Ramisetty SK, Mirzapoiazova T, Soldi R, Sharma S, Kulkarni P, Salgia R. Recent Advancement in Breast Cancer Research: Insights from Model Organisms-Mouse Models to Zebrafish. Cancers (Basel) 2023; 15:cancers15112961. [PMID: 37296923 DOI: 10.3390/cancers15112961] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Revised: 05/23/2023] [Accepted: 05/24/2023] [Indexed: 06/12/2023] Open
Abstract
Animal models have been utilized for decades to investigate the causes of human diseases and provide platforms for testing novel therapies. Indeed, breakthrough advances in genetically engineered mouse (GEM) models and xenograft transplantation technologies have dramatically benefited in elucidating the mechanisms underlying the pathogenesis of multiple diseases, including cancer. The currently available GEM models have been employed to assess specific genetic changes that underlay many features of carcinogenesis, including variations in tumor cell proliferation, apoptosis, invasion, metastasis, angiogenesis, and drug resistance. In addition, mice models render it easier to locate tumor biomarkers for the recognition, prognosis, and surveillance of cancer progression and recurrence. Furthermore, the patient-derived xenograft (PDX) model, which involves the direct surgical transfer of fresh human tumor samples to immunodeficient mice, has contributed significantly to advancing the field of drug discovery and therapeutics. Here, we provide a synopsis of mouse and zebrafish models used in cancer research as well as an interdisciplinary 'Team Medicine' approach that has not only accelerated our understanding of varied aspects of carcinogenesis but has also been instrumental in developing novel therapeutic strategies.
Collapse
Affiliation(s)
- Sharad S Singhal
- Department of Medical Oncology and Therapeutic Research, Beckman Research Institute, City of Hope Comprehensive Cancer Center and National Medical Center, Duarte, CA 91010, USA
| | - Rachana Garg
- Department of Surgery, Beckman Research Institute, City of Hope Comprehensive Cancer Center and National Medical Center, Duarte, CA 91010, USA
| | - Atish Mohanty
- Department of Medical Oncology and Therapeutic Research, Beckman Research Institute, City of Hope Comprehensive Cancer Center and National Medical Center, Duarte, CA 91010, USA
| | - Pankaj Garg
- Department of Chemistry, GLA University, Mathura 281406, Uttar Pradesh, India
| | - Sravani Keerthi Ramisetty
- Department of Medical Oncology and Therapeutic Research, Beckman Research Institute, City of Hope Comprehensive Cancer Center and National Medical Center, Duarte, CA 91010, USA
| | - Tamara Mirzapoiazova
- Department of Medical Oncology and Therapeutic Research, Beckman Research Institute, City of Hope Comprehensive Cancer Center and National Medical Center, Duarte, CA 91010, USA
| | - Raffaella Soldi
- Translational Genomics Research Institute, Phoenix, AZ 85338, USA
| | - Sunil Sharma
- Translational Genomics Research Institute, Phoenix, AZ 85338, USA
| | - Prakash Kulkarni
- Department of Medical Oncology and Therapeutic Research, Beckman Research Institute, City of Hope Comprehensive Cancer Center and National Medical Center, Duarte, CA 91010, USA
- Department of Systems Biology, Beckman Research Institute, City of Hope Comprehensive Cancer Center and National Medical Center, Duarte, CA 91010, USA
| | - Ravi Salgia
- Department of Medical Oncology and Therapeutic Research, Beckman Research Institute, City of Hope Comprehensive Cancer Center and National Medical Center, Duarte, CA 91010, USA
| |
Collapse
|
34
|
Datta I, Vassel T, Linkous B, Odum T, Drew C, Taylor A, Bangi E. A targeted genetic modifier screen in Drosophila uncovers vulnerabilities in a genetically complex model of colon cancer. G3 (BETHESDA, MD.) 2023; 13:jkad053. [PMID: 36880303 PMCID: PMC10151408 DOI: 10.1093/g3journal/jkad053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Revised: 01/16/2023] [Accepted: 02/21/2023] [Indexed: 03/08/2023]
Abstract
Received on 16 January 2023; accepted on 21 February 2023Kinases are key regulators of cellular signal transduction pathways. Many diseases, including cancer, are associated with global alterations in protein phosphorylation networks. As a result, kinases are frequent targets of drug discovery efforts. However, target identification and assessment, a critical step in targeted drug discovery that involves identifying essential genetic mediators of disease phenotypes, can be challenging in complex, heterogeneous diseases like cancer, where multiple concurrent genomic alterations are common. Drosophila is a particularly useful genetic model system to identify novel regulators of biological processes through unbiased genetic screens. Here, we report 2 classic genetic modifier screens focusing on the Drosophila kinome to identify kinase regulators in 2 different backgrounds: KRAS TP53 PTEN APC, a multigenic cancer model that targets 4 genes recurrently mutated in human colon tumors and KRAS alone, a simpler model that targets one of the most frequently altered pathways in cancer. These screens identified hits unique to each model and one shared by both, emphasizing the importance of capturing the genetic complexity of human tumor genome landscapes in experimental models. Our follow-up analysis of 2 hits from the KRAS-only screen suggests that classical genetic modifier screens in heterozygous mutant backgrounds that result in a modest, nonlethal reduction in candidate gene activity in the context of a whole animal-a key goal of systemic drug treatment-may be a particularly useful approach to identify the most rate-limiting genetic vulnerabilities in disease models as ideal candidate drug targets.
Collapse
Affiliation(s)
- Ishwaree Datta
- Department of Biological Science, Florida State University, Tallahassee, FL 32304, USA
| | - Tajah Vassel
- Department of Biological Science, Florida State University, Tallahassee, FL 32304, USA
| | - Benjamin Linkous
- Department of Biological Science, Florida State University, Tallahassee, FL 32304, USA
| | - Tyler Odum
- Department of Biological Science, Florida State University, Tallahassee, FL 32304, USA
| | - Christian Drew
- Department of Biological Science, Florida State University, Tallahassee, FL 32304, USA
| | - Andrew Taylor
- Department of Biological Science, Florida State University, Tallahassee, FL 32304, USA
| | - Erdem Bangi
- Department of Biological Science, Florida State University, Tallahassee, FL 32304, USA
| |
Collapse
|
35
|
Finisguerra V, Dvorakova T, Formenti M, Van Meerbeeck P, Mignion L, Gallez B, Van den Eynde BJ. Metformin improves cancer immunotherapy by directly rescuing tumor-infiltrating CD8 T lymphocytes from hypoxia-induced immunosuppression. J Immunother Cancer 2023; 11:jitc-2022-005719. [PMID: 37147018 PMCID: PMC10163559 DOI: 10.1136/jitc-2022-005719] [Citation(s) in RCA: 36] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/30/2023] [Indexed: 05/07/2023] Open
Abstract
BACKGROUND Despite their revolutionary success in cancer treatment over the last decades, immunotherapies encounter limitations in certain tumor types and patients. The efficacy of immunotherapies depends on tumor antigen-specific CD8 T-cell viability and functionality within the immunosuppressive tumor microenvironment, where oxygen levels are often low. Hypoxia can reduce CD8 T-cell fitness in several ways and CD8 T cells are mostly excluded from hypoxic tumor regions. Given the challenges to achieve durable reduction of hypoxia in the clinic, ameliorating CD8 T-cell survival and effector function in hypoxic condition could improve tumor response to immunotherapies. METHODS Activated CD8 T cells were exposed to hypoxia and metformin and analyzed by fluorescence-activated cell sorting for cell proliferation, apoptosis and phenotype. In vivo, metformin was administered to mice bearing hypoxic tumors and receiving either adoptive cell therapy with tumor-specific CD8 T cells, or immune checkpoint inhibitors; tumor growth was followed over time and CD8 T-cell infiltration, survival and localization in normoxic or hypoxic tumor regions were assessed by flow cytometry and immunofluorescence. Tumor oxygenation and hypoxia were measured by electron paramagnetic resonance and pimonidazole staining, respectively. RESULTS We found that the antidiabetic drug metformin directly improved CD8 T-cell fitness in hypoxia, both in vitro and in vivo. Metformin rescued murine and human CD8 T cells from hypoxia-induced apoptosis and increased their proliferation and cytokine production, while blunting the upregulation of programmed cell death protein 1 and lymphocyte-activation gene 3. This appeared to result from a reduced production of reactive oxygen species, due to the inhibition of mitochondrial complex I. Differently from what others reported, metformin did not reduce tumor hypoxia, but rather increased CD8 T-cell infiltration and survival in hypoxic tumor areas, and synergized with cyclophosphamide to enhance tumor response to adoptive cell therapy or immune checkpoint blockade in different tumor models. CONCLUSIONS This study describes a novel mechanism of action of metformin and presents a promising strategy to achieve immune rejection in hypoxic and immunosuppressive tumors, which would otherwise be resistant to immunotherapy.
