1
|
Baskin A, Soudah N, Gilad N, Halevi N, Darlyuk-Saadon I, Schoffman H, Engelberg D. All intrinsically active Erk1/2 mutants autophosphorylate threonine207/188, a plausible regulator of the TEY motif phosphorylation. J Biol Chem 2025; 301:108509. [PMID: 40222547 DOI: 10.1016/j.jbc.2025.108509] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2024] [Revised: 03/19/2025] [Accepted: 04/08/2025] [Indexed: 04/15/2025] Open
Abstract
The extracellular-activated kinases 1 & 2 (Erk1/2) are catalytically active when dually phosphorylated on a TEY motif located at the activation loop. In human patients with cardiac hypertrophy, Erk1/2 are phosphorylated on yet another activation loop's residue, T207/188. Intrinsically active variants of Erk1/2, mutated at R84/65, are also (auto)phosphorylated on T207/188. It is not known whether T207/188 phosphorylation is restricted to these cases, nor how it affects Erks' activity. We report that T207/188 phosphorylation is not rare, as we found that: 1) All known auto-activated Erk1/2 variants are phosphorylated on T207/188. 2) It occurs in various cell lines and mouse tissues. 3) It is extremely high in patients with skeletal muscle atrophies or myopathies. We propose that T207/188 controls the permissiveness of the TEY motif for phosphorylation because T207/188-mutated Erk1/2 and the yeast Erk/Mpk1 were efficiently dually phosphorylated when expressed in HEK293 or yeast cells, respectively. The T207/188-mutated Mpk1 was not TEY-phosphorylated in cells knocked out for MEKs, suggesting that its enhanced phosphorylation in wild-type cells is MEK-dependent. Thus, as T207/188-mutated Erk1/2 and Mpk1 recruit MEKs, the role of T207/188 is to impede MEKs' ability to phosphorylate Erks. T207/188 also impedes autophosphorylation as recombinant Erk2 mutated at T188 is spontaneously autophosphorylated, although exclusively on Y185. The role of T207/188 in regulating activation loop phosphorylation may be common to most Ser/Thr kinases, as 86% of them (in the human kinome) possess T207/188 orthologs, and 160 of them were already reported to be phosphorylated on this residue.
Collapse
Affiliation(s)
- Alexey Baskin
- Department of Biological Chemistry, The Institute of Life Science, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Nadine Soudah
- Department of Biological Chemistry, The Institute of Life Science, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Nechama Gilad
- Department of Biological Chemistry, The Institute of Life Science, The Hebrew University of Jerusalem, Jerusalem, Israel; Singapore-HUJ Alliance for Research and Enterprise, Mechanisms of Liver Inflammatory Diseases Program, National University of Singapore, Singapore
| | - Neriya Halevi
- Department of Biological Chemistry, The Institute of Life Science, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Ilona Darlyuk-Saadon
- Singapore-HUJ Alliance for Research and Enterprise, Mechanisms of Liver Inflammatory Diseases Program, National University of Singapore, Singapore
| | - Hanan Schoffman
- Stein Family Mass Spectrometry Unit, The Research Infrastructure Center, The Institute of Life Science, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - David Engelberg
- Department of Biological Chemistry, The Institute of Life Science, The Hebrew University of Jerusalem, Jerusalem, Israel; Singapore-HUJ Alliance for Research and Enterprise, Mechanisms of Liver Inflammatory Diseases Program, National University of Singapore, Singapore; Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore.
| |
Collapse
|
2
|
Xiao H, Han Z, Xu M, Gao X, Qiu S, Ren N, Yi Y, Zhou C. The Role of Post-Translational Modifications in Necroptosis. Biomolecules 2025; 15:549. [PMID: 40305291 PMCID: PMC12024652 DOI: 10.3390/biom15040549] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2025] [Revised: 03/05/2025] [Accepted: 03/06/2025] [Indexed: 05/02/2025] Open
Abstract
Necroptosis, a distinct form of regulated necrosis implicated in various human pathologies, is orchestrated through sophisticated signaling pathways. During this process, cells undergoing necroptosis exhibit characteristic necrotic morphology and provoke substantial inflammatory responses. Post-translational modifications (PTMs)-chemical alterations occurring after protein synthesis that critically regulate protein functionality-constitute essential regulatory components within these complex signaling cascades. This intricate crosstalk between necroptotic pathways and PTM networks presents promising therapeutic opportunities. Our comprehensive review systematically analyzes the molecular mechanisms underlying necroptosis, with particular emphasis on the regulatory roles of PTMs in signal transduction. Through systematic evaluation of key modifications including ubiquitination, phosphorylation, glycosylation, methylation, acetylation, disulfide bond formation, caspase cleavage, nitrosylation, and SUMOylation, we examine potential therapeutic applications targeting necroptosis in disease pathogenesis. Furthermore, we synthesize current pharmacological strategies for manipulating PTM-regulated necroptosis, offering novel perspectives on clinical target development and therapeutic intervention.
Collapse
Affiliation(s)
- Hao Xiao
- Department of Liver Surgery and Transplantation, Zhongshan Hospital, Fudan University, Shanghai 200032, China; (H.X.); (Z.H.)
- Liver Cancer Institute, Zhongshan Hospital, Fudan University, Shanghai 200032, China
- Key Laboratory of Carcinogenesis and Cancer Invasion, Fudan University, Ministry of Education, Shanghai 200032, China
| | - Zeping Han
- Department of Liver Surgery and Transplantation, Zhongshan Hospital, Fudan University, Shanghai 200032, China; (H.X.); (Z.H.)
- Liver Cancer Institute, Zhongshan Hospital, Fudan University, Shanghai 200032, China
- Key Laboratory of Carcinogenesis and Cancer Invasion, Fudan University, Ministry of Education, Shanghai 200032, China
| | - Min Xu
- Department of Liver Surgery and Transplantation, Zhongshan Hospital, Fudan University, Shanghai 200032, China; (H.X.); (Z.H.)
- Liver Cancer Institute, Zhongshan Hospital, Fudan University, Shanghai 200032, China
- Key Laboratory of Carcinogenesis and Cancer Invasion, Fudan University, Ministry of Education, Shanghai 200032, China
| | - Xukang Gao
- Department of Liver Surgery and Transplantation, Zhongshan Hospital, Fudan University, Shanghai 200032, China; (H.X.); (Z.H.)
- Liver Cancer Institute, Zhongshan Hospital, Fudan University, Shanghai 200032, China
- Key Laboratory of Carcinogenesis and Cancer Invasion, Fudan University, Ministry of Education, Shanghai 200032, China
| | - Shuangjian Qiu
- Department of Liver Surgery and Transplantation, Zhongshan Hospital, Fudan University, Shanghai 200032, China; (H.X.); (Z.H.)
- Liver Cancer Institute, Zhongshan Hospital, Fudan University, Shanghai 200032, China
- Key Laboratory of Carcinogenesis and Cancer Invasion, Fudan University, Ministry of Education, Shanghai 200032, China
| | - Ning Ren
- Department of Liver Surgery and Transplantation, Zhongshan Hospital, Fudan University, Shanghai 200032, China; (H.X.); (Z.H.)
- Liver Cancer Institute, Zhongshan Hospital, Fudan University, Shanghai 200032, China
- Key Laboratory of Carcinogenesis and Cancer Invasion, Fudan University, Ministry of Education, Shanghai 200032, China
| | - Yong Yi
- Department of Liver Surgery and Transplantation, Zhongshan Hospital, Fudan University, Shanghai 200032, China; (H.X.); (Z.H.)
- Liver Cancer Institute, Zhongshan Hospital, Fudan University, Shanghai 200032, China
- Key Laboratory of Carcinogenesis and Cancer Invasion, Fudan University, Ministry of Education, Shanghai 200032, China
| | - Chenhao Zhou
- Department of Liver Surgery and Transplantation, Zhongshan Hospital, Fudan University, Shanghai 200032, China; (H.X.); (Z.H.)
- Liver Cancer Institute, Zhongshan Hospital, Fudan University, Shanghai 200032, China
- Key Laboratory of Carcinogenesis and Cancer Invasion, Fudan University, Ministry of Education, Shanghai 200032, China
| |
Collapse
|
3
|
Chiou S, Cawthorne W, Soerianto T, Hofferek V, Patel KM, Garnish SE, Tovey Crutchfield EC, Hall C, Hildebrand JM, McConville MJ, Lawlor KE, Hawkins ED, Samson AL, Murphy JM. MLKL deficiency elevates testosterone production in male mice independently of necroptotic functions. Cell Death Dis 2024; 15:851. [PMID: 39572538 PMCID: PMC11582601 DOI: 10.1038/s41419-024-07242-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2024] [Revised: 11/09/2024] [Accepted: 11/11/2024] [Indexed: 11/24/2024]
Abstract
Mixed lineage kinase domain-like (MLKL) is a pseudokinase, best known for its role as the terminal effector of the necroptotic cell death pathway. MLKL-mediated necroptosis has long been linked to various age-related pathologies including neurodegeneration, atherosclerosis and male reproductive decline, however many of these attributions remain controversial. Here, we investigated the role of MLKL and necroptosis in the adult mouse testis: an organ divided into sperm-producing seminiferous tubules and the surrounding testosterone-producing interstitium. We find that sperm-producing cells within seminiferous tubules lack expression of key necroptotic mediators and thus are resistant to a pro-necroptotic challenge. By comparison, coordinated expression of the necroptotic pathway occurs in the testicular interstitium, rendering cells within this compartment, especially the lysozyme-positive macrophages, vulnerable to necroptotic cell death. We also uncover a non-necroptotic role for MLKL in regulating testosterone levels. Thus, MLKL serves two roles in the mouse testes - one involving the canonical response of macrophages to necroptotic insult, and the other a non-canonical function in male reproductive hormone control.
