1
|
Rezagholizadeh N, Datta G, Hasler WA, Nguon EC, Smokey EV, Khan N, Chen X. SLC38A9 is directly involved in Tat-induced endolysosome dysfunction and senescence in astrocytes. Life Sci Alliance 2025; 8:e202503231. [PMID: 40324823 PMCID: PMC12053450 DOI: 10.26508/lsa.202503231] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2025] [Revised: 04/25/2025] [Accepted: 04/28/2025] [Indexed: 05/07/2025] Open
Abstract
Cellular senescence contributes to accelerated aging and the development of various neurodegeneration disorders including HIV-associated neurocognitive disorders. The development of HIV-associated neurocognitive disorders is attributed, at least in part, to the CNS persistence of HIV-1 transactivator of transcription (Tat), an essential protein for viral transcription that is actively secreted from HIV-1-infected cells. Secreted Tat enters cells via receptor-mediated endocytosis and induces endolysosome dysfunction and cellular senescence in CNS cells. Given that endolysosome dysfunction represents an early step in exogenous Tat-induced cellular senescence, we tested the hypothesis that Tat induces cellular senescence via an endolysosome-dependent mechanism in human astrocytes. We demonstrated that internalized Tat interacts with an endolysosome-resident arginine sensor SLC38A9 via the arginine-rich basic domain. Such an interaction between Tat and SLC38A9 leads to endolysosome dysfunction, enhanced HIV-1 LTR transactivation, and cellular senescence. These findings suggest that endolysosome dysfunction drives the development of senescence and highlight the novel role of SLC38A9 in Tat-induced endolysosome dysfunction and astrocyte senescence.
Collapse
Affiliation(s)
- Neda Rezagholizadeh
- Department of Biomedical Sciences, University of North Dakota School of Medicine and Health Sciences, Grand Forks, ND, USA
| | - Gaurav Datta
- Department of Biomedical Sciences, University of North Dakota School of Medicine and Health Sciences, Grand Forks, ND, USA
| | - Wendie A Hasler
- Department of Biomedical Sciences, University of North Dakota School of Medicine and Health Sciences, Grand Forks, ND, USA
| | - Erica C Nguon
- Department of Biomedical Sciences, University of North Dakota School of Medicine and Health Sciences, Grand Forks, ND, USA
| | - Elise V Smokey
- Department of Biomedical Sciences, University of North Dakota School of Medicine and Health Sciences, Grand Forks, ND, USA
| | - Nabab Khan
- Department of Biomedical Sciences, University of North Dakota School of Medicine and Health Sciences, Grand Forks, ND, USA
| | - Xuesong Chen
- Department of Biomedical Sciences, University of North Dakota School of Medicine and Health Sciences, Grand Forks, ND, USA
| |
Collapse
|
2
|
Qian Z, Zhang X, Huang J, Hou Y, Hu C, Cao Y, Wu N, Zhu T, Wu G. Glucose deprivation-restoration induces labile iron overload and ferroptosis in renal tubules through V-ATPase-mTOR axis-mediated ferritinophagy and iron release by TPC2. Free Radic Biol Med 2025; 236:204-219. [PMID: 40379157 DOI: 10.1016/j.freeradbiomed.2025.05.390] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/18/2025] [Revised: 04/28/2025] [Accepted: 05/10/2025] [Indexed: 05/19/2025]
Abstract
Renal ischemia-reperfusion injury (IRI), a common complication following kidney transplantation and partial nephrectomy, is the leading cause of renal dysfunction with limited treatment. Excessive cellular iron accumulation drives lipid peroxidation and activates pathways associated with ferroptosis, which has been implicated in renal IRI. However, the regulatory mechanisms of cellular iron metabolism and its relationship with ferroptosis during ischemia-reperfusion (IR) remain unclear. In this study, in vitro OGSD-R (oxygen, glucose, and serum deprivation-restoration) models and in vivo IR models were employed to investigate alterations in iron metabolism, ferroptosis, and the underlying molecular mechanisms using immunofluorescence, immunoblotting and biochemical testing. We identified glucose deprivation-restoration (GD-R) as a key trigger of cellular iron overload under renal IR condition. Mechanistically, GD-R-induced iron overload is driven by the dysfunction of vacuolar ATPase (V-ATPase)-mammalian target of rapamycin (mTOR) pathway. Inactivation of mTOR results in lysosomal iron releases via two-pore channel 2 (TPC2) and ferritin degradation through ferritinophagy. This process elevates intracellular iron levels, thereby promoting ferroptosis in renal IRI. Targeting cellular iron metabolism effectively alleviates renal IRI. These findings highlight the critical role of glucose metabolism and V-ATPase-mTOR pathway in the regulation of iron homeostasis and ferroptosis during renal IRI, and establish a mechanistic link among glucose metabolism, iron overload and ferroptosis, providing potential therapeutic targets for renal IRI.
Collapse
Affiliation(s)
- Zhiyu Qian
- Department of Kidney Transplantation, Zhongshan Hospital Fudan University, 170 Fenglin Road, Shanghai, 200030, China; Shanghai Key Laboratory of Organ Transplantation, 170 Fenglin Road, Shanghai, 200030, China; Department of Urology, Huadong Hospital Fudan University, 221 West Yan'an Road, Shanghai, 200040, China
| | - Xinyue Zhang
- Shanghai Skin Disease Hospital, School of Medicine, Tongji University, 1278 Baode Road, Shanghai, 200443, China
| | - Jiahua Huang
- Department of Neurology, Zhongshan Hospital Fudan University, 170 Fenglin Road, Shanghai, 200030, China
| | - Yumin Hou
- Shanghai Public Health Clinical Center, Fudan University, 2901 Caolang Road, Shanghai, 201508, China
| | - Chunlan Hu
- Shanghai Public Health Clinical Center, Fudan University, 2901 Caolang Road, Shanghai, 201508, China
| | - Yirui Cao
- Department of Kidney Transplantation, Zhongshan Hospital Fudan University, 170 Fenglin Road, Shanghai, 200030, China; Shanghai Key Laboratory of Organ Transplantation, 170 Fenglin Road, Shanghai, 200030, China
| | - Nannan Wu
- Shanghai Public Health Clinical Center, Fudan University, 2901 Caolang Road, Shanghai, 201508, China
| | - Tongyu Zhu
- Department of Kidney Transplantation, Zhongshan Hospital Fudan University, 170 Fenglin Road, Shanghai, 200030, China; Shanghai Key Laboratory of Organ Transplantation, 170 Fenglin Road, Shanghai, 200030, China.
| | - Guoyi Wu
- Shanghai Public Health Clinical Center, Fudan University, 2901 Caolang Road, Shanghai, 201508, China.
| |
Collapse
|
3
|
Zhang R, Vooijs MA, Keulers TG. Key Mechanisms in Lysosome Stability, Degradation and Repair. Mol Cell Biol 2025; 45:212-224. [PMID: 40340648 DOI: 10.1080/10985549.2025.2494762] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2024] [Revised: 04/10/2025] [Accepted: 04/10/2025] [Indexed: 05/10/2025] Open
Abstract
Lysosomes are organelles that play pivotal roles in macromolecule digestion, signal transduction, autophagy, and cellular homeostasis. Lysosome instability, including the inhibition of lysosomal intracellular activity and the leakage of their contents, is associated with various pathologies, including cancer, neurodegenerative diseases, inflammatory diseases and infections. These lysosomal-related pathologies highlight the significance of factors contributing to lysosomal dysfunction. The vulnerability of the lysosomal membrane and its components to internal and external stimuli make lysosomes particularly susceptible to damage. Cells are equipped with mechanisms to repair or degrade damaged lysosomes to prevent cell death. Understanding the factors influencing lysosome stabilization and damage repair is essential for developing effective therapeutic interventions for diseases. This review explores the factors affecting lysosome acidification, membrane integrity, and functional homeostasis and examines the underlying mechanisms of lysosomal damage repair. In addition, we summarize how various risk factors impact lysosomal activity and cell fate.
Collapse
Affiliation(s)
- Rui Zhang
- Department of Radiation Oncology (MAASTRO)/GROW Research Institute for Oncology and Reproduction, Maastricht University Medical Center, Maastricht, The Netherlands
| | - Marc A Vooijs
- Department of Radiation Oncology (MAASTRO)/GROW Research Institute for Oncology and Reproduction, Maastricht University Medical Center, Maastricht, The Netherlands
| | - Tom Gh Keulers
- Department of Radiation Oncology (MAASTRO)/GROW Research Institute for Oncology and Reproduction, Maastricht University Medical Center, Maastricht, The Netherlands
| |
Collapse
|
4
|
Rezagholizadeh N, Datta G, Hasler WA, Nguon EC, Smokey EV, Chen X. TLR7 Mediates HIV-1 Tat-Induced Cellular Senescence in Human Astrocytes. Aging Cell 2025:e70086. [PMID: 40304459 DOI: 10.1111/acel.70086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2024] [Revised: 03/11/2025] [Accepted: 03/31/2025] [Indexed: 05/02/2025] Open
Abstract
Cellular senescence contributes to accelerated aging, neuroinflammation, and the development of HIV-associated neurocognitive disorders (HAND) in the era of combined antiretroviral therapy (cART). One HIV viral factor that could lead to cellular senescence is the persistence of HIV-1 Tat in the brain. As a secreted viral protein, Tat is known to enter endolysosomes of cells through receptor-mediated endocytosis, and we have shown that Tat induces endolysosome damage and dysfunction. Significantly, endolysosome dysfunction has been strongly linked to cellular senescence. However, it is not known whether endolysosome dysfunction represents a driver or consequence of cellular senescence. Because Tat-induced endolysosome damage represents an early step in exogenous Tat-induced cellular senescence, we tested the hypothesis that Tat induces cellular senescence via an endolysosome-dependent mechanism in human astrocytes. We demonstrated that Tat interacts with an endolysosome-resident Toll-like receptor 7 (TLR7) via its arginine-rich basic domain, and such an interaction results in endolysosome damage and the development of a senescence-like phenotype including cell cycle arrest, enhanced SA-β-gal activity, and increased release of senescence-associated secretory phenotype (SASP) factors (IL-6, IL-8, and CCL2). Thus, our finding provided mechanistic insights whereby Tat induces endolysosome damage and cellular senescence in human astrocytes. We provide compelling evidence that endolysosome damage drives the development of cellular senescence. Our findings also highlight the novel role of TLR7 in the development of cellular senescence and suggest that TLR7 represents a novel therapeutic target against senescence and the development of HAND.
Collapse
Affiliation(s)
- Neda Rezagholizadeh
- Department of Biomedical Sciences, University of North Dakota School of Medicine and Health Sciences, Grand Forks, North Dakota, USA
| | - Gaurav Datta
- Department of Biomedical Sciences, University of North Dakota School of Medicine and Health Sciences, Grand Forks, North Dakota, USA
| | - Wendie A Hasler
- Department of Biomedical Sciences, University of North Dakota School of Medicine and Health Sciences, Grand Forks, North Dakota, USA
| | - Erica C Nguon
- Department of Biomedical Sciences, University of North Dakota School of Medicine and Health Sciences, Grand Forks, North Dakota, USA
| | - Elise V Smokey
- Department of Biomedical Sciences, University of North Dakota School of Medicine and Health Sciences, Grand Forks, North Dakota, USA
| | - Xuesong Chen
- Department of Biomedical Sciences, University of North Dakota School of Medicine and Health Sciences, Grand Forks, North Dakota, USA
| |
Collapse
|
5
|
Luo Z, Wang Y, Zeng S, Yu L, Zhao Y, Wang H, Fan Y, Zhang Y, Wang L, Li Y, Niu Z, Zhang X, Zhang Y. Harnessing lysosomal genetics: development of a risk stratification panel and unveiling of DPP7 as a biomarker for colon adenocarcinoma. J Genet Genomics 2025:S1673-8527(25)00118-3. [PMID: 40254156 DOI: 10.1016/j.jgg.2025.04.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2024] [Revised: 04/08/2025] [Accepted: 04/12/2025] [Indexed: 04/22/2025]
Abstract
Lysosomal dysfunction has been implicated in the progression of colon adenocarcinoma (COAD), yet the prognostic significance and therapeutic potential of lysosome-related genes (LRGs) remain underexplored. In this study, we construct a 6-LRG-based prognostic risk stratification model (DPP7, ADAM8, CD1B, LRP2, ATP6V1C2, and PLAAT3) by integrating LASSO and Cox regression analyses. Stratifying patients based on median risk scores, we demonstrate that high-risk patients exhibit significantly worse clinical outcomes across the TCGA cohort and five independent GEO datasets. Furthermore, this panel outperforms 136 previously published models in terms of predictive accuracy for 1-, 3-, and 5-year survival rates. Validation multiplex immunofluorescence using an in-house tissue microarray cohort confirms the 6-LRG signature serves as an independent prognostic factor. Additionally, high-risk patients exhibit distinct immunosuppressive tumor microenvironment and aggressive malignancy characteristics. Functional depletion of DPP7 significantly inhibits tumor cell proliferation, migration, and metastasis in both in vitro and in vivo settings. Moreover, DPP7 silencing attenuates epithelial-mesenchymal transition, as evidenced by the upregulation of E-cadherin and downregulation of N-cadherin, Vimentin, and Snail. In conclusion, this study establishes an LRG-based model for COAD prognostic prediction and nominates DPP7 as a promising therapeutic target for COAD treatment.
Collapse
Affiliation(s)
- Zhengdong Luo
- Department of Clinical Laboratory, Qilu Hospital of Shandong University, Jinan, Shandong 250012, China; Shandong Engineering Research Center of Biomarker and Artificial Intelligence Application, Jinan, Shandong 250012, China
| | - Yanlei Wang
- Department of General Surgery, Qilu Hospital of Shandong University, Jinan, Shandong 250012, China
| | - Shunjie Zeng
- Department of Clinical Laboratory, Qilu Hospital of Shandong University, Jinan, Shandong 250012, China; Shandong Engineering Research Center of Biomarker and Artificial Intelligence Application, Jinan, Shandong 250012, China
| | - Longchen Yu
- Department of Clinical Laboratory, Qilu Hospital of Shandong University, Jinan, Shandong 250012, China; Shandong Engineering Research Center of Biomarker and Artificial Intelligence Application, Jinan, Shandong 250012, China
| | - Yuxiao Zhao
- Department of Clinical Laboratory, Qilu Hospital of Shandong University, Jinan, Shandong 250012, China; Shandong Engineering Research Center of Biomarker and Artificial Intelligence Application, Jinan, Shandong 250012, China
| | - Hong Wang
- Department of Anesthesiology, Yidu Central Hospital, Weifang Medical University, Qingzhou, Shandong 262500, China
| | - Yingjing Fan
- Department of Clinical Laboratory, Qilu Hospital of Shandong University, Jinan, Shandong 250012, China; Shandong Engineering Research Center of Biomarker and Artificial Intelligence Application, Jinan, Shandong 250012, China
| | - Yanli Zhang
- Department of Clinical Laboratory, Shandong Provincial Third Hospital, Jinan, Shandong 250000, China
| | - Lili Wang
- Department of Clinical Laboratory, Qilu Hospital of Shandong University, Jinan, Shandong 250012, China; Shandong Engineering Research Center of Biomarker and Artificial Intelligence Application, Jinan, Shandong 250012, China
| | - Yaping Li
- Department of Clinical Laboratory, Qilu Hospital of Shandong University, Jinan, Shandong 250012, China; Shandong Engineering Research Center of Biomarker and Artificial Intelligence Application, Jinan, Shandong 250012, China
| | - Zhongfang Niu
- Department of Clinical Laboratory, Qilu Hospital of Shandong University, Jinan, Shandong 250012, China; Shandong Engineering Research Center of Biomarker and Artificial Intelligence Application, Jinan, Shandong 250012, China
| | - Xin Zhang
- Department of Clinical Laboratory, Qilu Hospital of Shandong University, Jinan, Shandong 250012, China; Shandong Engineering Research Center of Biomarker and Artificial Intelligence Application, Jinan, Shandong 250012, China.
| | - Yi Zhang
- Department of Clinical Laboratory, Qilu Hospital of Shandong University, Jinan, Shandong 250012, China; Shandong Engineering Research Center of Biomarker and Artificial Intelligence Application, Jinan, Shandong 250012, China.
| |
Collapse
|
6
|
Russo A, Patanè GT, Calderaro A, Barreca D, Tellone E, Putaggio S. Crosstalk Between Sickle Cell Disease and Ferroptosis. Int J Mol Sci 2025; 26:3675. [PMID: 40332185 PMCID: PMC12027360 DOI: 10.3390/ijms26083675] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2025] [Revised: 03/31/2025] [Accepted: 04/10/2025] [Indexed: 05/08/2025] Open
Abstract
Sickle cell disease (SCD) is an inherited hemoglobin disorder that is widespread across the globe. It is characterized by a very complex pathogenesis, but at the basis of the disease is the mutation of the HBB gene, which determines the production of a mutated hemoglobin: sickle cell hemoglobin (HbS). The polymerization of HbS, which occurs when the protein is in a deoxygenated state, and the greater fragility of sickle cell red blood cells (sRBCs) determine the release of iron, free heme, and HbS in the blood, favoring oxidative stress and the production of reactive oxygen species (ROS). These features are common to the features of a new model of cell death known as ferroptosis, which is characterized by the increase of iron and ROS concentrations and by the inhibition of glutathione peroxidase 4 (GPx4) and the System Xc-. In this context, this review aims to discuss the potential molecular and biochemical pathways of ferroptosis involved in SCD, aiming to highlight possible tags involved in treating the disease and inhibiting ferroptosis.