Collapse
Affiliation(s)
- Veronica Finisguerra
- de Duve Institute, UCLouvain, Brussels, Belgium
- Ludwig Institute for Cancer Research, de Duve Institute, Brussels, Belgium
- Walloon Excellence in Life Science and Biotechnology (WELBIO), WEL Research Institute, Brussels, Belgium
| | - Tereza Dvorakova
- de Duve Institute, UCLouvain, Brussels, Belgium
- Ludwig Institute for Cancer Research, de Duve Institute, Brussels, Belgium
- Walloon Excellence in Life Science and Biotechnology (WELBIO), WEL Research Institute, Brussels, Belgium
| | - Matteo Formenti
- de Duve Institute, UCLouvain, Brussels, Belgium
- Ludwig Institute for Cancer Research, de Duve Institute, Brussels, Belgium
- Walloon Excellence in Life Science and Biotechnology (WELBIO), WEL Research Institute, Brussels, Belgium
| | | | - Lionel Mignion
- Biomedical Magnetic Resonance (REMA) Group, Louvain Drug Research Institute, UCLouvain, Brussels, Belgium
- Nuclear and Electron Spin Technologies (NEST) Platform, Louvain Drug Research Institute, UCLouvain, Brussels, Belgium
| | - Bernard Gallez
- Biomedical Magnetic Resonance (REMA) Group, Louvain Drug Research Institute, UCLouvain, Brussels, Belgium
- Nuclear and Electron Spin Technologies (NEST) Platform, Louvain Drug Research Institute, UCLouvain, Brussels, Belgium
| | - Benoit J Van den Eynde
- de Duve Institute, UCLouvain, Brussels, Belgium
- Ludwig Institute for Cancer Research, de Duve Institute, Brussels, Belgium
- Walloon Excellence in Life Science and Biotechnology (WELBIO), WEL Research Institute, Brussels, Belgium
- Nuffield Department of Clinical Medicine, Ludwig Institute for Cancer Research, University of Oxford, Oxford, UK
| |
Collapse
|
36
|
Regenold M, Wang X, Kaneko K, Bannigan P, Allen C. Harnessing immunotherapy to enhance the systemic anti-tumor effects of thermosensitive liposomes. Drug Deliv Transl Res 2023; 13:1059-1073. [PMID: 36577832 DOI: 10.1007/s13346-022-01272-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/29/2022] [Indexed: 12/29/2022]
Abstract
Chemotherapy plays an important role in debulking tumors in advance of surgery and/or radiotherapy, tackling residual disease, and treating metastatic disease. In recent years many promising advanced drug delivery strategies have emerged that offer more targeted delivery approaches to chemotherapy treatment. For example, thermosensitive liposome-mediated drug delivery in combination with localized mild hyperthermia can increase local drug concentrations resulting in a reduction in systemic toxicity and an improvement in local disease control. However, the majority of solid tumor-associated deaths are due to metastatic spread. A therapeutic approach focused on a localized target area harbors the risk of overlooking and undertreating potential metastatic spread. Previous studies reported systemic, albeit limited, anti-tumor effects following treatment with thermosensitive liposomal chemotherapy and localized mild hyperthermia. This work explores the systemic treatment capabilities of a thermosensitive liposome formulation of the vinca alkaloid vinorelbine in combination with mild hyperthermia in an immunocompetent murine model of rhabdomyosarcoma. This treatment approach was found to be highly effective at heated, primary tumor sites. However, it demonstrated limited anti-tumor effects in secondary, distant tumors. As a result, the addition of immune checkpoint inhibition therapy was pursued to further enhance the systemic anti-tumor effect of this treatment approach. Once combined with immune checkpoint inhibition therapy, a significant improvement in systemic treatment capability was achieved. We believe this is one of the first studies to demonstrate that a triple combination of thermosensitive liposomes, localized mild hyperthermia, and immune checkpoint inhibition therapy can enhance the systemic treatment capabilities of thermosensitive liposomes.
Collapse
Affiliation(s)
- Maximilian Regenold
- Leslie Dan Faculty of Pharmacy, University of Toronto, 144 College Street, Toronto, ON, M5S 3M2, Canada
| | - Xuehan Wang
- Leslie Dan Faculty of Pharmacy, University of Toronto, 144 College Street, Toronto, ON, M5S 3M2, Canada
| | - Kan Kaneko
- Leslie Dan Faculty of Pharmacy, University of Toronto, 144 College Street, Toronto, ON, M5S 3M2, Canada
| | - Pauric Bannigan
- Leslie Dan Faculty of Pharmacy, University of Toronto, 144 College Street, Toronto, ON, M5S 3M2, Canada
| | - Christine Allen
- Leslie Dan Faculty of Pharmacy, University of Toronto, 144 College Street, Toronto, ON, M5S 3M2, Canada.
| |
Collapse
|
37
|
Fellermeyer M, Anzilotti C, Paluch C, Cornall RJ, Davis SJ, Gileadi U. Combination CD200R/PD-1 blockade in a humanised mouse model. IMMUNOTHERAPY ADVANCES 2023; 3:ltad006. [PMID: 37082107 PMCID: PMC10112683 DOI: 10.1093/immadv/ltad006] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Accepted: 03/29/2023] [Indexed: 04/22/2023] Open
Abstract
There is an increasing number of immune-checkpoint inhibitors being developed and approved for cancer immunotherapy. Most of the new therapies aim to reactivate tumour-infiltrating T cells, which are responsible for tumour killing. However, in many tumours, the most abundant infiltrating immune cells are macrophages and myeloid cells, which can be tumour-promoting as well as tumouricidal. CD200R was initially identified as a myeloid-restricted, inhibitory immune receptor, but was subsequently also found to be expressed within the lymphoid lineage. Using a mouse model humanised for CD200R and PD-1, we investigated the potential of a combination therapy comprising nivolumab, a clinically approved PD-1 blocking antibody, and OX108, a CD200R antagonist. We produced nivolumab as a murine IgG1 antibody and validated its binding activity in vitro as well as ex vivo. We then tested the combination therapy in the immunogenic colorectal cancer model MC38 as well as the PD-1 blockade-resistant lung cancer model LLC1, which is characterised by a large number of infiltrating myeloid cells, making it an attractive target for CD200R blockade. No significant improvement of overall survival was found in either model, compared to nivolumab mIgG1 monotherapy. There was a trend for more complete responses in the MC38 model, but investigation of the infiltrating immune cells failed to account for this. Importantly, MC38 cells expressed low levels of CD200, whereas LLC1 cells were CD200-negative. Further investigation of CD200R-blocking antibodies in tumours expressing high levels of CD200 could be warranted.
