1
|
Rincon JC, Wang D, Polcz VE, Barrios EL, Dirain ML, Ungaro RF, Nacionales DC, Zeumer-Spataro L, Xiao F, Efron PA, Moldawer LL, Cai G, Larson SD. Innate immune training in the neonatal response to sepsis. Mol Med 2025; 31:159. [PMID: 40307728 PMCID: PMC12042443 DOI: 10.1186/s10020-025-01179-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2024] [Accepted: 03/24/2025] [Indexed: 05/02/2025] Open
Abstract
Neonates, especially those born prematurely, are highly vulnerable to infection-induced mortality. Numerous observational and immunological studies in newborns have shown that live attenuated vaccines have beneficial, non-specific effects (NSEs) against secondary infections to unrelated pathogens. These beneficial effects have been attributed to trained immunity, and emergency granulopoiesis plays an essential role. However, trained immunity has been shown to affect multiple myeloid subsets and how trained immunity influences the host protective response is still undefined. Here we show that Bacillus-Calmette-Guérin (BCG) vaccination improves survival to polymicrobial sepsis by simultaneously reprogramming broad aspects of myelopoiesis. Specifically, BCG vaccination expands multiple myeloid subsets, including the lineage (Lin)-Sca- 1+c-kit+ (LSK) and granulocytic-macrophage progenitors (GMPs), and increases CD11b+Gr1+ cell number, as well as their oxidative metabolism and capacity to stimulate T-cell proliferation in response to sepsis. Single-cell RNA sequencing of neonatal splenocytes suggests that BCG-vaccination changes the broad transcriptional landscape of multiple myeloid subsets. The result is the maturation of various neutrophil and monocyte subsets, stimulation of antimicrobial processes, and suppression of inflammatory pathways and myeloid-derived suppressor cell transcription. These findings reveal that BCG administration early after birth fundamentally reorganizes the myeloid landscape to benefit the subsequent response to polymicrobial infection.
Collapse
Affiliation(s)
- Jaimar C Rincon
- Sepsis and Critical Illness Research Center, Department of Surgery, University of Florida College of Medicine, 1600 SW Archer Road, P.O. Box 100119, Gainesville, FL, 32610 - 0019, USA.
- Division of Pediatric Surgery, Department of Surgery, University of Florida College of Medicine, Gainesville, FL, USA.
| | - Dayuan Wang
- Department of Biostatistics, University of Florida Colleges of Medicine and Public Health and Health Sciences, Gainesville, FL, USA
| | - Valerie E Polcz
- Sepsis and Critical Illness Research Center, Department of Surgery, University of Florida College of Medicine, 1600 SW Archer Road, P.O. Box 100119, Gainesville, FL, 32610 - 0019, USA
| | - Evan L Barrios
- Sepsis and Critical Illness Research Center, Department of Surgery, University of Florida College of Medicine, 1600 SW Archer Road, P.O. Box 100119, Gainesville, FL, 32610 - 0019, USA
| | - Marvin L Dirain
- Sepsis and Critical Illness Research Center, Department of Surgery, University of Florida College of Medicine, 1600 SW Archer Road, P.O. Box 100119, Gainesville, FL, 32610 - 0019, USA
| | - Ricardo F Ungaro
- Sepsis and Critical Illness Research Center, Department of Surgery, University of Florida College of Medicine, 1600 SW Archer Road, P.O. Box 100119, Gainesville, FL, 32610 - 0019, USA
| | - Dina C Nacionales
- Sepsis and Critical Illness Research Center, Department of Surgery, University of Florida College of Medicine, 1600 SW Archer Road, P.O. Box 100119, Gainesville, FL, 32610 - 0019, USA
| | - Leilani Zeumer-Spataro
- Sepsis and Critical Illness Research Center, Department of Surgery, University of Florida College of Medicine, 1600 SW Archer Road, P.O. Box 100119, Gainesville, FL, 32610 - 0019, USA
| | - Feifei Xiao
- Department of Biostatistics, University of Florida Colleges of Medicine and Public Health and Health Sciences, Gainesville, FL, USA
| | - Philip A Efron
- Sepsis and Critical Illness Research Center, Department of Surgery, University of Florida College of Medicine, 1600 SW Archer Road, P.O. Box 100119, Gainesville, FL, 32610 - 0019, USA
| | - Lyle L Moldawer
- Sepsis and Critical Illness Research Center, Department of Surgery, University of Florida College of Medicine, 1600 SW Archer Road, P.O. Box 100119, Gainesville, FL, 32610 - 0019, USA
| | - Guoshuai Cai
- Sepsis and Critical Illness Research Center, Department of Surgery, University of Florida College of Medicine, 1600 SW Archer Road, P.O. Box 100119, Gainesville, FL, 32610 - 0019, USA
- Department of Biostatistics, University of Florida Colleges of Medicine and Public Health and Health Sciences, Gainesville, FL, USA
| | - Shawn D Larson
- Sepsis and Critical Illness Research Center, Department of Surgery, University of Florida College of Medicine, 1600 SW Archer Road, P.O. Box 100119, Gainesville, FL, 32610 - 0019, USA
- Division of Pediatric Surgery, Department of Surgery, University of Florida College of Medicine, Gainesville, FL, USA
| |
Collapse
|
2
|
Ehlers G, Tödtmann AM, Holsten L, Willers M, Heckmann J, Schöning J, Richter M, Heinemann AS, Pirr S, Heinz A, Dopfer C, Händler K, Becker M, Büchel J, Wöckel A, von Kaisenberg C, Hansen G, Hiller K, Schultze JL, Härtel C, Kastenmüller W, Vaeth M, Ulas T, Viemann D. Oxidative phosphorylation is a key feature of neonatal monocyte immunometabolism promoting myeloid differentiation after birth. Nat Commun 2025; 16:2239. [PMID: 40050264 PMCID: PMC11885822 DOI: 10.1038/s41467-025-57357-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Accepted: 02/20/2025] [Indexed: 03/09/2025] Open
Abstract
Neonates primarily rely on innate immune defense, yet their inflammatory responses are usually restricted compared to adults. This is controversially interpreted as a sign of immaturity or essential programming, increasing or decreasing the risk of sepsis, respectively. Here, combined transcriptomic, metabolic, and immunological studies in monocytes of healthy individuals reveal an inverse ontogenetic shift in metabolic pathway activities with increasing age. Neonatal monocytes are characterized by enhanced oxidative phosphorylation supporting ongoing myeloid differentiation. This phenotype is gradually replaced during early childhood by increasing glycolytic activity fueling the inflammatory responsiveness. Microbial stimulation shifts neonatal monocytes to an adult-like metabolism, whereas ketogenic diet in adults mimicking neonatal ketosis cannot revive a neonate-like metabolism. Our findings disclose hallmarks of innate immunometabolism during healthy postnatal immune adaptation and suggest that premature activation of glycolysis in neonates might increase their risk of sepsis by impairing myeloid differentiation and promoting hyperinflammation.
Collapse
Affiliation(s)
- Greta Ehlers
- Department of Pediatric Pneumology, Allergology and Neonatology, Hannover Medical School, Hannover, Germany
| | - Annika Marie Tödtmann
- Department of Pediatric Pneumology, Allergology and Neonatology, Hannover Medical School, Hannover, Germany
| | - Lisa Holsten
- Department of Pediatrics, University Hospital Würzburg, Würzburg, Germany
- Genomics and Immunoregulation, Life & Medical Sciences (LIMES) Institute, University of Bonn, Bonn, Germany
- Systems Medicine, German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany
- PRECISE Platform for Single Cell Genomics and Epigenomics, DZNE and University of Bonn, Bonn, Germany
| | - Maike Willers
- Department of Pediatric Pneumology, Allergology and Neonatology, Hannover Medical School, Hannover, Germany
| | - Julia Heckmann
- Department of Pediatrics, University Hospital Würzburg, Würzburg, Germany
| | - Jennifer Schöning
- Department of Pediatrics, University Hospital Würzburg, Würzburg, Germany
| | - Maximilian Richter
- Department of Pediatrics, University Hospital Würzburg, Würzburg, Germany
| | - Anna Sophie Heinemann
- Department of Pediatric Pneumology, Allergology and Neonatology, Hannover Medical School, Hannover, Germany
| | - Sabine Pirr
- Department of Pediatric Pneumology, Allergology and Neonatology, Hannover Medical School, Hannover, Germany
| | - Alexander Heinz
- Department for Bioinformatics and Biochemistry, BRICS, Technical University Braunschweig, Braunschweig, Germany
| | - Christian Dopfer
- Department of Pediatric Pneumology, Allergology and Neonatology, Hannover Medical School, Hannover, Germany
| | - Kristian Händler
- Systems Medicine, German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany
- Institute of Human Genetics, University of Lübeck, Lübeck, Germany
| | - Matthias Becker
- Systems Medicine, German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany
- Modular High Performance Computing and Artificial Intelligence, Deutsches Zentrum für Neurodegenerative Erkrankungen (DZNE), Bonn, Germany
| | - Johanna Büchel
- Department of Gynecology and Obstetrics, University Hospital Würzburg, Würzburg, Germany
| | - Achim Wöckel
- Department of Gynecology and Obstetrics, University Hospital Würzburg, Würzburg, Germany
| | | | - Gesine Hansen
- Department of Pediatric Pneumology, Allergology and Neonatology, Hannover Medical School, Hannover, Germany
- Cluster of Excellence RESIST (EXC 2155), Hannover Medical School, Hannover, Germany
| | - Karsten Hiller
- Department for Bioinformatics and Biochemistry, BRICS, Technical University Braunschweig, Braunschweig, Germany
| | - Joachim L Schultze
- Genomics and Immunoregulation, Life & Medical Sciences (LIMES) Institute, University of Bonn, Bonn, Germany
- Systems Medicine, German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany
- PRECISE Platform for Single Cell Genomics and Epigenomics, DZNE and University of Bonn, Bonn, Germany
| | - Christoph Härtel
- Department of Pediatrics, University Hospital Würzburg, Würzburg, Germany
| | - Wolfgang Kastenmüller
- Würzburg Institute of Systems Immunology, Max Planck Research Group, Julius-Maximilians-University Würzburg, Würzburg, Germany
| | - Martin Vaeth
- Würzburg Institute of Systems Immunology, Max Planck Research Group, Julius-Maximilians-University Würzburg, Würzburg, Germany
| | - Thomas Ulas
- Genomics and Immunoregulation, Life & Medical Sciences (LIMES) Institute, University of Bonn, Bonn, Germany
- Systems Medicine, German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany
- PRECISE Platform for Single Cell Genomics and Epigenomics, DZNE and University of Bonn, Bonn, Germany
| | - Dorothee Viemann
- Department of Pediatric Pneumology, Allergology and Neonatology, Hannover Medical School, Hannover, Germany.
- Department of Pediatrics, University Hospital Würzburg, Würzburg, Germany.