Collapse
Affiliation(s)
- Shene Chiou
- Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, Australia
- Department of Medical Biology, University of Melbourne, Parkville, VIC, Australia
| | - Wayne Cawthorne
- Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, Australia
- Department of Medical Biology, University of Melbourne, Parkville, VIC, Australia
| | - Thomas Soerianto
- Department of Biochemistry and Pharmacology, Bio21 Molecular Science and Biotechnology Institute, Parkville, VIC, Australia
| | - Vinzenz Hofferek
- Department of Biochemistry and Pharmacology, Bio21 Molecular Science and Biotechnology Institute, Parkville, VIC, Australia
| | - Komal M Patel
- Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, Australia
| | - Sarah E Garnish
- Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, Australia
- Department of Medical Biology, University of Melbourne, Parkville, VIC, Australia
| | - Emma C Tovey Crutchfield
- Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, Australia
- Department of Medical Biology, University of Melbourne, Parkville, VIC, Australia
- Department of Ophthalmology, The Royal Melbourne Hospital, Parkville, VIC, Australia
| | - Cathrine Hall
- Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, Australia
| | - Joanne M Hildebrand
- Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, Australia
- Department of Medical Biology, University of Melbourne, Parkville, VIC, Australia
| | - Malcolm J McConville
- Department of Biochemistry and Pharmacology, Bio21 Molecular Science and Biotechnology Institute, Parkville, VIC, Australia
| | - Kate E Lawlor
- Centre for Innate Immunity and Infectious Diseases, Hudson Institute of Medical Research, Clayton, VIC, Australia
- Department of Molecular and Translational Science, Monash University, Clayton, VIC, Australia
| | - Edwin D Hawkins
- Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, Australia.
- Department of Medical Biology, University of Melbourne, Parkville, VIC, Australia.
| | - Andre L Samson
- Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, Australia.
- Department of Medical Biology, University of Melbourne, Parkville, VIC, Australia.
| | - James M Murphy
- Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, Australia.
- Department of Medical Biology, University of Melbourne, Parkville, VIC, Australia.
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC, Australia.
| |
Collapse
|
4
|
Jiahong C, Junfeng D, Shuxian L, Tao W, Liyun W, Hongfu W. The role of immune cell death in spermatogenesis and male fertility. J Reprod Immunol 2024; 165:104291. [PMID: 38986230 DOI: 10.1016/j.jri.2024.104291] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Revised: 06/21/2024] [Accepted: 06/24/2024] [Indexed: 07/12/2024]
Abstract
The male reproductive system provides a distinctive shield to the immune system, safeguarding germ cells (GCs) from autoimmune harm. The testis in mammals creates a unique immunological setting due to its exceptional immune privilege and potent local innate immunity. which can result from a number of different circumstances, including disorders of the pituitary gland, GC aplasia, and immunological elements. Apoptosis, or programmed cell death (PCD), is essential for mammalian spermatogenesis to maintain and ensure an appropriate number of GCs that correspond with the supporting capability of the Sertoli cells. Apoptosis is substantial in controlling the number of GCs in the testis throughout spermatogenesis, and any dysregulation of this process has been linked to male infertility. There is a number of evidence about the potential of PCD in designing novel therapeutic approaches in the treatment of infertility. A detailed understanding of PCD and the processes that underlie immunological infertility can contribute to the progress in designing strategies to prevent and treat male infertility. This review will provide a summary of the role of immune cell death in male reproduction and infertility and describe the therapeutic strategies and agents for treatment based on immune cell death.
Collapse
Affiliation(s)
- Chen Jiahong
- Dongguan Key Laboratory of Stem Cell and Regenerative Tissue Engineering, The First Dongguan Affiliated Hospital, Guangdong Medical University, Dongguan, China; Department of Venereal Diseases and Integrated Chinese and Western Medicine and Bone Paralysis, Longjiang Hospital of Shunde District, Foshan, China
| | - Dong Junfeng
- Dongguan Key Laboratory of Stem Cell and Regenerative Tissue Engineering, The First Dongguan Affiliated Hospital, Guangdong Medical University, Dongguan, China
| | - Liu Shuxian
- Guangzhou Huadu District Maternal and Child Health Care Hospital (Huzhong Hospital of Huadu District), Guangzhou, China
| | - Wang Tao
- Department of Venereal Diseases and Integrated Chinese and Western Medicine and Bone Paralysis, Longjiang Hospital of Shunde District, Foshan, China.
| | - Wang Liyun
- Guangzhou Huadu District Maternal and Child Health Care Hospital (Huzhong Hospital of Huadu District), Guangzhou, China.
| | - Wu Hongfu
- Dongguan Key Laboratory of Stem Cell and Regenerative Tissue Engineering, The First Dongguan Affiliated Hospital, Guangdong Medical University, Dongguan, China.
| |
Collapse
|
5
|
Samson AL, Murphy JM. Mapping where and when necroptotic cell death occurs in disease. Cell Death Differ 2024; 31:833-835. [PMID: 38834666 PMCID: PMC11239802 DOI: 10.1038/s41418-024-01318-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Revised: 05/23/2024] [Accepted: 05/24/2024] [Indexed: 06/06/2024] Open
Affiliation(s)
- Andre L Samson
- Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, Australia.
- University of Melbourne, Parkville, VIC, Australia.
| | - James M Murphy
- Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, Australia.
- University of Melbourne, Parkville, VIC, Australia.
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Parkville, VIC, Australia.
| |
Collapse
|
6
|
Shi Y, Wu C, Shi J, Gao T, Ma H, Li L, Zhao Y. Protein phosphorylation and kinases: Potential therapeutic targets in necroptosis. Eur J Pharmacol 2024; 970:176508. [PMID: 38493913 DOI: 10.1016/j.ejphar.2024.176508] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Revised: 03/05/2024] [Accepted: 03/14/2024] [Indexed: 03/19/2024]
Abstract
Necroptosis is a pivotal contributor to the pathogenesis of various human diseases, including those affecting the nervous system, cardiovascular system, pulmonary system, and kidneys. Extensive investigations have elucidated the mechanisms and physiological ramifications of necroptosis. Among these, protein phosphorylation emerges as a paramount regulatory process, facilitating the activation or inhibition of specific proteins through the addition of phosphate groups to their corresponding amino acid residues. Currently, the targeting of kinases has gained recognition as a firmly established and efficacious therapeutic approach for diverse diseases, notably cancer. In this comprehensive review, we elucidate the intricate role of phosphorylation in governing key molecular players in the necroptotic pathway. Moreover, we provide an in-depth analysis of recent advancements in the development of kinase inhibitors aimed at modulating necroptosis. Lastly, we deliberate on the prospects and challenges associated with the utilization of kinase inhibitors to modulate necroptotic processes.
Collapse
Affiliation(s)
- Yihui Shi
- Institute of Drug Discovery Technology, Ningbo University, Ningbo, Zhejiang, 315211, China
| | - Chengkun Wu
- School of Medicine, Nankai University, Tianjin, 300071, China
| | - Jiayi Shi
- Institute of Drug Discovery Technology, Ningbo University, Ningbo, Zhejiang, 315211, China
| | - Taotao Gao
- Institute of Drug Discovery Technology, Ningbo University, Ningbo, Zhejiang, 315211, China
| | - Huabin Ma
- Central Laboratory, The First Affiliated Hospital, Fujian Medical University, Fuzhou, 350005, China.
| | - Long Li
- Institute of Drug Discovery Technology, Ningbo University, Ningbo, Zhejiang, 315211, China.
| | - Yufen Zhao
- Institute of Drug Discovery Technology, Ningbo University, Ningbo, Zhejiang, 315211, China
| |
Collapse
|
7
|
Wu X, Nagy LE, Gautheron J. Mediators of necroptosis: from cell death to metabolic regulation. EMBO Mol Med 2024; 16:219-237. [PMID: 38195700 PMCID: PMC10897313 DOI: 10.1038/s44321-023-00011-z] [Citation(s) in RCA: 24] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Revised: 11/08/2023] [Accepted: 11/20/2023] [Indexed: 01/11/2024] Open
Abstract
Necroptosis, a programmed cell death mechanism distinct from apoptosis, has garnered attention for its role in various pathological conditions. While initially recognized for its involvement in cell death, recent research has revealed that key necroptotic mediators, including receptor-interacting protein kinases (RIPKs) and mixed lineage kinase domain-like protein (MLKL), possess additional functions that go beyond inducing cell demise. These functions encompass influencing critical aspects of metabolic regulation, such as energy metabolism, glucose homeostasis, and lipid metabolism. Dysregulated necroptosis has been implicated in metabolic diseases, including obesity, diabetes, metabolic dysfunction-associated steatotic liver disease (MASLD) and alcohol-associated liver disease (ALD), contributing to chronic inflammation and tissue damage. This review provides insight into the multifaceted role of necroptosis, encompassing both cell death and these extra-necroptotic functions, in the context of metabolic diseases. Understanding this intricate interplay is crucial for developing targeted therapeutic strategies in diseases that currently lack effective treatments.
