1
|
Vanneste S, Pei Y, Friml J. Mechanisms of auxin action in plant growth and development. Nat Rev Mol Cell Biol 2025:10.1038/s41580-025-00851-2. [PMID: 40389696 DOI: 10.1038/s41580-025-00851-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/31/2025] [Indexed: 05/21/2025]
Abstract
The phytohormone auxin is a major signal coordinating growth and development in plants. The variety of its effects arises from its ability to form local auxin maxima and gradients within tissues, generated through directional cell-to-cell transport and elaborate metabolic control. These auxin distribution patterns instruct cells in a context-dependent manner to undergo predefined developmental transitions. In this Review, we discuss advances in auxin action at the level of homeostasis and signalling. We highlight key insights into the structural basis of PIN-mediated intercellular auxin transport and explore two novel non-transcriptional auxin signalling mechanisms: one involving intracellular Ca2+ transients and another involving cell-surface auxin perception that mediates global, ultrafast phosphorylation. Furthermore, we examine emerging evidence indicating the involvement of cyclic adenosine monophosphate as a second messenger in the transcriptional auxin response. Together, these recent developments in auxin research have profoundly deepened our understanding of the complex and diverse activities of auxin in plant growth and development.
Collapse
Affiliation(s)
- Steffen Vanneste
- HortiCell, Department of Plants and Crops, Ghent University, Ghent, Belgium
| | - Yuanrong Pei
- Institute of Science and Technology Austria (ISTA), Klosterneuburg, Austria
| | - Jiří Friml
- Institute of Science and Technology Austria (ISTA), Klosterneuburg, Austria.
| |
Collapse
|
2
|
Taylor JS, Bargmann BOR. Transcriptional Tuning: How Auxin Strikes Unique Chords in Gene Regulation. PHYSIOLOGIA PLANTARUM 2025; 177:e70229. [PMID: 40302163 PMCID: PMC12041631 DOI: 10.1111/ppl.70229] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2024] [Revised: 02/21/2025] [Accepted: 02/24/2025] [Indexed: 05/01/2025]
Abstract
Auxin is a central regulator of plant growth, development, and responses to environmental cues. How a single phytohormone mediates such a diverse array of developmental responses has remained a longstanding question in plant biology. Somehow, perception of the same auxin signal can lead to divergent responses in different organs, tissues, and cell types. These responses are primarily mediated by the nuclear auxin signaling pathway, composed of ARF transcription factors, Aux/IAA repressors, and TIR1/AFB auxin receptors, which act together to regulate auxin-dependent transcriptional changes. Transcriptional specificity likely arises through the functional diversity within these signaling components, forming many coordinated regulatory layers to generate unique transcriptional outputs. These layers include differential binding affinities for cis-regulatory elements, protein-protein interaction-specificity, subcellular localization, co-expression patterns, and protein turnover. In this review, we explore the experimental evidence of functional diversity within auxin signaling machinery and discuss how these differences could contribute to transcriptional output specificity.
Collapse
Affiliation(s)
- Joseph S. Taylor
- Virginia TechSchool of Plant and Environmental SciencesBlacksburgVAUSA
| | | |
Collapse
|
3
|
Couturier É, Llanos P, Lizée A, Besson S, Dumais J. The self-replicating cellular organization of shoot apical meristems. AMERICAN JOURNAL OF BOTANY 2025; 112:e70027. [PMID: 40183235 DOI: 10.1002/ajb2.70027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Revised: 01/20/2025] [Accepted: 01/23/2025] [Indexed: 04/05/2025]
Abstract
PREMISE Apical meristems of land plants have played a fundamental role in the evolution of complex shoot architectures. The most common structure of shoot apical meristems in bryophytes, lycophytes, and ferns is characterized by a single apical cell surrounded by a spiral of apical derivatives. Despite the importance of this type of meristem organization, it remains unclear how it is maintained at the apex. METHODS We analyzed the distribution of different meristem organizations within a data set of 205 images of shoot apical meristems representing 91 species of bryophytes, lycophytes, and ferns. In parallel, we developed a mathematical and computational model to determine whether the meristem structural types observed empirically are predicted from Sachs's division rules; namely, cells divide symmetrically while positioning their new wall at a right angle to the parental walls. RESULTS According to our data set, only four meristem structural types are observed in nature, corresponding to apical cells dividing along one, two, three, or four faces. In addition, the prevalence of the structural types in diverse plant lineages correlates with the shape of the meristems on which they are found. Our model based on Sachs's division rules indicates that as much as six meristem structural types are geometrically possible, but only the four types observed empirically are dynamically stable for realistic meristem geometries. CONCLUSIONS Simple division rules, which we interpret as biophysical constraints on the assembly of the preprophase band, may therefore explain the cellular organization of the shoot apical meristem in three major groups of land plants.
Collapse
Affiliation(s)
| | - Paula Llanos
- Facultad de Ingeniería y Ciencias, Universidad Adolfo Ibáñez, Viña del Mar, Chile
| | | | | | - Jacques Dumais
- Facultad de Ingeniería y Ciencias, Universidad Adolfo Ibáñez, Viña del Mar, Chile
| |
Collapse
|
4
|
Smith ES, John A, Willoughby AC, Jones DS, Galvão VC, Fankhauser C, Nimchuk ZL. Canalization of flower production across thermal environments requires Florigen and CLAVATA signaling. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.03.23.644808. [PMID: 40196672 PMCID: PMC11974719 DOI: 10.1101/2025.03.23.644808] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 04/09/2025]
Abstract
The ability to maintain invariant developmental phenotypes across disparate environments is termed canalization, but few examples of canalization mechanisms are described. In plants, robust flower production across environmental gradients contributes to reproductive success and agricultural yields. Flowers are produced by the shoot apical meristem (SAM) in an auxin-dependent manner following the switch from vegetative growth to the reproductive phase. While the timing of this phase change, called the floral transition, is sensitized to numerous environmental and endogenous signals, flower formation itself is remarkably invariant across environmental conditions. Previously we found that CLAVATA peptide signaling promotes auxin-dependent flower primordia formation in cool environments, but that high temperatures can restore primordia formation through unknown mechanisms. Here, we show that heat promotes floral primordia patterning and formation in SAMs not by increased auxin production, but through the production of the mobile flowering signal, florigen, in leaves. Florigen, which includes FLOWERING LOCUS T (FT) and its paralog TWIN SISTER OF FT (TSF) in Arabidopsis thaliana, is necessary and sufficient to buffer flower production against the loss of CLAVATA signaling and promotes heat-mediated primordia formation through specific SAM expressed transcriptional regulators. We find that sustained florigen production is necessary for continuous flower primordia production at warmer temperatures, contrasting florigen's switch-like control of floral transition. Lastly, we show that CLAVATA signaling and florigen synergize to canalize flower production across broad temperature ranges. This work sheds light on the mechanisms governing the canalization of plant development and provides potential targets for engineering crop plants with improved thermal tolerances.
Collapse
Affiliation(s)
- Elizabeth S Smith
- Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, USA
| | - Amala John
- Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, USA
| | - Andrew C Willoughby
- Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, USA
| | - Daniel S Jones
- Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, USA
| | - Vinicius C Galvão
- Centre for Integrative Genomics, Faculty of Biology and Medicine, University of Lausanne, Lausanne, Switzerland
| | - Christian Fankhauser
- Centre for Integrative Genomics, Faculty of Biology and Medicine, University of Lausanne, Lausanne, Switzerland
| | - Zachary L Nimchuk
- Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, USA
- Curriculum in Genetics, University of North Carolina at Chapel Hill, Chapel Hill, USA
| |
Collapse
|
5
|
Caselli F, Ferrario C, Beretta VM, Tondepu SAG, Dumas R, Herrera‐Ubaldo H, de Folter S, Kater MM, Gregis V. Behind phyllotaxis, within the meristem: a REM-ARF complex shapes inflorescence in Arabidopsis thaliana. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2025; 121:e70041. [PMID: 40025809 PMCID: PMC11873677 DOI: 10.1111/tpj.70041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Revised: 12/04/2024] [Accepted: 01/27/2025] [Indexed: 03/04/2025]
Abstract
Inflorescence architecture is established during the early stages of reproductive development and depends on the activity and identity of meristems. In Arabidopsis thaliana, the floral meristems (FMs), which will develop into flowers, arise with precise spatiotemporal regulation from the inflorescence meristem (IM). The outcome of this process is a geometrically organized structure characterized by a reiterated pattern called phyllotaxis, in which successive organs arise at specific divergence angles of 137.5°. Here we show that REM34 and REM35 transcription factors control phyllotactic patterning through cooperative interaction with ARF7 and ARF19, influencing the cell cycle rate and thus the IM dimension. Our proposed model suggests that ARF7 and ARF19, whose activity is triggered by auxin accumulation, interact with REM34 and REM35 to regulate two auxin-induced genes, LBD18 and PUCHI, whose mutants phenocopy the permutated phyllotactic pattern of rem34 rem35 and arf7 arf19. This complex also restricts cell cycling activity to specific areas of the meristem, indirectly determining its dimension and ultimately establishing FM positioning and phyllotaxis. Reiterative patterns are found in morphogenetic processes of complex organisms, and phyllotaxis has been employed to understand the mechanisms behind this regularity. Our research broadens the knowledge on this mechanism which is also strictly correlated with yield.
Collapse
Affiliation(s)
- Francesca Caselli
- Dipartimento di BioscienzeUniversità degli Studi di MilanoMilano20133Italy
| | - Carlotta Ferrario
- Dipartimento di BioscienzeUniversità degli Studi di MilanoMilano20133Italy
| | | | - Sri Amarnadh Gupta Tondepu
- Dipartimento di BioscienzeUniversità degli Studi di MilanoMilano20133Italy
- Present address:
Department of Biology and Biotechnology “L. Spallanzani”University of PaviaVia Adolfo Ferrata 9Pavia27100Italy
| | - Renaud Dumas
- Laboratoire Physiologie Cellulaire et Végétale, Département de Biologie Structurale et Cellulaire IntégréeUniversité Grenoble Alpes, Centre national de la recherche scientifique, Commissariat à l'énergie atomique et aux énergies alternatives, Institut national de recherche pour l'agriculture, l'alimentation et l'environnementGrenobleF‐38054France
| | - Humberto Herrera‐Ubaldo
- Unidad de Genómica Avanzada (UGA‐Langebio)Centro de Investigación y de Estudios Avanzados del Instituto Politécnico NacionalIrapuatoMexico
- Present address:
Department of Plant SciencesUniversity of CambridgeCambridgeCB2 3EAUK
| | - Stefan de Folter
- Unidad de Genómica Avanzada (UGA‐Langebio)Centro de Investigación y de Estudios Avanzados del Instituto Politécnico NacionalIrapuatoMexico
| | - Martin M. Kater
- Dipartimento di BioscienzeUniversità degli Studi di MilanoMilano20133Italy
| | - Veronica Gregis
- Dipartimento di BioscienzeUniversità degli Studi di MilanoMilano20133Italy
| |
Collapse
|
6
|
Ibañes M. Modeling Arabidopsis root growth and development. PLANT PHYSIOLOGY 2025; 197:kiaf045. [PMID: 40036788 PMCID: PMC11878784 DOI: 10.1093/plphys/kiaf045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Accepted: 12/03/2024] [Indexed: 03/06/2025]
Abstract
Modeling has been used to explore various aspects of primary root development and growth in Arabidopsis thaliana, thanks to enormous advances in the genetic and biochemical bases of cell division, cell growth and differentiation, and, more recently, progress in measuring these processes. Modeling has facilitated the characterization of the regulations involved in these processes and the system properties that they confer. Recently, the mechanical-physical properties of root growth have started to be determined with the help of modeling. Here we review recent progress in modeling approaches used to examine root development and growth, from the transcriptional and signaling regulation of cell decisions to the mechanical basis of morphogenesis, and we highlight common features and future challenges.