- Cluster of Excellence RESIST (EXC 2155), Hannover Medical School, Hannover, Germany.
- Center for Infection Research, University Würzburg, Würzburg, Germany.
| |
Collapse
|
3
|
Wackerbarth LM, Seifert SB, Napoli M, Rohwedder I, Vogl T, Scheiermann C, Kolben T, Nussbaum C, Pruenster M, Immler R, Sperandio M. Neonatal neutrophils exhibit reduced NLRP3 inflammasome activation. J Leukoc Biol 2025; 117:qiae206. [PMID: 39312228 DOI: 10.1093/jleuko/qiae206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Accepted: 09/21/2024] [Indexed: 03/06/2025] Open
Abstract
Newborns are at high risk to develop sepsis. This is linked to innate immune responses at birth which are not completely adapted to postnatal life. Neutrophils are key players of innate immunity and exhibit a marked ontogenetic regulation of their functionality. Here, we studied the NLRP3 inflammasome in neonatal neutrophils and found lower baseline expression of NLRP3, pro-caspase-1, and the K+-channel KV1.3 compared with adult neutrophils. Following stimulation with lipopolysaccharide/nigericin, apoptosis-related speck-like protein containing a caspase recruitment domain oligomerization, caspase-1 activation, and interleukin-1β (IL-1β) release were significantly reduced in neonatal compared with adult neutrophils. Similarly, stimulation of neonatal neutrophils with E-selectin led to reduced NLRP3 inflammasome activation accompanied by diminished release of the alarmin S100A8/A9. Taken together, our results strongly indicate diminished NLRP3 inflammasome activation in neonatal neutrophils leading to a significant reduction of released IL-1β and S100A8/A9. These findings identify reduced neutrophil NLRP3 inflammasome activation as a critical component contributing to the inherent susceptibility to infections in neonates.
Collapse
Affiliation(s)
- Lou Martha Wackerbarth
- Institute of Cardiovascular Physiology and Pathophysiology, Walter Brendel Center, Biomedical Center (BMC), Ludwig-Maximilians-Universität, 82152 Planegg-Martinsried, Germany
| | - Sonja Birke Seifert
- Institute of Cardiovascular Physiology and Pathophysiology, Walter Brendel Center, Biomedical Center (BMC), Ludwig-Maximilians-Universität, 82152 Planegg-Martinsried, Germany
| | - Matteo Napoli
- Institute of Cardiovascular Physiology and Pathophysiology, Walter Brendel Center, Biomedical Center (BMC), Ludwig-Maximilians-Universität, 82152 Planegg-Martinsried, Germany
| | - Ina Rohwedder
- Institute of Cardiovascular Physiology and Pathophysiology, Walter Brendel Center, Biomedical Center (BMC), Ludwig-Maximilians-Universität, 82152 Planegg-Martinsried, Germany
| | - Thomas Vogl
- Institute of Immunology, University of Münster, 48149 Münster, Germany
| | - Christoph Scheiermann
- Institute of Cardiovascular Physiology and Pathophysiology, Walter Brendel Center, Biomedical Center (BMC), Ludwig-Maximilians-Universität, 82152 Planegg-Martinsried, Germany
| | - Thomas Kolben
- Department of Obstetrics and Gynecology, University Hospital, Ludwig-Maximilians-Universität München, 81377 Munich, Germany
| | - Claudia Nussbaum
- Division of Neonatology, Dr. von Hauner Children's Hospital, Ludwig-Maximilians-Universität München, 81377 Munich, Germany
| | - Monika Pruenster
- Institute of Cardiovascular Physiology and Pathophysiology, Walter Brendel Center, Biomedical Center (BMC), Ludwig-Maximilians-Universität, 82152 Planegg-Martinsried, Germany
| | - Roland Immler
- Institute of Cardiovascular Physiology and Pathophysiology, Walter Brendel Center, Biomedical Center (BMC), Ludwig-Maximilians-Universität, 82152 Planegg-Martinsried, Germany
| | - Markus Sperandio
- Institute of Cardiovascular Physiology and Pathophysiology, Walter Brendel Center, Biomedical Center (BMC), Ludwig-Maximilians-Universität, 82152 Planegg-Martinsried, Germany
| |
Collapse
|
4
|
Gomez-Salinero JM, Redmond D, Rafii S. Microenvironmental determinants of endothelial cell heterogeneity. Nat Rev Mol Cell Biol 2025:10.1038/s41580-024-00825-w. [PMID: 39875728 DOI: 10.1038/s41580-024-00825-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/18/2024] [Indexed: 01/30/2025]
Abstract
During development, endothelial cells (ECs) undergo an extraordinary specialization by which generic capillary microcirculatory networks spanning from arteries to veins transform into patterned organotypic zonated blood vessels. These capillary ECs become specialized to support the cellular and metabolic demands of each specific organ, including supplying tissue-specific angiocrine factors that orchestrate organ development, maintenance of organ-specific functions and regeneration of injured adult organs. Here, we illustrate the mechanisms by which microenvironmental signals emanating from non-vascular niche cells induce generic ECs to acquire specific inter-organ and intra-organ functional attributes. We describe how perivascular, parenchymal and immune cells dictate vascular heterogeneity and capillary zonation, and how this system is maintained through tissue-specific signalling activated by vasculogenic and angiogenic factors and deposition of matrix components. We also discuss how perturbation of organotypic vascular niche cues lead to erasure of EC signatures, contributing to the pathogenesis of disease processes. We also describe approaches that use reconstitution of tissue-specific signatures of ECs to promote regeneration of damaged organs.
Collapse
Affiliation(s)
- Jesus M Gomez-Salinero
- Division of Regenerative Medicine, Hartman Institute for Therapeutic Organ Regeneration and Ansary Stem Cell Institute, Department of Medicine, Weill Cornell Medicine, New York, NY, USA
| | - David Redmond
- Division of Regenerative Medicine, Hartman Institute for Therapeutic Organ Regeneration and Ansary Stem Cell Institute, Department of Medicine, Weill Cornell Medicine, New York, NY, USA
| | - Shahin Rafii
- Division of Regenerative Medicine, Hartman Institute for Therapeutic Organ Regeneration and Ansary Stem Cell Institute, Department of Medicine, Weill Cornell Medicine, New York, NY, USA.
| |
Collapse
|
5
|
Carter-Cusack D, Huang S, Keshvari S, Patkar O, Sehgal A, Allavena R, Byrne RAJ, Morgan BP, Bush SJ, Summers KM, Irvine KM, Hume DA. Wild-type bone marrow cells repopulate tissue resident macrophages and reverse the impacts of homozygous CSF1R mutation. PLoS Genet 2025; 21:e1011525. [PMID: 39869647 PMCID: PMC11785368 DOI: 10.1371/journal.pgen.1011525] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Revised: 01/31/2025] [Accepted: 12/04/2024] [Indexed: 01/29/2025] Open
Abstract
Adaptation to existence outside the womb is a key event in the life of a mammal. The absence of macrophages in rats with a homozygous mutation in the colony-stimulating factor 1 receptor (Csf1r) gene (Csf1rko) severely compromises pre-weaning somatic growth and maturation of organ function. Transfer of wild-type bone marrow cells (BMT) at weaning rescues tissue macrophage populations permitting normal development and long-term survival. To dissect the phenotype and function of macrophages in postnatal development, we generated transcriptomic profiles of all major organs of wild-type and Csf1rko rats at weaning and in selected organs following rescue by BMT. The transcriptomic profiles revealed subtle effects of macrophage deficiency on development of all major organs. Network analysis revealed a common signature of CSF1R-dependent resident tissue macrophages that includes the components of complement C1Q (C1qa/b/c genes). Circulating C1Q was almost undetectable in Csf1rko rats and rapidly restored to normal levels following BMT. Tissue-specific macrophage signatures were also identified, notably including sinus macrophage populations in the lymph nodes. Their loss in Csf1rko rats was confirmed by immunohistochemical localisation of CD209B (SIGNR1). By 6-12 weeks, Csf1rko rats succumb to emphysema-like pathology associated with the selective loss of interstitial macrophages and granulocytosis. This pathology was reversed by BMT. Along with physiological rescue, BMT precisely regenerated the abundance and expression profiles of resident macrophages. The exception was the brain, where BM-derived microglia-like cells had a distinct expression profile compared to resident microglia. In addition, the transferred BM failed to restore blood monocyte or CSF1R-positive bone marrow progenitors. These studies provide a model for the pathology and treatment of CSF1R mutations in humans and the innate immune deficiency associated with prematurity.
Collapse
Affiliation(s)
- Dylan Carter-Cusack
- Mater Research Institute-University of Queensland, Translational Research Institute, Woolloongabba, Brisbane, Australia
| | - Stephen Huang
- Mater Research Institute-University of Queensland, Translational Research Institute, Woolloongabba, Brisbane, Australia
| | - Sahar Keshvari
- Mater Research Institute-University of Queensland, Translational Research Institute, Woolloongabba, Brisbane, Australia
| | - Omkar Patkar
- Mater Research Institute-University of Queensland, Translational Research Institute, Woolloongabba, Brisbane, Australia
| | - Anuj Sehgal
- Mater Research Institute-University of Queensland, Translational Research Institute, Woolloongabba, Brisbane, Australia
| | - Rachel Allavena
- School of Veterinary Science, The University of Queensland, Gatton, Australia
| | - Robert A. J. Byrne
- UK Dementia Research Institute Cardiff, School of Medicine, Cardiff University, Cardiff, United Kingdom
| | - B. Paul Morgan
- UK Dementia Research Institute Cardiff, School of Medicine, Cardiff University, Cardiff, United Kingdom
| | - Stephen J. Bush
- School of Automation Science and Engineering, Xi’an Jiaotong University, Xi’an, Shaanxi, China
| | - Kim M. Summers
- Mater Research Institute-University of Queensland, Translational Research Institute, Woolloongabba, Brisbane, Australia
| | - Katharine M. Irvine
- Mater Research Institute-University of Queensland, Translational Research Institute, Woolloongabba, Brisbane, Australia
| | - David A. Hume
- Mater Research Institute-University of Queensland, Translational Research Institute, Woolloongabba, Brisbane, Australia
| |
Collapse
|
6
|
de Bruijn BGC, van Dixhoorn IDE, Bolhuis JE, Cornelissen JBWJ, Stockhofe-Zurwieden N, Kluivers M, Rebel JMJ. Environmental enrichment affects immunity and reduces disease severity in pigs after co-infection, with stronger effects when applied from birth than from weaning. Front Vet Sci 2024; 11:1511209. [PMID: 39720408 PMCID: PMC11667117 DOI: 10.3389/fvets.2024.1511209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2024] [Accepted: 11/27/2024] [Indexed: 12/26/2024] Open
Abstract
We investigated whether environmental enrichment applied at different life stages of pigs affects the susceptibility to and severity of disease by studying immune cell functions around weaning and during nursery, the effects of infection in ex vivo models and in vivo using a co-infection model of Porcine Reproductive and Respiratory Syndrome Virus (PRRSV) followed by an Actinobacillus pleuropneumoniae infection. Pigs were either conventionally housed (CCH) or enriched housed throughout life, with enrichment consisting of extra space, rooting materials and co-mingling with another litter before weaning (EEH), or they were switched from conventional to enriched housing at weaning (CEH). Sixty days after birth, ten pigs per treatment were infected with PRRSV followed by an A. pleuropneumoniae infection eight days later. Six other pigs per treatment were euthanized before their pen mates were exposed to the co-infection. From these piglets, bronchial-alveolar fluid was collected, and precision cut lung slices were taken to test the effect of the treatments in an in vitro infection model. At six days after weaning EEH pigs had higher whole blood cell counts and higher concentrations of IL1ß and TNFα than CCH and CEH pigs. In the ex vivo precision cut lung slice model no differences in cytokine response in lung tissue after infection with swine influenza or A. pleuropneumoniae were observed between treatments. After experimental co-infection the proportion of EEH pigs with lung lesions (3/10) tended to be lower than in CCH (8/10), with CEH (6/10) being in between. In conclusion, enriched housing from birth reduced disease severity to co-infection with PRRSV and A. pleuropneumoniae. Enrichment applied after weaning also seemed to decrease the pathological lung deviations to the co-infection as compared to barren housed pigs, but to a much lower extent.
