1
|
Tanaka R, Portugues R. On analogies in vertebrate and insect visual systems. Nat Rev Neurosci 2025:10.1038/s41583-025-00932-3. [PMID: 40410391 DOI: 10.1038/s41583-025-00932-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/01/2025] [Indexed: 05/25/2025]
Abstract
Despite the large evolutionary distance between vertebrates and insects, the visual systems of these two taxa bear remarkable similarities that have been noted repeatedly, including by pioneering neuroanatomists such as Ramón y Cajal. Fuelled by the advent of transgenic approaches in neuroscience, studies of visual system anatomy and function in both vertebrates and insects have made dramatic progress during the past two decades, revealing even deeper analogies between their visual systems than were noted by earlier observers. Such across-taxa comparisons have tended to focus on either elementary motion detection or relatively peripheral layers of the visual systems. By contrast, the aims of this Review are to expand the scope of this comparison to pathways outside visual motion detection, as well as to deeper visual structures. To achieve these aims, we primarily discuss examples from recent work in larval zebrafish (Danio rerio) and the fruitfly (Drosophila melanogaster), a pair of genetically tractable model organisms with comparatively sized, small brains. In particular, we argue that the brains of both vertebrates and insects are equipped with third-order visual structures that specialize in shared behavioural tasks, including postural and course stabilization, approach and avoidance, and some other behaviours. These wider analogies between the two distant taxa highlight shared behavioural goals and associated evolutionary constraints and suggest that studies on vertebrate and insect vision have a lot to inspire each other.
Collapse
Affiliation(s)
- Ryosuke Tanaka
- Institute of Neuroscience, Technical University of Munich, Munich, Germany.
| | - Ruben Portugues
- Institute of Neuroscience, Technical University of Munich, Munich, Germany.
- Munich Cluster of Systems Neurology (SyNergy), Munich, Germany.
- Max Planck Fellow Group - Mechanisms of Cognition, MPI Psychiatry, Munich, Germany.
- Bernstein Center for Computational Neuroscience Munich, Munich, Germany.
| |
Collapse
|
2
|
Gkanias E, Webb B. Spatiotemporal computations in the insect celestial compass. Nat Commun 2025; 16:2832. [PMID: 40121239 PMCID: PMC11929787 DOI: 10.1038/s41467-025-57937-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Accepted: 02/28/2025] [Indexed: 03/25/2025] Open
Abstract
Obtaining a geocentric directional reference from a celestial compass requires compensation for the sun's movement during the day (relative to the observer), which depends on the earth's rotation, time of year and the observer's latitude. We examine how insects could solve this problem, assuming they have clock neurons that represent time as a sinusoidal oscillation, and taking into account the neuroanatomy of their celestial compass pathway. We show how this circuit could exploit trigonometric identities to perform the required spatiotemporal calculations. Our basic model assumes a constant change in sun azimuth (the 'hour angle'), which is recentred on solar noon for changing day lengths. In a more complete model, the time of year is represented by an oscillation with an annual period, and the latitude is estimated from the inclination of the geomagnetic field. Evaluating these models in simulated migration and foraging behaviours shows the hour angle may be sufficient.
Collapse
Affiliation(s)
- Evripidis Gkanias
- School of Informatics, University of Edinburgh, EH8 9AB, Edinburgh, UK.
| | - Barbara Webb
- School of Informatics, University of Edinburgh, EH8 9AB, Edinburgh, UK
| |
Collapse
|
3
|
Cezário RR, Lopez VM, Datto-Liberato F, Bybee SM, Gorb S, Guillermo-Ferreira R. Polarized vision in the eyes of the most effective predators: dragonflies and damselflies (Odonata). THE SCIENCE OF NATURE - NATURWISSENSCHAFTEN 2025; 112:8. [PMID: 39836264 PMCID: PMC11750933 DOI: 10.1007/s00114-025-01959-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/10/2024] [Revised: 12/18/2024] [Accepted: 12/19/2024] [Indexed: 01/22/2025]
Abstract
Polarization is a property of light that describes the oscillation of the electric field vector. Polarized light can be detected by many invertebrate animals, and this visual channel is widely used in nature. Insects rely on light polarization for various purposes, such as water detection, improving contrast, breaking camouflage, navigation, and signaling during mating. Dragonflies and damselflies (Odonata) are highly visual insects with polarization sensitivity for water detection and likely also navigation. Thus, odonates can serve as ideal models for investigating the ecology and evolution of polarized light perception. We provide an overview of the current state of knowledge concerning polarized light sensitivity in these insects. Specifically, we review recent findings related to the ecological, morphological, and physiological causes that enable these insects to perceive polarized light and discuss the optical properties responsible for the reflection of polarized light by their bodies and wings. Finally, we identify gaps in the current research and suggest future directions that can help to further advance our knowledge of polarization sensitivity in odonates.
Collapse
Affiliation(s)
- Rodrigo Roucourt Cezário
- LESTES, Entomology and Experimental Biology Center, Federal University of Triângulo Mineiro (UFTM), Uberaba, MG, Brazil.
- Graduate Program in Entomology, University of São Paulo (USP), Ribeirão Preto, SP, Brazil.
- Guajará-Mirim Integrated Management Nucleus, Chico Mendes Institute for Biodiversity Conservation (ICMBio), Guajará-Mirim, RO, Brazil.
| | - Vinicius Marques Lopez
- LESTES, Entomology and Experimental Biology Center, Federal University of Triângulo Mineiro (UFTM), Uberaba, MG, Brazil
| | - Felipe Datto-Liberato
- LESTES, Entomology and Experimental Biology Center, Federal University of Triângulo Mineiro (UFTM), Uberaba, MG, Brazil
- Graduate Program in Entomology, University of São Paulo (USP), Ribeirão Preto, SP, Brazil
| | - Seth M Bybee
- Department of Biology and Monte L. Bean Museum, Brigham Young University, Provo, UT, 84602, USA
| | - Stanislav Gorb
- Department of Functional Morphology and Biomechanics, Zoological Institute, Kiel University, Kiel, Germany.
| | - Rhainer Guillermo-Ferreira
- LESTES, Entomology and Experimental Biology Center, Federal University of Triângulo Mineiro (UFTM), Uberaba, MG, Brazil
- Graduate Program in Entomology, University of São Paulo (USP), Ribeirão Preto, SP, Brazil
| |
Collapse
|
4
|
Pabst K, Gkanias E, Webb B, Homberg U, Endres D. A computational model for angular velocity integration in a locust heading circuit. PLoS Comput Biol 2024; 20:e1012155. [PMID: 39705331 DOI: 10.1371/journal.pcbi.1012155] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Revised: 01/06/2025] [Accepted: 11/25/2024] [Indexed: 12/22/2024] Open
Abstract
Accurate navigation often requires the maintenance of a robust internal estimate of heading relative to external surroundings. We present a model for angular velocity integration in a desert locust heading circuit, applying concepts from early theoretical work on heading circuits in mammals to a novel biological context in insects. In contrast to similar models proposed for the fruit fly, this circuit model uses a single 360° heading direction representation and is updated by neuromodulatory angular velocity inputs. Our computational model was implemented using steady-state firing rate neurons with dynamical synapses. The circuit connectivity was constrained by biological data, and remaining degrees of freedom were optimised with a machine learning approach to yield physiologically plausible neuron activities. We demonstrate that the integration of heading and angular velocity in this circuit is robust to noise. The heading signal can be effectively used as input to an existing insect goal-directed steering circuit, adapted for outbound locomotion in a steady direction that resembles locust migration. Our study supports the possibility that similar computations for orientation may be implemented differently in the neural hardware of the fruit fly and the locust.
Collapse
Affiliation(s)
- Kathrin Pabst
- Department of Psychology, Philipps-Universität Marburg, Marburg, Hesse, Germany
- Center for Mind, Brain and Behavior (CMBB), Philipps-Universität Marburg, Justus Liebig Universität Giessen, and Technische Universität Darmstadt, Hesse, Germany
| | - Evripidis Gkanias
- School of Informatics, University of Edinburgh, Edinburgh, Scotland, United Kingdom
| | - Barbara Webb
- School of Informatics, University of Edinburgh, Edinburgh, Scotland, United Kingdom
| | - Uwe Homberg
- Center for Mind, Brain and Behavior (CMBB), Philipps-Universität Marburg, Justus Liebig Universität Giessen, and Technische Universität Darmstadt, Hesse, Germany
- Department of Biology, Philipps-Universität Marburg, Marburg, Hesse, Germany
| | - Dominik Endres
- Department of Psychology, Philipps-Universität Marburg, Marburg, Hesse, Germany
- Center for Mind, Brain and Behavior (CMBB), Philipps-Universität Marburg, Justus Liebig Universität Giessen, and Technische Universität Darmstadt, Hesse, Germany
| |
Collapse
|
5
|
Koch S, Kandimalla P, Padilla E, Kaur S, Kaur R, Nguyen M, Nelson A, Khalsa S, Younossi-Hartenstein A, Hartenstein V. Structural changes shaping the Drosophila ellipsoid body ER-neurons during development and aging. Dev Biol 2024; 516:96-113. [PMID: 39089472 DOI: 10.1016/j.ydbio.2024.07.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Revised: 07/25/2024] [Accepted: 07/29/2024] [Indexed: 08/04/2024]
Abstract
The ellipsoid body (EB) of the insect brain performs pivotal functions in controlling navigation. Input and output of the EB is provided by multiple classes of R-neurons (now referred to as ER-neurons) and columnar neurons which interact with each other in a stereotypical and spatially highly ordered manner. The developmental mechanisms that control the connectivity and topography of EB neurons are largely unknown. One indispensable prerequisite to unravel these mechanisms is to document in detail the sequence of events that shape EB neurons during their development. In this study, we analyzed the development of the Drosophila EB. In addition to globally following the ER-neuron and columnar neuron (sub)classes in the spatial context of their changing environment we performed a single cell analysis using the multi-color flip out (MCFO) system to analyze the developmental trajectory of ER-neurons at different pupal stages, young adults (4d) and aged adults (∼60d). We show that the EB develops as a merger of two distinct elements, a posterior and anterior EB primordium (prEBp and prEBa, respectively. ER-neurons belonging to different subclasses form growth cones and filopodia that associate with the prEBp and prEBa in a pattern that, from early pupal stages onward, foreshadows their mature structure. Filopodia of all ER-subclasses are initially much longer than the dendritic and terminal axonal branches they give rise to, and are pruned back during late pupal stages. Interestingly, extraneous branches, particularly significant in the dendritic domain, are a hallmark of ER-neuron structure in aged brains. Aging is also associated with a decline in synaptic connectivity from columnar neurons, as well as upregulation of presynaptic protein (Brp) in ER-neurons. Our findings advance the EB (and ER-neurons) as a favorable system to visualize and quantify the development and age-related decline of a complex neuronal circuitry.
Collapse
Affiliation(s)
- Sandra Koch
- Department of Molecular Cell and Developmental Biology, University of California Los Angeles, Los Angeles, CA, 90095, USA
| | - Pratyush Kandimalla
- Department of Molecular Cell and Developmental Biology, University of California Los Angeles, Los Angeles, CA, 90095, USA; Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | - Eddie Padilla
- Department of Molecular Cell and Developmental Biology, University of California Los Angeles, Los Angeles, CA, 90095, USA
| | - Sabrina Kaur
- Department of Molecular Cell and Developmental Biology, University of California Los Angeles, Los Angeles, CA, 90095, USA
| | - Rabina Kaur
- Department of Molecular Cell and Developmental Biology, University of California Los Angeles, Los Angeles, CA, 90095, USA
| | - My Nguyen
- Department of Molecular Cell and Developmental Biology, University of California Los Angeles, Los Angeles, CA, 90095, USA
| | - Annie Nelson
- Department of Molecular Cell and Developmental Biology, University of California Los Angeles, Los Angeles, CA, 90095, USA
| | - Satkartar Khalsa
- Department of Molecular Cell and Developmental Biology, University of California Los Angeles, Los Angeles, CA, 90095, USA
| | - Amelia Younossi-Hartenstein
- Department of Molecular Cell and Developmental Biology, University of California Los Angeles, Los Angeles, CA, 90095, USA
| | - Volker Hartenstein
- Department of Molecular Cell and Developmental Biology, University of California Los Angeles, Los Angeles, CA, 90095, USA.
| |
Collapse
|
6
|
Garner D, Kind E, Lai JYH, Nern A, Zhao A, Houghton L, Sancer G, Wolff T, Rubin GM, Wernet MF, Kim SS. Connectomic reconstruction predicts visual features used for navigation. Nature 2024; 634:181-190. [PMID: 39358517 PMCID: PMC11446847 DOI: 10.1038/s41586-024-07967-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Accepted: 08/20/2024] [Indexed: 10/04/2024]
Abstract
Many animals use visual information to navigate1-4, but how such information is encoded and integrated by the navigation system remains incompletely understood. In Drosophila melanogaster, EPG neurons in the central complex compute the heading direction5 by integrating visual input from ER neurons6-12, which are part of the anterior visual pathway (AVP)10,13-16. Here we densely reconstruct all neurons in the AVP using electron-microscopy data17. The AVP comprises four neuropils, sequentially linked by three major classes of neurons: MeTu neurons10,14,15, which connect the medulla in the optic lobe to the small unit of the anterior optic tubercle (AOTUsu) in the central brain; TuBu neurons9,16, which connect the AOTUsu to the bulb neuropil; and ER neurons6-12, which connect the bulb to the EPG neurons. On the basis of morphologies, connectivity between neural classes and the locations of synapses, we identify distinct information channels that originate from four types of MeTu neurons, and we further divide these into ten subtypes according to the presynaptic connections in the medulla and the postsynaptic connections in the AOTUsu. Using the connectivity of the entire AVP and the dendritic fields of the MeTu neurons in the optic lobes, we infer potential visual features and the visual area from which any ER neuron receives input. We confirm some of these predictions physiologically. These results provide a strong foundation for understanding how distinct sensory features can be extracted and transformed across multiple processing stages to construct higher-order cognitive representations.