Collapse
Affiliation(s)
- Martin Fellermeyer
- MRC Human Immunology Unit, John Radcliffe Hospital, University of Oxford, Oxford, UK
- Radcliffe Department of Medicine, John Radcliffe Hospital, University of Oxford, Oxford, UK
| | - Consuelo Anzilotti
- MRC Human Immunology Unit, John Radcliffe Hospital, University of Oxford, Oxford, UK
- Radcliffe Department of Medicine, John Radcliffe Hospital, University of Oxford, Oxford, UK
- Nuffield Department of Medicine, Henry Wellcome Building for Molecular Physiology, University of Oxford, Oxford, UK
| | - Christopher Paluch
- MRC Human Immunology Unit, John Radcliffe Hospital, University of Oxford, Oxford, UK
- Radcliffe Department of Medicine, John Radcliffe Hospital, University of Oxford, Oxford, UK
- Nuffield Department of Medicine, Henry Wellcome Building for Molecular Physiology, University of Oxford, Oxford, UK
| | - Richard J Cornall
- MRC Human Immunology Unit, John Radcliffe Hospital, University of Oxford, Oxford, UK
- Nuffield Department of Medicine, Henry Wellcome Building for Molecular Physiology, University of Oxford, Oxford, UK
- CAMS Oxford Institute, Henry Wellcome Building for Molecular Physiology, University of Oxford, Oxford, UK
| | - Simon J Davis
- MRC Human Immunology Unit, John Radcliffe Hospital, University of Oxford, Oxford, UK
- Radcliffe Department of Medicine, John Radcliffe Hospital, University of Oxford, Oxford, UK
| | - Uzi Gileadi
- MRC Human Immunology Unit, John Radcliffe Hospital, University of Oxford, Oxford, UK
- Radcliffe Department of Medicine, John Radcliffe Hospital, University of Oxford, Oxford, UK
| |
Collapse
|
38
|
Rakhilin N, Yang B, Spilker ME, Manzuk LK, Montgomery MK, Shin E, Prashad N, Hwang J, Song Y, Loganzo F, Giddabasappa A, Ram S. Volumetric imaging of optically cleared and fluorescently labeled animal tissue (VIOLA) for quantifying the 3D biodistribution of nanoparticles at cellular resolution in tumor tissue. J Control Release 2023; 354:244-259. [PMID: 36596340 DOI: 10.1016/j.jconrel.2022.12.060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Revised: 12/17/2022] [Accepted: 12/29/2022] [Indexed: 01/05/2023]
Abstract
Nanoparticle (NP) technology holds significant promise to mediate targeted drug delivery to specific organs in the body. Understanding the 3D biodistribution of NPs in heterogeneous environments such as the tumor tissue can provide crucial information on efficacy, safety and potential clinical outcomes. Here we present a novel end-to-end workflow, VIOLA, which makes use of tissue clearing methodology in conjunction with high resolution imaging and advanced 3D image processing to quantify the spatiotemporal 3D biodistribution of fluorescently labeled ACCURIN® NPs. Specifically, we investigate the spatiotemporal biodistribution of NPs in three different murine tumor models (CT26, EMT6, and KPC-GEM) of increasing complexity and translational relevance. We have developed new endpoints to characterize NP biodistribution at multiple length scales. Our observations reveal that the macroscale NP biodistribution is spatially heterogeneous and exhibits a gradient with relatively high accumulation at the tumor periphery that progressively decreases towards the tumor core in all the tumor models. Microscale analysis revealed that NP extravasation from blood vessels increases in a time dependent manner and plateaus at 72 h post injection. Volumetric analysis and pharmacokinetic modeling of NP biodistribution in the vicinity of the blood vessels revealed that the local NP density exhibits a distance dependent spatiotemporal biodistribution which provide insights into the dynamics of NP extravasation in the tumor tissue. Our data represents a comprehensive analysis of NP biodistribution at multiple length scales in different tumor models providing unique insights into their spatiotemporal dynamics. Specifically, our results show that NPs exhibit a dynamic equilibrium with macroscale heterogeneity combined with microscale homogeneity.
Collapse
Affiliation(s)
| | - Bing Yang
- Comparative Medicine, Pfizer Inc., United States
| | - Mary E Spilker
- Medicine Design - Translational Modeling and Simulation, Pfizer Inc., United States
| | | | | | - Eyoung Shin
- Oncology Research Unit, Pfizer Inc., United States
| | | | | | - Youngho Song
- Oncology Research Unit, Pfizer Inc., United States
| | | | | | - Sripad Ram
- Drug Safety R&D, Pfizer Inc., United States.
| |
Collapse
|
39
|
Sullivan KM, Jiang X, Guha P, Lausted C, Carter JA, Hsu C, Labadie KP, Kohli K, Kenerson HL, Daniel SK, Yan X, Meng C, Abbasi A, Chan M, Seo YD, Park JO, Crispe IN, Yeung RS, Kim TS, Gujral TS, Tian Q, Katz SC, Pillarisetty VG. Blockade of interleukin 10 potentiates antitumour immune function in human colorectal cancer liver metastases. Gut 2023; 72:325-337. [PMID: 35705369 PMCID: PMC9872249 DOI: 10.1136/gutjnl-2021-325808] [Citation(s) in RCA: 76] [Impact Index Per Article: 38.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Accepted: 05/25/2022] [Indexed: 02/01/2023]
Abstract
OBJECTIVE Programmed cell death protein 1 (PD-1) checkpoint inhibition and adoptive cellular therapy have had limited success in patients with microsatellite stable colorectal cancer liver metastases (CRLM). We sought to evaluate the effect of interleukin 10 (IL-10) blockade on endogenous T cell and chimeric antigen receptor T (CAR-T) cell antitumour function in CRLM slice cultures. DESIGN We created organotypic slice cultures from human CRLM (n=38 patients' tumours) and tested the antitumour effects of a neutralising antibody against IL-10 (αIL-10) both alone as treatment and in combination with exogenously administered carcinoembryonic antigen (CEA)-specific CAR-T cells. We evaluated slice cultures with single and multiplex immunohistochemistry, in situ hybridisation, single-cell RNA sequencing, reverse-phase protein arrays and time-lapse fluorescent microscopy. RESULTS αIL-10 generated a 1.8-fold increase in T cell-mediated carcinoma cell death in human CRLM slice cultures. αIL-10 significantly increased proportions of CD8+ T cells without exhaustion transcription changes, and increased human leukocyte antigen - DR isotype (HLA-DR) expression of macrophages. The antitumour effects of αIL-10 were reversed by major histocompatibility complex class I or II (MHC-I or MHC-II) blockade, confirming the essential role of antigen presenting cells. Interrupting IL-10 signalling also rescued murine CAR-T cell proliferation and cytotoxicity from myeloid cell-mediated immunosuppression. In human CRLM slices, αIL-10 increased CEA-specific CAR-T cell activation and CAR-T cell-mediated cytotoxicity, with nearly 70% carcinoma cell apoptosis across multiple human tumours. Pretreatment with an IL-10 receptor blocking antibody also potentiated CAR-T function. CONCLUSION Neutralising the effects of IL-10 in human CRLM has therapeutic potential as a stand-alone treatment and to augment the function of adoptively transferred CAR-T cells.
