1
|
Wosnitzka E, Gambarotto L, Nikoletopoulou V. Macroautophagy at the service of synapses. Curr Opin Neurobiol 2025; 93:103054. [PMID: 40414166 DOI: 10.1016/j.conb.2025.103054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2024] [Revised: 04/02/2025] [Accepted: 05/02/2025] [Indexed: 05/27/2025]
Abstract
Post-mitotic and highly polarized neurons are dependent on the fitness of their synapses, which are often found a long distance away from the soma. How the synaptic proteome is maintained, dynamically reshaped, and continuously turned over is a topic of intense investigation. Autophagy, a highly conserved, lysosome-mediated degradation pathway has emerged as a vital component of long-term neuronal maintenance, and now more specifically of synaptic homeostasis. Here, we review the most recent findings on how autophagy undergoes both dynamic and local regulation at the synapse, and how it contributes to pre- and post-synaptic proteostasis and function. We also discuss the insights and open questions that this new evidence brings.
Collapse
Affiliation(s)
- Erin Wosnitzka
- Department of Fundamental Neurosciences, University of Lausanne, Rue du Bugnon 9, 1005, Lausanne, Switzerland
| | - Lisa Gambarotto
- Department of Fundamental Neurosciences, University of Lausanne, Rue du Bugnon 9, 1005, Lausanne, Switzerland
| | - Vassiliki Nikoletopoulou
- Department of Fundamental Neurosciences, University of Lausanne, Rue du Bugnon 9, 1005, Lausanne, Switzerland.
| |
Collapse
|
2
|
Sahota A, Paulose Nadappuram B, Kwan Z, Lesept F, Howden JH, Claxton S, Kittler JT, Devine MJ, Edel JB, Ivanov AP. Spatial and Temporal Single-Cell Profiling of RNA Compartmentalization in Neurons with Nanotweezers. ACS NANO 2025; 19:18522-18533. [PMID: 40326740 PMCID: PMC12096465 DOI: 10.1021/acsnano.5c02056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/04/2025] [Revised: 04/22/2025] [Accepted: 04/24/2025] [Indexed: 05/07/2025]
Abstract
Emerging techniques for mapping mRNAs within the subcellular compartments of live cells hold great promise for advancing our understanding of the spatial distribution of transcripts and enabling the study of single-cell dynamics in health and disease. This is particularly critical for polarized cells, such as neurons, where mRNA compartmentalization is essential for regulating gene expression, and defects in these localization mechanisms are linked to numerous neurological disorders. However, many subcellular analysis techniques require a compromise between subcellular precision, live-cell measurements, and nondestructive access to single cells in their native microenvironment. To overcome these challenges, we employ a single-cell technology that we have recently developed, the nanotweezer, which features a nanoscale footprint (∼100 nm), avoids cytoplasmic fluid aspiration, and enables rapid RNA isolation from living cells with minimal invasiveness. Using this tool, we investigate single-cell mRNA compartmentalization in the soma and dendrites of hippocampal neurons at different stages of neuronal development. By combining precise targeting with sequential sampling, we track changes in mRNA abundance at dendritic spine regions of the same neuron, both before and after stimulation. This minimally invasive approach enables time-resolved, subcellular gene expression profiling of the same single cell. This could provide critical insights into polarized cells and advance our understanding of biological processes and complex diseases.
Collapse
Affiliation(s)
- Annie Sahota
- Department
of Chemistry, Imperial College London, Molecular
Science Research Hub, LondonW12 0BZ, United
Kingdom
| | - Binoy Paulose Nadappuram
- Department
of Chemistry, Imperial College London, Molecular
Science Research Hub, LondonW12 0BZ, United
Kingdom
- Department
of Pure and Applied Chemistry, University
of Strathclyde, GlasgowG1 1BX, United
Kingdom
| | - Zoe Kwan
- Department
of Chemistry, Imperial College London, Molecular
Science Research Hub, LondonW12 0BZ, United
Kingdom
| | - Flavie Lesept
- Department
of Neuroscience, Physiology and Pharmacology, University College London, Gower Street, LondonWC1E 6BT, United
Kingdom.
| | - Jack H. Howden
- Department
of Neuroscience, Physiology and Pharmacology, University College London, Gower Street, LondonWC1E 6BT, United
Kingdom.
| | - Suzanne Claxton
- Kinases
and Brain Development Lab, The Francis Crick
Institute, 1 Midland Road, LondonNW1 1AT, United Kingdom
| | - Josef T. Kittler
- Department
of Neuroscience, Physiology and Pharmacology, University College London, Gower Street, LondonWC1E 6BT, United
Kingdom.
| | - Michael J. Devine
- Mitochondrial
Neurobiology Lab, The Francis Crick Institute, 1 Midland Road, LondonNW1 1AT, United Kingdom
- Department
of Clinical and Movement Neurosciences, UCL Queen Square Institute
of Neurology, University College London, LondonWC1N 3BG, United Kingdom
| | - Joshua B. Edel
- Department
of Chemistry, Imperial College London, Molecular
Science Research Hub, LondonW12 0BZ, United
Kingdom
| | - Aleksandar P. Ivanov
- Department
of Chemistry, Imperial College London, Molecular
Science Research Hub, LondonW12 0BZ, United
Kingdom
| |
Collapse
|
3
|
Bergmann C, Mousaei K, Rizzoli SO, Tchumatchenko T. How energy determines spatial localisation and copy number of molecules in neurons. Nat Commun 2025; 16:1424. [PMID: 39915472 PMCID: PMC11802781 DOI: 10.1038/s41467-025-56640-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Accepted: 01/24/2025] [Indexed: 02/09/2025] Open
Abstract
In neurons, the quantities of mRNAs and proteins are traditionally assumed to be determined by functional, electrical or genetic factors. Yet, there may also be global, currently unknown computational rules that are valid across different molecular species inside a cell. Surprisingly, our results show that the energy for molecular turnover is a significant cellular expense, en par with spiking cost, and which requires energy-saving strategies. We show that the drive to save energy determines transcript quantities and their location while acting differently on each molecular species depending on the length, longevity and other features of the respective molecule. We combined our own data and experimental reports from five other large-scale mRNA and proteomics screens, comprising more than ten thousand molecular species to reveal the underlying computational principles of molecular localisation. We found that energy minimisation principles explain experimentally-reported exponential rank distributions of mRNA and protein copy numbers. Our results further reveal robust energy benefits when certain mRNA classes are moved into dendrites, for example mRNAs of proteins with long amino acid chains or mRNAs with large non-coding regions and long half-lives proving surprising insights at the level of molecular populations.
Collapse
Affiliation(s)
- Cornelius Bergmann
- Institute of Experimental Epileptology and Cognition Research, Medical Faculty, University of Bonn, Venusberg-Campus 1, 53127, Bonn, Germany
| | - Kanaan Mousaei
- Institute of Experimental Epileptology and Cognition Research, Medical Faculty, University of Bonn, Venusberg-Campus 1, 53127, Bonn, Germany
| | - Silvio O Rizzoli
- Department for Neuro- and Sensory Physiology, University Medical Center Göttingen Center for Biostructural Imaging of Neurodegeneration, BIN Humboldtallee 23, 37073, Göttingen, Germany
| | - Tatjana Tchumatchenko
- Institute of Experimental Epileptology and Cognition Research, Medical Faculty, University of Bonn, Venusberg-Campus 1, 53127, Bonn, Germany.
| |
Collapse
|
4
|
van Oostrum M, Schuman EM. Understanding the molecular diversity of synapses. Nat Rev Neurosci 2025; 26:65-81. [PMID: 39638892 DOI: 10.1038/s41583-024-00888-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/08/2024] [Indexed: 12/07/2024]
Abstract
Synapses are composed of thousands of proteins, providing the potential for extensive molecular diversity to shape synapse type-specific functional specializations. In this Review, we explore the landscape of synaptic diversity and describe the mechanisms that expand the molecular complexity of synapses, from the genotype to the regulation of gene expression to the production of specific proteoforms and the formation of localized protein complexes. We emphasize the importance of examining every molecular layer and adopting a systems perspective to understand how these interconnected mechanisms shape the diverse functional and structural properties of synapses. We explore current frameworks for classifying synapses and methodologies for investigating different synapse types at varying scales, from synapse-type-specific proteomics to advanced imaging techniques with single-synapse resolution. We highlight the potential of synapse-type-specific approaches for integrating molecular data with cellular functions, circuit organization and organismal phenotypes to enable a more holistic exploration of neuronal phenomena across different scales.
Collapse
Affiliation(s)
- Marc van Oostrum
- Max Planck Institute for Brain Research, Frankfurt am Main, Germany
- Biozentrum, University of Basel, Basel, Switzerland
| | - Erin M Schuman
- Max Planck Institute for Brain Research, Frankfurt am Main, Germany.
| |
Collapse
|
5
|
Skarne N, D'Souza RCJ, Palethorpe HM, Bradbrook KA, Gomez GA, Day BW. Personalising glioblastoma medicine: explant organoid applications, challenges and future perspectives. Acta Neuropathol Commun 2025; 13:6. [PMID: 39799339 PMCID: PMC11724554 DOI: 10.1186/s40478-025-01928-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2024] [Accepted: 01/07/2025] [Indexed: 01/15/2025] Open
Abstract
Glioblastoma (GBM) is a highly aggressive adult brain cancer, characterised by poor prognosis and a dismal five-year survival rate. Despite significant knowledge gains in tumour biology, meaningful advances in patient survival remain elusive. The field of neuro-oncology faces many disease obstacles, one being the paucity of faithful models to advance preclinical research and guide personalised medicine approaches. Recent technological developments have permitted the maintenance, expansion and cryopreservation of GBM explant organoid (GBO) tissue. GBOs represent a translational leap forward and are currently the state-of-the-art in 3D in vitro culture system, retaining brain cancer heterogeneity, and transiently maintaining the immune infiltrate and tumour microenvironment (TME). Here, we provide a review of existing brain cancer organoid technologies, in vivo xenograft approaches, evaluate in-detail the key advantages and limitations of this rapidly emerging technology, and consider solutions to overcome these difficulties. GBOs currently hold significant promise, with the potential to emerge as the key translational tool to synergise and enhance next-generation omics efforts and guide personalised medicine approaches for brain cancer patients into the future.
Collapse
Affiliation(s)
- Niclas Skarne
- Sid Faithfull Brain Cancer Laboratory, QIMR Berghofer Medical Research Institute, Brisbane, QLD, 4006, Australia.
- School of Biomedical Sciences and Faculty of Medicine, The University of Queensland, Brisbane, 4072, Australia.
| | - Rochelle C J D'Souza
- Sid Faithfull Brain Cancer Laboratory, QIMR Berghofer Medical Research Institute, Brisbane, QLD, 4006, Australia
- School of Biomedical Sciences and Faculty of Medicine, The University of Queensland, Brisbane, 4072, Australia
| | - Helen M Palethorpe
- Centre for Cancer Biology, University of South Australia and SA Pathology, Adelaide, SA, 5000, Australia
| | - Kylah A Bradbrook
- Sid Faithfull Brain Cancer Laboratory, QIMR Berghofer Medical Research Institute, Brisbane, QLD, 4006, Australia
- School of Biomedical Sciences and Faculty of Medicine, The University of Queensland, Brisbane, 4072, Australia
| | - Guillermo A Gomez
- Centre for Cancer Biology, University of South Australia and SA Pathology, Adelaide, SA, 5000, Australia
| | - Bryan W Day
- Sid Faithfull Brain Cancer Laboratory, QIMR Berghofer Medical Research Institute, Brisbane, QLD, 4006, Australia.
- School of Biomedical Sciences and Faculty of Medicine, The University of Queensland, Brisbane, 4072, Australia.
- School of Biomedical Sciences, Faculty of Health, Queensland University of Technology, Brisbane, 4059, Australia.
| |
Collapse
|
6
|
Alvarez-Pardo R, Doron-Mandel E, Albert-Gascó H, Salinas CO, Jovanovic M, Alvarez-Castelao B. Cell-Type-Specific Protein Metabolic Labeling and Identification Using the Methionine Subrogate ANL in Cells Expressing a Mutant Methionyl-tRNA Synthetase. Methods Mol Biol 2025; 2899:111-126. [PMID: 40067620 DOI: 10.1007/978-1-0716-4386-0_8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/13/2025]
Abstract
The study of protein homeostasis in vivo is crucial for our understanding of the functions of cells and organisms. However, complex organisms, such as mammals, are built from heterogeneous tissues and cell-types. These cell-types are often specialized and react in different ways to the same physiological or pathological stimulus. Therefore, a major challenge in proteomics is the identification of proteomes and their behavior in a cell-type-specific manner. In this protocol, we describe a technique to label, enrich, and identify proteins from specific cell types. This technique is based on the expression of a mutant methionyl-tRNA synthetase (MetRS*) for incorporation of a bioorthogonal analog of methionine (ANL) into proteins. ANL can be subsequently bound to an alkyne by click-chemistry, which is used as a bait for protein purification followed by mass spectrometry identification.
Collapse
Affiliation(s)
- Rodrigo Alvarez-Pardo
- Department of Biochemistry and Molecular Biology, Veterinary School, Complutense University of Madrid, Madrid, Spain
- Instituto de Investigación Sanitaria del Hospital Clínico San Carlos, IdISSC, Madrid, Spain
| | - Ella Doron-Mandel
- Department of Biological Sciences, Columbia University, New York, NY, USA
| | | | - Cristina Olmedo Salinas
- Department of Biochemistry and Molecular Biology, Veterinary School, Complutense University of Madrid, Madrid, Spain
- Instituto de Investigación Sanitaria del Hospital Clínico San Carlos, IdISSC, Madrid, Spain
| | - Marko Jovanovic
- Department of Biological Sciences, Columbia University, New York, NY, USA
| | - Beatriz Alvarez-Castelao
- Department of Biochemistry and Molecular Biology, Veterinary School, Complutense University of Madrid, Madrid, Spain.
- Instituto de Investigación Sanitaria del Hospital Clínico San Carlos, IdISSC, Madrid, Spain.
| |
Collapse
|
7
|
Alecki C, Rizwan J, Le P, Jacob-Tomas S, Comaduran MF, Verbrugghe M, Xu JMS, Minotti S, Lynch J, Biswas J, Wu T, Durham HD, Yeo GW, Vera M. Localized molecular chaperone synthesis maintains neuronal dendrite proteostasis. Nat Commun 2024; 15:10796. [PMID: 39737952 PMCID: PMC11685665 DOI: 10.1038/s41467-024-55055-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2024] [Accepted: 11/26/2024] [Indexed: 01/01/2025] Open
Abstract
Proteostasis is maintained through regulated protein synthesis and degradation and chaperone-assisted protein folding. However, this is challenging in neuronal projections because of their polarized morphology and constant synaptic proteome remodeling. Using high-resolution fluorescence microscopy, we discover that hippocampal and spinal cord motor neurons of mouse and human origin localize a subset of chaperone mRNAs to their dendrites and use microtubule-based transport to increase this asymmetric localization following proteotoxic stress. The most abundant dendritic chaperone mRNA encodes a constitutive heat shock protein 70 family member (HSPA8). Proteotoxic stress also enhances HSPA8 mRNA translation efficiency in dendrites. Stress-mediated HSPA8 mRNA localization to the dendrites is impaired by depleting fused in sarcoma-an amyotrophic lateral sclerosis-related protein-in cultured spinal cord mouse motor neurons or by expressing a pathogenic variant of heterogenous nuclear ribonucleoprotein A2/B1 in neurons derived from human induced pluripotent stem cells. These results reveal a neuronal stress response in which RNA-binding proteins increase the dendritic localization of HSPA8 mRNA to maintain proteostasis and prevent neurodegeneration.