Collapse
Affiliation(s)
| | | | - J. Elizabeth Bolhuis
- Adaptation Physiology Group, Wageningen University & Research, Wageningen, Netherlands
| | | | | | - Marion Kluivers
- Wageningen Environmental Research, Wageningen University & Research, Wageningen, Netherlands
| | - Johanna M. J. Rebel
- Adaptation Physiology Group, Wageningen University & Research, Wageningen, Netherlands
- Wageningen Bioveterinary Research, Wageningen University & Research, Lelystad, Netherlands
| |
Collapse
|
7
|
Lyu P, Yadav MK, Yoo KW, Jiang C, Li Q, Atala A, Lu B. Gene therapy of Dent disease type 1 in newborn ClC-5 null mice for sustained transgene expression and gene therapy effects. Gene Ther 2024; 31:563-571. [PMID: 39322766 DOI: 10.1038/s41434-024-00490-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 09/16/2024] [Accepted: 09/20/2024] [Indexed: 09/27/2024]
Abstract
Dent disease type 1 is caused by changes in the chloride voltage-gated channel 5 (CLCN5) gene on chromosome X, resulting in the lack or dysfunction of chloride channel ClC-5. Individuals affected by Dent disease type 1 show proteinuria and hypercalciuria. Previously we found that lentiviral vector-mediated hCLCN5 cDNA supplementary therapy in ClC-5 null mice was effective only for three months following gene delivery, and the therapeutic effects disappeared four months after treatment, most likely due to immune responses to the ClC-5 proteins expressed in the treated cells. Here we tried two strategies to reduce possible immune responses: 1) confining the expression of ClC-5 expression to the tubular cells with tubule-specific Npt2a and Sglt2 promoters, and 2) performing gene therapy in newborn mutant mice whose immune system has not fully developed. We found that although Npt2a and Sglt2 promoters successfully drove ClC-5 expression in the kidneys of the mutant mice, the treatment did not ameliorate the phenotypes. However, gene delivery to the kidneys of newborn Clcn5 mutant mice enabled long-term transgene expression and phenotype improvement. Our data suggest that performing gene therapy on Dent disease affected subjects soon after birth could be a promising strategy to attenuate immune responses in Dent disease type 1 gene therapy.
Collapse
Affiliation(s)
- Pin Lyu
- Wake Forest Institute for Regenerative Medicine, Wake Forest University School of Medicine, Winston-Salem, NC, USA
| | - Manish Kumar Yadav
- Wake Forest Institute for Regenerative Medicine, Wake Forest University School of Medicine, Winston-Salem, NC, USA
| | - Kyung Whan Yoo
- Wake Forest Institute for Regenerative Medicine, Wake Forest University School of Medicine, Winston-Salem, NC, USA
| | - Cuili Jiang
- Wake Forest Institute for Regenerative Medicine, Wake Forest University School of Medicine, Winston-Salem, NC, USA
| | - Qingqi Li
- Wake Forest Institute for Regenerative Medicine, Wake Forest University School of Medicine, Winston-Salem, NC, USA
| | - Anthony Atala
- Wake Forest Institute for Regenerative Medicine, Wake Forest University School of Medicine, Winston-Salem, NC, USA
| | - Baisong Lu
- Wake Forest Institute for Regenerative Medicine, Wake Forest University School of Medicine, Winston-Salem, NC, USA.
| |
Collapse
|
8
|
Amatya S, Lanza M, Umstead TM, Chroneos ZC. Loss of Surfactant Protein A Alters Perinatal Lung Morphology and Susceptibility to Hyperoxia-Induced Bronchopulmonary Dysplasia. Antioxidants (Basel) 2024; 13:1309. [PMID: 39594451 PMCID: PMC11591242 DOI: 10.3390/antiox13111309] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2024] [Revised: 10/18/2024] [Accepted: 10/23/2024] [Indexed: 11/28/2024] Open
Abstract
Bronchopulmonary dysplasia (BPD) is a condition of poor alveolar formation that causes chronic breathing impairment in infants born prematurely. Preterm lungs lack surfactant and are vulnerable to oxidative injuries driving the development of BPD. Our recent studies reported that surfactant protein A (SP-A) genetic variants influence susceptibility to neonatal lung disease. SP-A modulates activation of alveolar macrophages and parturition onset in late gestation. We asked whether a lack of SP-A alters alveolarization in a mouse model of hyperoxia-induced BPD. SP-A-deficient and control newborn mice were exposed to either clinically relevant 60% O2 hyperoxia or normoxia for 5-7 days. Alveolar formation was then assessed by mean linear intercept (MLI) and radial alveolar count (RAC) measurements in lung tissue sections. We report that the combination of SP-A deficiency and hyperoxia reduces alveolar growth compared to WT mice. The morphometric analysis of normoxic SP-A-deficient lungs showed lower RAC compared to controls, indicating reduced alveolar number. In the presence of hyperoxia, MLI was higher in SP-A-deficient lungs compared to controls. Differences were statistically significant for female pups. Spatial proteomic profiling of lung tissue sections showed that hyperoxia caused a 4-fold increase in the DNA damage marker γH2Ax in macrophages of SP-A-deficient lungs compared to normoxia. Our short report suggests an important role for SP-A in perinatal lung development and the protection of lung macrophages from oxidant injury. These studies warrant future investigation to discern the temporal interaction of SP-A, gender, oxidant injury, and lung macrophages in perinatal alveolar formation and development of BPD.
Collapse
Affiliation(s)
- Shaili Amatya
- Department of Pediatrics, Division of Neonatal-Perinatal Medicine, Pulmonary Immunology and Physiology Laboratory, Pennsylvania State University College of Medicine, Hershey, PA 17033, USA; (T.M.U.); (Z.C.C.)
| | - Matthew Lanza
- Department of Comparative Medicine, Pennsylvania State University College of Medicine, Hershey, PA 17033, USA;
| | - Todd M. Umstead
- Department of Pediatrics, Division of Neonatal-Perinatal Medicine, Pulmonary Immunology and Physiology Laboratory, Pennsylvania State University College of Medicine, Hershey, PA 17033, USA; (T.M.U.); (Z.C.C.)
- Department of Microbiology and Immunology, Pennsylvania State University College of Medicine, Hershey, PA 17033, USA
| | - Zissis C. Chroneos
- Department of Pediatrics, Division of Neonatal-Perinatal Medicine, Pulmonary Immunology and Physiology Laboratory, Pennsylvania State University College of Medicine, Hershey, PA 17033, USA; (T.M.U.); (Z.C.C.)
- Department of Microbiology and Immunology, Pennsylvania State University College of Medicine, Hershey, PA 17033, USA
| |
Collapse
|
9
|
Hartmann CR, Khan R, Schöning J, Richter M, Willers M, Pirr S, Heckmann J, Dirks J, Morbach H, Konrad M, Fries E, Winkler M, Büchel J, Seidenspinner S, Fischer J, Vollmuth C, Meinhardt M, Marissen J, Schmolke M, Haid S, Pietschmann T, Backes S, Dölken L, Löber U, Keil T, Heuschmann PU, Wöckel A, Sagar, Ulas T, Forslund-Startceva SK, Härtel C, Viemann D. A clinical protocol for a German birth cohort study of the Maturation of Immunity Against respiratory viral Infections (MIAI). Front Immunol 2024; 15:1443665. [PMID: 39355253 PMCID: PMC11442434 DOI: 10.3389/fimmu.2024.1443665] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Accepted: 08/29/2024] [Indexed: 10/03/2024] Open
Abstract
Introduction Respiratory viral infections (RVIs) are a major global contributor to morbidity and mortality. The susceptibility and outcome of RVIs are strongly age-dependent and show considerable inter-population differences, pointing to genetically and/or environmentally driven developmental variability. The factors determining the age-dependency and shaping the age-related changes of human anti-RVI immunity after birth are still elusive. Methods We are conducting a prospective birth cohort study aiming at identifying endogenous and environmental factors associated with the susceptibility to RVIs and their impact on cellular and humoral immune responses against the influenza A virus (IAV), respiratory syncytial virus (RSV) and severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). The MIAI birth cohort enrolls healthy, full-term neonates born at the University Hospital Würzburg, Germany, with follow-up at four defined time-points during the first year of life. At each study visit, clinical metadata including diet, lifestyle, sociodemographic information, and physical examinations, are collected along with extensive biomaterial sampling. Biomaterials are used to generate comprehensive, integrated multi-omics datasets including transcriptomic, epigenomic, proteomic, metabolomic and microbiomic methods. Discussion The results are expected to capture a holistic picture of the variability of immune trajectories with a focus on cellular and humoral key players involved in the defense of RVIs and the impact of host and environmental factors thereon. Thereby, MIAI aims at providing insights that allow unraveling molecular mechanisms that can be targeted to promote the development of competent anti-RVI immunity in early life and prevent severe RVIs. Clinical trial registration https://drks.de/search/de/trial/, identifier DRKS00034278.