Collapse
Affiliation(s)
- Dustin Garner
- Molecular, Cellular, and Developmental Biology, University of California Santa Barbara, Santa Barbara, CA, USA
| | - Emil Kind
- Department of Biology, Freie Universität Berlin, Berlin, Germany
| | - Jennifer Yuet Ha Lai
- Molecular, Cellular, and Developmental Biology, University of California Santa Barbara, Santa Barbara, CA, USA
| | - Aljoscha Nern
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA, USA
| | - Arthur Zhao
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA, USA
| | - Lucy Houghton
- Molecular, Cellular, and Developmental Biology, University of California Santa Barbara, Santa Barbara, CA, USA
| | - Gizem Sancer
- Department of Biology, Freie Universität Berlin, Berlin, Germany
- Department of Neuroscience, Yale University, New Haven, CT, USA
| | - Tanya Wolff
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA, USA
| | - Gerald M Rubin
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA, USA
| | - Mathias F Wernet
- Department of Biology, Freie Universität Berlin, Berlin, Germany.
| | - Sung Soo Kim
- Molecular, Cellular, and Developmental Biology, University of California Santa Barbara, Santa Barbara, CA, USA.
- Neuroscience Research Institute, University of California Santa Barbara, Santa Barbara, CA, USA.
- Dynamical Neuroscience, University of California Santa Barbara, Santa Barbara, CA, USA.
| |
Collapse
|
7
|
Matsliah A, Yu SC, Kruk K, Bland D, Burke AT, Gager J, Hebditch J, Silverman B, Willie KP, Willie R, Sorek M, Sterling AR, Kind E, Garner D, Sancer G, Wernet MF, Kim SS, Murthy M, Seung HS. Neuronal parts list and wiring diagram for a visual system. Nature 2024; 634:166-180. [PMID: 39358525 PMCID: PMC11446827 DOI: 10.1038/s41586-024-07981-1] [Citation(s) in RCA: 17] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Accepted: 08/21/2024] [Indexed: 10/04/2024]
Abstract
A catalogue of neuronal cell types has often been called a 'parts list' of the brain1, and regarded as a prerequisite for understanding brain function2,3. In the optic lobe of Drosophila, rules of connectivity between cell types have already proven to be essential for understanding fly vision4,5. Here we analyse the fly connectome to complete the list of cell types intrinsic to the optic lobe, as well as the rules governing their connectivity. Most new cell types contain 10 to 100 cells, and integrate information over medium distances in the visual field. Some existing type families (Tm, Li, and LPi)6-10 at least double in number of types. A new serpentine medulla (Sm) interneuron family contains more types than any other. Three families of cross-neuropil types are revealed. The consistency of types is demonstrated by analysing the distances in high-dimensional feature space, and is further validated by algorithms that select small subsets of discriminative features. We use connectivity to hypothesize about the functional roles of cell types in motion, object and colour vision. Connectivity with 'boundary types' that straddle the optic lobe and central brain is also quantified. We showcase the advantages of connectomic cell typing: complete and unbiased sampling, a rich array of features based on connectivity and reduction of the connectome to a substantially simpler wiring diagram of cell types, with immediate relevance for brain function and development.
Collapse
Affiliation(s)
- Arie Matsliah
- Princeton Neuroscience Institute, Princeton University, Princeton, NJ, USA
| | - Szi-Chieh Yu
- Princeton Neuroscience Institute, Princeton University, Princeton, NJ, USA
| | - Krzysztof Kruk
- Independent researcher, Kielce, Poland
- Eyewire, Boston, MA, USA
| | - Doug Bland
- Princeton Neuroscience Institute, Princeton University, Princeton, NJ, USA
| | - Austin T Burke
- Princeton Neuroscience Institute, Princeton University, Princeton, NJ, USA
| | - Jay Gager
- Princeton Neuroscience Institute, Princeton University, Princeton, NJ, USA
| | - James Hebditch
- Princeton Neuroscience Institute, Princeton University, Princeton, NJ, USA
| | - Ben Silverman
- Princeton Neuroscience Institute, Princeton University, Princeton, NJ, USA
| | | | - Ryan Willie
- Princeton Neuroscience Institute, Princeton University, Princeton, NJ, USA
| | - Marissa Sorek
- Princeton Neuroscience Institute, Princeton University, Princeton, NJ, USA
- Eyewire, Boston, MA, USA
| | - Amy R Sterling
- Princeton Neuroscience Institute, Princeton University, Princeton, NJ, USA
- Eyewire, Boston, MA, USA
| | - Emil Kind
- Institut für Biologie-Neurobiologie, Freie Universität Berlin, Berlin, Germany
| | - Dustin Garner
- Molecular, Cellular and Developmental Biology, University of California, Santa Barbara, Santa Barbara, CA, USA
| | - Gizem Sancer
- Department of Neuroscience, Yale University, New Haven, CT, USA
| | - Mathias F Wernet
- Institut für Biologie-Neurobiologie, Freie Universität Berlin, Berlin, Germany
| | - Sung Soo Kim
- Molecular, Cellular and Developmental Biology, University of California, Santa Barbara, Santa Barbara, CA, USA
| | - Mala Murthy
- Princeton Neuroscience Institute, Princeton University, Princeton, NJ, USA.
| | - H Sebastian Seung
- Princeton Neuroscience Institute, Princeton University, Princeton, NJ, USA.
- Computer Science Department, Princeton University, Princeton, NJ, USA.
| |
Collapse
|
8
|
Mota T, Paffhausen B, Menzel R. Chromatic processing and receptive-field structure in neurons of the anterior optic tract of the honeybee brain. PLoS One 2024; 19:e0310282. [PMID: 39264932 PMCID: PMC11392409 DOI: 10.1371/journal.pone.0310282] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Accepted: 08/28/2024] [Indexed: 09/14/2024] Open
Abstract
Color vision in honeybees is a well-documented perceptual phenomenon including multiple behavioral tests of trichromaticity and color opponency. Data on the combined color/space properties of high order visual neurons in the bee brain is however limited. Here we fill this gap by analyzing the activity of neurons in the anterior optic tract (AOT), a high order brain region suggested to be involved in chromatic processing. The spectral response properties of 72 units were measured using UV, blue and green light stimuli presented in 266 positions of the visual field. The majority of these units comprise combined chromatic-spatial processing properties. We found eight different neuron categories in terms of their spectral, spatial and temporal response properties. Color-opponent neurons, the most abundant neural category in the AOT, present large receptive fields and activity patterns that were typically opponent between UV and blue or green, particularly during the on-tonic response phase. Receptive field shapes and activity patterns of these color processing neurons are more similar between blue and green, than between UV and blue or green. We also identified intricate spatial antagonism and double spectral opponency in some receptive fields of color-opponent units. Stimulation protocols with different color combinations applied to 21 AOT units allowed us to uncover additional levels of spectral antagonism and hidden inhibitory inputs, even in some units that were initially classified as broad-band neurons based in their responses to single spectral lights. The results are discussed in the context of floral color discrimination and celestial spectral gradients.
Collapse
Affiliation(s)
- Theo Mota
- Institute of Biology, Neurobiology, Freie Universität Berlin, Berlin, Germany
- Department of Physiology and Biophysics, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, Brazil
| | - Benjamin Paffhausen
- Institute of Biology, Neurobiology, Freie Universität Berlin, Berlin, Germany
| | - Randolf Menzel
- Institute of Biology, Neurobiology, Freie Universität Berlin, Berlin, Germany
| |
Collapse
|
9
|
Bonanno SL, Sanfilippo P, Eamani A, Sampson MM, Kandagedon B, Li K, Burns GD, Makar ME, Zipursky SL, Krantz DE. Constitutive and Conditional Epitope Tagging of Endogenous G-Protein-Coupled Receptors in Drosophila. J Neurosci 2024; 44:e2377232024. [PMID: 38937100 PMCID: PMC11326870 DOI: 10.1523/jneurosci.2377-23.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 04/30/2024] [Accepted: 06/06/2024] [Indexed: 06/29/2024] Open
Abstract
To visualize the cellular and subcellular localization of neuromodulatory G-protein-coupled receptors in Drosophila, we implement a molecular strategy recently used to add epitope tags to ionotropic receptors at their endogenous loci. Leveraging evolutionary conservation to identify sites more likely to permit insertion of a tag, we generated constitutive and conditional tagged alleles for Drosophila 5-HT1A, 5-HT2A, 5-HT2B, Oct β 1R, Oct β 2R, two isoforms of OAMB, and mGluR The conditional alleles allow for the restricted expression of tagged receptor in specific cell types, an option not available for any previous reagents to label these proteins. We show expression patterns for these receptors in female brains and that 5-HT1A and 5-HT2B localize to the mushroom bodies (MBs) and central complex, respectively, as predicted by their roles in sleep. By contrast, the unexpected enrichment of Octβ1R in the central complex and of 5-HT1A and 5-HT2A to nerve terminals in lobular columnar cells in the visual system suggest new hypotheses about their functions at these sites. Using an additional tagged allele of the serotonin transporter, a marker of serotonergic tracts, we demonstrate diverse spatial relationships between postsynaptic 5-HT receptors and presynaptic 5-HT neurons, consistent with the importance of both synaptic and volume transmission. Finally, we use the conditional allele of 5-HT1A to show that it localizes to distinct sites within the MBs as both a postsynaptic receptor in Kenyon cells and a presynaptic autoreceptor.
Collapse
Affiliation(s)
- Shivan L Bonanno
- Department of Psychiatry and Biobehavioral Sciences, David Geffen School of Medicine, University of California, Los Angeles, California 90095
| | - Piero Sanfilippo
- Department of Biological Chemistry, David Geffen School of Medicine, University of California, Los Angeles, California 90095
- Howard Hughes Medical Institute, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, California 90095
| | - Aditya Eamani
- Department of Psychiatry and Biobehavioral Sciences, David Geffen School of Medicine, University of California, Los Angeles, California 90095
| | - Maureen M Sampson
- Department of Psychiatry and Biobehavioral Sciences, David Geffen School of Medicine, University of California, Los Angeles, California 90095
| | - Binu Kandagedon
- Department of Psychiatry and Biobehavioral Sciences, David Geffen School of Medicine, University of California, Los Angeles, California 90095
| | - Kenneth Li
- Department of Psychiatry and Biobehavioral Sciences, David Geffen School of Medicine, University of California, Los Angeles, California 90095
| | - Giselle D Burns
- Department of Psychiatry and Biobehavioral Sciences, David Geffen School of Medicine, University of California, Los Angeles, California 90095
| | - Marylyn E Makar
- Department of Psychiatry and Biobehavioral Sciences, David Geffen School of Medicine, University of California, Los Angeles, California 90095
| | - S Lawrence Zipursky
- Department of Biological Chemistry, David Geffen School of Medicine, University of California, Los Angeles, California 90095
- Howard Hughes Medical Institute, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, California 90095
| | - David E Krantz
- Department of Psychiatry and Biobehavioral Sciences, David Geffen School of Medicine, University of California, Los Angeles, California 90095
| |
Collapse
|
10
|
Dan C, Hulse BK, Kappagantula R, Jayaraman V, Hermundstad AM. A neural circuit architecture for rapid learning in goal-directed navigation. Neuron 2024; 112:2581-2599.e23. [PMID: 38795708 DOI: 10.1016/j.neuron.2024.04.036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Revised: 01/16/2024] [Accepted: 04/30/2024] [Indexed: 05/28/2024]
Abstract
Anchoring goals to spatial representations enables flexible navigation but is challenging in novel environments when both representations must be acquired simultaneously. We propose a framework for how Drosophila uses internal representations of head direction (HD) to build goal representations upon selective thermal reinforcement. We show that flies use stochastically generated fixations and directed saccades to express heading preferences in an operant visual learning paradigm and that HD neurons are required to modify these preferences based on reinforcement. We used a symmetric visual setting to expose how flies' HD and goal representations co-evolve and how the reliability of these interacting representations impacts behavior. Finally, we describe how rapid learning of new goal headings may rest on a behavioral policy whose parameters are flexible but whose form is genetically encoded in circuit architecture. Such evolutionarily structured architectures, which enable rapidly adaptive behavior driven by internal representations, may be relevant across species.
Collapse
Affiliation(s)
- Chuntao Dan
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA 20147, USA
| | - Brad K Hulse
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA 20147, USA
| | - Ramya Kappagantula
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA 20147, USA
| | - Vivek Jayaraman
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA 20147, USA.
| | - Ann M Hermundstad
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA 20147, USA.
| |
Collapse
|
11
|
Stentiford R, Knight JC, Nowotny T, Philippides A, Graham P. Estimating orientation in natural scenes: A spiking neural network model of the insect central complex. PLoS Comput Biol 2024; 20:e1011913. [PMID: 39146374 PMCID: PMC11349202 DOI: 10.1371/journal.pcbi.1011913] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Revised: 08/27/2024] [Accepted: 07/24/2024] [Indexed: 08/17/2024] Open
Abstract
The central complex of insects contains cells, organised as a ring attractor, that encode head direction. The 'bump' of activity in the ring can be updated by idiothetic cues and external sensory information. Plasticity at the synapses between these cells and the ring neurons, that are responsible for bringing sensory information into the central complex, has been proposed to form a mapping between visual cues and the heading estimate which allows for more accurate tracking of the current heading, than if only idiothetic information were used. In Drosophila, ring neurons have well characterised non-linear receptive fields. In this work we produce synthetic versions of these visual receptive fields using a combination of excitatory inputs and mutual inhibition between ring neurons. We use these receptive fields to bring visual information into a spiking neural network model of the insect central complex based on the recently published Drosophila connectome. Previous modelling work has focused on how this circuit functions as a ring attractor using the same type of simple visual cues commonly used experimentally. While we initially test the model on these simple stimuli, we then go on to apply the model to complex natural scenes containing multiple conflicting cues. We show that this simple visual filtering provided by the ring neurons is sufficient to form a mapping between heading and visual features and maintain the heading estimate in the absence of angular velocity input. The network is successful at tracking heading even when presented with videos of natural scenes containing conflicting information from environmental changes and translation of the camera.