Collapse
Affiliation(s)
| | - Giuseppe Tancredi Patanè
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Ferdinando Stagno d’Alcontres 31, 98166 Messina, Italy; (A.R.); (A.C.); (E.T.); (S.P.)
| | | | - Davide Barreca
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Ferdinando Stagno d’Alcontres 31, 98166 Messina, Italy; (A.R.); (A.C.); (E.T.); (S.P.)
| | | | | |
Collapse
|
7
|
Lee H, Lee MR, Fan TM, Hergenrother PJ. PAC-1 Synergizes with Sunitinib to Enhance Cell Death in Pancreatic Neuroendocrine Tumors. ACS Pharmacol Transl Sci 2025; 8:1140-1151. [PMID: 40242587 PMCID: PMC11997889 DOI: 10.1021/acsptsci.5c00052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2025] [Revised: 03/06/2025] [Accepted: 03/20/2025] [Indexed: 04/18/2025]
Abstract
Pancreatic neuroendocrine tumors (PNETs) are rare tumors that are often diagnosed at advanced or metastatic stages, resulting in a poor prognosis. Sunitinib is an approved therapy for treatment of patients with PNETs, but low response rates and resistance have limited its impact, with autophagy and sunitinib sequestration in the lysosome identified as key resistance mechanisms. Here, we show that the combination of sunitinib with the procaspase-3 activator PAC-1 enhances PNET cell death in cell culture and in vivo in a xenograft tumor model. PAC-1 treatment enlarges lysosomes, resulting in partial lysosomal membrane permeabilization and blocking of autophagosome-lysosome fusion. These alterations lead to increased accumulation of autophagic structures, blocking autophagic flux, and a changed distribution of sunitinib from the lysosome to the cytosol. Our data show that PAC-1 modulates sunitinib-induced autophagy and blocks lysosomal trapping, potentiating sunitinib activity and increasing death of cancer cells. As both drugs are well-tolerated in patients, the data suggest evaluation of the PAC-1/sunitinib combination in a clinical trial of patients with PNET.
Collapse
Affiliation(s)
- Hyang
Yeon Lee
- Department
of Chemistry, University of Illinois at
Urbana−Champaign, Urbana, Illinois 61801, United States
- Carl
R. Woese Institute for Genomic Biology, University of Illinois at Urbana−Champaign, Urbana, Illinois 61801, United States
| | - Myung Ryul Lee
- Department
of Chemistry, University of Illinois at
Urbana−Champaign, Urbana, Illinois 61801, United States
- Carl
R. Woese Institute for Genomic Biology, University of Illinois at Urbana−Champaign, Urbana, Illinois 61801, United States
| | - Timothy M. Fan
- Carl
R. Woese Institute for Genomic Biology, University of Illinois at Urbana−Champaign, Urbana, Illinois 61801, United States
- Department
of Veterinary Clinical Medicine, University
of Illinois at Urbana−Champaign, Urbana, Illinois 61801, United States
| | - Paul J. Hergenrother
- Department
of Chemistry, University of Illinois at
Urbana−Champaign, Urbana, Illinois 61801, United States
- Carl
R. Woese Institute for Genomic Biology, University of Illinois at Urbana−Champaign, Urbana, Illinois 61801, United States
| |
Collapse
|
8
|
Ben Zichri- David S, Shkuri L, Ast T. Pulling back the mitochondria's iron curtain. NPJ METABOLIC HEALTH AND DISEASE 2025; 3:6. [PMID: 40052109 PMCID: PMC11879881 DOI: 10.1038/s44324-024-00045-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/15/2024] [Accepted: 12/09/2024] [Indexed: 03/09/2025]
Abstract
Mitochondrial functionality and cellular iron homeostasis are closely intertwined. Mitochondria are biosynthetic hubs for essential iron cofactors such as iron-sulfur (Fe-S) clusters and heme. These cofactors, in turn, enable key mitochondrial pathways, such as energy and metabolite production. Mishandling of mitochondrial iron is associated with a spectrum of human pathologies ranging from rare genetic disorders to common conditions. Here, we review mitochondrial iron utilization and its intersection with disease.
Collapse
Affiliation(s)
| | - Liraz Shkuri
- Department of Biomolecular Sciences, Weizmann Institute of Science, Rehovot, 7610001 Israel
| | - Tslil Ast
- Department of Biomolecular Sciences, Weizmann Institute of Science, Rehovot, 7610001 Israel
| |
Collapse
|
9
|
Carbone FP, Ancona P, Volinia S, Terrazzan A, Bianchi N. Druggable Molecular Networks in BRCA1/BRCA2-Mutated Breast Cancer. BIOLOGY 2025; 14:253. [PMID: 40136510 PMCID: PMC11940086 DOI: 10.3390/biology14030253] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/28/2025] [Revised: 02/24/2025] [Accepted: 02/28/2025] [Indexed: 03/27/2025]
Abstract
Mutations in the tumor suppressor genes BRCA1 and BRCA2 are associated with the triple-negative breast cancer phenotype, particularly aggressive and hard-to-treat tumors lacking estrogen, progesterone, and human epidermal growth factor receptor 2. This research aimed to understand the metabolic and genetic links behind BRCA1 and BRCA2 mutations and investigate their relationship with effective therapies. Using the Cytoscape software, two networks were generated through a bibliographic analysis of articles retrieved from the PubMed-NCBI database. We identified 98 genes deregulated by BRCA mutations, and 24 were modulated by therapies. In particular, BIRC5, SIRT1, MYC, EZH2, and CSN2 are influenced by BRCA1, while BCL2, BAX, and BRIP1 are influenced by BRCA2 mutation. Moreover, the study evaluated the efficacy of several promising therapies, targeting only BRCA1/BRCA2-mutated cells. In this context, CDDO-Imidazolide was shown to increase ROS levels and induce DNA damage. Similarly, resveratrol decreased the expression of the anti-apoptotic gene BIRC5 while it increased SIRT1 both in vitro and in vivo. Other specific drugs were found to induce apoptosis selectively in BRCA-mutated cells or block cell growth when the mutation occurs, i.e., 3-deazaneplanocin A, genistein or daidzein, and PARP inhibitors. Finally, over-representation analysis on the genes highlights ferroptosis and proteoglycan pathways as potential drug targets for more effective treatments.
Collapse
Affiliation(s)
- Francesca Pia Carbone
- Department of Translational Medicine, University of Ferrara, 44121 Ferrara, Italy; (F.P.C.); (P.A.); (S.V.); (N.B.)
| | - Pietro Ancona
- Department of Translational Medicine, University of Ferrara, 44121 Ferrara, Italy; (F.P.C.); (P.A.); (S.V.); (N.B.)
| | - Stefano Volinia
- Department of Translational Medicine, University of Ferrara, 44121 Ferrara, Italy; (F.P.C.); (P.A.); (S.V.); (N.B.)
- Genomics Core Facility, Centre of New Technologies, University of Warsaw, 02-097 Warsaw, Poland
- Laboratory for Technologies of Advanced Therapies (LTTA), 44121 Ferrara, Italy
| | - Anna Terrazzan
- Department of Translational Medicine, University of Ferrara, 44121 Ferrara, Italy; (F.P.C.); (P.A.); (S.V.); (N.B.)
- Genomics Core Facility, Centre of New Technologies, University of Warsaw, 02-097 Warsaw, Poland
- Laboratory for Technologies of Advanced Therapies (LTTA), 44121 Ferrara, Italy
| | - Nicoletta Bianchi
- Department of Translational Medicine, University of Ferrara, 44121 Ferrara, Italy; (F.P.C.); (P.A.); (S.V.); (N.B.)
| |
Collapse
|
10
|
Gao Y, Deng Y, Li W, Wang J, Liu M, Dai H. CXCR3 inhibition ameliorates mitochondrial function to mitigate oxidative damage through NCOA4-mediated ferritinophagy and improves the gut microbiota in mice. Free Radic Biol Med 2025; 229:384-398. [PMID: 39827924 DOI: 10.1016/j.freeradbiomed.2025.01.034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/04/2024] [Revised: 01/14/2025] [Accepted: 01/16/2025] [Indexed: 01/22/2025]
Abstract
Nuclear receptor coactivator 4 (NCOA4)-mediated ferritinophagy contributes to maintain intracellular iron balance by regulating ferritin degradation, which is essential for redox homeostasis. CXC-motif chemokine receptor 3 (CXCR3) is involved in the regulation of oxidative stress and autophagy. However, its role in modulating intestinal oxidative damage through ferritinophagy and the gut microbiota remains unclear. In this study, the impacts of CXCR3 inhibition on intestine oxidative damage, ferritinophagy, and the gut microbiota, as well as the mitochondrial quality control were investigated both in vivo and in vitro. The results show that CXCR3 inhibition by AMG487 relieves Diquat-induced intestinal damage, enhances the expression of tight junction proteins, and promotes antioxidant capacity in mice. Simultaneously, CXCR3 inhibition improves gut microbiota composition, and triggers NCOA4-mediated ferritinophagy. Mechanistically, the effects of CXCR3 inhibition on ferritinophagy were explored in IPEC-J2 cells. Co-localization and interaction between CXCR3 and NCOA4 were observed. Downregulation of NCOA4-mediated ferritinophagy leads to increase the expression of tight junction proteins, reduces iron levels, restricts ROS accumulation, and enhances GPX4 expression. Moreover, CXCR3 suppression facilitates mitochondrial biogenesis and mitochondrial fusion, increases antioxidative capacity, and results in the elevation of tight junction proteins expression. These findings suggest that CXCR3 inhibition reverses Diquat-induced intestinal oxidative damage, enhances mitochondrial function, and improves gut microbiota composition by elevating NCOA4-mediated ferritinophagy, which implies that CXCR3 may serve as a potential therapeutic intervention targeting iron metabolism for treating intestinal diseases.
Collapse
Affiliation(s)
- Yuan Gao
- College of Veterinary Medicine, Huazhong Agricultural University, No.1 Shizishan Street, Hongshan District, Wuhan, 430070, Hubei, China
| | - Yian Deng
- College of Veterinary Medicine, Huazhong Agricultural University, No.1 Shizishan Street, Hongshan District, Wuhan, 430070, Hubei, China
| | - Wenjie Li
- College of Veterinary Medicine, Huazhong Agricultural University, No.1 Shizishan Street, Hongshan District, Wuhan, 430070, Hubei, China
| | - Junjie Wang
- College of Veterinary Medicine, Huazhong Agricultural University, No.1 Shizishan Street, Hongshan District, Wuhan, 430070, Hubei, China
| | - Mingze Liu
- College of Veterinary Medicine, Huazhong Agricultural University, No.1 Shizishan Street, Hongshan District, Wuhan, 430070, Hubei, China
| | - Hanchuan Dai
- College of Veterinary Medicine, Huazhong Agricultural University, No.1 Shizishan Street, Hongshan District, Wuhan, 430070, Hubei, China.
| |
Collapse
|
11
|
Arndt H, Bachurski M, Yuanxiang P, Franke K, Wessjohann LA, Kreutz MR, Grochowska KM. A Screen of Plant-Based Natural Products Revealed That Quercetin Prevents Pyroglutamylated Amyloid-β (Aβ3(pE)-42) Uptake in Astrocytes As Well As Resulting Astrogliosis and Synaptic Dysfunction. Mol Neurobiol 2025; 62:3730-3745. [PMID: 39317890 PMCID: PMC11790700 DOI: 10.1007/s12035-024-04509-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2024] [Accepted: 09/16/2024] [Indexed: 09/26/2024]
Abstract
Two connected histopathological hallmarks of Alzheimer's disease (AD) are chronic neuroinflammation and synaptic dysfunction. The accumulation of the most prevalent posttranslationally modified form of Aβ1-42, pyroglutamylated amyloid-β (Aβ3(pE)-42) in astrocytes is directly linked to glial activation and the release of proinflammatory cytokines that in turn contribute to early synaptic dysfunction in AD. At present, the mechanisms of Aβ3(pE)-42 uptake to astrocytes are unknown and pharmacological interventions that interfere with this process are not available. Here we developed a simple screening assay to identify substances from a plant extract library that prevent astroglial Aβ3(pE)-42 uptake. We first show that this approach yields valid and reproducible results. Second, we show endocytosis of Aβ3(pE)-42 oligomers by astrocytes and that quercetin, a plant flavonol, is effective to specifically block astrocytic buildup of oligomeric Aβ3(pE)-42. Importantly, quercetin does not induce a general impairment of endocytosis. However, it efficiently protects against early synaptic dysfunction following exogenous Aβ3(pE)-42 application.
Collapse
Affiliation(s)
- Helene Arndt
- Research Group Neuroplasticity, Leibniz Institute for Neurobiology, 39118, Magdeburg, Germany
| | - Mark Bachurski
- Research Group Neuroplasticity, Leibniz Institute for Neurobiology, 39118, Magdeburg, Germany
| | - PingAn Yuanxiang
- Research Group Neuroplasticity, Leibniz Institute for Neurobiology, 39118, Magdeburg, Germany
| | - Katrin Franke
- Department of Bioorganic Chemistry, Leibniz Institute of Plant Biochemistry, 06108, Halle, Germany
- Institute of Biology/Geobotany and Botanical Garden, Martin Luther University Halle-Wittenberg, 06108, Halle, Germany
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, 04103, Leipzig, Germany
| | - Ludger A Wessjohann
- Department of Bioorganic Chemistry, Leibniz Institute of Plant Biochemistry, 06108, Halle, Germany
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, 04103, Leipzig, Germany
- Institut Für Chemie, Chair of Natural Products Chemistry, Martin-Luther-University Halle-Wittenberg, 06120, Halle (Saale), Germany
| | - Michael R Kreutz
- Research Group Neuroplasticity, Leibniz Institute for Neurobiology, 39118, Magdeburg, Germany.
- Leibniz Group 'Dendritic Organelles and Synaptic Function', Center for Molecular Neurobiology, ZMNH, University Medical Center Hamburg-Eppendorf, 20251, Hamburg, Germany.
- German Center for Neurodegenerative Diseases (DZNE), 39120, Magdeburg, Germany.
- Center for Behavioral Brain Sciences, Otto Von Guericke University, 39120, Magdeburg, Germany.
| | - Katarzyna M Grochowska
- Research Group Neuroplasticity, Leibniz Institute for Neurobiology, 39118, Magdeburg, Germany.
- Leibniz Group 'Dendritic Organelles and Synaptic Function', Center for Molecular Neurobiology, ZMNH, University Medical Center Hamburg-Eppendorf, 20251, Hamburg, Germany.
| |
Collapse
|
12
|
Deng D, Guan Y, Mutlu AS, Wang B, Gao SM, Zheng H, Wang MC. Quantitative profiling pH heterogeneity of acidic endolysosomal compartments using fluorescence lifetime imaging microscopy. Mol Biol Cell 2025; 36:br8. [PMID: 39878653 PMCID: PMC11974955 DOI: 10.1091/mbc.e23-06-0220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 01/17/2025] [Accepted: 01/23/2025] [Indexed: 01/31/2025] Open
Abstract
The endolysosomal system plays a crucial role in maintaining cellular homeostasis and promoting organism fitness. The pH of its acidic compartments is a crucial parameter for proper function, and it is dynamically influenced by both intracellular and environmental factors. Here, we present a method based on fluorescence lifetime imaging microscopy (FLIM) for quantitatively analyzing the pH profiles of acidic endolysosomal compartments in diverse types of primary mammalian cells and in live organism Caenorhabditis elegans. This FLIM-based method exhibits high sensitivity in resolving subtle pH differences, thereby revealing heterogeneity within a cell and across cell types. This method enables rapid measurement of pH changes in the acidic endolysosomal system in response to various environmental stimuli. Furthermore, the fast FLIM measurement of pH-sensitive dyes circumvents the need for transgenic reporters and mitigates potential confounding factors associated with varying dye concentrations or excitation light intensity. This FLIM approach offers absolute pH quantification and highlights the significance of pH heterogeneity and dynamics, offering a valuable tool for investigating lysosomal functions and their regulation in various physiological and pathological contexts.
Collapse
Affiliation(s)
- Dinghuan Deng
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA 20147
| | - Youchen Guan
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA 20147
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX 77030
| | - Ayse Sena Mutlu
- Huffington Center on Aging, Baylor College of Medicine, Houston, TX 77030
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030
| | - Baiping Wang
- Huffington Center on Aging, Baylor College of Medicine, Houston, TX 77030
| | - Shihong Max Gao
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA 20147
| | - Hui Zheng
- Huffington Center on Aging, Baylor College of Medicine, Houston, TX 77030
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030
| | - Meng C. Wang
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA 20147
| |
Collapse
|
13
|
Barthelson K, Protzman RA, Snel MF, Hemsley K, Lardelli M. Multi-omics analyses of early-onset familial Alzheimer's disease and Sanfilippo syndrome zebrafish models reveal commonalities in disease mechanisms. Biochim Biophys Acta Mol Basis Dis 2025; 1871:167651. [PMID: 39798820 DOI: 10.1016/j.bbadis.2024.167651] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Revised: 12/03/2024] [Accepted: 12/27/2024] [Indexed: 01/15/2025]
Abstract
Sanfilippo syndrome (mucopolysaccharidosis type III, MPSIII) causes childhood dementia, while Alzheimer's disease is the most common type of adult-onset dementia. There is no cure for either of these diseases, and therapeutic options are extremely limited. Increasing evidence suggests commonalities in the pathogenesis of these diseases. However, a direct molecular-level comparison of these diseases has never been performed. Here, we exploited the power of zebrafish reproduction (large families of siblings from single mating events raised together in consistent environments) to conduct sensitive, internally controlled, comparative transcriptome and proteome analyses of zebrafish models of early-onset familial Alzheimer's disease (EOfAD, psen1Q96_K97del/+) and MPSIIIB (nagluA603fs/A603fs) within single families. We examined larval zebrafish (7 days post fertilisation), representing early disease stages. We also examined the brains of 6-month-old zebrafish, which are approximately equivalent to young adults in humans. We identified substantially more differentially expressed genes and pathways in MPS III zebrafish than in EOfAD-like zebrafish. This is consistent with MPS III being a rapidly progressing and earlier onset form of dementia. Similar changes in expression were detected between the two disease models in gene sets representing extracellular matrix receptor interactions in larvae, and the ribosome and lysosome pathways in 6-month-old adult brains. Cell type-specific changes were detected in MPSIIIB brains at 6 months of age, likely reflecting significant disturbances of oligodendrocyte, neural stem cell, and inflammatory cell functions and/or numbers. Our 'omics analyses have illuminated similar disease pathways between EOfAD and MPS III indicating where efforts to find mutually effective therapeutic strategies can be targeted.