Collapse
Affiliation(s)
- Carina R. Hartmann
- Department of Pediatrics, University Hospital Würzburg, Würzburg, Germany
| | - Robin Khan
- Department of Pediatrics, University Hospital Würzburg, Würzburg, Germany
| | - Jennifer Schöning
- Department of Pediatrics, University Hospital Würzburg, Würzburg, Germany
| | - Maximilian Richter
- Department of Pediatrics, University Hospital Würzburg, Würzburg, Germany
| | - Maike Willers
- Department of Pediatric Pneumology, Allergology and Neonatology, Hannover Medical School, Hannover, Germany
| | - Sabine Pirr
- Department of Pediatric Pneumology, Allergology and Neonatology, Hannover Medical School, Hannover, Germany
- Cluster of Excellence RESIST (EXC 2155), Hannover Medical School, Hannover, Germany
| | - Julia Heckmann
- Department of Pediatrics, University Hospital Würzburg, Würzburg, Germany
| | - Johannes Dirks
- Department of Pediatrics, University Hospital Würzburg, Würzburg, Germany
- German Center for Infection Research, Site Hamburg-Lübeck-Borstel-Riems, Hamburg, Germany
| | - Henner Morbach
- Department of Pediatrics, University Hospital Würzburg, Würzburg, Germany
- Center for Primary Immunodeficiencies and Autoinflammatory Diseases (CIDA), University Hospital Würzburg, Würzburg, Germany
| | - Monika Konrad
- Department of Pediatrics, University Hospital Würzburg, Würzburg, Germany
| | - Elena Fries
- Department of Pediatrics, University Hospital Würzburg, Würzburg, Germany
| | - Magdalene Winkler
- Department of Gynecology and Obstetrics, University Hospital Würzburg, Würzburg, Germany
| | - Johanna Büchel
- Department of Gynecology and Obstetrics, University Hospital Würzburg, Würzburg, Germany
| | | | - Jonas Fischer
- Department of Pediatrics, University Hospital Würzburg, Würzburg, Germany
| | - Claudia Vollmuth
- Department of Pediatrics, University Hospital Würzburg, Würzburg, Germany
| | - Martin Meinhardt
- Department of Pediatrics, University Hospital Würzburg, Würzburg, Germany
| | - Janina Marissen
- Department of Pediatrics, University Hospital Würzburg, Würzburg, Germany
| | - Mirco Schmolke
- Department of Microbiology and Molecular Medicine, University of Geneva, Geneva, Switzerland
- Center for Inflammation Research, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Sibylle Haid
- Institute for Experimental Virology, Centre for Experimental and Clinical Infection Research (TWINCORE), a joint venture between the Helmholtz Centre for Infection Research and The Hannover Medical School, Hannover, Germany
| | - Thomas Pietschmann
- Cluster of Excellence RESIST (EXC 2155), Hannover Medical School, Hannover, Germany
- Institute for Experimental Virology, Centre for Experimental and Clinical Infection Research (TWINCORE), a joint venture between the Helmholtz Centre for Infection Research and The Hannover Medical School, Hannover, Germany
- German Centre for Infection Research, Partner Site Braunschweig-Hannover, Braunschweig, Germany
| | - Simone Backes
- Institute for Virology and Immunobiology, University of Würzburg, Würzburg, Germany
| | - Lars Dölken
- Cluster of Excellence RESIST (EXC 2155), Hannover Medical School, Hannover, Germany
- Institute of Virology, Hannover Medical School, Hannover, Germany
| | - Ulrike Löber
- Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany
- Experimental and Clinical Research Center, a cooperation of Charité - Universitätsmedizin Berlin and Max-Delbrück-Center for Molecular Medicine, Berlin, Germany
- Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
- German Centre for Cardiovascular Research (DZHK), Partner site Berlin, Berlin, Germany
| | - Thomas Keil
- Institute of Social Medicine, Epidemiology and Health Economics, Charité - Universitätsmedizin Berlin, Berlin, Germany
- Institute of Clinical Epidemiology and Biometry, University of Würzburg, Würzburg, Germany
- State Institute of Health I, Bavarian Health and Food Safety Authority, Erlangen, Germany
| | - Peter U. Heuschmann
- Institute of Clinical Epidemiology and Biometry, University of Würzburg, Würzburg, Germany
- Institute for Medical Data Science, University Hospital Würzburg, Würzburg, Germany
- Clinical Trial Centre Würzburg, University Hospital Würzburg, Würzburg, Germany
| | - Achim Wöckel
- Department of Gynecology and Obstetrics, University Hospital Würzburg, Würzburg, Germany
| | - Sagar
- Department of Medicine II (Gastroenterology, Hepatology, Endocrinology, and Infectious Diseases), Freiburg University Medical Center, University of Freiburg, Freiburg, Germany
| | - Thomas Ulas
- Systems Medicine, German Center for Neurodegenerative Diseases Deutsches Zentrum für Neurodegenerative Erkrankungen (DZNE), Bonn, Germany
- PRECISE Platform for Single Cell Genomics and Epigenomics, Deutsches Zentrum für Neurodegenerative Erkrankungen (DZNE) and University of Bonn, Bonn, Germany
- Genomics and Immunoregulation, Life and Medical Sciences (LIMES) Institute, University of Bonn, Bonn, Germany
| | - Sofia K. Forslund-Startceva
- Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany
- Experimental and Clinical Research Center, a cooperation of Charité - Universitätsmedizin Berlin and Max-Delbrück-Center for Molecular Medicine, Berlin, Germany
- Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
- Structural and Computational Biology Unit, European Molecular Biology Laboratory (EMBL), Heidelberg, Germany
| | - Christoph Härtel
- Department of Pediatrics, University Hospital Würzburg, Würzburg, Germany
| | - Dorothee Viemann
- Department of Pediatrics, University Hospital Würzburg, Würzburg, Germany
- Department of Pediatric Pneumology, Allergology and Neonatology, Hannover Medical School, Hannover, Germany
- Cluster of Excellence RESIST (EXC 2155), Hannover Medical School, Hannover, Germany
- Center for Infection Research, University Würzburg, Würzburg, Germany
| |
Collapse
|
10
|
Jung KJ, Cho J, Yang MJ, Hwang JH, Song J. Exposure to polyhexamethyleneguanidine phosphate in early life dampens pulmonary damage compared to adult mice. Chem Biol Interact 2024; 399:111134. [PMID: 38969276 DOI: 10.1016/j.cbi.2024.111134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Revised: 06/20/2024] [Accepted: 07/02/2024] [Indexed: 07/07/2024]
Abstract
Polyhexamethyleneguanidine phosphate (PHMG-P) is a biocide of guanidine family that can cause a fatal lung damage if exposed directly to the lungs. No reports exist regarding the toxicity of PHMG-P in neonatal animals. Therefore, this study aimed to determine PHMG-P toxicity in neonatal and 8-week-old mice after they were intranasally instilled with 1.5 mg/kg, 3 mg/kg, and 4.5 mg/kg PHMG-P. PHMG-P lung exposure resulted in more severe pulmonary toxicity in adult mice than in newborn mice. In the high-dose group of newborn mice, a minimal degree of inflammatory cell infiltration and fibrosis in the lung were detected, whereas more severe pathological lesions including granulomatous inflammation, fibrosis, and degeneration of the bronchiolar epithelium were observed in adult mice. At day 4, C-C motif chemokine ligand 2 (CCL2), a potent chemokine for monocytes, was upregulated but recovered to normal levels at day 15 in newborn mice. However, increased CCL2 and IL-6 levels were sustained at day 15 in adult mice. When comparing the differentially expressed genes of newborn and adult mice through RNA-seq analysis, there were expression changes in several genes associated with inflammation in neonates that were similar or different from those in adults. Although no significant lung damage occurred in newborns, growth inhibition was observed which was not reversed until the end of the experiment. Further research is needed to determine how growth inhibition from neonatal exposure to PHMG-P affects adolescent and young adult health.
Collapse
Affiliation(s)
- Kyung Jin Jung
- Immunotoxicology Research Group, Korea Institute of Toxicology, Daejeon, 34114, Republic of Korea
| | - Jeonghee Cho
- Center for Vascular Research, Institute for Basci Science, Daejeon, 34126, Republic of Korea
| | - Mi-Jin Yang
- Jeonbuk Pathology Research Group, Korea Institute of Toxicology, Jeonbuk, 56212, Republic of Korea
| | - Jeong Ho Hwang
- Animal Model Research Group, Korea Institute of Toxicology, Jeongeup, 56212, Republic of Korea
| | - Jeongah Song
- Animal Model Research Group, Korea Institute of Toxicology, Jeongeup, 56212, Republic of Korea.
| |
Collapse
|
11
|
Feng SW, North TM, Wivell P, Pletcher A, Popratiloff A, Shibata M. Macrophages of multiple hematopoietic origins reside in the developing prostate. Development 2024; 151:dev203070. [PMID: 39082371 PMCID: PMC11385323 DOI: 10.1242/dev.203070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Accepted: 07/22/2024] [Indexed: 08/02/2024]
Abstract
Tissue-resident macrophages contribute to the organogenesis of many tissues. Growth of the prostate is regulated by androgens during puberty, yet androgens are considered immune suppressive. In this study, we characterized the localization, androgen receptor expression and hematopoietic origin of prostate macrophages, and transiently ablated macrophages during postnatal prostate organogenesis in the mouse. We show that myeloid cells were abundant in the prostate during puberty. However, nuclear androgen receptor expression was not detected in most macrophages. We found Cx3cr1, a marker for macrophages, monocytes and dendritic cells, expressed in interstitial macrophages surrounding the prostate and associated with nerve fibers. Furthermore, we provide evidence for the co-existence of embryonic origin, self-renewing, tissue-resident macrophages and recruited macrophages of bone-marrow monocyte origin in the prostate during puberty. Our findings suggest that prostate macrophages promote neural patterning and may shed further light on our understanding of the role of the innate immune system in prostate pathology in response to inflammation and in cancer.
Collapse
Affiliation(s)
- Sally W Feng
- Department of Anatomy and Cell Biology, The George Washington University School of Medicine and Health Sciences, Washington, DC 20052, USA
- The George Washington University Cancer Center, The George Washington University School of Medicine and Health Sciences, Washington, DC 20052, USA
| | - Tanya M North
- Department of Anatomy and Cell Biology, The George Washington University School of Medicine and Health Sciences, Washington, DC 20052, USA
- The George Washington University Cancer Center, The George Washington University School of Medicine and Health Sciences, Washington, DC 20052, USA
| | - Peri Wivell
- Department of Anatomy and Cell Biology, The George Washington University School of Medicine and Health Sciences, Washington, DC 20052, USA
- The George Washington University Cancer Center, The George Washington University School of Medicine and Health Sciences, Washington, DC 20052, USA
| | - Andrew Pletcher
- Department of Anatomy and Cell Biology, The George Washington University School of Medicine and Health Sciences, Washington, DC 20052, USA
- The George Washington University Cancer Center, The George Washington University School of Medicine and Health Sciences, Washington, DC 20052, USA
| | - Anastas Popratiloff
- Department of Anatomy and Cell Biology, The George Washington University School of Medicine and Health Sciences, Washington, DC 20052, USA
- GW Nanofabrication and Imaging Center, The George Washington University, Washington, DC 20052, USA
| | - Maho Shibata
- Department of Anatomy and Cell Biology, The George Washington University School of Medicine and Health Sciences, Washington, DC 20052, USA
- The George Washington University Cancer Center, The George Washington University School of Medicine and Health Sciences, Washington, DC 20052, USA
| |
Collapse
|
12
|
Pirker AL, Vogl T. Development of systemic and mucosal immune responses against gut microbiota in early life and implications for the onset of allergies. FRONTIERS IN ALLERGY 2024; 5:1439303. [PMID: 39086886 PMCID: PMC11288972 DOI: 10.3389/falgy.2024.1439303] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Accepted: 07/05/2024] [Indexed: 08/02/2024] Open
Abstract
The early microbial colonization of human mucosal surfaces is essential for the development of the host immune system. Already during pregnancy, the unborn child is prepared for the postnatal influx of commensals and pathogens via maternal antibodies, and after birth this protection is continued with antibodies in breast milk. During this critical window of time, which extends from pregnancy to the first year of life, each encounter with a microorganism can influence children's immune response and can have a lifelong impact on their life. For example, there are numerous links between the development of allergies and an altered gut microbiome. However, the exact mechanisms behind microbial influences, also extending to how viruses influence host-microbe interactions, are incompletely understood. In this review, we address the impact of infants' first microbial encounters, how the immune system develops to interact with gut microbiota, and summarize how an altered immune response could be implied in allergies.