Collapse
Affiliation(s)
- Rachael Stentiford
- Department of Informatics, University of Sussex, Brighton, United Kingdom
| | - James C. Knight
- Department of Informatics, University of Sussex, Brighton, United Kingdom
| | - Thomas Nowotny
- Department of Informatics, University of Sussex, Brighton, United Kingdom
| | - Andrew Philippides
- Department of Informatics, University of Sussex, Brighton, United Kingdom
| | - Paul Graham
- School of Life Sciences, University of Sussex, Brighton, United Kingdom
| |
Collapse
|
12
|
Althaus V, Exner G, von Hadeln J, Homberg U, Rosner R. Anatomical organization of the cerebrum of the praying mantis Hierodula membranacea. J Comp Neurol 2024; 532:e25607. [PMID: 38501930 DOI: 10.1002/cne.25607] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Revised: 02/22/2024] [Accepted: 03/07/2024] [Indexed: 03/20/2024]
Abstract
Many predatory animals, such as the praying mantis, use vision for prey detection and capture. Mantises are known in particular for their capability to estimate distances to prey by stereoscopic vision. While the initial visual processing centers have been extensively documented, we lack knowledge on the architecture of central brain regions, pivotal for sensory motor transformation and higher brain functions. To close this gap, we provide a three-dimensional (3D) reconstruction of the central brain of the Asian mantis, Hierodula membranacea. The atlas facilitates in-depth analysis of neuron ramification regions and aides in elucidating potential neuronal pathways. We integrated seven 3D-reconstructed visual interneurons into the atlas. In total, 42 distinct neuropils of the cerebrum were reconstructed based on synapsin-immunolabeled whole-mount brains. Backfills from the antenna and maxillary palps, as well as immunolabeling of γ-aminobutyric acid (GABA) and tyrosine hydroxylase (TH), further substantiate the identification and boundaries of brain areas. The composition and internal organization of the neuropils were compared to the anatomical organization of the brain of the fruit fly (Drosophila melanogaster) and the two available brain atlases of Polyneoptera-the desert locust (Schistocerca gregaria) and the Madeira cockroach (Rhyparobia maderae). This study paves the way for detailed analyses of neuronal circuitry and promotes cross-species brain comparisons. We discuss differences in brain organization between holometabolous and polyneopteran insects. Identification of ramification sites of the visual neurons integrated into the atlas supports previous claims about homologous structures in the optic lobes of flies and mantises.
Collapse
Affiliation(s)
- Vanessa Althaus
- Department of Biology, Animal Physiology, Philipps-University of Marburg, Marburg, Germany
| | - Gesa Exner
- Department of Biology, Animal Physiology, Philipps-University of Marburg, Marburg, Germany
- Center for Mind Brain and Behavior (CMBB), University of Marburg and Justus Liebig University of Giessen, Marburg, Germany
| | - Joss von Hadeln
- Department of Biology, Animal Physiology, Philipps-University of Marburg, Marburg, Germany
| | - Uwe Homberg
- Department of Biology, Animal Physiology, Philipps-University of Marburg, Marburg, Germany
- Center for Mind Brain and Behavior (CMBB), University of Marburg and Justus Liebig University of Giessen, Marburg, Germany
| | - Ronny Rosner
- Department of Biology, Animal Physiology, Philipps-University of Marburg, Marburg, Germany
- Department of Biology, Institute of Developmental Biology and Neurobiology, Johannes Gutenberg University of Mainz, Mainz, Germany
- Biosciences Institute, Henry Wellcome Building for Neuroecology, Newcastle University, Framlington Place, Newcastle upon Tyne, UK
| |
Collapse
|
13
|
Yilmaz A, Belušič G, J Foster J, Tocco C, Khaldy L, Dacke M. Polarisation vision in the dark: green-sensitive photoreceptors in the nocturnal ball-rolling dung beetle Escarabaeus satyrus. J Exp Biol 2024; 227:jeb246374. [PMID: 38284763 DOI: 10.1242/jeb.246374] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Accepted: 01/19/2024] [Indexed: 01/30/2024]
Abstract
Many insects utilise the polarisation pattern of the sky to adjust their travelling directions. The extraction of directional information from this sky-wide cue is mediated by specialised photoreceptors located in the dorsal rim area (DRA). While this part of the eye is known to be sensitive to the ultraviolet, blue or green component of skylight, the latter has only been observed in insects active in dim light. To address the functional significance of green polarisation sensitivity, we define the spectral and morphological adaptations of the DRA in a nocturnal ball-rolling dung beetle-the only family of insects demonstrated to orient to the dim polarisation pattern in the night sky. Intracellular recordings revealed polarisation-sensitive green photoreceptors in the DRA of Escarabaeus satyrus. Behavioural experiments verified the navigational relevance of this finding. To quantify the adaptive value of green sensitivity for celestial orientation at night, we also obtained the polarisation properties of the night sky in the natural habitat of the beetle. Calculations of relative photon catch revealed that under a moonlit sky the green-sensitive DRA photoreceptors can be expected to catch an order of magnitude more photons compared with the UV-sensitive photoreceptors in the main retina. The green-sensitive photoreceptors - which also show a range of morphological adaptations for enhanced sensitivity - provide E. satyrus with a highly sensitive system for the extraction of directional information from the night sky.
Collapse
Affiliation(s)
- Ayse Yilmaz
- Lund Vision Group, Department of Biology, Lund University, 223 62 Lund, Sweden
| | - Gregor Belušič
- Department of Biology, Biotechnical Faculty, University of Ljubljana, Večna pot 111, 1000 Ljubljana, Slovenia
| | - James J Foster
- Lund Vision Group, Department of Biology, Lund University, 223 62 Lund, Sweden
- Neurobiology, University of Konstanz, Universitätsstr. 10, 78464 Konstanz, Germany
| | - Claudia Tocco
- Lund Vision Group, Department of Biology, Lund University, 223 62 Lund, Sweden
| | - Lana Khaldy
- Lund Vision Group, Department of Biology, Lund University, 223 62 Lund, Sweden
| | - Marie Dacke
- Lund Vision Group, Department of Biology, Lund University, 223 62 Lund, Sweden
| |
Collapse
|
14
|
Bonanno SL, Sanfilippo P, Eamani A, Sampson MM, Binu K, Li K, Burns GD, Makar ME, Zipursky SL, Krantz DE. Constitutive and conditional epitope-tagging of endogenous G protein coupled receptors in Drosophila. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.12.27.573472. [PMID: 38234787 PMCID: PMC10793450 DOI: 10.1101/2023.12.27.573472] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/19/2024]
Abstract
To visualize the cellular and subcellular localization of neuromodulatory G-protein coupled receptors (GPCRs) in Drosophila , we implement a molecular strategy recently used to add epitope tags to ionotropic receptors at their endogenous loci. Leveraging evolutionary conservation to identify sites more likely to permit insertion of a tag, we generated constitutive and conditional tagged alleles for Drosophila 5-HT1A, 5-HT2A, 5-HT2B, Octβ1R, Octβ2R, two isoforms of OAMB, and mGluR. The conditional alleles allow for the restricted expression of tagged receptor in specific cell types, an option not available for any previous reagents to label these proteins. We show that 5-HT1A and 5-HT2B localize to the mushroom bodies and central complex respectively, as predicted by their roles in sleep. By contrast, the unexpected enrichment of Octβ1R in the central complex and of 5-HT1A and 5-HT2A to nerve terminals in lobular columnar cells in the visual system suggest new hypotheses about their function at these sites. Using an additional tagged allele of the serotonin transporter, a marker of serotonergic tracts, we demonstrate diverse spatial relationships between postsynaptic 5-HT receptors and presynaptic 5-HT neurons, consistent with the importance of both synaptic and volume transmission. Finally, we use the conditional allele of 5-HT1A to show that it localizes to distinct sites within the mushroom bodies as both a postsynaptic receptor in Kenyon cells and a presynaptic autoreceptor. Significance Statement In Drosophila , despite remarkable advances in both connectomic and genomic studies, antibodies to many aminergic GPCRs are not available. We have overcome this obstacle using evolutionary conservation to identify loci in GPCRs amenable to epitope-tagging, and CRISPR/Cas9 genome editing to generated eight novel lines. This method also may be applied to other GPCRs and allows cell-specific expression of the tagged locus. We have used the tagged alleles we generated to address several questions that remain poorly understood. These include the relationship between pre- and post-synaptic sites that express the same receptor, and the use of relatively distant targets by pre-synaptic release sites that may employ volume transmission as well as standard synaptic signaling.
Collapse
|
15
|
Wainwright JB, Schofield C, Conway M, Phillips D, Martin-Silverstone E, Brodrick EA, Cicconardi F, How MJ, Roberts NW, Montgomery SH. Multiple axes of visual system diversity in Ithomiini, an ecologically diverse tribe of mimetic butterflies. J Exp Biol 2023; 226:jeb246423. [PMID: 37921078 PMCID: PMC10714147 DOI: 10.1242/jeb.246423] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Accepted: 10/31/2023] [Indexed: 11/04/2023]
Abstract
The striking structural variation seen in arthropod visual systems can be explained by the overall quantity and spatio-temporal structure of light within habitats coupled with developmental and physiological constraints. However, little is currently known about how fine-scale variation in visual structures arises across shorter evolutionary and ecological scales. In this study, we characterise patterns of interspecific (between species), intraspecific (between sexes) and intraindividual (between eye regions) variation in the visual system of four ithomiine butterfly species. These species are part of a diverse 26-million-year-old Neotropical radiation where changes in mimetic colouration are associated with fine-scale shifts in ecology, such as microhabitat preference. Using a combination of selection analyses on visual opsin sequences, in vivo ophthalmoscopy, micro-computed tomography (micro-CT), immunohistochemistry, confocal microscopy and neural tracing, we quantify and describe physiological, anatomical and molecular traits involved in visual processing. Using these data, we provide evidence of substantial variation within the visual systems of Ithomiini, including: (i) relaxed selection on visual opsins, perhaps mediated by habitat preference, (ii) interspecific shifts in visual system physiology and anatomy, and (iii) extensive sexual dimorphism, including the complete absence of a butterfly-specific optic neuropil in the males of some species. We conclude that considerable visual system variation can exist within diverse insect radiations, hinting at the evolutionary lability of these systems to rapidly develop specialisations to distinct visual ecologies, with selection acting at the perceptual, processing and molecular level.
Collapse
Affiliation(s)
- J. Benito Wainwright
- School of Biological Sciences, University of Bristol, 24 Tyndall Avenue, Bristol BS8 1TQ, UK
| | - Corin Schofield
- School of Biological Sciences, University of Bristol, 24 Tyndall Avenue, Bristol BS8 1TQ, UK
| | - Max Conway
- School of Biological Sciences, University of Bristol, 24 Tyndall Avenue, Bristol BS8 1TQ, UK
| | - Daniel Phillips
- School of Biological Sciences, University of Bristol, 24 Tyndall Avenue, Bristol BS8 1TQ, UK
| | - Elizabeth Martin-Silverstone
- Bristol Palaeobiology Group, School of Earth Sciences, University of Bristol, 24 Tyndall Avenue, Bristol BS8 1TQ, UK
| | - Emelie A. Brodrick
- Living Systems Institute, University of Exeter, Stocker Road, Exeter EX4 4QD, UK
| | - Francesco Cicconardi
- School of Biological Sciences, University of Bristol, 24 Tyndall Avenue, Bristol BS8 1TQ, UK
| | - Martin J. How
- School of Biological Sciences, University of Bristol, 24 Tyndall Avenue, Bristol BS8 1TQ, UK
| | - Nicholas W. Roberts
- School of Biological Sciences, University of Bristol, 24 Tyndall Avenue, Bristol BS8 1TQ, UK
| | - Stephen H. Montgomery
- School of Biological Sciences, University of Bristol, 24 Tyndall Avenue, Bristol BS8 1TQ, UK
| |
Collapse
|
16
|
Beetz MJ, El Jundi B. The neurobiology of the Monarch butterfly compass. CURRENT OPINION IN INSECT SCIENCE 2023; 60:101109. [PMID: 37660836 DOI: 10.1016/j.cois.2023.101109] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 08/17/2023] [Accepted: 08/28/2023] [Indexed: 09/05/2023]
Abstract
Monarch butterflies (Danaus plexippus) have become a superb model system to unravel how the tiny insect brain controls an impressive navigation behavior, such as long-distance migration. Moreover, the ability to compare the neural substrate between migratory and nonmigratory Monarch butterflies provides us with an attractive model to specifically study how the insect brain is adapted for migration. We here review our current progress on the neural substrate of spatial orientation in Monarch butterflies and how their spectacular annual migration might be controlled by their brain. We also discuss open research questions, the answers to which will provide important missing pieces to obtain a full picture of insect migration - from the perception of orientation cues to the neural control of migration.
Collapse
Affiliation(s)
- M Jerome Beetz
- Zoology II, Biocenter, University of Würzburg, Würzburg, Germany
| | - Basil El Jundi
- Animal Physiology, Department of Biology, Norwegian University of Science and Technology, Trondheim, Norway.
| |
Collapse
|
17
|
Goulard R, Heinze S, Webb B. Emergent spatial goals in an integrative model of the insect central complex. PLoS Comput Biol 2023; 19:e1011480. [PMID: 38109465 PMCID: PMC10760860 DOI: 10.1371/journal.pcbi.1011480] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 01/02/2024] [Accepted: 12/01/2023] [Indexed: 12/20/2023] Open
Abstract
The insect central complex appears to encode and process spatial information through vector manipulation. Here, we draw on recent insights into circuit structure to fuse previous models of sensory-guided navigation, path integration and vector memory. Specifically, we propose that the allocentric encoding of location provided by path integration creates a spatially stable anchor for converging sensory signals that is relevant in multiple behavioural contexts. The allocentric reference frame given by path integration transforms a goal direction into a goal location and we demonstrate through modelling that it can enhance approach of a sensory target in noisy, cluttered environments or with temporally sparse stimuli. We further show the same circuit can improve performance in the more complex navigational task of route following. The model suggests specific functional roles for circuit elements of the central complex that helps explain their high preservation across insect species.
Collapse
Affiliation(s)
- Roman Goulard
- Lund Vision Group, Department of Biology, Lund University, Lund, Sweden
| | - Stanley Heinze
- Lund Vision Group, Department of Biology, Lund University, Lund, Sweden
| | - Barbara Webb
- Institute for Perception, Action, and Behaviour, School of Informatics, University of Edinburgh, Edinburgh, Scotland, United Kingdom
| |
Collapse
|
18
|
Garner D, Kind E, Nern A, Houghton L, Zhao A, Sancer G, Rubin GM, Wernet MF, Kim SS. Connectomic reconstruction predicts the functional organization of visual inputs to the navigation center of the Drosophila brain. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.11.29.569241. [PMID: 38076786 PMCID: PMC10705420 DOI: 10.1101/2023.11.29.569241] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/22/2023]
Abstract
Many animals, including humans, navigate their surroundings by visual input, yet we understand little about how visual information is transformed and integrated by the navigation system. In Drosophila melanogaster, compass neurons in the donut-shaped ellipsoid body of the central complex generate a sense of direction by integrating visual input from ring neurons, a part of the anterior visual pathway (AVP). Here, we densely reconstruct all neurons in the AVP using FlyWire, an AI-assisted tool for analyzing electron-microscopy data. The AVP comprises four neuropils, sequentially linked by three major classes of neurons: MeTu neurons, which connect the medulla in the optic lobe to the small unit of anterior optic tubercle (AOTUsu) in the central brain; TuBu neurons, which connect the anterior optic tubercle to the bulb neuropil; and ring neurons, which connect the bulb to the ellipsoid body. Based on neuronal morphologies, connectivity between different neural classes, and the locations of synapses, we identified non-overlapping channels originating from four types of MeTu neurons, which we further divided into ten subtypes based on the presynaptic connections in medulla and postsynaptic connections in AOTUsu. To gain an objective measure of the natural variation within the pathway, we quantified the differences between anterior visual pathways from both hemispheres and between two electron-microscopy datasets. Furthermore, we infer potential visual features and the visual area from which any given ring neuron receives input by combining the connectivity of the entire AVP, the MeTu neurons' dendritic fields, and presynaptic connectivity in the optic lobes. These results provide a strong foundation for understanding how distinct visual features are extracted and transformed across multiple processing stages to provide critical information for computing the fly's sense of direction.