Collapse
Affiliation(s)
- Célia Alecki
- Department of Biochemistry, McGill University, Montreal, QC, Canada
| | - Javeria Rizwan
- Department of Biochemistry, McGill University, Montreal, QC, Canada
- Department of Physics, University of Toronto, Toronto, ON, Canada
| | - Phuong Le
- Department of Cellular and Molecular Medicine, University of California, San Diego, CA, USA
| | - Suleima Jacob-Tomas
- Department of Biochemistry, McGill University, Montreal, QC, Canada
- Department of Neurology and Neurosurgery, McGill University, Montreal, QC, Canada
| | - Mario Fernandez Comaduran
- Department of Biochemistry, McGill University, Montreal, QC, Canada
- Department of Neurology and Neurosurgery and Montreal Neurological Institute, McGill University, Montreal, QC, Canada
| | | | | | - Sandra Minotti
- Department of Neurology and Neurosurgery and Montreal Neurological Institute, McGill University, Montreal, QC, Canada
| | - James Lynch
- Department of Biochemistry, McGill University, Montreal, QC, Canada
| | - Jeetayu Biswas
- Molecular Pharmacology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Leukemia Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Tad Wu
- Department of Biochemistry, McGill University, Montreal, QC, Canada
- Department of Pathology, McGill University, Montreal, QC, Canada
| | - Heather D Durham
- Department of Neurology and Neurosurgery and Montreal Neurological Institute, McGill University, Montreal, QC, Canada
| | - Gene W Yeo
- Department of Cellular and Molecular Medicine, University of California, San Diego, CA, USA
| | - Maria Vera
- Department of Biochemistry, McGill University, Montreal, QC, Canada.
| |
Collapse
|
8
|
Adameyko I, Bakken T, Bhaduri A, Chhatbar C, Filbin MG, Gate D, Hochgerner H, Kim CN, Krull J, La Manno G, Li Q, Linnarsson S, Ma Q, Mayer C, Menon V, Nano P, Prinz M, Quake S, Walsh CA, Yang J, Bayraktar OA, Gokce O, Habib N, Konopka G, Liddelow SA, Nowakowski TJ. Applying single-cell and single-nucleus genomics to studies of cellular heterogeneity and cell fate transitions in the nervous system. Nat Neurosci 2024; 27:2278-2291. [PMID: 39627588 PMCID: PMC11949301 DOI: 10.1038/s41593-024-01827-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Accepted: 10/22/2024] [Indexed: 12/13/2024]
Abstract
Single-cell and single-nucleus genomic approaches can provide unbiased and multimodal insights. Here, we discuss what constitutes a molecular cell atlas and how to leverage single-cell omics data to generate hypotheses and gain insights into cell transitions in development and disease of the nervous system. We share points of reflection on what to consider during study design and implementation as well as limitations and pitfalls.
Collapse
Affiliation(s)
- Igor Adameyko
- Department of Neuroimmunology, Center for Brain Research, Medical University of Vienna, Vienna, Austria
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden
| | | | - Aparna Bhaduri
- Department of Biological Chemistry, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, USA
| | - Chintan Chhatbar
- Institute of Neuropathology, Medical Faculty, University of Freiburg, Freiburg, Germany
| | - Mariella G Filbin
- Department of Pediatric Oncology, Dana-Farber Cancer Institute, Boston Children's Hospital, Boston, MA, USA
| | - David Gate
- The Ken and Ruth Davee Department of Neurology, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Hannah Hochgerner
- Faculty of Biotechnology and Food Engineering, Technion Israel Institute of Technology, Haifa, Israel
| | - Chang Nam Kim
- Department of Neurological Surgery, University of California San Francisco, San Francisco, CA, USA
- Department of Anatomy, University of California San Francisco, San Francisco, CA, USA
| | - Jordan Krull
- Department of Biomedical Informatics, College of Medicine, the Ohio State University, Columbus, OH, USA
- Pelotonia Institute for Immuno-Oncology, the James Comprehensive Cancer Center, the Ohio State University, Columbus, OH, USA
| | - Gioele La Manno
- Laboratory of Neurodevelopmental Systems Biology, Brain Mind Institute, School of Life Sciences, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Qingyun Li
- Department of Neuroscience, Washington University in St. Louis School of Medicine, St. Louis, MO, USA
- Department of Genetics, Washington University in St. Louis School of Medicine, St. Louis, MO, USA
| | - Sten Linnarsson
- Division of Molecular Neurobiology, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
| | - Qin Ma
- Department of Biomedical Informatics, College of Medicine, the Ohio State University, Columbus, OH, USA
- Pelotonia Institute for Immuno-Oncology, the James Comprehensive Cancer Center, the Ohio State University, Columbus, OH, USA
| | - Christian Mayer
- Max Planck Institute for Biological Intelligence, Martinsried, Germany
| | - Vilas Menon
- Department of Neurology, Center for Translational and Computational Neuroimmunology, Columbia University, New York, NY, USA
| | - Patricia Nano
- Department of Biological Chemistry, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, USA
| | - Marco Prinz
- Institute of Neuropathology, Medical Faculty, University of Freiburg, Freiburg, Germany
- Signalling Research Centres BIOSS and CIBSS, University of Freiburg, Freiburg, Germany
| | - Steve Quake
- Department of Bioengineering, Stanford University, Stanford, CA, USA
- Department of Applied Physics, Stanford University, Stanford, CA, USA
- Chan Zuckerberg Biohub, San Francisco, CA, USA
| | - Christopher A Walsh
- Division of Genetics and Genomics, Manton Center for Orphan Disease, Boston Children's Hospital, Boston, MA, USA
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Howard Hughes Medical Institute, Boston Children's Hospital, Boston, MA, USA
| | - Jin Yang
- Department of Neuroscience, Washington University in St. Louis School of Medicine, St. Louis, MO, USA
- Department of Genetics, Washington University in St. Louis School of Medicine, St. Louis, MO, USA
| | | | - Ozgun Gokce
- Department of Old Age Psychiatry and Cognitive Disorders, University Hospital Bonn, Bonn, Germany.
- German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany.
| | - Naomi Habib
- The Edmond and Lily Safra Center for Brain Sciences, the Hebrew University of Jerusalem, Jerusalem, Israel.
| | - Genevieve Konopka
- Department of Neuroscience, UT Southwestern Medical Center, Dallas, TX, USA.
- Peter O'Donnell Jr. Brain Institute, UT Southwestern Medical Center, Dallas, TX, USA.
| | - Shane A Liddelow
- Neuroscience Institute, NYU Grossman School of Medicine, New York, NY, USA.
- Department of Neuroscience and Physiology, NYU Grossman School of Medicine, New York, NY, USA.
- Parekh Center for Interdisciplinary Neurology, NYU Grossman School of Medicine, New York, NY, USA.
- Department of Ophthalmology, NYU Grossman School of Medicine, New York, NY, USA.
| | - Tomasz J Nowakowski
- Department of Neurological Surgery, University of California San Francisco, San Francisco, CA, USA.
- Department of Anatomy, University of California San Francisco, San Francisco, CA, USA.
- Department of Psychiatry and Behavioral Sciences, University of California San Francisco, San Francisco, CA, USA.
- Weill Institute for Neurosciences, University of California San Francisco, San Francisco, CA, USA.
- The Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California San Francisco, San Francisco, CA, USA.
| |
Collapse
|
9
|
Onchan W, Attakitbancha C, Uttamapinant C. An expanded molecular and systems toolbox for imaging, mapping, and controlling local translation. Curr Opin Chem Biol 2024; 82:102523. [PMID: 39226865 DOI: 10.1016/j.cbpa.2024.102523] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2024] [Revised: 07/28/2024] [Accepted: 08/12/2024] [Indexed: 09/05/2024]
Abstract
Localized protein translation occurs through trafficking of mRNAs and protein translation machineries to different compartments of the cell, leading to rapid on-site synthesis of proteins in response to signaling cues. The spatiotemporally precise nature of the local translation process necessitates continual developments of technologies reviewed herein to visualize and map biomolecular components and the translation process with better spatial and temporal resolution and with fewer artifacts. We also discuss approaches to control local translation, which can serve as a design paradigm for subcellular genetic devices for eukaryotic synthetic biology.
Collapse
Affiliation(s)
- Warunya Onchan
- School of Biomolecular Science and Engineering, Vidyasirimedhi Institute of Science and Technology (VISTEC), Rayong, Thailand
| | - Chadaporn Attakitbancha
- School of Biomolecular Science and Engineering, Vidyasirimedhi Institute of Science and Technology (VISTEC), Rayong, Thailand
| | - Chayasith Uttamapinant
- School of Biomolecular Science and Engineering, Vidyasirimedhi Institute of Science and Technology (VISTEC), Rayong, Thailand.
| |
Collapse
|
10
|
Kumar A, Schrader AW, Aggarwal B, Boroojeny AE, Asadian M, Lee J, Song YJ, Zhao SD, Han HS, Sinha S. Intracellular spatial transcriptomic analysis toolkit (InSTAnT). Nat Commun 2024; 15:7794. [PMID: 39242579 PMCID: PMC11379969 DOI: 10.1038/s41467-024-49457-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Accepted: 06/04/2024] [Indexed: 09/09/2024] Open
Abstract
Imaging-based spatial transcriptomics technologies such as Multiplexed error-robust fluorescence in situ hybridization (MERFISH) can capture cellular processes in unparalleled detail. However, rigorous and robust analytical tools are needed to unlock their full potential for discovering subcellular biological patterns. We present Intracellular Spatial Transcriptomic Analysis Toolkit (InSTAnT), a computational toolkit for extracting molecular relationships from spatial transcriptomics data at single molecule resolution. InSTAnT employs specialized statistical tests and algorithms to detect gene pairs and modules exhibiting intriguing patterns of co-localization, both within individual cells and across the cellular landscape. We showcase the toolkit on five different datasets representing two different cell lines, two brain structures, two species, and three different technologies. We perform rigorous statistical assessment of discovered co-localization patterns, find supporting evidence from databases and RNA interactions, and identify associated subcellular domains. We uncover several cell type and region-specific gene co-localizations within the brain. Intra-cellular spatial patterns discovered by InSTAnT mirror diverse molecular relationships, including RNA interactions and shared sub-cellular localization or function, providing a rich compendium of testable hypotheses regarding molecular functions.
Collapse
Affiliation(s)
- Anurendra Kumar
- College of Computing, Georgia Institute of Technology, Atlanta, GA, 30332, USA
| | - Alex W Schrader
- Department of Chemistry, University of Illinois Urbana-Champaign, Urbana, IL, 61801, USA
| | - Bhavay Aggarwal
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA, 30332, USA
| | | | - Marisa Asadian
- Department of Chemistry, University of Illinois Urbana-Champaign, Urbana, IL, 61801, USA
| | - JuYeon Lee
- Department of Chemistry, University of Illinois Urbana-Champaign, Urbana, IL, 61801, USA
| | - You Jin Song
- Department of Cell and Developmental Biology, University of Illinois Urbana-Champaign, Urbana, IL, 61801, USA
| | - Sihai Dave Zhao
- Department of Statistics, University of Illinois Urbana-Champaign, Urbana, IL, 61820, USA.
- Carl R. Woese Institute for Genomic Biology, University of Illinois Urbana-Champaign, Urbana, IL, 61801, USA.
| | - Hee-Sun Han
- Department of Chemistry, University of Illinois Urbana-Champaign, Urbana, IL, 61801, USA.
- Carl R. Woese Institute for Genomic Biology, University of Illinois Urbana-Champaign, Urbana, IL, 61801, USA.
| | - Saurabh Sinha
- H. Milton Stewart School of Industrial & Systems Engineering, Georgia Institute of Technology, Atlanta, GA, 30318, USA.
- The Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology, Atlanta, GA, 30332, USA.
| |
Collapse
|
11
|
Ghatak S, Diedrich JK, Talantova M, Bhadra N, Scott H, Sharma M, Albertolle M, Schork NJ, Yates JR, Lipton SA. Single-Cell Patch-Clamp/Proteomics of Human Alzheimer's Disease iPSC-Derived Excitatory Neurons Versus Isogenic Wild-Type Controls Suggests Novel Causation and Therapeutic Targets. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2400545. [PMID: 38773714 PMCID: PMC11304297 DOI: 10.1002/advs.202400545] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Revised: 04/03/2024] [Indexed: 05/24/2024]
Abstract
Standard single-cell (sc) proteomics of disease states inferred from multicellular organs or organoids cannot currently be related to single-cell physiology. Here, a scPatch-Clamp/Proteomics platform is developed on single neurons generated from hiPSCs bearing an Alzheimer's disease (AD) genetic mutation and compares them to isogenic wild-type controls. This approach provides both current and voltage electrophysiological data plus detailed proteomics information on single-cells. With this new method, the authors are able to observe hyperelectrical activity in the AD hiPSC-neurons, similar to that observed in the human AD brain, and correlate it to ≈1400 proteins detected at the single neuron level. Using linear regression and mediation analyses to explore the relationship between the abundance of individual proteins and the neuron's mutational and electrophysiological status, this approach yields new information on therapeutic targets in excitatory neurons not attainable by traditional methods. This combined patch-proteomics technique creates a new proteogenetic-therapeutic strategy to correlate genotypic alterations to physiology with protein expression in single-cells.
Collapse
Affiliation(s)
- Swagata Ghatak
- Neurodegeneration New Medicines CenterThe Scripps Research InstituteLa JollaCA92037USA
- Department of Molecular MedicineThe Scripps Research InstituteLa JollaCA92037USA
- Present address:
School of Biological SciencesNational Institute of Science Education and Research (NISER)‐Bhubaneswar, an OCC of Homi Bhabha National InstituteJataniOdisha752050India
| | - Jolene K. Diedrich
- Department of Molecular MedicineThe Scripps Research InstituteLa JollaCA92037USA
| | - Maria Talantova
- Neurodegeneration New Medicines CenterThe Scripps Research InstituteLa JollaCA92037USA
- Department of Molecular MedicineThe Scripps Research InstituteLa JollaCA92037USA
| | - Nivedita Bhadra
- Quantitative Medicine and Systems BiologyThe Translational Genomics Research InstitutePhoenixAZ85004USA
| | - Henry Scott
- Neurodegeneration New Medicines CenterThe Scripps Research InstituteLa JollaCA92037USA
- Department of Molecular MedicineThe Scripps Research InstituteLa JollaCA92037USA
| | - Meetal Sharma
- Neurodegeneration New Medicines CenterThe Scripps Research InstituteLa JollaCA92037USA
- Department of Molecular MedicineThe Scripps Research InstituteLa JollaCA92037USA
| | - Matthew Albertolle
- Neurodegeneration New Medicines CenterThe Scripps Research InstituteLa JollaCA92037USA
- Department of Molecular MedicineThe Scripps Research InstituteLa JollaCA92037USA
- Present address:
Drug Metabolism and Pharmacokinetics DepartmentTakeda Development Center AmericasSan DiegoCA92121USA
| | - Nicholas J. Schork
- Quantitative Medicine and Systems BiologyThe Translational Genomics Research InstitutePhoenixAZ85004USA
| | - John R. Yates
- Department of Molecular MedicineThe Scripps Research InstituteLa JollaCA92037USA
| | - Stuart A. Lipton
- Neurodegeneration New Medicines CenterThe Scripps Research InstituteLa JollaCA92037USA
- Department of Molecular MedicineThe Scripps Research InstituteLa JollaCA92037USA
- Department of NeurosciencesSchool of MedicineUniversity of California, San DiegoLa JollaCA92093USA
| |
Collapse
|
12
|
Bartelt LC, Fakhri M, Adamek G, Trybus M, Samelak-Czajka A, Jackowiak P, Fiszer A, Lowe CB, La Spada AR, Switonski PM. Antibody-assisted selective isolation of Purkinje cell nuclei from mouse cerebellar tissue. CELL REPORTS METHODS 2024; 4:100816. [PMID: 38981474 PMCID: PMC11294835 DOI: 10.1016/j.crmeth.2024.100816] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 05/08/2024] [Accepted: 06/17/2024] [Indexed: 07/11/2024]
Abstract
We developed a method that utilizes fluorescent labeling of nuclear envelopes alongside cytometry sorting for the selective isolation of Purkinje cell (PC) nuclei. Beginning with SUN1 reporter mice, we GFP-tagged envelopes to confirm that PC nuclei could be accurately separated from other cell types. We then developed an antibody-based protocol to make PC nuclear isolation more robust and adaptable to cerebellar tissues of any genotypic background. Immunofluorescent labeling of the nuclear membrane protein RanBP2 enabled the isolation of PC nuclei from C57BL/6 cerebellum. By analyzing the expression of PC markers, nuclear size, and nucleoli number, we confirmed that our method delivers a pure fraction of PC nuclei. To demonstrate its applicability, we isolated PC nuclei from spinocerebellar ataxia type 7 (SCA7) mice and identified transcriptional changes in known and new disease-associated genes. Access to pure PC nuclei offers insights into PC biology and pathology, including the nature of selective neuronal vulnerability.