Collapse
Affiliation(s)
- Xiaoqin Wu
- Northern Ohio Alcohol Center, Department of Inflammation and Immunity, Cleveland Clinic, Cleveland, OH, USA
- Department of Integrative Biology and Pharmacology, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Laura E Nagy
- Northern Ohio Alcohol Center, Department of Inflammation and Immunity, Cleveland Clinic, Cleveland, OH, USA
- Department of Gastroenterology and Hepatology, Cleveland Clinic, Cleveland, OH, USA
- Department of Molecular Medicine, Case Western Reserve University, Cleveland, OH, USA
| | - Jérémie Gautheron
- Sorbonne Université, Inserm UMRS_938, Centre de Recherche Saint-Antoine (CRSA), Paris, 75012, France.
| |
Collapse
|
8
|
Jiang T, Zhou ZM, Ling ZQ, Zhang Q, Wu ZZ, Yang JW, Yang SY, Yang B, Huang LS. Pig H3K4me3, H3K27ac, and gene expression profiles reveal reproductive tissue-specific activity of transposable elements. Zool Res 2024; 45:138-151. [PMID: 38155423 PMCID: PMC10839656 DOI: 10.24272/j.issn.2095-8137.2023.060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Accepted: 09/04/2023] [Indexed: 12/30/2023] Open
Abstract
Regulatory sequences and transposable elements (TEs) account for a large proportion of the genomic sequences of species; however, their roles in gene transcription, especially tissue-specific expression, remain largely unknown. Pigs serve as an excellent animal model for studying genomic sequence biology due to the extensive diversity among their wild and domesticated populations. Here, we conducted an integrated analysis using H3K27ac ChIP-seq, H3K4me3 ChIP-seq, and RNA-seq data from 10 different tissues of seven fetuses and eight closely related adult pigs. We aimed to annotate the regulatory elements and TEs to elucidate their associations with histone modifications and mRNA expression across different tissues and developmental stages. Based on correlation analysis between mRNA expression and H3K27ac and H3K4me3 peak activity, results indicated that H3K27ac exhibited stronger associations with gene expression than H3K4me3. Furthermore, 1.45% of TEs overlapped with either the H3K27ac or H3K4me3 peaks, with the majority displaying tissue-specific activity. Notably, a TE subfamily (LTR4C_SS), containing binding motifs for SIX1 and SIX4, showed specific enrichment in the H3K27ac peaks of the adult and fetal ovaries. RNA-seq analysis also revealed widespread expression of TEs in the exons or promoters of genes, including 4 688 TE-containing transcripts with distinct development stage-specific and tissue-specific expression. Of note, 1 967 TE-containing transcripts were enriched in the testes. We identified a long terminal repeat (LTR), MLT1F1, acting as a testis-specific alternative promoter in SRPK2 (a cell cycle-related protein kinase) in our pig dataset. This element was also conserved in humans and mice, suggesting either an ancient integration of TEs in genes specifically expressed in the testes or parallel evolutionary patterns. Collectively, our findings demonstrate that TEs are deeply embedded in the genome and exhibit important tissue-specific biological functions, particularly in the reproductive organs.
Collapse
Affiliation(s)
- Tao Jiang
- National Key Laboratory of Pig Genetic Improvement and Germplasm Innovation, Jiangxi Agricultural University, Nanchang, Jiangxi 330045, China
| | - Zhi-Min Zhou
- National Key Laboratory of Pig Genetic Improvement and Germplasm Innovation, Jiangxi Agricultural University, Nanchang, Jiangxi 330045, China
| | - Zi-Qi Ling
- National Key Laboratory of Pig Genetic Improvement and Germplasm Innovation, Jiangxi Agricultural University, Nanchang, Jiangxi 330045, China
| | - Qing Zhang
- National Key Laboratory of Pig Genetic Improvement and Germplasm Innovation, Jiangxi Agricultural University, Nanchang, Jiangxi 330045, China
| | - Zhong-Zi Wu
- National Key Laboratory of Pig Genetic Improvement and Germplasm Innovation, Jiangxi Agricultural University, Nanchang, Jiangxi 330045, China
| | - Jia-Wen Yang
- National Key Laboratory of Pig Genetic Improvement and Germplasm Innovation, Jiangxi Agricultural University, Nanchang, Jiangxi 330045, China
| | - Si-Yu Yang
- National Key Laboratory of Pig Genetic Improvement and Germplasm Innovation, Jiangxi Agricultural University, Nanchang, Jiangxi 330045, China
| | - Bin Yang
- National Key Laboratory of Pig Genetic Improvement and Germplasm Innovation, Jiangxi Agricultural University, Nanchang, Jiangxi 330045, China. E-mail:
| | - Lu-Sheng Huang
- National Key Laboratory of Pig Genetic Improvement and Germplasm Innovation, Jiangxi Agricultural University, Nanchang, Jiangxi 330045, China. E-mail:
| |
Collapse
|
9
|
Xu AP, Xu LB, Smith ER, Fleishman JS, Chen ZS, Xu XX. Cell death in cancer chemotherapy using taxanes. Front Pharmacol 2024; 14:1338633. [PMID: 38249350 PMCID: PMC10796453 DOI: 10.3389/fphar.2023.1338633] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Accepted: 12/13/2023] [Indexed: 01/23/2024] Open
Abstract
Cancer cells evolve to be refractory to the intrinsic programmed cell death mechanisms, which ensure cellular tissue homeostasis in physiological conditions. Chemotherapy using cytotoxic drugs seeks to eliminate cancer cells but spare non-cancerous host cells by exploring a likely subtle difference between malignant and benign cells. Presumably, chemotherapy agents achieve efficacy by triggering programmed cell death machineries in cancer cells. Currently, many major solid tumors are treated with chemotherapy composed of a combination of platinum agents and taxanes. Platinum agents, largely cis-platin, carboplatin, and oxaliplatin, are DNA damaging agents that covalently form DNA addicts, triggering DNA repair response pathways. Taxanes, including paclitaxel, docetaxel, and cabazitaxel, are microtubule stabilizing drugs which are often very effective in purging cancer cells in clinical settings. Generally, it is thought that the stabilization of microtubules by taxanes leads to mitotic arrest, mitotic catastrophe, and the triggering of apoptotic programmed cell death. However, the precise mechanism(s) of how mitotic arrest and catastrophe activate the caspase pathway has not been established. Here, we briefly review literature on the involvement of potential cell death mechanisms in cancer therapy. These include the classical caspase-mediated apoptotic programmed cell death, necroptosis mediated by MLKL, and pore forming mechanisms in immune cells, etc. In particular, we discuss a newly recognized mechanism of cell death in taxane-treatment of cancer cells that involves micronucleation and the irreversible rupture of the nuclear membrane. Since cancer cells are commonly retarded in responding to programmed cell death signaling, stabilized microtubule bundle-induced micronucleation and nuclear membrane rupture, rather than triggering apoptosis, may be a key mechanism accounting for the success of taxanes as anti-cancer agents.
Collapse
Affiliation(s)
- Ana P. Xu
- Department of Biology, University of Miami, Coral Gables, FL, United States
| | - Lucy B. Xu
- Department of Biology, University of Miami, Coral Gables, FL, United States
| | - Elizabeth R. Smith
- Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine, Miami, FL, United States
- Department of Obstetrics, Gynecology and Reproductive Sciences, University of Miami Miller School of Medicine, Miami, FL, United States
| | - Joshua S. Fleishman
- College of Pharmacy and Health Sciences, St. John’s University, Queens, NY, United States
| | - Zhe-Sheng Chen
- College of Pharmacy and Health Sciences, St. John’s University, Queens, NY, United States
| | - Xiang-Xi Xu
- Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine, Miami, FL, United States
- Department of Radiation Oncology, University of Miami Miller School of Medicine, Miami, FL, United States
| |
Collapse
|
10
|
Zhang JL, Lv M, Yang CF, Zhu YX, Li CJ. Mevalonate pathway and male reproductive aging. Mol Reprod Dev 2023; 90:774-781. [PMID: 37733694 DOI: 10.1002/mrd.23705] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2022] [Revised: 08/27/2023] [Accepted: 09/08/2023] [Indexed: 09/23/2023]
Abstract
Male fertility declines with age. The mevalonate pathway, through which cholesterol and nonsteroidal isoprenoids are synthesized, plays key role in metabolic processes and is an essential pathway for cholesterol production and protein prenylation. Male reproductive aging is accompanied by dramatic changes in the metabolic microenvironment of the testis. Since the mevalonate pathway has an important role in spermatogenesis, we attempted to explore the association between male reproductive aging and the mevalonate pathway to explain the mechanism of male reproductive aging. Alterations in the mevalonate pathway may affect male reproductive aging by decreasing cholesterol synthesis and altering testis protein prenylation. Decreased cholesterol levels affect cholesterol modification, testosterone production, and remodeling of germ cell membranes. Aging-related metabolic disorders also affect the metabolic coupling between somatic cells and spermatogenic cells, leading to male fertility decline. Therefore, we hypothesized that alterations in the mevalonate pathway represent one of the metabolic causes of reproductive aging.