Collapse
Affiliation(s)
- Dustin Garner
- Molecular, Cellular, and Developmental Biology, University of California Santa Barbara, Santa Barbara, CA, USA
| | - Emil Kind
- Department of Biology, Freie Universität Berlin, Berlin, Germany
| | - Aljoscha Nern
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA, USA
| | - Lucy Houghton
- Molecular, Cellular, and Developmental Biology, University of California Santa Barbara, Santa Barbara, CA, USA
| | - Arthur Zhao
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA, USA
| | - Gizem Sancer
- Department of Biology, Freie Universität Berlin, Berlin, Germany
| | - Gerald M. Rubin
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA, USA
| | | | - Sung Soo Kim
- Molecular, Cellular, and Developmental Biology, University of California Santa Barbara, Santa Barbara, CA, USA
| |
Collapse
|
19
|
Chua NJ, Makarova AA, Gunn P, Villani S, Cohen B, Thasin M, Wu J, Shefter D, Pang S, Xu CS, Hess HF, Polilov AA, Chklovskii DB. A complete reconstruction of the early visual system of an adult insect. Curr Biol 2023; 33:4611-4623.e4. [PMID: 37774707 DOI: 10.1016/j.cub.2023.09.021] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Revised: 09/07/2023] [Accepted: 09/08/2023] [Indexed: 10/01/2023]
Abstract
For most model organisms in neuroscience, research into visual processing in the brain is difficult because of a lack of high-resolution maps that capture complex neuronal circuitry. The microinsect Megaphragma viggianii, because of its small size and non-trivial behavior, provides a unique opportunity for tractable whole-organism connectomics. We image its whole head using serial electron microscopy. We reconstruct its compound eye and analyze the optical properties of the ommatidia as well as the connectome of the first visual neuropil-the lamina. Compared with the fruit fly and the honeybee, Megaphragma visual system is highly simplified: it has 29 ommatidia per eye and 6 lamina neuron types. We report features that are both stereotypical among most ommatidia and specialized to some. By identifying the "barebones" circuits critical for flying insects, our results will facilitate constructing computational models of visual processing in insects.
Collapse
Affiliation(s)
- Nicholas J Chua
- Center for Computational Neuroscience, Flatiron Institute, New York, NY 10010, USA; Department of Biological Sciences, Columbia University, New York, NY 10027, USA
| | | | - Pat Gunn
- Center for Computational Neuroscience, Flatiron Institute, New York, NY 10010, USA
| | - Sonia Villani
- Center for Computational Neuroscience, Flatiron Institute, New York, NY 10010, USA
| | - Ben Cohen
- Center for Computational Neuroscience, Flatiron Institute, New York, NY 10010, USA
| | - Myisha Thasin
- Center for Computational Neuroscience, Flatiron Institute, New York, NY 10010, USA
| | - Jingpeng Wu
- Center for Computational Neuroscience, Flatiron Institute, New York, NY 10010, USA
| | - Deena Shefter
- Center for Computational Neuroscience, Flatiron Institute, New York, NY 10010, USA
| | - Song Pang
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA 20147, USA
| | - C Shan Xu
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA 20147, USA
| | - Harald F Hess
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA 20147, USA
| | - Alexey A Polilov
- Faculty of Biology, Lomonosov Moscow State University, Moscow 119991, Russia
| | - Dmitri B Chklovskii
- Center for Computational Neuroscience, Flatiron Institute, New York, NY 10010, USA; Neuroscience Institute, New York University Langone Medical Center, New York, NY 10016, USA.
| |
Collapse
|
20
|
Jahn S, Althaus V, Heckmann J, Janning M, Seip AK, Takahashi N, Grigoriev C, Kolano J, Homberg U. Neuroarchitecture of the central complex in the Madeira cockroach Rhyparobia maderae: Pontine and columnar neuronal cell types. J Comp Neurol 2023; 531:1689-1714. [PMID: 37608556 DOI: 10.1002/cne.25535] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 07/27/2023] [Accepted: 08/03/2023] [Indexed: 08/24/2023]
Abstract
Insects have evolved remarkable abilities to navigate over short distances and during long-range seasonal migrations. The central complex (CX) is a navigation center in the insect brain that controls spatial orientation and directed locomotion. It is composed of the protocerebral bridge (PB), the upper (CBU) and lower (CBL) division of the central body, and a pair of noduli. While most of its functional organization and involvement in head-direction coding has been obtained from work on flies, bees, and locusts that largely rely on vision for navigation, little contribution has been provided by work on nocturnal species. To close this gap, we have investigated the columnar organization of the CX in the cockroach Rhyparobia maderae. Rhyparobia maderae is a highly agile nocturnal insect that relies largely but not exclusively on antennal information for navigation. A particular feature of the cockroach CX is an organization of the CBU and CBL into interleaved series of eight and nine columns. Single-cell tracer injections combined with imaging and 3D analysis revealed five systems of pontine neurons connecting columns along the vertical and horizontal axis and 18 systems of columnar neurons with topographically organized projection patterns. Among these are six types of neurons with no correspondence in other species. Many neurons send processes into the anterior lip, a brain area highly reduced in bees and unknown in flies. While sharing many features with the CX in other species, the cockroach CX shows some unique attributes that may be related to the ecological niche of this insect.
Collapse
Affiliation(s)
- Stefanie Jahn
- Animal Physiology, Department of Biology, Philipps University of Marburg, Marburg, Germany
| | - Vanessa Althaus
- Animal Physiology, Department of Biology, Philipps University of Marburg, Marburg, Germany
| | - Jannik Heckmann
- Animal Physiology, Department of Biology, Philipps University of Marburg, Marburg, Germany
| | - Mona Janning
- Animal Physiology, Department of Biology, Philipps University of Marburg, Marburg, Germany
| | - Ann-Katrin Seip
- Animal Physiology, Department of Biology, Philipps University of Marburg, Marburg, Germany
| | - Naomi Takahashi
- Animal Physiology, Department of Biology, Philipps University of Marburg, Marburg, Germany
| | - Clara Grigoriev
- Animal Physiology, Department of Biology, Philipps University of Marburg, Marburg, Germany
| | - Juliana Kolano
- Animal Physiology, Department of Biology, Philipps University of Marburg, Marburg, Germany
| | - Uwe Homberg
- Animal Physiology, Department of Biology, Philipps University of Marburg, Marburg, Germany
- Center for Mind Brain and Behavior (CMBB), University of Marburg and Justus Liebig University Giessen, Marburg, Germany
| |
Collapse
|
21
|
Wernet MF, Roberts NW, Belušič G. Non-celestial polarization vision in arthropods. J Comp Physiol A Neuroethol Sens Neural Behav Physiol 2023; 209:855-857. [PMID: 37874372 DOI: 10.1007/s00359-023-01679-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2023] [Revised: 10/05/2023] [Accepted: 10/09/2023] [Indexed: 10/25/2023]
Abstract
Most insects can detect the pattern of polarized light in the sky with the dorsal rim area in their compound eyes and use this visual information to navigate in their environment by means of 'celestial' polarization vision. 'Non-celestial polarization vision', in contrast, refers to the ability of arthropods to analyze polarized light by means of the 'main' retina, excluding the dorsal rim area. The ability of using the main retina for polarization vision has been attracting sporadic, but steady attention during the last decade. This special issue of the Journal of Comparative Physiology A presents recent developments with a collection of seven original research articles, addressing different aspects of non-celestial polarization vision in crustaceans and insects. The contributions cover different sources of linearly polarized light in nature, the underlying retinal and neural mechanisms of object detection using polarization vision and the behavioral responses of arthropods to polarized reflections from water.
Collapse
Affiliation(s)
- Mathias F Wernet
- Division of Neurobiology, Institute of Biology, Fachbereich Biologie, Freie Universität Berlin, Chemie and PharmazieKönigin-Luise Strasse 1-3, 14195, Berlin, Germany
| | - Nicholas W Roberts
- Ecology of Vision Group, School of Biological Sciences, University of Bristol, Bristol, BS8 1TQ, UK
| | - Gregor Belušič
- Biotechnical Faculty, Department of Biology, University of Ljubljana, Večna Pot 111, 1000, Ljubljana, Slovenia.
| |
Collapse
|
22
|
Beck M, Althaus V, Pegel U, Homberg U. Neurons sensitive to non-celestial polarized light in the brain of the desert locust. J Comp Physiol A Neuroethol Sens Neural Behav Physiol 2023; 209:907-928. [PMID: 36809566 PMCID: PMC10643347 DOI: 10.1007/s00359-023-01618-w] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 01/20/2023] [Accepted: 02/04/2023] [Indexed: 02/23/2023]
Abstract
Owing to alignment of rhodopsin in microvillar photoreceptors, insects are sensitive to the oscillation plane of polarized light. This property is used by many species to navigate with respect to the polarization pattern of light from the blue sky. In addition, the polarization angle of light reflected from shiny surfaces such as bodies of water, animal skin, leaves, or other objects can enhance contrast and visibility. Whereas photoreceptors and central mechanisms involved in celestial polarization vision have been investigated in great detail, little is known about peripheral and central mechanisms of sensing the polarization angle of light reflected from objects and surfaces. Desert locusts, like other insects, use a polarization-dependent sky compass for navigation but are also sensitive to polarization angles from horizontal directions. In order to further analyze the processing of polarized light reflected from objects or water surfaces, we tested the sensitivity of brain interneurons to the angle of polarized blue light presented from ventral direction in locusts that had their dorsal eye regions painted black. Neurons encountered interconnect the optic lobes, invade the central body, or send descending axons to the ventral nerve cord but are not part of the polarization vision pathway involved in sky-compass coding.
Collapse
Affiliation(s)
- Marius Beck
- Department of Biology, Animal Physiology, Philipps University of Marburg, 35032, Marburg, Germany
- Institute of Biology, University of Siegen, 57068, Siegen, Germany
| | - Vanessa Althaus
- Department of Biology, Animal Physiology, Philipps University of Marburg, 35032, Marburg, Germany
| | - Uta Pegel
- Department of Biology, Animal Physiology, Philipps University of Marburg, 35032, Marburg, Germany
| | - Uwe Homberg
- Department of Biology, Animal Physiology, Philipps University of Marburg, 35032, Marburg, Germany.
- Center for Mind Brain and Behavior (CMBB), Philipps-University of Marburg and Justus Liebig University of Giessen, 35032, Marburg, Germany.
| |
Collapse
|
23
|
Mathejczyk TF, Babo ÉJ, Schönlein E, Grinda NV, Greiner A, Okrožnik N, Belušič G, Wernet MF. Behavioral responses of free-flying Drosophila melanogaster to shiny, reflecting surfaces. J Comp Physiol A Neuroethol Sens Neural Behav Physiol 2023; 209:929-941. [PMID: 37796303 PMCID: PMC10643280 DOI: 10.1007/s00359-023-01676-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 09/14/2023] [Accepted: 09/16/2023] [Indexed: 10/06/2023]
Abstract
Active locomotion plays an important role in the life of many animals, permitting them to explore the environment, find vital resources, and escape predators. Most insect species rely on a combination of visual cues such as celestial bodies, landmarks, or linearly polarized light to navigate or orient themselves in their surroundings. In nature, linearly polarized light can arise either from atmospheric scattering or from reflections off shiny non-metallic surfaces like water. Multiple reports have described different behavioral responses of various insects to such shiny surfaces. Our goal was to test whether free-flying Drosophila melanogaster, a molecular genetic model organism and behavioral generalist, also manifests specific behavioral responses when confronted with such polarized reflections. Fruit flies were placed in a custom-built arena with controlled environmental parameters (temperature, humidity, and light intensity). Flight detections and landings were quantified for three different stimuli: a diffusely reflecting matt plate, a small patch of shiny acetate film, and real water. We compared hydrated and dehydrated fly populations, since the state of hydration may change the motivation of flies to seek or avoid water. Our analysis reveals for the first time that flying fruit flies indeed use vision to avoid flying over shiny surfaces.