Collapse
Affiliation(s)
- Kevin M Sullivan
- Department of Surgery, University of Washington, Seattle, Washington, USA
| | - Xiuyun Jiang
- Department of Surgery, University of Washington, Seattle, Washington, USA
| | - Prajna Guha
- Immuno-Oncology Institute and Department of Medicine, Roger Williams Medical Center, Providence, Rhode Island, USA,Department of Surgery, Boston University School of Medicine, Boston, Massachusetts, USA
| | | | - Jason A Carter
- Department of Surgery, University of Washington, Seattle, Washington, USA
| | - Cynthia Hsu
- Department of Surgery, University of Washington, Seattle, Washington, USA
| | - Kevin P Labadie
- Department of Surgery, University of Washington, Seattle, Washington, USA
| | - Karan Kohli
- Department of Surgery, University of Washington, Seattle, Washington, USA,Brotman Baty Institute for Precision Medicine, Seattle, Washington, USA
| | - Heidi L Kenerson
- Department of Surgery, University of Washington, Seattle, Washington, USA
| | - Sara K Daniel
- Department of Surgery, University of Washington, Seattle, Washington, USA
| | - Xiaowei Yan
- Institute for Systems Biology, Seattle, Washington, USA
| | | | - Arezou Abbasi
- Department of Surgery, University of Washington, Seattle, Washington, USA
| | - Marina Chan
- Human Biology Division, Fred Hutchinson Cancer Research Center, Seattle, Washington, USA
| | - Y David Seo
- Department of Surgery, University of Washington, Seattle, Washington, USA
| | - James O Park
- Department of Surgery, University of Washington, Seattle, Washington, USA
| | | | - Raymond S Yeung
- Department of Surgery, University of Washington, Seattle, Washington, USA
| | - Teresa S Kim
- Department of Surgery, University of Washington, Seattle, Washington, USA
| | - Taranjit S Gujral
- Human Biology Division, Fred Hutchinson Cancer Research Center, Seattle, Washington, USA
| | - Qiang Tian
- Institute for Systems Biology, Seattle, Washington, USA .,National Research Center for Translational Medicine, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Steven C Katz
- Immuno-Oncology Institute and Department of Medicine, Roger Williams Medical Center, Providence, Rhode Island, USA,Department of Surgery, Boston University School of Medicine, Boston, Massachusetts, USA
| | - Venu G Pillarisetty
- Department of Surgery, University of Washington, Seattle, Washington, USA .,Brotman Baty Institute for Precision Medicine, Seattle, Washington, USA
| |
Collapse
|
40
|
Peyton SR, Platt MO, Cukierman E. Challenges and Opportunities Modeling the Dynamic Tumor Matrisome. BME FRONTIERS 2023; 4:0006. [PMID: 37849664 PMCID: PMC10521682 DOI: 10.34133/bmef.0006] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2022] [Accepted: 11/28/2022] [Indexed: 10/19/2023] Open
Abstract
We need novel strategies to target the complexity of cancer and, particularly, of metastatic disease. As an example of this complexity, certain tissues are particularly hospitable environments for metastases, whereas others do not contain fertile microenvironments to support cancer cell growth. Continuing evidence that the extracellular matrix (ECM) of tissues is one of a host of factors necessary to support cancer cell growth at both primary and secondary tissue sites is emerging. Research on cancer metastasis has largely been focused on the molecular adaptations of tumor cells in various cytokine and growth factor environments on 2-dimensional tissue culture polystyrene plates. Intravital imaging, conversely, has transformed our ability to watch, in real time, tumor cell invasion, intravasation, extravasation, and growth. Because the interstitial ECM that supports all cells in the tumor microenvironment changes over time scales outside the possible window of typical intravital imaging, bioengineers are continuously developing both simple and sophisticated in vitro controlled environments to study tumor (and other) cell interactions with this matrix. In this perspective, we focus on the cellular unit responsible for upholding the pathologic homeostasis of tumor-bearing organs, cancer-associated fibroblasts (CAFs), and their self-generated ECM. The latter, together with tumoral and other cell secreted factors, constitute the "tumor matrisome". We share the challenges and opportunities for modeling this dynamic CAF/ECM unit, the tools and techniques available, and how the tumor matrisome is remodeled (e.g., via ECM proteases). We posit that increasing information on tumor matrisome dynamics may lead the field to alternative strategies for personalized medicine outside genomics.
Collapse
Affiliation(s)
- Shelly R. Peyton
- Department of Chemical Engineering, University of Massachusetts Amherst, Amherst, MA, USA
| | - Manu O. Platt
- Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA, USA
| | - Edna Cukierman
- Cancer Signaling & Microenvironment Program, Marvin and Concetta Greenberg Pancreatic Cancer Institute, Fox Chase Cancer Center, Temple Health, Philadelphia, PA, USA
| |
Collapse
|
41
|
Zhang X, Ji L, Li MO. Control of tumor-associated macrophage responses by nutrient acquisition and metabolism. Immunity 2023; 56:14-31. [PMID: 36630912 PMCID: PMC9839308 DOI: 10.1016/j.immuni.2022.12.003] [Citation(s) in RCA: 57] [Impact Index Per Article: 28.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 10/29/2022] [Accepted: 12/06/2022] [Indexed: 01/11/2023]
Abstract
Metazoan tissue specification is associated with integration of macrophage lineage cells in sub-tissular niches to promote tissue development and homeostasis. Oncogenic transformation, most prevalently of epithelial cell lineages, results in maladaptation of resident tissue macrophage differentiation pathways to generate parenchymal and interstitial tumor-associated macrophages that largely foster cancer progression. In addition to growth factors, nutrients that can be consumed, stored, recycled, or converted to signaling molecules have emerged as crucial regulators of macrophage responses in tumor. Here, we review how nutrient acquisition through plasma membrane transporters and engulfment pathways control tumor-associated macrophage differentiation and function. We also discuss how nutrient metabolism regulates tumor-associated macrophages and how these processes may be targeted for cancer therapy.
Collapse
Affiliation(s)
- Xian Zhang
- Immunology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Liangliang Ji
- Immunology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Ming O Li
- Immunology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA; Immunology and Microbial Pathogenesis Program, Weill Cornell Graduate School of Medical Sciences, Cornell University, New York, NY 10065, USA.
| |
Collapse
|
42
|
Li H, Luo Q, Zhang H, Ma X, Gu Z, Gong Q, Luo K. Nanomedicine embraces cancer radio-immunotherapy: mechanism, design, recent advances, and clinical translation. Chem Soc Rev 2023; 52:47-96. [PMID: 36427082 DOI: 10.1039/d2cs00437b] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Cancer radio-immunotherapy, integrating external/internal radiation therapy with immuno-oncology treatments, emerges in the current management of cancer. A growing number of pre-clinical studies and clinical trials have recently validated the synergistic antitumor effect of radio-immunotherapy, far beyond the "abscopal effect", but it suffers from a low response rate and toxicity issues. To this end, nanomedicines with an optimized design have been introduced to improve cancer radio-immunotherapy. Specifically, these nanomedicines are elegantly prepared by incorporating tumor antigens, immuno- or radio-regulators, or biomarker-specific imaging agents into the corresponding optimized nanoformulations. Moreover, they contribute to inducing various biological effects, such as generating in situ vaccination, promoting immunogenic cell death, overcoming radiation resistance, reversing immunosuppression, as well as pre-stratifying patients and assessing therapeutic response or therapy-induced toxicity. Overall, this review aims to provide a comprehensive landscape of nanomedicine-assisted radio-immunotherapy. The underlying working principles and the corresponding design strategies for these nanomedicines are elaborated by following the concept of "from bench to clinic". Their state-of-the-art applications, concerns over their clinical translation, along with perspectives are covered.