Collapse
Affiliation(s)
- Karissa Barthelson
- Childhood Dementia Research Group, College of Medicine & Public Health, Flinders Health and Medical Research Institute, Flinders University, Sturt Road, Bedford Park, SA 5042, Australia; Alzheimer's Disease Genetics Laboratory, School of Molecular and Biomedical Sciences, Faculty of Sciences, Engineering and Technology, The University of Adelaide, North Terrace Campus, Adelaide, SA 5005, Australia.
| | - Rachael A Protzman
- Proteomics, Metabolomics and MS-Imaging Facility, South Australian Health and Medical Research Institute, North Terrace, Adelaide, SA 5000, Australia
| | - Marten F Snel
- Proteomics, Metabolomics and MS-Imaging Facility, South Australian Health and Medical Research Institute, North Terrace, Adelaide, SA 5000, Australia; School of Physics, Chemistry and Earth Science, Faculty of Sciences, Engineering and Technology, The University of Adelaide, North Terrace Campus, Adelaide, SA 5005, Australia
| | - Kim Hemsley
- Childhood Dementia Research Group, College of Medicine & Public Health, Flinders Health and Medical Research Institute, Flinders University, Sturt Road, Bedford Park, SA 5042, Australia
| | - Michael Lardelli
- Alzheimer's Disease Genetics Laboratory, School of Molecular and Biomedical Sciences, Faculty of Sciences, Engineering and Technology, The University of Adelaide, North Terrace Campus, Adelaide, SA 5005, Australia
| |
Collapse
|
14
|
Min DH, Kim D, Hong ST, Kim J, Kim MJ, Kwon SH, Kim A, Lee JY. Bafilomycin A1 induces colon cancer cell death through impairment of the endolysosome system dependent on iron. Sci Rep 2025; 15:5148. [PMID: 39934167 PMCID: PMC11814099 DOI: 10.1038/s41598-025-89127-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2024] [Accepted: 02/03/2025] [Indexed: 02/13/2025] Open
Abstract
The late endolysosomal compartment plays a crucial role in cancer cell metabolism by regulating lysosomal activity, essential for cell proliferation, and the degradation of cellular components during the final stages of autophagy. Modulating late endolysosomal function represents a new target for cancer therapy. In this study, we investigated the effects of bafilomycin A1 (BA1), a vacuolar H+-ATPase inhibitor, on colon cancer and normal colon fibroblasts (CCD-18Co) cells. We found that very low concentrations (~ 2 nM) of BA1 selectively induced cell death in colon cancer cells. This cytotoxicity was associated with lysosomal stress response and dysregulation of iron homeostasis. BA1 treatment resulted in significant alterations to the endolysosomal system, including an increased number and size of lysosomes, lysosomal membrane permeabilization, and autophagy flux blockade. These changes were accompanied by endoplasmic reticulum stress and lipid droplet accumulation. Furthermore, BA1 decreased intracellular Fe2+ levels, as measured using FerroOrange. Notably, iron (III)-citrate supplementation rescued cells from BA1-induced death. These findings suggest that BA1-induced endolysosomal dysfunction impairs iron homeostasis, ultimately leading to colon cancer cell death. Our results highlight the potential of targeting endolysosomal function and iron homeostasis as novel therapeutic strategies for colon cancer, paving the way for more selective and effective treatments.
Collapse
Affiliation(s)
- Dong Hwa Min
- Department of Pathology, Korea University College of Medicine, 73, Anan-Dong 5-GA, Seongbuk-gu, Seoul, 02841, South Korea
- Department of Biomedical Science, Korea University College of Medicine, Seoul, 02841, South Korea
| | - Dasom Kim
- Department of Pathology, Korea University College of Medicine, 73, Anan-Dong 5-GA, Seongbuk-gu, Seoul, 02841, South Korea
- Department of Biomedical Science, Korea University College of Medicine, Seoul, 02841, South Korea
| | - Seung Taek Hong
- Division of Biohealthcare, Department of Echo-Applied Chemistry, Daejin University, Pocheon-si, 11159, Gyeonggi-do, South Korea
| | - Joohee Kim
- Department of Biological Sciences, Sookmyung Women's University, Seoul, 04310, South Korea
| | - Min Jung Kim
- Department of Biological Sciences, Sookmyung Women's University, Seoul, 04310, South Korea
| | - Seung-Hae Kwon
- Seoul Center, Korea Basic Science Institute, Seoul, 02841, South Korea
| | - Aeree Kim
- Department of Pathology, Korea University Guro Hospital, Seoul, South Korea
| | - Ji-Yun Lee
- Department of Pathology, Korea University College of Medicine, 73, Anan-Dong 5-GA, Seongbuk-gu, Seoul, 02841, South Korea.
| |
Collapse
|
15
|
Rai P, Fessler MB. Mechanisms and effects of activation of innate immunity by mitochondrial nucleic acids. Int Immunol 2025; 37:133-142. [PMID: 39213393 DOI: 10.1093/intimm/dxae052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Accepted: 08/28/2024] [Indexed: 09/04/2024] Open
Abstract
In recent years, a growing number of roles have been identified for mitochondria in innate immunity. One principal mechanism is that the translocation of mitochondrial nucleic acid species from the mitochondrial matrix to the cytosol and endolysosomal lumen in response to an array of microbial and non-microbial environmental stressors has been found to serve as a second messenger event in the cell signaling of the innate immune response. Thus, mitochondrial DNA and RNA have been shown to access the cytosol through several regulated mechanisms involving remodeling of the mitochondrial inner and outer membranes and to access lysosomes via vesicular transport, thereby activating cytosolic [e.g. cyclic GMP-AMP synthase (cGAS), retinoic acid-inducible gene I (RIG-I)-like receptors], and endolysosomal (Toll-like receptor 7, 9) nucleic acid receptors that induce type I interferons and pro-inflammatory cytokines. In this mini-review, we discuss these molecular mechanisms of mitochondrial nucleic acid mislocalization and their roles in host defense, autoimmunity, and auto-inflammatory disorders. The emergent paradigm is one in which host-derived DNA interestingly serves as a signal amplifier in the innate immune response and also as an alarm signal for disturbances in organellar homeostasis. The apparent vast excess of mitochondria and mitochondrial DNA nucleoids per cell may thus serve to sensitize the cell response to stressors while ensuring an underlying reserve of intact mitochondria to sustain cellular metabolism. An improved understanding of these molecular mechanisms will hopefully afford future opportunities for therapeutic intervention in human disease.
Collapse
Affiliation(s)
- Prashant Rai
- Immunity, Inflammation and Disease Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC 27709, USA
| | - Michael B Fessler
- Immunity, Inflammation and Disease Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC 27709, USA
| |
Collapse
|
16
|
Wu P, Chen J, Li H, Lu H, Li Y, Zhang J. Interactions between ferroptosis and tumour development mechanisms: Implications for gynaecological cancer therapy (Review). Oncol Rep 2025; 53:18. [PMID: 39635847 PMCID: PMC11638741 DOI: 10.3892/or.2024.8851] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2024] [Accepted: 11/19/2024] [Indexed: 12/07/2024] Open
Abstract
Ferroptosis is a form of programmed cell death that is distinct from apoptosis. The mechanism involves redox‑active metallic iron and is characterized by an abnormal increase in iron‑dependent lipid reactive oxygen species, which results in high levels of membrane lipid peroxides. The relationship between ferroptosis and gynaecological tumours is complex. Ferroptosis can regulate tumour proliferation, metastasis and chemotherapy resistance, and targeting ferroptosis is a promising antitumour approach. Ferroptosis interacts with mechanisms related to tumorigenesis and development, such as macrophage polarization, the neutrophil trap network, mitochondrial autophagy and cuproptosis. The present review examines recent information on the interaction between the molecular mechanism of ferroptosis and other tumour‑related mechanisms, as well as the involvement of ferroptosis in gynaecological tumours, to identify implications for gynaecological cancer therapy.
Collapse
Affiliation(s)
- Peiting Wu
- Department of Assisted Reproductive Centre, Zhuzhou Hospital Affiliated to Xiangya School of Medicine, Central South University, Zhuzhou, Hunan 410013, P.R. China
| | - Jianlin Chen
- Department of Assisted Reproductive Centre, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410008, P.R. China
| | - Hui Li
- Department of Assisted Reproductive Centre, Zhuzhou Hospital Affiliated to Xiangya School of Medicine, Central South University, Zhuzhou, Hunan 410013, P.R. China
| | - Haiyuan Lu
- Department of Clinical Laboratory Department, Xiangya Hospital, Central South University, Changsha, Hunan 410008, P.R. China
- Department of Hunan Vigorzoe Biotechnology Co., Ltd., Hunan 417700, P.R. China
| | - Yukun Li
- Department of Assisted Reproductive Centre, Zhuzhou Hospital Affiliated to Xiangya School of Medicine, Central South University, Zhuzhou, Hunan 410013, P.R. China
| | - Juan Zhang
- Department of Assisted Reproductive Centre, Zhuzhou Hospital Affiliated to Xiangya School of Medicine, Central South University, Zhuzhou, Hunan 410013, P.R. China
| |
Collapse
|
17
|
Domingues N, Pires J, Milosevic I, Raimundo N. Role of lipids in interorganelle communication. Trends Cell Biol 2025; 35:46-58. [PMID: 38866684 PMCID: PMC11632148 DOI: 10.1016/j.tcb.2024.04.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Revised: 04/26/2024] [Accepted: 04/29/2024] [Indexed: 06/14/2024]
Abstract
Cell homeostasis and function rely on well-orchestrated communication between different organelles. This communication is ensured by signaling pathways and membrane contact sites between organelles. Many players involved in organelle crosstalk have been identified, predominantly proteins and ions. The role of lipids in interorganelle communication remains poorly understood. With the development and broader availability of methods to quantify lipids, as well as improved spatiotemporal resolution in detecting different lipid species, the contribution of lipids to organelle interactions starts to be evident. However, the specific roles of various lipid molecules in intracellular communication remain to be studied systematically. We summarize new insights in the interorganelle communication field from the perspective of organelles and discuss the roles played by lipids in these complex processes.
Collapse
Affiliation(s)
- Neuza Domingues
- Multidisciplinary Institute of Ageing, University of Coimbra, Coimbra, Portugal
| | - Joana Pires
- Multidisciplinary Institute of Ageing, University of Coimbra, Coimbra, Portugal
| | - Ira Milosevic
- Multidisciplinary Institute of Ageing, University of Coimbra, Coimbra, Portugal; Centre for Human Genetics, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Nuno Raimundo
- Multidisciplinary Institute of Ageing, University of Coimbra, Coimbra, Portugal; Department of Cellular and Molecular Physiology, Penn State College of Medicine, Hershey, PA, USA; Penn State Cancer Institute, Hershey, PA, USA.
| |
Collapse
|
18
|
Rizzollo F, Agostinis P. Mitochondria-Lysosome Contact Sites: Emerging Players in Cellular Homeostasis and Disease. CONTACT (THOUSAND OAKS (VENTURA COUNTY, CALIF.)) 2025; 8:25152564251329250. [PMID: 40109887 PMCID: PMC11920999 DOI: 10.1177/25152564251329250] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/02/2024] [Revised: 03/04/2025] [Accepted: 03/06/2025] [Indexed: 03/22/2025]
Abstract
Mitochondria and lysosomes regulate a multitude of biological processes that are essential for the maintenance of nutrient and metabolic homeostasis and overall cell viability. Recent evidence reveals that these pivotal organelles, similarly to others previously studied, communicate through specialized membrane contact sites (MCSs), hereafter referred to as mitochondria-lysosome contacts (or MLCs), which promote their dynamic interaction without involving membrane fusion. Signal integration through MLCs is implicated in key processes, including mitochondrial fission and dynamics, and the exchange of calcium, cholesterol, and amino acids. Impairments in the formation and function of MLCs are increasingly associated with age-related diseases, specifically neurodegenerative disorders and lysosomal storage diseases. However, MLCs may play roles in other pathological contexts where lysosomes and mitochondria are crucial. In this review, we introduce the methodologies used to study MLCs and discuss known molecular players and key factors involved in their regulation in mammalian cells. We also argue other potential regulatory mechanisms depending on the acidic lysosomal pH and their impact on MLC's function. Finally, we explore the emerging implications of dysfunctional mitochondria-lysosome interactions in disease, highlighting their potential as therapeutic targets in cancer.
Collapse
Affiliation(s)
- Francesca Rizzollo
- Cell Death Research and Therapy Laboratory, Center for Cancer Biology, VIB, Leuven, Belgium
- Department of Cellular and Molecular Medicine, KU Leuven, Leuven, Belgium
| | - Patrizia Agostinis
- Cell Death Research and Therapy Laboratory, Center for Cancer Biology, VIB, Leuven, Belgium
- Department of Cellular and Molecular Medicine, KU Leuven, Leuven, Belgium
| |
Collapse
|
19
|
Lin H, Guo X, Liu J, Chen L, Chen H, Zhao Y, Li H, Rong S, Yao P. Refining the Rab7-V1G1 axis to mitigate iron deposition: Protective effects of quercetin in alcoholic liver disease. J Nutr Biochem 2025; 135:109767. [PMID: 39284533 DOI: 10.1016/j.jnutbio.2024.109767] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 09/04/2024] [Accepted: 09/09/2024] [Indexed: 10/07/2024]
Abstract
Iron overload is a common feature of alcoholic liver disease (ALD) and contributes significantly to disease progression. Quercetin, a flavonoid known for its iron-chelating properties, has emerged as a potential protective compound against ALD. However, research on quercetin's regulatory effects on iron levels in ALD is limited. To address this, we conducted a study using male C57BL/6J mice were subjected to a Lieber De Carli liquid diet containing ethanol (28% energy replacement) with or without quercetin supplementation (100 mg/kg.BW) for 12 weeks. Additionally, HepG2 cells, after transfection with the CYP2E1 plasmid, were incubated with ethanol and/or quercetin. Our findings revealed that ethanol consumption led to iron overload in both hepatocytes and lysosomes. Interestingly, despite the increase in iron levels, cells exhibited impaired iron utilization, disrupting normal iron metabolism. Further analysis identified a potential mechanism involving the Rab7-V1G1 (V-ATPase subunit) axis. Inhibition of V-ATPase by Concanamycin A caused elevated ROS levels, impaired lysosomal and mitochondria function, and increased expression of HIF1α and IRP2. Ultimately, this disruption in cellular processes led to iron overload and mitochondrial iron deficiency. Quercetin supplementation mitigated ethanol-induced hepatocyte damage by reversing iron overload through modulation of the Rab7-V1G1 axis and improving the interaction between lysosomes and mitochondria. In conclusion, this study elucidates a novel pathophysiological mechanism by which quercetin protects against ALD through its regulation of iron homeostasis.
Collapse
Affiliation(s)
- Hongkun Lin
- Department of Nutrition and Food Hygiene, School of Public Health, Tongji Medical College, Huazhong University of Science & Technology, Wuhan, China; Department of Food and Nutrition Health, School of Public Health, Wuhan University, Wuhan, China
| | - Xiaoping Guo
- Department of Nutrition and Food Hygiene, School of Public Health, Tongji Medical College, Huazhong University of Science & Technology, Wuhan, China
| | - Jingjing Liu
- Henan Provincial Center for Disease Control and Prevention, Zhengzhou, China
| | - Li Chen
- Department of Nutrition and Food Hygiene, School of Public Health, Tongji Medical College, Huazhong University of Science & Technology, Wuhan, China
| | - Huimin Chen
- Department of Nutrition and Food Hygiene, School of Public Health, Tongji Medical College, Huazhong University of Science & Technology, Wuhan, China
| | - Ying Zhao
- Department of Nutrition and Food Hygiene, School of Public Health, Tongji Medical College, Huazhong University of Science & Technology, Wuhan, China
| | - Hongxia Li
- Department of Nutrition and Food Hygiene, School of Public Health, Tongji Medical College, Huazhong University of Science & Technology, Wuhan, China
| | - Shuang Rong
- Department of Food and Nutrition Health, School of Public Health, Wuhan University, Wuhan, China; Academy of Nutrition and Health, Hubei Province Key Laboratory of Occupational Hazard Identification and Control, School of Public Health, Wuhan University of Science and Technology, Wuhan, China.
| | - Ping Yao
- Department of Nutrition and Food Hygiene, School of Public Health, Tongji Medical College, Huazhong University of Science & Technology, Wuhan, China; Ministry of Education Lab of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science & Technology, Wuhan, China; Hubei Key Laboratory of Food Nutrition and Safety, School of Public Health, Tongji Medical College, Huazhong University of Science & Technology, Wuhan, China.
| |
Collapse
|
20
|
Lee JH, Seo KH, Yang JH, Cho SS, Kim NY, Kim JH, Kim KM, Ki SH. CCCP induces hepatic stellate cell activation and liver fibrogenesis via mitochondrial and lysosomal dysfunction. Free Radic Biol Med 2024; 225:181-192. [PMID: 39370054 DOI: 10.1016/j.freeradbiomed.2024.10.259] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/11/2024] [Revised: 09/23/2024] [Accepted: 10/02/2024] [Indexed: 10/08/2024]
Abstract
Hepatic stellate cells (HSCs) are primary cells for development and progression of liver fibrosis. Mitophagy is an essential lysosomal process for mitochondrial homeostasis, which can be activated by carbonyl cyanide m-chlorophenyl hydrazone (CCCP), a representative mitochondrial uncoupler. However, little information is available on the role of CCCP-mediated mitophagy in HSC activation and liver fibrogenesis. In this study, we showed that CCCP treatment in HSCs caused mitochondrial dysfunction proved by decreased mitochondrial membrane potential, mitochondrial DNA, and ATP contents and increased mitochondrial ROS. Moreover, CCCP induced mitophagy and impaired mitophagy flux at the later stage. This blockade of mitophagic flux effect was mediated by suppression of lysosomal activity; CCCP decreased expression of lysosomal markers and cathepsin B activity, and increased lysosomal pH. Intriguingly, CCCP treatment in LX-2 cells or primary HSCs elevated plasminogen activator inhibitor-1 (PAI-1), a typical fibrogenic marker of HSCs which was attenuated by mitochondrial division inhibitor 1, a mitophagy inhibitor. The up-regulation of PAI-1 by CCCP was not due to altered transcriptional activity but lysosomal dysfunction. In vivo acute or sub-chronic treatment of CCCP to mice induced mitophagy and fibrogenesis of liver. Hepatic fibrogenic marker (PAI-1) was incremented with mitophagy markers (parkin and PTEN-induced putative kinase 1) in the livers of CCCP injected mice. Furthermore, we found that 5-aminoimidazole-4-carboxyamide ribonucleoside reversed CCCP-mediated mitophagy and subsequent HSC activation. To conclude, CCCP facilitated HSC activation and hepatic fibrogenesis via mitochondrial dysfunction and lysosomal blockade, implying that attenuation of CCCP-related signaling molecules may contribute to treat liver fibrosis.