Collapse
Affiliation(s)
| | - Thomas Vogl
- Center for Cancer Research, Medical University of Vienna, Vienna, Austria
| |
Collapse
|
13
|
Rosmus DD, Koch J, Hausmann A, Chiot A, Arnhold F, Masuda T, Kierdorf K, Hansen SM, Kuhrt H, Fröba J, Wolf J, Boneva S, Gericke M, Ajami B, Prinz M, Lange C, Wieghofer P. Redefining the ontogeny of hyalocytes as yolk sac-derived tissue-resident macrophages of the vitreous body. J Neuroinflammation 2024; 21:168. [PMID: 38961498 PMCID: PMC11223341 DOI: 10.1186/s12974-024-03110-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Accepted: 04/22/2024] [Indexed: 07/05/2024] Open
Abstract
BACKGROUND The eye is a highly specialized sensory organ which encompasses the retina as a part of the central nervous system, but also non-neural compartments such as the transparent vitreous body ensuring stability of the eye globe and a clear optical axis. Hyalocytes are the tissue-resident macrophages of the vitreous body and are considered to play pivotal roles in health and diseases of the vitreoretinal interface, such as proliferative vitreoretinopathy or diabetic retinopathy. However, in contrast to other ocular macrophages, their embryonic origin as well as the extent to which these myeloid cells might be replenished by circulating monocytes remains elusive. RESULTS In this study, we combine transgenic reporter mice, embryonic and adult fate mapping approaches as well as parabiosis experiments with multicolor immunofluorescence labeling and confocal laser-scanning microscopy to comprehensively characterize the murine hyalocyte population throughout development and in adulthood. We found that murine hyalocytes express numerous well-known myeloid cell markers, but concomitantly display a distinct immunophenotype that sets them apart from retinal microglia. Embryonic pulse labeling revealed a yolk sac-derived origin of murine hyalocytes, whose precursors seed the developing eye prenatally. Finally, postnatal labeling and parabiosis established the longevity of hyalocytes which rely on Colony Stimulating Factor 1 Receptor (CSF1R) signaling for their maintenance, independent of blood-derived monocytes. CONCLUSION Our study identifies hyalocytes as long-living progeny of the yolk sac hematopoiesis and highlights their role as integral members of the innate immune system of the eye. As a consequence of their longevity, immunosenescence processes may culminate in hyalocyte dysfunction, thereby contributing to the development of vitreoretinal diseases. Therefore, myeloid cell-targeted therapies that convey their effects through the modification of hyalocyte properties may represent an interesting approach to alleviate the burden imposed by diseases of the vitreoretinal interface.
Collapse
Affiliation(s)
- Dennis-Dominik Rosmus
- Institute of Anatomy, Leipzig University, 04103, Leipzig, Germany
- Cellular Neuroanatomy, Institute of Theoretical Medicine, Augsburg University, Universitätsstrasse 2, 86159, Augsburg, Germany
| | - Jana Koch
- Cellular Neuroanatomy, Institute of Theoretical Medicine, Augsburg University, Universitätsstrasse 2, 86159, Augsburg, Germany
- Institute of Neuropathology, Medical Center, Faculty of Medicine, University of Freiburg, 79106, Freiburg, Germany
- Eye Center, Medical Center, Faculty of Medicine, University of Freiburg, 79106, Freiburg, Germany
| | - Annika Hausmann
- Institute of Neuropathology, Medical Center, Faculty of Medicine, University of Freiburg, 79106, Freiburg, Germany
| | - Aude Chiot
- Department of Molecular Microbiology and Immunology, Oregon Health & Science University, Portland, OR, 97239, USA
- Department of Behavioral Neuroscience, Oregon Health & Science University, Portland, OR, 97239, USA
| | - Franz Arnhold
- Institute of Anatomy, Leipzig University, 04103, Leipzig, Germany
| | - Takahiro Masuda
- Institute of Neuropathology, Medical Center, Faculty of Medicine, University of Freiburg, 79106, Freiburg, Germany
- Division of Molecular Neuroimmunology, Medical Institute of Bioregulation, Kyushu University, Fukuoka, 812-8582, Japan
| | - Katrin Kierdorf
- Institute of Neuropathology, Medical Center, Faculty of Medicine, University of Freiburg, 79106, Freiburg, Germany
- Centre for Integrative Biological Signalling Studies, University of Freiburg, 79106, Freiburg, Germany
- Centre for Basics in NeuroModulation (NeuroModulBasics), Faculty of Medicine, University of Freiburg, 79106, Freiburg, Germany
| | - Stefanie Marie Hansen
- Institute of Neuropathology, Medical Center, Faculty of Medicine, University of Freiburg, 79106, Freiburg, Germany
| | - Heidrun Kuhrt
- Institute of Anatomy, Leipzig University, 04103, Leipzig, Germany
| | - Janine Fröba
- Institute of Anatomy, Leipzig University, 04103, Leipzig, Germany
| | - Julian Wolf
- Eye Center, Medical Center, Faculty of Medicine, University of Freiburg, 79106, Freiburg, Germany
- Molecular Surgery Laboratory, Stanford University, Palo Alto, CA, 94304, USA
- Department of Ophthalmology, Byers Eye Institute, Stanford University, Palo Alto, CA, 94304, USA
| | - Stefaniya Boneva
- Eye Center, Medical Center, Faculty of Medicine, University of Freiburg, 79106, Freiburg, Germany
| | - Martin Gericke
- Institute of Anatomy, Leipzig University, 04103, Leipzig, Germany
| | - Bahareh Ajami
- Department of Molecular Microbiology and Immunology, Oregon Health & Science University, Portland, OR, 97239, USA
- Department of Behavioral Neuroscience, Oregon Health & Science University, Portland, OR, 97239, USA
| | - Marco Prinz
- Institute of Neuropathology, Medical Center, Faculty of Medicine, University of Freiburg, 79106, Freiburg, Germany
- Signalling Research Centres BIOSS and CIBSS, University of Freiburg, 79106, Freiburg, Germany
| | - Clemens Lange
- Eye Center, Medical Center, Faculty of Medicine, University of Freiburg, 79106, Freiburg, Germany
- Ophtha Lab, Department of Ophthalmology, St. Franziskus Hospital, 48145, Münster, Germany
| | - Peter Wieghofer
- Institute of Anatomy, Leipzig University, 04103, Leipzig, Germany.
- Cellular Neuroanatomy, Institute of Theoretical Medicine, Augsburg University, Universitätsstrasse 2, 86159, Augsburg, Germany.
- Institute of Neuropathology, Medical Center, Faculty of Medicine, University of Freiburg, 79106, Freiburg, Germany.
| |
Collapse
|
14
|
Grayck MR, McCarthy WC, Solar M, Balasubramaniyan N, Zheng L, Orlicky DJ, Wright CJ. Implications of neonatal absence of innate immune mediated NFκB/AP1 signaling in the murine liver. Pediatr Res 2024; 95:1791-1802. [PMID: 38396130 DOI: 10.1038/s41390-024-03071-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Revised: 01/03/2024] [Accepted: 01/20/2024] [Indexed: 02/25/2024]
Abstract
BACKGROUND The developmental immaturity of the innate immune system helps explains the increased risk of infection in the neonatal period. Importantly, innate immune signaling pathways such as p65/NFκB and c-Jun/AP1 are responsible for the prevention of hepatocyte apoptosis in adult animals, yet whether developmental immaturity of these pathways increases the risk of hepatic injury in the neonatal period is unknown. METHODS Using a murine model of endotoxemia (LPS 5 mg/kg IP x 1) in neonatal (P3) and adult mice, we evaluated histologic evidence of hepatic injury and apoptosis, presence of p65/NFκB and c-Jun/AP1 activation and associated transcriptional regulation of apoptotic genes. RESULTS We demonstrate that in contrast to adults, endotoxemic neonatal (P3) mice exhibit a significant increase in hepatic apoptosis. This is associated with absent hepatic p65/NFκB signaling and impaired expression of anti-apoptotic target genes. Hepatic c-Jun/AP1 activity was attenuated in endotoxemic P3 mice, with resulting upregulation of pro-apoptotic factors. CONCLUSIONS These results demonstrate that developmental absence of innate immune p65/NFκB and c-Jun/AP1 signaling, and target gene expression is associated with apoptotic injury in neonatal mice. More work is needed to determine if this contributes to long-term hepatic dysfunction, and whether immunomodulatory approaches can prevent this injury. IMPACT Various aspects of developmental immaturity of the innate immune system may help explain the increased risk of infection in the neonatal period. In adult models of inflammation and infection, innate immune signaling pathways such as p65/NFκB and c-Jun/AP1 are responsible for a protective, pro-inflammatory transcriptome and regulation of apoptosis. We demonstrate that in contrast to adults, endotoxemic neonatal (P3) mice exhibit a significant increase in hepatic apoptosis associated with absent hepatic p65/NFκB signaling and c-Jun/AP1 activity. We believe that these results may explain in part hepatic dysfunction with neonatal sepsis, and that there may be unrecognized developmental and long-term hepatic implications of early life exposure to systemic inflammatory stress.