Collapse
Affiliation(s)
- Jia-Le Zhang
- State Key Laboratory of Reproductive Medicine and China International Joint Research Center on Environment and Human Health, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Meng Lv
- State Key Laboratory of Reproductive Medicine and China International Joint Research Center on Environment and Human Health, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Chao-Fan Yang
- State Key Laboratory of Reproductive Medicine and China International Joint Research Center on Environment and Human Health, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Ying-Xi Zhu
- State Key Laboratory of Reproductive Medicine and China International Joint Research Center on Environment and Human Health, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Chao-Jun Li
- State Key Laboratory of Reproductive Medicine and China International Joint Research Center on Environment and Human Health, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, China
| |
Collapse
|
11
|
Jin Z, Yang Y, Cao Y, Wen Q, Xi Y, Cheng J, Zhao Q, Weng J, Hong K, Jiang H, Hang J, Zhang Z. The gut metabolite 3-hydroxyphenylacetic acid rejuvenates spermatogenic dysfunction in aged mice through GPX4-mediated ferroptosis. MICROBIOME 2023; 11:212. [PMID: 37752615 PMCID: PMC10523725 DOI: 10.1186/s40168-023-01659-y] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Accepted: 08/28/2023] [Indexed: 09/28/2023]
Abstract
BACKGROUND Aging-related fertility decline is a prevalent concern globally. Male reproductive system aging is mainly characterized by a decrease in sperm quality and fertility. While it is known that intestinal physiology changes with age and that microbiota is shaped by physiology, the underlying mechanism of how the microbiota affects male reproductive aging is still largely unexplored. RESULTS Here, we utilized fecal microbiota transplantation (FMT) to exchange the fecal microbiota between young and old mice. Cecal shotgun metagenomics and metabolomics were used to identify differences in gut microbiota composition and metabolic regulation during aging. Our results demonstrated that FMT from young to old mice alleviated aging-associated spermatogenic dysfunction through an unexpected mechanism mediated by a gut bacteria-derived metabolite, 3-hydroxyphenylacetic acid (3-HPAA). 3-HPAA treatment resulted in an improvement of spermatogenesis in old mice. RNA sequencing analysis, qRT-PCR and Western blot revealed that 3-HPAA induced an upregulation of GPX4, thereby restraining ferroptosis and restoring spermatogenesis. These findings were further confirmed by in vitro induction of ferroptosis and inhibition of GPX4 expression. CONCLUSIONS Our results demonstrate that the microbiome-derived metabolite, 3-HPAA, facilitates spermatogenesis of old mice through a ferroptosis-mediated mechanism. Overall, these findings provide a novel mechanism of dysregulated spermatogenesis of old mice, and suggest that 3-HPAA could be a potential therapy for fertility decline of aging males in clinical practice. Video Abstract.
Collapse
Affiliation(s)
- Zirun Jin
- Department of Urology, Center for Reproductive Medicine, Peking University Third Hospital, 49 North Garden Road, Haidian District, Beijing, 100191, China
- Department of Urology, Peking University First Hospital, Xishiku Road, Xicheng District, Beijing, 100034, China
- Institute of Urology, Peking University, Beijing, China
- Department of Andrology, Peking University First Hospital, Beijing, China
| | - Yuzhuo Yang
- Department of Obstetrics and Gynecology, Peking University First Hospital, Beijing, China
| | - Yalei Cao
- Department of Urology, Center for Reproductive Medicine, Peking University Third Hospital, 49 North Garden Road, Haidian District, Beijing, 100191, China
| | - Qi Wen
- Department of Obstetrics and Gynecology, State Key Laboratory of Female Fertility Promotion, Peking University Third Hospital, 49 North Garden Road, Haidian District, Beijing, 100191, China
- Key Laboratory of Assisted Reproduction, Ministry of Education, Beijing, China
- Beijing Key Laboratory of Reproductive Endocrinology and Assisted Reproduction, Beijing, China
- National Clinical Research Center for Obstetrics and Gynecology, Beijing, China
| | - Yu Xi
- Department of Urology, Center for Reproductive Medicine, Peking University Third Hospital, 49 North Garden Road, Haidian District, Beijing, 100191, China
| | - Jianxing Cheng
- Department of Urology, Center for Reproductive Medicine, Peking University Third Hospital, 49 North Garden Road, Haidian District, Beijing, 100191, China
| | - Qiancheng Zhao
- Department of Urology, Center for Reproductive Medicine, Peking University Third Hospital, 49 North Garden Road, Haidian District, Beijing, 100191, China
| | - Jiaming Weng
- Department of Urology, Center for Reproductive Medicine, Peking University Third Hospital, 49 North Garden Road, Haidian District, Beijing, 100191, China
| | - Kai Hong
- Department of Urology, Center for Reproductive Medicine, Peking University Third Hospital, 49 North Garden Road, Haidian District, Beijing, 100191, China
- Department of Obstetrics and Gynecology, State Key Laboratory of Female Fertility Promotion, Peking University Third Hospital, 49 North Garden Road, Haidian District, Beijing, 100191, China
| | - Hui Jiang
- Department of Urology, Peking University First Hospital, Xishiku Road, Xicheng District, Beijing, 100034, China.
- Institute of Urology, Peking University, Beijing, China.
- Department of Andrology, Peking University First Hospital, Beijing, China.
| | - Jing Hang
- Department of Obstetrics and Gynecology, State Key Laboratory of Female Fertility Promotion, Peking University Third Hospital, 49 North Garden Road, Haidian District, Beijing, 100191, China.
- Key Laboratory of Assisted Reproduction, Ministry of Education, Beijing, China.
- Beijing Key Laboratory of Reproductive Endocrinology and Assisted Reproduction, Beijing, China.
- National Clinical Research Center for Obstetrics and Gynecology, Beijing, China.
| | - Zhe Zhang
- Department of Urology, Center for Reproductive Medicine, Peking University Third Hospital, 49 North Garden Road, Haidian District, Beijing, 100191, China.
- Department of Obstetrics and Gynecology, State Key Laboratory of Female Fertility Promotion, Peking University Third Hospital, 49 North Garden Road, Haidian District, Beijing, 100191, China.
| |
Collapse
|
12
|
Hu Y, Xu Z, Pan Q, Ma L. Casein kinase 1 gamma regulates oxidative stress response via interacting with the NADPH dual oxidase complex. PLoS Genet 2023; 19:e1010740. [PMID: 37099597 PMCID: PMC10166522 DOI: 10.1371/journal.pgen.1010740] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Revised: 05/08/2023] [Accepted: 04/10/2023] [Indexed: 04/27/2023] Open
Abstract
Oxidative stress response is a fundamental biological process mediated by conserved mechanisms. The identities and functions of some key regulators remain unknown. Here, we report a novel role of C. elegans casein kinase 1 gamma CSNK-1 (also known as CK1γ or CSNK1G) in regulating oxidative stress response and ROS levels. csnk-1 interacted with the bli-3/tsp-15/doxa-1 NADPH dual oxidase genes via genetic nonallelic noncomplementation to affect C. elegans survival in oxidative stress. The genetic interaction was supported by specific biochemical interactions between DOXA-1 and CSNK-1 and potentially between their human orthologs DUOXA2 and CSNK1G2. Consistently, CSNK-1 was required for normal ROS levels in C. elegans. CSNK1G2 and DUOXA2 each can promote ROS levels in human cells, effects that were suppressed by a small molecule casein kinase 1 inhibitor. We also detected genetic interactions between csnk-1 and skn-1 Nrf2 in oxidative stress response. Together, we propose that CSNK-1 CSNK1G defines a novel conserved regulatory mechanism for ROS homeostasis.