Collapse
Affiliation(s)
- Luke C Bartelt
- University Program in Genetics & Genomics, Duke University Medical Center, Durham, NC 27710, USA; Departments of Pathology & Laboratory Medicine, Neurology, Biological Chemistry, and Neurobiology & Behavior, University of California, Irvine, Irvine, CA 92697, USA; Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, NC 27710, USA
| | - Mouad Fakhri
- Department of Neuronal Cell Biology, Institute of Bioorganic Chemistry, Polish Academy of Sciences, 61-704 Poznan, Poland
| | - Grazyna Adamek
- Department of Neuronal Cell Biology, Institute of Bioorganic Chemistry, Polish Academy of Sciences, 61-704 Poznan, Poland
| | - Magdalena Trybus
- Laboratory of Single Cell Analyses, Institute of Bioorganic Chemistry, Polish Academy of Sciences, Noskowskiego 12/14, 61-704 Poznan, Poland
| | - Anna Samelak-Czajka
- Laboratory of Single Cell Analyses, Institute of Bioorganic Chemistry, Polish Academy of Sciences, Noskowskiego 12/14, 61-704 Poznan, Poland
| | - Paulina Jackowiak
- Laboratory of Single Cell Analyses, Institute of Bioorganic Chemistry, Polish Academy of Sciences, Noskowskiego 12/14, 61-704 Poznan, Poland
| | - Agnieszka Fiszer
- Department of Medical Biotechnology, Institute of Bioorganic Chemistry, Polish Academy of Sciences, 61-704 Poznan, Poland
| | - Craig B Lowe
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, NC 27710, USA
| | - Albert R La Spada
- Departments of Pathology & Laboratory Medicine, Neurology, Biological Chemistry, and Neurobiology & Behavior, University of California, Irvine, Irvine, CA 92697, USA; Department of Neurology, Duke University School of Medicine, Durham, NC 27710, USA; UCI Center for Neurotherapeutics, University of California, Irvine, Irvine, CA 92697, USA.
| | - Pawel M Switonski
- Department of Neuronal Cell Biology, Institute of Bioorganic Chemistry, Polish Academy of Sciences, 61-704 Poznan, Poland.
| |
Collapse
|
13
|
Huuki-Myers LA, Spangler A, Eagles NJ, Montgomery KD, Kwon SH, Guo B, Grant-Peters M, Divecha HR, Tippani M, Sriworarat C, Nguyen AB, Ravichandran P, Tran MN, Seyedian A, Hyde TM, Kleinman JE, Battle A, Page SC, Ryten M, Hicks SC, Martinowich K, Collado-Torres L, Maynard KR. A data-driven single-cell and spatial transcriptomic map of the human prefrontal cortex. Science 2024; 384:eadh1938. [PMID: 38781370 PMCID: PMC11398705 DOI: 10.1126/science.adh1938] [Citation(s) in RCA: 16] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Accepted: 12/06/2023] [Indexed: 05/25/2024]
Abstract
The molecular organization of the human neocortex historically has been studied in the context of its histological layers. However, emerging spatial transcriptomic technologies have enabled unbiased identification of transcriptionally defined spatial domains that move beyond classic cytoarchitecture. We used the Visium spatial gene expression platform to generate a data-driven molecular neuroanatomical atlas across the anterior-posterior axis of the human dorsolateral prefrontal cortex. Integration with paired single-nucleus RNA-sequencing data revealed distinct cell type compositions and cell-cell interactions across spatial domains. Using PsychENCODE and publicly available data, we mapped the enrichment of cell types and genes associated with neuropsychiatric disorders to discrete spatial domains.
Collapse
Affiliation(s)
- Louise A Huuki-Myers
- Lieber Institute for Brain Development, Johns Hopkins Medical Campus, Baltimore, MD 21205, USA
| | - Abby Spangler
- Lieber Institute for Brain Development, Johns Hopkins Medical Campus, Baltimore, MD 21205, USA
| | - Nicholas J Eagles
- Lieber Institute for Brain Development, Johns Hopkins Medical Campus, Baltimore, MD 21205, USA
| | - Kelsey D Montgomery
- Lieber Institute for Brain Development, Johns Hopkins Medical Campus, Baltimore, MD 21205, USA
| | - Sang Ho Kwon
- Lieber Institute for Brain Development, Johns Hopkins Medical Campus, Baltimore, MD 21205, USA
- The Solomon H. Snyder Department of Neuroscience, Johns Hopkins School of Medicine, Baltimore, MD 21205, USA
| | - Boyi Guo
- Department of Biostatistics, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD 21205, USA
| | - Melissa Grant-Peters
- Genetics and Genomic Medicine, Great Ormond Street Institute of Child Health, University College London, London WC1N 1EH, UK
- Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD 20815, USA
| | - Heena R Divecha
- Lieber Institute for Brain Development, Johns Hopkins Medical Campus, Baltimore, MD 21205, USA
| | - Madhavi Tippani
- Lieber Institute for Brain Development, Johns Hopkins Medical Campus, Baltimore, MD 21205, USA
| | - Chaichontat Sriworarat
- Lieber Institute for Brain Development, Johns Hopkins Medical Campus, Baltimore, MD 21205, USA
- The Solomon H. Snyder Department of Neuroscience, Johns Hopkins School of Medicine, Baltimore, MD 21205, USA
| | - Annie B Nguyen
- Lieber Institute for Brain Development, Johns Hopkins Medical Campus, Baltimore, MD 21205, USA
| | - Prashanthi Ravichandran
- Department of Biomedical Engineering, Johns Hopkins School of Medicine, Baltimore, MD 21218, USA
| | - Matthew N Tran
- Lieber Institute for Brain Development, Johns Hopkins Medical Campus, Baltimore, MD 21205, USA
| | - Arta Seyedian
- Lieber Institute for Brain Development, Johns Hopkins Medical Campus, Baltimore, MD 21205, USA
| | - Thomas M Hyde
- Lieber Institute for Brain Development, Johns Hopkins Medical Campus, Baltimore, MD 21205, USA
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins School of Medicine, Baltimore, MD 21205, USA
- Department of Neurology, Johns Hopkins School of Medicine, Baltimore, MD 21205, USA
| | - Joel E Kleinman
- Lieber Institute for Brain Development, Johns Hopkins Medical Campus, Baltimore, MD 21205, USA
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins School of Medicine, Baltimore, MD 21205, USA
| | - Alexis Battle
- Department of Biomedical Engineering, Johns Hopkins School of Medicine, Baltimore, MD 21218, USA
- Department of Computer Science, Johns Hopkins University, Baltimore, MD 21218, USA
- Department of Genetic Medicine, Johns Hopkins School of Medicine, Baltimore, MD 21205, USA
- Malone Center for Engineering in Healthcare, Johns Hopkins University, Baltimore, MD 21218, USA
| | - Stephanie C Page
- Lieber Institute for Brain Development, Johns Hopkins Medical Campus, Baltimore, MD 21205, USA
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins School of Medicine, Baltimore, MD 21205, USA
| | - Mina Ryten
- Genetics and Genomic Medicine, Great Ormond Street Institute of Child Health, University College London, London WC1N 1EH, UK
- Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD 20815, USA
- NIHR Great Ormond Street Hospital Biomedical Research Centre, University College London, London WC1N 1EH, UK
| | - Stephanie C Hicks
- Department of Biostatistics, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD 21205, USA
- Department of Biomedical Engineering, Johns Hopkins School of Medicine, Baltimore, MD 21218, USA
- Malone Center for Engineering in Healthcare, Johns Hopkins University, Baltimore, MD 21218, USA
- Center for Computational Biology, Johns Hopkins University, Baltimore, MD 21205, USA
| | - Keri Martinowich
- Lieber Institute for Brain Development, Johns Hopkins Medical Campus, Baltimore, MD 21205, USA
- The Solomon H. Snyder Department of Neuroscience, Johns Hopkins School of Medicine, Baltimore, MD 21205, USA
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins School of Medicine, Baltimore, MD 21205, USA
- Johns Hopkins Kavli Neuroscience Discovery Institute, Johns Hopkins University, Baltimore, MD 21218, USA
| | - Leonardo Collado-Torres
- Lieber Institute for Brain Development, Johns Hopkins Medical Campus, Baltimore, MD 21205, USA
- Department of Biostatistics, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD 21205, USA
- Center for Computational Biology, Johns Hopkins University, Baltimore, MD 21205, USA
| | - Kristen R Maynard
- Lieber Institute for Brain Development, Johns Hopkins Medical Campus, Baltimore, MD 21205, USA
- The Solomon H. Snyder Department of Neuroscience, Johns Hopkins School of Medicine, Baltimore, MD 21205, USA
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins School of Medicine, Baltimore, MD 21205, USA
| |
Collapse
|
14
|
Clifton NE, Lin JQ, Holt CE, O'Donovan MC, Mill J. Enrichment of the Local Synaptic Translatome for Genetic Risk Associated With Schizophrenia and Autism Spectrum Disorder. Biol Psychiatry 2024; 95:888-895. [PMID: 38103876 DOI: 10.1016/j.biopsych.2023.12.006] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 11/15/2023] [Accepted: 12/11/2023] [Indexed: 12/19/2023]
Abstract
BACKGROUND Genes that encode synaptic proteins or messenger RNA targets of the RNA-binding protein FMRP (fragile X messenger ribonucleoprotein) have been linked to schizophrenia and autism spectrum disorder (ASD) through the enrichment of genetic variants that confer risk for these disorders. FMRP binds many transcripts with synaptic functions and is thought to regulate their local translation, a process that enables rapid and compartmentalized protein synthesis required for development and plasticity. METHODS We used summary statistics from large-scale genome-wide association studies of schizophrenia (74,776 cases, 101,023 controls) and ASD (18,381 cases, 27,969 controls) to test the hypothesis that the subset of synaptic genes that encode localized transcripts is more strongly associated with each disorder than nonlocalized transcripts. We also postulated that this subset of synaptic genes is responsible for associations attributed to FMRP targets. RESULTS Schizophrenia associations were enriched in genes encoding localized synaptic transcripts compared to the remaining synaptic genes or to the remaining localized transcripts; this also applied to ASD associations, although only for transcripts observed after stimulation by fear conditioning. The genetic associations with either disorder captured by these gene sets were independent of those derived from FMRP targets. Schizophrenia association was related to FMRP interactions with messenger RNAs in somata, but not in dendrites, while ASD association was related to FMRP binding in either compartment. CONCLUSIONS Our data suggest that synaptic transcripts capable of local translation are particularly relevant to the pathogenesis of schizophrenia and ASD, but they do not characterize the associations attributed to current sets of FMRP targets.
Collapse
Affiliation(s)
- Nicholas E Clifton
- Department of Clinical & Biomedical Sciences, Faculty of Health and Life Sciences, University of Exeter, Exeter, United Kingdom.
| | - Julie Qiaojin Lin
- UK Dementia Research Institute, Department of Clinical Neurosciences, University of Cambridge, Cambridge, United Kingdom; UK Dementia Research Institute, King's College London, London, United Kingdom
| | - Christine E Holt
- Department of Physiology Development and Neuroscience, University of Cambridge, Cambridge, United Kingdom
| | - Michael C O'Donovan
- Division of Psychological Medicine and Clinical Neurosciences, Cardiff University, Cardiff, United Kingdom
| | - Jonathan Mill
- Department of Clinical & Biomedical Sciences, Faculty of Health and Life Sciences, University of Exeter, Exeter, United Kingdom
| |
Collapse
|
15
|
Moreno-Aguilera M, Neher AM, Mendoza MB, Dodel M, Mardakheh FK, Ortiz R, Gallego C. KIS counteracts PTBP2 and regulates alternative exon usage in neurons. eLife 2024; 13:e96048. [PMID: 38597390 PMCID: PMC11045219 DOI: 10.7554/elife.96048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Accepted: 04/09/2024] [Indexed: 04/11/2024] Open
Abstract
Alternative RNA splicing is an essential and dynamic process in neuronal differentiation and synapse maturation, and dysregulation of this process has been associated with neurodegenerative diseases. Recent studies have revealed the importance of RNA-binding proteins in the regulation of neuronal splicing programs. However, the molecular mechanisms involved in the control of these splicing regulators are still unclear. Here, we show that KIS, a kinase upregulated in the developmental brain, imposes a genome-wide alteration in exon usage during neuronal differentiation in mice. KIS contains a protein-recognition domain common to spliceosomal components and phosphorylates PTBP2, counteracting the role of this splicing factor in exon exclusion. At the molecular level, phosphorylation of unstructured domains within PTBP2 causes its dissociation from two co-regulators, Matrin3 and hnRNPM, and hinders the RNA-binding capability of the complex. Furthermore, KIS and PTBP2 display strong and opposing functional interactions in synaptic spine emergence and maturation. Taken together, our data uncover a post-translational control of splicing regulators that link transcriptional and alternative exon usage programs in neuronal development.
Collapse
Affiliation(s)
| | - Alba M Neher
- Molecular Biology Institute of Barcelona (IBMB), CSICBarcelonaSpain
| | - Mónica B Mendoza
- Molecular Biology Institute of Barcelona (IBMB), CSICBarcelonaSpain
| | - Martin Dodel
- Barts Cancer Institute, Queen Mary University of LondonLondonUnited Kingdom
| | - Faraz K Mardakheh
- Barts Cancer Institute, Queen Mary University of LondonLondonUnited Kingdom
| | - Raúl Ortiz
- Molecular Biology Institute of Barcelona (IBMB), CSICBarcelonaSpain
| | - Carme Gallego
- Molecular Biology Institute of Barcelona (IBMB), CSICBarcelonaSpain
| |
Collapse
|
16
|
Schieweck R, Götz M. Pan-cellular organelles and suborganelles-from common functions to cellular diversity? Genes Dev 2024; 38:98-114. [PMID: 38485267 PMCID: PMC10982711 DOI: 10.1101/gad.351337.123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/02/2024]
Abstract
Cell diversification is at the base of increasing multicellular organism complexity in phylogeny achieved during ontogeny. However, there are also functions common to all cells, such as cell division, cell migration, translation, endocytosis, exocytosis, etc. Here we revisit the organelles involved in such common functions, reviewing recent evidence of unexpected differences of proteins at these organelles. For instance, centrosomes or mitochondria differ significantly in their protein composition in different, sometimes closely related, cell types. This has relevance for development and disease. Particularly striking is the high amount and diversity of RNA-binding proteins at these and other organelles, which brings us to review the evidence for RNA at different organelles and suborganelles. We include a discussion about (sub)organelles involved in translation, such as the nucleolus and ribosomes, for which unexpected cell type-specific diversity has also been reported. We propose here that the heterogeneity of these organelles and compartments represents a novel mechanism for regulating cell diversity. One reason is that protein functions can be multiplied by their different contributions in distinct organelles, as also exemplified by proteins with moonlighting function. The specialized organelles still perform pan-cellular functions but in a cell type-specific mode, as discussed here for centrosomes, mitochondria, vesicles, and other organelles. These can serve as regulatory hubs for the storage and transport of specific and functionally important regulators. In this way, they can control cell differentiation, plasticity, and survival. We further include examples highlighting the relevance for disease and propose to examine organelles in many more cell types for their possible differences with functional relevance.