Collapse
Affiliation(s)
- Marta Ibañes
- Departament de Física de la Matèria Condensada, Universitat de Barcelona, Martí i Franquès 1, 08028 Barcelona, Spain
- Universitat de Barcelona Institute of Complex Systems (UBICS), Universitat de Barcelona, 08028 Barcelona, Spain
| |
Collapse
|
7
|
Hu ZC, Majda M, Sun HR, Zhang Y, Ding YN, Yuan Q, Su TB, Lü TF, Gao F, Xu GX, Smith RS, Østergaard L, Dong Y. Evolution of a SHOOTMERISTEMLESS transcription factor binding site promotes fruit shape determination. NATURE PLANTS 2025; 11:23-35. [PMID: 39668212 PMCID: PMC11757149 DOI: 10.1038/s41477-024-01854-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2023] [Accepted: 10/18/2024] [Indexed: 12/14/2024]
Abstract
In animals and plants, organ shape is primarily determined during primordium development by carefully coordinated growth and cell division1-3. Rare examples of post-primordial change in morphology (reshaping) exist that offer tractable systems for the study of mechanisms required for organ shape determination and diversification. One such example is morphogenesis in Capsella fruits whose heart-shaped appearance emerges by reshaping of the ovate spheroid gynoecium upon fertilization4. Here we use whole-organ live-cell imaging and single-cell RNA sequencing (scRNA-seq) analysis to show that Capsella fruit shape determination is based on dynamic changes in cell growth and cell division coupled with local maintenance of meristematic identity. At the molecular level, we reveal an auxin-induced mechanism that is required for morphological alteration and ultimately determined by a single cis-regulatory element. This element resides in the promoter of the Capsella rubella SHOOTMERISTEMLESS5 (CrSTM) gene. The CrSTM meristem identity factor positively regulates its own expression through binding to this element, thereby providing a feed-forward loop at the position and time of protrusion emergence to form the heart. Independent evolution of the STM-binding element in STM promoters across Brassicaceae species correlates with those undergoing a gynoecium-to-fruit shape change. Accordingly, genetic and phenotypic studies show that the STM-binding element is required to facilitate the shape transition and suggest a conserved molecular mechanism for organ morphogenesis.
Collapse
Affiliation(s)
- Zhi-Cheng Hu
- State Key Laboratory of Plant Diversity and Specialty Crops, Institute of Botany, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
- China National Botanical Garden, Beijing, China
| | - Mateusz Majda
- Department of Plant Molecular Biology, University of Lausanne, Lausanne, Switzerland
- Computational and Systems Biology Department, John Innes Centre, Norwich, UK
| | - Hao-Ran Sun
- State Key Laboratory of Plant Diversity and Specialty Crops, Institute of Botany, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
- China National Botanical Garden, Beijing, China
| | - Yao Zhang
- State Key Laboratory of Plant Diversity and Specialty Crops, Institute of Botany, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
- China National Botanical Garden, Beijing, China
| | - Yi-Ning Ding
- State Key Laboratory of Plant Diversity and Specialty Crops, Institute of Botany, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
- China National Botanical Garden, Beijing, China
| | - Quan Yuan
- State Key Laboratory of Plant Diversity and Specialty Crops, Institute of Botany, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
- China National Botanical Garden, Beijing, China
| | - Tong-Bing Su
- Beijing Vegetable Research Center, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China
| | - Tian-Feng Lü
- State Key Laboratory of Plant Diversity and Specialty Crops, Institute of Botany, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
- China National Botanical Garden, Beijing, China
| | - Feng Gao
- State Key Laboratory of Plant Diversity and Specialty Crops, Institute of Botany, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
- China National Botanical Garden, Beijing, China
| | - Gui-Xia Xu
- State Key Laboratory of Plant Diversity and Specialty Crops, Institute of Botany, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
- China National Botanical Garden, Beijing, China
| | - Richard S Smith
- Computational and Systems Biology Department, John Innes Centre, Norwich, UK
| | - Lars Østergaard
- Crop Genetics Department, John Innes Centre, Norwich, UK.
- Department of Biology, University of Oxford, Oxford, UK.
| | - Yang Dong
- State Key Laboratory of Plant Diversity and Specialty Crops, Institute of Botany, Chinese Academy of Sciences, Beijing, China.
- University of Chinese Academy of Sciences, Beijing, China.
- China National Botanical Garden, Beijing, China.
| |
Collapse
|
8
|
Gurung V, Muñoz-Gómez S, Jones DS. Putting heads together: Developmental genetics of the Asteraceae capitulum. CURRENT OPINION IN PLANT BIOLOGY 2024; 81:102589. [PMID: 38955094 DOI: 10.1016/j.pbi.2024.102589] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Revised: 05/17/2024] [Accepted: 06/05/2024] [Indexed: 07/04/2024]
Abstract
Inflorescence architecture is highly variable across plant lineages yet is critical for facilitating reproductive success. The capitulum-type inflorescence of the Asteraceae is marked as a key morphological innovation that preceded the family's diversification and expansion. Despite its evolutionary significance, our understanding of capitulum development and evolution is limited. This review highlights our current perspective on capitulum evolution through the lens of both its molecular and developmental underpinnings. We attempt to summarize our understanding of the capitulum by focusing on two key characteristics: patterning (arrangement of florets on a capitulum) and floret identity specification. Note that these two features are interconnected such that the identity of florets depends on their position along the inflorescence axis. Phytohormones such as auxin seemingly determine both pattern progression and floret identity specification through unknown mechanisms. Floret morphology in a head is controlled by differential expression of floral symmetry genes regulating floret identity specification. We briefly summarize the applicability of the ABCE quartet model of flower development in regulating the floret organ identity of a capitulum in Asteraceae. Overall, there have been promising advancements in our understanding of capitula; however, comprehensive functional genetic analyses are necessary to fully dissect the molecular pathways and mechanisms involved in capitulum development.
Collapse
Affiliation(s)
- Vandana Gurung
- Department of Biological Sciences, Auburn University, 36849, Auburn, AL, USA
| | - Sarita Muñoz-Gómez
- Department of Biological Sciences, Auburn University, 36849, Auburn, AL, USA
| | - Daniel S Jones
- Department of Biological Sciences, Auburn University, 36849, Auburn, AL, USA.
| |
Collapse
|
9
|
Chaisupa P, Rahman MM, Hildreth SB, Moseley S, Gatling C, Bryant MR, Helm RF, Wright RC. Genetically Encoded, Noise-Tolerant, Auxin Biosensors in Yeast. ACS Synth Biol 2024; 13:2804-2819. [PMID: 39197086 PMCID: PMC11421217 DOI: 10.1021/acssynbio.4c00186] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Revised: 08/07/2024] [Accepted: 08/08/2024] [Indexed: 08/30/2024]
Abstract
Auxins are crucial signaling molecules that regulate the growth, metabolism, and behavior of various organisms, most notably plants but also bacteria, fungi, and animals. Many microbes synthesize and perceive auxins, primarily indole-3-acetic acid (IAA, referred to as auxin herein), the most prevalent natural auxin, which influences their ability to colonize plants and animals. Understanding auxin biosynthesis and signaling in fungi may allow us to better control interkingdom relationships and microbiomes from agricultural soils to the human gut. Despite this importance, a biological tool for measuring auxin with high spatial and temporal resolution has not been engineered in fungi. In this study, we present a suite of genetically encoded, ratiometric, protein-based auxin biosensors designed for the model yeast Saccharomyces cerevisiae. Inspired by auxin signaling in plants, the ratiometric nature of these biosensors enhances the precision of auxin concentration measurements by minimizing clonal and growth phase variation. We used these biosensors to measure auxin production across diverse growth conditions and phases in yeast cultures and calibrated their responses to physiologically relevant levels of auxin. Future work will aim to improve the fold change and reversibility of these biosensors. These genetically encoded auxin biosensors are valuable tools for investigating auxin biosynthesis and signaling in S. cerevisiae and potentially other yeast and fungi and will also advance quantitative functional studies of the plant auxin perception machinery, from which they are built.
Collapse
Affiliation(s)
- Patarasuda Chaisupa
- Department
of Biological Systems Engineering, Virginia
Tech, Blacksburg, Virginia 24061, United States
| | - Md Mahbubur Rahman
- Department
of Biological Systems Engineering, Virginia
Tech, Blacksburg, Virginia 24061, United States
| | - Sherry B. Hildreth
- Fralin
Life Sciences Institute, Virginia Tech, Blacksburg, Virginia 24061, United States
| | - Saede Moseley
- Department
of Biological Systems Engineering, Virginia
Tech, Blacksburg, Virginia 24061, United States
| | - Chauncey Gatling
- Department
of Biological Systems Engineering, Virginia
Tech, Blacksburg, Virginia 24061, United States
| | - Matthew R. Bryant
- Department
of Biological Systems Engineering, Virginia
Tech, Blacksburg, Virginia 24061, United States
| | - Richard F. Helm
- Fralin
Life Sciences Institute, Virginia Tech, Blacksburg, Virginia 24061, United States
- Department
of Biochemistry, Virginia Tech, Blacksburg, Virginia 24061, United States
| | - R. Clay Wright
- Department
of Biological Systems Engineering, Virginia
Tech, Blacksburg, Virginia 24061, United States
- Fralin
Life Sciences Institute, Virginia Tech, Blacksburg, Virginia 24061, United States
- The
Translational Plant Sciences Center (TPSC), Virginia Tech, Blacksburg, Virginia 24061, United States
| |
Collapse
|
10
|
Owens A, Zhang T, Gu P, Hart J, Stobbs J, Cieslak M, Elomaa P, Prusinkiewicz P. The hidden diversity of vascular patterns in flower heads. THE NEW PHYTOLOGIST 2024; 243:423-439. [PMID: 38361330 DOI: 10.1111/nph.19571] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/11/2023] [Accepted: 01/18/2024] [Indexed: 02/17/2024]
Abstract
Vascular systems are intimately related to the shape and spatial arrangement of the plant organs they support. We investigate the largely unexplored association between spiral phyllotaxis and the vascular system in Asteraceae flower heads. We imaged heads of eight species using synchrotron-based X-ray micro-computed tomography and applied original virtual reality and haptic software to explore head vasculature in three dimensions. We then constructed a computational model to infer a plausible patterning mechanism. The vascular system in the head of the model plant Gerbera hybrida is qualitatively different from those of Bellis perennis and Helianthus annuus, characterized previously. Cirsium vulgare, Craspedia globosa, Echinacea purpurea, Echinops bannaticus, and Tanacetum vulgare represent variants of the Bellis and Helianthus systems. In each species, the layout of the main strands is stereotypical, but details vary. The observed vascular patterns can be generated by a common computational model with different parameter values. In spite of the observed differences of vascular systems in heads, they may be produced by a conserved mechanism. The diversity and irregularities of vasculature stand in contrast with the relative uniformity and regularity of phyllotactic patterns, confirming that phyllotaxis in heads is not driven by the vasculature.
Collapse
Affiliation(s)
- Andrew Owens
- Department of Computer Science, University of Calgary, Calgary, AB, T2N 1N4, Canada
| | - Teng Zhang
- Department of Agricultural Sciences, Viikki Plant Science Centre, University of Helsinki, PO Box 27, Helsinki, 00014, Finland
| | - Philmo Gu
- Department of Computer Science, University of Calgary, Calgary, AB, T2N 1N4, Canada
| | - Jeremy Hart
- Department of Computer Science, University of Calgary, Calgary, AB, T2N 1N4, Canada
| | - Jarvis Stobbs
- Canadian Light Source Inc., 44 Innovation Blvd, Saskatoon, SK, S7N 2V3, Canada
| | - Mikolaj Cieslak
- Department of Computer Science, University of Calgary, Calgary, AB, T2N 1N4, Canada
| | - Paula Elomaa
- Department of Agricultural Sciences, Viikki Plant Science Centre, University of Helsinki, PO Box 27, Helsinki, 00014, Finland
| | | |
Collapse
|
11
|
Rambaud-Lavigne L, Chatterjee A, Bovio S, Battu V, Lavigne Q, Gundiah N, Boudaoud A, Das P. Heterogeneous identity, stiffness and growth characterise the shoot apex of Arabidopsis stem cell mutants. Development 2024; 151:dev202810. [PMID: 38752444 DOI: 10.1242/dev.202810] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Accepted: 05/07/2024] [Indexed: 06/11/2024]
Abstract
Stem cell homeostasis in the shoot apical meristem involves a core regulatory feedback loop between the signalling peptide CLAVATA3 (CLV3), produced in stem cells, and the transcription factor WUSCHEL, expressed in the underlying organising centre. clv3 mutant meristems display massive overgrowth, which is thought to be caused by stem cell overproliferation, although it is unknown how uncontrolled stem cell divisions lead to this altered morphology. Here, we reveal local buckling defects in mutant meristems, and use analytical models to show how mechanical properties and growth rates may contribute to the phenotype. Indeed, clv3 mutant meristems are mechanically more heterogeneous than the wild type, and also display regional growth heterogeneities. Furthermore, stereotypical wild-type meristem organisation, in which cells simultaneously express distinct fate markers, is lost in mutants. Finally, cells in mutant meristems are auxin responsive, suggesting that they are functionally distinguishable from wild-type stem cells. Thus, all benchmarks show that clv3 mutant meristem cells are different from wild-type stem cells, suggesting that overgrowth is caused by the disruption of a more complex regulatory framework that maintains distinct genetic and functional domains in the meristem.