Collapse
Affiliation(s)
- Yiman Hu
- Center for Medical Genetics, School of Life Sciences, Central South University, Changsha, Hunan, China
| | - Zhaofa Xu
- Center for Medical Genetics, School of Life Sciences, Central South University, Changsha, Hunan, China
| | - Qian Pan
- Center for Medical Genetics, School of Life Sciences, Central South University, Changsha, Hunan, China
| | - Long Ma
- Center for Medical Genetics, School of Life Sciences, Central South University, Changsha, Hunan, China
- Hunan Key Laboratory of Animal Models for Human Diseases, Central South University, Changsha, Hunan, China
- Hunan Key Laboratory of Medical Genetics, Central South University, Changsha, Hunan, China
- The Key Laboratory of Precision Molecular Medicine of Hunan Province, Central South University, Changsha, Hunan, China
| |
Collapse
|
13
|
Ye K, Chen Z, Xu Y. The double-edged functions of necroptosis. Cell Death Dis 2023; 14:163. [PMID: 36849530 PMCID: PMC9969390 DOI: 10.1038/s41419-023-05691-6] [Citation(s) in RCA: 83] [Impact Index Per Article: 41.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Revised: 02/11/2023] [Accepted: 02/15/2023] [Indexed: 03/01/2023]
Abstract
Necroptosis refers to a regulated form of cell death induced by a variety of stimuli. Although it has been implicated in the pathogenesis of many diseases, there is evidence to support that necroptosis is not purely a detrimental process. We propose that necroptosis is a "double-edged sword" in terms of physiology and pathology. On the one hand, necroptosis can trigger an uncontrolled inflammatory cascade response, resulting in severe tissue injury, disease chronicity, and even tumor progression. On the other hand, necroptosis functions as a host defense mechanism, exerting antipathogenic and antitumor effects through its powerful pro-inflammatory properties. Moreover, necroptosis plays an important role during both development and regeneration. Misestimation of the multifaceted features of necroptosis may influence the development of therapeutic approaches targeting necroptosis. In this review, we summarize current knowledge of the pathways involved in necroptosis as well as five important steps that determine its occurrence. The dual role of necroptosis in a variety of physiological and pathological conditions is also highlighted. Future studies and the development of therapeutic strategies targeting necroptosis should fully consider the complicated properties of this type of regulated cell death.
Collapse
Affiliation(s)
- Keng Ye
- grid.256112.30000 0004 1797 9307Department of Nephrology, Blood Purification Research Center, the First Affiliated Hospital, Fujian Medical University, Fuzhou, 350005 China ,grid.412683.a0000 0004 1758 0400Research Center for Metabolic Chronic Kidney Disease, the First Affiliated Hospital, Fujian Medical University, Fuzhou, 350005 China ,grid.412683.a0000 0004 1758 0400Central Laboratory, the First Affiliated Hospital, Fujian Medical University, Fuzhou, 350005 China
| | - Zhimin Chen
- grid.256112.30000 0004 1797 9307Department of Nephrology, Blood Purification Research Center, the First Affiliated Hospital, Fujian Medical University, Fuzhou, 350005 China ,grid.412683.a0000 0004 1758 0400Research Center for Metabolic Chronic Kidney Disease, the First Affiliated Hospital, Fujian Medical University, Fuzhou, 350005 China ,grid.412683.a0000 0004 1758 0400Central Laboratory, the First Affiliated Hospital, Fujian Medical University, Fuzhou, 350005 China
| | - Yanfang Xu
- Department of Nephrology, Blood Purification Research Center, the First Affiliated Hospital, Fujian Medical University, Fuzhou, 350005, China. .,Research Center for Metabolic Chronic Kidney Disease, the First Affiliated Hospital, Fujian Medical University, Fuzhou, 350005, China. .,Central Laboratory, the First Affiliated Hospital, Fujian Medical University, Fuzhou, 350005, China.
| |
Collapse
|
14
|
Chen Z, Zhu M, Wu Q, Lu H, Lei C, Ahmed Z, Sun J. Analysis of genetic diversity and selection characteristics using the whole genome sequencing data of five buffaloes, including Xilin buffalo, in Guangxi, China. Front Genet 2023; 13:1084824. [PMID: 36699455 PMCID: PMC9869173 DOI: 10.3389/fgene.2022.1084824] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Accepted: 12/27/2022] [Indexed: 01/12/2023] Open
Abstract
Buffalo is an economically important livestock that renders useful services to manhood in terms of meat, milk, leather, and draught. The Xilin buffalo is among the native buffalo breeds of China. In the present study, the genetic architecture and selection signature signals of Xilin buffalo have been explored. Correlation analysis of the population structure of Xilin buffalo was conducted by constructing NJ tree, PCA, ADMIXTURE and other methods. A total of twenty-five (n = 25) Xilin buffalo whole genome data and data of forty-six (n = 46) buffaloes published data were used. The population structure analysis showed that the Xilin buffalo belong to the Middle-Lower Yangtze. The genome diversity of Xilin buffalo was relatively high. The CLR, π ratio, F ST, and XP-EHH were used to detect the candidate genes characteristics of positive selection in Xilin buffalo. Among the identified genes, most of the enriched signal pathways were related to the nervous system and metabolism. The mainly reported genes were related to the nervous system (GRM5, GRIK2, GRIA4), reproductive genes (CSNK1G2, KCNIP4), and lactation (TP63). The results of this study are of great significance for understanding the molecular basis of phenotypic variation of related traits of Xilin buffalo. We provide a comprehensive overview of sequence variations in Xilin buffalo genomes. Selection signatures were detected in genomic regions that are possibly related to economically important traits in Xilin buffalo and help in future breeding and conservation programs of this important livestock genetic resource.
Collapse
Affiliation(s)
- Zhefu Chen
- Guangxi Key Laboratory of Livestock Genetic Improvement, Animal Husbandry Research Institute of Guangxi Zhuang Autonomous Region, Nanning, China,College of Animal Science and Technology, Northwest A&F University, Xianyang, China
| | - Min Zhu
- Guangxi Key Laboratory of Livestock Genetic Improvement, Animal Husbandry Research Institute of Guangxi Zhuang Autonomous Region, Nanning, China
| | - Qiang Wu
- Guangxi Key Laboratory of Livestock Genetic Improvement, Animal Husbandry Research Institute of Guangxi Zhuang Autonomous Region, Nanning, China
| | - Huilin Lu
- Guangxi Key Laboratory of Livestock Genetic Improvement, Animal Husbandry Research Institute of Guangxi Zhuang Autonomous Region, Nanning, China
| | - Chuzhao Lei
- College of Animal Science and Technology, Northwest A&F University, Xianyang, China
| | - Zulfiqar Ahmed
- Faculty of Veterinary and Animal Sciences, University of Poonch Rawalakot, Rawalakot, China
| | - Junli Sun
- Guangxi Key Laboratory of Livestock Genetic Improvement, Animal Husbandry Research Institute of Guangxi Zhuang Autonomous Region, Nanning, China,*Correspondence: Junli Sun,
| |
Collapse
|
15
|
Masola V, Greco N, Tozzo P, Caenazzo L, Onisto M. The role of SPATA2 in TNF signaling, cancer, and spermatogenesis. Cell Death Dis 2022; 13:977. [PMID: 36402749 PMCID: PMC9675801 DOI: 10.1038/s41419-022-05432-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Revised: 11/08/2022] [Accepted: 11/11/2022] [Indexed: 11/20/2022]
Abstract
The activation of TNF receptors can lead to cell death with a mechanism of cell necrosis regulated genetically and distinct from apoptosis which is defined as necroptosis. Necroptosis has been one of the most studied emerging cell death/signaling pathways in recent years, especially in light of the role of this process in human disease. However, not all regulatory components of TNF signaling have been identified in relation to both physiological and pathological conditions. In 2008, Spata2 (Spermatogenesis-associated protein 2) was identified as one of the seven fundamental genes for the cellular signaling network that regulates necroptosis and apoptosis. This gene had been cloned by our group and named Spata2 as its expression was found to be elevated in the testis compared to other tissues, localized at the Sertoli cell level and FSH-dependent. More recently, it has been demonstrated that deletion of Spata2 gene causes increased inhibin α expression and attenuated fertility in male mice. However, more importantly, five recently published reports have highlighted that SPATA2 is crucial for recruiting CYLD to the TNFR1 signaling complex thus promoting its activation leading to TNF-induced cell death. Loss of SPATA2 increases transcriptional activation of NF-kB and limits TNF-induced necroptosis. Here we will discuss these important findings regarding SPATA2 and, in particular, focus attention on the evidence that suggests a role for this protein in the TNF signaling pathway.