Collapse
Affiliation(s)
- Rico Schieweck
- Institute of Biophysics, National Research Council (CNR) Unit at Trento, 38123 Povo, Italy;
- Biomedical Center (BMC), Department of Physiological Genomics, Ludwig-Maximilians-University, 82152 Planegg-Martinsried, Germany
| | - Magdalena Götz
- Biomedical Center (BMC), Department of Physiological Genomics, Ludwig-Maximilians-University, 82152 Planegg-Martinsried, Germany;
- Institute of Stem Cell Research, Helmholtz Center Munich, German Research Center for Environmental Health, 82152 Planegg-Martinsried, Germany
- SYNERGY, Excellence Cluster of Systems Neurology, Biomedical Center, Ludwig-Maximilians-University, 82152 Planegg-Martinsried, Germany
| |
Collapse
|
17
|
Sharma V, Swaminathan K, Shukla R. The Ribosome Hypothesis: Decoding Mood Disorder Complexity. Int J Mol Sci 2024; 25:2815. [PMID: 38474062 PMCID: PMC10931790 DOI: 10.3390/ijms25052815] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Revised: 02/26/2024] [Accepted: 02/26/2024] [Indexed: 03/14/2024] Open
Abstract
Several types of mood disorders lie along a continuum, with nebulous boundaries between them. Understanding the mechanisms that contribute to mood disorder complexity is critical for effective treatment. However, present treatments are largely centered around neurotransmission and receptor-based hypotheses, which, given the high instance of treatment resistance, fail to adequately explain the complexities of mood disorders. In this opinion piece, based on our recent results, we propose a ribosome hypothesis of mood disorders. We suggest that any hypothesis seeking to explain the diverse nature of mood disorders must incorporate infrastructure diversity that results in a wide range of effects. Ribosomes, with their mobility across neurites and complex composition, have the potential to become specialized during stress; thus, ribosome diversity and dysregulation are well suited to explaining mood disorder complexity. Here, we first establish a framework connecting ribosomes to the current state of knowledge associated with mood disorders. Then, we describe the potential mechanisms through which ribosomes could homeostatically regulate systems to manifest diverse mood disorder phenotypes and discuss approaches for substantiating the ribosome hypothesis. Investigating these mechanisms as therapeutic targets holds promise for transdiagnostic avenues targeting mood disorders.
Collapse
Affiliation(s)
- Vandana Sharma
- Department of Zoology and Physiology, University of Wyoming, Laramie, WY 82071, USA;
- Department of Neurosciences, University of Wyoming, Laramie, WY 82071, USA
| | - Karthik Swaminathan
- Department of Zoology and Physiology, University of Wyoming, Laramie, WY 82071, USA;
- Department of Neurosciences, University of Wyoming, Laramie, WY 82071, USA
| | - Rammohan Shukla
- Department of Zoology and Physiology, University of Wyoming, Laramie, WY 82071, USA;
- Department of Neurosciences, University of Wyoming, Laramie, WY 82071, USA
| |
Collapse
|
18
|
Veeraraghavan P, Engmann AK, Hatch JJ, Itoh Y, Nguyen D, Addison T, Macklis JD. Dynamic subtype- and context-specific subcellular RNA regulation in growth cones of developing neurons of the cerebral cortex. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.09.24.559186. [PMID: 38328182 PMCID: PMC10849483 DOI: 10.1101/2023.09.24.559186] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/09/2024]
Abstract
Molecular mechanisms that cells employ to compartmentalize function via localization of function-specific RNA and translation are only partially elucidated. We investigate long-range projection neurons of the cerebral cortex as highly polarized exemplars to elucidate dynamic regulation of RNA localization, stability, and translation within growth cones (GCs), leading tips of growing axons. Comparison of GC-localized transcriptomes between two distinct subtypes of projection neurons- interhemispheric-callosal and corticothalamic- across developmental stages identifies both distinct and shared subcellular machinery, and intriguingly highlights enrichment of genes associated with neurodevelopmental and neuropsychiatric disorders. Developmental context-specific components of GC-localized transcriptomes identify known and novel potential regulators of distinct phases of circuit formation: long-distance growth, target area innervation, and synapse formation. Further, we investigate mechanisms by which transcripts are enriched and dynamically regulated in GCs, and identify GC-enriched motifs in 3' untranslated regions. As one example, we identify cytoplasmic adenylation element binding protein 4 (CPEB4), an RNA binding protein regulating localization and translation of mRNAs encoding molecular machinery important for axonal branching and complexity. We also identify RNA binding motif single stranded interacting protein 1 (RBMS1) as a dynamically expressed regulator of RNA stabilization that enables successful callosal circuit formation. Subtly aberrant associative and integrative cortical circuitry can profoundly affect cortical function, often causing neurodevelopmental and neuropsychiatric disorders. Elucidation of context-specific subcellular RNA regulation for GC- and soma-localized molecular controls over precise circuit development, maintenance, and function offers generalizable insights for other polarized cells, and might contribute substantially to understanding neurodevelopmental and behavioral-cognitive disorders and toward targeted therapeutics.
Collapse
Affiliation(s)
- Priya Veeraraghavan
- Department of Stem Cell and Regenerative Biology, and Center for Brain Science, Harvard University, Cambridge, MA, USA
| | - Anne K. Engmann
- Department of Stem Cell and Regenerative Biology, and Center for Brain Science, Harvard University, Cambridge, MA, USA
| | - John J. Hatch
- Department of Stem Cell and Regenerative Biology, and Center for Brain Science, Harvard University, Cambridge, MA, USA
| | - Yasuhiro Itoh
- Department of Stem Cell and Regenerative Biology, and Center for Brain Science, Harvard University, Cambridge, MA, USA
| | - Duane Nguyen
- Department of Stem Cell and Regenerative Biology, and Center for Brain Science, Harvard University, Cambridge, MA, USA
| | - Thomas Addison
- Department of Stem Cell and Regenerative Biology, and Center for Brain Science, Harvard University, Cambridge, MA, USA
| | - Jeffrey D. Macklis
- Department of Stem Cell and Regenerative Biology, and Center for Brain Science, Harvard University, Cambridge, MA, USA
| |
Collapse
|
19
|
Pade LR, Stepler KE, Portero EP, DeLaney K, Nemes P. Biological mass spectrometry enables spatiotemporal 'omics: From tissues to cells to organelles. MASS SPECTROMETRY REVIEWS 2024; 43:106-138. [PMID: 36647247 PMCID: PMC10668589 DOI: 10.1002/mas.21824] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 09/14/2022] [Accepted: 09/17/2022] [Indexed: 06/17/2023]
Abstract
Biological processes unfold across broad spatial and temporal dimensions, and measurement of the underlying molecular world is essential to their understanding. Interdisciplinary efforts advanced mass spectrometry (MS) into a tour de force for assessing virtually all levels of the molecular architecture, some in exquisite detection sensitivity and scalability in space-time. In this review, we offer vignettes of milestones in technology innovations that ushered sample collection and processing, chemical separation, ionization, and 'omics analyses to progressively finer resolutions in the realms of tissue biopsies and limited cell populations, single cells, and subcellular organelles. Also highlighted are methodologies that empowered the acquisition and analysis of multidimensional MS data sets to reveal proteomes, peptidomes, and metabolomes in ever-deepening coverage in these limited and dynamic specimens. In pursuit of richer knowledge of biological processes, we discuss efforts pioneering the integration of orthogonal approaches from molecular and functional studies, both within and beyond MS. With established and emerging community-wide efforts ensuring scientific rigor and reproducibility, spatiotemporal MS emerged as an exciting and powerful resource to study biological systems in space-time.
Collapse
Affiliation(s)
- Leena R. Pade
- Department of Chemistry & Biochemistry, University of Maryland, 8051 Regents Drive, College Park, MD 20742
| | - Kaitlyn E. Stepler
- Department of Chemistry & Biochemistry, University of Maryland, 8051 Regents Drive, College Park, MD 20742
| | - Erika P. Portero
- Department of Chemistry & Biochemistry, University of Maryland, 8051 Regents Drive, College Park, MD 20742
| | - Kellen DeLaney
- Department of Chemistry & Biochemistry, University of Maryland, 8051 Regents Drive, College Park, MD 20742
| | - Peter Nemes
- Department of Chemistry & Biochemistry, University of Maryland, 8051 Regents Drive, College Park, MD 20742
| |
Collapse
|
20
|
Cagnetta R, Flanagan JG, Sonenberg N. Control of Selective mRNA Translation in Neuronal Subcellular Compartments in Health and Disease. J Neurosci 2023; 43:7247-7263. [PMID: 37914402 PMCID: PMC10621772 DOI: 10.1523/jneurosci.2240-22.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Revised: 04/28/2023] [Accepted: 05/02/2023] [Indexed: 11/03/2023] Open
Abstract
In multiple cell types, mRNAs are transported to subcellular compartments, where local translation enables rapid, spatially localized, and specific responses to external stimuli. Mounting evidence has uncovered important roles played by local translation in vivo in axon survival, axon regeneration, and neural wiring, as well as strong links between dysregulation of local translation and neurologic disorders. Omic studies have revealed that >1000 mRNAs are present and can be selectively locally translated in the presynaptic and postsynaptic compartments from development to adulthood in vivo A large proportion of the locally translated mRNAs is specifically upregulated or downregulated in response to distinct extracellular signals. Given that the local translatome is large, selectively translated, and cue-specifically remodeled, a fundamental question concerns how selective translation is achieved locally. Here, we review the emerging regulatory mechanisms of local selective translation in neuronal subcellular compartments, their mRNA targets, and their orchestration. We discuss mechanisms of local selective translation that remain unexplored. Finally, we describe clinical implications and potential therapeutic strategies in light of the latest advances in gene therapy.
Collapse
Affiliation(s)
- Roberta Cagnetta
- Department of Biochemistry and Goodman Cancer Institute, McGill University, Montreal, Quebec H3A 1A3, Canada
| | - John G Flanagan
- Department of Cell Biology and Program in Neuroscience, Harvard Medical School, Boston, Massachusetts 02115
| | - Nahum Sonenberg
- Department of Biochemistry and Goodman Cancer Institute, McGill University, Montreal, Quebec H3A 1A3, Canada
| |
Collapse
|
21
|
Ikeda H, Miyao S, Nagaoka S, Takashima T, Law SM, Yamamoto T, Kurimoto K. High-quality single-cell transcriptomics from ovarian histological sections during folliculogenesis. Life Sci Alliance 2023; 6:e202301929. [PMID: 37722727 PMCID: PMC10507249 DOI: 10.26508/lsa.202301929] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Revised: 08/23/2023] [Accepted: 08/23/2023] [Indexed: 09/20/2023] Open
Abstract
High-quality, straightforward single-cell RNA sequencing (RNA-seq) with spatial resolution remains challenging. Here, we developed DRaqL (direct RNA recovery and quenching for laser capture microdissection), an experimental approach for efficient cell lysis of tissue sections, directly applicable to cDNA amplification. Single-cell RNA-seq combined with DRaqL allowed transcriptomic profiling from alcohol-fixed sections with efficiency comparable with that of profiling from freshly dissociated cells, together with effective exon-exon junction profiling. The combination of DRaqL with protease treatment enabled robust and efficient single-cell transcriptome analysis from formalin-fixed tissue sections. Applying this method to mouse ovarian sections, we were able to predict the transcriptome of oocytes by their size and identified an anomaly in the size-transcriptome relationship relevant to growth retardation of oocytes, in addition to detecting oocyte-specific splice isoforms. Furthermore, we identified differentially expressed genes in granulosa cells in association with their proximity to the oocytes, suggesting distinct epigenetic regulations and cell-cycle activities governing the germ-soma relationship. Thus, DRaqL is a versatile, efficient approach for high-quality single-cell RNA-seq from tissue sections, thereby revealing histological heterogeneity in folliculogenic transcriptome.
Collapse
Affiliation(s)
- Hiroki Ikeda
- Department of Embryology, School of Medicine, Nara Medical University, Kashihara, Japan
| | - Shintaro Miyao
- Department of Embryology, School of Medicine, Nara Medical University, Kashihara, Japan
| | - So Nagaoka
- Department of Embryology, School of Medicine, Nara Medical University, Kashihara, Japan
| | - Tomoya Takashima
- Department of Embryology, School of Medicine, Nara Medical University, Kashihara, Japan
| | - Sze-Ming Law
- Department of Embryology, School of Medicine, Nara Medical University, Kashihara, Japan
| | - Takuya Yamamoto
- Center for iPS Cell Research and Application (CiRA), Kyoto University, Kyoto, Japan
- Institute for the Advanced Study of Human Biology (WPI-ASHBi), Kyoto University, Kyoto, Japan
- Medical-risk Avoidance based on iPS Cells Team, RIKEN Center for Advanced Intelligence Project (AIP), Kyoto, Japan
| | - Kazuki Kurimoto
- Department of Embryology, School of Medicine, Nara Medical University, Kashihara, Japan
- Advanced Medical Research Center, Nara Medical University, Kashihara, Japan
| |
Collapse
|
22
|
Konopka G, Bhaduri A. Functional genomics and systems biology in human neuroscience. Nature 2023; 623:274-282. [PMID: 37938705 PMCID: PMC11465930 DOI: 10.1038/s41586-023-06686-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Accepted: 09/27/2023] [Indexed: 11/09/2023]
Abstract
Neuroscience research has entered a phase of key discoveries in the realm of neurogenomics owing to strong financial and intellectual support for resource building and tool development. The previous challenge of tissue heterogeneity has been met with the application of techniques that can profile individual cells at scale. Moreover, the ability to perturb genes, gene regulatory elements and neuronal activity in a cell-type-specific manner has been integrated with gene expression studies to uncover the functional underpinnings of the genome at a systems level. Although these insights have necessarily been grounded in model systems, we now have the opportunity to apply these approaches in humans and in human tissue, thanks to advances in human genetics, brain imaging and tissue collection. We acknowledge that there will probably always be limits to the extent to which we can apply the genomic tools developed in model systems to human neuroscience; however, as we describe in this Perspective, the neuroscience field is now primed with an optimal foundation for tackling this ambitious challenge. The application of systems-level network analyses to these datasets will facilitate a deeper appreciation of human neurogenomics that cannot otherwise be achieved from directly observable phenomena.
Collapse
Affiliation(s)
- Genevieve Konopka
- Department of Neuroscience, UT Southwestern Medical Center, Dallas, TX, USA.
- Peter O'Donnell Jr Brain Institute, UT Southwestern Medical Center, Dallas, TX, USA.
| | - Aparna Bhaduri
- Department of Biological Chemistry, University of California, Los Angeles, CA, USA.
| |
Collapse
|
23
|
Davies FCJ, Marshall GF, Pegram E, Gadd D, Abbott CM. Endogenous epitope tagging of eEF1A2 in mice reveals early embryonic expression of eEF1A2 and subcellular compartmentalisation of neuronal eEF1A1 and eEF1A2. Mol Cell Neurosci 2023; 126:103879. [PMID: 37429391 DOI: 10.1016/j.mcn.2023.103879] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Revised: 06/29/2023] [Accepted: 07/06/2023] [Indexed: 07/12/2023] Open
Abstract
All vertebrate species express two independently-encoded forms of translation elongation factor eEF1A. In humans and mice eEF1A1 and eEF1A2 are 92 % identical at the amino acid level, but the well conserved developmental switch between the two variants in specific tissues suggests the existence of important functional differences. Heterozygous mutations in eEF1A2 result in neurodevelopmental disorders in humans; the mechanism of pathogenicity is unclear, but one hypothesis is that there is a dominant negative effect on eEF1A1 during development. The high degree of similarity between the eEF1A proteins has complicated expression analysis in the past; here we describe a gene edited mouse line in which we have introduced a V5 tag in the gene encoding eEF1A2. Expression analysis using anti-V5 and anti-eEF1A1 antibodies demonstrates that, in contrast to the prevailing view that eEF1A2 is only expressed postnatally, it is expressed from as early as E11.5 in the developing neural tube. Two colour immunofluorescence also reveals coordinated switching between eEF1A1 and eEF1A2 in different regions of postnatal brain. Completely reciprocal expression of the two variants is seen in post-weaning mouse brain with eEF1A1 expressed in oligodendrocytes and astrocytes and eEF1A2 in neuronal soma. Although eEF1A1 is absent from neuronal cell bodies after development, it is widely expressed in axons. This expression does not appear to coincide with myelin sheaths originating from oligodendrocytes but rather results from localised translation within the axon, suggesting that both variants are transcribed in neurons but show completely distinct subcellular localisation at the protein level. These findings will form an underlying framework for understanding how missense mutations in eEF1A2 result in neurodevelopmental disorders.