Collapse
Affiliation(s)
- Thomas F Mathejczyk
- Division of Neurobiology, Institute of Biology, Fachbereich Biologie, Chemie and Pharmazie, Freie Universität Berlin, Königin-Luise Strasse 1-3, 14195, Berlin, Germany
| | - Édouard J Babo
- Division of Neurobiology, Institute of Biology, Fachbereich Biologie, Chemie and Pharmazie, Freie Universität Berlin, Königin-Luise Strasse 1-3, 14195, Berlin, Germany
| | - Erik Schönlein
- Division of Neurobiology, Institute of Biology, Fachbereich Biologie, Chemie and Pharmazie, Freie Universität Berlin, Königin-Luise Strasse 1-3, 14195, Berlin, Germany
| | - Nikolai V Grinda
- Division of Neurobiology, Institute of Biology, Fachbereich Biologie, Chemie and Pharmazie, Freie Universität Berlin, Königin-Luise Strasse 1-3, 14195, Berlin, Germany
| | - Andreas Greiner
- Division of Neurobiology, Institute of Biology, Fachbereich Biologie, Chemie and Pharmazie, Freie Universität Berlin, Königin-Luise Strasse 1-3, 14195, Berlin, Germany
| | - Nina Okrožnik
- Division of Neurobiology, Institute of Biology, Fachbereich Biologie, Chemie and Pharmazie, Freie Universität Berlin, Königin-Luise Strasse 1-3, 14195, Berlin, Germany
| | - Gregor Belušič
- Department of Biology, Biotechnical Faculty, University of Ljubljana, Ljubljana, Slovenia
| | - Mathias F Wernet
- Division of Neurobiology, Institute of Biology, Fachbereich Biologie, Chemie and Pharmazie, Freie Universität Berlin, Königin-Luise Strasse 1-3, 14195, Berlin, Germany.
| |
Collapse
|
24
|
Wolcott KA, Stanley EL, Gutierrez OA, Wuchty S, Whitlock BA. 3D pollination biology using micro-computed tomography and geometric morphometrics in Theobroma cacao. APPLICATIONS IN PLANT SCIENCES 2023; 11:e11549. [PMID: 37915432 PMCID: PMC10617321 DOI: 10.1002/aps3.11549] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/04/2023] [Revised: 06/05/2023] [Accepted: 06/13/2023] [Indexed: 11/03/2023]
Abstract
Premise Imaging technologies that capture three-dimensional (3D) variation in floral morphology at micro- and nano-resolutions are increasingly accessible. In herkogamous flowers, such as those of Theobroma cacao, structural barriers between anthers and stigmas represent bottlenecks that restrict pollinator size and access to reproductive organs. To study the unresolved pollination biology of cacao, we present a novel application of micro-computed tomography (micro-CT) using floral dimensions to quantify pollinator functional size limits. Methods We generated micro-CT data sets from field-collected flowers and museum specimens of potential pollinators. To compare floral variation, we used 3D Slicer to place landmarks on the surface models and performed a geometric morphometric (GMM) analysis using geomorph R. We identified the petal side door (an opening between the petal hoods and filament) as the main bottleneck for pollinator access. We compared its mean dimensions with proposed pollinators to identify viable candidates. Results We identified three levels of likelihood for putative pollinators based on the number of morphological (body) dimensions that fit through the petal side door. We also found floral reward microstructures whose presence and location were previously unclear. Discussion Using micro-CT and GMM to study the 3D pollination biology of cacao provides new evidence for predicting unknown pollinators. Incorporating geometry and floral rewards will strengthen plant-pollinator trait matching models for cacao and other species.
Collapse
Affiliation(s)
| | - Edward L. Stanley
- Department of Natural HistoryFlorida Museum of Natural HistoryGainesvilleFloridaUSA
| | - Osman A. Gutierrez
- Subtropical Horticultural Research StationUnited States Department of Agriculture–Agricultural Research Service (USDA‐ARS)MiamiFlorida33158USA
| | - Stefan Wuchty
- Department of BiologyUniversity of MiamiCoral GablesFlorida33124USA
- Department of Computer ScienceUniversity of MiamiCoral GablesFlorida33146USA
- Institute of Data Science and ComputingUniversity of MiamiCoral GablesFlorida33146USA
- Sylvester Comprehensive Cancer CenterUniversity of MiamiMiamiFlorida33136USA
| | | |
Collapse
|
25
|
Schlegel P, Yin Y, Bates AS, Dorkenwald S, Eichler K, Brooks P, Han DS, Gkantia M, Dos Santos M, Munnelly EJ, Badalamente G, Capdevila LS, Sane VA, Pleijzier MW, Tamimi IFM, Dunne CR, Salgarella I, Javier A, Fang S, Perlman E, Kazimiers T, Jagannathan SR, Matsliah A, Sterling AR, Yu SC, McKellar CE, Costa M, Seung HS, Murthy M, Hartenstein V, Bock DD, Jefferis GSXE. Whole-brain annotation and multi-connectome cell typing quantifies circuit stereotypy in Drosophila. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.06.27.546055. [PMID: 37425808 PMCID: PMC10327018 DOI: 10.1101/2023.06.27.546055] [Citation(s) in RCA: 38] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/11/2023]
Abstract
The fruit fly Drosophila melanogaster combines surprisingly sophisticated behaviour with a highly tractable nervous system. A large part of the fly's success as a model organism in modern neuroscience stems from the concentration of collaboratively generated molecular genetic and digital resources. As presented in our FlyWire companion paper 1 , this now includes the first full brain connectome of an adult animal. Here we report the systematic and hierarchical annotation of this ~130,000-neuron connectome including neuronal classes, cell types and developmental units (hemilineages). This enables any researcher to navigate this huge dataset and find systems and neurons of interest, linked to the literature through the Virtual Fly Brain database 2 . Crucially, this resource includes 4,552 cell types. 3,094 are rigorous consensus validations of cell types previously proposed in the hemibrain connectome 3 . In addition, we propose 1,458 new cell types, arising mostly from the fact that the FlyWire connectome spans the whole brain, whereas the hemibrain derives from a subvolume. Comparison of FlyWire and the hemibrain showed that cell type counts and strong connections were largely stable, but connection weights were surprisingly variable within and across animals. Further analysis defined simple heuristics for connectome interpretation: connections stronger than 10 unitary synapses or providing >1% of the input to a target cell are highly conserved. Some cell types showed increased variability across connectomes: the most common cell type in the mushroom body, required for learning and memory, is almost twice as numerous in FlyWire as the hemibrain. We find evidence for functional homeostasis through adjustments of the absolute amount of excitatory input while maintaining the excitation-inhibition ratio. Finally, and surprisingly, about one third of the cell types proposed in the hemibrain connectome could not yet be reliably identified in the FlyWire connectome. We therefore suggest that cell types should be defined to be robust to inter-individual variation, namely as groups of cells that are quantitatively more similar to cells in a different brain than to any other cell in the same brain. Joint analysis of the FlyWire and hemibrain connectomes demonstrates the viability and utility of this new definition. Our work defines a consensus cell type atlas for the fly brain and provides both an intellectual framework and open source toolchain for brain-scale comparative connectomics.
Collapse
|
26
|
Wilson RI. Neural Networks for Navigation: From Connections to Computations. Annu Rev Neurosci 2023; 46:403-423. [PMID: 37428603 DOI: 10.1146/annurev-neuro-110920-032645] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/12/2023]
Abstract
Many animals can navigate toward a goal they cannot see based on an internal representation of that goal in the brain's spatial maps. These maps are organized around networks with stable fixed-point dynamics (attractors), anchored to landmarks, and reciprocally connected to motor control. This review summarizes recent progress in understanding these networks, focusing on studies in arthropods. One factor driving recent progress is the availability of the Drosophila connectome; however, it is increasingly clear that navigation depends on ongoing synaptic plasticity in these networks. Functional synapses appear to be continually reselected from the set of anatomical potential synapses based on the interaction of Hebbian learning rules, sensory feedback, attractor dynamics, and neuromodulation. This can explain how the brain's maps of space are rapidly updated; it may also explain how the brain can initialize goals as stable fixed points for navigation.
Collapse
Affiliation(s)
- Rachel I Wilson
- Department of Neurobiology, Harvard Medical School, Cambridge, Massachusetts, USA;
| |
Collapse
|
27
|
Kandimalla P, Omoto JJ, Hong EJ, Hartenstein V. Lineages to circuits: the developmental and evolutionary architecture of information channels into the central complex. J Comp Physiol A Neuroethol Sens Neural Behav Physiol 2023; 209:679-720. [PMID: 36932234 PMCID: PMC10354165 DOI: 10.1007/s00359-023-01616-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 01/27/2023] [Accepted: 01/28/2023] [Indexed: 03/19/2023]
Abstract
The representation and integration of internal and external cues is crucial for any organism to execute appropriate behaviors. In insects, a highly conserved region of the brain, the central complex (CX), functions in the representation of spatial information and behavioral states, as well as the transformation of this information into desired navigational commands. How does this relatively invariant structure enable the incorporation of information from the diversity of anatomical, behavioral, and ecological niches occupied by insects? Here, we examine the input channels to the CX in the context of their development and evolution. Insect brains develop from ~ 100 neuroblasts per hemisphere that divide systematically to form "lineages" of sister neurons, that project to their target neuropils along anatomically characteristic tracts. Overlaying this developmental tract information onto the recently generated Drosophila "hemibrain" connectome and integrating this information with the anatomical and physiological recording of neurons in other species, we observe neuropil and lineage-specific innervation, connectivity, and activity profiles in CX input channels. We posit that the proliferative potential of neuroblasts and the lineage-based architecture of information channels enable the modification of neural networks across existing, novel, and deprecated modalities in a species-specific manner, thus forming the substrate for the evolution and diversification of insect navigational circuits.
Collapse
Affiliation(s)
- Pratyush Kandimalla
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, USA.
- Department of Molecular, Cell and Developmental Biology, University of California, Los Angeles, CA, USA.
| | - Jaison Jiro Omoto
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, USA
- Department of Molecular, Cell and Developmental Biology, University of California, Los Angeles, CA, USA
| | - Elizabeth J Hong
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, USA
| | - Volker Hartenstein
- Department of Molecular, Cell and Developmental Biology, University of California, Los Angeles, CA, USA
| |
Collapse
|
28
|
Mitchell R, Shaverdian S, Dacke M, Webb B. A model of cue integration as vector summation in the insect brain. Proc Biol Sci 2023; 290:20230767. [PMID: 37357865 PMCID: PMC10291719 DOI: 10.1098/rspb.2023.0767] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Accepted: 05/30/2023] [Indexed: 06/27/2023] Open
Abstract
Ball-rolling dung beetles are known to integrate multiple cues in order to facilitate their straight-line orientation behaviour. Recent work has suggested that orientation cues are integrated according to a vector sum, that is, compass cues are represented by vectors and summed to give a combined orientation estimate. Further, cue weight (vector magnitude) appears to be set according to cue reliability. This is consistent with the popular Bayesian view of cue integration: cues are integrated to reduce or minimize an agent's uncertainty about the external world. Integration of orientation cues is believed to occur at the input to the insect central complex. Here, we demonstrate that a model of the head direction circuit of the central complex, including plasticity in input synapses, can act as a substrate for cue integration as vector summation. Further, we show that cue influence is not necessarily driven by cue reliability. Finally, we present a dung beetle behavioural experiment which, in combination with simulation, strongly suggests that these beetles do not weight cues according to reliability. We suggest an alternative strategy whereby cues are weighted according to relative contrast, which can also explain previous results.
Collapse
Affiliation(s)
- Robert Mitchell
- Institute for Perception, Action, and Behaviour, The University of Edinburgh School of Informatics, Edinburgh, Edinburgh EH8 9AB, UK
| | - Shahrzad Shaverdian
- Lund Vision Group, Department of Biology, Lund University, Lund SE-223 62, Sweden
| | - Marie Dacke
- Lund Vision Group, Department of Biology, Lund University, Lund SE-223 62, Sweden
| | - Barbara Webb
- Institute for Perception, Action, and Behaviour, The University of Edinburgh School of Informatics, Edinburgh, Edinburgh EH8 9AB, UK
| |
Collapse
|
29
|
Duan W, Zhang Y, Zhang X, Yang J, Shan H, Liu L, Wei H. A Visual Pathway into Central Complex for High-Frequency Motion-Defined Bars in Drosophila. J Neurosci 2023; 43:4821-4836. [PMID: 37290936 PMCID: PMC10312062 DOI: 10.1523/jneurosci.0128-23.2023] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Revised: 05/31/2023] [Accepted: 06/02/2023] [Indexed: 06/10/2023] Open
Abstract
Relative motion breaks a camouflaged target from a same-textured background, thus eliciting discrimination of a motion-defined object. Ring (R) neurons are critical components in the Drosophila central complex, which has been implicated in multiple visually guided behaviors. Using two-photon calcium imaging with female flies, we demonstrated that a specific population of R neurons that innervate the superior domain of bulb neuropil, termed superior R neurons, encoded a motion-defined bar with high spatial frequency contents. Upstream superior tuberculo-bulbar (TuBu) neurons transmitted visual signals by releasing acetylcholine within synapses connected with superior R neurons. Blocking TuBu or R neurons impaired tracking performance of the bar, which reveals their importance in motion-defined feature encoding. Additionally, the presentation of a low spatial frequency luminance-defined bar evoked consistent excitation in R neurons of the superior bulb, whereas either excited or inhibited responses were evoked in the inferior bulb. The distinct properties of the responses to the two bar stimuli indicate there is a functional division between the bulb subdomains. Moreover, physiological and behavioral tests with restricted lines suggest that R4d neurons play a vital role in tracking motion-defined bars. We conclude that the central complex receives the motion-defined features via a visual pathway from superior TuBu to R neurons and might encode different visual features via distinct response patterns at the population level, thereby driving visually guided behaviors.SIGNIFICANCE STATEMENT Animals could discriminate a motion-defined object that is indistinguishable with a same-textured background until it moves, but little is known about the underlying neural mechanisms. In this study, we identified that R neurons and their upstream partners, TuBu neurons, innervating the superior bulb of Drosophila central brain are involved in the discrimination of high-frequency motion-defined bars. Our study provides new evidence that R neurons receive multiple visual inputs from distinct upstream neurons, indicating a population coding mechanism for the fly central brain to discriminate diverse visual features. These results build progress in unraveling neural substrates for visually guided behaviors.
Collapse
Affiliation(s)
- Wenlan Duan
- State Key Laboratory of Brain and Cognitive Science, Chinese Academy of Sciences Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
- College of Life Sciences, University of the Chinese Academy of Sciences, Beijing 100039, China
| | - Yihao Zhang
- State Key Laboratory of Brain and Cognitive Science, Chinese Academy of Sciences Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
- College of Life Sciences, University of the Chinese Academy of Sciences, Beijing 100039, China
| | - Xin Zhang
- State Key Laboratory of Brain and Cognitive Science, Chinese Academy of Sciences Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
- College of Life Sciences, University of the Chinese Academy of Sciences, Beijing 100039, China
| | - Jihua Yang
- State Key Laboratory of Brain and Cognitive Science, Chinese Academy of Sciences Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
- College of Life Sciences, University of the Chinese Academy of Sciences, Beijing 100039, China
| | - Heying Shan
- State Key Laboratory of Brain and Cognitive Science, Chinese Academy of Sciences Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | - Li Liu
- State Key Laboratory of Brain and Cognitive Science, Chinese Academy of Sciences Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
- College of Life Sciences, University of the Chinese Academy of Sciences, Beijing 100039, China
- Chinese Academy of Sciences Key Laboratory of Mental Health, Beijing 100101, China
| | - Hongying Wei
- State Key Laboratory of Brain and Cognitive Science, Chinese Academy of Sciences Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
- College of Life Sciences, University of the Chinese Academy of Sciences, Beijing 100039, China
| |
Collapse
|
30
|
Currier TA, Pang MM, Clandinin TR. Visual processing in the fly, from photoreceptors to behavior. Genetics 2023; 224:iyad064. [PMID: 37128740 PMCID: PMC10213501 DOI: 10.1093/genetics/iyad064] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Accepted: 03/22/2023] [Indexed: 05/03/2023] Open
Abstract
Originally a genetic model organism, the experimental use of Drosophila melanogaster has grown to include quantitative behavioral analyses, sophisticated perturbations of neuronal function, and detailed sensory physiology. A highlight of these developments can be seen in the context of vision, where pioneering studies have uncovered fundamental and generalizable principles of sensory processing. Here we begin with an overview of vision-guided behaviors and common methods for probing visual circuits. We then outline the anatomy and physiology of brain regions involved in visual processing, beginning at the sensory periphery and ending with descending motor control. Areas of focus include contrast and motion detection in the optic lobe, circuits for visual feature selectivity, computations in support of spatial navigation, and contextual associative learning. Finally, we look to the future of fly visual neuroscience and discuss promising topics for further study.