Collapse
Affiliation(s)
- Maya R Grayck
- Section of Neonatology, Department of Pediatrics, University of Colorado School of Medicine, Aurora, CO, USA
| | - William C McCarthy
- Section of Neonatology, Department of Pediatrics, University of Colorado School of Medicine, Aurora, CO, USA
| | - Mack Solar
- Section of Neonatology, Department of Pediatrics, University of Colorado School of Medicine, Aurora, CO, USA
| | - Natarajan Balasubramaniyan
- Section of Neonatology, Department of Pediatrics, University of Colorado School of Medicine, Aurora, CO, USA
| | - Lijun Zheng
- Section of Neonatology, Department of Pediatrics, University of Colorado School of Medicine, Aurora, CO, USA
| | - David J Orlicky
- Dept of Pathology, University of Colorado Anschutz School of Medicine, Aurora, CO, USA
| | - Clyde J Wright
- Section of Neonatology, Department of Pediatrics, University of Colorado School of Medicine, Aurora, CO, USA.
| |
Collapse
|
15
|
Govindaraj D, Jensen GB, Rahman Qazi K, Sverremark‐Ekström E, Abrahamsson T, Jenmalm MC. Effects of extremely preterm birth on cytokine and chemokine responses induced by T-cell activation during infancy. Clin Transl Immunology 2024; 13:e1510. [PMID: 38737447 PMCID: PMC11087183 DOI: 10.1002/cti2.1510] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 04/17/2024] [Accepted: 04/22/2024] [Indexed: 05/14/2024] Open
Abstract
Objectives Extremely preterm (EPT; gestational week < 28 + 0, < 1000 g) neonates are vulnerable to infections and necrotising enterocolitis, important contributors to mortality and morbidity. However, knowledge regarding their immune maturation remains limited. We here investigated the longitudinal development of functional T-cell capacity in EPT infants. Methods Peripheral blood mononuclear cells were isolated at 14th and 28th day (D) and at gestational week 36 + 0 (Gw36) from EPT infants, participated in a randomised, double-blind, placebo-controlled study of Lactobacillus reuteri DSM 17938 probiotic supplementation. Blood collected from 25 full-term (FT) infants at D14 was used as control. The secretion of immune mediators was determined through comprehensive Luminex panels after stimulation with human T-cell activator CD3/CD28 beads. Results The levels of many mediators were low in EPT infants at D14, whereas the secretion of several chemokines was higher in EPT than in FT infants. Furthermore, Th2:Th1 cytokine ratios were higher in EPT than in FT infants. Progressively elevated secretion of, for example, IFN-γ, TNF and IL-17A in EPT infants was observed from D14 to D28 and then at Gw36. Elevated levels were observed for many proinflammatory mediators at D28. Probiotic supplementation or perinatal factors (e.g. clinical chorioamnionitis, preeclampsia and delivery mode) did not influence the cytokine and chemokine responses. Conclusions Immune mediators induced by T-cell activation in EPT infants were mainly reduced at D14 and Th2 skewed compared to those in FT infants, but mostly recovered at Gw36, indicating immune maturation. Increased proinflammatory responses at D28 may be related to the heightened risk of severe immune-associated complications seen in EPT infants.
Collapse
Affiliation(s)
- Dhanapal Govindaraj
- Division of Inflammation and Infection (II), Department of Biomedical and Clinical Sciences (BKV)Linköping UniversityLinköpingSweden
| | - Georg Bach Jensen
- Division of Inflammation and Infection (II), Department of Biomedical and Clinical Sciences (BKV)Linköping UniversityLinköpingSweden
- Crown Princess Victoria Children's HospitalLinköpingCounty of ÖstergötlandSweden
| | - Khaleda Rahman Qazi
- Department of Molecular Biosciences, The Wenner‐Gren InstituteStockholm UniversityStockholmSweden
| | - Eva Sverremark‐Ekström
- Department of Molecular Biosciences, The Wenner‐Gren InstituteStockholm UniversityStockholmSweden
| | - Thomas Abrahamsson
- Division of Inflammation and Infection (II), Department of Biomedical and Clinical Sciences (BKV)Linköping UniversityLinköpingSweden
- Crown Princess Victoria Children's HospitalLinköpingCounty of ÖstergötlandSweden
| | - Maria C Jenmalm
- Division of Inflammation and Infection (II), Department of Biomedical and Clinical Sciences (BKV)Linköping UniversityLinköpingSweden
| |
Collapse
|
16
|
Bandyopadhyay G, Jehrio MG, Baker C, Bhattacharya S, Misra RS, Huyck HL, Chu C, Myers JR, Ashton J, Polter S, Cochran M, Bushnell T, Dutra J, Katzman PJ, Deutsch GH, Mariani TJ, Pryhuber GS. Bulk RNA sequencing of human pediatric lung cell populations reveals unique transcriptomic signature associated with postnatal pulmonary development. Am J Physiol Lung Cell Mol Physiol 2024; 326:L604-L617. [PMID: 38442187 PMCID: PMC11381037 DOI: 10.1152/ajplung.00385.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Revised: 02/19/2024] [Accepted: 02/27/2024] [Indexed: 03/07/2024] Open
Abstract
Postnatal lung development results in an increasingly functional organ prepared for gas exchange and pathogenic challenges. It is achieved through cellular differentiation and migration. Changes in the tissue architecture during this development process are well-documented and increasing cellular diversity associated with it are reported in recent years. Despite recent progress, transcriptomic and molecular pathways associated with human postnatal lung development are yet to be fully understood. In this study, we investigated gene expression patterns associated with healthy pediatric lung development in four major enriched cell populations (epithelial, endothelial, and nonendothelial mesenchymal cells, along with lung leukocytes) from 1-day-old to 8-yr-old organ donors with no known lung disease. For analysis, we considered the donors in four age groups [less than 30 days old neonates, 30 days to < 1 yr old infants, toddlers (1 to < 2 yr), and children 2 yr and older] and assessed differentially expressed genes (DEG). We found increasing age-associated transcriptional changes in all four major cell types in pediatric lung. Transition from neonate to infant stage showed highest number of DEG compared with the number of DEG found during infant to toddler- or toddler to older children-transitions. Profiles of differential gene expression and further pathway enrichment analyses indicate functional epithelial cell maturation and increased capability of antigen presentation and chemokine-mediated communication. Our study provides a comprehensive reference of gene expression patterns during healthy pediatric lung development that will be useful in identifying and understanding aberrant gene expression patterns associated with early life respiratory diseases.NEW & NOTEWORTHY This study presents postnatal transcriptomic changes in major cell populations in human lung, namely endothelial, epithelial, mesenchymal cells, and leukocytes. Although human postnatal lung development continues through early adulthood, our results demonstrate that greatest transcriptional changes occur in first few months of life during neonate to infant transition. These early transcriptional changes in lung parenchyma are particularly notable for functional maturation and activation of alveolar type II cell genes.
Collapse
Affiliation(s)
- Gautam Bandyopadhyay
- Division of Neonatology, Department of Pediatrics, University of Rochester Medical Center, Rochester, New York, United States
| | - Matthew G Jehrio
- Division of Neonatology, Department of Pediatrics, University of Rochester Medical Center, Rochester, New York, United States
| | - Cameron Baker
- UR Genomics Research Center, University of Rochester Medical Center, Rochester, New York, United States
| | - Soumyaroop Bhattacharya
- Division of Neonatology, Department of Pediatrics, University of Rochester Medical Center, Rochester, New York, United States
- Program in Pediatric Molecular and Personalized Medicine, Department of Pediatrics, University of Rochester Medical Center, Rochester, New York, United States
| | - Ravi S Misra
- Division of Neonatology, Department of Pediatrics, University of Rochester Medical Center, Rochester, New York, United States
| | - Heidie L Huyck
- Division of Neonatology, Department of Pediatrics, University of Rochester Medical Center, Rochester, New York, United States
| | - ChinYi Chu
- Division of Neonatology, Department of Pediatrics, University of Rochester Medical Center, Rochester, New York, United States
- Program in Pediatric Molecular and Personalized Medicine, Department of Pediatrics, University of Rochester Medical Center, Rochester, New York, United States
| | - Jason R Myers
- UR Genomics Research Center, University of Rochester Medical Center, Rochester, New York, United States
| | - John Ashton
- UR Genomics Research Center, University of Rochester Medical Center, Rochester, New York, United States
| | - Steven Polter
- UR Flow Cytometry Core Facility, University of Rochester Medical Center, Rochester, New York, United States
| | - Matthew Cochran
- UR Flow Cytometry Core Facility, University of Rochester Medical Center, Rochester, New York, United States
| | - Timothy Bushnell
- UR Flow Cytometry Core Facility, University of Rochester Medical Center, Rochester, New York, United States
| | - Jennifer Dutra
- UR Clinical & Translational Science Institute Informatics, University of Rochester Medical Center, Rochester, New York, United States
| | - Philip J Katzman
- Department of Pathology, University of Rochester Medical Center, Rochester, New York, United States
| | - Gail H Deutsch
- Department of Pathology, Seattle Children's Hospital, Seattle, Washington, United States
| | - Thomas J Mariani
- Division of Neonatology, Department of Pediatrics, University of Rochester Medical Center, Rochester, New York, United States
- Program in Pediatric Molecular and Personalized Medicine, Department of Pediatrics, University of Rochester Medical Center, Rochester, New York, United States
| | - Gloria S Pryhuber
- Division of Neonatology, Department of Pediatrics, University of Rochester Medical Center, Rochester, New York, United States
| |
Collapse
|
17
|
Ignacio A, Czyz S, McCoy KD. Early life microbiome influences on development of the mucosal innate immune system. Semin Immunol 2024; 73:101885. [PMID: 38788491 DOI: 10.1016/j.smim.2024.101885] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Revised: 05/11/2024] [Accepted: 05/16/2024] [Indexed: 05/26/2024]
Abstract
The gut microbiota is well known to possess immunomodulatory capacities, influencing a multitude of cellular signalling pathways to maintain host homeostasis. Although the formation of the immune system initiates before birth in a sterile environment, an emerging body of literature indicates that the neonatal immune system is influenced by a first wave of external stimuli that includes signals from the maternal microbiota. A second wave of stimulus begins after birth and must be tightly regulated during the neonatal period when colonization of the host occurs concomitantly with the maturation of the immune system, requiring a fine adjustment between establishing tolerance towards the commensal microbiota and preserving inflammatory responses against pathogenic invaders. Besides integrating cues from commensal microbes, the neonatal immune system must also regulate responses triggered by other environmental signals, such as dietary antigens, which become more complex with the introduction of solid food during the weaning period. This "window of opportunity" in early life is thought to be crucial for the proper development of the immune system, setting the tone of subsequent immune responses in adulthood and modulating the risk of developing chronic and metabolic inflammatory diseases. Here we review the importance of host-microbiota interactions for the development and maturation of the immune system, particularly in the early-life period, highlighting the known mechanisms involved in such communication. This discussion is focused on recent data demonstrating microbiota-mediated education of innate immune cells and its role in the development of lymphoid tissues.