Collapse
Affiliation(s)
- Ji Hyun Lee
- MRC-OSTRC, Research Institute of Pharmaceutical Sciences, College of Pharmacy, Chosun University, Gwangju, 61452, South Korea
| | - Kyu Hwa Seo
- General for Narcotics Safety Planning, Pharmaceutical Safety Bureau, Ministry of Food and Drug Safety (MFDS), Cheongju, South Korea
| | - Ji Hye Yang
- College of Korean Medicine, Dongshin University, Naju, Jeollanam-do, 58245, South Korea
| | - Sam Seok Cho
- MRC-OSTRC, Research Institute of Pharmaceutical Sciences, College of Pharmacy, Chosun University, Gwangju, 61452, South Korea; Non-Clinical Evaluation Center, Biomedical Research Institute, Chonbuk National University Hospital, Jeonju, Chonbuk, South Korea
| | - Na Yeon Kim
- MRC-OSTRC, Research Institute of Pharmaceutical Sciences, College of Pharmacy, Chosun University, Gwangju, 61452, South Korea
| | - Ji Hye Kim
- MRC-OSTRC, Research Institute of Pharmaceutical Sciences, College of Pharmacy, Chosun University, Gwangju, 61452, South Korea
| | - Kyu Min Kim
- Department of Biomedical Science, College of Natural Science, Chosun University, Gwangju, 61452, South Korea; Institute of Well-Aging Medicare & Chosun University LAMP Project Group, Chosun University, Gwangju, 61452, South Korea; Department of Integrative Biological Sciences & BK21 FOUR Educational Research Group for Age-associated Disorder Control Technology, Chosun University, Gwangju, 61452, South Korea.
| | - Sung Hwan Ki
- MRC-OSTRC, Research Institute of Pharmaceutical Sciences, College of Pharmacy, Chosun University, Gwangju, 61452, South Korea.
| |
Collapse
|
21
|
Nixon RA, Rubinsztein DC. Mechanisms of autophagy-lysosome dysfunction in neurodegenerative diseases. Nat Rev Mol Cell Biol 2024; 25:926-946. [PMID: 39107446 DOI: 10.1038/s41580-024-00757-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/17/2024] [Indexed: 08/15/2024]
Abstract
Autophagy is a lysosome-based degradative process used to recycle obsolete cellular constituents and eliminate damaged organelles and aggregate-prone proteins. Their postmitotic nature and extremely polarized morphologies make neurons particularly vulnerable to disruptions caused by autophagy-lysosomal defects, especially as the brain ages. Consequently, mutations in genes regulating autophagy and lysosomal functions cause a wide range of neurodegenerative diseases. Here, we review the role of autophagy and lysosomes in neurodegenerative diseases such as Alzheimer disease, Parkinson disease and frontotemporal dementia. We also consider the strong impact of cellular ageing on lysosomes and autophagy as a tipping point for the late-age emergence of related neurodegenerative disorders. Many of these diseases have primary defects in autophagy, for example affecting autophagosome formation, and in lysosomal functions, especially pH regulation and calcium homeostasis. We have aimed to provide an integrative framework for understanding the central importance of autophagic-lysosomal function in neuronal health and disease.
Collapse
Affiliation(s)
- Ralph A Nixon
- Center for Dementia Research, Nathan Kline Institute, Orangeburg, New York, NY, USA.
- Department of Psychiatry, New York University Grossman School of Medicine, New York, NY, USA.
- Department of Cell Biology, New York University Grossman School of Medicine, New York, NY, USA.
- Neuroscience Institute, New York University Grossman School of Medicine, New York, NY, USA.
| | - David C Rubinsztein
- Department of Medical Genetics, Cambridge Institute for Medical Research, Cambridge, UK
- UK Dementia Research Institute, University of Cambridge, Cambridge Institute for Medical Research, Cambridge, UK
| |
Collapse
|
22
|
Ghoochani A, Heiby JC, Rawat ES, Medoh UN, Di Fraia D, Dong W, Gastou M, Nyame K, Laqtom NN, Gomez-Ospina N, Ori A, Abu-Remaileh M. Cell-Type Resolved Protein Atlas of Brain Lysosomes Identifies SLC45A1-Associated Disease as a Lysosomal Disorder. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.10.14.618295. [PMID: 39464040 PMCID: PMC11507716 DOI: 10.1101/2024.10.14.618295] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 10/29/2024]
Abstract
Mutations in lysosomal genes cause neurodegeneration and neurological lysosomal storage disorders (LSDs). Despite their essential role in brain homeostasis, the cell-type-specific composition and function of lysosomes remain poorly understood. Here, we report a quantitative protein atlas of the lysosome from mouse neurons, astrocytes, oligodendrocytes, and microglia. We identify dozens of novel lysosomal proteins and reveal the diversity of the lysosomal composition across brain cell types. Notably, we discovered SLC45A1, mutations in which cause a monogenic neurological disease, as a neuron-specific lysosomal protein. Loss of SLC45A1 causes lysosomal dysfunction in vitro and in vivo. Mechanistically, SLC45A1 plays a dual role in lysosomal sugar transport and stabilization of V1 subunits of the V-ATPase. SLC45A1 deficiency depletes the V1 subunits, elevates lysosomal pH, and disrupts iron homeostasis causing mitochondrial dysfunction. Altogether, our work redefines SLC45A1-associated disease as a LSD and establishes a comprehensive map to study lysosome biology at cell-type resolution in the brain and its implications for neurodegeneration.
Collapse
Affiliation(s)
- Ali Ghoochani
- Department of Chemical Engineering, Stanford University, Stanford, CA 94305, USA
- Department of Genetics, Stanford University, Stanford, CA 94305, USA
- The Institute for Chemistry, Engineering and Medicine for Human Health (Sarafan ChEM-H), Stanford University, Stanford, CA 94305, USA
- Aligning Science Across Parkinson’s (ASAP) Collaborative Research Network; Chevy Chase, MD, 20815, USA
- These authors contributed equally
| | - Julia C. Heiby
- Department of Chemical Engineering, Stanford University, Stanford, CA 94305, USA
- Department of Genetics, Stanford University, Stanford, CA 94305, USA
- The Institute for Chemistry, Engineering and Medicine for Human Health (Sarafan ChEM-H), Stanford University, Stanford, CA 94305, USA
- Leibniz Institute on Aging - Fritz Lipmann Institute (FLI) e.V., Jena, Germany
- These authors contributed equally
| | - Eshaan S. Rawat
- Department of Chemical Engineering, Stanford University, Stanford, CA 94305, USA
- Department of Genetics, Stanford University, Stanford, CA 94305, USA
- The Institute for Chemistry, Engineering and Medicine for Human Health (Sarafan ChEM-H), Stanford University, Stanford, CA 94305, USA
- Aligning Science Across Parkinson’s (ASAP) Collaborative Research Network; Chevy Chase, MD, 20815, USA
| | - Uche N. Medoh
- Department of Chemical Engineering, Stanford University, Stanford, CA 94305, USA
- Department of Genetics, Stanford University, Stanford, CA 94305, USA
- The Institute for Chemistry, Engineering and Medicine for Human Health (Sarafan ChEM-H), Stanford University, Stanford, CA 94305, USA
- Aligning Science Across Parkinson’s (ASAP) Collaborative Research Network; Chevy Chase, MD, 20815, USA
- Current affiliation: Arc Institute, Palo Alto, CA 94304, USA
| | - Domenico Di Fraia
- Leibniz Institute on Aging - Fritz Lipmann Institute (FLI) e.V., Jena, Germany
- Current affiliation: Department of Biology, University of Rochester, Rochester, NY, USA
| | - Wentao Dong
- Department of Chemical Engineering, Stanford University, Stanford, CA 94305, USA
- Department of Genetics, Stanford University, Stanford, CA 94305, USA
- The Institute for Chemistry, Engineering and Medicine for Human Health (Sarafan ChEM-H), Stanford University, Stanford, CA 94305, USA
- Aligning Science Across Parkinson’s (ASAP) Collaborative Research Network; Chevy Chase, MD, 20815, USA
| | - Marc Gastou
- Department of Pediatrics, Stanford University School of Medicine, Stanford, CA, 94305, USA
| | - Kwamina Nyame
- Department of Chemical Engineering, Stanford University, Stanford, CA 94305, USA
- Department of Genetics, Stanford University, Stanford, CA 94305, USA
- The Institute for Chemistry, Engineering and Medicine for Human Health (Sarafan ChEM-H), Stanford University, Stanford, CA 94305, USA
- Aligning Science Across Parkinson’s (ASAP) Collaborative Research Network; Chevy Chase, MD, 20815, USA
| | - Nouf N. Laqtom
- Department of Chemical Engineering, Stanford University, Stanford, CA 94305, USA
- Department of Genetics, Stanford University, Stanford, CA 94305, USA
- The Institute for Chemistry, Engineering and Medicine for Human Health (Sarafan ChEM-H), Stanford University, Stanford, CA 94305, USA
- Aligning Science Across Parkinson’s (ASAP) Collaborative Research Network; Chevy Chase, MD, 20815, USA
| | - Natalia Gomez-Ospina
- Department of Pediatrics, Stanford University School of Medicine, Stanford, CA, 94305, USA
| | - Alessandro Ori
- Leibniz Institute on Aging - Fritz Lipmann Institute (FLI) e.V., Jena, Germany
- Co-senior authors
| | - Monther Abu-Remaileh
- Department of Chemical Engineering, Stanford University, Stanford, CA 94305, USA
- Department of Genetics, Stanford University, Stanford, CA 94305, USA
- The Institute for Chemistry, Engineering and Medicine for Human Health (Sarafan ChEM-H), Stanford University, Stanford, CA 94305, USA
- Aligning Science Across Parkinson’s (ASAP) Collaborative Research Network; Chevy Chase, MD, 20815, USA
- The Phil & Penny Knight Initiative for Brain Resilience at the Wu Tsai Neurosciences Institute, Stanford University, Stanford, CA 94305, USA
- Co-senior authors
- Lead author
| |
Collapse
|
23
|
LeVine SM. The Azalea Hypothesis of Alzheimer Disease: A Functional Iron Deficiency Promotes Neurodegeneration. Neuroscientist 2024; 30:525-544. [PMID: 37599439 PMCID: PMC10876915 DOI: 10.1177/10738584231191743] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/22/2023]
Abstract
Chlorosis in azaleas is characterized by an interveinal yellowing of leaves that is typically caused by a deficiency of iron. This condition is usually due to the inability of cells to properly acquire iron as a consequence of unfavorable conditions, such as an elevated pH, rather than insufficient iron levels. The causes and effects of chlorosis were found to have similarities with those pertaining to a recently presented hypothesis that describes a pathogenic process in Alzheimer disease. This hypothesis states that iron becomes sequestered (e.g., by amyloid β and tau), causing a functional deficiency of iron that disrupts biochemical processes leading to neurodegeneration. Additional mechanisms that contribute to iron becoming unavailable include iron-containing structures not undergoing proper recycling (e.g., disrupted mitophagy and altered ferritinophagy) and failure to successfully translocate iron from one compartment to another (e.g., due to impaired lysosomal acidification). Other contributors to a functional deficiency of iron in patients with Alzheimer disease include altered metabolism of heme or altered production of iron-containing proteins and their partners (e.g., subunits, upstream proteins). A review of the evidence supporting this hypothesis is presented. Also, parallels between the mechanisms underlying a functional iron-deficient state in Alzheimer disease and those occurring for chlorosis in plants are discussed. Finally, a model describing the generation of a functional iron deficiency in Alzheimer disease is put forward.
Collapse
Affiliation(s)
- Steven M. LeVine
- Department of Cell Biology and Physiology, University of Kansas Medical Center, Kansas City, KS, US
| |
Collapse
|
24
|
Shao Y, Zuo X. PTPRC Inhibits Ferroptosis of Osteosarcoma Cells via Blocking TFEB/FTH1 Signaling. Mol Biotechnol 2024; 66:2985-2994. [PMID: 37851191 DOI: 10.1007/s12033-023-00914-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Accepted: 09/19/2023] [Indexed: 10/19/2023]
Abstract
Protein tyrosine phosphatase receptor type C (PTPRC) is reported to function as an oncogenic role in various cancer. However, the studies on the roles of PTPRC in osteosarcoma (OS) are limited. This study aimed to explore the potentials of PTPRC in OS. mRNA levels were detected by reverse transcription-quantitative polymerase chain reaction (RT-qPCR). Protein expression was detected by western blot. Lysosome biogenesis was determined using immunofluorescence. The binding sites of transcription factor EB (TFEB) on the promoter of ferritin heavy chain 1 (FTH1) were predicted by the online dataset JASPAR and confirmed by luciferase and chromatin immunoprecipitation (ChIP) assays. Cell death was determined using propidium iodide (PI) and TdT-mediated dUTP nick-end labeling (TUNEL) staining. The results showed that PTPRC was significantly overexpressed in OS tissues and cells. PTPRC knockdown promoted the phosphorylation and nuclear translocation of TFEB. Moreover, PTPRC knockdown markedly promoted lysosome biogenesis and the accumulation of ferrous ion (Fe2+), whereas decreased the release of glutathione (GSH). Besides, PTPRC knockdown significantly promoted autophagy and downregulated mRNA expression of FTH1 and ferritin light chain (FTL). Additionally, TFEB transcriptionally inactivated FTH1. PTPRC knockdown significantly promoted the ferroptosis of OS cells, which was markedly alleviated by TFEB shRNA. Taken together, PTPRC knockdown-mediated TFEB phosphorylation and translocation dramatically promoted lysosome biogenesis, ferritinophagy, as well as the ferroptosis of OS cells via regulating FTH1/FTL signaling. Therefore, PTPRC/TFEB/FTH1 signaling may be a potential target for OS.
Collapse
Affiliation(s)
- Yan Shao
- Jingzhou Hospital Affiliated to Yangtze University, No.26 Chuyuan Avenue, Jingzhou District, Jingzhou City, 434020, Hubei Province, China.
| | - Xiao Zuo
- Jingzhou Hospital Affiliated to Yangtze University, No.26 Chuyuan Avenue, Jingzhou District, Jingzhou City, 434020, Hubei Province, China
| |
Collapse
|
25
|
Kalykaki M, Rubio-Tomás T, Tavernarakis N. The role of mitochondria in cytokine and chemokine signalling during ageing. Mech Ageing Dev 2024; 222:111993. [PMID: 39307464 DOI: 10.1016/j.mad.2024.111993] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Revised: 09/15/2024] [Accepted: 09/17/2024] [Indexed: 09/28/2024]
Abstract
Ageing is accompanied by a persistent, low-level inflammation, termed "inflammageing", which contributes to the pathogenesis of age-related diseases. Mitochondria fulfil multiple roles in host immune responses, while mitochondrial dysfunction, a hallmark of ageing, has been shown to promote chronic inflammatory states by regulating the production of cytokines and chemokines. In this review, we aim to disentangle the molecular mechanisms underlying this process. We describe the role of mitochondrial signalling components such as mitochondrial DNA, mitochondrial RNA, N-formylated peptides, ROS, cardiolipin, cytochrome c, mitochondrial metabolites, potassium efflux and mitochondrial calcium in the age-related immune system activation. Furthermore, we discuss the effect of age-related decline in mitochondrial quality control mechanisms, including mitochondrial biogenesis, dynamics, mitophagy and UPRmt, in inflammatory states upon ageing. In addition, we focus on the dynamic relationship between mitochondrial dysfunction and cellular senescence and its role in regulating the secretion of pro-inflammatory molecules by senescent cells. Finally, we review the existing literature regarding mitochondrial dysfunction and inflammation in specific age-related pathological conditions, including neurodegenerative diseases (Alzheimer's and Parkinson's disease, and amyotrophic lateral sclerosis), osteoarthritis and sarcopenia.
Collapse
Affiliation(s)
- Maria Kalykaki
- Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology - Hellas, Heraklion, Crete GR-70013, Greece
| | - Teresa Rubio-Tomás
- Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology - Hellas, Heraklion, Crete GR-70013, Greece
| | - Nektarios Tavernarakis
- Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology - Hellas, Heraklion, Crete GR-70013, Greece; Division of Basic Sciences, School of Medicine, University of Crete, Heraklion, Crete GR-71003, Greece.
| |
Collapse
|
26
|
Guo D, Liu Z, Zhou J, Ke C, Li D. Significance of Programmed Cell Death Pathways in Neurodegenerative Diseases. Int J Mol Sci 2024; 25:9947. [PMID: 39337436 PMCID: PMC11432010 DOI: 10.3390/ijms25189947] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2024] [Revised: 09/07/2024] [Accepted: 09/12/2024] [Indexed: 09/30/2024] Open
Abstract
Programmed cell death (PCD) is a form of cell death distinct from accidental cell death (ACD) and is also referred to as regulated cell death (RCD). Typically, PCD signaling events are precisely regulated by various biomolecules in both spatial and temporal contexts to promote neuronal development, establish neural architecture, and shape the central nervous system (CNS), although the role of PCD extends beyond the CNS. Abnormalities in PCD signaling cascades contribute to the irreversible loss of neuronal cells and function, leading to the onset and progression of neurodegenerative diseases. In this review, we summarize the molecular processes and features of different modalities of PCD, including apoptosis, necroptosis, pyroptosis, ferroptosis, cuproptosis, and other novel forms of PCD, and their effects on the pathogenesis of neurodegenerative diseases, such as Alzheimer's disease (AD), Parkinson's disease (PD), Huntington's disease (HD), amyotrophic lateral sclerosis (ALS), spinal muscular atrophy (SMA), multiple sclerosis (MS), traumatic brain injury (TBI), and stroke. Additionally, we examine the key factors involved in these PCD signaling pathways and discuss the potential for their development as therapeutic targets and strategies. Therefore, therapeutic strategies targeting the inhibition or facilitation of PCD signaling pathways offer a promising approach for clinical applications in treating neurodegenerative diseases.