Collapse
Affiliation(s)
- Timothy A Currier
- Department of Neurobiology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Michelle M Pang
- Department of Neurobiology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Thomas R Clandinin
- Department of Neurobiology, Stanford University School of Medicine, Stanford, CA 94305, USA
| |
Collapse
|
31
|
Ugolini A, Hariyama T, Wilcockson DC, Mercatelli L. The use of polarized light in the zonal orientation of the sandhopper Talitrus saltator (Montagu). ZOOLOGICAL LETTERS 2023; 9:10. [PMID: 37202801 DOI: 10.1186/s40851-023-00207-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Accepted: 04/16/2023] [Indexed: 05/20/2023]
Abstract
It is well known that the celestial polarization is used as a compass cue by many species of insects and crustaceans. Although it has been shown that the sandhopper Talitrus saltator perceives polarized light and possesses an arrangement of the rhabdomeres that could allow e-vector interpretation and utilization, T. saltator does not use the e-vector of the skylight polarization as a compass cue when making excursions along the sea-land axis of sandy shores. We performed tests in confined conditions to clarify if skylight polarization is somehow involved in the zonal recovery of T. saltator. We observed the directional responses of sandhoppers in a transparent bowl under an artificial sky (an opaline Plexiglas dome). The bowl was covered by a blue gelatin filter with a grey filter (control condition) and a linear polarizing filter (experimental conditions) positioned under the blue one in such a way as to occupy half of the upper surface of the Plexiglas bowl so as to create a linear polarization gradient. Our experiments confirm that T. saltator perceives polarized light and highlight that this visual capability determines the perception, or perhaps the increase, of the radiance and/or spectral gradient and their use as compass cues in the zonal orientation. Moreover, our findings confirm that the radiance gradient is used as a chronometric compass orienting reference in the absence of other celestial orienting cues.
Collapse
Affiliation(s)
- Alberto Ugolini
- Dipartimento Di Biologia, Università Di Firenze, Via Romana 17-19, 50125, Florence, Italy.
| | - Takahiko Hariyama
- Institute for NanoSuit Research, Preeminent Medical Photonics Education and Research Center, Hamamatsu University, School of Medicine, 1-20-1 Handayama, Higashi-Ku, Hamamatsu, 431-3192, Japan.
| | - David C Wilcockson
- Institute of Biological Environmental and Rural Sciences, Aberystwyth University, Penglais, Aberystwyth, SY23 3DA, UK
| | - Luca Mercatelli
- Istituto Nazionale di Ottica - CNR, Largo E. Fermi 6, 50125, Florence, Italy
| |
Collapse
|
32
|
Beetz MJ, El Jundi B. The influence of stimulus history on directional coding in the monarch butterfly brain. J Comp Physiol A Neuroethol Sens Neural Behav Physiol 2023:10.1007/s00359-023-01633-x. [PMID: 37095358 DOI: 10.1007/s00359-023-01633-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Revised: 04/05/2023] [Accepted: 04/12/2023] [Indexed: 04/26/2023]
Abstract
The central complex is a brain region in the insect brain that houses a neural network specialized to encode directional information. Directional coding has traditionally been investigated with compass cues that revolve in full rotations and at constant angular velocities around the insect's head. However, these stimulus conditions do not fully simulate an insect's sensory perception of compass cues during navigation. In nature, an insect flight is characterized by abrupt changes in moving direction as well as constant changes in velocity. The influence of such varying cue dynamics on compass coding remains unclear. We performed long-term tetrode recordings from the brain of monarch butterflies to study how central complex neurons respond to different stimulus velocities and directions. As these butterflies derive directional information from the sun during migration, we measured the neural response to a virtual sun. The virtual sun was either presented as a spot that appeared at random angular positions or was rotated around the butterfly at different angular velocities and directions. By specifically manipulating the stimulus velocity and trajectory, we dissociated the influence of angular velocity and direction on compass coding. While the angular velocity substantially affected the tuning directedness, the stimulus trajectory influenced the shape of the angular tuning curve. Taken together, our results suggest that the central complex flexibly adjusts its directional coding to the current stimulus dynamics ensuring a precise compass even under highly demanding conditions such as during rapid flight maneuvers.
Collapse
Affiliation(s)
- M Jerome Beetz
- Zoology II, Biocenter, University of Würzburg, Würzburg, Germany.
| | - Basil El Jundi
- Zoology II, Biocenter, University of Würzburg, Würzburg, Germany
- Animal Physiology, Department of Biology, Norwegian University of Science and Technology, Trondheim, Norway
| |
Collapse
|
33
|
Honkanen A, Hensgen R, Kannan K, Adden A, Warrant E, Wcislo W, Heinze S. Parallel motion vision pathways in the brain of a tropical bee. J Comp Physiol A Neuroethol Sens Neural Behav Physiol 2023:10.1007/s00359-023-01625-x. [PMID: 37017717 DOI: 10.1007/s00359-023-01625-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Revised: 03/01/2023] [Accepted: 03/09/2023] [Indexed: 04/06/2023]
Abstract
Spatial orientation is a prerequisite for most behaviors. In insects, the underlying neural computations take place in the central complex (CX), the brain's navigational center. In this region different streams of sensory information converge to enable context-dependent navigational decisions. Accordingly, a variety of CX input neurons deliver information about different navigation-relevant cues. In bees, direction encoding polarized light signals converge with translational optic flow signals that are suited to encode the flight speed of the animals. The continuous integration of speed and directions in the CX can be used to generate a vector memory of the bee's current position in space in relation to its nest, i.e., perform path integration. This process depends on specific, complex features of the optic flow encoding CX input neurons, but it is unknown how this information is derived from the visual periphery. Here, we thus aimed at gaining insight into how simple motion signals are reshaped upstream of the speed encoding CX input neurons to generate their complex features. Using electrophysiology and anatomical analyses of the halictic bees Megalopta genalis and Megalopta centralis, we identified a wide range of motion-sensitive neurons connecting the optic lobes with the central brain. While most neurons formed pathways with characteristics incompatible with CX speed neurons, we showed that one group of lobula projection neurons possess some physiological and anatomical features required to generate the visual responses of CX optic-flow encoding neurons. However, as these neurons cannot explain all features of CX speed cells, local interneurons of the central brain or alternative input cells from the optic lobe are additionally required to construct inputs with sufficient complexity to deliver speed signals suited for path integration in bees.
Collapse
Affiliation(s)
- Anna Honkanen
- Lund Vision Group, Department of Biology, Lund University, Lund, Sweden
| | - Ronja Hensgen
- Lund Vision Group, Department of Biology, Lund University, Lund, Sweden
| | - Kavitha Kannan
- Lund Vision Group, Department of Biology, Lund University, Lund, Sweden
| | - Andrea Adden
- Lund Vision Group, Department of Biology, Lund University, Lund, Sweden
- Neural Circuits and Evolution Lab, The Francis Crick Institute, London, UK
| | - Eric Warrant
- Lund Vision Group, Department of Biology, Lund University, Lund, Sweden
| | - William Wcislo
- Smithsonian Tropical Research Institute, Panama City, República de Panamá
| | - Stanley Heinze
- Lund Vision Group, Department of Biology, Lund University, Lund, Sweden.
- NanoLund, Lund University, Lund, Sweden.
| |
Collapse
|
34
|
Yan W, Lin H, Yu J, Wiggin TD, Wu L, Meng Z, Liu C, Griffith LC. Subtype-Specific Roles of Ellipsoid Body Ring Neurons in Sleep Regulation in Drosophila. J Neurosci 2023; 43:764-786. [PMID: 36535771 PMCID: PMC9899086 DOI: 10.1523/jneurosci.1350-22.2022] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2022] [Revised: 09/22/2022] [Accepted: 10/26/2022] [Indexed: 12/23/2022] Open
Abstract
The ellipsoid body (EB) is a major structure of the central complex of the Drosophila melanogaster brain. Twenty-two subtypes of EB ring neurons have been identified based on anatomic and morphologic characteristics by light-level microscopy and EM connectomics. A few studies have associated ring neurons with the regulation of sleep homeostasis and structure. However, cell type-specific and population interactions in the regulation of sleep remain unclear. Using an unbiased thermogenetic screen of EB drivers using female flies, we found the following: (1) multiple ring neurons are involved in the modulation of amount of sleep and structure in a synergistic manner; (2) analysis of data for ΔP(doze)/ΔP(wake) using a mixed Gaussian model detected 5 clusters of GAL4 drivers which had similar effects on sleep pressure and/or depth: lines driving arousal contained R4m neurons, whereas lines that increased sleep pressure had R3m cells; (3) a GLM analysis correlating ring cell subtype and activity-dependent changes in sleep parameters across all lines identified several cell types significantly associated with specific sleep effects: R3p was daytime sleep-promoting, and R4m was nighttime wake-promoting; and (4) R3d cells present in 5HT7-GAL4 and in GAL4 lines, which exclusively affect sleep structure, were found to contribute to fragmentation of sleep during both day and night. Thus, multiple subtypes of ring neurons distinctively control sleep amount and/or structure. The unique highly interconnected structure of the EB suggests a local-network model worth future investigation; understanding EB subtype interactions may provide insight how sleep circuits in general are structured.SIGNIFICANCE STATEMENT How multiple brain regions, with many cell types, can coherently regulate sleep remains unclear, but identification of cell type-specific roles can generate opportunities for understanding the principles of integration and cooperation. The ellipsoid body (EB) of the fly brain exhibits a high level of connectivity and functional heterogeneity yet is able to tune multiple behaviors in real-time, including sleep. Leveraging the powerful genetic tools available in Drosophila and recent progress in the characterization of the morphology and connectivity of EB ring neurons, we identify several EB subtypes specifically associated with distinct aspects of sleep. Our findings will aid in revealing the rules of coding and integration in the brain.
Collapse
Affiliation(s)
- Wei Yan
- Brain Cognition and Brain Disease Institute, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen-Hong Kong Institute of Brain Science-Shenzhen Fundamental Research Institutions, Shenzhen, 518000, China
| | - Hai Lin
- Central Research Institute, United Imaging Healthcare, Shanghai, 200032, China
| | - Junwei Yu
- Department of Biology, National Center for Behavioral Genomics and Volen Center for Complex Systems, Brandeis University, Waltham, Massachusetts 02453
| | - Timothy D Wiggin
- Department of Biology, National Center for Behavioral Genomics and Volen Center for Complex Systems, Brandeis University, Waltham, Massachusetts 02453
| | - Litao Wu
- Brain Cognition and Brain Disease Institute, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen-Hong Kong Institute of Brain Science-Shenzhen Fundamental Research Institutions, Shenzhen, 518000, China
| | - Zhiqiang Meng
- Brain Cognition and Brain Disease Institute, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen-Hong Kong Institute of Brain Science-Shenzhen Fundamental Research Institutions, Shenzhen, 518000, China
- CAS Key Laboratory of Brain Connectome and Manipulation, Shenzhen, 518000, China
- Shenzhen Key Laboratory of Drug Addiction, Shenzhen, 518000, China
| | - Chang Liu
- Brain Cognition and Brain Disease Institute, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen-Hong Kong Institute of Brain Science-Shenzhen Fundamental Research Institutions, Shenzhen, 518000, China
- CAS Key Laboratory of Brain Connectome and Manipulation, Shenzhen, 518000, China
- Shenzhen Key Laboratory of Viral Vectors for Biomedicine, Shenzhen, 518000, China
| | - Leslie C Griffith
- Department of Biology, National Center for Behavioral Genomics and Volen Center for Complex Systems, Brandeis University, Waltham, Massachusetts 02453
| |
Collapse
|
35
|
Pfeiffer K. The neuronal building blocks of the navigational toolkit in the central complex of insects. CURRENT OPINION IN INSECT SCIENCE 2023; 55:100972. [PMID: 36126877 DOI: 10.1016/j.cois.2022.100972] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Revised: 09/03/2022] [Accepted: 09/12/2022] [Indexed: 06/15/2023]
Abstract
The central complex in the brain of insects is a group of midline-spanning neuropils at the interface between sensory and premotor tasks of the brain. It is involved in sleep control, decision-making and most prominently in goal-directed locomotion behaviors. The recently published connectome of the central complex of Drosophila melanogaster is a milestone in understanding the intricacies of the central-complex circuits and will provide inspiration for testable hypotheses for the coming years. Here, I provide a basic neuroanatomical description of the central complex of Drosophila and other species and discuss some recent advancements, some of which, such as the discovery of coordinate transformation through vector math, have been predicted from connectomics data.
Collapse
Affiliation(s)
- Keram Pfeiffer
- Behavioural Physiology and Sociobiology (Zoology II), Biocenter, University of Würzburg, 97074 Würzburg, Germany.
| |
Collapse
|
36
|
Zittrell F, Pabst K, Carlomagno E, Rosner R, Pegel U, Endres DM, Homberg U. Integration of optic flow into the sky compass network in the brain of the desert locust. Front Neural Circuits 2023; 17:1111310. [PMID: 37187914 PMCID: PMC10175609 DOI: 10.3389/fncir.2023.1111310] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Accepted: 03/30/2023] [Indexed: 05/17/2023] Open
Abstract
Flexible orientation through any environment requires a sense of current relative heading that is updated based on self-motion. Global external cues originating from the sky or the earth's magnetic field and local cues provide a reference frame for the sense of direction. Locally, optic flow may inform about turning maneuvers, travel speed and covered distance. The central complex in the insect brain is associated with orientation behavior and largely acts as a navigation center. Visual information from global celestial cues and local landmarks are integrated in the central complex to form an internal representation of current heading. However, it is less clear how optic flow is integrated into the central-complex network. We recorded intracellularly from neurons in the locust central complex while presenting lateral grating patterns that simulated translational and rotational motion to identify these sites of integration. Certain types of central-complex neurons were sensitive to optic-flow stimulation independent of the type and direction of simulated motion. Columnar neurons innervating the noduli, paired central-complex substructures, were tuned to the direction of simulated horizontal turns. Modeling the connectivity of these neurons with a system of proposed compass neurons can account for rotation-direction specific shifts in the activity profile in the central complex corresponding to turn direction. Our model is similar but not identical to the mechanisms proposed for angular velocity integration in the navigation compass of the fly Drosophila.