Collapse
Affiliation(s)
- Valentina Masola
- grid.5608.b0000 0004 1757 3470Department of Biomedical Sciences, University of Padova, Padua, Italy
| | - Nicola Greco
- grid.5608.b0000 0004 1757 3470Department of Biomedical Sciences, University of Padova, Padua, Italy
| | - Pamela Tozzo
- grid.5608.b0000 0004 1757 3470Department of Cardiac, Thoracic, Vascular Sciences and Public Health, University of Padova, Padua, Italy
| | - Luciana Caenazzo
- grid.5608.b0000 0004 1757 3470Department of Cardiac, Thoracic, Vascular Sciences and Public Health, University of Padova, Padua, Italy
| | - Maurizio Onisto
- grid.5608.b0000 0004 1757 3470Department of Biomedical Sciences, University of Padova, Padua, Italy
| |
Collapse
|
16
|
Dong S, Chen C, Zhang J, Gao Y, Zeng X, Zhang X. Testicular aging, male fertility and beyond. Front Endocrinol (Lausanne) 2022; 13:1012119. [PMID: 36313743 PMCID: PMC9606211 DOI: 10.3389/fendo.2022.1012119] [Citation(s) in RCA: 43] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Accepted: 09/26/2022] [Indexed: 11/15/2022] Open
Abstract
Normal spermatogenesis and sperm function are crucial for male fertility. The effects of healthy testicular aging and testicular premature aging on spermatogenesis, sperm function, and the spermatogenesis microenvironment cannot be ignored. Compared with younger men, the testis of older men tends to have disturbed spermatogenic processes, sperm abnormalities, sperm dysfunction, and impaired Sertoli and Leydig cells, which ultimately results in male infertility. Various exogenous and endogenous factors also contribute to pathological testicular premature aging, such as adverse environmental stressors and gene mutations. Mechanistically, Y-chromosomal microdeletions, increase in telomere length and oxidative stress, accumulation of DNA damage with decreased repair ability, alterations in epigenetic modifications, miRNA and lncRNA expression abnormalities, have been associated with impaired male fertility due to aging. In recent years, the key molecules and signaling pathways that regulate testicular aging and premature aging have been identified, thereby providing new strategies for diagnosis and treatment. This review provides a comprehensive overview of the underlying mechanisms of aging on spermatogenesis. Furthermore, potential rescue measures for reproductive aging have been discussed. Finally, the inadequacy of testicular aging research and future directions for research have been envisaged to aid in the diagnosis and treatment of testicular aging and premature aging.
Collapse
Affiliation(s)
- Shijue Dong
- Institute of Reproductive Medicine, Medical School, Nantong University, Nantong, China
| | - Chen Chen
- Institute of Reproductive Medicine, Medical School, Nantong University, Nantong, China
| | - Jiali Zhang
- Institute of Reproductive Medicine, Medical School, Nantong University, Nantong, China
| | - Yuan Gao
- Laboratory Animal Center, Nantong University, Nantong, China
| | - Xuhui Zeng
- Institute of Reproductive Medicine, Medical School, Nantong University, Nantong, China
| | - Xiaoning Zhang
- Institute of Reproductive Medicine, Medical School, Nantong University, Nantong, China
| |
Collapse
|
17
|
Abstract
Necroptosis, or programmed necrosis, is an inflammatory form of cell death with important functions in host defense against pathogens and tissue homeostasis. The four cytosolic receptor-interacting protein kinase homotypic interaction motif (RHIM)-containing adaptor proteins RIPK1, RIPK3, TRIF (also known as TICAM1) and ZBP1 mediate necroptosis induction in response to infection and cytokine or innate immune receptor activation. Activation of the RHIM adaptors leads to phosphorylation, oligomerization and membrane targeting of the necroptosis effector protein mixed lineage kinase domain-like (MLKL). Active MLKL induces lesions on the plasma membrane, leading to the release of pro-inflammatory damage-associated molecular patterns (DAMPs). Thus, activities of the RHIM adaptors and MLKL are tightly regulated by posttranslational modifications to prevent inadvertent release of immunogenic contents. In this Cell Science at a Glance article and the accompanying poster, we provide an overview of the regulatory mechanisms of necroptosis and its biological functions in tissue homeostasis, pathogen infection and other inflammatory diseases.
Collapse
Affiliation(s)
- Kidong Kang
- Department of Immunology, Duke University School of Medicine, DUMC 3010, Durham, NC 27710, USA
| | - Christa Park
- Immunology and Microbiology Program, University of Massachusetts Chan Medical School, Worcester, MA 01605, USA
| | - Francis Ka-Ming Chan
- Department of Immunology, Duke University School of Medicine, DUMC 3010, Durham, NC 27710, USA
| |
Collapse
|
18
|
Renaud SJ, Jeyarajah MJ. How trophoblasts fuse: an in-depth look into placental syncytiotrophoblast formation. Cell Mol Life Sci 2022; 79:433. [PMID: 35859055 PMCID: PMC11072895 DOI: 10.1007/s00018-022-04475-z] [Citation(s) in RCA: 47] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Revised: 05/07/2022] [Accepted: 07/06/2022] [Indexed: 11/24/2022]
Abstract
In humans, cell fusion is restricted to only a few cell types under normal conditions. In the placenta, cell fusion is a critical process for generating syncytiotrophoblast: the giant multinucleated trophoblast lineage containing billions of nuclei within an interconnected cytoplasm that forms the primary interface separating maternal blood from fetal tissue. The unique morphology of syncytiotrophoblast ensures that nutrients and gases can be efficiently transferred between maternal and fetal tissue while simultaneously restricting entry of potentially damaging substances and maternal immune cells through intercellular junctions. To maintain integrity of the syncytiotrophoblast layer, underlying cytotrophoblast progenitor cells terminate their capability for self-renewal, upregulate expression of genes needed for differentiation, and then fuse into the overlying syncytium. These processes are disrupted in a variety of obstetric complications, underscoring the importance of proper syncytiotrophoblast formation for pregnancy health. Herein, an overview of key mechanisms underlying human trophoblast fusion and syncytiotrophoblast development is discussed.
Collapse
Affiliation(s)
- Stephen J Renaud
- Department of Anatomy and Cell Biology and Children's Health Research Institute, University of Western Ontario, London, ON, N6A5C1, Canada.
| | - Mariyan J Jeyarajah
- Department of Anatomy and Cell Biology and Children's Health Research Institute, University of Western Ontario, London, ON, N6A5C1, Canada
| |
Collapse
|
19
|
Meng Y, Horne CR, Samson AL, Dagley LF, Young SN, Sandow JJ, Czabotar PE, Murphy JM. Human RIPK3 C-lobe phosphorylation is essential for necroptotic signaling. Cell Death Dis 2022; 13:565. [PMID: 35739084 PMCID: PMC9226014 DOI: 10.1038/s41419-022-05009-y] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Revised: 06/06/2022] [Accepted: 06/08/2022] [Indexed: 01/21/2023]
Abstract
Necroptosis is a caspase-independent, pro-inflammatory mode of programmed cell death which relies on the activation of the terminal effector, MLKL, by the upstream protein kinase RIPK3. To mediate necroptosis, RIPK3 must stably interact with, and phosphorylate the pseudokinase domain of MLKL, although the precise molecular cues that provoke RIPK3 necroptotic signaling are incompletely understood. The recent finding that RIPK3 S227 phosphorylation and the occurrence of a stable RIPK3:MLKL complex in human cells prior to exposure to a necroptosis stimulus raises the possibility that additional, as-yet-unidentified phosphorylation events activate RIPK3 upon initiation of necroptosis signaling. Here, we sought to identify phosphorylation sites of RIPK3 and dissect their regulatory functions. Phosphoproteomics identified 21 phosphorylation sites in HT29 cells overexpressing human RIPK3. By comparing cells expressing wild-type and kinase-inactive D142N RIPK3, autophosphorylation sites and substrates of other cellular kinases were distinguished. Of these 21 phosphosites, mutational analyses identified only pT224 and pS227 as crucial, synergistic sites for stable interaction with MLKL to promote necroptosis, while the recently reported activation loop phosphorylation at S164/T165 negatively regulate the kinase activity of RIPK3. Despite being able to phosphorylate MLKL to a similar or higher extent than wild-type RIPK3, mutation of T224, S227, or the RHIM in RIPK3 attenuated necroptosis. This finding highlights the stable recruitment of human MLKL by RIPK3 to the necrosome as an essential checkpoint in necroptosis signaling, which is independent from and precedes the phosphorylation of MLKL.