Collapse
Affiliation(s)
- Léa Rambaud-Lavigne
- Laboratoire Reproduction et Développement des Plantes, Université de Lyon, ENS de Lyon, UCB Lyon 1, CNRS, INRAE, INRIA, 69364 Lyon Cedex 07, France
| | - Aritra Chatterjee
- Centre for BioSystems Science and Engineering, Indian Institute of Science, 560012 Bengaluru, India
| | - Simone Bovio
- Laboratoire Reproduction et Développement des Plantes, Université de Lyon, ENS de Lyon, UCB Lyon 1, CNRS, INRAE, INRIA, 69364 Lyon Cedex 07, France
- PLATIM-LyMIC, Université de Lyon, ENS de Lyon, Inserm, CNRS, SFR Biosciences US8 UAR3444, UCB Lyon 1, 69364 Lyon Cedex 07, France
| | - Virginie Battu
- Laboratoire Reproduction et Développement des Plantes, Université de Lyon, ENS de Lyon, UCB Lyon 1, CNRS, INRAE, INRIA, 69364 Lyon Cedex 07, France
| | - Quentin Lavigne
- Physikalisches Institut, Rheinische Friedrich-Wilhelms-Universität, 53115 Bonn, Germany
| | - Namrata Gundiah
- Department of Mechanical Engineering, Indian Institute of Science, 560012 Bengaluru, India
| | - Arezki Boudaoud
- Laboratoire Reproduction et Développement des Plantes, Université de Lyon, ENS de Lyon, UCB Lyon 1, CNRS, INRAE, INRIA, 69364 Lyon Cedex 07, France
| | - Pradeep Das
- Laboratoire Reproduction et Développement des Plantes, Université de Lyon, ENS de Lyon, UCB Lyon 1, CNRS, INRAE, INRIA, 69364 Lyon Cedex 07, France
| |
Collapse
|
12
|
Shi B, Felipo-Benavent A, Cerutti G, Galvan-Ampudia C, Jilli L, Brunoud G, Mutterer J, Vallet E, Sakvarelidze-Achard L, Davière JM, Navarro-Galiano A, Walia A, Lazary S, Legrand J, Weinstain R, Jones AM, Prat S, Achard P, Vernoux T. A quantitative gibberellin signaling biosensor reveals a role for gibberellins in internode specification at the shoot apical meristem. Nat Commun 2024; 15:3895. [PMID: 38719832 PMCID: PMC11079023 DOI: 10.1038/s41467-024-48116-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Accepted: 04/17/2024] [Indexed: 05/12/2024] Open
Abstract
Growth at the shoot apical meristem (SAM) is essential for shoot architecture construction. The phytohormones gibberellins (GA) play a pivotal role in coordinating plant growth, but their role in the SAM remains mostly unknown. Here, we developed a ratiometric GA signaling biosensor by engineering one of the DELLA proteins, to suppress its master regulatory function in GA transcriptional responses while preserving its degradation upon GA sensing. We demonstrate that this degradation-based biosensor accurately reports on cellular changes in GA levels and perception during development. We used this biosensor to map GA signaling activity in the SAM. We show that high GA signaling is found primarily in cells located between organ primordia that are the precursors of internodes. By gain- and loss-of-function approaches, we further demonstrate that GAs regulate cell division plane orientation to establish the typical cellular organization of internodes, thus contributing to internode specification in the SAM.
Collapse
Affiliation(s)
- Bihai Shi
- College of Agriculture, South China Agricultural University, Guangdong Laboratory for Lingnan Modern Agriculture, 510642, Guangzhou, China
- Laboratoire Reproduction et Développement des Plantes, Univ Lyon, ENS de Lyon, CNRS, INRAE, INRIA, 69342, Lyon, France
| | - Amelia Felipo-Benavent
- Institut de biologie moléculaire des plantes, CNRS, Université de Strasbourg, 67084, Strasbourg, France
| | - Guillaume Cerutti
- Laboratoire Reproduction et Développement des Plantes, Univ Lyon, ENS de Lyon, CNRS, INRAE, INRIA, 69342, Lyon, France
| | - Carlos Galvan-Ampudia
- Laboratoire Reproduction et Développement des Plantes, Univ Lyon, ENS de Lyon, CNRS, INRAE, INRIA, 69342, Lyon, France
| | - Lucas Jilli
- Institut de biologie moléculaire des plantes, CNRS, Université de Strasbourg, 67084, Strasbourg, France
| | - Geraldine Brunoud
- Laboratoire Reproduction et Développement des Plantes, Univ Lyon, ENS de Lyon, CNRS, INRAE, INRIA, 69342, Lyon, France
| | - Jérome Mutterer
- Institut de biologie moléculaire des plantes, CNRS, Université de Strasbourg, 67084, Strasbourg, France
| | - Elody Vallet
- Institut de biologie moléculaire des plantes, CNRS, Université de Strasbourg, 67084, Strasbourg, France
| | - Lali Sakvarelidze-Achard
- Institut de biologie moléculaire des plantes, CNRS, Université de Strasbourg, 67084, Strasbourg, France
| | - Jean-Michel Davière
- Institut de biologie moléculaire des plantes, CNRS, Université de Strasbourg, 67084, Strasbourg, France
| | | | - Ankit Walia
- Sainsbury Laboratory, Cambridge University, Cambridge, CB2 1LR, UK
| | - Shani Lazary
- Department of Molecular Biology and Ecology of Plants, Tel Aviv University, Tel Aviv, 69978, Israel
| | - Jonathan Legrand
- Laboratoire Reproduction et Développement des Plantes, Univ Lyon, ENS de Lyon, CNRS, INRAE, INRIA, 69342, Lyon, France
| | - Roy Weinstain
- Department of Molecular Biology and Ecology of Plants, Tel Aviv University, Tel Aviv, 69978, Israel
| | | | - Salomé Prat
- Centre for Research in Agricultural Genomics, 08193 Cerdanyola, Barcelona, Spain
| | - Patrick Achard
- Institut de biologie moléculaire des plantes, CNRS, Université de Strasbourg, 67084, Strasbourg, France.
| | - Teva Vernoux
- Laboratoire Reproduction et Développement des Plantes, Univ Lyon, ENS de Lyon, CNRS, INRAE, INRIA, 69342, Lyon, France.
| |
Collapse
|
13
|
Coen E, Prusinkiewicz P. Developmental timing in plants. Nat Commun 2024; 15:2674. [PMID: 38531864 PMCID: PMC10965974 DOI: 10.1038/s41467-024-46941-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Accepted: 03/13/2024] [Indexed: 03/28/2024] Open
Abstract
Plants exhibit reproducible timing of developmental events at multiple scales, from switches in cell identity to maturation of the whole plant. Control of developmental timing likely evolved for similar reasons that humans invented clocks: to coordinate events. However, whereas clocks are designed to run independently of conditions, plant developmental timing is strongly dependent on growth and environment. Using simplified models to convey key concepts, we review how growth-dependent and inherent timing mechanisms interact with the environment to control cyclical and progressive developmental transitions in plants.
Collapse
Affiliation(s)
- Enrico Coen
- Department of Cell and Developmental Biology, John Innes Centre, Norwich Research Park, Colney Lane, Norwich, NR4 7UH, UK.
| | - Przemyslaw Prusinkiewicz
- Department of Computer Science, University of Calgary, 2500 University Dr. N.W., Calgary, AB, T2N 1N4, Canada.
| |
Collapse
|
14
|
Zhong S, Zhu H, Li W, Wu D, Miao Y, Dong B, Wang Y, Xiao Z, Fang Q, Deng J, Zhao H. DNA methylome analysis reveals novel insights into active hypomethylated regulatory mechanisms of temperature-dependent flower opening in Osmanthus fragrans. HORTICULTURE RESEARCH 2024; 11:uhae010. [PMID: 38464472 PMCID: PMC10923647 DOI: 10.1093/hr/uhae010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Accepted: 01/01/2024] [Indexed: 03/12/2024]
Abstract
Short-term ambient low temperature (ALT) stimulation is necessary for Osmanthus fragrans to facilitate continued flower opening after floral bud development reaches maturity. DNA methylation, a vital epigenetic modification, regulates various biological processes in response to temperature fluctuations. However, its role in temperature-driven flower opening remains elusive. In this study, we identified the pivotal timeframe during which O. fragrans promptly detected temperature cues. Using whole-genome bisulfite sequencing, we explored global DNA hypomethylation during this phase, with the most significant changes occurring in CHH sequence contexts. Auxin transport inhibitor (TIBA) application revealed that ALT-induced endogenous auxin accumulation promoted peduncle elongation. In our mRNA-seq analysis, we discovered that the differentially expressed genes (DEGs) with hypo-differentially methylated regions (hypo-DMRs) were mainly enriched in auxin and temperature response, RNA processing, and carbohydrate and lipid metabolism. Transcripts of three DNA demethylase genes (OfROS1a, OfDML3, OfDME) showed upregulation. Furthermore, all DNA methylase genes, except OfCMT2b, also displayed increased expression, specifically with two of them, OfCMT3a and OfCMT1, being associated with hypo-DMRs. Promoter assays showed that OfROS1a, with promoters containing low-temperature- and auxin-responsive elements, were activated by ALT and exogenous IAA at low concentrations but inhibited at high concentrations. Overexpression of OfROS1 reduced endogenous auxin levels but enhanced the expression of genes related to auxin response and spliceosome in petunia. Furthermore, OfROS1 promoted sucrose synthesis in petunia corollas. Our data characterized the rapid response of active DNA hypomethylation to ALT and suggested a possible epiregulation of temperature-dependent flower opening in O. fragrans. This study revealed the pivotal role of DNA hypomethylation in O. fragrans during the ALT-responsive phase before flower opening, involving dynamic DNA demethylation, auxin signaling modulation, and a potential feedback loop between hypomethylation and methylation.
Collapse
Affiliation(s)
- Shiwei Zhong
- Zhejiang Provincial Key Laboratory of Germplasm Innovation and Utilization for Garden Plants, Key Laboratory of National Forestry and Grassland Administration on Germplasm Innovation and Utilization for Southern Garden Plants, School of Landscape and Architecture, Zhejiang A&F University, Hangzhou, Zhejiang 311300, China
| | - Huijun Zhu
- Zhejiang Provincial Key Laboratory of Germplasm Innovation and Utilization for Garden Plants, Key Laboratory of National Forestry and Grassland Administration on Germplasm Innovation and Utilization for Southern Garden Plants, School of Landscape and Architecture, Zhejiang A&F University, Hangzhou, Zhejiang 311300, China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Favre P, van Schaik E, Schorderet M, Yerly F, Reinhardt D. Regulation of tissue growth in plants - A mathematical modeling study on shade avoidance response in Arabidopsis hypocotyls. FRONTIERS IN PLANT SCIENCE 2024; 15:1285655. [PMID: 38486850 PMCID: PMC10938469 DOI: 10.3389/fpls.2024.1285655] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Accepted: 02/05/2024] [Indexed: 03/17/2024]
Abstract
Introduction Plant growth is a plastic phenomenon controlled both by endogenous genetic programs and by environmental cues. The embryonic stem, the hypocotyl, is an ideal model system for the quantitative study of growth due to its relatively simple geometry and cellular organization, and to its essentially unidirectional growth pattern. The hypocotyl of Arabidopsis thaliana has been studied particularly well at the molecular-genetic level and at the cellular level, and it is the model of choice for analysis of the shade avoidance syndrome (SAS), a growth reaction that allows plants to compete with neighboring plants for light. During SAS, hypocotyl growth is controlled primarily by the growth hormone auxin, which stimulates cell expansion without the involvement of cell division. Methods We assessed hypocotyl growth at cellular resolution in Arabidopsis mutants defective in auxin transport and biosynthesis and we designed a mathematical auxin transport model based on known polar and non-polar auxin transporters (ABCB1, ABCB19, and PINs) and on factors that control auxin homeostasis in the hypocotyl. In addition, we introduced into the model biophysical properties of the cell types based on precise cell wall measurements. Results and Discussion Our model can generate the observed cellular growth patterns based on auxin distribution along the hypocotyl resulting from production in the cotyledons, transport along the hypocotyl, and general turnover of auxin. These principles, which resemble the features of mathematical models of animal morphogen gradients, allow to generate robust shallow auxin gradients as they are expected to exist in tissues that exhibit quantitative auxin-driven tissue growth, as opposed to the sharp auxin maxima generated by patterning mechanisms in plant development.