Collapse
Affiliation(s)
- Frederick Zittrell
- Department of Biology, Philipps-Universität Marburg, Marburg, Germany
- Center for Mind, Brain and Behavior (CMBB), University of Marburg and Justus Liebig University, Marburg, Germany
| | - Kathrin Pabst
- Center for Mind, Brain and Behavior (CMBB), University of Marburg and Justus Liebig University, Marburg, Germany
- Department of Psychology, Philipps-Universität Marburg, Marburg, Germany
| | - Elena Carlomagno
- Department of Biology, Philipps-Universität Marburg, Marburg, Germany
| | - Ronny Rosner
- Department of Biology, Philipps-Universität Marburg, Marburg, Germany
| | - Uta Pegel
- Department of Biology, Philipps-Universität Marburg, Marburg, Germany
| | - Dominik M. Endres
- Center for Mind, Brain and Behavior (CMBB), University of Marburg and Justus Liebig University, Marburg, Germany
- Department of Psychology, Philipps-Universität Marburg, Marburg, Germany
| | - Uwe Homberg
- Department of Biology, Philipps-Universität Marburg, Marburg, Germany
- Center for Mind, Brain and Behavior (CMBB), University of Marburg and Justus Liebig University, Marburg, Germany
- *Correspondence: Uwe Homberg
| |
Collapse
|
37
|
The sky compass network in the brain of the desert locust. J Comp Physiol A Neuroethol Sens Neural Behav Physiol 2022:10.1007/s00359-022-01601-x. [PMID: 36550368 DOI: 10.1007/s00359-022-01601-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Revised: 11/24/2022] [Accepted: 12/06/2022] [Indexed: 12/24/2022]
Abstract
Many arthropods and vertebrates use celestial signals such as the position of the sun during the day or stars at night as compass cues for spatial orientation. The neural network underlying sky compass coding in the brain has been studied in great detail in the desert locust Schistocerca gregaria. These insects perform long-range migrations in Northern Africa and the Middle East following seasonal changes in rainfall. Highly specialized photoreceptors in a dorsal rim area of their compound eyes are sensitive to the polarization of the sky, generated by scattered sunlight. These signals are combined with direct information on the sun position in the optic lobe and anterior optic tubercle and converge from both eyes in a midline crossing brain structure, the central complex. Here, head direction coding is achieved by a compass-like arrangement of columns signaling solar azimuth through a 360° range of space by combining direct brightness cues from the sun with polarization cues matching the polarization pattern of the sky. Other directional cues derived from wind direction and internal self-rotation input are likely integrated. Signals are transmitted as coherent steering commands to descending neurons for directional control of locomotion and flight.
Collapse
|
38
|
Galili DS, Jefferis GS, Costa M. Connectomics and the neural basis of behaviour. CURRENT OPINION IN INSECT SCIENCE 2022; 54:100968. [PMID: 36113710 PMCID: PMC7614087 DOI: 10.1016/j.cois.2022.100968] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Revised: 08/30/2022] [Accepted: 09/06/2022] [Indexed: 06/15/2023]
Abstract
Methods to acquire and process synaptic-resolution electron-microscopy datasets have progressed very rapidly, allowing production and annotation of larger, more complete connectomes. More accurate neuronal matching techniques are enriching cell type data with gene expression, neuron activity, behaviour and developmental information, providing ways to test hypotheses of circuit function. In a variety of behaviours such as learned and innate olfaction, navigation and sexual behaviour, connectomics has already revealed interconnected modules with a hierarchical structure, recurrence and integration of sensory streams. Comparing individual connectomes to determine which circuit features are robust and which are variable is one key research area; new work in comparative connectomics across development, experience, sex and species will establish strong links between neuronal connectivity and brain function.
Collapse
Affiliation(s)
- Dana S Galili
- Neurobiology Division, MRC Laboratory of Molecular Biology, Cambridge CB2 0QH, UK
| | - Gregory Sxe Jefferis
- Neurobiology Division, MRC Laboratory of Molecular Biology, Cambridge CB2 0QH, UK; Drosophila Connectomics Group, Department of Zoology, University of Cambridge, Downing Street, Cambridge CB2 3EJ, UK
| | - Marta Costa
- Drosophila Connectomics Group, Department of Zoology, University of Cambridge, Downing Street, Cambridge CB2 3EJ, UK.
| |
Collapse
|
39
|
Liang H, Chua Y, Wang J, Li Q, Yu F, Zhu M, Peng G. Polarized light compass decoding. APPLIED OPTICS 2022; 61:9247-9255. [PMID: 36607060 DOI: 10.1364/ao.473630] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Accepted: 10/05/2022] [Indexed: 06/17/2023]
Abstract
The brains of some insects can encode and decode polarization information and obtain heading angle information. Referring to the encoding ability of insects, exponential function encoding is designed to improve the stability of the polarized light compass artificial neural network. However, in the decoding process, only neurons with the largest activation degree are used for decoding (maximum value decoding), so the heading information contained in other neurons is not used. Therefore, average value decoding (AVD) and weighted AVD are proposed to use the heading information contained in multiple neurons to determine the heading. In addition, concerning the phenomenon of threshold activation of insect neurons, threshold value decoding (TVD) and weighted TVD are proposed, which can effectively eliminate the interference of neurons with low activation. Moreover, this paper proposes to improve the heading determination accuracy of the artificial neural network through pre-training. The simulation and experimental results show that the new, to the best of our knowledge, decoding methods and pre-training can effectively improve the heading determination accuracy of the artificial neural network.
Collapse
|
40
|
Shaverdian S, Dirlik E, Mitchell R, Tocco C, Webb B, Dacke M. Weighted cue integration for straight-line orientation. iScience 2022; 25:105207. [PMID: 36274940 PMCID: PMC9583106 DOI: 10.1016/j.isci.2022.105207] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Revised: 09/05/2022] [Accepted: 09/22/2022] [Indexed: 11/30/2022] Open
Abstract
Animals commonly integrate multiple sources of information to guide their behavior. Among insects, previous studies have suggested that the relative reliability of cues affects their weighting in behavior, but have not systematically explored how well alternative integration strategies can account for the observed directional choices. Here, we characterize the directional reliability of an ersatz sun at different elevations and wind at different speeds as guiding cues for a species of ball-rolling dung beetle. The relative reliability is then shown to determine which cue dominates when the cues are put in conflict. We further show through modeling that the results are best explained by continuous integration of the cues as a vector-sum (rather than switching between them) but with non-optimal weighting and small individual biases. The neural circuitry in the insect central complex appears to provide an ideal substrate for this type of vector-sum-based integration mechanism.
Collapse
Affiliation(s)
- Shahrzad Shaverdian
- Lund Vision Group, Department of Biology, Lund University, 223 62 Lund, Sweden
| | - Elin Dirlik
- Lund Vision Group, Department of Biology, Lund University, 223 62 Lund, Sweden,Corresponding author
| | - Robert Mitchell
- School of Informatics, The University of Edinburgh, Edinburgh EH8 9AB, UK
| | - Claudia Tocco
- Lund Vision Group, Department of Biology, Lund University, 223 62 Lund, Sweden
| | - Barbara Webb
- School of Informatics, The University of Edinburgh, Edinburgh EH8 9AB, UK
| | - Marie Dacke
- Lund Vision Group, Department of Biology, Lund University, 223 62 Lund, Sweden
| |
Collapse
|
41
|
Farnworth MS, Bucher G, Hartenstein V. An atlas of the developing Tribolium castaneum brain reveals conservation in anatomy and divergence in timing to Drosophila melanogaster. J Comp Neurol 2022; 530:2335-2371. [PMID: 35535818 PMCID: PMC9646932 DOI: 10.1002/cne.25335] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Revised: 04/12/2022] [Accepted: 04/13/2022] [Indexed: 11/11/2022]
Abstract
Insect brains are formed by conserved sets of neural lineages whose fibers form cohesive bundles with characteristic projection patterns. Within the brain neuropil, these bundles establish a system of fascicles constituting the macrocircuitry of the brain. The overall architecture of the neuropils and the macrocircuitry appear to be conserved. However, variation is observed, for example, in size, shape, and timing of development. Unfortunately, the developmental and genetic basis of this variation is poorly understood, although the rise of new genetically tractable model organisms such as the red flour beetle Tribolium castaneum allows the possibility to gain mechanistic insights. To facilitate such work, we present an atlas of the developing brain of T. castaneum, covering the first larval instar, the prepupal stage, and the adult, by combining wholemount immunohistochemical labeling of fiber bundles (acetylated tubulin) and neuropils (synapsin) with digital 3D reconstruction using the TrakEM2 software package. Upon comparing this anatomical dataset with the published work in Drosophila melanogaster, we confirm an overall high degree of conservation. Fiber tracts and neuropil fascicles, which can be visualized by global neuronal antibodies like antiacetylated tubulin in all invertebrate brains, create a rich anatomical framework to which individual neurons or other regions of interest can be referred to. The framework of a largely conserved pattern allowed us to describe differences between the two species with respect to parameters such as timing of neuron proliferation and maturation. These features likely reflect adaptive changes in developmental timing that govern the change from larval to adult brain.
Collapse
Affiliation(s)
- Max S Farnworth
- Department of Evolutionary Developmental Genetics, Johann-Friedrich-Blumenbach Institute, GZMB, University of Göttingen, Göttingen, Germany
- Evolution of Brains and Behaviour lab, School of Biological Sciences, University of Bristol, Bristol, UK
| | - Gregor Bucher
- Department of Evolutionary Developmental Genetics, Johann-Friedrich-Blumenbach Institute, GZMB, University of Göttingen, Göttingen, Germany
| | - Volker Hartenstein
- Department of Molecular Cell and Developmental Biology, University of California/Los Angeles, Los Angeles, USA
| |
Collapse
|
42
|
Althaus V, Jahn S, Massah A, Stengl M, Homberg U. 3D-atlas of the brain of the cockroach Rhyparobia maderae. J Comp Neurol 2022; 530:3126-3156. [PMID: 36036660 DOI: 10.1002/cne.25396] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Revised: 07/21/2022] [Accepted: 07/24/2022] [Indexed: 11/07/2022]
Abstract
The Madeira cockroach Rhyparobia maderae is a nocturnal insect and a prominent model organism for the study of circadian rhythms. Its master circadian clock, controlling circadian locomotor activity and sleep-wake cycles, is located in the accessory medulla of the optic lobe. For a better understanding of brain regions controlled by the circadian clock and brain organization of this insect in general, we created a three-dimensional (3D) reconstruction of all neuropils of the cerebral ganglia based on anti-synapsin and anti-γ-aminobutyric acid immunolabeling of whole mount brains. Forty-nine major neuropils were identified and three-dimensionally reconstructed. Single-cell dye fills complement the data and provide evidence for distinct subdivisions of certain brain areas. Most neuropils defined in the fruit fly Drosophila melanogaster could be distinguished in the cockroach as well. However, some neuropils identified in the fruit fly do not exist as distinct entities in the cockroach while others are lacking in the fruit fly. In addition to neuropils, major fiber systems, tracts, and commissures were reconstructed and served as important landmarks separating brain areas. Being a nocturnal insect, R. maderae is an important new species to the growing collection of 3D insect brain atlases and only the second hemimetabolous insect, for which a detailed 3D brain atlas is available. This atlas will be highly valuable for an evolutionary comparison of insect brain organization and will greatly facilitate addressing brain areas that are supervised by the circadian clock.
Collapse
Affiliation(s)
- Vanessa Althaus
- Department of Biology, Animal Physiology, Philipps-University of Marburg, Marburg, Germany
| | - Stefanie Jahn
- Department of Biology, Animal Physiology, Philipps-University of Marburg, Marburg, Germany
| | - Azar Massah
- Faculty of Mathematics and Natural Sciences, Institute of Biology, Animal Physiology, University of Kassel, Kassel, Germany
| | - Monika Stengl
- Faculty of Mathematics and Natural Sciences, Institute of Biology, Animal Physiology, University of Kassel, Kassel, Germany
| | - Uwe Homberg
- Department of Biology, Animal Physiology, Philipps-University of Marburg, Marburg, Germany
- Center for Mind Brain and Behavior (CMBB), University of Marburg and Justus Liebig University of Giessen, Marburg, Germany
| |
Collapse
|
43
|
Nguyen TAT, Beetz MJ, Merlin C, Pfeiffer K, el Jundi B. Weighting of Celestial and Terrestrial Cues in the Monarch Butterfly Central Complex. Front Neural Circuits 2022; 16:862279. [PMID: 35847485 PMCID: PMC9285895 DOI: 10.3389/fncir.2022.862279] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Accepted: 06/10/2022] [Indexed: 12/02/2022] Open
Abstract
Monarch butterflies rely on external cues for orientation during their annual long-distance migration from Northern US and Canada to Central Mexico. These external cues can be celestial cues, such as the sun or polarized light, which are processed in a brain region termed the central complex (CX). Previous research typically focused on how individual simulated celestial cues are encoded in the butterfly's CX. However, in nature, the butterflies perceive several celestial cues at the same time and need to integrate them to effectively use the compound of all cues for orientation. In addition, a recent behavioral study revealed that monarch butterflies can rely on terrestrial cues, such as the panoramic skyline, for orientation and use them in combination with the sun to maintain a directed flight course. How the CX encodes a combination of celestial and terrestrial cues and how they are weighted in the butterfly's CX is still unknown. Here, we examined how input neurons of the CX, termed TL neurons, combine celestial and terrestrial information. While recording intracellularly from the neurons, we presented a sun stimulus and polarized light to the butterflies as well as a simulated sun and a panoramic scene simultaneously. Our results show that celestial cues are integrated linearly in these cells, while the combination of the sun and a panoramic skyline did not always follow a linear integration of action potential rates. Interestingly, while the sun and polarized light were invariantly weighted between individual neurons, the sun stimulus and panoramic skyline were dynamically weighted when both stimuli were simultaneously presented. Taken together, this dynamic weighting between celestial and terrestrial cues may allow the butterflies to flexibly set their cue preference during navigation.