Collapse
Affiliation(s)
- Faith C J Davies
- Centre for Genomic & Experimental Medicine, MRC Institute of Genetics and Molecular Medicine, University of Edinburgh, Western General Hospital, Crewe Road, Edinburgh EH4 2XU, United Kingdom; Simons Initiative for the Developing Brain, University of Edinburgh, Edinburgh EH8 9XD, United Kingdom
| | - Grant F Marshall
- Centre for Genomic & Experimental Medicine, MRC Institute of Genetics and Molecular Medicine, University of Edinburgh, Western General Hospital, Crewe Road, Edinburgh EH4 2XU, United Kingdom; Simons Initiative for the Developing Brain, University of Edinburgh, Edinburgh EH8 9XD, United Kingdom
| | - Eleanor Pegram
- Centre for Genomic & Experimental Medicine, MRC Institute of Genetics and Molecular Medicine, University of Edinburgh, Western General Hospital, Crewe Road, Edinburgh EH4 2XU, United Kingdom
| | - Danni Gadd
- Centre for Genomic & Experimental Medicine, MRC Institute of Genetics and Molecular Medicine, University of Edinburgh, Western General Hospital, Crewe Road, Edinburgh EH4 2XU, United Kingdom
| | - Catherine M Abbott
- Centre for Genomic & Experimental Medicine, MRC Institute of Genetics and Molecular Medicine, University of Edinburgh, Western General Hospital, Crewe Road, Edinburgh EH4 2XU, United Kingdom; Simons Initiative for the Developing Brain, University of Edinburgh, Edinburgh EH8 9XD, United Kingdom.
| |
Collapse
|
24
|
Sharma S, Kajjo S, Harra Z, Hasaj B, Delisle V, Ray D, Gutierrez RL, Carrier I, Kleinman C, Morris Q, Hughes TR, McInnes R, Fabian MR. Uncovering a mammalian neural-specific poly(A) binding protein with unique properties. Genes Dev 2023; 37:760-777. [PMID: 37704377 PMCID: PMC10546976 DOI: 10.1101/gad.350597.123] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Accepted: 08/29/2023] [Indexed: 09/15/2023]
Abstract
The mRNA 3' poly(A) tail plays a critical role in regulating both mRNA translation and turnover. It is bound by the cytoplasmic poly(A) binding protein (PABPC), an evolutionarily conserved protein that can interact with translation factors and mRNA decay machineries to regulate gene expression. Mammalian PABPC1, the prototypical PABPC, is expressed in most tissues and interacts with eukaryotic translation initiation factor 4G (eIF4G) to stimulate translation in specific contexts. In this study, we uncovered a new mammalian PABPC, which we named neural PABP (neuPABP), as it is predominantly expressed in the brain. neuPABP maintains a unique architecture as compared with other PABPCs, containing only two RNA recognition motifs (RRMs) and maintaining a unique N-terminal domain of unknown function. neuPABP expression is activated in neurons as they mature during synaptogenesis, where neuPABP localizes to the soma and postsynaptic densities. neuPABP interacts with the noncoding RNA BC1, as well as mRNAs coding for ribosomal and mitochondrial proteins. However, in contrast to PABPC1, neuPABP does not associate with actively translating mRNAs in the brain. In keeping with this, we show that neuPABP has evolved such that it does not bind eIF4G and as a result fails to support protein synthesis in vitro. Taken together, these results indicate that mammals have expanded their PABPC repertoire in the brain and propose that neuPABP may support the translational repression of select mRNAs.
Collapse
Affiliation(s)
- Sahil Sharma
- Lady Davis Institute for Medical Research, Jewish General Hospital, Montreal, Quebec H3T 1E2, Canada
| | - Sam Kajjo
- Lady Davis Institute for Medical Research, Jewish General Hospital, Montreal, Quebec H3T 1E2, Canada
| | - Zineb Harra
- Lady Davis Institute for Medical Research, Jewish General Hospital, Montreal, Quebec H3T 1E2, Canada
| | - Benedeta Hasaj
- Lady Davis Institute for Medical Research, Jewish General Hospital, Montreal, Quebec H3T 1E2, Canada
| | - Victoria Delisle
- Lady Davis Institute for Medical Research, Jewish General Hospital, Montreal, Quebec H3T 1E2, Canada
| | - Debashish Ray
- Donnelly Centre, University of Toronto, Toronto, Ontario M5S 3E1, Canada
| | - Rodrigo L Gutierrez
- Lady Davis Institute for Medical Research, Jewish General Hospital, Montreal, Quebec H3T 1E2, Canada
| | - Isabelle Carrier
- Lady Davis Institute for Medical Research, Jewish General Hospital, Montreal, Quebec H3T 1E2, Canada
| | - Claudia Kleinman
- Lady Davis Institute for Medical Research, Jewish General Hospital, Montreal, Quebec H3T 1E2, Canada
- Department of Human Genetics, McGill University, Montreal, Quebec H3A 0G4, Canada
| | - Quaid Morris
- Memorial Sloan Kettering Cancer Center, New York, New York 10065, USA
| | - Timothy R Hughes
- Donnelly Centre, University of Toronto, Toronto, Ontario M5S 3E1, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario M5S 3E1, Canada
| | - Roderick McInnes
- Lady Davis Institute for Medical Research, Jewish General Hospital, Montreal, Quebec H3T 1E2, Canada
- Department of Human Genetics, McGill University, Montreal, Quebec H3A 0G4, Canada
| | - Marc R Fabian
- Lady Davis Institute for Medical Research, Jewish General Hospital, Montreal, Quebec H3T 1E2, Canada;
- Department of Biochemistry, McGill University, Montreal, Quebec H3A 0G4, Canada
- Department of Oncology, McGill University, Montreal, Quebec H3A 0G4, Canada
| |
Collapse
|
25
|
Piwecka M, Rajewsky N, Rybak-Wolf A. Single-cell and spatial transcriptomics: deciphering brain complexity in health and disease. Nat Rev Neurol 2023; 19:346-362. [PMID: 37198436 PMCID: PMC10191412 DOI: 10.1038/s41582-023-00809-y] [Citation(s) in RCA: 118] [Impact Index Per Article: 59.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/31/2023] [Indexed: 05/19/2023]
Abstract
In the past decade, single-cell technologies have proliferated and improved from their technically challenging beginnings to become common laboratory methods capable of determining the expression of thousands of genes in thousands of cells simultaneously. The field has progressed by taking the CNS as a primary research subject - the cellular complexity and multiplicity of neuronal cell types provide fertile ground for the increasing power of single-cell methods. Current single-cell RNA sequencing methods can quantify gene expression with sufficient accuracy to finely resolve even subtle differences between cell types and states, thus providing a great tool for studying the molecular and cellular repertoire of the CNS and its disorders. However, single-cell RNA sequencing requires the dissociation of tissue samples, which means that the interrelationships between cells are lost. Spatial transcriptomic methods bypass tissue dissociation and retain this spatial information, thereby allowing gene expression to be assessed across thousands of cells within the context of tissue structural organization. Here, we discuss how single-cell and spatially resolved transcriptomics have been contributing to unravelling the pathomechanisms underlying brain disorders. We focus on three areas where we feel these new technologies have provided particularly useful insights: selective neuronal vulnerability, neuroimmune dysfunction and cell-type-specific treatment response. We also discuss the limitations and future directions of single-cell and spatial RNA sequencing technologies.
Collapse
Affiliation(s)
- Monika Piwecka
- Institute of Bioorganic Chemistry, Polish Academy of Sciences, Poznan, Poland
| | - Nikolaus Rajewsky
- Berlin Institute for Medical Systems Biology (BIMSB), Max Delbrueck Center for Molecular Medicine, Berlin, Germany
| | - Agnieszka Rybak-Wolf
- Berlin Institute for Medical Systems Biology (BIMSB), Max Delbrueck Center for Molecular Medicine, Berlin, Germany.
| |
Collapse
|
26
|
Sun C, Desch K, Nassim-Assir B, Giandomenico SL, Nemcova P, Langer JD, Schuman EM. An abundance of free regulatory (19 S) proteasome particles regulates neuronal synapses. Science 2023; 380:eadf2018. [PMID: 37228199 DOI: 10.1126/science.adf2018] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Accepted: 04/04/2023] [Indexed: 05/27/2023]
Abstract
The proteasome, the major protein-degradation machine in cells, regulates neuronal synapses and long-term information storage. Here, using super-resolution microscopy, we found that the two essential subcomplexes of the proteasome, the regulatory (19S) and catalytic (20S) particles, are differentially distributed within individual rat cortical neurons. We discovered an unexpected abundance of free 19S particles near synapses. The free neuronal 19S particles bind and deubiquitylate lysine 63-ubiquitin (Lys63-ub), a non-proteasome-targeting ubiquitin linkage. Pull-down assays revealed a significant overrepresentation of synaptic molecules as Lys63-ub interactors. Inhibition of the 19S deubiquitylase activity significantly altered excitatory synaptic transmission and reduced the synaptic availability of AMPA receptors at multiple trafficking points in a proteasome-independent manner. Together, these results reveal a moonlighting function of the regulatory proteasomal subcomplex near synapses.
Collapse
Affiliation(s)
- Chao Sun
- Max Planck Institute for Brain Research, 60438 Frankfurt am Main, Germany
| | - Kristina Desch
- Max Planck Institute for Brain Research, 60438 Frankfurt am Main, Germany
| | | | | | - Paulina Nemcova
- Max Planck Institute for Brain Research, 60438 Frankfurt am Main, Germany
| | - Julian D Langer
- Max Planck Institute for Brain Research, 60438 Frankfurt am Main, Germany
- Max Planck Institute for Biophysics, 60438 Frankfurt am Main, Germany
| | - Erin M Schuman
- Max Planck Institute for Brain Research, 60438 Frankfurt am Main, Germany
| |
Collapse
|
27
|
Zoabi S, Andreyanov M, Heinrich R, Ron S, Carmi I, Gutfreund Y, Berlin S. A custom-made AAV1 variant (AAV1-T593K) enables efficient transduction of Japanese quail neurons in vitro and in vivo. Commun Biol 2023; 6:337. [PMID: 36977781 PMCID: PMC10050006 DOI: 10.1038/s42003-023-04712-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Accepted: 03/15/2023] [Indexed: 03/30/2023] Open
Abstract
The widespread use of rodents in neuroscience has prompted the development of optimized viral variants for transduction of brain cells, in vivo. However, many of the viruses developed are less efficient in other model organisms, with birds being among the most resistant to transduction by current viral tools. Resultantly, the use of genetically-encoded tools and methods in avian species is markedly lower than in rodents; likely holding the field back. We sought to bridge this gap by developing custom viruses towards the transduction of brain cells of the Japanese quail. We first develop a protocol for culturing primary neurons and glia from quail embryos, followed by characterization of cultures via immunostaining, single cell mRNA sequencing, patch clamp electrophysiology and calcium imaging. We then leveraged the cultures for the rapid screening of various viruses, only to find that all yielded poor to no infection of cells in vitro. However, few infected neurons were obtained by AAV1 and AAV2. Scrutiny of the sequence of the AAV receptor found in quails led us to rationally design a custom-made AAV variant (AAV1-T593K; AAV1*) that exhibits improved transduction efficiencies in vitro and in vivo (14- and five-fold, respectively). Together, we present unique culturing method, transcriptomic profiles of quail's brain cells and a custom-tailored AAV1 for transduction of quail neurons in vitro and in vivo.
Collapse
Affiliation(s)
- Shaden Zoabi
- Department of Neuroscience, Ruth and Bruce Rappaport Faculty of Medicine, Technion- Israel Institute of Technology, Haifa, Israel
| | - Michael Andreyanov
- Department of Neuroscience, Ruth and Bruce Rappaport Faculty of Medicine, Technion- Israel Institute of Technology, Haifa, Israel
| | - Ronit Heinrich
- Department of Neuroscience, Ruth and Bruce Rappaport Faculty of Medicine, Technion- Israel Institute of Technology, Haifa, Israel
| | - Shaked Ron
- Department of Neuroscience, Ruth and Bruce Rappaport Faculty of Medicine, Technion- Israel Institute of Technology, Haifa, Israel
| | - Ido Carmi
- Department of Neuroscience, Ruth and Bruce Rappaport Faculty of Medicine, Technion- Israel Institute of Technology, Haifa, Israel
| | - Yoram Gutfreund
- Department of Neuroscience, Ruth and Bruce Rappaport Faculty of Medicine, Technion- Israel Institute of Technology, Haifa, Israel
| | - Shai Berlin
- Department of Neuroscience, Ruth and Bruce Rappaport Faculty of Medicine, Technion- Israel Institute of Technology, Haifa, Israel.
| |
Collapse
|
28
|
Coutens B, Ingram SL. Key differences in regulation of opioid receptors localized to presynaptic terminals compared to somas: Relevance for novel therapeutics. Neuropharmacology 2023; 226:109408. [PMID: 36584882 PMCID: PMC9898207 DOI: 10.1016/j.neuropharm.2022.109408] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Revised: 12/05/2022] [Accepted: 12/27/2022] [Indexed: 12/29/2022]
Abstract
Opioid receptors are G protein-coupled receptors (GPCRs) that regulate activity within peripheral, subcortical and cortical circuits involved in pain, reward, and aversion processing. Opioid receptors are expressed in both presynaptic terminals where they inhibit neurotransmitter release and postsynaptic locations where they act to hyperpolarize neurons and reduce activity. Agonist activation of postsynaptic receptors at the plasma membrane signal via ion channels or cytoplasmic second messengers. Agonist binding initiates regulatory processes that include phosphorylation by G protein receptor kinases (GRKs) and recruitment of beta-arrestins that desensitize and internalize the receptors. Opioid receptors also couple to effectors from endosomes activating intracellular enzymes and kinases. In contrast to postsynaptic opioid receptors, receptors localized to presynaptic terminals are resistant to desensitization such that there is no loss of signaling in the continuous presence of opioids over the same time scale. Thus, the balance of opioid signaling in circuits expressing pre- and postsynaptic opioid receptors is shifted toward inhibition of presynaptic neurotransmitter release during continuous opioid exposure. The functional implication of this shift is not often acknowledged in behavioral studies. This review covers what is currently understood about regulation of opioid/nociceptin receptors, with an emphasis on opioid receptor signaling in pain and reward circuits. Importantly, the review covers regulation of presynaptic receptors and the critical gaps in understanding this area, as well as the opportunities to further understand opioid signaling in brain circuits. This article is part of the Special Issue on "Opioid-induced changes in addiction and pain circuits".
Collapse
Affiliation(s)
- Basile Coutens
- Department of Anesthesiology, University of Colorado Anschutz Medical Campus, Aurora, CO, 80045, USA
| | - Susan L Ingram
- Department of Anesthesiology, University of Colorado Anschutz Medical Campus, Aurora, CO, 80045, USA.
| |
Collapse
|
29
|
Piwecka M, Fiszer A, Rolle K, Olejniczak M. RNA regulation in brain function and disease 2022 (NeuroRNA): A conference report. Front Mol Neurosci 2023; 16:1133209. [PMID: 36993784 PMCID: PMC10040806 DOI: 10.3389/fnmol.2023.1133209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Accepted: 02/06/2023] [Indexed: 03/18/2023] Open
Abstract
Recent research integrates novel technologies and methods from the interface of RNA biology and neuroscience. This advancing integration of both fields creates new opportunities in neuroscience to deepen the understanding of gene expression programs and their regulation that underlies the cellular heterogeneity and physiology of the central nervous system. Currently, transcriptional heterogeneity can be studied in individual neural cell types in health and disease. Furthermore, there is an increasing interest in RNA technologies and their application in neurology. These aspects were discussed at an online conference that was shortly named NeuroRNA.