Collapse
Affiliation(s)
- Yanxiang Meng
- grid.1042.70000 0004 0432 4889Walter and Eliza Hall Institute of Medical Research, 1G Royal Parade, Parkville, VIC 3052 Australia ,grid.1008.90000 0001 2179 088XDepartment of Medical Biology, University of Melbourne, Parkville, VIC 3052 Australia
| | - Christopher R. Horne
- grid.1042.70000 0004 0432 4889Walter and Eliza Hall Institute of Medical Research, 1G Royal Parade, Parkville, VIC 3052 Australia ,grid.1008.90000 0001 2179 088XDepartment of Medical Biology, University of Melbourne, Parkville, VIC 3052 Australia
| | - Andre L. Samson
- grid.1042.70000 0004 0432 4889Walter and Eliza Hall Institute of Medical Research, 1G Royal Parade, Parkville, VIC 3052 Australia ,grid.1008.90000 0001 2179 088XDepartment of Medical Biology, University of Melbourne, Parkville, VIC 3052 Australia
| | - Laura F. Dagley
- grid.1042.70000 0004 0432 4889Walter and Eliza Hall Institute of Medical Research, 1G Royal Parade, Parkville, VIC 3052 Australia ,grid.1008.90000 0001 2179 088XDepartment of Medical Biology, University of Melbourne, Parkville, VIC 3052 Australia
| | - Samuel N. Young
- grid.1042.70000 0004 0432 4889Walter and Eliza Hall Institute of Medical Research, 1G Royal Parade, Parkville, VIC 3052 Australia
| | - Jarrod J. Sandow
- grid.1042.70000 0004 0432 4889Walter and Eliza Hall Institute of Medical Research, 1G Royal Parade, Parkville, VIC 3052 Australia ,grid.1008.90000 0001 2179 088XDepartment of Medical Biology, University of Melbourne, Parkville, VIC 3052 Australia
| | - Peter E. Czabotar
- grid.1042.70000 0004 0432 4889Walter and Eliza Hall Institute of Medical Research, 1G Royal Parade, Parkville, VIC 3052 Australia ,grid.1008.90000 0001 2179 088XDepartment of Medical Biology, University of Melbourne, Parkville, VIC 3052 Australia
| | - James M. Murphy
- grid.1042.70000 0004 0432 4889Walter and Eliza Hall Institute of Medical Research, 1G Royal Parade, Parkville, VIC 3052 Australia ,grid.1008.90000 0001 2179 088XDepartment of Medical Biology, University of Melbourne, Parkville, VIC 3052 Australia
| |
Collapse
|
20
|
Agajanian MJ, Potjewyd FM, Bowman BM, Solomon S, LaPak KM, Bhatt DP, Smith JL, Goldfarb D, Axtman AD, Major MB. Protein proximity networks and functional evaluation of the casein kinase 1 gamma family reveal unique roles for CK1γ3 in WNT signaling. J Biol Chem 2022; 298:101986. [PMID: 35487243 PMCID: PMC9157009 DOI: 10.1016/j.jbc.2022.101986] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Revised: 04/18/2022] [Accepted: 04/20/2022] [Indexed: 11/25/2022] Open
Abstract
Aberrant activation or suppression of WNT/β-catenin signaling contributes to cancer initiation and progression, neurodegeneration, and bone disease. However, despite great need and more than 40 years of research, targeted therapies for the WNT pathway have yet to be fully realized. Kinases are considered exceptionally druggable and occupy key nodes within the WNT signaling network, but several pathway-relevant kinases remain understudied and "dark." Here, we studied the function of the casein kinase 1γ (CSNK1γ) subfamily of human kinases and their roles in WNT signaling. miniTurbo-based proximity biotinylation and mass spectrometry analysis of CSNK1γ1, CSNK1γ2, and CSNK1γ3 revealed numerous components of the β-catenin-dependent and β-catenin-independent WNT pathways. In gain-of-function experiments, we found that CSNK1γ3 but not CSNK1γ1 or CSNK1γ2 activated β-catenin-dependent WNT signaling, with minimal effect on other signaling pathways. We also show that within the family, CSNK1γ3 expression uniquely induced low-density lipoprotein receptor-related protein 6 phosphorylation, which mediates downstream WNT signaling transduction. Conversely, siRNA-mediated silencing of CSNK1γ3 alone had no impact on WNT signaling, though cosilencing of all three family members decreased WNT pathway activity. Finally, we characterized two moderately selective and potent small-molecule inhibitors of the CSNK1γ family. We show that these inhibitors and a CSNK1γ3 kinase-dead mutant suppressed but did not eliminate WNT-driven low-density lipoprotein receptor-related protein 6 phosphorylation and β-catenin stabilization. Our data suggest that while CSNK1γ3 expression uniquely drives pathway activity, potential functional redundancy within the family necessitates loss of all three family members to suppress the WNT signaling pathway.
Collapse
Affiliation(s)
- Megan J Agajanian
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA; Department of Pharmacology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA; Department of Cell Biology and Physiology, Washington University in St Louis, St Louis, Missouri, USA
| | - Frances M Potjewyd
- Division of Chemical Biology and Medicinal Chemistry, Structural Genomics Consortium, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Brittany M Bowman
- Department of Cell Biology and Physiology, Washington University in St Louis, St Louis, Missouri, USA
| | - Smaranda Solomon
- Institute for Informatics, School of Medicine, Washington University in St Louis, St Louis, Missouri, USA
| | - Kyle M LaPak
- Department of Cell Biology and Physiology, Washington University in St Louis, St Louis, Missouri, USA
| | - Dhaval P Bhatt
- Department of Cell Biology and Physiology, Washington University in St Louis, St Louis, Missouri, USA
| | - Jeffery L Smith
- Division of Chemical Biology and Medicinal Chemistry, Structural Genomics Consortium, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Dennis Goldfarb
- Department of Cell Biology and Physiology, Washington University in St Louis, St Louis, Missouri, USA; Institute for Informatics, School of Medicine, Washington University in St Louis, St Louis, Missouri, USA
| | - Alison D Axtman
- Division of Chemical Biology and Medicinal Chemistry, Structural Genomics Consortium, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Michael B Major
- Department of Cell Biology and Physiology, Washington University in St Louis, St Louis, Missouri, USA; Department of Otolaryngology, School of Medicine, Washington University in St Louis, St Louis, Missouri, USA.
| |
Collapse
|
21
|
Huang Y, Li X, Sun X, Yao J, Gao F, Wang Z, Hu J, Wang Z, Ouyang B, Tu X, Zou X, Liu W, Lu M, Deng C, Yang Q, Xie Y. Anatomical Transcriptome Atlas of the Male Mouse Reproductive System During Aging. Front Cell Dev Biol 2022; 9:782824. [PMID: 35211476 PMCID: PMC8861499 DOI: 10.3389/fcell.2021.782824] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Accepted: 12/28/2021] [Indexed: 11/13/2022] Open
Abstract
The elderly males undergo degenerative fertility and testicular endocrine function that jeopardize the reproductive health and well-being. However, the mechanisms underlying reproductive aging are unclear. Here, we tried to address this by investigating the phenotypes and transcriptomes of seven regions of the male mouse reproductive tract: the testis, efferent ductules, initial segment, caput, corpus and cauda epididymidis, and vas deferens, in adult (3 months) and aged (21 months) mice. Quantitative PCR, immunohistochemistry, immunofluorescent staining, and enzyme-linked immunosorbent assay were performed for the analysis of gene expression in mice, human tissues, and semen samples. Aged male mice showed both systematic and reproductive changes, and remarkable histological changes were detected in the testis and proximal epididymis. Transcriptomes of the male reproductive tract were mapped, and a series of region-specific genes were identified and validated in mouse and/or human tissues, including Protamine 1 (Prm2), ADAM metallopeptidase domain 28 (Adam28), Ribonuclease A family member 13 (Rnase13), WAP four-disulfide core domain 13 (Wfdc13), and Wfdc9. Meanwhile, age-related transcriptome changes of different regions of the male reproductive tract were characterized. Notably, increased immune response was functionally related to the male reproductive aging, especially the T cell activation. An immune response-associated factor, phospholipase A2 group IID (Pla2g2d), was identified as a potential biomarker for reproductive aging in mice. And the PLA2G2D level in human seminal plasma surged at approximately 35 years of age. Furthermore, we highlighted Protein tyrosine phosphatase receptor type C (Ptprc), Lymphocyte protein tyrosine kinase (Lck), Microtubule associated protein tau (Mapt), and Interferon induced protein with tetratricopeptide repeats 3 (Ifit3) as critical molecules in the aging of initial segment, caput, caput, and cauda epididymidis, respectively. This study provides an RNA-seq resource for the male reproductive system during aging in mice, and is expected to improve our understanding of male reproductive aging and infertility.
Collapse
Affiliation(s)
- Yanping Huang
- Department of Urology and Andrology, Renji Hospital, School of Medicine, Shanghai Institute of Andrology, Shanghai Jiao Tong University, Shanghai, China
| | - Xiangping Li
- Department of Urology and Andrology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Xiangzhou Sun
- Department of Urology and Andrology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Jiahui Yao
- Department of Urology and Andrology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Fengxin Gao
- Guangzhou Epibiotek Co., Ltd., Guangzhou, China
| | - Zhenqing Wang
- Department of Urology and Andrology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Jiaying Hu
- Department of Ultrasonics, Institute of Diagnostic and Interventional Ultrasound, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Zhu Wang
- Department of Ultrasonics, Institute of Diagnostic and Interventional Ultrasound, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Bin Ouyang
- Department of Andrology, Guangzhou First People's Hospital, School of Medicine, South China University of Technology, Guangzhou, China
| | - Xiangan Tu
- Department of Urology and Andrology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Xuenong Zou
- Guangdong Provincial Key Laboratory of Orthopedics and Traumatology, Department of Spinal Surgery, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Wei Liu
- Department of Urology and Andrology, Renji Hospital, School of Medicine, Shanghai Institute of Andrology, Shanghai Jiao Tong University, Shanghai, China
| | - Mujun Lu
- Department of Urology and Andrology, Renji Hospital, School of Medicine, Shanghai Institute of Andrology, Shanghai Jiao Tong University, Shanghai, China
| | - Chunhua Deng
- Department of Urology and Andrology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Qiyun Yang
- Department of Urology and Andrology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Yun Xie
- Department of Urology and Andrology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Orthopedics and Traumatology, Department of Spinal Surgery, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
22
|
Fischer S, Weber LM, Liefke R. Evolutionary adaptation of the Polycomb repressive complex 2. Epigenetics Chromatin 2022; 15:7. [PMID: 35193659 PMCID: PMC8864842 DOI: 10.1186/s13072-022-00439-6] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2021] [Accepted: 02/08/2022] [Indexed: 12/31/2022] Open
Abstract
The Polycomb repressive complex 2 (PRC2) is an essential chromatin regulatory complex involved in repressing the transcription of diverse developmental genes. PRC2 consists of a core complex; possessing H3K27 methyltransferase activity and various associated factors that are important to modulate its function. During evolution, the composition of PRC2 and the functionality of PRC2 components have changed considerably. Here, we compare the PRC2 complex members of Drosophila and mammals and describe their adaptation to altered biological needs. We also highlight how the PRC2.1 subcomplex has gained multiple novel functions and discuss the implications of these changes for the function of PRC2 in chromatin regulation.