Collapse
Affiliation(s)
| | - M. Jerome Beetz
- Biocenter, Zoology II, University of Wuerzburg, Würzburg, Germany
| | - Christine Merlin
- Department of Biology and Center for Biological Clocks Research, Texas A&M University, College Station, TX, United States
| | - Keram Pfeiffer
- Biocenter, Zoology II, University of Wuerzburg, Würzburg, Germany
| | - Basil el Jundi
- Biocenter, Zoology II, University of Wuerzburg, Würzburg, Germany
- Department of Biology, Animal Physiology, Norwegian University of Science and Technology, Trondheim, Norway
- *Correspondence: Basil el Jundi
| |
Collapse
|
44
|
Supple JA, Varennes-Phillit L, Gajjar-Reid D, Cerkvenik U, Belušič G, Krapp HG. Generating spatiotemporal patterns of linearly polarised light at high frame rates for insect vision research. J Exp Biol 2022; 225:275926. [PMID: 35708202 PMCID: PMC9339910 DOI: 10.1242/jeb.244087] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Accepted: 06/13/2022] [Indexed: 11/30/2022]
Abstract
Polarisation vision is commonplace among invertebrates; however, most experiments focus on determining behavioural and/or neurophysiological responses to static polarised light sources rather than moving patterns of polarised light. To address the latter, we designed a polarisation stimulation device based on superimposing polarised and non-polarised images from two projectors, which can display moving patterns at frame rates exceeding invertebrate flicker fusion frequencies. A linear polariser fitted to one projector enables moving patterns of polarised light to be displayed, whilst the other projector contributes arbitrary intensities of non-polarised light to yield moving patterns with a defined polarisation and intensity contrast. To test the device, we measured receptive fields of polarisation-sensitive Argynnis paphia butterfly photoreceptors for both non-polarised and polarised light. We then measured local motion sensitivities of the optic flow-sensitive lobula plate tangential cell H1 in Calliphora vicina blowflies under both polarised and non-polarised light, finding no polarisation sensitivity in this neuron. Summary: Design of a versatile visual stimulation device for presenting moving patterns of polarised light, and demonstration of its use to characterise polarisation sensitivity in butterfly photoreceptors and blowfly motion-sensitive interneurons.
Collapse
Affiliation(s)
- Jack A Supple
- Department of Bioengineering, Imperial College London, Royal School of Mines, Exhibition Road, London, SW7 2AZ, UK
| | - Léandre Varennes-Phillit
- Department of Bioengineering, Imperial College London, Royal School of Mines, Exhibition Road, London, SW7 2AZ, UK
| | - Dexter Gajjar-Reid
- Department of Bioengineering, Imperial College London, Royal School of Mines, Exhibition Road, London, SW7 2AZ, UK
| | - Uroš Cerkvenik
- Department of Biology, Biotechnical Faculty, University of Ljubljana, 1000 Ljubljana, Slovenia
| | - Gregor Belušič
- Department of Biology, Biotechnical Faculty, University of Ljubljana, 1000 Ljubljana, Slovenia
| | - Holger G Krapp
- Department of Bioengineering, Imperial College London, Royal School of Mines, Exhibition Road, London, SW7 2AZ, UK
| |
Collapse
|
45
|
Kaiser A, Hensgen R, Tschirner K, Beetz E, Wüstenberg H, Pfaff M, Mota T, Pfeiffer K. A three-dimensional atlas of the honeybee central complex, associated neuropils and peptidergic layers of the central body. J Comp Neurol 2022; 530:2416-2438. [PMID: 35593178 DOI: 10.1002/cne.25339] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2022] [Revised: 04/15/2022] [Accepted: 04/26/2022] [Indexed: 11/11/2022]
Abstract
The central complex (CX) in the brain of insects is a highly conserved group of midline-spanning neuropils consisting of the upper and lower division of the central body, the protocerebral bridge, and the paired noduli. These neuropils are the substrate for a number of behaviors, most prominently goal-oriented locomotion. Honeybees have been a model organism for sky-compass orientation for more than 70 years, but there is still very limited knowledge about the structure and function of their CX. To advance and facilitate research on this brain area, we created a high-resolution three-dimensional atlas of the honeybee's CX and associated neuropils, including the posterior optic tubercles, the bulbs, and the anterior optic tubercles. To this end, we developed a modified version of the iterative shape averaging technique, which allowed us to achieve high volumetric accuracy of the neuropil models. For a finer definition of spatial locations within the central body, we defined layers based on immunostaining against the neuropeptides locustatachykinin, FMRFamide, gastrin/cholecystokinin, and allatostatin and included them into the atlas by elastic registration. Our honeybee CX atlas provides a platform for future neuroanatomical work.
Collapse
Affiliation(s)
- Andreas Kaiser
- Department of Biology/Animal Physiology, Philipps-University Marburg, Marburg, Germany
| | - Ronja Hensgen
- Department of Biology/Animal Physiology, Philipps-University Marburg, Marburg, Germany
| | - Katja Tschirner
- Behavioural Physiology and Sociobiology (Zoology II), Biocenter, University of Würzburg, Würzburg, Germany
| | - Evelyn Beetz
- Behavioural Physiology and Sociobiology (Zoology II), Biocenter, University of Würzburg, Würzburg, Germany
| | - Hauke Wüstenberg
- Department of Biology/Animal Physiology, Philipps-University Marburg, Marburg, Germany
| | - Marcel Pfaff
- Behavioural Physiology and Sociobiology (Zoology II), Biocenter, University of Würzburg, Würzburg, Germany
| | - Theo Mota
- Department of Physiology and Biophysics, Federal University of Minas Gerais, Belo Horizonte, Brazil
| | - Keram Pfeiffer
- Department of Biology/Animal Physiology, Philipps-University Marburg, Marburg, Germany.,Behavioural Physiology and Sociobiology (Zoology II), Biocenter, University of Würzburg, Würzburg, Germany
| |
Collapse
|
46
|
Ryu L, Kim SY, Kim AJ. From Photons to Behaviors: Neural Implementations of Visual Behaviors in Drosophila. Front Neurosci 2022; 16:883640. [PMID: 35600623 PMCID: PMC9115102 DOI: 10.3389/fnins.2022.883640] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Accepted: 03/28/2022] [Indexed: 11/17/2022] Open
Abstract
Neural implementations of visual behaviors in Drosophila have been dissected intensively in the past couple of decades. The availability of premiere genetic toolkits, behavioral assays in tethered or freely moving conditions, and advances in connectomics have permitted the understanding of the physiological and anatomical details of the nervous system underlying complex visual behaviors. In this review, we describe recent advances on how various features of a visual scene are detected by the Drosophila visual system and how the neural circuits process these signals and elicit an appropriate behavioral response. Special emphasis was laid on the neural circuits that detect visual features such as brightness, color, local motion, optic flow, and translating or approaching visual objects, which would be important for behaviors such as phototaxis, optomotor response, attraction (or aversion) to moving objects, navigation, and visual learning. This review offers an integrative framework for how the fly brain detects visual features and orchestrates an appropriate behavioral response.
Collapse
Affiliation(s)
- Leesun Ryu
- Department of Electronic Engineering, Hanyang University, Seoul, South Korea
| | - Sung Yong Kim
- Department of Electronic Engineering, Hanyang University, Seoul, South Korea
| | - Anmo J. Kim
- Department of Electronic Engineering, Hanyang University, Seoul, South Korea
- Department of Biomedical Engineering, Hanyang University, Seoul, South Korea
| |
Collapse
|
47
|
Frighetto G, Zordan MA, Castiello U, Megighian A, Martin JR. Dopamine Modulation of Drosophila Ellipsoid Body Neurons, a Nod to the Mammalian Basal Ganglia. Front Physiol 2022; 13:849142. [PMID: 35492587 PMCID: PMC9048027 DOI: 10.3389/fphys.2022.849142] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Accepted: 03/10/2022] [Indexed: 12/04/2022] Open
Abstract
The central complex (CX) is a neural structure located on the midline of the insect brain that has been widely studied in the last few years. Its role in navigation and goal-oriented behaviors resembles those played by the basal ganglia in mammals. However, the neural mechanisms and the neurotransmitters involved in these processes remain unclear. Here, we exploited an in vivo bioluminescence Ca2+ imaging technique to record the activity in targeted neurons of the ellipsoid body (EB). We used different drugs to evoke excitatory Ca2+-responses, depending on the putative neurotransmitter released by their presynaptic inputs, while concomitant dopamine administration was employed to modulate those excitations. By using a genetic approach to knockdown the dopamine 1-like receptors, we showed that different dopamine modulatory effects are likely due to specific receptors expressed by the targeted population of neurons. Altogether, these results provide new data concerning how dopamine modulates and shapes the response of the ellipsoid body neurons. Moreover, they provide important insights regarding the similitude with mammals as far as the role played by dopamine in increasing and stabilizing the response of goal-related information.
Collapse
Affiliation(s)
- Giovanni Frighetto
- Department of General Psychology, University of Padova, Padova, Italy
- Institut des Neurosciences Paris-Saclay, Université Paris-Saclay, CNRS, Saclay, France
| | - Mauro A. Zordan
- Department of Biology, University of Padova, Padova, Italy
- Padova Neuroscience Center, University of Padova, Padova, Italy
| | - Umberto Castiello
- Department of General Psychology, University of Padova, Padova, Italy
| | - Aram Megighian
- Padova Neuroscience Center, University of Padova, Padova, Italy
- Department of Biomedical Sciences, University of Padova, Padova, Italy
| | - Jean-René Martin
- Institut des Neurosciences Paris-Saclay, Université Paris-Saclay, CNRS, Saclay, France
- *Correspondence: Jean-René Martin,
| |
Collapse
|
48
|
Multimodal Information Processing and Associative Learning in the Insect Brain. INSECTS 2022; 13:insects13040332. [PMID: 35447774 PMCID: PMC9033018 DOI: 10.3390/insects13040332] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Revised: 03/23/2022] [Accepted: 03/25/2022] [Indexed: 02/04/2023]
Abstract
Simple Summary Insect behaviors are a great indicator of evolution and provide useful information about the complexity of organisms. The realistic sensory scene of an environment is complex and replete with multisensory inputs, making the study of sensory integration that leads to behavior highly relevant. We summarize the recent findings on multimodal sensory integration and the behaviors that originate from them in our review. Abstract The study of sensory systems in insects has a long-spanning history of almost an entire century. Olfaction, vision, and gustation are thoroughly researched in several robust insect models and new discoveries are made every day on the more elusive thermo- and mechano-sensory systems. Few specialized senses such as hygro- and magneto-reception are also identified in some insects. In light of recent advancements in the scientific investigation of insect behavior, it is not only important to study sensory modalities individually, but also as a combination of multimodal inputs. This is of particular significance, as a combinatorial approach to study sensory behaviors mimics the real-time environment of an insect with a wide spectrum of information available to it. As a fascinating field that is recently gaining new insight, multimodal integration in insects serves as a fundamental basis to understand complex insect behaviors including, but not limited to navigation, foraging, learning, and memory. In this review, we have summarized various studies that investigated sensory integration across modalities, with emphasis on three insect models (honeybees, ants and flies), their behaviors, and the corresponding neuronal underpinnings.
Collapse
|
49
|
Certel SJ, Ruchti E, McCabe BD, Stowers RS. A conditional glutamatergic synaptic vesicle marker for Drosophila. G3 (BETHESDA, MD.) 2022; 12:6493328. [PMID: 35100385 PMCID: PMC8895992 DOI: 10.1093/g3journal/jkab453] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/17/2021] [Accepted: 12/24/2021] [Indexed: 11/21/2022]
Abstract
Glutamate is a principal neurotransmitter used extensively by the nervous systems of all vertebrate and invertebrate animals. It is primarily an excitatory neurotransmitter that has been implicated in nervous system development, as well as a myriad of brain functions from the simple transmission of information between neurons to more complex aspects of nervous system function including synaptic plasticity, learning, and memory. Identification of glutamatergic neurons and their sites of glutamate release are thus essential for understanding the mechanisms of neural circuit function and how information is processed to generate behavior. Here, we describe and characterize smFLAG-vGlut, a conditional marker of glutamatergic synaptic vesicles for the Drosophila model system. smFLAG-vGlut is validated for functionality, conditional expression, and specificity for glutamatergic neurons and synaptic vesicles. The utility of smFLAG-vGlut is demonstrated by glutamatergic neurotransmitter phenotyping of 26 different central complex neuron types of which nine were established to be glutamatergic. This illumination of glutamate neurotransmitter usage will enhance the modeling of central complex neural circuitry and thereby our understanding of information processing by this region of the fly brain. The use of smFLAG for glutamatergic neurotransmitter phenotyping and identification of glutamate release sites can be extended to any Drosophila neuron(s) represented by a binary transcription system driver.
Collapse
Affiliation(s)
- Sarah J Certel
- Division of Biological Sciences, Center for Structural and Functional Neuroscience, The University of Montana, Missoula, MT 59812, USA
| | - Evelyne Ruchti
- Brain Mind Institute, Swiss Federal Institute of Technology (EPFL), Lausanne VD 1015, Switzerland
| | - Brian D McCabe
- Brain Mind Institute, Swiss Federal Institute of Technology (EPFL), Lausanne VD 1015, Switzerland
| | - R Steven Stowers
- Department of Microbiology and Cell Biology, Montana State University, Bozeman, MT 59717, USA
| |
Collapse
|
50
|
Performance of polarization-sensitive neurons of the locust central complex at different degrees of polarization. J Comp Physiol A Neuroethol Sens Neural Behav Physiol 2022; 208:387-403. [PMID: 35157117 PMCID: PMC9123078 DOI: 10.1007/s00359-022-01545-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Revised: 01/18/2022] [Accepted: 01/25/2022] [Indexed: 10/29/2022]
Abstract
The polarization pattern of the sky is exploited by many insects for spatial orientation and navigation. It derives from Rayleigh scattering in the atmosphere and depends directly on the position of the sun. In the insect brain, the central complex (CX) houses neurons tuned to the angle of polarization (AoP), that together constitute an internal compass for celestial navigation. Polarized light is not only characterized by the AoP, but also by the degree of polarization (DoP), which can be highly variable, depending on sky conditions. Under a clear sky, the DoP of polarized sky light may reach up to 0.75 but is usually much lower especially when light is scattered by clouds or haze. To investigate how the polarization-processing network of the CX copes with low DoPs, we recorded intracellularly from neurons of the locust CX at different stages of processing, while stimulating with light of different DoPs. Significant responses to polarized light occurred down to DoPs of 0.05 indicating reliable coding of the AoP even at unfavorable sky conditions. Moreover, we found that the activity of neurons at the CX input stage may be strongly influenced by nearly unpolarized light, while the activity of downstream neurons appears less affected.
Collapse
|