Collapse
Affiliation(s)
- Monika Piwecka
- Institute of Bioorganic Chemistry, Polish Academy of Sciences, Poznań, Poland
| | | | | | | |
Collapse
|
30
|
Sun C, Schuman E. A multi-omics view of neuronal subcellular protein synthesis. Curr Opin Neurobiol 2023; 80:102705. [PMID: 36913750 DOI: 10.1016/j.conb.2023.102705] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Revised: 02/14/2023] [Accepted: 02/15/2023] [Indexed: 03/13/2023]
Abstract
While it has long been known that protein synthesis is necessary for long-term memory in the brain, the logistics of neuronal protein synthesis is complicated by the extensive subcellular compartmentalization of the neuron. Local protein synthesis solves many of the logistic problems posed by the extreme complexity of dendritic and axonal arbors and the huge number of synapses. Here we review recent multi-omic and quantitative studies that elaborate a systems view of decentralized neuronal protein synthesis. We highlight recent insights from the transcriptomic, translatomic, and proteomic levels, discuss the nuanced logic of local protein synthesis for different protein features, and list the missing information needed to build a comprehensive logistic model for neuronal protein supply.
Collapse
Affiliation(s)
- Chao Sun
- Max Planck Institute for Brain Research, Frankfurt, Germany; Danish Research Institute of Translational Neuroscience - DANDRITE, Nordic-EMBL Partnership for Molecular Medicine, Denmark; Aarhus University, Department of Molecular Biology and Genetics, Universitetsbyen 81, 8000 Aarhus C, Denmark. https://twitter.com/LukeChaoSun
| | - Erin Schuman
- Max Planck Institute for Brain Research, Frankfurt, Germany.
| |
Collapse
|
31
|
In silico prediction and in vivo testing of promoters targeting GABAergic inhibitory neurons. Mol Ther Methods Clin Dev 2023; 28:330-343. [PMID: 36874244 PMCID: PMC9974971 DOI: 10.1016/j.omtm.2023.01.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Accepted: 01/31/2023] [Indexed: 02/07/2023]
Abstract
Impairment of GABAergic inhibitory neuronal function is linked to epilepsy and other neurological and psychiatric disorders. Recombinant adeno-associated virus (rAAV)-based gene therapy targeting GABAergic neurons is a promising treatment for GABA-associated disorders. However, there is a need to develop rAAV-compatible gene-regulatory elements capable of selectively driving expression in GABAergic neurons throughout the brain. Here, we designed several novel GABAergic gene promoters. In silico analyses, including evolutionarily conserved DNA sequence alignments and transcription factor binding site searches among GABAergic neuronal genes, were carried out to reveal novel sequences for use as rAAV-compatible promoters. rAAVs (serotype 9) were injected into the CSF of neonatal mice and into the brain parenchyma of adult mice to assess promoter specificity. In mice injected neonatally, transgene expression was detected in multiple brain regions with very high neuronal specificity and moderate-to-high GABAergic neuronal selectivity. The GABA promoters differed greatly in their levels of expression and, in some brain regions, showed strikingly different patterns of GABAergic neuron transduction. This study is the first report of rAAV vectors that are functional in multiple brain regions using promoters designed by in silico analyses from multiple GABAergic genes. These novel GABA-targeting vectors may be useful tools to advance gene therapy for GABA-associated disorders.
Collapse
|
32
|
Huuki-Myers L, Spangler A, Eagles N, Montgomery KD, Kwon SH, Guo B, Grant-Peters M, Divecha HR, Tippani M, Sriworarat C, Nguyen AB, Ravichandran P, Tran MN, Seyedian A, Hyde TM, Kleinman JE, Battle A, Page SC, Ryten M, Hicks SC, Martinowich K, Collado-Torres L, Maynard KR. Integrated single cell and unsupervised spatial transcriptomic analysis defines molecular anatomy of the human dorsolateral prefrontal cortex. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.02.15.528722. [PMID: 36824961 PMCID: PMC9949126 DOI: 10.1101/2023.02.15.528722] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/17/2023]
Abstract
Generation of a molecular neuroanatomical map of the human prefrontal cortex reveals novel spatial domains and cell-cell interactions relevant for psychiatric disease. The molecular organization of the human neocortex has been historically studied in the context of its histological layers. However, emerging spatial transcriptomic technologies have enabled unbiased identification of transcriptionally-defined spatial domains that move beyond classic cytoarchitecture. Here we used the Visium spatial gene expression platform to generate a data-driven molecular neuroanatomical atlas across the anterior-posterior axis of the human dorsolateral prefrontal cortex (DLPFC). Integration with paired single nucleus RNA-sequencing data revealed distinct cell type compositions and cell-cell interactions across spatial domains. Using PsychENCODE and publicly available data, we map the enrichment of cell types and genes associated with neuropsychiatric disorders to discrete spatial domains. Finally, we provide resources for the scientific community to explore these integrated spatial and single cell datasets at research.libd.org/spatialDLPFC/.
Collapse
Affiliation(s)
- Louise Huuki-Myers
- Lieber Institute for Brain Development, Johns Hopkins Medical Campus, Baltimore, MD, USA
| | - Abby Spangler
- Lieber Institute for Brain Development, Johns Hopkins Medical Campus, Baltimore, MD, USA
| | - Nick Eagles
- Lieber Institute for Brain Development, Johns Hopkins Medical Campus, Baltimore, MD, USA
| | - Kelsey D Montgomery
- Lieber Institute for Brain Development, Johns Hopkins Medical Campus, Baltimore, MD, USA
| | - Sang Ho Kwon
- Lieber Institute for Brain Development, Johns Hopkins Medical Campus, Baltimore, MD, USA
- The Solomon H. Snyder Department of Neuroscience, Johns Hopkins School of Medicine, Baltimore, MD, USA
| | - Boyi Guo
- Department of Biostatistics, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
| | - Melissa Grant-Peters
- Genetics and Genomic Medicine, Great Ormond Street Institute of Child Health, University College London, London, UK
- Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD, USA
| | - Heena R Divecha
- Lieber Institute for Brain Development, Johns Hopkins Medical Campus, Baltimore, MD, USA
| | - Madhavi Tippani
- Lieber Institute for Brain Development, Johns Hopkins Medical Campus, Baltimore, MD, USA
| | - Chaichontat Sriworarat
- Lieber Institute for Brain Development, Johns Hopkins Medical Campus, Baltimore, MD, USA
- The Solomon H. Snyder Department of Neuroscience, Johns Hopkins School of Medicine, Baltimore, MD, USA
| | - Annie B Nguyen
- Lieber Institute for Brain Development, Johns Hopkins Medical Campus, Baltimore, MD, USA
| | | | - Matthew N Tran
- Lieber Institute for Brain Development, Johns Hopkins Medical Campus, Baltimore, MD, USA
| | - Arta Seyedian
- Lieber Institute for Brain Development, Johns Hopkins Medical Campus, Baltimore, MD, USA
| | - Thomas M Hyde
- Lieber Institute for Brain Development, Johns Hopkins Medical Campus, Baltimore, MD, USA
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins School of Medicine, Baltimore, MD, USA
- Department of Neurology, Johns Hopkins School of Medicine, Baltimore, MD, USA
| | - Joel E Kleinman
- Lieber Institute for Brain Development, Johns Hopkins Medical Campus, Baltimore, MD, USA
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins School of Medicine, Baltimore, MD, USA
| | - Alexis Battle
- Department of Biomedical Engineering, Johns Hopkins School of Medicine, Baltimore, MD, USA
- Department of Computer Science, Johns Hopkins University, Baltimore, MD, USA
- Department of Genetic Medicine, Johns Hopkins School of Medicine, Baltimore, MD, USA
- Malone Center for Engineering in Healthcare, Johns Hopkins University, Baltimore, MD, USA
| | - Stephanie C Page
- Lieber Institute for Brain Development, Johns Hopkins Medical Campus, Baltimore, MD, USA
| | - Mina Ryten
- Genetics and Genomic Medicine, Great Ormond Street Institute of Child Health, University College London, London, UK
- Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD, USA
- NIHR Great Ormond Street Hospital Biomedical Research Centre, University College London, London, UK
| | - Stephanie C Hicks
- Department of Biostatistics, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
- Malone Center for Engineering in Healthcare, Johns Hopkins University, Baltimore, MD, USA
| | - Keri Martinowich
- Lieber Institute for Brain Development, Johns Hopkins Medical Campus, Baltimore, MD, USA
- The Solomon H. Snyder Department of Neuroscience, Johns Hopkins School of Medicine, Baltimore, MD, USA
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins School of Medicine, Baltimore, MD, USA
| | | | - Kristen R Maynard
- Lieber Institute for Brain Development, Johns Hopkins Medical Campus, Baltimore, MD, USA
- The Solomon H. Snyder Department of Neuroscience, Johns Hopkins School of Medicine, Baltimore, MD, USA
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins School of Medicine, Baltimore, MD, USA
| |
Collapse
|
33
|
Bourke AM, Schwarz A, Schuman EM. De-centralizing the Central Dogma: mRNA translation in space and time. Mol Cell 2023; 83:452-468. [PMID: 36669490 DOI: 10.1016/j.molcel.2022.12.030] [Citation(s) in RCA: 38] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Revised: 12/16/2022] [Accepted: 12/28/2022] [Indexed: 01/20/2023]
Abstract
As our understanding of the cell interior has grown, we have come to appreciate that most cellular operations are localized, that is, they occur at discrete and identifiable locations or domains. These cellular domains contain enzymes, machines, and other components necessary to carry out and regulate these localized operations. Here, we review these features of one such operation: the localization and translation of mRNAs within subcellular compartments observed across cell types and organisms. We describe the conceptual advantages and the "ingredients" and mechanisms of local translation. We focus on the nature and features of localized mRNAs, how they travel and get localized, and how this process is regulated. We also evaluate our current understanding of protein synthesis machines (ribosomes) and their cadre of regulatory elements, that is, the translation factors.
Collapse
Affiliation(s)
- Ashley M Bourke
- Max Planck Institute for Brain Research, Max von Laue Strasse 4, 60438 Frankfurt, Germany
| | - Andre Schwarz
- Max Planck Institute for Brain Research, Max von Laue Strasse 4, 60438 Frankfurt, Germany
| | - Erin M Schuman
- Max Planck Institute for Brain Research, Max von Laue Strasse 4, 60438 Frankfurt, Germany.
| |
Collapse
|
34
|
Sun C, Schuman EM. Logistics of neuronal protein turnover: Numbers and mechanisms. Mol Cell Neurosci 2022; 123:103793. [PMID: 36396040 DOI: 10.1016/j.mcn.2022.103793] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Revised: 11/07/2022] [Accepted: 11/09/2022] [Indexed: 11/16/2022] Open
Abstract
Research in the past twenty years or so has revealed that neurons synthesize and degrade proteins at their synapses to enable synaptic proteome remodelling on demand and in real-time. Here we provide a quantitative overview of the decentralized neuronal protein-turnover logistics. We first analyse the huge neuronal protein turnover demand that arises from subcellular compartments outside the cell body, followed by an overview of key quantities and modulation strategies in neuronal protein turnover logistics. In the end, we briefly review recent progress in neuronal local protein synthesis and summarize diverse protein-degradation mechanisms that are found near synapses.
Collapse
Affiliation(s)
- Chao Sun
- Max Planck Institute for Brain Research, 60438 Frankfurt am Main, Germany
| | - Erin M Schuman
- Max Planck Institute for Brain Research, 60438 Frankfurt am Main, Germany.
| |
Collapse
|
35
|
Bernard C, Exposito-Alonso D, Selten M, Sanalidou S, Hanusz-Godoy A, Aguilera A, Hamid F, Oozeer F, Maeso P, Allison L, Russell M, Fleck RA, Rico B, Marín O. Cortical wiring by synapse type-specific control of local protein synthesis. Science 2022; 378:eabm7466. [PMID: 36423280 DOI: 10.1126/science.abm7466] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/14/2024]
Abstract
Neurons use local protein synthesis to support their morphological complexity, which requires independent control across multiple subcellular compartments up to the level of individual synapses. We identify a signaling pathway that regulates the local synthesis of proteins required to form excitatory synapses on parvalbumin-expressing (PV+) interneurons in the mouse cerebral cortex. This process involves regulation of the TSC subunit 2 (Tsc2) by the Erb-B2 receptor tyrosine kinase 4 (ErbB4), which enables local control of messenger RNA {mRNA} translation in a cell type-specific and synapse type-specific manner. Ribosome-associated mRNA profiling reveals a molecular program of synaptic proteins downstream of ErbB4 signaling required to form excitatory inputs on PV+ interneurons. Thus, specific connections use local protein synthesis to control synapse formation in the nervous system.
Collapse
Affiliation(s)
- Clémence Bernard
- Centre for Developmental Neurobiology, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London SE1 1UL, UK
- MRC Centre for Neurodevelopmental Disorders, King's College London, London SE1 1UL, UK
| | - David Exposito-Alonso
- Centre for Developmental Neurobiology, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London SE1 1UL, UK
- MRC Centre for Neurodevelopmental Disorders, King's College London, London SE1 1UL, UK
| | - Martijn Selten
- Centre for Developmental Neurobiology, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London SE1 1UL, UK
- MRC Centre for Neurodevelopmental Disorders, King's College London, London SE1 1UL, UK
| | - Stella Sanalidou
- Centre for Developmental Neurobiology, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London SE1 1UL, UK
- MRC Centre for Neurodevelopmental Disorders, King's College London, London SE1 1UL, UK
| | - Alicia Hanusz-Godoy
- Centre for Developmental Neurobiology, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London SE1 1UL, UK
- MRC Centre for Neurodevelopmental Disorders, King's College London, London SE1 1UL, UK
| | - Alfonso Aguilera
- Centre for Developmental Neurobiology, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London SE1 1UL, UK
- MRC Centre for Neurodevelopmental Disorders, King's College London, London SE1 1UL, UK
| | - Fursham Hamid
- Centre for Developmental Neurobiology, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London SE1 1UL, UK
- MRC Centre for Neurodevelopmental Disorders, King's College London, London SE1 1UL, UK
| | - Fazal Oozeer
- Centre for Developmental Neurobiology, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London SE1 1UL, UK
- MRC Centre for Neurodevelopmental Disorders, King's College London, London SE1 1UL, UK
| | - Patricia Maeso
- Centre for Developmental Neurobiology, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London SE1 1UL, UK
- MRC Centre for Neurodevelopmental Disorders, King's College London, London SE1 1UL, UK
| | - Leanne Allison
- Centre for Ultrastructural Imaging, King's College London, London SE1 1UL, UK
| | - Matthew Russell
- Centre for Ultrastructural Imaging, King's College London, London SE1 1UL, UK
| | - Roland A Fleck
- Centre for Ultrastructural Imaging, King's College London, London SE1 1UL, UK
| | - Beatriz Rico
- Centre for Developmental Neurobiology, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London SE1 1UL, UK
- MRC Centre for Neurodevelopmental Disorders, King's College London, London SE1 1UL, UK
| | - Oscar Marín
- Centre for Developmental Neurobiology, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London SE1 1UL, UK
- MRC Centre for Neurodevelopmental Disorders, King's College London, London SE1 1UL, UK
| |
Collapse
|
36
|
Mikl M, Eletto D, Nijim M, Lee M, Lafzi A, Mhamedi F, David O, Sain SB, Handler K, Moor A. A massively parallel reporter assay reveals focused and broadly encoded RNA localization signals in neurons. Nucleic Acids Res 2022; 50:10643-10664. [PMID: 36156153 PMCID: PMC9561380 DOI: 10.1093/nar/gkac806] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Revised: 08/24/2022] [Accepted: 09/08/2022] [Indexed: 11/14/2022] Open
Abstract
Asymmetric subcellular mRNA localization allows spatial regulation of gene expression and functional compartmentalization. In neurons, localization of specific mRNAs to neurites is essential for cellular functioning. However, it is largely unknown how transcript sorting works in a sequence-specific manner. Here, we combined subcellular transcriptomics and massively parallel reporter assays and tested ∼50 000 sequences for their ability to localize to neurites. Mapping the localization potential of >300 genes revealed two ways neurite targeting can be achieved: focused localization motifs and broadly encoded localization potential. We characterized the interplay between RNA stability and localization and identified motifs able to bias localization towards neurite or soma as well as the trans-acting factors required for their action. Based on our data, we devised machine learning models that were able to predict the localization behavior of novel reporter sequences. Testing this predictor on native mRNA sequencing data showed good agreement between predicted and observed localization potential, suggesting that the rules uncovered by our MPRA also apply to the localization of native full-length transcripts.