Collapse
Affiliation(s)
- Sabrina Fischer
- Institute of Molecular Biology and Tumor Research (IMT), Philipps University of Marburg, 35043, Marburg, Germany
| | - Lisa Marie Weber
- Institute of Molecular Biology and Tumor Research (IMT), Philipps University of Marburg, 35043, Marburg, Germany
| | - Robert Liefke
- Institute of Molecular Biology and Tumor Research (IMT), Philipps University of Marburg, 35043, Marburg, Germany. .,Department of Hematology, Oncology, and Immunology, University Hospital Giessen and Marburg, 35043, Marburg, Germany.
| |
Collapse
|
23
|
Rare catastrophes and evolutionary legacies: human germline gene variants in MLKL and the necroptosis signalling pathway. Biochem Soc Trans 2022; 50:529-539. [PMID: 35166320 PMCID: PMC9022980 DOI: 10.1042/bst20210517] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Revised: 01/17/2022] [Accepted: 01/24/2022] [Indexed: 02/07/2023]
Abstract
Programmed cell death has long been characterised as a key player in the development of human disease. Necroptosis is a lytic form of programmed cell death that is universally mediated by the effector protein mixed lineage kinase domain-like (MLKL), a pseudokinase. MLKL's activating kinase, receptor interacting protein kinase 3 (RIPK3), is itself activated within context specific scaffolds of receptor interacting protein kinase 1 (RIPK1), Z-DNA Binding Protein-1 (ZBP1) or TIR domain-containing adaptor inducing interferon-β (TRIF). These core necroptosis modulating proteins have been comprehensively revealed as potent drivers and suppressors of disease in inbred mouse strains. However, their roles in human disease within the 'real world' of diverse genetic backgrounds, natural infection and environmental challenges remains less well understood. Over 20 unique disease-associated human germline gene variants in this core necroptotic machinery have been reported in the literature and human clinico-genetics databases like ClinVar to date. In this review, we provide an overview of these human gene variants, with an emphasis on those encoding MLKL. These experiments of nature have the potential to not only enrich our understanding of the basic biology of necroptosis, but offer important population level insights into which clinical indications stand to benefit most from necroptosis-targeted drugs.
Collapse
|
24
|
The Role of the Key Effector of Necroptotic Cell Death, MLKL, in Mouse Models of Disease. Biomolecules 2021; 11:biom11060803. [PMID: 34071602 PMCID: PMC8227991 DOI: 10.3390/biom11060803] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2021] [Revised: 05/22/2021] [Accepted: 05/24/2021] [Indexed: 02/06/2023] Open
Abstract
Necroptosis is an inflammatory form of lytic programmed cell death that is thought to have evolved to defend against pathogens. Genetic deletion of the terminal effector protein—MLKL—shows no overt phenotype in the C57BL/6 mouse strain under conventional laboratory housing conditions. Small molecules that inhibit necroptosis by targeting the kinase activity of RIPK1, one of the main upstream conduits to MLKL activation, have shown promise in several murine models of non-infectious disease and in phase II human clinical trials. This has triggered in excess of one billion dollars (USD) in investment into the emerging class of necroptosis blocking drugs, and the potential utility of targeting the terminal effector is being closely scrutinised. Here we review murine models of disease, both genetic deletion and mutation, that investigate the role of MLKL. We summarize a series of examples from several broad disease categories including ischemia reperfusion injury, sterile inflammation, pathogen infection and hematological stress. Elucidating MLKL’s contribution to mouse models of disease is an important first step to identify human indications that stand to benefit most from MLKL-targeted drug therapies.
Collapse
|
25
|
Meng Y, Sandow JJ, Czabotar PE, Murphy JM. The regulation of necroptosis by post-translational modifications. Cell Death Differ 2021; 28:861-883. [PMID: 33462412 PMCID: PMC7937688 DOI: 10.1038/s41418-020-00722-7] [Citation(s) in RCA: 72] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2020] [Revised: 12/14/2020] [Accepted: 12/18/2020] [Indexed: 01/30/2023] Open
Abstract
Necroptosis is a caspase-independent, lytic form of programmed cell death whose errant activation has been widely implicated in many pathologies. The pathway relies on the assembly of the apical protein kinases, RIPK1 and RIPK3, into a high molecular weight cytoplasmic complex, termed the necrosome, downstream of death receptor or pathogen detector ligation. The necrosome serves as a platform for RIPK3-mediated phosphorylation of the terminal effector, the MLKL pseudokinase, which induces its oligomerization, translocation to, and perturbation of, the plasma membrane to cause cell death. Over the past 10 years, knowledge of the post-translational modifications that govern RIPK1, RIPK3 and MLKL conformation, activity, interactions, stability and localization has rapidly expanded. Here, we review current knowledge of the functions of phosphorylation, ubiquitylation, GlcNAcylation, proteolytic cleavage, and disulfide bonding in regulating necroptotic signaling. Post-translational modifications serve a broad array of functions in modulating RIPK1 engagement in, or exclusion from, cell death signaling, whereas the bulk of identified RIPK3 and MLKL modifications promote their necroptotic functions. An enhanced understanding of the modifying enzymes that tune RIPK1, RIPK3, and MLKL necroptotic functions will prove valuable in efforts to therapeutically modulate necroptosis.
Collapse
Affiliation(s)
- Yanxiang Meng
- Walter and Eliza Hall Institute of Medical Research, 1G Royal Parade, Parkville, VIC, 3052, Australia
- Department of Medical Biology, University of Melbourne, Parkville, VIC, 3052, Australia
| | - Jarrod J Sandow
- Walter and Eliza Hall Institute of Medical Research, 1G Royal Parade, Parkville, VIC, 3052, Australia
- Department of Medical Biology, University of Melbourne, Parkville, VIC, 3052, Australia
| | - Peter E Czabotar
- Walter and Eliza Hall Institute of Medical Research, 1G Royal Parade, Parkville, VIC, 3052, Australia
- Department of Medical Biology, University of Melbourne, Parkville, VIC, 3052, Australia
| | - James M Murphy
- Walter and Eliza Hall Institute of Medical Research, 1G Royal Parade, Parkville, VIC, 3052, Australia.
- Department of Medical Biology, University of Melbourne, Parkville, VIC, 3052, Australia.
| |
Collapse
|
26
|
Fulcher LJ, Sapkota GP. Functions and regulation of the serine/threonine protein kinase CK1 family: moving beyond promiscuity. Biochem J 2020; 477:4603-4621. [PMID: 33306089 PMCID: PMC7733671 DOI: 10.1042/bcj20200506] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Revised: 11/09/2020] [Accepted: 11/10/2020] [Indexed: 12/11/2022]
Abstract
Regarded as constitutively active enzymes, known to participate in many, diverse biological processes, the intracellular regulation bestowed on the CK1 family of serine/threonine protein kinases is critically important, yet poorly understood. Here, we provide an overview of the known CK1-dependent cellular functions and review the emerging roles of CK1-regulating proteins in these processes. We go on to discuss the advances, limitations and pitfalls that CK1 researchers encounter when attempting to define relationships between CK1 isoforms and their substrates, and the challenges associated with ascertaining the correct physiological CK1 isoform for the substrate of interest. With increasing interest in CK1 isoforms as therapeutic targets, methods of selectively inhibiting CK1 isoform-specific processes is warranted, yet challenging to achieve given their participation in such a vast plethora of signalling pathways. Here, we discuss how one might shut down CK1-specific processes, without impacting other aspects of CK1 biology.
Collapse
Affiliation(s)
- Luke J. Fulcher
- Department of Biochemistry, University of Oxford, Oxford, U.K
| | - Gopal P. Sapkota
- Medical Research Council Protein Phosphorylation and Ubiquitylation Unit, College of Life Sciences, University of Dundee, Dundee, U.K
| |
Collapse
|