Collapse
Affiliation(s)
- Haonan Li
- Department of Radiology, Department of Biotherapy, Huaxi MR Research Center (HMRRC), Cancer Center, Frontiers Science Center for Disease-Related Molecular Network, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, No. 37 Guoxue Alley, Chengdu 610041, China.
| | - Qiang Luo
- Department of Radiology, Department of Biotherapy, Huaxi MR Research Center (HMRRC), Cancer Center, Frontiers Science Center for Disease-Related Molecular Network, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, No. 37 Guoxue Alley, Chengdu 610041, China.
| | - Hu Zhang
- Amgen Bioprocessing Centre, Keck Graduate Institute, Claremont, CA 91711, USA
| | - Xuelei Ma
- Department of Radiology, Department of Biotherapy, Huaxi MR Research Center (HMRRC), Cancer Center, Frontiers Science Center for Disease-Related Molecular Network, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, No. 37 Guoxue Alley, Chengdu 610041, China.
| | - Zhongwei Gu
- Department of Radiology, Department of Biotherapy, Huaxi MR Research Center (HMRRC), Cancer Center, Frontiers Science Center for Disease-Related Molecular Network, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, No. 37 Guoxue Alley, Chengdu 610041, China.
| | - Qiyong Gong
- Department of Radiology, Department of Biotherapy, Huaxi MR Research Center (HMRRC), Cancer Center, Frontiers Science Center for Disease-Related Molecular Network, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, No. 37 Guoxue Alley, Chengdu 610041, China. .,Functional and Molecular Imaging Key Laboratory of Sichuan Province and Research Unit of Psychoradiology, Chinese Academy of Medical Sciences, Chengdu 610041, China
| | - Kui Luo
- Department of Radiology, Department of Biotherapy, Huaxi MR Research Center (HMRRC), Cancer Center, Frontiers Science Center for Disease-Related Molecular Network, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, No. 37 Guoxue Alley, Chengdu 610041, China. .,Functional and Molecular Imaging Key Laboratory of Sichuan Province and Research Unit of Psychoradiology, Chinese Academy of Medical Sciences, Chengdu 610041, China
| |
Collapse
|
43
|
Bernstein H, Bernstein C. Bile acids as carcinogens in the colon and at other sites in the gastrointestinal system. Exp Biol Med (Maywood) 2023; 248:79-89. [PMID: 36408538 PMCID: PMC9989147 DOI: 10.1177/15353702221131858] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Colon cancer incidence is associated with a high-fat diet. Such a diet is linked to elevated levels of bile acids in the gastrointestinal system and the circulation. Secondary bile acids are produced by microorganisms present at high concentrations in the colon. Recent prospective studies and a retrospective study in humans associate high circulating blood levels of secondary bile acids with increased risk of colon cancer. Feeding mice a diet containing a secondary bile acid, so their feces have the bile acid at a level comparable to that in the feces of humans on a high-fat diet, also causes colon cancer in the mice. Studies using human cells grown in culture illuminate some mechanisms by which bile acids cause cancer. In human cells, bile acids cause oxidative stress leading to oxidative DNA damage. Increased DNA damage increases the occurrence of mutations and epimutations, some of which provide a cellular growth advantage such as apoptosis resistance. Cells with such mutations/epimutations increase by natural selection. Apoptosis, or programmed cell death, is a beneficial process that eliminates cells with unrepaired DNA damage, whereas apoptosis-resistant cells are able to survive DNA damage using inaccurate repair processes. This results in apoptosis-resistant cells having more frequent mutations/epimutations, some of which are carcinogenic. The experiments on cultured human cells have provided a basis for understanding at the molecular level the human studies that recently reported an association of bile acids with colon cancer, and the mouse studies showing directly that bile acids cause colon cancer. Similar, but more limited, findings of an association of dietary bile acids with other cancers of the gastrointestinal system suggest that understanding the role of bile acids in colon carcinogenesis may contribute to understanding carcinogenesis in other organs.
Collapse
Affiliation(s)
- Harris Bernstein
- Department of Cellular and Molecular Medicine, College of Medicine, University of Arizona, Tucson, AZ 85724-5044, USA
| | - Carol Bernstein
- Department of Cellular and Molecular Medicine, College of Medicine, University of Arizona, Tucson, AZ 85724-5044, USA
| |
Collapse
|
44
|
Milutinovic S, Abe J, Jones E, Kelch I, Smart K, Lauder SN, Somerville M, Ware C, Godkin A, Stein JV, Bogle G, Gallimore A. Three-dimensional Imaging Reveals Immune-driven Tumor-associated High Endothelial Venules as a Key Correlate of Tumor Rejection Following Depletion of Regulatory T Cells. CANCER RESEARCH COMMUNICATIONS 2022; 2:1641-1656. [PMID: 36704666 PMCID: PMC7614106 DOI: 10.1158/2767-9764.crc-21-0123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Revised: 06/29/2022] [Accepted: 11/18/2022] [Indexed: 11/29/2022]
Abstract
High endothelial venules (HEV) are specialized post capillary venules that recruit naïve T cells and B cells into secondary lymphoid organs (SLO) such as lymph nodes (LN). Expansion of HEV networks in SLOs occurs following immune activation to support development of an effective immune response. In this study, we used a carcinogen-induced model of fibrosarcoma to examine HEV remodeling after depletion of regulatory T cells (Treg). We used light sheet fluorescence microscopy imaging to visualize entire HEV networks, subsequently applying computational tools to enable topological mapping and extraction of numerical descriptors of the networks. While these analyses revealed profound cancer- and immune-driven alterations to HEV networks within LNs, these changes did not identify successful responses to treatment. The presence of HEV networks within tumors did however clearly distinguish responders from nonresponders. Finally, we show that a successful treatment response is dependent on coupling tumor-associated HEV (TA-HEV) development to T-cell activation implying that T-cell activation acts as the trigger for development of TA-HEVs which subsequently serve to amplify the immune response by facilitating extravasation of T cells into the tumor mass.