Collapse
Affiliation(s)
- Martin Mikl
- Department of Biosystems Science and Engineering, ETH Zürich, Basel, Switzerland
- Department of Human Biology, University of Haifa, Haifa, Israel
| | - Davide Eletto
- Department of Biosystems Science and Engineering, ETH Zürich, Basel, Switzerland
| | - Malak Nijim
- Department of Human Biology, University of Haifa, Haifa, Israel
| | - Minkyoung Lee
- Department of Biosystems Science and Engineering, ETH Zürich, Basel, Switzerland
| | - Atefeh Lafzi
- Department of Biosystems Science and Engineering, ETH Zürich, Basel, Switzerland
| | - Farah Mhamedi
- Department of Biosystems Science and Engineering, ETH Zürich, Basel, Switzerland
| | - Orit David
- Department of Human Biology, University of Haifa, Haifa, Israel
| | - Simona Baghai Sain
- Department of Biosystems Science and Engineering, ETH Zürich, Basel, Switzerland
| | - Kristina Handler
- Department of Biosystems Science and Engineering, ETH Zürich, Basel, Switzerland
| | - Andreas E Moor
- Department of Biosystems Science and Engineering, ETH Zürich, Basel, Switzerland
| |
Collapse
|
37
|
Buchanan IM, Smith TM, Gerber AP, Seibt J. Are there roles for heterogeneous ribosomes during sleep in the rodent brain? Front Mol Biosci 2022; 9:1008921. [PMID: 36275625 PMCID: PMC9582285 DOI: 10.3389/fmolb.2022.1008921] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Accepted: 09/20/2022] [Indexed: 11/16/2022] Open
Abstract
The regulation of mRNA translation plays an essential role in neurons, contributing to important brain functions, such as brain plasticity and memory formation. Translation is conducted by ribosomes, which at their core consist of ribosomal proteins (RPs) and ribosomal RNAs. While translation can be regulated at diverse levels through global or mRNA-specific means, recent evidence suggests that ribosomes with distinct configurations are involved in the translation of different subsets of mRNAs. However, whether and how such proclaimed ribosome heterogeneity could be connected to neuronal functions remains largely unresolved. Here, we postulate that the existence of heterologous ribosomes within neurons, especially at discrete synapses, subserve brain plasticity. This hypothesis is supported by recent studies in rodents showing that heterogeneous RP expression occurs in dendrites, the compartment of neurons where synapses are made. We further propose that sleep, which is fundamental for brain plasticity and memory formation, has a particular role in the formation of heterologous ribosomes, specialised in the translation of mRNAs specific for synaptic plasticity. This aspect of our hypothesis is supported by recent studies showing increased translation and changes in RP expression during sleep after learning. Thus, certain RPs are regulated by sleep, and could support different sleep functions, in particular brain plasticity. Future experiments investigating cell-specific heterogeneity in RPs across the sleep-wake cycle and in response to different behaviour would help address this question.
Collapse
Affiliation(s)
- Isla M. Buchanan
- Integrated Master Programme in Biochemistry, University of Surrey, Guildford, United Kingdom
| | - Trevor M. Smith
- Department of Microbial Sciences, School of Biosciences and Medicine, Faculty of Health and Medical Sciences, University of Surrey, Guildford, United Kingdom
- Surrey Sleep Research Centre, University of Surrey, Guildford, United Kingdom
| | - André P. Gerber
- Department of Microbial Sciences, School of Biosciences and Medicine, Faculty of Health and Medical Sciences, University of Surrey, Guildford, United Kingdom
- *Correspondence: André P. Gerber, ; Julie Seibt,
| | - Julie Seibt
- Surrey Sleep Research Centre, University of Surrey, Guildford, United Kingdom
- *Correspondence: André P. Gerber, ; Julie Seibt,
| |
Collapse
|
38
|
Di L, Liu B, Lyu Y, Zhao S, Pang Y, Zhang C, Wang J, Qi H, Shen J, Huang Y. Rapid and sensitive single-cell RNA sequencing with SHERRY2. BMC Biol 2022; 20:213. [PMID: 36175891 PMCID: PMC9522537 DOI: 10.1186/s12915-022-01416-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Accepted: 09/21/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Prevalent single-cell transcriptomic profiling (scRNA-seq) methods are mainly based on the synthesis and enrichment of full-length double-stranded complementary DNA. These approaches are challenging to generate accurate quantification of transcripts when their abundance is low or their full-length amplifications are difficult. RESULTS Based on our previous finding that Tn5 transposase can directly cut-and-tag DNA/RNA hetero-duplexes, we present SHERRY2, a specifically optimized protocol for scRNA-seq without second-strand cDNA synthesis. SHERRY2 is free of pre-amplification and eliminates the sequence-dependent bias. In comparison with other widely used scRNA-seq methods, SHERRY2 exhibits significantly higher sensitivity and accuracy even for single nuclei. Besides, SHERRY2 is simple and robust and can be easily scaled up to high-throughput experiments. When testing single lymphocytes and neuron nuclei, SHERRY2 not only obtained accurate countings of transcription factors and long non-coding RNAs, but also provided bias-free results that enriched genes in specific cellular components or functions, which outperformed other protocols. With a few thousand cells sequenced by SHERRY2, we confirmed the expression and dynamics of Myc in different cell types of germinal centers, which were previously only revealed by gene-specific amplification methods. CONCLUSIONS SHERRY2 is able to provide high sensitivity, high accuracy, and high throughput for those applications that require a high number of genes identified in each cell. It can reveal the subtle transcriptomic difference between cells and facilitate important biological discoveries.
Collapse
Affiliation(s)
- Lin Di
- School of Basic Medical Sciences, Beijing Key Laboratory of Neural Regeneration and Repair, Advanced Innovation Center for Human Brain Protection, Capital Medical University, Beijing, 100069, China.,Biomedical Pioneering Innovation Center, Beijing Advanced Innovation Center for Genomics, Peking University, Beijing, 100871, China.,School of Life Sciences, Peking University, Beijing, 100871, China.,Institute for Cell Analysis, Shenzhen Bay Laboratory, Guangdong, 528107, China
| | - Bo Liu
- Laboratory of Dynamic Immunobiology, Institute for Immunology, Tsinghua University, Beijing, 100871, China.,Department of Basic Medical Sciences, School of Medicine, Tsinghua University, Beijing, 100871, China
| | - Yuzhu Lyu
- School of Basic Medical Sciences, Beijing Key Laboratory of Neural Regeneration and Repair, Advanced Innovation Center for Human Brain Protection, Capital Medical University, Beijing, 100069, China
| | - Shihui Zhao
- Biomedical Pioneering Innovation Center, Beijing Advanced Innovation Center for Genomics, Peking University, Beijing, 100871, China.,Peking University-Tsinghua University-National Institute of Biological Sciences Joint Graduate Program (PTN), Peking University, Beijing, 100871, China
| | - Yuhong Pang
- Biomedical Pioneering Innovation Center, Beijing Advanced Innovation Center for Genomics, Peking University, Beijing, 100871, China
| | - Chen Zhang
- School of Basic Medical Sciences, Beijing Key Laboratory of Neural Regeneration and Repair, Advanced Innovation Center for Human Brain Protection, Capital Medical University, Beijing, 100069, China
| | - Jianbin Wang
- School of Life Sciences, Beijing Advanced Innovation Center for Structural Biology, Tsinghua University, Beijing, 100084, China.
| | - Hai Qi
- Laboratory of Dynamic Immunobiology, Institute for Immunology, Tsinghua University, Beijing, 100871, China. .,Department of Basic Medical Sciences, School of Medicine, Tsinghua University, Beijing, 100871, China.
| | - Jie Shen
- School of Basic Medical Sciences, Beijing Key Laboratory of Neural Regeneration and Repair, Advanced Innovation Center for Human Brain Protection, Capital Medical University, Beijing, 100069, China.
| | - Yanyi Huang
- Biomedical Pioneering Innovation Center, Beijing Advanced Innovation Center for Genomics, Peking University, Beijing, 100871, China. .,Institute for Cell Analysis, Shenzhen Bay Laboratory, Guangdong, 528107, China. .,College of Chemistry and Molecular Engineering, Beijing National Laboratory for Molecular Sciences, Peking University, Beijing, 100871, China. .,Peking-Tsinghua Center for Life Sciences, Peking University, Beijing, 100871, China.
| |
Collapse
|
39
|
Cellular and genetic drivers of RNA editing variation in the human brain. Nat Commun 2022; 13:2997. [PMID: 35637184 PMCID: PMC9151768 DOI: 10.1038/s41467-022-30531-0] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Accepted: 05/02/2022] [Indexed: 11/08/2022] Open
Abstract
Posttranscriptional adenosine-to-inosine modifications amplify the functionality of RNA molecules in the brain, yet the cellular and genetic regulation of RNA editing is poorly described. We quantify base-specific RNA editing across three major cell populations from the human prefrontal cortex: glutamatergic neurons, medial ganglionic eminence-derived GABAergic neurons, and oligodendrocytes. We identify more selective editing and hyper-editing in neurons relative to oligodendrocytes. RNA editing patterns are highly cell type-specific, with 189,229 cell type-associated sites. The cellular specificity for thousands of sites is confirmed by single nucleus RNA-sequencing. Importantly, cell type-associated sites are enriched in GTEx RNA-sequencing data, edited ~twentyfold higher than all other sites, and variation in RNA editing is largely explained by neuronal proportions in bulk brain tissue. Finally, we uncover 661,791 cis-editing quantitative trait loci across thirteen brain regions, including hundreds with cell type-associated features. These data reveal an expansive repertoire of highly regulated RNA editing sites across human brain cell types and provide a resolved atlas linking cell types to editing variation and genetic regulatory effects. Here the authors provide a deep catalogue of cell-specific A-to-I editing sites in the human cortex. Thousands of sites are enriched and elevated in neurons relative to glial cells, and are genetically regulated across multiple brain regions.
Collapse
|
40
|
Flamand MN, Meyer KD. m6A and YTHDF proteins contribute to the localization of select neuronal mRNAs. Nucleic Acids Res 2022; 50:4464-4483. [PMID: 35438793 PMCID: PMC9071445 DOI: 10.1093/nar/gkac251] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2022] [Revised: 03/11/2022] [Accepted: 03/30/2022] [Indexed: 01/08/2023] Open
Abstract
The transport of mRNAs to distal subcellular compartments is an important component of spatial gene expression control in neurons. However, the mechanisms that control mRNA localization in neurons are not completely understood. Here, we identify the abundant base modification, m6A, as a novel regulator of this process. Transcriptome-wide analysis following genetic loss of m6A reveals hundreds of transcripts that exhibit altered subcellular localization in hippocampal neurons. Additionally, using a reporter system, we show that mutation of specific m6A sites in select neuronal transcripts diminishes their localization to neurites. Single molecule fluorescent in situ hybridization experiments further confirm our findings and identify the m6A reader proteins YTHDF2 and YTHDF3 as mediators of this effect. Our findings reveal a novel function for m6A in controlling mRNA localization in neurons and enable a better understanding of the mechanisms through which m6A influences gene expression in the brain.
Collapse
Affiliation(s)
- Mathieu N Flamand
- Department of Biochemistry, Duke University School of Medicine, Durham, NC 27710, USA
| | - Kate D Meyer
- Department of Biochemistry, Duke University School of Medicine, Durham, NC 27710, USA.,Department of Neurobiology, Duke University School of Medicine, Durham, NC 27710, USA
| |
Collapse
|
41
|
Taliaferro JM. Transcriptome-scale methods for uncovering subcellular RNA localization mechanisms. BIOCHIMICA ET BIOPHYSICA ACTA. MOLECULAR CELL RESEARCH 2022; 1869:119202. [PMID: 34998919 PMCID: PMC9035289 DOI: 10.1016/j.bbamcr.2021.119202] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Revised: 12/03/2021] [Accepted: 12/17/2021] [Indexed: 12/21/2022]
Abstract
Across a variety of systems, thousands of RNAs are localized to specific subcellular locations. However, for the vast majority of these RNAs, the mechanisms that underlie their transport are unknown. Historically, these mechanisms were uncovered for a single transcript at a time by laboriously testing the ability of RNA fragments to direct transcript localization. Recently developed methods profile the content of subcellular transcriptomes using high-throughput sequencing, allowing the analysis of the localization of thousands of transcripts at once. By identifying commonalities shared among multiple localized transcripts, these methods have the potential to rapidly expand our understanding of RNA localization mechanisms.
Collapse
Affiliation(s)
- J Matthew Taliaferro
- Department of Biochemistry and Molecular Genetics, University of Colorado Anschutz Medical Campus, Aurora, CO, USA; RNA Bioscience Initiative, University of Colorado Anschutz Medical Campus, Aurora, CO, USA.
| |
Collapse
|
42
|
Rapti G. Open Frontiers in Neural Cell Type Investigations; Lessons From Caenorhabditis elegans and Beyond, Toward a Multimodal Integration. Front Neurosci 2022; 15:787753. [PMID: 35321480 PMCID: PMC8934944 DOI: 10.3389/fnins.2021.787753] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Accepted: 12/30/2021] [Indexed: 11/13/2022] Open
Abstract
Nervous system cells, the building blocks of circuits, have been studied with ever-progressing resolution, yet neural circuits appear still resistant to schemes of reductionist classification. Due to their sheer numbers, complexity and diversity, their systematic study requires concrete classifications that can serve reduced dimensionality, reproducibility, and information integration. Conventional hierarchical schemes transformed through the history of neuroscience by prioritizing criteria of morphology, (electro)physiological activity, molecular content, and circuit function, influenced by prevailing methodologies of the time. Since the molecular biology revolution and the recent advents in transcriptomics, molecular profiling gains ground toward the classification of neurons and glial cell types. Yet, transcriptomics entails technical challenges and more importantly uncovers unforeseen spatiotemporal heterogeneity, in complex and simpler nervous systems. Cells change states dynamically in space and time, in response to stimuli or throughout their developmental trajectory. Mapping cell type and state heterogeneity uncovers uncharted terrains in neurons and especially in glial cell biology, that remains understudied in many aspects. Examining neurons and glial cells from the perspectives of molecular neuroscience, physiology, development and evolution highlights the advantage of multifaceted classification schemes. Among the amalgam of models contributing to neuroscience research, Caenorhabditis elegans combines nervous system anatomy, lineage, connectivity and molecular content, all mapped at single-cell resolution, and can provide valuable insights for the workflow and challenges of the multimodal integration of cell type features. This review reflects on concepts and practices of neuron and glial cells classification and how research, in C. elegans and beyond, guides nervous system experimentation through integrated multidimensional schemes. It highlights underlying principles, emerging themes, and open frontiers in the study of nervous system development, regulatory logic and evolution. It proposes unified platforms to allow integrated annotation of large-scale datasets, gene-function studies, published or unpublished findings and community feedback. Neuroscience is moving fast toward interdisciplinary, high-throughput approaches for combined mapping of the morphology, physiology, connectivity, molecular function, and the integration of information in multifaceted schemes. A closer look in mapped neural circuits and understudied terrains offers insights for the best implementation of these approaches.
Collapse
|
43
|
Kim EH, Howard D, Chen Y, Tripathy SJ, French L. LaminaRGeneVis: A Tool to Visualize Gene Expression Across the Laminar Architecture of the Human Neocortex. Front Neuroinform 2022; 16:753770. [PMID: 35281717 PMCID: PMC8907970 DOI: 10.3389/fninf.2022.753770] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Accepted: 01/25/2022] [Indexed: 11/13/2022] Open
Abstract
The application of RNA sequencing has enabled the characterization of genome-wide gene expression in the human brain, including distinct layers of the neocortex. Neuroanatomically, the molecular patterns that underlie the laminar organization of the neocortex can help link structure to circuitry and function. To advance our understanding of cortical architecture, we created LaminaRGeneVis, a web application that displays across-layer cortical gene expression from multiple datasets. These datasets were collected using bulk, single-nucleus, and spatial RNA sequencing methodologies and were normalized to facilitate comparisons between datasets. The online resource performs single- and multi-gene analyses to provide figures and statistics for user-friendly assessment of laminar gene expression patterns in the adult human neocortex. The web application is available at https://ethanhkim.shinyapps.io/laminargenevis/.