Collapse
Affiliation(s)
- Patrick Favre
- Department of Biology, University of Fribourg, Fribourg, Switzerland
| | - Evert van Schaik
- Department of Biology, University of Fribourg, Fribourg, Switzerland
| | | | - Florence Yerly
- Haute école d’ingénierie et d’architecture Fribourg, Haute Ecole Spécialisée de Suisse Occidentale (HES-SO), University of Applied Sciences and Arts of Western Switzerland, Fribourg, Switzerland
| | - Didier Reinhardt
- Department of Biology, University of Fribourg, Fribourg, Switzerland
| |
Collapse
|
16
|
Yonekura T, Sugiyama M. A new mathematical model of phyllotaxis to solve the genuine puzzle spiromonostichy. JOURNAL OF PLANT RESEARCH 2024; 137:143-155. [PMID: 37833503 PMCID: PMC10764405 DOI: 10.1007/s10265-023-01503-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Accepted: 10/06/2023] [Indexed: 10/15/2023]
Abstract
Arrangement of plant leaves around the stem, termed phyllotaxis, exhibits beautiful and mysterious regularities and has been one of the most attractive subjects of biological pattern formation. After the long history of studies on phyllotaxis, it is now widely accepted that the inhibitory effect of existing leaf primordia on new primordium formation determines phyllotactic patterning. However, costoid phyllotaxis unique to Costaceae of Zingiberales, displaying spiromonostichy characterized by a steep spiral with a small divergence angle, seems to disagree with the inhibitory effect-based mechanism and has remained as a "genuine puzzle". We developed a new mathematical model, hypothesizing that each leaf primordium exerts not only the inhibitory effect but also some inductive effect. Computer simulations with the new model successfully generated a spiromonostichous pattern when these two effects met a certain relationship. The obtained spiromonostichy matched the real costoid phyllotaxis observed with Costus megalobractea, particularly for the decrease of the divergence angle associated with the enlargement of the shoot apical meristem. The new model was also shown to be able to produce a one-sided distichous pattern that is seen in phyllotaxis of a few plants of Zingiberales and has never been addressed in the previous model studies. These results implicated inductive as well as inhibitory mechanisms in phyllotactic patterning, at least in Zingiberales.
Collapse
Affiliation(s)
- Takaaki Yonekura
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Hongo 7-3-1, Bunkyo-ku, Tokyo, 113-0033, Japan.
| | - Munetaka Sugiyama
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Hongo 7-3-1, Bunkyo-ku, Tokyo, 113-0033, Japan.
| |
Collapse
|
17
|
Zeng J, Zhao X, Liang Z, Hidalgo I, Gebert M, Fan P, Wenzl C, Gornik SG, Lohmann JU. Nitric oxide controls shoot meristem activity via regulation of DNA methylation. Nat Commun 2023; 14:8001. [PMID: 38049411 PMCID: PMC10696095 DOI: 10.1038/s41467-023-43705-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Accepted: 11/16/2023] [Indexed: 12/06/2023] Open
Abstract
Despite the importance of Nitric Oxide (NO) as signaling molecule in both plant and animal development, the regulatory mechanisms downstream of NO remain largely unclear. Here, we show that NO is involved in Arabidopsis shoot stem cell control via modifying expression and activity of ARGONAUTE 4 (AGO4), a core component of the RNA-directed DNA Methylation (RdDM) pathway. Mutations in components of the RdDM pathway cause meristematic defects, and reduce responses of the stem cell system to NO signaling. Importantly, we find that the stem cell inducing WUSCHEL transcription factor directly interacts with AGO4 in a NO dependent manner, explaining how these two signaling systems may converge to modify DNA methylation patterns. Taken together, our results reveal that NO signaling plays an important role in controlling plant stem cell homeostasis via the regulation of de novo DNA methylation.
Collapse
Affiliation(s)
- Jian Zeng
- Department of Stem Cell Biology, Centre for Organismal Studies, Heidelberg University, 69120, Heidelberg, Germany
| | - Xin'Ai Zhao
- Department of Stem Cell Biology, Centre for Organismal Studies, Heidelberg University, 69120, Heidelberg, Germany
| | - Zhe Liang
- Department of Stem Cell Biology, Centre for Organismal Studies, Heidelberg University, 69120, Heidelberg, Germany
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Inés Hidalgo
- Department of Stem Cell Biology, Centre for Organismal Studies, Heidelberg University, 69120, Heidelberg, Germany
| | - Michael Gebert
- Department of Stem Cell Biology, Centre for Organismal Studies, Heidelberg University, 69120, Heidelberg, Germany
- CureVac, 72076, Tübingen, Germany
| | - Pengfei Fan
- Department of Stem Cell Biology, Centre for Organismal Studies, Heidelberg University, 69120, Heidelberg, Germany
| | - Christian Wenzl
- Department of Stem Cell Biology, Centre for Organismal Studies, Heidelberg University, 69120, Heidelberg, Germany
| | - Sebastian G Gornik
- Department of Stem Cell Biology, Centre for Organismal Studies, Heidelberg University, 69120, Heidelberg, Germany
| | - Jan U Lohmann
- Department of Stem Cell Biology, Centre for Organismal Studies, Heidelberg University, 69120, Heidelberg, Germany.
| |
Collapse
|
18
|
Smith ES, Nimchuk ZL. What a tangled web it weaves: auxin coordination of stem cell maintenance and flower production. JOURNAL OF EXPERIMENTAL BOTANY 2023; 74:6950-6963. [PMID: 37661937 PMCID: PMC10690728 DOI: 10.1093/jxb/erad340] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Accepted: 08/25/2023] [Indexed: 09/05/2023]
Abstract
Robust agricultural yields require consistent flower production throughout fluctuating environmental conditions. Floral primordia are produced in the inflorescence meristem, which contains a pool of continuously dividing stem cells. Daughter cells of these divisions either retain stem cell identity or are pushed to the SAM periphery, where they become competent to develop into floral primordia after receiving the appropriate signal. Thus, flower production is inherently linked to regulation of the stem cell pool. The plant hormone auxin promotes flower development throughout its early phases and has been shown to interact with the molecular pathways regulating stem cell maintenance. Here, we will summarize how auxin signaling contributes to stem cell maintenance and promotes flower development through the early phases of initiation, outgrowth, and floral fate establishment. Recent advances in this area suggest that auxin may serve as a signal that integrates stem cell maintenance and new flower production.
Collapse
Affiliation(s)
- Elizabeth Sarkel Smith
- Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Zachary L Nimchuk
- Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
- Curriculum in Genetics and Molecular Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| |
Collapse
|
19
|
Reyes-Hernández BJ, Maizel A. Tunable recurrent priming of lateral roots in Arabidopsis: More than just a clock? CURRENT OPINION IN PLANT BIOLOGY 2023; 76:102479. [PMID: 37857036 DOI: 10.1016/j.pbi.2023.102479] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Revised: 09/16/2023] [Accepted: 09/24/2023] [Indexed: 10/21/2023]
Abstract
Lateral root (LR) formation in Arabidopsis is a continuous, repetitive, post-embryonic process regulated by a series of coordinated events and tuned by the environment. It shapes the root system, enabling plants to efficiently explore soil resources and adapt to changing environmental conditions. Although the auxin-regulated modules responsible for LR morphogenesis and emergence are well documented, less is known about the initial priming. Priming is characterised by recurring peaks of auxin signalling, which, once memorised, earmark cells to form the new LR. We review the recent experimental and modelling approaches to understand the molecular processes underlying the recurring LR formation. We argue that the intermittent priming of LR results from interweaving the pattern of auxin flow and root growth together with an oscillatory auxin-modulated transcriptional mechanism and illustrate its long-range sugar-mediated tuning by light.
Collapse
Affiliation(s)
| | - Alexis Maizel
- Center for Organismal Studies (COS), University of Heidelberg, Im Neuenheimer Feld 230, 69120 Heidelberg, Germany.
| |
Collapse
|
20
|
Soni N, Bacete L. The interplay between cell wall integrity and cell cycle progression in plants. PLANT MOLECULAR BIOLOGY 2023; 113:367-382. [PMID: 38091166 PMCID: PMC10730644 DOI: 10.1007/s11103-023-01394-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Accepted: 11/30/2023] [Indexed: 12/20/2023]
Abstract
Plant cell walls are dynamic structures that play crucial roles in growth, development, and stress responses. Despite our growing understanding of cell wall biology, the connections between cell wall integrity (CWI) and cell cycle progression in plants remain poorly understood. This review aims to explore the intricate relationship between CWI and cell cycle progression in plants, drawing insights from studies in yeast and mammals. We provide an overview of the plant cell cycle, highlight the role of endoreplication in cell wall composition, and discuss recent findings on the molecular mechanisms linking CWI perception to cell wall biosynthesis and gene expression regulation. Furthermore, we address future perspectives and unanswered questions in the field, such as the identification of specific CWI sensing mechanisms and the role of CWI maintenance in the growth-defense trade-off. Elucidating these connections could have significant implications for crop improvement and sustainable agriculture.
Collapse
Affiliation(s)
- Nancy Soni
- Faculty of Natural Sciences, Institute for Biology, Norwegian University of Science and Technology, 5 Høgskoleringen, 7491, Trondheim, Norway
| | - Laura Bacete
- Faculty of Natural Sciences, Institute for Biology, Norwegian University of Science and Technology, 5 Høgskoleringen, 7491, Trondheim, Norway.
- Department of Plant Physiology, Umeå Plant Science Centre (UPSC), Umeå University, 901 87, Umeå, Sweden.
| |
Collapse
|
21
|
Yadav S, Kumar H, Mahajan M, Sahu SK, Singh SK, Yadav RK. Local auxin biosynthesis promotes shoot patterning and stem cell differentiation in Arabidopsis shoot apex. Development 2023; 150:dev202014. [PMID: 38054970 DOI: 10.1242/dev.202014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Accepted: 10/19/2023] [Indexed: 12/07/2023]
Abstract
The shoot apical meristem (SAM) of higher plants comprises distinct functional zones. The central zone (CZ) is located at the meristem summit and harbors pluripotent stem cells. Stem cells undergo cell division within the CZ and give rise to descendants, which enter the peripheral zone (PZ) and become recruited into lateral organs. Stem cell daughters that are pushed underneath the CZ form rib meristem (RM). To unravel the mechanism of meristem development, it is essential to know how stem cells adopt distinct cell fates in the SAM. Here, we show that meristem patterning and floral organ primordia formation, besides auxin transport, are regulated by auxin biosynthesis mediated by two closely related genes of the TRYPTOPHAN AMINOTRANSFERASE family. In Arabidopsis SAM, TAA1 and TAR2 played a role in maintaining auxin responses and the identity of PZ cell types. In the absence of auxin biosynthesis and transport, the expression pattern of the marker genes linked to the patterning of the SAM is perturbed. Our results prove that local auxin biosynthesis, in concert with transport, controls the patterning of the SAM into the CZ, PZ and RM.
Collapse
Affiliation(s)
- Shalini Yadav
- Department of Biological Sciences, Indian Institute of Science Education and Research Mohali, Punjab 140306, India
| | - Harish Kumar
- Department of Biological Sciences, Indian Institute of Science Education and Research Mohali, Punjab 140306, India
| | - Monika Mahajan
- Department of Biological Sciences, Indian Institute of Science Education and Research Mohali, Punjab 140306, India
| | - Sangram Keshari Sahu
- Department of Biological Sciences, Indian Institute of Science Education and Research Mohali, Punjab 140306, India
| | - Sharad Kumar Singh
- Department of Biological Sciences, Indian Institute of Science Education and Research Mohali, Punjab 140306, India
| | - Ram Kishor Yadav
- Department of Biological Sciences, Indian Institute of Science Education and Research Mohali, Punjab 140306, India
| |
Collapse
|
22
|
Bellows S, Janes G, Avitabile D, King JR, Bishopp A, Farcot E. Fluctuations in auxin levels depend upon synchronicity of cell divisions in a one-dimensional model of auxin transport. PLoS Comput Biol 2023; 19:e1011646. [PMID: 38032890 PMCID: PMC10688697 DOI: 10.1371/journal.pcbi.1011646] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Accepted: 11/01/2023] [Indexed: 12/02/2023] Open
Abstract
Auxin is a well-studied plant hormone, the spatial distribution of which remains incompletely understood. Here, we investigate the effects of cell growth and divisions on the dynamics of auxin patterning, using a combination of mathematical modelling and experimental observations. In contrast to most prior work, models are not designed or tuned with the aim to produce a specific auxin pattern. Instead, we use well-established techniques from dynamical systems theory to uncover and classify ranges of auxin patterns as exhaustively as possible as parameters are varied. Previous work using these techniques has shown how a multitude of stable auxin patterns may coexist, each attainable from a specific ensemble of initial conditions. When a key parameter spans a range of values, these steady patterns form a geometric curve with successive folds, often nicknamed a snaking diagram. As we introduce growth and cell division into a one-dimensional model of auxin distribution, we observe new behaviour which can be explained in terms of this diagram. Cell growth changes the shape of the snaking diagram, and this corresponds in turn to deformations in the patterns of auxin distribution. As divisions occur this can lead to abrupt creation or annihilation of auxin peaks. We term this phenomenon 'snake-jumping'. Under rhythmic cell divisions, we show how this can lead to stable oscillations of auxin. We also show that this requires a high level of synchronisation between cell divisions. Using 18 hour time-lapse imaging of the auxin reporter DII:Venus in roots of Arabidopsis thaliana, we show auxin fluctuates greatly, both in terms of amplitude and periodicity, consistent with the snake-jumping events observed with non-synchronised cell divisions. Periodic signals downstream of the auxin signalling pathway have previously been recorded in plant roots. The present work shows that auxin alone is unlikely to play the role of a pacemaker in this context.