Collapse
Affiliation(s)
- Stefan Milutinovic
- Systems Immunity University Research Institute, Henry Wellcome Building, School of Medicine, Cardiff University, Cardiff, United Kingdom
| | - Jun Abe
- Department of Oncology, Microbiology and Immunology, University of Fribourg, Fribourg, Switzerland
| | - Emma Jones
- Systems Immunity University Research Institute, Henry Wellcome Building, School of Medicine, Cardiff University, Cardiff, United Kingdom
| | - Inken Kelch
- School of Biological Sciences, University of Auckland, Auckland, New Zealand
| | - Kathryn Smart
- Systems Immunity University Research Institute, Henry Wellcome Building, School of Medicine, Cardiff University, Cardiff, United Kingdom
| | - Sarah N. Lauder
- Systems Immunity University Research Institute, Henry Wellcome Building, School of Medicine, Cardiff University, Cardiff, United Kingdom
| | - Michelle Somerville
- Systems Immunity University Research Institute, Henry Wellcome Building, School of Medicine, Cardiff University, Cardiff, United Kingdom
| | - Carl Ware
- Laboratory of Molecular Immunology, Sanford Burnham Prebys, La Jolla, California
| | - Andrew Godkin
- Systems Immunity University Research Institute, Henry Wellcome Building, School of Medicine, Cardiff University, Cardiff, United Kingdom
| | - Jens V. Stein
- Department of Oncology, Microbiology and Immunology, University of Fribourg, Fribourg, Switzerland
| | - Gib Bogle
- Auckland Bioengineering Institute, University of Auckland, Auckland, New Zealand
| | - Awen Gallimore
- Systems Immunity University Research Institute, Henry Wellcome Building, School of Medicine, Cardiff University, Cardiff, United Kingdom
| |
Collapse
|
45
|
Mouse Syngeneic Melanoma Model with Human Epidermal Growth Factor Receptor Expression. Pharmaceutics 2022; 14:pharmaceutics14112448. [PMID: 36432639 PMCID: PMC9697344 DOI: 10.3390/pharmaceutics14112448] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Revised: 11/07/2022] [Accepted: 11/10/2022] [Indexed: 11/16/2022] Open
Abstract
The development of epidermal growth factor receptor (EGFR)-targeting agents for the treatment of malignant melanoma requires cheap and easy animal tumor models for high-throughput in vivo screening. Thus, the aim of this study was to develop mouse syngeneic melanoma model that expresses human EGFR. Cloudman S91 clone M3 mouse melanoma cells were transduced with lentiviral particles carrying the human EGFR gene followed by a multistep selection process. The resulting M3-EGFR has been tested for EGFR expression and functionality in vitro and in vivo. Radioligand assay confirmed the presence of 13,900 ± 1500 EGF binding sites per cell at a dissociation constant of 5.3 ± 1.4 nM. M3-EGFR demonstrated the ability to bind and internalize specifically and provide the anticipated intracellular nuclear import of three different EGFR-targeted modular nanotransporters designed for specific anti-cancer drug delivery. Introduction of the human EGFR gene did not alter the tumorigenicity of the offspring M3-EGFR cells in host immunocompetent DBA/2J mice. Preservation of the expression of EGFR in vivo was confirmed by immunohistochemistry. To sum up, we successfully developed the first mouse syngeneic melanoma model with preserved in vivo expression of human EGFR.
Collapse
|
46
|
Porosk L, Langel Ü. Approaches for evaluation of novel CPP-based cargo delivery systems. Front Pharmacol 2022; 13:1056467. [PMID: 36339538 PMCID: PMC9634181 DOI: 10.3389/fphar.2022.1056467] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Accepted: 10/10/2022] [Indexed: 08/05/2023] Open
Abstract
Cell penetrating peptides (CPPs) can be broadly defined as relatively short synthetic, protein derived or chimeric peptides. Their most remarkable property is their ability to cross cell barriers and facilitate the translocation of cargo, such as drugs, nucleic acids, peptides, small molecules, dyes, and many others across the plasma membrane. Over the years there have been several approaches used, adapted, and developed for the evaluation of CPP efficacies as delivery systems, with the fluorophore attachment as the most widely used approach. It has become progressively evident, that the evaluation method, in order to lead to successful outcome, should concede with the specialties of the delivery. For characterization and assessment of CPP-cargo a combination of research tools of chemistry, physics, molecular biology, engineering, and other fields have been applied. In this review, we summarize the diverse, in silico, in vitro and in vivo approaches used for evaluation and characterization of CPP-based cargo delivery systems.
Collapse
Affiliation(s)
- Ly Porosk
- Laboratory of Drug Delivery, Institute of Technology, Faculty of Science and Technology, University of Tartu, Tartu, Estonia
| | - Ülo Langel
- Laboratory of Drug Delivery, Institute of Technology, Faculty of Science and Technology, University of Tartu, Tartu, Estonia
- Department of Biochemistry and Biophysics, Stockholm University, Stockholm, Sweden
| |
Collapse
|
47
|
Merle N, Elmshäuser S, Strassheimer F, Wanzel M, König AM, Funk J, Neumann M, Kochhan K, Helmprobst F, Pagenstecher A, Nist A, Mernberger M, Schneider A, Braun T, Borggrefe T, Savai R, Timofeev O, Stiewe T. Monitoring autochthonous lung tumors induced by somatic CRISPR gene editing in mice using a secreted luciferase. Mol Cancer 2022; 21:191. [PMID: 36192757 PMCID: PMC9531476 DOI: 10.1186/s12943-022-01661-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Accepted: 09/22/2022] [Indexed: 12/04/2022] Open
Abstract
Background In vivo gene editing of somatic cells with CRISPR nucleases has facilitated the generation of autochthonous mouse tumors, which are initiated by genetic alterations relevant to the human disease and progress along a natural timeline as in patients. However, the long and variable, orthotopic tumor growth in inner organs requires sophisticated, time-consuming and resource-intensive imaging for longitudinal disease monitoring and impedes the use of autochthonous tumor models for preclinical studies. Methods To facilitate a more widespread use, we have generated a reporter mouse that expresses a Cre-inducible luciferase from Gaussia princeps (GLuc), which is secreted by cells in an energy-consuming process and can be measured quantitatively in the blood as a marker for the viable tumor load. In addition, we have developed a flexible, complementary toolkit to rapidly assemble recombinant adenoviruses (AVs) for delivering Cre recombinase together with CRISPR nucleases targeting cancer driver genes. Results We demonstrate that intratracheal infection of GLuc reporter mice with CRISPR-AVs efficiently induces lung tumors driven by mutations in the targeted cancer genes and simultaneously activates the GLuc transgene, resulting in GLuc secretion into the blood by the growing tumor. GLuc blood levels are easily and robustly quantified in small-volume blood samples with inexpensive equipment, enable tumor detection already several months before the humane study endpoint and precisely mirror the kinetics of tumor development specified by the inducing gene combination. Conclusions Our study establishes blood-based GLuc monitoring as an inexpensive, rapid, high-throughput and animal-friendly method to longitudinally monitor autochthonous tumor growth in preclinical studies. Supplementary Information The online version contains supplementary material available at 10.1186/s12943-022-01661-2.
Collapse
Affiliation(s)
- Nastasja Merle
- Institute of Molecular Oncology, Universities of Giessen and Marburg Lung Center (UGMLC), Member of the German Center for Lung Research (DZL), Philipps-University, Marburg, Germany
| | - Sabrina Elmshäuser
- Institute of Molecular Oncology, Universities of Giessen and Marburg Lung Center (UGMLC), Member of the German Center for Lung Research (DZL), Philipps-University, Marburg, Germany
| | - Florian Strassheimer
- Institute of Molecular Oncology, Universities of Giessen and Marburg Lung Center (UGMLC), Member of the German Center for Lung Research (DZL), Philipps-University, Marburg, Germany
| | - Michael Wanzel
- Institute of Molecular Oncology, Universities of Giessen and Marburg Lung Center (UGMLC), Member of the German Center for Lung Research (DZL), Philipps-University, Marburg, Germany
| | - Alexander M König
- Clinic of Diagnostic and Interventional Radiology, Philipps-University, Core Facility 7T-small animal MRI, Marburg, Germany
| | - Julianne Funk
- Institute of Molecular Oncology, Universities of Giessen and Marburg Lung Center (UGMLC), Member of the German Center for Lung Research (DZL), Philipps-University, Marburg, Germany
| | - Michelle Neumann
- Institute of Molecular Oncology, Universities of Giessen and Marburg Lung Center (UGMLC), Member of the German Center for Lung Research (DZL), Philipps-University, Marburg, Germany
| | - Katharina Kochhan
- Institute of Molecular Oncology, Universities of Giessen and Marburg Lung Center (UGMLC), Member of the German Center for Lung Research (DZL), Philipps-University, Marburg, Germany
| | - Frederik Helmprobst
- Mouse Pathology and Electron Microscopy Core Facility, Department of Neuropathology, Philipps-University, Marburg, Germany
| | - Axel Pagenstecher
- Mouse Pathology and Electron Microscopy Core Facility, Department of Neuropathology, Philipps-University, Marburg, Germany
| | - Andrea Nist
- Genomics Core Facility, Philipps-University, Marburg, Germany
| | - Marco Mernberger
- Institute of Molecular Oncology, Universities of Giessen and Marburg Lung Center (UGMLC), Member of the German Center for Lung Research (DZL), Philipps-University, Marburg, Germany
| | - André Schneider
- Department of Cardiac Development and Remodeling, Member of the German Center for Lung Research (DZL), Max-Planck-Institute for Heart and Lung Research, Bad Nauheim, Germany
| | - Thomas Braun
- Department of Cardiac Development and Remodeling, Member of the German Center for Lung Research (DZL), Max-Planck-Institute for Heart and Lung Research, Bad Nauheim, Germany
| | - Tilman Borggrefe
- Department of Biochemistry, Justus Liebig University, Giessen, Germany
| | - Rajkumar Savai
- Max-Planck Institute for Heart and Lung Research, Member of the German Center for Lung Research (DZL), Member of the Cardio-Pulmonary Institute (CPI), Bad Nauheim, Germany.,Institute for Lung Health (ILH), Justus Liebig University, Giessen, Germany
| | - Oleg Timofeev
- Institute of Molecular Oncology, Universities of Giessen and Marburg Lung Center (UGMLC), Member of the German Center for Lung Research (DZL), Philipps-University, Marburg, Germany
| | - Thorsten Stiewe
- Institute of Molecular Oncology, Universities of Giessen and Marburg Lung Center (UGMLC), Member of the German Center for Lung Research (DZL), Philipps-University, Marburg, Germany. .,Genomics Core Facility, Philipps-University, Marburg, Germany. .,Institute for Lung Health (ILH), Justus Liebig University, Giessen, Germany.