Collapse
Affiliation(s)
- Ethan H. Kim
- Krembil Centre for Neuroinformatics, Centre for Addiction and Mental Health (CAMH), Toronto, ON, Canada
- Institute of Medical Science, Temerty Faculty of Medicine, University of Toronto, Toronto, ON, Canada
| | - Derek Howard
- Krembil Centre for Neuroinformatics, Centre for Addiction and Mental Health (CAMH), Toronto, ON, Canada
| | - Yuxiao Chen
- Krembil Centre for Neuroinformatics, Centre for Addiction and Mental Health (CAMH), Toronto, ON, Canada
| | - Shreejoy J. Tripathy
- Krembil Centre for Neuroinformatics, Centre for Addiction and Mental Health (CAMH), Toronto, ON, Canada
- Institute of Medical Science, Temerty Faculty of Medicine, University of Toronto, Toronto, ON, Canada
- Department of Psychiatry, University of Toronto, Toronto, ON, Canada
| | - Leon French
- Krembil Centre for Neuroinformatics, Centre for Addiction and Mental Health (CAMH), Toronto, ON, Canada
- Department of Psychiatry, University of Toronto, Toronto, ON, Canada
- Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health (CAMH), Toronto, ON, Canada
- *Correspondence: Leon French,
| |
Collapse
|
44
|
Hobson BD, Kong L, Angelo MF, Lieberman OJ, Mosharov EV, Herzog E, Sulzer D, Sims PA. Subcellular and regional localization of mRNA translation in midbrain dopamine neurons. Cell Rep 2022; 38:110208. [PMID: 35021090 PMCID: PMC8844886 DOI: 10.1016/j.celrep.2021.110208] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Revised: 10/25/2021] [Accepted: 12/13/2021] [Indexed: 12/12/2022] Open
Abstract
Midbrain dopaminergic (mDA) neurons exhibit extensive dendritic and axonal arborizations, but local protein synthesis is not characterized in these neurons. Here, we investigate messenger RNA (mRNA) localization and translation in mDA neuronal axons and dendrites, both of which release dopamine (DA). Using highly sensitive ribosome-bound RNA sequencing and imaging approaches, we find no evidence for mRNA translation in mDA axons. In contrast, mDA neuronal dendrites in the substantia nigra pars reticulata (SNr) contain ribosomes and mRNAs encoding the major components of DA synthesis, release, and reuptake machinery. Surprisingly, we also observe dendritic localization of mRNAs encoding synaptic vesicle-related proteins, including those involved in exocytic fusion. Our results are consistent with a role for local translation in the regulation of DA release from dendrites, but not from axons. Our translatome data define a molecular signature of sparse mDA neurons in the SNr, including the enrichment of Atp2a3/SERCA3, an atypical ER calcium pump.
Collapse
Affiliation(s)
- Benjamin D Hobson
- Department of Systems Biology, Columbia University Irving Medical Center, New York 10032, NY, USA; Medical Scientist Training Program, Columbia University Irving Medical Center, New York, NY 10032, USA; Department of Psychiatry, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Linghao Kong
- Department of Systems Biology, Columbia University Irving Medical Center, New York 10032, NY, USA
| | - Maria Florencia Angelo
- Interdisciplinary Institute for Neuroscience, Université de Bordeaux, Bordeaux, France; Interdisciplinary Institute for Neuroscience, CNRS UMR 5297, Bordeaux, France
| | - Ori J Lieberman
- Medical Scientist Training Program, Columbia University Irving Medical Center, New York, NY 10032, USA; Department of Psychiatry, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Eugene V Mosharov
- Department of Psychiatry, Columbia University Irving Medical Center, New York, NY 10032, USA; Division of Molecular Therapeutics, New York State Psychiatric Institute, New York, NY 10032, USA
| | - Etienne Herzog
- Interdisciplinary Institute for Neuroscience, Université de Bordeaux, Bordeaux, France; Interdisciplinary Institute for Neuroscience, CNRS UMR 5297, Bordeaux, France.
| | - David Sulzer
- Department of Neurology, Columbia University Irving Medical Center, New York, NY 10032, USA; Department of Psychiatry, Columbia University Irving Medical Center, New York, NY 10032, USA; Department of Pharmacology, Columbia University Irving Medical Center, New York, NY 10032, USA; Division of Molecular Therapeutics, New York State Psychiatric Institute, New York, NY 10032, USA; Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD, USA.
| | - Peter A Sims
- Department of Systems Biology, Columbia University Irving Medical Center, New York 10032, NY, USA; Department of Biochemistry & Molecular Biophysics, Columbia University Irving Medical Center, New York, NY 10032, USA; Sulzberger Columbia Genome Center, Columbia University Irving Medical Center, New York, NY 10032, USA; Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD, USA.
| |
Collapse
|
45
|
Perez JD, Schuman EM. Subcellular RNA-seq for the Analysis of the Dendritic and Somatic Transcriptomes of Single Neurons. Bio Protoc 2022; 12:e4278. [PMID: 35118171 PMCID: PMC8769762 DOI: 10.21769/bioprotoc.4278] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 10/19/2021] [Accepted: 10/29/2021] [Indexed: 09/10/2024] Open
Abstract
In neurons, local translation in dendritic and axonal compartments allows for the fast and on-demand modification of the local proteome. As the last few years have witnessed dramatic advancements in our appreciation of the brain's neuronal diversity, it is increasingly relevant to understand how local translation is regulated according to cell type. To this end, both sequencing-based and imaging-based techniques have recently been reported. Here, we present a subcellular single cell RNA sequencing protocol that allows molecular quantification from the soma and dendrites of single neurons, and which can be scaled up for the characterization of several hundreds to thousands of neurons. Somata and dendrites of cultured neurons are dissected using laser capture microdissection, followed by cell lysis to release mRNA content. Reverse transcription is then conducted using an indexed primer that allows the downstream pooling of samples. The pooled cDNA library is prepared for and sequenced in an Illumina platform. Finally, the data generated are processed and converted into a gene vs. cells digital expression table. This protocol provides detailed instructions for both wet lab and bioinformatic steps, as well as insights into controls, data analysis, interpretations, and ways to achieve robust and reproducible results. Graphic abstract: Subcellular Single Cell RNA-seq in Neurons.
Collapse
Affiliation(s)
- Julio D. Perez
- Department of Synaptic Plasticity, Max Planck Institute for Brain Research, Frankfurt, Germany
| | - Erin M. Schuman
- Department of Synaptic Plasticity, Max Planck Institute for Brain Research, Frankfurt, Germany
| |
Collapse
|
46
|
Luhmann HJ. Neurophysiology of the Developing Cerebral Cortex: What We Have Learned and What We Need to Know. Front Cell Neurosci 2022; 15:814012. [PMID: 35046777 PMCID: PMC8761895 DOI: 10.3389/fncel.2021.814012] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Accepted: 12/09/2021] [Indexed: 11/15/2022] Open
Abstract
This review article aims to give a brief summary on the novel technologies, the challenges, our current understanding, and the open questions in the field of the neurophysiology of the developing cerebral cortex in rodents. In the past, in vitro electrophysiological and calcium imaging studies on single neurons provided important insights into the function of cellular and subcellular mechanism during early postnatal development. In the past decade, neuronal activity in large cortical networks was recorded in pre- and neonatal rodents in vivo by the use of novel high-density multi-electrode arrays and genetically encoded calcium indicators. These studies demonstrated a surprisingly rich repertoire of spontaneous cortical and subcortical activity patterns, which are currently not completely understood in their functional roles in early development and their impact on cortical maturation. Technological progress in targeted genetic manipulations, optogenetics, and chemogenetics now allow the experimental manipulation of specific neuronal cell types to elucidate the function of early (transient) cortical circuits and their role in the generation of spontaneous and sensory evoked cortical activity patterns. Large-scale interactions between different cortical areas and subcortical regions, characterization of developmental shifts from synchronized to desynchronized activity patterns, identification of transient circuits and hub neurons, role of electrical activity in the control of glial cell differentiation and function are future key tasks to gain further insights into the neurophysiology of the developing cerebral cortex.
Collapse
Affiliation(s)
- Heiko J. Luhmann
- Institute of Physiology, University Medical Center Mainz, Mainz, Germany
| |
Collapse
|
47
|
Scheffer LK, Meinertzhagen IA. A connectome is not enough - what is still needed to understand the brain of Drosophila? J Exp Biol 2021; 224:272599. [PMID: 34695211 DOI: 10.1242/jeb.242740] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Understanding the structure and operation of any nervous system has been a subject of research for well over a century. A near-term opportunity in this quest is to understand the brain of a model species, the fruit fly Drosophila melanogaster. This is an enticing target given its relatively small size (roughly 200,000 neurons), coupled with the behavioral richness that this brain supports, and the wide variety of techniques now available to study both brain and behavior. It is clear that within a few years we will possess a connectome for D. melanogaster: an electron-microscopy-level description of all neurons and their chemical synaptic connections. Given what we will soon have, what we already know and the research that is currently underway, what more do we need to know to enable us to understand the fly's brain? Here, we itemize the data we will need to obtain, collate and organize in order to build an integrated model of the brain of D. melanogaster.
Collapse
Affiliation(s)
- Louis K Scheffer
- Howard Hughes Medical Institute, 19741 Smith Circle, Ashburn, VA 20147, USA
| | | |
Collapse
|
48
|
Fusco CM, Desch K, Dörrbaum AR, Wang M, Staab A, Chan ICW, Vail E, Villeri V, Langer JD, Schuman EM. Neuronal ribosomes exhibit dynamic and context-dependent exchange of ribosomal proteins. Nat Commun 2021; 12:6127. [PMID: 34675203 PMCID: PMC8531293 DOI: 10.1038/s41467-021-26365-x] [Citation(s) in RCA: 81] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Accepted: 09/29/2021] [Indexed: 12/11/2022] Open
Abstract
Owing to their morphological complexity and dense network connections, neurons modify their proteomes locally, using mRNAs and ribosomes present in the neuropil (tissue enriched for dendrites and axons). Although ribosome biogenesis largely takes place in the nucleus and perinuclear region, neuronal ribosomal protein (RP) mRNAs have been frequently detected remotely, in dendrites and axons. Here, using imaging and ribosome profiling, we directly detected the RP mRNAs and their translation in the neuropil. Combining brief metabolic labeling with mass spectrometry, we found that a group of RPs rapidly associated with translating ribosomes in the cytoplasm and that this incorporation was independent of canonical ribosome biogenesis. Moreover, the incorporation probability of some RPs was regulated by location (neurites vs. cell bodies) and changes in the cellular environment (following oxidative stress). Our results suggest new mechanisms for the local activation, repair and/or specialization of the translational machinery within neuronal processes, potentially allowing neuronal synapses a rapid means to regulate local protein synthesis.
Collapse
Affiliation(s)
- Claudia M. Fusco
- grid.419505.c0000 0004 0491 3878Max Planck Institute for Brain Research, Frankfurt, Germany
| | - Kristina Desch
- grid.419505.c0000 0004 0491 3878Max Planck Institute for Brain Research, Frankfurt, Germany
| | - Aline R. Dörrbaum
- grid.419505.c0000 0004 0491 3878Max Planck Institute for Brain Research, Frankfurt, Germany ,Present Address: MOS, Center for Mass Spectrometry and Optical Spectroscopy, Mannheim, Germany
| | - Mantian Wang
- grid.419505.c0000 0004 0491 3878Max Planck Institute for Brain Research, Frankfurt, Germany ,grid.508836.0Present Address: Institute of Molecular and Clinical Ophthalmology, Basel, Switzerland
| | - Anja Staab
- grid.419505.c0000 0004 0491 3878Max Planck Institute for Brain Research, Frankfurt, Germany
| | - Ivy C. W. Chan
- grid.419505.c0000 0004 0491 3878Max Planck Institute for Brain Research, Frankfurt, Germany ,grid.424247.30000 0004 0438 0426Present Address: German Center for Neurodegenerative Diseases, Bonn, Germany
| | - Eleanor Vail
- grid.419505.c0000 0004 0491 3878Max Planck Institute for Brain Research, Frankfurt, Germany
| | - Veronica Villeri
- grid.419505.c0000 0004 0491 3878Max Planck Institute for Brain Research, Frankfurt, Germany ,grid.412041.20000 0001 2106 639XPresent Address: Department of Neuroscience, University of Bordeaux, Bordeaux, France
| | - Julian D. Langer
- grid.419505.c0000 0004 0491 3878Max Planck Institute for Brain Research, Frankfurt, Germany ,grid.419494.50000 0001 1018 9466Max Planck Institute for Biophysics, Frankfurt, Germany
| | - Erin M. Schuman
- grid.419505.c0000 0004 0491 3878Max Planck Institute for Brain Research, Frankfurt, Germany
| |
Collapse
|
49
|
Giandomenico SL, Alvarez-Castelao B, Schuman EM. Proteostatic regulation in neuronal compartments. Trends Neurosci 2021; 45:41-52. [PMID: 34489114 DOI: 10.1016/j.tins.2021.08.002] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Revised: 07/16/2021] [Accepted: 08/05/2021] [Indexed: 12/16/2022]
Abstract
Neurons continuously adapt to external cues and challenges, including stimulation, plasticity-inducing signals and aging. These adaptations are critical for neuronal physiology and extended survival. Proteostasis is the process by which cells adjust their protein content to achieve the specific protein repertoire necessary for cellular function. Due to their complex morphology and polarized nature, neurons possess unique proteostatic requirements. Proteostatic control in axons and dendrites must be implemented through regulation of protein synthesis and degradation in a decentralized fashion, but at the same time, it requires integration, at least in part, in the soma. Here, we discuss current understanding of neuronal proteostasis, as well as open questions and future directions requiring further exploration.
Collapse
Affiliation(s)
| | - Beatriz Alvarez-Castelao
- Department of Biochemistry and Molecular Biology, Veterinary School, Complutense University of Madrid, Madrid, Spain
| | - Erin M Schuman
- Max Planck Institute for Brain Research, Frankfurt am Main, Germany.
| |
Collapse
|
50
|
Perez JD, Fusco CM, Schuman EM. A Functional Dissection of the mRNA and Locally Synthesized Protein Population in Neuronal Dendrites and Axons. Annu Rev Genet 2021; 55:183-207. [PMID: 34460296 DOI: 10.1146/annurev-genet-030321-054851] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Neurons are characterized by a complex morphology that enables the generation of subcellular compartments with unique biochemical and biophysical properties, such as dendrites, axons, and synapses. To sustain these different compartments and carry a wide array of elaborate operations, neurons express a diverse repertoire of gene products. Extensive regulation at both the messenger RNA (mRNA) and protein levels allows for the differentiation of subcellular compartments as well as numerous forms of plasticity in response to variable stimuli. Among the multiple mechanisms that control cellular functions, mRNA translation is manipulated by neurons to regulate where and when a protein emerges. Interestingly, transcriptomic and translatomic profiles of both dendrites and axons have revealed that the mRNA population only partially predicts the local protein population and that this relation significantly varies between different gene groups. Here, we describe the space that local translation occupies within the large molecular and regulatory complexity of neurons, in contrast to other modes of regulation. We then discuss the specialized organization of mRNAs within different neuronal compartments, as revealed by profiles of the local transcriptome. Finally, we discuss the features and functional implications of both locally correlated-and anticorrelated-mRNA-protein relations both under baseline conditions and during synaptic plasticity. Expected final online publication date for the Annual Review of Genetics, Volume 55 is November 2021. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.
Collapse
Affiliation(s)
- Julio D Perez
- Max Planck Institute for Brain Research, 60438 Frankfurt, Germany;
| | - Claudia M Fusco
- Max Planck Institute for Brain Research, 60438 Frankfurt, Germany;
| | - Erin M Schuman
- Max Planck Institute for Brain Research, 60438 Frankfurt, Germany;
| |
Collapse
|