Collapse
Affiliation(s)
- Dong Guo
- College of Life Science, Fujian Normal University Qishan Campus, Fuzhou 350117, China
- Fujian Key Laboratory of Innate Immune Biology, Biomedical Research Center of South China, Fujian Normal University Qishan Campus, Fuzhou 350117, China
| | - Zhihao Liu
- College of Life Science, Fujian Normal University Qishan Campus, Fuzhou 350117, China
- Fujian Key Laboratory of Innate Immune Biology, Biomedical Research Center of South China, Fujian Normal University Qishan Campus, Fuzhou 350117, China
| | - Jinglin Zhou
- College of Life Science, Fujian Normal University Qishan Campus, Fuzhou 350117, China
- Fujian Key Laboratory of Innate Immune Biology, Biomedical Research Center of South China, Fujian Normal University Qishan Campus, Fuzhou 350117, China
| | - Chongrong Ke
- College of Life Science, Fujian Normal University Qishan Campus, Fuzhou 350117, China
| | - Daliang Li
- College of Life Science, Fujian Normal University Qishan Campus, Fuzhou 350117, China
- Fujian Key Laboratory of Innate Immune Biology, Biomedical Research Center of South China, Fujian Normal University Qishan Campus, Fuzhou 350117, China
| |
Collapse
|
27
|
Nixon RA. Autophagy-lysosomal-associated neuronal death in neurodegenerative disease. Acta Neuropathol 2024; 148:42. [PMID: 39259382 PMCID: PMC11418399 DOI: 10.1007/s00401-024-02799-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Revised: 08/30/2024] [Accepted: 08/31/2024] [Indexed: 09/13/2024]
Abstract
Autophagy, the major lysosomal pathway for degrading damaged or obsolete constituents, protects neurons by eliminating toxic organelles and peptides, restoring nutrient and energy homeostasis, and inhibiting apoptosis. These functions are especially vital in neurons, which are postmitotic and must survive for many decades while confronting mounting challenges of cell aging. Autophagy failure, especially related to the declining lysosomal ("phagy") functions, heightens the neuron's vulnerability to genetic and environmental factors underlying Alzheimer's disease (AD) and other late-age onset neurodegenerative diseases. Components of the global autophagy-lysosomal pathway and the closely integrated endolysosomal system are increasingly implicated as primary targets of these disorders. In AD, an imbalance between heightened autophagy induction and diminished lysosomal function in highly vulnerable pyramidal neuron populations yields an intracellular lysosomal build-up of undegraded substrates, including APP-βCTF, an inhibitor of lysosomal acidification, and membrane-damaging Aβ peptide. In the most compromised of these neurons, β-amyloid accumulates intraneuronally in plaque-like aggregates that become extracellular senile plaques when these neurons die, reflecting an "inside-out" origin of amyloid plaques seen in human AD brain and in mouse models of AD pathology. In this review, the author describes the importance of lysosomal-dependent neuronal cell death in AD associated with uniquely extreme autophagy pathology (PANTHOS) which is described as triggered by lysosomal membrane permeability during the earliest "intraneuronal" stage of AD. Effectors of other cell death cascades, notably calcium-activated calpains and protein kinases, contribute to lysosomal injury that induces leakage of cathepsins and activation of additional death cascades. Subsequent events in AD, such as microglial invasion and neuroinflammation, induce further cytotoxicity. In major neurodegenerative disease models, neuronal death and ensuing neuropathologies are substantially remediable by reversing underlying primary lysosomal deficits, thus implicating lysosomal failure and autophagy dysfunction as primary triggers of lysosomal-dependent cell death and AD pathogenesis and as promising therapeutic targets.
Collapse
Affiliation(s)
- Ralph A Nixon
- Center for Dementia Research, Nathan Kline Institute, Orangeburg, NY, 10962, USA.
- Department of Psychiatry, New York University Grossman School of Medicine, New York, NY, 10016, USA.
- Department of Cell Biology, New York University Grossman School of Medicine, New York, NY, 10016, USA.
- Neuroscience Institute, New York University, New York, NY, 10012, USA.
| |
Collapse
|
28
|
Liu H, Xie Z, Gao X, Wei L, Li M, Lin Z, Huang X. Lysosomal dysfunction-derived autophagy impairment of gingival epithelial cells in diabetes-associated periodontitis with altered protein acetylation. Cell Signal 2024; 121:111273. [PMID: 38950874 DOI: 10.1016/j.cellsig.2024.111273] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 06/08/2024] [Accepted: 06/23/2024] [Indexed: 07/03/2024]
Abstract
Diabetes-associated periodontitis (DP) presents severe inflammation and resistance to periodontal conventional treatment, presenting a significant challenge in clinical management. In this study, we investigated the underlying mechanism driving the hyperinflammatory response in gingival epithelial cells (GECs) of DP patients. Our findings indicate that lysosomal dysfunction under high glucose conditions leads to the blockage of autophagy flux, exacerbating inflammatory response in GECs. Single-cell RNA sequencing and immunohistochemistry analyses of clinical gingival epithelia revealed dysregulation in the lysosome pathway characterized by reduced levels of lysosome-associated membrane glycoprotein 2 (LAMP2) and V-type proton ATPase 16 kDa proteolipid subunit c (ATP6V0C) in subjects with DP. In vitro stimulation of human gingival epithelial cells (HGECs) with a hyperglycemic microenvironment showed elevated release of proinflammatory cytokines, compromised lysosomal acidity and blocked autophagy. Moreover, HGECs with deficiency in ATP6V0C demonstrated impaired autophagy and heightened inflammatory response, mirroring the effects of high glucose stimulation. Proteomic analysis of acetylation modifications identified altered acetylation levels in 28 autophagy-lysosome pathway-related proteins and 37 sites in HGECs subjected to high glucose stimulation or siATP6V0C. Overall, our finding highlights the pivotal role of lysosome impairment in autophagy obstruction in DP and suggests a potential impact of altered acetylation of relevant proteins on the interplay between lysosome dysfunction and autophagy blockage. These insights may pave the way for the development of effective therapeutic strategies against DP.
Collapse
Affiliation(s)
- Hui Liu
- Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, Guangdong, 510055, P. R. China
| | - Zhuo Xie
- Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, Guangdong, 510055, P. R. China
| | - Xianling Gao
- Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, Guangdong, 510055, P. R. China
| | - Linhesheng Wei
- Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, Guangdong, 510055, P. R. China
| | - Mengdi Li
- Department of Periodontology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, College of Stomatology, Shanghai Jiao Tong University; National Center for Stomatology, National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology; Shanghai Research Institute of Stomatology, Shanghai 200011, China
| | - Zhengmei Lin
- Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, Guangdong, 510055, P. R. China.
| | - Xin Huang
- Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, Guangdong, 510055, P. R. China.
| |
Collapse
|
29
|
Ye H, Wu L, Liu Y. Iron metabolism in doxorubicin-induced cardiotoxicity: From mechanisms to therapies. Int J Biochem Cell Biol 2024; 174:106632. [PMID: 39053765 DOI: 10.1016/j.biocel.2024.106632] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Revised: 07/22/2024] [Accepted: 07/22/2024] [Indexed: 07/27/2024]
Abstract
Doxorubicin (DOX) is an anti-tumor agent for chemotherapy, but its use is often hindered by the severe and life-threatening side effect of cardiovascular toxicity. In recent years, studies have focused on dysregulated iron metabolism and ferroptosis, a unique type of cell death induced by iron overload, as key players driving the development of DOX-induced cardiotoxicity (DIC). Recent advances have demonstrated that DOX disturbs normal cellular iron metabolism, resulting in excessive iron accumulation and ferroptosis in cardiomyocytes. This review will explore how dysregulated iron homeostasis and ferroptosis drive the progression of DIC. We will also discuss the current approaches to target iron metabolism and ferroptosis to mitigate DIC. Besides, we will discuss the limitations and challenges for clinical translation for these therapeutic regimens.
Collapse
Affiliation(s)
- Hua Ye
- Department of Burns & Plastic and Wound Repair, Ganzhou People's Hospital, Ganzhou, Jiangxi 341000, China.
| | - Lin Wu
- Department of Cardiology and Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital Fudan University, Shanghai 200032, China; National Clinical Research Center for Interventional Medicine, Shanghai 200032, China
| | - Yanmei Liu
- Laboratory Medicine, First Affiliated Hospital of Gannan Medical University, Ganzhou 341000, China
| |
Collapse
|
30
|
Delgado-Martín S, Martínez-Ruiz A. The role of ferroptosis as a regulator of oxidative stress in the pathogenesis of ischemic stroke. FEBS Lett 2024; 598:2160-2173. [PMID: 38676284 DOI: 10.1002/1873-3468.14894] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Revised: 03/25/2024] [Accepted: 04/02/2024] [Indexed: 04/28/2024]
Abstract
Ferroptosis is a unique form of cell death that was first described in 2012 and plays a significant role in various diseases, including neurodegenerative conditions. It depends on a dysregulation of cellular iron metabolism, which increases free, redox-active, iron that can trigger Fenton reactions, generating hydroxyl radicals that damage cells through oxidative stress and lipid peroxidation. Lipid peroxides, resulting mainly from unsaturated fatty acids, damage cells by disrupting membrane integrity and propagating cell death signals. Moreover, lipid peroxide degradation products can further affect cellular components such as DNA, proteins, and amines. In ischemic stroke, where blood flow to the brain is restricted, there is increased iron absorption, oxidative stress, and compromised blood-brain barrier integrity. Imbalances in iron-transport and -storage proteins increase lipid oxidation and contribute to neuronal damage, thus pointing to the possibility of brain cells, especially neurons, dying from ferroptosis. Here, we review the evidence showing a role of ferroptosis in ischemic stroke, both in recent studies directly assessing this type of cell death, as well as in previous studies showing evidence that can now be revisited with our new knowledge on ferroptosis mechanisms. We also review the efforts made to target ferroptosis in ischemic stroke as a possible treatment to mitigate cellular damage and death.
Collapse
Affiliation(s)
- Susana Delgado-Martín
- Unidad de Investigación, Hospital Santa Cristina, Instituto de Investigación Sanitaria Princesa (IIS-IP), Madrid, Spain
| | - Antonio Martínez-Ruiz
- Unidad de Investigación, Hospital Santa Cristina, Instituto de Investigación Sanitaria Princesa (IIS-IP), Madrid, Spain
- Departamento de Bioquímica y Biología Molecular, Facultad de Farmacia, Universidad Complutense de Madrid, Spain
| |
Collapse
|
31
|
Falace A, Volpedo G, Scala M, Zara F, Striano P, Fassio A. V-ATPase Dysfunction in the Brain: Genetic Insights and Therapeutic Opportunities. Cells 2024; 13:1441. [PMID: 39273013 PMCID: PMC11393946 DOI: 10.3390/cells13171441] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2024] [Revised: 08/23/2024] [Accepted: 08/25/2024] [Indexed: 09/15/2024] Open
Abstract
Vacuolar-type ATPase (v-ATPase) is a multimeric protein complex that regulates H+ transport across membranes and intra-cellular organelle acidification. Catabolic processes, such as endocytic degradation and autophagy, strictly rely on v-ATPase-dependent luminal acidification in lysosomes. The v-ATPase complex is expressed at high levels in the brain and its impairment triggers neuronal dysfunction and neurodegeneration. Due to their post-mitotic nature and highly specialized function and morphology, neurons display a unique vulnerability to lysosomal dyshomeostasis. Alterations in genes encoding subunits composing v-ATPase or v-ATPase-related proteins impair brain development and synaptic function in animal models and underlie genetic diseases in humans, such as encephalopathies, epilepsy, as well as neurodevelopmental, and degenerative disorders. This review presents the genetic and functional evidence linking v-ATPase subunits and accessory proteins to various brain disorders, from early-onset developmental epileptic encephalopathy to neurodegenerative diseases. We highlight the latest emerging therapeutic strategies aimed at mitigating lysosomal defects associated with v-ATPase dysfunction.
Collapse
Affiliation(s)
- Antonio Falace
- Pediatric Neurology and Muscular Diseases Unit, IRCCS Istituto Giannina Gaslini, 16147 Genoa, Italy;
| | - Greta Volpedo
- Department of Neurosciences, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health, University of Genoa, 16132 Genoa, Italy; (G.V.)
| | - Marcello Scala
- Department of Neurosciences, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health, University of Genoa, 16132 Genoa, Italy; (G.V.)
- Medical Genetics Unit, IRCCS Istituto Giannina Gaslini, 16147 Genoa, Italy
| | - Federico Zara
- Department of Neurosciences, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health, University of Genoa, 16132 Genoa, Italy; (G.V.)
- Medical Genetics Unit, IRCCS Istituto Giannina Gaslini, 16147 Genoa, Italy
| | - Pasquale Striano
- Pediatric Neurology and Muscular Diseases Unit, IRCCS Istituto Giannina Gaslini, 16147 Genoa, Italy;
- Department of Neurosciences, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health, University of Genoa, 16132 Genoa, Italy; (G.V.)
| | - Anna Fassio
- Department of Experimental Medicine, University of Genoa, 16132 Genoa, Italy
- IRCCS, Ospedale Policlinico San Martino, 16132 Genoa, Italy
| |
Collapse
|
32
|
Agostini F, Sgalletta B, Bisaglia M. Iron Dyshomeostasis in Neurodegeneration with Brain Iron Accumulation (NBIA): Is It the Cause or the Effect? Cells 2024; 13:1376. [PMID: 39195264 PMCID: PMC11352641 DOI: 10.3390/cells13161376] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Revised: 08/09/2024] [Accepted: 08/14/2024] [Indexed: 08/29/2024] Open
Abstract
Iron is an essential metal ion implicated in several cellular processes. However, the reactive nature of iron renders this metal ion potentially dangerous for cells, and its levels need to be tightly controlled. Alterations in the intracellular concentration of iron are associated with different neuropathological conditions, including neurodegeneration with brain iron accumulation (NBIA). As the name suggests, NBIA encompasses a class of rare and still poorly investigated neurodegenerative disorders characterized by an abnormal accumulation of iron in the brain. NBIA is mostly a genetic pathology, and to date, 10 genes have been linked to familial forms of NBIA. In the present review, after the description of the principal mechanisms implicated in iron homeostasis, we summarize the research data concerning the pathological mechanisms underlying the genetic forms of NBIA and discuss the potential involvement of iron in such processes. The picture that emerges is that, while iron overload can contribute to the pathogenesis of NBIA, it does not seem to be the causal factor in most forms of the pathology. The onset of these pathologies is rather caused by a combination of processes involving the interplay between lipid metabolism, mitochondrial functions, and autophagic activity, eventually leading to iron dyshomeostasis.
Collapse
Affiliation(s)
- Francesco Agostini
- Department of Biology, University of Padova, Via Ugo Bassi 58/B, 35131 Padova, Italy;
| | - Bibiana Sgalletta
- Department of Biology, University of Padova, Via Ugo Bassi 58/B, 35131 Padova, Italy;
| | - Marco Bisaglia
- Department of Biology, University of Padova, Via Ugo Bassi 58/B, 35131 Padova, Italy;
- Centro Studi per la Neurodegenerazione (CESNE), University of Padova, 35121 Padova, Italy
| |
Collapse
|
33
|
Cheng C, Xing Z, Zhang W, Zheng L, Zhao H, Zhang X, Ding Y, Qiao T, Li Y, Meyron-Holtz EG, Missirlis F, Fan Z, Li K. Iron regulatory protein 2 contributes to antimicrobial immunity by preserving lysosomal function in macrophages. Proc Natl Acad Sci U S A 2024; 121:e2321929121. [PMID: 39047035 PMCID: PMC11295080 DOI: 10.1073/pnas.2321929121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Accepted: 06/04/2024] [Indexed: 07/27/2024] Open
Abstract
Colorectal cancer and Crohn's disease patients develop pyogenic liver abscesses due to failures of immune cells to fight off bacterial infections. Here, we show that mice lacking iron regulatory protein 2 (Irp2), globally (Irp2-/-) or myeloid cell lineage (Lysozyme 2 promoter-driven, LysM)-specifically (Irp2ΔLysM), are highly susceptible to liver abscesses when the intestinal tissue was injured with dextran sodium sulfate treatment. Further studies demonstrated that Irp2 is required for lysosomal acidification and biogenesis, both of which are crucial for bacterial clearance. In Irp2-deficient liver tissue or macrophages, the nuclear location of transcription factor EB (Tfeb) was remarkably reduced, leading to the downregulation of Tfeb target genes that encode critical components for lysosomal biogenesis. Tfeb mislocalization was reversed by hypoxia-inducible factor 2 inhibitor PT2385 and, independently, through inhibition of lactic acid production. These experimental findings were confirmed clinically in patients with Crohn's disease and through bioinformatic searches in databases from Crohn's disease or ulcerative colitis biopsies showing loss of IRP2 and transcription factor EB (TFEB)-dependent lysosomal gene expression. Overall, our study highlights a mechanism whereby Irp2 supports nuclear translocation of Tfeb and lysosomal function, preserving macrophage antimicrobial activity and protecting the liver against invading bacteria during intestinal inflammation.