| |
Collapse
|
48
|
Merritt JC, Richbart SD, Moles EG, Cox AJ, Brown KC, Miles SL, Finch PT, Hess JA, Tirona MT, Valentovic MA, Dasgupta P. Anti-cancer activity of sustained release capsaicin formulations. Pharmacol Ther 2022; 238:108177. [PMID: 35351463 PMCID: PMC9510151 DOI: 10.1016/j.pharmthera.2022.108177] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Revised: 03/16/2022] [Accepted: 03/22/2022] [Indexed: 11/17/2022]
Abstract
Capsaicin (trans-8-methyl-N-vanillyl-6-noneamide) is a hydrophobic, lipophilic vanilloid phytochemical abundantly found in chili peppers and pepper extracts. Several convergent studies show that capsaicin displays robust cancer activity, suppressing the growth, angiogenesis and metastasis of several human cancers. Despite its potent cancer-suppressing activity, the clinical applications of capsaicin as a viable anti-cancer drug have remained problematic due to its poor bioavailability and aqueous solubility properties. In addition, the administration of capsaicin is associated with adverse side effects like gastrointestinal cramps, stomach pain, nausea and diarrhea and vomiting. All these hurdles may be circumvented by encapsulation of capsaicin in sustained release drug delivery systems. Most of the capsaicin-based the sustained release drugs have been tested for their pain-relieving activity. Only a few of these formulations have been investigated as anti-cancer agents. The present review describes the physicochemical properties, bioavailability, and anti-cancer activity of capsaicin-sustained release agents. The asset of such continuous release capsaicin formulations is that they display better solubility, stability, bioavailability, and growth-suppressive activity than the free drug. The encapsulation of capsaicin in sustained release carriers minimizes the adverse side effects of capsaicin. In summary, these capsaicin-based sustained release drug delivery systems have the potential to function as novel chemotherapies, unique diagnostic imaging probes and innovative chemosensitization agents in human cancers.
Collapse
Affiliation(s)
- Justin C Merritt
- Department of Biomedical Sciences, Joan C. Edwards School of Medicine, Marshall University, Huntington, WV 25755, United States
| | - Stephen D Richbart
- Department of Biomedical Sciences, Joan C. Edwards School of Medicine, Marshall University, Huntington, WV 25755, United States
| | - Emily G Moles
- Department of Biomedical Sciences, Joan C. Edwards School of Medicine, Marshall University, Huntington, WV 25755, United States
| | - Ashley J Cox
- Department of Biomedical Sciences, Joan C. Edwards School of Medicine, Marshall University, Huntington, WV 25755, United States
| | - Kathleen C Brown
- Department of Biomedical Sciences, Joan C. Edwards School of Medicine, Marshall University, Huntington, WV 25755, United States
| | - Sarah L Miles
- Department of Biomedical Sciences, Joan C. Edwards School of Medicine, Marshall University, Huntington, WV 25755, United States
| | - Paul T Finch
- Department of Oncology, Edwards Cancer Center, Joan C. Edwards School of Medicine, Marshall University, 1400 Hal Greer Boulevard, Huntington, WV 25755, United States
| | - Joshua A Hess
- Department of Oncology, Edwards Cancer Center, Joan C. Edwards School of Medicine, Marshall University, 1400 Hal Greer Boulevard, Huntington, WV 25755, United States
| | - Maria T Tirona
- Department of Hematology-Oncology, Edwards Cancer Center, Joan C. Edwards School of Medicine, Marshall University, 1400 Hal Greer Boulevard, Huntington, WV 25755, United States
| | - Monica A Valentovic
- Department of Biomedical Sciences, Joan C. Edwards School of Medicine, Marshall University, Huntington, WV 25755, United States
| | - Piyali Dasgupta
- Department of Biomedical Sciences, Joan C. Edwards School of Medicine, Marshall University, Huntington, WV 25755, United States.
| |
Collapse
|
49
|
Papadas A, Deb G, Cicala A, Officer A, Hope C, Pagenkopf A, Flietner E, Morrow ZT, Emmerich P, Wiesner J, Arauz G, Bansal V, Esbona K, Capitini CM, Matkowskyj KA, Deming DA, Politi K, Abrams SI, Harismendy O, Asimakopoulos F. Stromal remodeling regulates dendritic cell abundance and activity in the tumor microenvironment. Cell Rep 2022; 40:111201. [PMID: 35977482 PMCID: PMC9402878 DOI: 10.1016/j.celrep.2022.111201] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Revised: 06/10/2022] [Accepted: 07/20/2022] [Indexed: 11/24/2022] Open
Abstract
Stimulatory type 1 conventional dendritic cells (cDC1s) engage in productive interactions with CD8+ effectors along tumor-stroma boundaries. The paradoxical accumulation of “poised” cDC1s within stromal sheets is unlikely to simply reflect passive exclusion from tumor cores. Drawing parallels with embryonic morphogenesis, we hypothesized that invasive margin stromal remodeling generates developmentally conserved cell fate cues that regulate cDC1 behavior. We find that, in human T cell-inflamed tumors, CD8+ T cells penetrate tumor nests, whereas cDC1s are confined within adjacent stroma that recurrently displays site-specific proteolysis of the matrix proteoglycan versican (VCAN), an essential organ-sculpting modification in development. VCAN is necessary, and its proteolytic fragment (matrikine) versikine is sufficient for cDC1 accumulation. Versikine does not influence tumor-seeding pre-DC differentiation; rather, it orchestrates a distinctive cDC1 activation program conferring exquisite sensitivity to DNA sensing, supported by atypical innate lymphoid cells. Thus, peritumoral stroma mimicking embryonic provisional matrix remodeling regulates cDC1 abundance and activity to elicit T cell-inflamed tumor microenvironments. T cell-inflamed tumor microenvironments are a prerequisite for immunotherapy efficacy; however, why some tumors are inflamed and others not remains poorly understood. Papadas et al. link stromal reaction dynamics with T cell-induced inflammation. Peritumoral stroma emulating embryonic provisional matrix remodeling regulates cDC1-NK-CD8+ crosstalk to promote T cell repriming and penetration into tumor nests.