Collapse
Affiliation(s)
- Simon Bellows
- School of Mathematical Sciences, University of Nottingham, Nottingham, United Kingdom
| | - George Janes
- School of Biosciences, University of Nottingham, Nottingham, United Kingdom
| | - Daniele Avitabile
- Department of Mathematics, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - John R. King
- School of Mathematical Sciences, University of Nottingham, Nottingham, United Kingdom
| | - Anthony Bishopp
- School of Biosciences, University of Nottingham, Nottingham, United Kingdom
| | - Etienne Farcot
- School of Mathematical Sciences, University of Nottingham, Nottingham, United Kingdom
| |
Collapse
|
23
|
Neres DF, Taylor JS, Bryant JA, Bargmann BOR, Wright RC. Identification of potential Auxin Response Candidate genes for soybean rapid canopy coverage through comparative evolution and expression analysis. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.10.26.564213. [PMID: 37961442 PMCID: PMC10634891 DOI: 10.1101/2023.10.26.564213] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2023]
Abstract
Glycine max, soybean, is an abundantly cultivated crop worldwide. Efforts have been made over the past decades to improve soybean production in traditional and organic agriculture, driven by growing demand for soybean-based products. Rapid canopy cover development (RCC) increases soybean yields and suppresses early-season weeds. Genome-wide association studies have found natural variants associated with RCC, however causal mechanisms are unclear. Auxin modulates plant growth and development and has been implicated in RCC traits. Therefore, modulation of auxin regulatory genes may enhance RCC. Here, we focus on the use of genomic tools and existing datasets to identify auxin signaling pathway RCC candidate genes, using a comparative phylogenetics and expression analysis approach. We identified genes encoding 14 TIR1/AFB auxin receptors, 61 Aux/IAA auxin co-receptors and transcriptional co-repressors, and 55 ARF auxin response factors in the soybean genome. We used Bayesian phylogenetic inference to identify soybean orthologs of Arabidopsis thaliana genes, and defined an ortholog naming system for these genes. To further define potential auxin signaling candidate genes for RCC, we examined tissue-level expression of these genes in existing datasets and identified highly expressed auxin signaling genes in apical tissues early in development. We identified at least 4 TIR1/AFB, 8 Aux/IAA, and 8 ARF genes with highly specific expression in one or more RCC-associated tissues. We hypothesize that modulating the function of these genes through gene editing or traditional breeding will have the highest likelihood of affecting RCC while minimizing pleiotropic effects.
Collapse
|
24
|
Hong L, Fletcher JC. Stem Cells: Engines of Plant Growth and Development. Int J Mol Sci 2023; 24:14889. [PMID: 37834339 PMCID: PMC10573764 DOI: 10.3390/ijms241914889] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2023] [Revised: 09/30/2023] [Accepted: 10/03/2023] [Indexed: 10/15/2023] Open
Abstract
The development of both animals and plants relies on populations of pluripotent stem cells that provide the cellular raw materials for organ and tissue formation. Plant stem cell reservoirs are housed at the shoot and root tips in structures called meristems, with the shoot apical meristem (SAM) continuously producing aerial leaf, stem, and flower organs throughout the life cycle. Thus, the SAM acts as the engine of plant development and has unique structural and molecular features that allow it to balance self-renewal with differentiation and act as a constant source of new cells for organogenesis while simultaneously maintaining a stem cell reservoir for future organ formation. Studies have identified key roles for intercellular regulatory networks that establish and maintain meristem activity, including the KNOX transcription factor pathway and the CLV-WUS stem cell feedback loop. In addition, the plant hormones cytokinin and auxin act through their downstream signaling pathways in the SAM to integrate stem cell activity and organ initiation. This review discusses how the various regulatory pathways collectively orchestrate SAM function and touches on how their manipulation can alter stem cell activity to improve crop yield.
Collapse
Affiliation(s)
- Liu Hong
- Plant Gene Expression Center, United States Department of Agriculture—Agricultural Research Service, Albany, CA 94710, USA;
- Department of Plant and Microbial Biology, University of California Berkeley, Berkeley, CA 94720, USA
| | - Jennifer C. Fletcher
- Plant Gene Expression Center, United States Department of Agriculture—Agricultural Research Service, Albany, CA 94710, USA;
- Department of Plant and Microbial Biology, University of California Berkeley, Berkeley, CA 94720, USA
| |
Collapse
|
25
|
Al-Mosleh S, Mahadevan L. How to Grow a Flat Leaf. PHYSICAL REVIEW LETTERS 2023; 131:098401. [PMID: 37721834 DOI: 10.1103/physrevlett.131.098401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Accepted: 05/08/2023] [Indexed: 09/20/2023]
Abstract
Growing a flat lamina such as a leaf is almost impossible without some feedback to stabilize long wavelength modes that are easy to trigger since they are energetically cheap. Here we combine the physics of thin elastic plates with feedback control theory to explore how a leaf can remain flat while growing. We investigate both in-plane (metric) and out-of-plane (curvature) growth variation and account for both local and nonlocal feedback laws. We show that a linearized feedback theory that accounts for both spatially nonlocal and temporally delayed effects suffices to suppress long wavelength fluctuations effectively and explains recently observed statistical features of growth in tobacco leaves. Our work provides a framework for understanding the regulation of the shape of leaves and other leaflike laminar objects.
Collapse
Affiliation(s)
- Salem Al-Mosleh
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, Massachusetts 02138, USA
| | - L Mahadevan
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, Massachusetts 02138, USA
- Departments of Physics, and Organismic and Evolutionary Biology, Harvard University, Cambridge, Massachusetts 02138, USA
| |
Collapse
|
26
|
Wenzl C, Lohmann JU. 3D imaging reveals apical stem cell responses to ambient temperature. Cells Dev 2023; 175:203850. [PMID: 37182581 DOI: 10.1016/j.cdev.2023.203850] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Revised: 05/04/2023] [Accepted: 05/09/2023] [Indexed: 05/16/2023]
Abstract
Plant growth is driven by apical meristems at the shoot and root growth points, which comprise continuously active stem cell populations. While many of the key factors involved in homeostasis of the shoot apical meristem (SAM) have been extensively studied under artificial constant growth conditions, only little is known how variations in the environment affect the underlying regulatory network. To shed light on the responses of the SAM to ambient temperature, we combined 3D live imaging of fluorescent reporter lines that allowed us to monitor the activity of two key regulators of stem cell homeostasis in the SAM namely CLAVATA3 (CLV3) and WUSCHEL (WUS), with computational image analysis to derive morphological and cellular parameters of the SAM. Whereas CLV3 expression marks the stem cell population, WUS promoter activity is confined to the organizing center (OC), the niche cells adjacent to the stem cells, hence allowing us to record on the two central cell populations of the SAM. Applying an integrated computational analysis of our data we found that variations in ambient temperature not only led to specific changes in spatial expression patterns of key regulators of SAM homeostasis, but also correlated with modifications in overall cellular organization and shoot meristem morphology.
Collapse
Affiliation(s)
- Christian Wenzl
- Department of Stem Cell Biology, Centre for Organismal Studies, Heidelberg University, D-69120 Heidelberg, Germany
| | - Jan U Lohmann
- Department of Stem Cell Biology, Centre for Organismal Studies, Heidelberg University, D-69120 Heidelberg, Germany.
| |
Collapse
|
27
|
Wang Y, Jiao Y. Cell signaling in the shoot apical meristem. PLANT PHYSIOLOGY 2023; 193:70-82. [PMID: 37224874 DOI: 10.1093/plphys/kiad309] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Revised: 04/24/2023] [Accepted: 05/10/2023] [Indexed: 05/26/2023]
Abstract
Distinct from animals, plants maintain organogenesis from specialized tissues termed meristems throughout life. In the shoot apex, the shoot apical meristem (SAM) produces all aerial organs, such as leaves, from its periphery. For this, the SAM needs to precisely balance stem cell renewal and differentiation, which is achieved through dynamic zonation of the SAM, and cell signaling within functional domains is key for SAM functions. The WUSCHEL-CLAVATA feedback loop plays a key role in SAM homeostasis, and recent studies have uncovered new components, expanding our understanding of the spatial expression and signaling mechanism. Advances in polar auxin transport and signaling have contributed to knowledge of the multifaceted roles of auxin in the SAM and organogenesis. Finally, single-cell techniques have expanded our understanding of the cellular functions within the shoot apex at single-cell resolution. In this review, we summarize the most up-to-date understanding of cell signaling in the SAM and focus on the multiple levels of regulation of SAM formation and maintenance.
Collapse
Affiliation(s)
- Ying Wang
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yuling Jiao
- State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences, Peking University, Beijing 100871, China
- Peking-Tsinghua Center for Life Sciences, Center for Quantitative Biology, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, China
- Peking University Institute of Advanced Agricultural Sciences, Shandong Laboratory of Advanced Agricultural Sciences in Weifang, Weifang, Shandong 261325, China
| |
Collapse
|
28
|
John A, Smith ES, Jones DS, Soyars CL, Nimchuk ZL. A network of CLAVATA receptors buffers auxin-dependent meristem maintenance. NATURE PLANTS 2023; 9:1306-1317. [PMID: 37550370 PMCID: PMC11070199 DOI: 10.1038/s41477-023-01485-y] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Accepted: 07/07/2023] [Indexed: 08/09/2023]
Abstract
Plant body plans are elaborated in response to both environmental and endogenous cues. How these inputs intersect to promote growth and development remains poorly understood. During reproductive development, central zone stem cell proliferation in inflorescence meristems is negatively regulated by the CLAVATA3 (CLV3) peptide signalling pathway. In contrast, floral primordia formation on meristem flanks requires the hormone auxin. Here we show that CLV3 signalling is also necessary for auxin-dependent floral primordia generation and that this function is partially masked by both inflorescence fasciation and heat-induced auxin biosynthesis. Stem cell regulation by CLAVATA signalling is separable from primordia formation but is also sensitized to temperature and auxin levels. In addition, we uncover a novel role for the CLV3 receptor CLAVATA1 in auxin-dependent meristem maintenance in cooler environments. As such, CLV3 signalling buffers multiple auxin-dependent shoot processes across divergent thermal environments, with opposing effects on cell proliferation in different meristem regions.
Collapse
Affiliation(s)
- Amala John
- Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Elizabeth Sarkel Smith
- Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Daniel S Jones
- Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Department of Biological Sciences, Auburn University, Auburn, AL, USA
| | - Cara L Soyars
- Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Thermo Fisher Scientific, Raleigh, NC, USA
| | - Zachary L Nimchuk
- Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.
- Curriculum in Genetics and Molecular Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.
| |
Collapse
|
29
|
Ang ACH, Østergaard L. Save your TIRs - more to auxin than meets the eye. THE NEW PHYTOLOGIST 2023; 238:971-976. [PMID: 36721296 PMCID: PMC10952682 DOI: 10.1111/nph.18783] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Accepted: 01/14/2023] [Indexed: 06/18/2023]
Abstract
Auxin has long been known as an important regulator of plant growth and development. Classical studies in auxin biology have uncovered a 'canonical' transcriptional auxin-signalling pathway involving the TRANSPORT INHIBITOR RESPONSE1/AUXIN SIGNALING F-BOX (TIR1/AFB) receptors. TIR1/AFB perception of auxin triggers the degradation of repressors and the derepression of auxin-responsive genes. Nevertheless, the canonical pathway cannot account for all aspects of auxin biology, such as physiological responses that are too rapid for transcriptional regulation. This Tansley insight will explore several 'non-canonical' pathways that have been described in recent years mediating fast auxin responses. We focus on the interplay between a nontranscriptional branch of TIR1/AFB signalling and a TRANSMEMBRANE KINASE1 (TMK1)-mediated pathway in root acid growth. Other developmental aspects involving the TMKs and their association with the controversial AUXIN-BINDING PROTEIN 1 (ABP1) will be discussed. Finally, we provide an updated overview of the ETTIN (ETT)-mediated pathway in contexts outside of gynoecium development.
Collapse
Affiliation(s)
| | - Lars Østergaard
- John Innes CentreNorwichNR4 7UHUK
- Department of BiologyUniversity of OxfordOxfordOX1 3RBUK
| |
Collapse
|
30
|
Caumon H, Vernoux T. A matter of time: auxin signaling dynamics and the regulation of auxin responses during plant development. JOURNAL OF EXPERIMENTAL BOTANY 2023:erad132. [PMID: 37042516 DOI: 10.1093/jxb/erad132] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Indexed: 06/19/2023]
Abstract
As auxin is a major regulator of plant development, studying the signaling mechanisms by which auxin influences cellular activities is of primary importance. In this review, we describe the current knowledge on the different modalities of signaling, from the well-characterized canonical nuclear auxin pathway, to the more recently discovered or re-discovered non-canonical modes of auxin signaling. In particular, we discuss how both the modularity of the nuclear auxin pathway and the dynamic regulation of its core components allow to trigger specific transcriptomic responses. We highlight the fact that the diversity of modes of auxin signaling allows for a wide range of timescales of auxin responses, from second-scale cytoplasmic responses to minute/hour-scale modifications of gene expression. Finally, we question the extent to which the temporality of auxin signaling and responses contributes to development in both the shoot and the root meristems. We conclude by stressing the fact that future investigations should allow to build an integrative view not only of the spatial control, but also of the temporality of auxin-mediated regulation of plant development, from the cell to the whole organism.