Collapse
Affiliation(s)
- Chen Cheng
- State Key Laboratory of Pharmaceutical Biotechnology, Jiangsu Key Laboratory of Molecular Medicine, Medical School, Nanjing University, Nanjing210093, People’s Republic of China
| | - Zhiyao Xing
- State Key Laboratory of Pharmaceutical Biotechnology, Jiangsu Key Laboratory of Molecular Medicine, Medical School, Nanjing University, Nanjing210093, People’s Republic of China
| | - Wenxin Zhang
- State Key Laboratory of Pharmaceutical Biotechnology, Jiangsu Key Laboratory of Molecular Medicine, Medical School, Nanjing University, Nanjing210093, People’s Republic of China
| | - Lei Zheng
- Department of Vascular Surgery, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing210093, People’s Republic of China
| | - Hongting Zhao
- State Key Laboratory of Pharmaceutical Biotechnology, Jiangsu Key Laboratory of Molecular Medicine, Medical School, Nanjing University, Nanjing210093, People’s Republic of China
| | - Xiao Zhang
- State Key Laboratory of Pharmaceutical Biotechnology, Jiangsu Key Laboratory of Molecular Medicine, Medical School, Nanjing University, Nanjing210093, People’s Republic of China
| | - Yibing Ding
- State Key Laboratory of Pharmaceutical Biotechnology, Jiangsu Key Laboratory of Molecular Medicine, Medical School, Nanjing University, Nanjing210093, People’s Republic of China
| | - Tong Qiao
- Department of Vascular Surgery, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing210093, People’s Republic of China
| | - Yi Li
- Department of General Surgery, Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing210093, People’s Republic of China
| | - Esther G. Meyron-Holtz
- Faculty of Biotechnology and Food Engineering, Technion Israel Institute of Technology, Haifa32000, Israel
| | - Fanis Missirlis
- Department of Physiology, Biophysics and Neuroscience, Cinvestav, Mexico07360, Mexico
| | - Zhiwen Fan
- Department of Pathology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing210093, People’s Republic of China
| | - Kuanyu Li
- State Key Laboratory of Pharmaceutical Biotechnology, Jiangsu Key Laboratory of Molecular Medicine, Medical School, Nanjing University, Nanjing210093, People’s Republic of China
| |
Collapse
|
34
|
Larrue C, Mouche S, Angelino P, Sajot M, Birsen R, Kosmider O, Mckee T, Vergez F, Recher C, Mas VMD, Gu Q, Xu J, Tsantoulis P, Sarry JE, Tamburini J. Targeting ferritinophagy impairs quiescent cancer stem cells in acute myeloid leukemia in vitro and in vivo models. Sci Transl Med 2024; 16:eadk1731. [PMID: 39047119 DOI: 10.1126/scitranslmed.adk1731] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Revised: 03/18/2024] [Accepted: 07/02/2024] [Indexed: 07/27/2024]
Abstract
Acute myeloid leukemia (AML) remains a challenging hematological malignancy with poor prognosis and limited treatment options. Leukemic stem cells (LSCs) contribute to therapeutic failure, relapse, and adverse outcome. This study investigates the role of quiescence and related molecular mechanisms in AML pathogenesis and LSC functions to identify potential therapeutic targets. Transcriptomic analysis revealed that the LSC-enriched quiescent cell population has a distinct gene signature with prognostic relevance in patients with AML. Mechanistically, quiescent blasts exhibit increased autophagic activity, which contributes to their sustained viability. Proteomic profiling uncovered differential requirements for iron metabolism between quiescent and cycling cells, revealing a unique dependence of quiescent cells on ferritinophagy, a selective form of autophagy mediated by nuclear receptor coactivator 4 (NCOA4), which regulates iron bioavailability. We evaluated the therapeutic potential of inhibiting NCOA4-mediated ferritinophagy using genetic knockdown and chemical inhibition approaches. In vitro assays showed that suppression of NCOA4 was toxic to leukemic blasts, particularly the CD34+CD38- LSC-enriched population, without affecting normal CD34+ hematopoietic progenitors. In vivo studies using murine patient-derived xenograft (PDX) models of AML confirmed that NCOA4 inhibition reduced tumor burden and impaired LSC viability and self-renewal, indicating a specific vulnerability of these cells to ferritinophagy disruption. Our findings underscore the role of NCOA4-mediated ferritinophagy in maintaining LSC quiescence and function and suggest that targeting this pathway may be an effective therapeutic strategy for AML. This study highlights the potential of NCOA4 inhibition to improve AML outcomes and paves the way for future research and clinical development.
Collapse
Affiliation(s)
- Clement Larrue
- Centre for Translational Research in Onco-Hematology, Faculty of Medicine, University of Geneva, and Swiss Cancer Centre Leman, 1206 Geneva, Switzerland
- Centre de Recherches en Cancérologie de Toulouse, Université de Toulouse, Inserm U1037, CNRS U5077, 31100 Toulouse, France
- LabEx Toucan, 31100 Toulouse, France
- Équipe labellisée Ligue Nationale Contre le Cancer 2023, 31100 Toulouse, France
| | - Sarah Mouche
- Centre for Translational Research in Onco-Hematology, Faculty of Medicine, University of Geneva, and Swiss Cancer Centre Leman, 1206 Geneva, Switzerland
| | - Paolo Angelino
- Centre for Translational Research in Onco-Hematology, Faculty of Medicine, University of Geneva, and Swiss Cancer Centre Leman, 1206 Geneva, Switzerland
- Translational Data Science, SIB Swiss Institute of Bioinformatics, 1015 Lausanne, Switzerland
| | - Maxime Sajot
- Centre de Recherches en Cancérologie de Toulouse, Université de Toulouse, Inserm U1037, CNRS U5077, 31100 Toulouse, France
- LabEx Toucan, 31100 Toulouse, France
- Équipe labellisée Ligue Nationale Contre le Cancer 2023, 31100 Toulouse, France
| | - Rudy Birsen
- Centre for Translational Research in Onco-Hematology, Faculty of Medicine, University of Geneva, and Swiss Cancer Centre Leman, 1206 Geneva, Switzerland
- Université de Paris, Institut Cochin, CNRS U8104, Inserm U1016, 75014 Paris, France
- Assistance Publique-Hôpitaux de Paris, Hôpitaux Universitaires Paris Centre, 75014 Paris, France
| | - Olivier Kosmider
- Université de Paris, Institut Cochin, CNRS U8104, Inserm U1016, 75014 Paris, France
- Assistance Publique-Hôpitaux de Paris, Hôpitaux Universitaires Paris Centre, 75014 Paris, France
| | - Thomas Mckee
- Division of Clinical Pathology, Diagnostic Department, Geneva University Hospitals, 1205 Geneva, Switzerland
| | - François Vergez
- Centre Hospitalier Universitaire de Toulouse, Institut Universitaire du Cancer de Toulouse Oncopole, Service d'Hématologie, 31100 Toulouse, France
| | - Christian Recher
- Centre Hospitalier Universitaire de Toulouse, Institut Universitaire du Cancer de Toulouse Oncopole, Service d'Hématologie, 31100 Toulouse, France
| | - Véronique Mansat-De Mas
- Centre Hospitalier Universitaire de Toulouse, Institut Universitaire du Cancer de Toulouse Oncopole, Service d'Hématologie, 31100 Toulouse, France
| | - Qiong Gu
- Research Center for Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Jun Xu
- Research Center for Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Petros Tsantoulis
- Centre for Translational Research in Onco-Hematology, Faculty of Medicine, University of Geneva, and Swiss Cancer Centre Leman, 1206 Geneva, Switzerland
| | - Jean-Emmanuel Sarry
- Centre de Recherches en Cancérologie de Toulouse, Université de Toulouse, Inserm U1037, CNRS U5077, 31100 Toulouse, France
- LabEx Toucan, 31100 Toulouse, France
- Équipe labellisée Ligue Nationale Contre le Cancer 2023, 31100 Toulouse, France
| | - Jerome Tamburini
- Centre for Translational Research in Onco-Hematology, Faculty of Medicine, University of Geneva, and Swiss Cancer Centre Leman, 1206 Geneva, Switzerland
- Université de Paris, Institut Cochin, CNRS U8104, Inserm U1016, 75014 Paris, France
- Oncology Department, Geneva University Hospitals, 1205 Geneva, Switzerland
| |
Collapse
|
35
|
Agostini F, Pereyra L, Dale J, Yambire KF, Maglioni S, Schiavi A, Ventura N, Milosevic I, Raimundo N. Upregulation of cholesterol synthesis by lysosomal defects requires a functional mitochondrial respiratory chain. J Biol Chem 2024; 300:107403. [PMID: 38782205 PMCID: PMC11254723 DOI: 10.1016/j.jbc.2024.107403] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Revised: 04/27/2024] [Accepted: 05/03/2024] [Indexed: 05/25/2024] Open
Abstract
Mitochondria and lysosomes are two organelles that carry out both signaling and metabolic roles in cells. Recent evidence has shown that mitochondria and lysosomes are dependent on one another, as primary defects in one cause secondary defects in the other. Although there are functional impairments in both cases, the signaling consequences of primary mitochondrial dysfunction and lysosomal defects are dissimilar. Here, we used RNA sequencing to obtain transcriptomes from cells with primary mitochondrial or lysosomal defects to identify the global cellular consequences associated with mitochondrial or lysosomal dysfunction. We used these data to determine the pathways affected by defects in both organelles, which revealed a prominent role for the cholesterol synthesis pathway. We observed a transcriptional upregulation of this pathway in cellular and murine models of lysosomal defects, while it is transcriptionally downregulated in cellular and murine models of mitochondrial defects. We identified a role for the posttranscriptional regulation of transcription factor SREBF1, a master regulator of cholesterol and lipid biosynthesis, in models of mitochondrial respiratory chain deficiency. Furthermore, we found that retention of Ca2+ in lysosomes of cells with mitochondrial respiratory chain defects contributes to the differential regulation of the cholesterol synthesis pathway in the mitochondrial and lysosomal defects tested. Finally, we verified in vivo, using a model of mitochondria-associated disease in Caenorhabditis elegans that normalization of lysosomal Ca2+ levels results in partial rescue of the developmental delay induced by the respiratory chain deficiency.
Collapse
Affiliation(s)
- Francesco Agostini
- Department of Cellular and Molecular Physiology, Penn State College of Medicine, Hershey, Pennsylvania, USA
| | - Leonardo Pereyra
- Department of Cellular Biochemistry, University Medical Center, Goettingen, Germany
| | - Justin Dale
- Department of Cellular and Molecular Physiology, Penn State College of Medicine, Hershey, Pennsylvania, USA
| | - King Faisal Yambire
- Laboratory of Systems Cancer Biology, The Rockefeller University, New York, New York, USA
| | - Silvia Maglioni
- IUF-Leibniz Research Institute for Environmental Medicine, Duesseldorf, Germany; Institute for Clinical Chemistry and Laboratory Diagnostic, Medical Faculty, Heinrich Heine University, Duesseldorf, Germany
| | - Alfonso Schiavi
- IUF-Leibniz Research Institute for Environmental Medicine, Duesseldorf, Germany
| | - Natascia Ventura
- IUF-Leibniz Research Institute for Environmental Medicine, Duesseldorf, Germany; Institute for Clinical Chemistry and Laboratory Diagnostic, Medical Faculty, Heinrich Heine University, Duesseldorf, Germany
| | - Ira Milosevic
- Centre for Human Genetics, Nuffield Department of Medicine, University of Oxford, Oxford, UK; Multidisciplinary Institute for Ageing, University of Coimbra, Coimbra, Portugal
| | - Nuno Raimundo
- Department of Cellular and Molecular Physiology, Penn State College of Medicine, Hershey, Pennsylvania, USA; Penn State Cancer Institute, Penn State College of Medicine, Hershey, Pennsylvania, USA.
| |
Collapse
|
36
|
Zhi HT, Lu Z, Chen L, Wu JQ, Li L, Hu J, Chen WH. Anticancer efficacy triggered by synergistically modulating the homeostasis of anions and iron: Design, synthesis and biological evaluation of dual-functional squaramide-hydroxamic acid conjugates. Bioorg Chem 2024; 147:107421. [PMID: 38714118 DOI: 10.1016/j.bioorg.2024.107421] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2024] [Revised: 04/12/2024] [Accepted: 04/29/2024] [Indexed: 05/09/2024]
Abstract
Targeting the homeostasis of anions and iron has emerged as a promising therapeutic approach for the treatment of cancers. However, single-targeted agents often fall short of achieving optimal treatment efficacy. Herein we designed and synthesized a series of novel dual-functional squaramide-hydroxamic acid conjugates that are capable of synergistically modulating the homeostasis of anions and iron. Among them, compound 16 exhibited the most potent antiproliferative activity against a panel of selected cancer cell lines, and strong in vivo anti-tumor efficacy. This compound effectively elevated lysosomal pH through anion transport, and reduced the levels of intracellular iron. Compound 16 could disturb autophagy in A549 cells and trigger robust apoptosis. This compound caused cell cycle arrest at the G1/S phase, altered the mitochondrial function and elevated ROS levels. The present findings clearly demonstrated that synergistic modulation of anion and iron homeostasis has high potentials in the development of promising chemotherapeutic agents with dual action against cancers.
Collapse
Affiliation(s)
- Hai-Tao Zhi
- Guangdong Provincial Key Laboratory of Large Animal Models for Biomedicine, School of Pharmacy and Food Engineering, Wuyi University, Jiangmen 529020, PR China
| | - Zhonghui Lu
- Guangdong Provincial Key Laboratory of Large Animal Models for Biomedicine, School of Pharmacy and Food Engineering, Wuyi University, Jiangmen 529020, PR China
| | - Li Chen
- Guangdong Provincial Key Laboratory of Large Animal Models for Biomedicine, School of Pharmacy and Food Engineering, Wuyi University, Jiangmen 529020, PR China
| | - Jia-Qiang Wu
- Guangdong Provincial Key Laboratory of Large Animal Models for Biomedicine, School of Pharmacy and Food Engineering, Wuyi University, Jiangmen 529020, PR China
| | - Lanqing Li
- Guangdong Provincial Key Laboratory of Large Animal Models for Biomedicine, School of Pharmacy and Food Engineering, Wuyi University, Jiangmen 529020, PR China
| | - Jinhui Hu
- Guangdong Provincial Key Laboratory of Large Animal Models for Biomedicine, School of Pharmacy and Food Engineering, Wuyi University, Jiangmen 529020, PR China.
| | - Wen-Hua Chen
- Guangdong Provincial Key Laboratory of Large Animal Models for Biomedicine, School of Pharmacy and Food Engineering, Wuyi University, Jiangmen 529020, PR China.
| |
Collapse
|
37
|
Wu L, Zhang Y, Wang G, Ren J. Molecular Mechanisms and Therapeutic Targeting of Ferroptosis in Doxorubicin-Induced Cardiotoxicity. JACC Basic Transl Sci 2024; 9:811-826. [PMID: 39070280 PMCID: PMC11282888 DOI: 10.1016/j.jacbts.2023.10.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 10/26/2023] [Accepted: 10/27/2023] [Indexed: 07/30/2024]
Abstract
Ferroptosis, an iron-dependent form of regulated cell death, has received increasing attention for its pathophysiologic contribution to the onset and development of doxorubicin-induced cardiotoxicity. Moreover, modulation of ferroptosis with specific inhibitors may provide new therapeutic opportunities for doxorubicin-induced cardiotoxicity. Here, we will review the molecular mechanisms and therapeutic promise of targeting ferroptosis in doxorubicin-induced cardiotoxicity.
Collapse
Affiliation(s)
- Lin Wu
- Department of Cardiology and Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital Fudan University, Shanghai, China
- National Clinical Research Center for Interventional Medicine, Shanghai, China
| | - Yingmei Zhang
- Department of Cardiology and Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital Fudan University, Shanghai, China
- National Clinical Research Center for Interventional Medicine, Shanghai, China
| | - Guizhen Wang
- Department of Emergency, Shanghai Tenth People’s Hospital, School of Medicine Tongji University, Shanghai, China
| | - Jun Ren
- Department of Cardiology and Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital Fudan University, Shanghai, China
- National Clinical Research Center for Interventional Medicine, Shanghai, China
| |
Collapse
|
38
|
Cahill CM, Sarang SS, Bakshi R, Xia N, Lahiri DK, Rogers JT. Neuroprotective Strategies and Cell-Based Biomarkers for Manganese-Induced Toxicity in Human Neuroblastoma (SH-SY5Y) Cells. Biomolecules 2024; 14:647. [PMID: 38927051 PMCID: PMC11201412 DOI: 10.3390/biom14060647] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 04/24/2024] [Accepted: 05/20/2024] [Indexed: 06/28/2024] Open
Abstract
Manganese (Mn) is an essential heavy metal in the human body, while excess Mn leads to neurotoxicity, as observed in this study, where 100 µM of Mn was administered to the human neuroblastoma (SH-SY5Y) cell model of dopaminergic neurons in neurodegenerative diseases. We quantitated pathway and gene changes in homeostatic cell-based adaptations to Mn exposure. Utilizing the Gene Expression Omnibus, we accessed the GSE70845 dataset as a microarray of SH-SY5Y cells published by Gandhi et al. (2018) and applied statistical significance cutoffs at p < 0.05. We report 74 pathway and 10 gene changes with statistical significance. ReactomeGSA analyses demonstrated upregulation of histones (5 out of 10 induced genes) and histone deacetylases as a neuroprotective response to remodel/mitigate Mn-induced DNA/chromatin damage. Neurodegenerative-associated pathway changes occurred. NF-κB signaled protective responses via Sirtuin-1 to reduce neuroinflammation. Critically, Mn activated three pathways implicating deficits in purine metabolism. Therefore, we validated that urate, a purine and antioxidant, mitigated Mn-losses of viability in SH-SY5Y cells. We discuss Mn as a hypoxia mimetic and trans-activator of HIF-1α, the central trans-activator of vascular hypoxic mitochondrial dysfunction. Mn induced a 3-fold increase in mRNA levels for antioxidant metallothionein-III, which was induced 100-fold by hypoxia mimetics deferoxamine and zinc.