Collapse
Affiliation(s)
- Athanasios Papadas
- Division of Blood and Marrow Transplantation, Department of Medicine, University of California, San Diego (UCSD), La Jolla, CA, USA; Moores Cancer Center, University of California, San Diego (UCSD), La Jolla, CA, USA; Cellular and Molecular Pathology Graduate Program, University of Wisconsin-Madison, Madison, WI, USA
| | - Gauri Deb
- Division of Blood and Marrow Transplantation, Department of Medicine, University of California, San Diego (UCSD), La Jolla, CA, USA; Moores Cancer Center, University of California, San Diego (UCSD), La Jolla, CA, USA
| | - Alexander Cicala
- Division of Blood and Marrow Transplantation, Department of Medicine, University of California, San Diego (UCSD), La Jolla, CA, USA; Moores Cancer Center, University of California, San Diego (UCSD), La Jolla, CA, USA
| | - Adam Officer
- Moores Cancer Center, University of California, San Diego (UCSD), La Jolla, CA, USA; Division of Biomedical Informatics, Department of Medicine, University of California, San Diego (UCSD), Moores Cancer Center, La Jolla, CA, USA; Bioinformatics and Systems Biology Graduate Program, University of California, San Diego (UCSD), La Jolla, CA, USA
| | - Chelsea Hope
- Cellular and Molecular Pathology Graduate Program, University of Wisconsin-Madison, Madison, WI, USA; Division of Hematology and Oncology, Department of Medicine, University of Wisconsin-Madison, Madison, WI, USA; UW Carbone Cancer Center, University of Wisconsin-Madison, Madison, WI, USA
| | - Adam Pagenkopf
- Division of Hematology and Oncology, Department of Medicine, University of Wisconsin-Madison, Madison, WI, USA; UW Carbone Cancer Center, University of Wisconsin-Madison, Madison, WI, USA
| | - Evan Flietner
- Cellular and Molecular Pathology Graduate Program, University of Wisconsin-Madison, Madison, WI, USA; Division of Hematology and Oncology, Department of Medicine, University of Wisconsin-Madison, Madison, WI, USA; UW Carbone Cancer Center, University of Wisconsin-Madison, Madison, WI, USA
| | - Zachary T Morrow
- Division of Hematology and Oncology, Department of Medicine, University of Wisconsin-Madison, Madison, WI, USA; UW Carbone Cancer Center, University of Wisconsin-Madison, Madison, WI, USA
| | - Philip Emmerich
- Cellular and Molecular Pathology Graduate Program, University of Wisconsin-Madison, Madison, WI, USA; UW Carbone Cancer Center, University of Wisconsin-Madison, Madison, WI, USA
| | - Joshua Wiesner
- Division of Blood and Marrow Transplantation, Department of Medicine, University of California, San Diego (UCSD), La Jolla, CA, USA; Moores Cancer Center, University of California, San Diego (UCSD), La Jolla, CA, USA
| | - Garrett Arauz
- Division of Blood and Marrow Transplantation, Department of Medicine, University of California, San Diego (UCSD), La Jolla, CA, USA; Moores Cancer Center, University of California, San Diego (UCSD), La Jolla, CA, USA
| | - Varun Bansal
- Division of Blood and Marrow Transplantation, Department of Medicine, University of California, San Diego (UCSD), La Jolla, CA, USA; Moores Cancer Center, University of California, San Diego (UCSD), La Jolla, CA, USA
| | - Karla Esbona
- UW Carbone Cancer Center, University of Wisconsin-Madison, Madison, WI, USA; Department of Pathology and Laboratory Medicine, University of Wisconsin-Madison, Madison, WI, USA
| | - Christian M Capitini
- UW Carbone Cancer Center, University of Wisconsin-Madison, Madison, WI, USA; Division of Hematology and Oncology, Department of Pediatrics, University of Wisconsin-Madison, Madison, WI, USA
| | - Kristina A Matkowskyj
- UW Carbone Cancer Center, University of Wisconsin-Madison, Madison, WI, USA; Department of Pathology and Laboratory Medicine, University of Wisconsin-Madison, Madison, WI, USA
| | - Dustin A Deming
- Division of Hematology and Oncology, Department of Medicine, University of Wisconsin-Madison, Madison, WI, USA; UW Carbone Cancer Center, University of Wisconsin-Madison, Madison, WI, USA; McArdle Laboratory for Cancer Research, University of Wisconsin-Madison, Madison, WI, USA
| | - Katerina Politi
- Department of Pathology, Yale School of Medicine, New Haven, CT, USA; Department of Medicine, Yale School of Medicine, New Haven, CT, USA; Yale Cancer Center, Yale School of Medicine, New Haven, CT, USA
| | - Scott I Abrams
- Department of Immunology, Roswell Park Comprehensive Cancer Center, Buffalo, NY, USA
| | - Olivier Harismendy
- Moores Cancer Center, University of California, San Diego (UCSD), La Jolla, CA, USA; Division of Biomedical Informatics, Department of Medicine, University of California, San Diego (UCSD), Moores Cancer Center, La Jolla, CA, USA
| | - Fotis Asimakopoulos
- Division of Blood and Marrow Transplantation, Department of Medicine, University of California, San Diego (UCSD), La Jolla, CA, USA; Moores Cancer Center, University of California, San Diego (UCSD), La Jolla, CA, USA.
| |
Collapse
|
50
|
Harnessing anti-cytomegalovirus immunity for local immunotherapy against solid tumors. Proc Natl Acad Sci U S A 2022; 119:e2116738119. [PMID: 35749366 PMCID: PMC9245622 DOI: 10.1073/pnas.2116738119] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Tumor infiltration by T cells profoundly affects cancer progression and responses to immunotherapy. However, the tumor immunosuppressive microenvironment can impair the induction, trafficking, and local activity of antitumor T cells. Here, we investigated whether intratumoral injection of virus-derived peptide epitopes could activate preexisting antiviral T cell responses locally and promote antitumor responses or antigen spreading. We focused on a mouse model of cytomegalovirus (CMV), a highly prevalent human infection that induces vigorous and durable T cell responses. Mice persistently infected with murine CMV (MCMV) were challenged with lung (TC-1), colon (MC-38), or melanoma (B16-F10) tumor cells. Intratumoral injection of MCMV-derived T cell epitopes triggered in situ and systemic expansion of their cognate, MCMV-specific CD4+ or CD8+ T cells. The MCMV CD8+ T cell epitopes injected alone provoked arrest of tumor growth and some durable remissions. Intratumoral injection of MCMV CD4+ T cell epitopes with polyinosinic acid:polycytidylic acid (pI:C) preferentially elicited tumor antigen-specific CD8+ T cells, promoted tumor clearance, and conferred long-term protection against tumor rechallenge. Notably, secondary proliferation of MCMV-specific CD8+ T cells correlated with better tumor control. Importantly, intratumoral injection of MCMV-derived CD8+ T cell-peptide epitopes alone or CD4+ T cell-peptide epitopes with pI:C induced potent adaptive and innate immune activation of the tumor microenvironment. Thus, CMV-derived peptide epitopes, delivered intratumorally, act as cytotoxic and immunotherapeutic agents to promote immediate tumor control and long-term antitumor immunity that could be used as a stand-alone therapy. The tumor antigen-agnostic nature of this approach makes it applicable across a broad range of solid tumors regardless of their origin.
Collapse
|