Collapse
Affiliation(s)
- Hugo Caumon
- Laboratoire Reproduction et Développement des Plantes, Univ Lyon, ENS de Lyon, CNRS, INRAE, F-69342, Lyon, France
| | - Teva Vernoux
- Laboratoire Reproduction et Développement des Plantes, Univ Lyon, ENS de Lyon, CNRS, INRAE, F-69342, Lyon, France
| |
Collapse
|
31
|
Kirchhelle C, Hamant O. Discretizing the cellular bases of plant morphogenesis: Emerging properties from subcellular and noisy patterning. Curr Opin Cell Biol 2023; 81:102159. [PMID: 36966612 DOI: 10.1016/j.ceb.2023.102159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Revised: 01/10/2023] [Accepted: 02/22/2023] [Indexed: 06/12/2023]
Abstract
A fundamental question in biology is how multicellular organisms robustly shape their organs. In the past decade, much progress has been made not just in identifying biochemical and biophysical factors underpinning morphogenesis, but also in analyzing their spatio-temporal dynamics. A remarkable outcome of such analyses is that morphogenesis involves high levels of heterogeneity and fluctuations at local scales. Although this could be considered as white noise to be averaged over time, there is increasing evidence that these heterogeneities and fluctuations are instructive cues for development. In this review, we highlight some of the new questions that such heterogeneities raise for plant morphogenesis. We also investigate their effects across scales, focusing on how subcellular heterogeneities contribute to organ shape robustness and evolvability.
Collapse
Affiliation(s)
- Charlotte Kirchhelle
- Laboratoire de Reproduction et Développement des Plantes, Université de Lyon, ENS de Lyon, UCBL, INRAE, CNRS, 46 Allée d'Italie, 69364 Lyon Cedex 07, France.
| | - Olivier Hamant
- Laboratoire de Reproduction et Développement des Plantes, Université de Lyon, ENS de Lyon, UCBL, INRAE, CNRS, 46 Allée d'Italie, 69364 Lyon Cedex 07, France.
| |
Collapse
|
32
|
Suzuki H, Kato H, Iwano M, Nishihama R, Kohchi T. Auxin signaling is essential for organogenesis but not for cell survival in the liverwort Marchantia polymorpha. THE PLANT CELL 2023; 35:1058-1075. [PMID: 36529527 PMCID: PMC10015169 DOI: 10.1093/plcell/koac367] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Revised: 11/28/2022] [Accepted: 12/15/2022] [Indexed: 05/12/2023]
Abstract
Auxin plays pleiotropic roles in plant development via gene regulation upon its perception by the receptors TRANSPORT INHIBITOR RESPONSE 1/AUXIN SIGNALING F-BOX (TIR1/AFBs). This auxin-regulated transcriptional control mechanism originated in the common ancestor of land plants. Although the complete loss of TIR1/AFBs causes embryonic lethality in Arabidopsis thaliana, it is unclear whether the requirement for TIR1-mediated auxin perception in cell viability can be generalized. The model liverwort Marchantia polymorpha has a minimal auxin signaling system with only a single TIR1/AFB, MpTIR1. Here we show by genetic, biochemical, and transcriptomic analyses that MpTIR1 functions as an evolutionarily conserved auxin receptor. Null mutants and conditionally knocked-out mutants of MpTIR1 were viable but incapable of forming any organs and grew as cell masses. Principal component analysis performed using transcriptomes at various developmental stages indicated that MpTIR1 is involved in the developmental transition from spores to organized thalli, during which apical notches containing stem cells are established. In Mptir1 cells, stem cell- and differentiation-related genes were up- and downregulated, respectively. Our findings suggest that, in M. polymorpha, auxin signaling is dispensable for cell division but is essential for three-dimensional patterning of the plant body by establishing pluripotent stem cells for organogenesis, a derived trait of land plants.
Collapse
Affiliation(s)
- Hidemasa Suzuki
- Graduate School of Biostudies, Kyoto University, Kyoto 606-8502, Japan
- Graduate School of Life Sciences, Tohoku University, Sendai 980-8577, Japan
| | - Hirotaka Kato
- Graduate School of Biostudies, Kyoto University, Kyoto 606-8502, Japan
- Graduate School of Science, Kobe University, Kobe 657-8501, Japan
- Graduate School of Science and Engineering, Ehime University, Matsuyama 790-8577, Japan
| | - Megumi Iwano
- Graduate School of Biostudies, Kyoto University, Kyoto 606-8502, Japan
| | - Ryuichi Nishihama
- Graduate School of Biostudies, Kyoto University, Kyoto 606-8502, Japan
- Department of Applied Biological Science, Faculty of Science and Technology, Tokyo University of Science, Noda 278-8510, Japan
| | - Takayuki Kohchi
- Graduate School of Biostudies, Kyoto University, Kyoto 606-8502, Japan
| |
Collapse
|
33
|
Morphogenesis of leaves: from initiation to the production of diverse shapes. Biochem Soc Trans 2023; 51:513-525. [PMID: 36876869 DOI: 10.1042/bst20220678] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Revised: 02/04/2023] [Accepted: 02/16/2023] [Indexed: 03/07/2023]
Abstract
The manner by which plant organs gain their shape is a longstanding question in developmental biology. Leaves, as typical lateral organs, are initiated from the shoot apical meristem that harbors stem cells. Leaf morphogenesis is accompanied by cell proliferation and specification to form the specific 3D shapes, with flattened lamina being the most common. Here, we briefly review the mechanisms controlling leaf initiation and morphogenesis, from periodic initiation in the shoot apex to the formation of conserved thin-blade and divergent leaf shapes. We introduce both regulatory gene patterning and biomechanical regulation involved in leaf morphogenesis. How phenotype is determined by genotype remains largely unanswered. Together, these new insights into leaf morphogenesis resolve molecular chains of events to better aid our understanding.
Collapse
|
34
|
Organ Patterning at the Shoot Apical Meristem (SAM): The Potential Role of the Vascular System. Symmetry (Basel) 2023. [DOI: 10.3390/sym15020364] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
Auxin, which is transported in the outermost cell layer, is one of the major players involved in plant organ initiation and positioning at the shoot apical meristem (SAM). However, recent studies have recognized the role of putative internal signals as an important factor collaborating with the well-described superficial pathway of organogenesis regulation. Different internal signals have been proposed; however, their nature and transport route have not been precisely determined. Therefore, in this mini-review, we aimed to summarize the current knowledge regarding the auxin-dependent regulation of organ positioning at the SAM and to discuss the vascular system as a potential route for internal signals. In addition, as regular organ patterning is a universal phenomenon, we focus on the role of the vasculature in this process in the major lineages of land plants, i.e., bryophytes, lycophytes, ferns, gymnosperms, and angiosperms.
Collapse
|
35
|
Polar auxin transport modulates early leaf flattening. Proc Natl Acad Sci U S A 2022; 119:e2215569119. [PMID: 36469773 PMCID: PMC9897438 DOI: 10.1073/pnas.2215569119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
The flattened leaf form is an important adaptation for efficient photosynthesis, and the developmental process of flattened leaves has been intensively studied. Classic microsurgery studies in potato and tomato suggest that the shoot apical meristem (SAM) communicates with the leaf primordia to promote leaf blade formation. More recently, it was found that polar auxin transport (PAT) could mediate this communication. However, it is unclear how the expression of leaf patterning genes is tailored by PAT routes originating from SAM. By combining experimental observations and computer model simulations, we show that microsurgical incisions and local inhibition of PAT in tomato interfere with auxin transport toward the leaf margins, reducing auxin response levels and altering the leaf blade shape. Importantly, oval auxin responses result in the bipolar expression of SlLAM1 that determines leaf blade formation. Furthermore, wounding caused by incisions promotes degradation of SlREV, a known regulator of leaf polarity. Additionally, computer simulations suggest that local auxin biosynthesis in early leaf primordia could remove necessity for external auxin supply originating from SAM, potentially explaining differences between species. Together, our findings establish how PAT near emerging leaf primordia determines spatial auxin patterning and refines SlLAM1 expression in the leaf margins to guide leaf flattening.
Collapse
|
36
|
Guan C, Jiao Y. Spatiotemporal imaging clarifies leaf primordium patterning. TRENDS IN PLANT SCIENCE 2022; 27:1196-1198. [PMID: 36055917 DOI: 10.1016/j.tplants.2022.08.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Revised: 08/12/2022] [Accepted: 08/19/2022] [Indexed: 06/15/2023]
Abstract
The first step in organ morphogenesis is the subdivision of a primordium into discrete regions by patterning genes. Recently, Burian et al. used live imaging and cell-lineage tracing to illuminate early patterning events during the establishment of leaf primordium adaxial-abaxial (dorsoventral) polarity, which clarifies controversies in the field.
Collapse
Affiliation(s)
- Chunmei Guan
- State Key Laboratory of Plant Genomics and National Center for Plant Gene Research (Beijing), Institute of Genetics and Developmental Biology, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing 100101, China
| | - Yuling Jiao
- State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences and Peking-Tsinghua Center for Life Sciences, Center for Quantitative Biology, Peking University, Beijing 100871, China.
| |
Collapse
|
37
|
Peng Z, Alique D, Xiong Y, Hu J, Cao X, Lü S, Long M, Wang Y, Wabnik K, Jiao Y. Differential growth dynamics control aerial organ geometry. Curr Biol 2022; 32:4854-4868.e5. [PMID: 36272403 DOI: 10.1016/j.cub.2022.09.055] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Revised: 07/05/2022] [Accepted: 09/27/2022] [Indexed: 11/22/2022]
Abstract
How gene activities and biomechanics together direct organ shapes is poorly understood. Plant leaf and floral organs develop from highly similar initial structures and share similar gene expression patterns, yet they gain drastically different shapes later-flat and bilateral leaf primordia and radially symmetric floral primordia, respectively. We analyzed cellular growth patterns and gene expression in young leaves and flowers of Arabidopsis thaliana and found significant differences in cell growth rates, which correlate with convergence sites of phytohormone auxin that require polar auxin transport. In leaf primordia, the PRESSED-FLOWER-expressing middle domain grows faster than adjacent adaxial domain and coincides with auxin convergence. In contrast, in floral primordia, the LEAFY-expressing domain shows accelerated growth rates and pronounced auxin convergence. This distinct cell growth dynamics between leaf and flower requires changes in levels of cell-wall pectin de-methyl-esterification and mechanical properties of the cell wall. Data-driven computer model simulations at organ and cellular levels demonstrate that growth differences are central to obtaining distinct organ shape, corroborating in planta observations. Together, our study provides a mechanistic basis for the establishment of early aerial organ symmetries through local modulation of differential growth patterns with auxin and biomechanics.