Collapse
Affiliation(s)
- Catherine M. Cahill
- Neurochemistry Laboratory, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02129, USA; (C.M.C.); (S.S.S.); (R.B.); (N.X.)
| | - Sanjan S. Sarang
- Neurochemistry Laboratory, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02129, USA; (C.M.C.); (S.S.S.); (R.B.); (N.X.)
| | - Rachit Bakshi
- Neurochemistry Laboratory, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02129, USA; (C.M.C.); (S.S.S.); (R.B.); (N.X.)
| | - Ning Xia
- Neurochemistry Laboratory, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02129, USA; (C.M.C.); (S.S.S.); (R.B.); (N.X.)
| | - Debomoy K. Lahiri
- Department of Psychiatry and Medical & Molecular Genetics, Indiana Alzheimer’s Disease Research Center, Stark Neurosciences Research Institute, Indiana University School of Medicine, Indianapolis, IN 46202, USA;
| | - Jack T. Rogers
- Neurochemistry Laboratory, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02129, USA; (C.M.C.); (S.S.S.); (R.B.); (N.X.)
| |
Collapse
|
39
|
Miki K, Yagi M, Kang D, Kunisaki Y, Yoshimoto K, Uchiumi T. Glucose starvation causes ferroptosis-mediated lysosomal dysfunction. iScience 2024; 27:109735. [PMID: 38706843 PMCID: PMC11067335 DOI: 10.1016/j.isci.2024.109735] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Revised: 01/05/2024] [Accepted: 04/10/2024] [Indexed: 05/07/2024] Open
Abstract
Lysosomes, the hub of metabolic signaling, are associated with various diseases and participate in autophagy by supplying nutrients to cells under nutrient starvation. However, their function and regulation under glucose starvation remain unclear and are studied herein. Under glucose starvation, lysosomal protein expression decreased, leading to the accumulation of damaged lysosomes. Subsequently, cell death occurred via ferroptosis and iron accumulation due to DMT1 degradation. GPX4, a key factor in ferroptosis inhibition located on the outer membrane of lysosomes, accumulated in lysosomes, especially under glucose starvation, to protect cells from ferroptosis. ALDOA, GAPDH, NAMPT, and PGK1 are also located on the outer membrane of lysosomes and participate in lysosomal function. These enzymes did not function effectively under glucose starvation, leading to lysosomal dysfunction and ferroptosis. These findings may facilitate the treatment of lysosomal-related diseases.
Collapse
Affiliation(s)
- Kenji Miki
- Department of Clinical Chemistry and Laboratory Medicine, Graduate School of Medical Sciences, Kyushu University, Higashi-ku, Fukuoka 812-8582, Japan
- Department of Neurosurgery, Graduate School of Medical Sciences, Kyushu University, Higashi-ku, Fukuoka 812-8582, Japan
| | - Mikako Yagi
- Department of Clinical Chemistry and Laboratory Medicine, Graduate School of Medical Sciences, Kyushu University, Higashi-ku, Fukuoka 812-8582, Japan
- Department of Health Sciences, Graduate School of Medical Sciences, Kyushu University, Higashi-ku, Fukuoka 812-8582, Japan
| | - Dongchon Kang
- Department of Clinical Chemistry and Laboratory Medicine, Graduate School of Medical Sciences, Kyushu University, Higashi-ku, Fukuoka 812-8582, Japan
- Kashiigaoka Rehabilitation Hospital, Fukuoka 813-0002, Japan
- Department of Medical Laboratory Science, Faculty of Health Sciences, Junshin Gakuen University, Fukuoka 815-8510, Japan
| | - Yuya Kunisaki
- Department of Clinical Chemistry and Laboratory Medicine, Graduate School of Medical Sciences, Kyushu University, Higashi-ku, Fukuoka 812-8582, Japan
| | - Koji Yoshimoto
- Department of Neurosurgery, Graduate School of Medical Sciences, Kyushu University, Higashi-ku, Fukuoka 812-8582, Japan
| | - Takeshi Uchiumi
- Department of Clinical Chemistry and Laboratory Medicine, Graduate School of Medical Sciences, Kyushu University, Higashi-ku, Fukuoka 812-8582, Japan
- Department of Health Sciences, Graduate School of Medical Sciences, Kyushu University, Higashi-ku, Fukuoka 812-8582, Japan
| |
Collapse
|
40
|
Cairns G, Thumiah-Mootoo M, Abbasi MR, Gourlay M, Racine J, Larionov N, Prola A, Khacho M, Burelle Y. PINK1 deficiency alters muscle stem cell fate decision and muscle regenerative capacity. Stem Cell Reports 2024; 19:673-688. [PMID: 38579709 PMCID: PMC11103785 DOI: 10.1016/j.stemcr.2024.03.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Revised: 03/06/2024] [Accepted: 03/07/2024] [Indexed: 04/07/2024] Open
Abstract
Maintenance of mitochondrial function plays a crucial role in the regulation of muscle stem cell (MuSC), but the underlying mechanisms remain ill defined. In this study, we monitored mitophagy in MuSCS under various myogenic states and examined the role of PINK1 in maintaining regenerative capacity. Results indicate that quiescent MuSCs actively express mitophagy genes and exhibit a measurable mitophagy flux and prominent mitochondrial localization to autophagolysosomes, which become rapidly decreased during activation. Genetic disruption of Pink1 in mice reduces PARKIN recruitment to mitochondria and mitophagy in quiescent MuSCs, which is accompanied by premature activation/commitment at the expense of self-renewal and progressive loss of muscle regeneration, but unhindered proliferation and differentiation capacity. Results also show that impaired fate decisions in PINK1-deficient MuSCs can be restored by scavenging excess mitochondrial ROS. These data shed light on the regulation of mitophagy in MuSCs and position PINK1 as an important regulator of their mitochondrial properties and fate decisions.
Collapse
Affiliation(s)
- George Cairns
- Interdisciplinary School of Health Sciences, Faculty of Health Sciences, University of Ottawa, Ottawa, ON, Canada
| | - Madhavee Thumiah-Mootoo
- Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, ON, Canada
| | - Mah Rukh Abbasi
- Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, ON, Canada
| | - Melissa Gourlay
- Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, ON, Canada
| | - Jeremy Racine
- Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, ON, Canada
| | - Nikita Larionov
- Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, ON, Canada
| | - Alexandre Prola
- Department of Cell Physiology and Metabolism, University of Geneva, Switzerland
| | - Mireille Khacho
- Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, ON, Canada; Ottawa Institute of Systems Biology (OISB), Faculty of Medicine, University of Ottawa, Ottawa, ON, Canada; Center for Neuromuscular Disease (CNMD), Faculty of Medicine, University of Ottawa, Ottawa, ON, Canada
| | - Yan Burelle
- Interdisciplinary School of Health Sciences, Faculty of Health Sciences, University of Ottawa, Ottawa, ON, Canada; Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, ON, Canada.
| |
Collapse
|
41
|
Mantle D, Hargreaves IP. Coenzyme Q10 and Autoimmune Disorders: An Overview. Int J Mol Sci 2024; 25:4576. [PMID: 38674161 PMCID: PMC11049925 DOI: 10.3390/ijms25084576] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Revised: 04/13/2024] [Accepted: 04/20/2024] [Indexed: 04/28/2024] Open
Abstract
Some 90 autoimmune disorders have been described in medical literature, affecting most of the tissues within the body. Autoimmune disorders may be difficult to treat, and there is a need to develop novel therapeutic strategies for these disorders. Autoimmune disorders are characterised by mitochondrial dysfunction, oxidative stress, and inflammation; there is therefore a rationale for a role for coenzyme Q10 in the management of these disorders, on the basis of its key role in normal mitochondrial function, as an antioxidant, and as an anti-inflammatory agent. In this article, we have therefore reviewed the potential role of CoQ10, in terms of both deficiency and/or supplementation, in a range of autoimmune disorders.
Collapse
Affiliation(s)
| | - Iain P. Hargreaves
- School of Pharmacy and Biomolecular Sciences, Liverpool John Moores University, Liverpool L3 3AF, UK
| |
Collapse
|
42
|
LeVine SM. Exploring Potential Mechanisms Accounting for Iron Accumulation in the Central Nervous System of Patients with Alzheimer's Disease. Cells 2024; 13:689. [PMID: 38667304 PMCID: PMC11049304 DOI: 10.3390/cells13080689] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Revised: 04/12/2024] [Accepted: 04/14/2024] [Indexed: 04/28/2024] Open
Abstract
Elevated levels of iron occur in both cortical and subcortical regions of the CNS in patients with Alzheimer's disease. This accumulation is present early in the disease process as well as in more advanced stages. The factors potentially accounting for this increase are numerous, including: (1) Cells increase their uptake of iron and reduce their export of iron, as iron becomes sequestered (trapped within the lysosome, bound to amyloid β or tau, etc.); (2) metabolic disturbances, such as insulin resistance and mitochondrial dysfunction, disrupt cellular iron homeostasis; (3) inflammation, glutamate excitotoxicity, or other pathological disturbances (loss of neuronal interconnections, soluble amyloid β, etc.) trigger cells to acquire iron; and (4) following neurodegeneration, iron becomes trapped within microglia. Some of these mechanisms are also present in other neurological disorders and can also begin early in the disease course, indicating that iron accumulation is a relatively common event in neurological conditions. In response to pathogenic processes, the directed cellular efforts that contribute to iron buildup reflect the importance of correcting a functional iron deficiency to support essential biochemical processes. In other words, cells prioritize correcting an insufficiency of available iron while tolerating deposited iron. An analysis of the mechanisms accounting for iron accumulation in Alzheimer's disease, and in other relevant neurological conditions, is put forward.
Collapse
Affiliation(s)
- Steven M LeVine
- Department of Cell Biology and Physiology, University of Kansas Medical Center, 3901 Rainbow Blvd., Mail Stop 3043, Kansas City, KS 66160, USA
| |
Collapse
|
43
|
Feng J, Wang ZX, Bin JL, Chen YX, Ma J, Deng JH, Huang XW, Zhou J, Lu GD. Pharmacological approaches for targeting lysosomes to induce ferroptotic cell death in cancer. Cancer Lett 2024; 587:216728. [PMID: 38431036 DOI: 10.1016/j.canlet.2024.216728] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 01/25/2024] [Accepted: 02/10/2024] [Indexed: 03/05/2024]
Abstract
Lysosomes are crucial organelles responsible for the degradation of cytosolic materials and bulky organelles, thereby facilitating nutrient recycling and cell survival. However, lysosome also acts as an executioner of cell death, including ferroptosis, a distinctive form of regulated cell death that hinges on iron-dependent phospholipid peroxidation. The initiation of ferroptosis necessitates three key components: substrates (membrane phospholipids enriched with polyunsaturated fatty acids), triggers (redox-active irons), and compromised defence mechanisms (GPX4-dependent and -independent antioxidant systems). Notably, iron assumes a pivotal role in ferroptotic cell death, particularly in the context of cancer, where iron and oncogenic signaling pathways reciprocally reinforce each other. Given the lysosomes' central role in iron metabolism, various strategies have been devised to harness lysosome-mediated iron metabolism to induce ferroptosis. These include the re-mobilization of iron from intracellular storage sites such as ferritin complex and mitochondria through ferritinophagy and mitophagy, respectively. Additionally, transcriptional regulation of lysosomal and autophagy genes by TFEB enhances lysosomal function. Moreover, the induction of lysosomal iron overload can lead to lysosomal membrane permeabilization and subsequent cell death. Extensive screening and individually studies have explored pharmacological interventions using clinically available drugs and phytochemical agents. Furthermore, a drug delivery system involving ferritin-coated nanoparticles has been specifically tailored to target cancer cells overexpressing TFRC. With the rapid advancements in understandings the mechanistic underpinnings of ferroptosis and iron metabolism, it is increasingly evident that lysosomes represent a promising target for inducing ferroptosis and combating cancer.
Collapse
Affiliation(s)
- Ji Feng
- School of Public Health, Fudan University, Shanghai, 200032, PR China; Department of Toxicology, School of Public Health, Guangxi Medical University, Nanning, Guangxi Province, 530021, PR China
| | - Zi-Xuan Wang
- Department of Toxicology, School of Public Health, Guangxi Medical University, Nanning, Guangxi Province, 530021, PR China; School of Traditional Chinese Medicine, Capital Medical University, Beijing, 100069, PR China
| | - Jin-Lian Bin
- Department of Toxicology, School of Public Health, Guangxi Medical University, Nanning, Guangxi Province, 530021, PR China
| | - Yong-Xin Chen
- Department of Physiology, School of Preclinical Medicine, Guangxi Medical University, Nanning, Guangxi Province, 530021, PR China; Department of Physiology, School of Preclinical Medicine, Guangxi University of Chinese Medicine, Nanning, Guangxi Province, 530200, PR China
| | - Jing Ma
- Department of Physiology, School of Preclinical Medicine, Guangxi University of Chinese Medicine, Nanning, Guangxi Province, 530200, PR China
| | - Jing-Huan Deng
- Guangxi Colleges and Universities Key Laboratory of Prevention and Control of Highly Prevalent Diseases, School of Public Health, Guangxi Medical University, Nanning, Guangxi, 530021, PR China
| | - Xiao-Wei Huang
- Department of Toxicology, School of Public Health, Guangxi Medical University, Nanning, Guangxi Province, 530021, PR China
| | - Jing Zhou
- Department of Physiology, School of Preclinical Medicine, Guangxi Medical University, Nanning, Guangxi Province, 530021, PR China.
| | - Guo-Dong Lu
- School of Public Health, Fudan University, Shanghai, 200032, PR China; Key Laboratory of Early Prevention and Treatment for Regional High Frequency Tumor (Guangxi Medical University), Ministry of Education, Guangxi Key Laboratory of High-Incidence-Tumor Prevention & Treatment (Guangxi Medical University), Nanning, Guangxi Province, 530021, PR China.
| |
Collapse
|
44
|
Halcrow PW, Quansah DN, Kumar N, Steiner JP, Nath A, Geiger JD. HERV-K (HML-2) Envelope Protein Induces Mitochondrial Depolarization and Neurotoxicity via Endolysosome Iron Dyshomeostasis. J Neurosci 2024; 44:e0826232024. [PMID: 38383499 PMCID: PMC10993035 DOI: 10.1523/jneurosci.0826-23.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Revised: 01/08/2024] [Accepted: 02/10/2024] [Indexed: 02/23/2024] Open
Abstract
Human endogenous retroviruses (HERVs) are associated with the pathogenesis of amyotrophic lateral sclerosis (ALS); a disease characterized by motor neuron degeneration and cell death. The HERV-K subtype HML-2 envelope protein (HERV-K Env) is expressed in the brain, spinal cord, and cerebrospinal fluid of people living with ALS and through CD98 receptor-linked interactions causes neurodegeneration. HERV-K Env-induced increases in oxidative stress are implicated in the pathogenesis of ALS, and ferrous iron (Fe2+) generates reactive oxygen species (ROS). Endolysosome stores of Fe2+ are central to iron trafficking and endolysosome deacidification releases Fe2+ into the cytoplasm. Because HERV-K Env is an arginine-rich protein that is likely endocytosed and arginine is a pH-elevating amino acid, it is important to determine HERV-K Env effects on endolysosome pH and whether HERV-K Env-induced neurotoxicity is downstream of Fe2+ released from endolysosomes. Here, we showed using SH-SY5Y human neuroblastoma cells and primary cultures of human cortical neurons (HCNs, information on age and sex was not available) that HERV-K Env (1) is endocytosed via CD98 receptors, (2) concentration dependently deacidified endolysosomes, (3) decreased endolysosome Fe2+ concentrations, (4) increased cytosolic and mitochondrial Fe2+ and ROS levels, (5) depolarized mitochondrial membrane potential, and (6) induced cell death, effects blocked by an antibody against the CD98 receptor and by the endolysosome iron chelator deferoxamine. Thus, HERV-K Env-induced increases in cytosolic and mitochondrial Fe2+ and ROS as well as cell death appear to be mechanistically caused by HERV-K Env endocytosis, endolysosome deacidification, and endolysosome Fe2+ efflux into the cytoplasm.
Collapse
Affiliation(s)
- Peter W. Halcrow
- Department of Biomedical Sciences, University of North Dakota School of Medicine and Health Sciences, Grand Forks, North Dakota 58202
| | - Darius N.K. Quansah
- Department of Biomedical Sciences, University of North Dakota School of Medicine and Health Sciences, Grand Forks, North Dakota 58202
| | - Nirmal Kumar
- Department of Biomedical Sciences, University of North Dakota School of Medicine and Health Sciences, Grand Forks, North Dakota 58202
| | - Joseph P. Steiner
- Section for Infections of the Nervous System, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, Maryland 20892
| | - Avindra Nath
- Section for Infections of the Nervous System, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, Maryland 20892
| | - Jonathan D. Geiger
- Department of Biomedical Sciences, University of North Dakota School of Medicine and Health Sciences, Grand Forks, North Dakota 58202
| |
Collapse
|
45
|
Terzi EM, Possemato R. Iron, Copper, and Selenium: Cancer's Thing for Redox Bling. Cold Spring Harb Perspect Med 2024; 14:a041545. [PMID: 37932129 PMCID: PMC10982729 DOI: 10.1101/cshperspect.a041545] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2023]
Abstract
Cells require micronutrients for numerous basic functions. Among these, iron, copper, and selenium are particularly critical for redox metabolism, and their importance is heightened during oncogene-driven perturbations in cancer. In this review, which particularly focuses on iron, we describe how these micronutrients are carefully chaperoned about the body and made available to tissues, a process that is designed to limit the toxicity of free iron and copper or by-products of selenium metabolism. We delineate perturbations in iron metabolism and iron-dependent proteins that are observed in cancer, and describe the current approaches being used to target iron metabolism and iron-dependent processes.