Collapse
Affiliation(s)
- Aline Ignacio
- Department of Physiology and Pharmacology, Snyder Institute for Chronic Diseases, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - Sonia Czyz
- Department of Physiology and Pharmacology, Snyder Institute for Chronic Diseases, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - Kathy D McCoy
- Department of Physiology and Pharmacology, Snyder Institute for Chronic Diseases, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada.
| |
Collapse
|
18
|
Li X, Sperandio M, Scheiermann C. Maternal rhythms suppress neonatal inflammation. Nat Metab 2024; 6:787-788. [PMID: 38561510 DOI: 10.1038/s42255-024-01027-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 04/04/2024]
Affiliation(s)
- Xia Li
- Institute for Cardiovascular Physiology and Pathophysiology, Biomedical Center (BMC), Ludwig Maximilians Universität, Munich, Germany
| | - Markus Sperandio
- Institute for Cardiovascular Physiology and Pathophysiology, Biomedical Center (BMC), Ludwig Maximilians Universität, Munich, Germany
| | - Christoph Scheiermann
- Institute for Cardiovascular Physiology and Pathophysiology, Biomedical Center (BMC), Ludwig Maximilians Universität, Munich, Germany.
- Department of Pathology and Immunology, Faculty of Medicine, University of Geneva, Geneva, Switzerland.
| |
Collapse
|
19
|
Wyczanska M, Thalmeier F, Keller U, Klaus R, Narasimhan H, Ji X, Schraml BU, Wackerbarth LM, Lange-Sperandio B. Interleukin-10 enhances recruitment of immune cells in the neonatal mouse model of obstructive nephropathy. Sci Rep 2024; 14:5495. [PMID: 38448513 PMCID: PMC10917785 DOI: 10.1038/s41598-024-55469-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Accepted: 02/23/2024] [Indexed: 03/08/2024] Open
Abstract
Urinary tract obstruction during renal development leads to inflammation, leukocyte infiltration, tubular cell death, and interstitial fibrosis. Interleukin-10 (IL-10) is an anti-inflammatory cytokine, produced mainly by monocytes/macrophages and regulatory T-cells. IL-10 inhibits innate and adaptive immune responses. IL-10 has a protective role in the adult model of obstructive uropathy. However, its role in neonatal obstructive uropathy is still unclear which led us to study the role of IL-10 in neonatal mice with unilateral ureteral obstruction (UUO). UUO serves as a model for congenital obstructive nephropathies, a leading cause of kidney failure in children. Newborn Il-10-/- and C57BL/6 wildtype-mice (WT) were subjected to complete UUO or sham-operation on the 2nd day of life. Neonatal kidneys were harvested at day 3, 7, and 14 of life and analyzed for different leukocyte subpopulations by FACS, for cytokines and chemokines by Luminex assay and ELISA, and for inflammation, programmed cell death, and fibrosis by immunohistochemistry and western blot. Compared to WT mice, Il-10-/- mice showed reduced infiltration of neutrophils, CD11bhi cells, conventional type 1 dendritic cells, and T-cells following UUO. Il-10-/- mice with UUO also showed a reduction in pro-inflammatory cytokine and chemokine release compared to WT with UUO, mainly of IP-10, IL-1α, MIP-2α and IL-17A. In addition, Il-10-/- mice showed less necroptosis after UUO while the rate of apoptosis was not different. Finally, α-SMA and collagen abundance as readout for fibrosis were similar in Il-10-/- and WT with UUO. Surprisingly and in contrast to adult Il-10-/- mice undergoing UUO, neonatal Il-10-/- mice with UUO showed a reduced inflammatory response compared to respective WT control mice with UUO. Notably, long term changes such as renal fibrosis were not different between neonatal Il-10-/- and neonatal WT mice with UUO suggesting that IL-10 signaling is different in neonates and adults with UUO.
Collapse
Affiliation(s)
- Maja Wyczanska
- Department of Pediatrics, Dr. v. Hauner Children's Hospital, University Hospital, LMU Munich, Lindwurmstraße 4, 80337, Munich, Germany
| | - Franziska Thalmeier
- Department of Pediatrics, Dr. v. Hauner Children's Hospital, University Hospital, LMU Munich, Lindwurmstraße 4, 80337, Munich, Germany
| | - Ursula Keller
- Department of Pediatrics, Dr. v. Hauner Children's Hospital, University Hospital, LMU Munich, Lindwurmstraße 4, 80337, Munich, Germany
| | - Richard Klaus
- Department of Pediatrics, Dr. v. Hauner Children's Hospital, University Hospital, LMU Munich, Lindwurmstraße 4, 80337, Munich, Germany
| | - Hamsa Narasimhan
- Biomedical Center, Institute for Cardiovascular Physiology and Pathophysiology, Faculty of Medicine, LMU Munich, 82152, Planegg-Martinsried, Germany
| | - Xingqi Ji
- Biomedical Center, Institute for Cardiovascular Physiology and Pathophysiology, Faculty of Medicine, LMU Munich, 82152, Planegg-Martinsried, Germany
| | - Barbara U Schraml
- Biomedical Center, Institute for Cardiovascular Physiology and Pathophysiology, Faculty of Medicine, LMU Munich, 82152, Planegg-Martinsried, Germany
| | - Lou M Wackerbarth
- Biomedical Center, Institute for Cardiovascular Physiology and Pathophysiology, Faculty of Medicine, LMU Munich, 82152, Planegg-Martinsried, Germany
| | - Bärbel Lange-Sperandio
- Department of Pediatrics, Dr. v. Hauner Children's Hospital, University Hospital, LMU Munich, Lindwurmstraße 4, 80337, Munich, Germany.
| |
Collapse
|
20
|
Zhang A, de Ángel Solá D, Acevedo Flores M, Cao L, Wang L, Kim JG, Tarr PI, Warner BB, Rosario Matos N, Wang L. Infants exposed in utero to Hurricane Maria have gut microbiomes with reduced diversity and altered metabolic capacity. mSphere 2023; 8:e0013423. [PMID: 37754563 PMCID: PMC10597457 DOI: 10.1128/msphere.00134-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Accepted: 08/10/2023] [Indexed: 09/28/2023] Open
Abstract
The gut microbiome is a potentially important mechanism that links prenatal disaster exposures with increased disease risks. However, whether prenatal disaster exposures are associated with alterations in the infant's gut microbiome remains unknown. We established a birth cohort study named Hurricane as the Origin of Later Alterations in Microbiome (HOLA) after Hurricane Maria struck Puerto Rico in 2017. We enrolled vaginally born Latino term infants aged 2 to 6 months, including n = 29 infants who were exposed in utero to Hurricane Maria in Puerto Rico and n = 34 infants who were conceived at least 5 months after the hurricane as controls. Shotgun metagenomic sequencing was performed on infant stool swabs. Infants exposed in utero to Hurricane Maria had a reduced diversity in their gut microbiome compared to the control infants, which was mainly seen in the exclusively formula-fed group (P = 0.02). Four bacterial species, including Bacteroides vulgatus, Clostridium innocuum, Bifidobacterium pseudocatenulatum, and Clostridium neonatale, were depleted in the exposure group compared to the control group. Compositional differences in the microbial community and metabolic genes between the exposure and control groups were significant, which were driven by the formula feeding group (P = 0.02 for the microbial community and P = 0.008 for the metabolic genes). Metabolic modules involved in carbohydrate metabolism were reduced in the exposure group. Prenatal maternal exposure to Hurricane Maria was associated with a reduced gut commensal and an altered microbial composition and metabolic potential in the offspring's gut. Breastfeeding can adjust the composition of the gut microbiomes of exposed infants. IMPORTANCE Climate change is a serious issue that is affecting human health. With more frequent and intense weather disasters due to climate change, there is an urgent need to evaluate and understand the impacts of prenatal disaster exposures on the offspring. The prenatal stage is a particularly vulnerable stage for disease origination. However, the impact of prenatal weather disaster exposures on the offspring's gut microbiome has not been evaluated. Our HOLA study starts to fill this knowledge gap and provides novel insights into the microbiome as a mechanism that links prenatal disaster exposures with elevated disease risks. Our major finding that reduced microbial diversity and altered metabolic capacity are associated with prenatal hurricane exposures warrants further studies to evaluate the impact of weather disasters on the unborn.
Collapse
Affiliation(s)
- Ai Zhang
- Department of Medicine, Division of Allergy and Immunology, Washington University School of Medicine in St. Louis, St. Louis, Missouri, USA
| | - David de Ángel Solá
- Department of Pediatrics, Yale University School of Medicine, New Haven, Connecticut, USA
| | - Midnela Acevedo Flores
- Department of Pediatrics and Obstetrics and Gynecology, San Juan City Hospital Research Unit, San Juan Hospital, San Juan, Puerto Rico
| | - Lijuan Cao
- Department of Medicine, Division of Allergy and Immunology, Washington University School of Medicine in St. Louis, St. Louis, Missouri, USA
| | - Leran Wang
- Department of Medicine, Division of Infectious Diseases, Edison Family Center for Genome Sciences and Systems Biology, Washington University School of Medicine in St. Louis, St. Louis, Missouri, USA
| | - Josh G. Kim
- Department of Medicine, Division of Allergy and Immunology, Washington University School of Medicine in St. Louis, St. Louis, Missouri, USA
| | - Phillip I. Tarr
- Department of Pediatrics, Washington University School of Medicine in St. Louis, St. Louis, Missouri, USA
| | - Barbara B. Warner
- Department of Pediatrics, Washington University School of Medicine in St. Louis, St. Louis, Missouri, USA
| | - Nicolás Rosario Matos
- Department of Pediatrics and Obstetrics and Gynecology, San Juan City Hospital Research Unit, San Juan Hospital, San Juan, Puerto Rico
| | - Leyao Wang
- Department of Medicine, Division of Allergy and Immunology, Washington University School of Medicine in St. Louis, St. Louis, Missouri, USA
| |
Collapse
|
21
|
Abstract
Metabolic switches are a crucial hallmark of cellular development and regeneration. In response to changes in their environment or physiological state, cells undergo coordinated metabolic switching that is necessary to execute biosynthetic demands of growth and repair. In this Review, we discuss how metabolic switches represent an evolutionarily conserved mechanism that orchestrates tissue development and regeneration, allowing cells to adapt rapidly to changing conditions during development and postnatally. We further explore the dynamic interplay between metabolism and how it is not only an output, but also a driver of cellular functions, such as cell proliferation and maturation. Finally, we underscore the epigenetic and cellular mechanisms by which metabolic switches mediate biosynthetic needs during development and regeneration, and how understanding these mechanisms is important for advancing our knowledge of tissue development and devising new strategies to promote tissue regeneration.