Collapse
Affiliation(s)
- Ziyuan Peng
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Daniel Alique
- Centro de Biotecnología y Genómica de Plantas (CBGP), Universidad Politécnica de Madrid (UPM), Centro Nacional Instituto de Investigación y Tecnología Agraria y Alimentaria (INIA, CSIC), Campus de Montegancedo, Pozuelo de Alarcón, 28223 Madrid, Spain
| | - Yuanyuan Xiong
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China; State Key Laboratory of Plant Genomics and National Center for Plant Gene Research (Beijing), Institute of Genetics and Developmental Biology, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing 100101, China
| | - Jinrong Hu
- Key Laboratory of Microgravity (National Microgravity Laboratory), Center of Biomechanics and Bioengineering, and Beijing Key Laboratory of Engineered Construction and Mechanobiology, Institute of Mechanics, Chinese Academy of Sciences, Beijing 100190, China; School of Engineering Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xiuwei Cao
- State Key Laboratory of Plant Genomics and National Center for Plant Gene Research (Beijing), Institute of Genetics and Developmental Biology, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing 100101, China
| | - Shouqin Lü
- Key Laboratory of Microgravity (National Microgravity Laboratory), Center of Biomechanics and Bioengineering, and Beijing Key Laboratory of Engineered Construction and Mechanobiology, Institute of Mechanics, Chinese Academy of Sciences, Beijing 100190, China; School of Engineering Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Mian Long
- Key Laboratory of Microgravity (National Microgravity Laboratory), Center of Biomechanics and Bioengineering, and Beijing Key Laboratory of Engineered Construction and Mechanobiology, Institute of Mechanics, Chinese Academy of Sciences, Beijing 100190, China; School of Engineering Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Ying Wang
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Krzysztof Wabnik
- Centro de Biotecnología y Genómica de Plantas (CBGP), Universidad Politécnica de Madrid (UPM), Centro Nacional Instituto de Investigación y Tecnología Agraria y Alimentaria (INIA, CSIC), Campus de Montegancedo, Pozuelo de Alarcón, 28223 Madrid, Spain.
| | - Yuling Jiao
- State Key Laboratory of Plant Genomics and National Center for Plant Gene Research (Beijing), Institute of Genetics and Developmental Biology, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing 100101, China; State Key Laboratory of Protein and Plant Gene Research, Peking-Tsinghua Center for Life Sciences, School of Life Sciences, Center for Quantitative Biology, Peking University, Beijing 100871, China; Peking University Institute of Advanced Agricultural Sciences, Shandong Laboratory of Advanced Agricultural Sciences at Weifang, Weifang, Shandong 261000, China.
| |
Collapse
|
38
|
Santos Teixeira J, van den Berg T, ten Tusscher K. Complementary roles for auxin and auxin signalling revealed by reverse engineering lateral root stable prebranch site formation. Development 2022; 149:279332. [PMID: 36314783 PMCID: PMC9793420 DOI: 10.1242/dev.200927] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Accepted: 10/24/2022] [Indexed: 11/22/2022]
Abstract
Priming is the process through which periodic elevations in auxin signalling prepattern future sites for lateral root formation, called prebranch sites. Thus far, the extent to which elevations in auxin concentration and/or auxin signalling are required for priming and prebranch site formation has remained a matter of debate. Recently, we discovered a reflux-and-growth mechanism for priming generating periodic elevations in auxin concentration that subsequently dissipate. Here, we reverse engineer a mechanism for prebranch site formation that translates these transient elevations into a persistent increase in auxin signalling, resolving the prior debate into a two-step process of auxin concentration-mediated initial signal and auxin signalling capacity-mediated memorization. A crucial aspect of the prebranch site formation mechanism is its activation in response to time-integrated rather than instantaneous auxin signalling. The proposed mechanism is demonstrated to be consistent with prebranch site auxin signalling dynamics, lateral inhibition, and symmetry-breaking mechanisms and perturbations in auxin homeostasis.
Collapse
Affiliation(s)
- Joana Santos Teixeira
- Computational Developmental Biology Group, Faculty of Science, Utrecht University, Utrecht 3584 CH, The Netherlands
| | - Thea van den Berg
- Computational Developmental Biology Group, Faculty of Science, Utrecht University, Utrecht 3584 CH, The Netherlands
| | - Kirsten ten Tusscher
- Computational Developmental Biology Group, Faculty of Science, Utrecht University, Utrecht 3584 CH, The Netherlands,Author for correspondence ()
| |
Collapse
|
39
|
Kareem A, Bhatia N, Ohno C, Heisler MG. PIN-FORMED1 polarity in the plant shoot epidermis is insensitive to the polarity of neighboring cells. iScience 2022; 25:105062. [PMID: 36157591 PMCID: PMC9494258 DOI: 10.1016/j.isci.2022.105062] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Revised: 07/03/2022] [Accepted: 08/30/2022] [Indexed: 11/29/2022] Open
Abstract
At the Arabidopsis shoot apex, epidermal cells are planar-polarized along an axis marked by the asymmetric localization patterns of several proteins including PIN-FORMED1 (PIN1), which facilitates the directional efflux of the plant hormone auxin to pattern phyllotaxis. While PIN1 polarity is known to be regulated non-cell autonomously via the MONOPTEROS (MP) transcription factor, how this occurs has not been determined. Here, we use mosaic expression of the serine threonine kinase PINOID (PID) to test whether PIN1 polarizes according to the polarity of neighboring cells. Our findings reveal that PIN1 is insensitive to the polarity of PIN1 in neighboring cells arguing against auxin flux or extracellular auxin concentrations acting as a polarity cue, in contrast to previous model proposals.
Collapse
Affiliation(s)
- Abdul Kareem
- School of Life and Environmental Sciences, University of Sydney, Sydney, NSW 2006, Australia
| | - Neha Bhatia
- European Molecular Biology Laboratory, Heidelberg 69117, Germany
| | - Carolyn Ohno
- School of Life and Environmental Sciences, University of Sydney, Sydney, NSW 2006, Australia.,European Molecular Biology Laboratory, Heidelberg 69117, Germany
| | - Marcus G Heisler
- School of Life and Environmental Sciences, University of Sydney, Sydney, NSW 2006, Australia.,European Molecular Biology Laboratory, Heidelberg 69117, Germany
| |
Collapse
|
40
|
The NGATHA-like Genes DPA4 and SOD7 Are Not Required for Stem Cell Specification during Embryo Development in Arabidopsis thaliana. Int J Mol Sci 2022; 23:ijms231912007. [PMID: 36233309 PMCID: PMC9569844 DOI: 10.3390/ijms231912007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Revised: 10/04/2022] [Accepted: 10/05/2022] [Indexed: 01/09/2023] Open
Abstract
In plants, stem cells are embedded in structures called meristems. Meristems can be formed either during embryogenesis or during the plant's life such as, for instance, axillary meristems. While the regulation of the stem cell population in an established meristem is well described, how it is initiated in newly formed meristems is less well understood. Recently, two transcription factors of the NGATHA-like family, DEVELOPMENT-RELATED PcG TARGET IN THE APEX4 (DPA4)/NGAL3 and SUPPRESSOR OF DA1-1 7 (SOD7)/NGAL2 have been shown to facilitate de novo stem cell initiation in Arabidopsis thaliana axillary meristems. Here, we tested whether the DPA4 and SOD7 genes had a similar role during stem cell formation in embryo shoot apical meristems. Using DPA4 and SOD7 reporter lines, we characterized the expression pattern of these genes during embryo development, revealing only a partial overlap with the stem cell population. In addition, we showed that the expression of a stem cell reporter was not modified in dpa4-2 sod7-2 double mutant embryos compared to the wild type. Together, these observations suggest that DPA4 and SOD7 are not required for stem cell specification during embryo shoot apical meristem initiation. This work stresses the difference in the regulatory network leading to meristem formation during the embryonic and post-embryonic phases.
Collapse
|
41
|
DeGennaro D, Urquidi Camacho RA, Zhang L, Shpak ED. Initiation of aboveground organ primordia depends on combined action of auxin, ERECTA family genes, and PINOID. PLANT PHYSIOLOGY 2022; 190:794-812. [PMID: 35703946 PMCID: PMC9434323 DOI: 10.1093/plphys/kiac288] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Accepted: 05/31/2022] [Indexed: 06/15/2023]
Abstract
Leaves and flowers are produced by the shoot apical meristem (SAM) at a certain distance from its center, a process that requires the hormone auxin. The amount of auxin and the pattern of its distribution in the initiation zone determine the size and spatial arrangement of organ primordia. Auxin gradients in the SAM are formed by PIN-FORMED (PIN) auxin efflux carriers whose polar localization in the plasma membrane depends on the protein kinase PINOID (PID). Previous work determined that ERECTA (ER) family genes (ERfs) control initiation of leaves. ERfs are plasma membrane receptors that enable cell-to-cell communication by sensing extracellular small proteins from the EPIDERMAL PATTERNING FACTOR/EPF-LIKE (EPF/EPFL) family. Here, we investigated whether ERfs regulate initiation of organs by altering auxin distribution or signaling in Arabidopsis (Arabidopsis thaliana). Genetic and pharmacological data suggested that ERfs do not regulate organogenesis through PINs while transcriptomics data showed that ERfs do not alter primary transcriptional responses to auxin. Our results indicated that in the absence of ERf signaling the peripheral zone cells inefficiently initiate leaves in response to auxin signals and that increased accumulation of auxin in the er erecta-like1 (erl1) erl2 SAM can partially rescue organ initiation defects. We propose that both auxin and ERfs are essential for leaf initiation and that they have common downstream targets. Genetic data also indicated that the role of PID in initiation of cotyledons and leaves cannot be attributed solely to regulation of PIN polarity and PID is likely to have other functions in addition to regulation of auxin distribution.
Collapse
Affiliation(s)
- Daniel DeGennaro
- Department of Biochemistry, Cellular and Molecular Biology, The University of Tennessee, Knoxville, Tennessee 37996, USA
| | | | | | | |
Collapse
|
42
|
Jean-Paul W. Modeling phyllotaxis: From the Inhibition Potential to the Real Plant. J Theor Biol 2022; 553:111261. [PMID: 36037857 DOI: 10.1016/j.jtbi.2022.111261] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Revised: 08/06/2022] [Accepted: 08/22/2022] [Indexed: 11/27/2022]
Abstract
We developed a new parametrization of the classic Douady and Couder model of phyllotaxis based on the inhibition potential: it allowed us to accurately reproduce the vegetative meristem of Linum usitatissimum displaying Fibonacci phyllotaxis, and the reproductive meristem of Ranunculus repens. We calculated the inhibition potential within the meristem and the auxin concentration at the front. We show that phyllotaxis modes and the convergence of the divergence angles towards "noble" angles are the consequence of minimizing the inhibitory potential under the constraint of decreasing plastochron ratios. Our approach, which gives a physicochemical basis to the van Iterson diagram, produces the same results as approaches based on mechanical constraints, suggesting these are two facets of the same botanical reality.
Collapse
Affiliation(s)
- Walch Jean-Paul
- Laboratoire de Thermodynamique des Milieux Ioniques et Biologiques, Université Paris Cité, France, retired: 45 cours Lassus 66000 Perpignan, France.
| |
Collapse
|
43
|
Jedličková V, Ebrahimi Naghani S, Robert HS. On the trail of auxin: Reporters and sensors. THE PLANT CELL 2022; 34:3200-3213. [PMID: 35708654 PMCID: PMC9421466 DOI: 10.1093/plcell/koac179] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Accepted: 05/07/2022] [Indexed: 05/22/2023]
Abstract
The phytohormone auxin is a master regulator of plant growth and development in response to many endogenous and environmental signals. The underlying coordination of growth is mediated by the formation of auxin maxima and concentration gradients. The visualization of auxin dynamics and distribution can therefore provide essential information to increase our understanding of the mechanisms by which auxin orchestrates these growth and developmental processes. Several auxin reporters have been developed to better perceive the auxin distribution and signaling machinery in vivo. This review focuses on different types of auxin reporters and biosensors used to monitor auxin distribution and its dynamics, as well as auxin signaling, at the cellular and tissue levels in different plant species. We provide a brief history of each reporter and biosensor group and explain their principles and utilities.
Collapse
|
44
|
Thelander M, Landberg K, Muller A, Cloarec G, Cunniffe N, Huguet S, Soubigou-Taconnat L, Brunaud V, Coudert Y. Apical dominance control by TAR-YUC-mediated auxin biosynthesis is a deep homology of land plants. Curr Biol 2022; 32:3838-3846.e5. [PMID: 35841890 DOI: 10.1016/j.cub.2022.06.064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Revised: 05/17/2022] [Accepted: 06/21/2022] [Indexed: 11/24/2022]
Abstract
A key aim in biology is to identify which genetic changes contributed to the evolution of form through time. Apical dominance, the inhibitory effect exerted by shoot apices on the initiation or outgrowth of distant lateral buds, is a major regulatory mechanism of plant form.1 Nearly a century of studies in the sporophyte of flowering plants have established the phytohormone auxin as a front-runner in the search for key factors controlling apical dominance,2,3 identifying critical roles for long-range polar auxin transport and local auxin biosynthesis in modulating shoot branching.4-10 A capacity for lateral branching evolved by convergence in the gametophytic shoot of mosses and primed its diversification;11 however, polar auxin transport is relatively unimportant in this developmental process,12 the contribution of auxin biosynthesis genes has not been assessed, and more generally, the extent of conservation in apical dominance regulation within the land plants remains largely unknown. To fill this knowledge gap, we sought to identify genetic determinants of apical dominance in the moss Physcomitrium patens. Here, we show that leafy shoot apex decapitation releases apical dominance through massive and rapid transcriptional reprogramming of auxin-responsive genes and altering auxin biosynthesis gene activity. We pinpoint a subset of P. patens TRYPTOPHAN AMINO-TRANSFERASE (TAR) and YUCCA FLAVIN MONOOXYGENASE-LIKE (YUC) auxin biosynthesis genes expressed in the main and lateral shoot apices and show that they are essential for coordinating branch initiation and outgrowth. Our results demonstrate that local auxin biosynthesis acts as a pivotal regulator of apical dominance in moss and constitutes a shared mechanism underpinning shoot architecture control in land plants.