Collapse
Affiliation(s)
- Erdem M Terzi
- Department of Pathology, New York University Grossman School of Medicine, New York, New York 10016, USA
- Laura and Isaac Perlmutter Cancer Center, New York, New York 10016, USA
| | - Richard Possemato
- Department of Pathology, New York University Grossman School of Medicine, New York, New York 10016, USA
- Laura and Isaac Perlmutter Cancer Center, New York, New York 10016, USA
| |
Collapse
|
46
|
Wang R, Sun H, Cao Y, Zhang Z, Chen Y, Wang X, Liu L, Wu J, Xu H, Wu D, Mu C, Hao Z, Qin S, Ren H, Han J, Fang M, Wang G. Glucosylceramide accumulation in microglia triggers STING-dependent neuroinflammation and neurodegeneration in mice. Sci Signal 2024; 17:eadk8249. [PMID: 38530880 DOI: 10.1126/scisignal.adk8249] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Accepted: 03/06/2024] [Indexed: 03/28/2024]
Abstract
Mutations in the gene encoding the lysosomal enzyme glucocerebrosidase (GCase) are responsible for Gaucher disease (GD) and are considered the strongest genetic risk factor for Parkinson's disease (PD) and Lewy body dementia (LBD). GCase deficiency leads to extensive accumulation of glucosylceramides (GCs) in cells and contributes to the neuropathology of GD, PD, and LBD by triggering chronic neuroinflammation. Here, we investigated the mechanisms by which GC accumulation induces neuroinflammation. We found that GC accumulation within microglia induced by pharmacological inhibition of GCase triggered STING-dependent inflammation, which contributed to neuronal loss both in vitro and in vivo. GC accumulation in microglia induced mitochondrial DNA (mtDNA) leakage to the cytosol to trigger STING-dependent inflammation. Rapamycin, a compound that promotes lysosomal activity, improved mitochondrial function, thereby decreasing STING signaling. Furthermore, lysosomal damage caused by GC accumulation led to defects in the degradation of activated STING, further exacerbating inflammation mediated by microglia. Thus, limiting STING activity may be a strategy to suppress neuroinflammation caused by GCase deficiency.
Collapse
Affiliation(s)
- Rui Wang
- School of Life Science and Technology, Key Laboratory of Developmental Genes and Human Disease, Southeast University, Nanjing, Jiangsu 210096, China
- Center of Translational Medicine, First People's Hospital of Taicang, Taicang Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215400, China
| | - Hongyang Sun
- Laboratory of Molecular Neuropathology, Department of Pharmacology, Jiangsu Key Laboratory of Neuropsychiatric Diseases and College of Pharmaceutical Sciences, Soochow University, Suzhou, Jiangsu 215123, China
| | - Yifan Cao
- Laboratory of Molecular Neuropathology, Department of Pharmacology, Jiangsu Key Laboratory of Neuropsychiatric Diseases and College of Pharmaceutical Sciences, Soochow University, Suzhou, Jiangsu 215123, China
| | - Zhixiong Zhang
- Laboratory of Molecular Neuropathology, Department of Pharmacology, Jiangsu Key Laboratory of Neuropsychiatric Diseases and College of Pharmaceutical Sciences, Soochow University, Suzhou, Jiangsu 215123, China
| | - Yajing Chen
- Department of Pharmacy, Children's Hospital of Soochow University, Suzhou, Jiangsu 215000, China
| | - Xiying Wang
- Department of Neurology, Shanghai Jiao Tong University School of Medicine Affiliated Renji Hospital, Shanghai 200000, China
| | - Lele Liu
- Laboratory of Molecular Neuropathology, Department of Pharmacology, Jiangsu Key Laboratory of Neuropsychiatric Diseases and College of Pharmaceutical Sciences, Soochow University, Suzhou, Jiangsu 215123, China
| | - Jin Wu
- Laboratory of Molecular Neuropathology, Department of Pharmacology, Jiangsu Key Laboratory of Neuropsychiatric Diseases and College of Pharmaceutical Sciences, Soochow University, Suzhou, Jiangsu 215123, China
| | - Hao Xu
- Laboratory of Molecular Neuropathology, Department of Pharmacology, Jiangsu Key Laboratory of Neuropsychiatric Diseases and College of Pharmaceutical Sciences, Soochow University, Suzhou, Jiangsu 215123, China
| | - Dan Wu
- Laboratory of Molecular Neuropathology, Department of Pharmacology, Jiangsu Key Laboratory of Neuropsychiatric Diseases and College of Pharmaceutical Sciences, Soochow University, Suzhou, Jiangsu 215123, China
| | - Chenchen Mu
- Laboratory of Molecular Neuropathology, Department of Pharmacology, Jiangsu Key Laboratory of Neuropsychiatric Diseases and College of Pharmaceutical Sciences, Soochow University, Suzhou, Jiangsu 215123, China
| | - Zongbing Hao
- Laboratory of Molecular Neuropathology, Department of Pharmacology, Jiangsu Key Laboratory of Neuropsychiatric Diseases and College of Pharmaceutical Sciences, Soochow University, Suzhou, Jiangsu 215123, China
| | - Song Qin
- Department of Anatomy, Histology and Embryology, School of Basic Medical Sciences, Fudan University, Shanghai 200000, China
| | - Haigang Ren
- Laboratory of Molecular Neuropathology, Department of Pharmacology, Jiangsu Key Laboratory of Neuropsychiatric Diseases and College of Pharmaceutical Sciences, Soochow University, Suzhou, Jiangsu 215123, China
- Jiangsu Provincial Medical Innovation Center of Trauma Medicine, Institute of Trauma Medicine, Suzhou, Jiangsu 215123, China
- MOE Key Laboratory of Geriatric Diseases and Immunology, Soochow University, Suzhou, Jiangsu 215123, China
| | - Junhai Han
- School of Life Science and Technology, Key Laboratory of Developmental Genes and Human Disease, Southeast University, Nanjing, Jiangsu 210096, China
| | - Ming Fang
- School of Life Science and Technology, Key Laboratory of Developmental Genes and Human Disease, Southeast University, Nanjing, Jiangsu 210096, China
| | - Guanghui Wang
- Center of Translational Medicine, First People's Hospital of Taicang, Taicang Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215400, China
- Laboratory of Molecular Neuropathology, Department of Pharmacology, Jiangsu Key Laboratory of Neuropsychiatric Diseases and College of Pharmaceutical Sciences, Soochow University, Suzhou, Jiangsu 215123, China
- MOE Key Laboratory of Geriatric Diseases and Immunology, Soochow University, Suzhou, Jiangsu 215123, China
| |
Collapse
|
47
|
Zhou Q, Meng Y, Li D, Yao L, Le J, Liu Y, Sun Y, Zeng F, Chen X, Deng G. Ferroptosis in cancer: From molecular mechanisms to therapeutic strategies. Signal Transduct Target Ther 2024; 9:55. [PMID: 38453898 PMCID: PMC10920854 DOI: 10.1038/s41392-024-01769-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 01/21/2024] [Accepted: 02/03/2024] [Indexed: 03/09/2024] Open
Abstract
Ferroptosis is a non-apoptotic form of regulated cell death characterized by the lethal accumulation of iron-dependent membrane-localized lipid peroxides. It acts as an innate tumor suppressor mechanism and participates in the biological processes of tumors. Intriguingly, mesenchymal and dedifferentiated cancer cells, which are usually resistant to apoptosis and traditional therapies, are exquisitely vulnerable to ferroptosis, further underscoring its potential as a treatment approach for cancers, especially for refractory cancers. However, the impact of ferroptosis on cancer extends beyond its direct cytotoxic effect on tumor cells. Ferroptosis induction not only inhibits cancer but also promotes cancer development due to its potential negative impact on anticancer immunity. Thus, a comprehensive understanding of the role of ferroptosis in cancer is crucial for the successful translation of ferroptosis therapy from the laboratory to clinical applications. In this review, we provide an overview of the recent advancements in understanding ferroptosis in cancer, covering molecular mechanisms, biological functions, regulatory pathways, and interactions with the tumor microenvironment. We also summarize the potential applications of ferroptosis induction in immunotherapy, radiotherapy, and systemic therapy, as well as ferroptosis inhibition for cancer treatment in various conditions. We finally discuss ferroptosis markers, the current challenges and future directions of ferroptosis in the treatment of cancer.
Collapse
Affiliation(s)
- Qian Zhou
- Department of Dermatology, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, 410008, Hunan Province, China
- National Engineering Research Center of Personalized Diagnostic and Therapeutic Technology, 87 Xiangya Road, Changsha, 410008, Hunan Province, China
- Furong Laboratory, 87 Xiangya Road, Changsha, 410008, Hunan Province, China
- Hunan Key Laboratory of Skin Cancer and Psoriasis, Hunan Engineering Research Center of Skin Health and Disease, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, 410008, Hunan Province, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, 87 Xiangya Road, Changsha, 410008, Hunan Province, China
| | - Yu Meng
- Department of Dermatology, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, 410008, Hunan Province, China
- National Engineering Research Center of Personalized Diagnostic and Therapeutic Technology, 87 Xiangya Road, Changsha, 410008, Hunan Province, China
- Furong Laboratory, 87 Xiangya Road, Changsha, 410008, Hunan Province, China
- Hunan Key Laboratory of Skin Cancer and Psoriasis, Hunan Engineering Research Center of Skin Health and Disease, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, 410008, Hunan Province, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, 87 Xiangya Road, Changsha, 410008, Hunan Province, China
| | - Daishi Li
- Department of Dermatology, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, 410008, Hunan Province, China
- National Engineering Research Center of Personalized Diagnostic and Therapeutic Technology, 87 Xiangya Road, Changsha, 410008, Hunan Province, China
- Furong Laboratory, 87 Xiangya Road, Changsha, 410008, Hunan Province, China
- Hunan Key Laboratory of Skin Cancer and Psoriasis, Hunan Engineering Research Center of Skin Health and Disease, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, 410008, Hunan Province, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, 87 Xiangya Road, Changsha, 410008, Hunan Province, China
| | - Lei Yao
- Department of General Surgery, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, 410008, Hunan Province, China
| | - Jiayuan Le
- Department of Dermatology, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, 410008, Hunan Province, China
- National Engineering Research Center of Personalized Diagnostic and Therapeutic Technology, 87 Xiangya Road, Changsha, 410008, Hunan Province, China
- Furong Laboratory, 87 Xiangya Road, Changsha, 410008, Hunan Province, China
- Hunan Key Laboratory of Skin Cancer and Psoriasis, Hunan Engineering Research Center of Skin Health and Disease, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, 410008, Hunan Province, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, 87 Xiangya Road, Changsha, 410008, Hunan Province, China
| | - Yihuang Liu
- Department of Dermatology, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, 410008, Hunan Province, China
- National Engineering Research Center of Personalized Diagnostic and Therapeutic Technology, 87 Xiangya Road, Changsha, 410008, Hunan Province, China
- Furong Laboratory, 87 Xiangya Road, Changsha, 410008, Hunan Province, China
- Hunan Key Laboratory of Skin Cancer and Psoriasis, Hunan Engineering Research Center of Skin Health and Disease, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, 410008, Hunan Province, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, 87 Xiangya Road, Changsha, 410008, Hunan Province, China
| | - Yuming Sun
- Department of Plastic and Cosmetic Surgery, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, 410008, Hunan Province, China
| | - Furong Zeng
- Department of Oncology, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, 410008, Hunan Province, China.
| | - Xiang Chen
- Department of Dermatology, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, 410008, Hunan Province, China.
- National Engineering Research Center of Personalized Diagnostic and Therapeutic Technology, 87 Xiangya Road, Changsha, 410008, Hunan Province, China.
- Furong Laboratory, 87 Xiangya Road, Changsha, 410008, Hunan Province, China.
- Hunan Key Laboratory of Skin Cancer and Psoriasis, Hunan Engineering Research Center of Skin Health and Disease, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, 410008, Hunan Province, China.
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, 87 Xiangya Road, Changsha, 410008, Hunan Province, China.
| | - Guangtong Deng
- Department of Dermatology, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, 410008, Hunan Province, China.
- National Engineering Research Center of Personalized Diagnostic and Therapeutic Technology, 87 Xiangya Road, Changsha, 410008, Hunan Province, China.
- Furong Laboratory, 87 Xiangya Road, Changsha, 410008, Hunan Province, China.
- Hunan Key Laboratory of Skin Cancer and Psoriasis, Hunan Engineering Research Center of Skin Health and Disease, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, 410008, Hunan Province, China.
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, 87 Xiangya Road, Changsha, 410008, Hunan Province, China.
| |
Collapse
|
48
|
Settembre C, Perera RM. Lysosomes as coordinators of cellular catabolism, metabolic signalling and organ physiology. Nat Rev Mol Cell Biol 2024; 25:223-245. [PMID: 38001393 DOI: 10.1038/s41580-023-00676-x] [Citation(s) in RCA: 65] [Impact Index Per Article: 65.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/29/2023] [Indexed: 11/26/2023]
Abstract
Every cell must satisfy basic requirements for nutrient sensing, utilization and recycling through macromolecular breakdown to coordinate programmes for growth, repair and stress adaptation. The lysosome orchestrates these key functions through the synchronised interplay between hydrolytic enzymes, nutrient transporters and signalling factors, which together enable metabolic coordination with other organelles and regulation of specific gene expression programmes. In this Review, we discuss recent findings on lysosome-dependent signalling pathways, focusing on how the lysosome senses nutrient availability through its physical and functional association with mechanistic target of rapamycin complex 1 (mTORC1) and how, in response, the microphthalmia/transcription factor E (MiT/TFE) transcription factors exert feedback regulation on lysosome biogenesis. We also highlight the emerging interactions of lysosomes with other organelles, which contribute to cellular homeostasis. Lastly, we discuss how lysosome dysfunction contributes to diverse disease pathologies and how inherited mutations that compromise lysosomal hydrolysis, transport or signalling components lead to multi-organ disorders with severe metabolic and neurological impact. A deeper comprehension of lysosomal composition and function, at both the cellular and organismal level, may uncover fundamental insights into human physiology and disease.
Collapse
Affiliation(s)
- Carmine Settembre
- Telethon Institute of Genetics and Medicine (TIGEM), Pozzuoli, Italy.
- Department of Clinical Medicine and Surgery, Federico II University, Naples, Italy.
| | - Rushika M Perera
- Department of Anatomy, University of California at San Francisco, San Francisco, CA, USA.
- Department of Pathology, University of California at San Francisco, San Francisco, CA, USA.
- Helen Diller Family Comprehensive Cancer Center, University of California at San Francisco, San Francisco, CA, USA.
| |
Collapse
|
49
|
Yang K, Tang Z, Xing C, Yan N. STING signaling in the brain: Molecular threats, signaling activities, and therapeutic challenges. Neuron 2024; 112:539-557. [PMID: 37944521 PMCID: PMC10922189 DOI: 10.1016/j.neuron.2023.10.014] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 10/06/2023] [Accepted: 10/11/2023] [Indexed: 11/12/2023]
Abstract
Stimulator of interferon genes (STING) is an innate immune signaling protein critical to infections, autoimmunity, and cancer. STING signaling is also emerging as an exciting and integral part of many neurological diseases. Here, we discuss recent advances in STING signaling in the brain. We summarize how molecular threats activate STING signaling in the diseased brain and how STING signaling activities in glial and neuronal cells cause neuropathology. We also review human studies of STING neurobiology and consider therapeutic challenges in targeting STING to treat neurological diseases.
Collapse
Affiliation(s)
- Kun Yang
- Department of Immunology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Zhen Tang
- Department of Immunology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Cong Xing
- Department of Immunology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Nan Yan
- Department of Immunology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA.
| |
Collapse
|
50
|
Galy B, Conrad M, Muckenthaler M. Mechanisms controlling cellular and systemic iron homeostasis. Nat Rev Mol Cell Biol 2024; 25:133-155. [PMID: 37783783 DOI: 10.1038/s41580-023-00648-1] [Citation(s) in RCA: 244] [Impact Index Per Article: 244.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/31/2023] [Indexed: 10/04/2023]
Abstract
In mammals, hundreds of proteins use iron in a multitude of cellular functions, including vital processes such as mitochondrial respiration, gene regulation and DNA synthesis or repair. Highly orchestrated regulatory systems control cellular and systemic iron fluxes ensuring sufficient iron delivery to target proteins is maintained, while limiting its potentially deleterious effects in iron-mediated oxidative cell damage and ferroptosis. In this Review, we discuss how cells acquire, traffick and export iron and how stored iron is mobilized for iron-sulfur cluster and haem biogenesis. Furthermore, we describe how these cellular processes are fine-tuned by the combination of various sensory and regulatory systems, such as the iron-regulatory protein (IRP)-iron-responsive element (IRE) network, the nuclear receptor co-activator 4 (NCOA4)-mediated ferritinophagy pathway, the prolyl hydroxylase domain (PHD)-hypoxia-inducible factor (HIF) axis or the nuclear factor erythroid 2-related factor 2 (NRF2) regulatory hub. We further describe how these pathways interact with systemic iron homeostasis control through the hepcidin-ferroportin axis to ensure appropriate iron fluxes. This knowledge is key for the identification of novel therapeutic opportunities to prevent diseases of cellular and/or systemic iron mismanagement.
Collapse
Affiliation(s)
- Bruno Galy
- German Cancer Research Center (DKFZ), Division of Virus-associated Carcinogenesis (F170), Heidelberg, Germany
| | - Marcus Conrad
- Helmholtz Zentrum München, Institute of Metabolism and Cell Death, Neuherberg, Germany
| | - Martina Muckenthaler
- Department of Paediatric Hematology, Oncology and Immunology, University of Heidelberg, Heidelberg, Germany.
- Molecular Medicine Partnership Unit, University of Heidelberg, Heidelberg, Germany.
- German Centre for Cardiovascular Research (DZHK), Partner site Heidelberg/Mannheim, Heidelberg, Germany.
- Translational Lung Research Center Heidelberg (TLRC), German Center for Lung Research (DZL), University of Heidelberg, Heidelberg, Germany.
| |
Collapse
|