Collapse
Affiliation(s)
- Mattias Thelander
- Department of Plant Biology, Swedish University of Agricultural Sciences, The Linnean Centre for Plant Biology in Uppsala, 750 07 Uppsala, Sweden
| | - Katarina Landberg
- Department of Plant Biology, Swedish University of Agricultural Sciences, The Linnean Centre for Plant Biology in Uppsala, 750 07 Uppsala, Sweden
| | - Arthur Muller
- Laboratoire Reproduction et Développement des Plantes, Université de Lyon, ENS de Lyon, UCB Lyon 1, CNRS, INRAE, INRIA, Lyon 69007, France; Experimental Biology Research Group, Institute of Biology, Faculty of Sciences, University of Neuchâtel, 2000 Neuchâtel, Switzerland
| | - Gladys Cloarec
- Laboratoire Reproduction et Développement des Plantes, Université de Lyon, ENS de Lyon, UCB Lyon 1, CNRS, INRAE, INRIA, Lyon 69007, France; Institut Jean-Pierre Bourgin, INRAE, AgroParisTech, Université Paris-Saclay, 78000 Versailles, France
| | - Nik Cunniffe
- Department of Plant Sciences, University of Cambridge, Downing Street, Cambridge CB2 3EA, UK
| | - Stéphanie Huguet
- Université Paris-Saclay, CNRS, INRAE, Univ Evry, Institute of Plant Sciences Paris-Saclay (IPS2), 91405 Orsay, France; Université de Paris, CNRS, INRAE, Institute of Plant Sciences Paris-Saclay (IPS2), 91405 Orsay, France
| | - Ludivine Soubigou-Taconnat
- Université Paris-Saclay, CNRS, INRAE, Univ Evry, Institute of Plant Sciences Paris-Saclay (IPS2), 91405 Orsay, France; Université de Paris, CNRS, INRAE, Institute of Plant Sciences Paris-Saclay (IPS2), 91405 Orsay, France
| | - Véronique Brunaud
- Université Paris-Saclay, CNRS, INRAE, Univ Evry, Institute of Plant Sciences Paris-Saclay (IPS2), 91405 Orsay, France; Université de Paris, CNRS, INRAE, Institute of Plant Sciences Paris-Saclay (IPS2), 91405 Orsay, France
| | - Yoan Coudert
- Laboratoire Reproduction et Développement des Plantes, Université de Lyon, ENS de Lyon, UCB Lyon 1, CNRS, INRAE, INRIA, Lyon 69007, France.
| |
Collapse
|
45
|
Guo K, Huang C, Miao Y, Cosgrove DJ, Hsia KJ. Leaf morphogenesis: The multifaceted roles of mechanics. MOLECULAR PLANT 2022; 15:1098-1119. [PMID: 35662674 DOI: 10.1016/j.molp.2022.05.015] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Revised: 05/18/2022] [Accepted: 05/26/2022] [Indexed: 05/12/2023]
Abstract
Plants produce a rich diversity of biological forms, and the diversity of leaves is especially notable. Mechanisms of leaf morphogenesis have been studied in the past two decades, with a growing focus on the interactive roles of mechanics in recent years. Growth of plant organs involves feedback by mechanical stress: growth induces stress, and stress affects growth and morphogenesis. Although much attention has been given to potential stress-sensing mechanisms and cellular responses, the mechanical principles guiding morphogenesis have not been well understood. Here we synthesize the overarching roles of mechanics and mechanical stress in multilevel and multiple stages of leaf morphogenesis, encompassing leaf primordium initiation, phyllotaxis and venation patterning, and the establishment of complex mature leaf shapes. Moreover, the roles of mechanics at multiscale levels, from subcellular cytoskeletal molecules to single cells to tissues at the organ scale, are articulated. By highlighting the role of mechanical buckling in the formation of three-dimensional leaf shapes, this review integrates the perspectives of mechanics and biology to provide broader insights into the mechanobiology of leaf morphogenesis.
Collapse
Affiliation(s)
- Kexin Guo
- School of Mechanical and Aerospace Engineering, Nanyang Technological University, Singapore 639798, Singapore
| | - Changjin Huang
- School of Mechanical and Aerospace Engineering, Nanyang Technological University, Singapore 639798, Singapore
| | - Yansong Miao
- School of Biological Sciences, Nanyang Technological University, Singapore 637551, Singapore
| | - Daniel J Cosgrove
- Department of Biology, The Pennsylvania State University, University Park, PA 16802, USA.
| | - K Jimmy Hsia
- School of Mechanical and Aerospace Engineering, Nanyang Technological University, Singapore 639798, Singapore; School of Chemical and Biomedical Engineering, Nanyang Technological University, Singapore 637459, Singapore.
| |
Collapse
|
46
|
Guan C, Qiao L, Xiong Y, Zhang L, Jiao Y. Coactivation of antagonistic genes stabilizes polarity patterning during shoot organogenesis. SCIENCE ADVANCES 2022; 8:eabn0368. [PMID: 35675392 PMCID: PMC9176745 DOI: 10.1126/sciadv.abn0368] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Accepted: 04/22/2022] [Indexed: 06/15/2023]
Abstract
Spatiotemporal patterns of gene expression are instrumental to morphogenesis. A stable pattern interface, often between reciprocal-inhibiting morphogens, must be robustly maintained after initial patterning cues diminish, organ growth, or organ geometry changes. In plants, floral and leaf primordia obtain the adaxial-abaxial pattern at the shoot apical meristem periphery. However, it is unknown how the pattern is maintained after primordia have left the shoot apex. Here, through a combination of computational simulations, time-lapse imaging, and genetic analysis, we propose a model in which auxin simultaneously promotes both adaxial and abaxial domains of expression. Furthermore, we identified multilevel feedback regulation of auxin signaling to refine the spatiotemporal patterns. Our results demonstrate that coactivation by auxin determines and stabilizes antagonistic adaxial-abaxial patterning during aerial organ formation.
Collapse
Affiliation(s)
- Chunmei Guan
- State Key Laboratory of Plant Genomics and National Center for Plant Gene Research (Beijing), Institute of Genetics and Developmental Biology, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing 100101, China
| | - Lingxia Qiao
- Beijing International Center for Mathematical Research, Center for Quantitative Biology, Peking University, Beijing 100871, China
| | - Yuanyuan Xiong
- State Key Laboratory of Plant Genomics and National Center for Plant Gene Research (Beijing), Institute of Genetics and Developmental Biology, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing 100101, China
| | - Lei Zhang
- Beijing International Center for Mathematical Research, Center for Quantitative Biology, Peking University, Beijing 100871, China
| | - Yuling Jiao
- State Key Laboratory of Plant Genomics and National Center for Plant Gene Research (Beijing), Institute of Genetics and Developmental Biology, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing 100101, China
- State Key Laboratory of Protein and Plant Gene Research, Peking-Tsinghua Center for Life Sciences, School of Life Sciences, Center for Quantitative Biology, Peking University, Beijing 100871, China
- College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
47
|
Prusinkiewicz P, Zhang T, Owens A, Cieslak M, Elomaa P. Phyllotaxis without symmetry: what can we learn from flower heads? JOURNAL OF EXPERIMENTAL BOTANY 2022; 73:3319-3329. [PMID: 35275600 PMCID: PMC9162182 DOI: 10.1093/jxb/erac101] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Accepted: 03/08/2022] [Indexed: 05/02/2023]
Abstract
Phyllotaxis is commonly considered in the context of circular meristems or receptacles, yet non-circular (fasciated) structures also give rise to new primordia and organs. Here we investigate phyllotactic patterns in fasciated flower heads in the Asteraceae plant family. We begin by surveying the phenomenon of fasciation. We then show that phyllotactic patterns in fasciated heads can be generated by removing the inessential assumption of circularity from the previously published model of gerbera heads. To characterize these patterns, we revisit the conceptual framework in which phyllotactic patterns are commonly described. We note that some notions, in particular parastichies and parastichy numbers, maintain their significance in non-circular phyllotaxis, whereas others, in particular the divergence angle, need to be extended or lose their role. These observations highlight a number of open problems related to phyllotaxis in general, which may be elucidated by studies of fasciated heads.
Collapse
Affiliation(s)
| | - Teng Zhang
- Department of Agricultural Sciences, Viikki Plant Science Centre, University of Helsinki, 00014 Helsinki, Finland
| | - Andrew Owens
- Department of Computer Science, University of Calgary, Calgary AB T2N 1N4, Canada
| | - Mikolaj Cieslak
- Department of Computer Science, University of Calgary, Calgary AB T2N 1N4, Canada
| | - Paula Elomaa
- Department of Agricultural Sciences, Viikki Plant Science Centre, University of Helsinki, 00014 Helsinki, Finland
| |
Collapse
|
48
|
Abstract
Plant hormones are signalling compounds that regulate crucial aspects of growth, development and environmental stress responses. Abiotic stresses, such as drought, salinity, heat, cold and flooding, have profound effects on plant growth and survival. Adaptation and tolerance to such stresses require sophisticated sensing, signalling and stress response mechanisms. In this Review, we discuss recent advances in understanding how diverse plant hormones control abiotic stress responses in plants and highlight points of hormonal crosstalk during abiotic stress signalling. Control mechanisms and stress responses mediated by plant hormones including abscisic acid, auxin, brassinosteroids, cytokinins, ethylene and gibberellins are discussed. We discuss new insights into osmotic stress sensing and signalling mechanisms, hormonal control of gene regulation and plant development during stress, hormone-regulated submergence tolerance and stomatal movements. We further explore how innovative imaging approaches are providing insights into single-cell and tissue hormone dynamics. Understanding stress tolerance mechanisms opens new opportunities for agricultural applications.
Collapse
|
49
|
Perico C, Tan S, Langdale JA. Developmental regulation of leaf venation patterns: monocot versus eudicots and the role of auxin. THE NEW PHYTOLOGIST 2022; 234:783-803. [PMID: 35020214 PMCID: PMC9994446 DOI: 10.1111/nph.17955] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Accepted: 12/14/2021] [Indexed: 06/14/2023]
Abstract
Organisation and patterning of the vascular network in land plants varies in different taxonomic, developmental and environmental contexts. In leaves, the degree of vascular strand connectivity influences both light and CO2 harvesting capabilities as well as hydraulic capacity. As such, developmental mechanisms that regulate leaf venation patterning have a direct impact on physiological performance. Development of the leaf venation network requires the specification of procambial cells within the ground meristem of the primordium and subsequent proliferation and differentiation of the procambial lineage to form vascular strands. An understanding of how diverse venation patterns are manifest therefore requires mechanistic insight into how procambium is dynamically specified in a growing leaf. A role for auxin in this process was identified many years ago, but questions remain. In this review we first provide an overview of the diverse venation patterns that exist in land plants, providing an evolutionary perspective. We then focus on the developmental regulation of leaf venation patterns in angiosperms, comparing patterning in eudicots and monocots, and the role of auxin in each case. Although common themes emerge, we conclude that the developmental mechanisms elucidated in eudicots are unlikely to fully explain how parallel venation patterns in monocot leaves are elaborated.
Collapse
Affiliation(s)
- Chiara Perico
- Department of Plant SciencesUniversity of OxfordSouth Parks RdOxfordOX1 3RBUK
| | - Sovanna Tan
- Department of Plant SciencesUniversity of OxfordSouth Parks RdOxfordOX1 3RBUK
| | - Jane A. Langdale
- Department of Plant SciencesUniversity of OxfordSouth Parks RdOxfordOX1 3RBUK
| |
Collapse
|
50
|
Nicolas A, Laufs P. Meristem Initiation and de novo Stem Cell Formation. FRONTIERS IN PLANT SCIENCE 2022; 13:891228. [PMID: 35557739 PMCID: PMC9087721 DOI: 10.3389/fpls.2022.891228] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Accepted: 04/07/2022] [Indexed: 06/15/2023]
Abstract
Plant aerial development relies on meristem activity which ensures main body plant axis development during plant life. While the shoot apical meristem (SAM) formed in the embryo only contributes to the main stem, the branched structure observed in many plants relies on axillary meristems (AMs) formed post-embryonically. These AMs initiate from a few cells of the leaf axil that retain meristematic characteristics, increase in number, and finally organize into a structure similar to the SAM. In this review, we will discuss recent findings on de novo establishment of a stem cell population and its regulatory niche, a key step essential for the indeterminate fate of AMs. We stress that de novo stem cell formation is a progressive process, which starts with a transient regulatory network promoting stem cell formation and that is different from the one acting in functional meristems. This transient stage can be called premeristems and we discuss whether this concept can be extended to the formation of meristems other than AMs.
Collapse
Affiliation(s)
- Antoine Nicolas
- Université Paris-Saclay, INRAE, AgroParisTech, Institut Jean-Pierre Bourgin (IJPB), Versailles, France
- Université Paris-Saclay, Orsay, France
| | - Patrick Laufs
- Université Paris-Saclay, INRAE, AgroParisTech, Institut Jean-Pierre Bourgin (IJPB), Versailles, France
| |
Collapse
|