Collapse
Affiliation(s)
- Ahmed I. Mahmoud
- Department of Cell and Regenerative Biology, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI 53705, USA
| |
Collapse
|
22
|
de Jong R, Tenbrock K, Ohl K. New Insights in Immunometabolism in Neonatal Monocytes and Macrophages in Health and Disease. Int J Mol Sci 2023; 24:14173. [PMID: 37762476 PMCID: PMC10531550 DOI: 10.3390/ijms241814173] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Revised: 09/13/2023] [Accepted: 09/14/2023] [Indexed: 09/29/2023] Open
Abstract
It is well established that the neonatal immune system is different from the adult immune system. A major task of the neonatal immune system is to bridge the achievement of tolerance towards harmless antigens and commensal bacteria while providing protection against pathogens. This is highly important because neonates are immunologically challenged directly after birth by a rigorous change from a semi-allogeneic sterile environment into a world rich with microbes. A so called disease tolerogenic state is typical for neonates and is anticipated to prevent immunopathological damage potentially at the cost of uncontrolled pathogen proliferation. As a consequence, neonates are more susceptible than adults to life-threatening infections. At the basis of a well-functioning immune response, both for adults and neonates, innate immune cells such as monocytes and monocyte-derived macrophages play an essential role. A well-responsive monocyte will alter its cellular metabolism to subsequently induce certain immune effector function, a process which is called immunometabolism. Immunometabolism has received extensive attention in the last decade; however, it has not been broadly studied in neonates. This review focuses on carbohydrate metabolism in monocytes and macrophages in neonates. We will exhibit pathways involving glycolysis, the tricarboxylic acid (TCA) cycle and oxidative phosphorylation and their role in shaping neonates' immune systems to a favorable tolerogenic state. More insight into these pathways will elucidate potential treatments targets in life-threatening conditions including neonatal sepsis or expose potential targets which can be used to induce tolerance in conditions where tolerance is harmfully impaired such as in autoimmune diseases.
Collapse
Affiliation(s)
| | - Klaus Tenbrock
- Department of Pediatrics, RWTH Aachen University, 52074 Aachen, Germany; (R.d.J.); (K.O.)
| | | |
Collapse
|
23
|
Nilsen SM, Valand J, Rogne T, Asheim A, Yin W, Metsälä J, Opdahl S, Døllner H, Damås JK, Kajantie E, Solligård E, Sandin S, Risnes K. Gestational age at birth and hospitalisations for infections among individuals aged 0-50 years in Norway: a longitudinal, register-based, cohort study. EClinicalMedicine 2023; 62:102108. [PMID: 37538542 PMCID: PMC10393616 DOI: 10.1016/j.eclinm.2023.102108] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/15/2023] [Revised: 06/30/2023] [Accepted: 07/03/2023] [Indexed: 08/05/2023] Open
Abstract
Background Preterm birth is associated with increased risk of childhood infections. Whether this risk persists into adulthood is unknown and limited information is available on risk patterns across the full range of gestational ages. Methods In this longitudinal, register-based, cohort study, we linked individual-level data on all individuals born in Norway (January 01, 1967-December 31, 2016) to nationwide hospital data (January 01, 2008-December 31, 2017). Gestational age was categorised as 23-27, 28-31, 32-33, 34-36, 37-38, 39-41, and 42-44 completed weeks. The analyses were stratified by age at follow-up: 0-11 months and 1-5, 6-14, 15-29, and 30-50 years. The primary outcome was hospitalisation due to any infectious disease, with major infectious disease groups as secondary outcomes. Adjusted hospitalisation rate ratios (RRs) for any infection and infectious disease groups were estimated using negative binomial regression. Models were adjusted for year of birth, maternal age at birth, parity, and sex, and included an offset parameter adjusted for person-time at risk. Findings Among 2,695,830 individuals with 313,940 hospitalisations for infections, we found a pattern of higher hospitalisation risk in lower gestational age groups, which was the strongest in childhood but still evident in adulthood. Comparing those born very preterm (28-31) and late preterm (34-36) to full-term (39-41 weeks), RRs (95% confidence interval) for hospitalisation for any infectious disease at ages 1-5 were 3.3 (3.0-3.7) and 1.7 (1.6-1.8), respectively. At 30-50 years, the corresponding estimates were 1.4 (1.2-1.7) and 1.2 (1.1-1.3). The patterns were similar for the infectious disease groups, including bacterial and viral infections, respiratory tract infections (RTIs), and infections not attributable to RTIs. Interpretation Increasing risk of hospitalisations for infections in lower gestational age groups was most prominent in children but still evident in adolescents and adults. Possible mechanisms and groups that could benefit from vaccinations and other prevention strategies should be investigated. Funding St. Olav's University Hospital and Norwegian University of Science and Technology, Norwegian Research Council, Liaison Committee for education, research and innovation in Central Norway, European Commission, Academy of Finland, Sigrid Jusélius Foundation, Foundation for Pediatric Research, and Signe and Ane Gyllenberg Foundation.
Collapse
Affiliation(s)
- Sara Marie Nilsen
- Center for Health Care Improvement, St. Olav's University Hospital, Norway
- Department of Clinical and Molecular Medicine, Norwegian University of Science and Technology, Trondheim, Norway
| | - Jonas Valand
- Department of Clinical and Molecular Medicine, Norwegian University of Science and Technology, Trondheim, Norway
| | - Tormod Rogne
- Department of Chronic Disease Epidemiology, Yale School of Public Health, New Haven, CT, USA
- Center for Perinatal, Pediatric and Environmental Epidemiology, Yale School of Public Health, New Haven, CT, USA
- Department of Circulation and Medical Imaging, NTNU, Norwegian University of Science and Technology, Trondheim, Norway
| | - Andreas Asheim
- Center for Health Care Improvement, St. Olav's University Hospital, Norway
- Department of Mathematical Sciences, Norwegian University of Science and Technology, Trondheim, Norway
| | - Weiyao Yin
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden
| | - Johanna Metsälä
- Department of Public Health and Welfare, Population Health Unit, Finnish Institute for Health and Welfare, Helsinki, Finland
| | - Signe Opdahl
- Department of Public Health and Nursing, Norwegian University of Science and Technology, Trondheim, Norway
| | - Henrik Døllner
- Department of Clinical and Molecular Medicine, Norwegian University of Science and Technology, Trondheim, Norway
- Children's Clinic, St. Olav's University Hospital, Trondheim, Norway
| | - Jan K. Damås
- Department of Clinical and Molecular Medicine, Norwegian University of Science and Technology, Trondheim, Norway
- Clinic of Medicine, Department of Infectious Diseases, St Olav's University Hospital, Trondheim, Norway
| | - Eero Kajantie
- Department of Clinical and Molecular Medicine, Norwegian University of Science and Technology, Trondheim, Norway
- Department of Public Health and Welfare, Population Health Unit, Finnish Institute for Health and Welfare, Helsinki, Finland
- Clinical Medicine Research Unit, Oulu University Hospital and University of Oulu, Oulu, Finland
| | - Erik Solligård
- Department of Circulation and Medical Imaging, NTNU, Norwegian University of Science and Technology, Trondheim, Norway
- Department of Research and Development, Møre and Romsdal Hospital Trust, Ålesund, Norway
| | - Sven Sandin
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, USA
- Seaver Center for Autism Research and Treatment, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Kari Risnes
- Department of Clinical and Molecular Medicine, Norwegian University of Science and Technology, Trondheim, Norway
- Children's Clinic, St. Olav's University Hospital, Trondheim, Norway
| |
Collapse
|
24
|
Bous M, Schmitt C, Hans MC, Weber R, Nourkami-Tutdibi N, Tenbruck S, Haj Hamoud B, Wagenpfeil G, Kaiser E, Solomayer EF, Zemlin M, Goedicke-Fritz S. Sex Differences in the Frequencies of B and T Cell Subpopulations of Human Cord Blood. Int J Mol Sci 2023; 24:11511. [PMID: 37511278 PMCID: PMC10380850 DOI: 10.3390/ijms241411511] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Revised: 07/05/2023] [Accepted: 07/12/2023] [Indexed: 07/30/2023] Open
Abstract
Cord blood represents a link between intrauterine and early extrauterine development. Cord blood cells map an important time frame in human immune imprinting processes. It is unknown whether the sex of the newborn affects the lymphocyte subpopulations in the cord blood. Nine B and twenty-one T cell subpopulations were characterized using flow cytometry in human cord blood from sixteen male and twenty-one female newborns, respectively. Except for transitional B cells and naïve B cells, frequencies of B cell counts across all subsets was higher in the cord blood of male newborns than in female newborns. The frequency of naïve thymus-negative Th cells was significantly higher in male cord blood, whereas the remaining T cell subpopulations showed a higher count in the cord blood of female newborns. Our study is the first revealing sex differences in the B and T cell subpopulations of human cord blood. These results indicate that sex might have a higher impact for the developing immune system, urging the need to expand research in this area.
Collapse
Affiliation(s)
- Michelle Bous
- Department of General Pediatrics and Neonatology, Saarland University Medical Center, 66421 Homburg, Germany
| | - Charline Schmitt
- Department of General Pediatrics and Neonatology, Saarland University Medical Center, 66421 Homburg, Germany
| | - Muriel Charlotte Hans
- Department of General Pediatrics and Neonatology, Saarland University Medical Center, 66421 Homburg, Germany
| | - Regine Weber
- Department of General Pediatrics and Neonatology, Saarland University Medical Center, 66421 Homburg, Germany
| | - Nasenien Nourkami-Tutdibi
- Department of General Pediatrics and Neonatology, Saarland University Medical Center, 66421 Homburg, Germany
| | - Sebastian Tenbruck
- Department of Gynaecology and Obstetrics, Saarland University Medical Center, 66421 Homburg, Germany
| | - Bashar Haj Hamoud
- Department of Gynaecology and Obstetrics, Saarland University Medical Center, 66421 Homburg, Germany
| | - Gudrun Wagenpfeil
- Institute for Medical Biometry, Epidemiology and Medical Informatics (IMBEI), Saarland University, Campus Homburg, 66421 Homburg, Germany
| | - Elisabeth Kaiser
- Department of General Pediatrics and Neonatology, Saarland University Medical Center, 66421 Homburg, Germany
| | - Erich-Franz Solomayer
- Department of Gynaecology and Obstetrics, Saarland University Medical Center, 66421 Homburg, Germany
| | - Michael Zemlin
- Department of General Pediatrics and Neonatology, Saarland University Medical Center, 66421 Homburg, Germany
| | - Sybelle Goedicke-Fritz
- Department of General Pediatrics and Neonatology, Saarland University Medical Center, 66421 Homburg, Germany
| |
Collapse
|
25
|
Dragan M, Chen Z, Li Y, Le J, Sun P, Haensel D, Sureshchandra S, Pham A, Lu E, Pham KT, Verlande A, Vu R, Gutierrez G, Li W, Jang C, Masri S, Dai X. Ovol1/2 loss-induced epidermal defects elicit skin immune activation and alter global metabolism. EMBO Rep 2023; 24:e56214. [PMID: 37249012 PMCID: PMC10328084 DOI: 10.15252/embr.202256214] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2022] [Revised: 04/29/2023] [Accepted: 05/10/2023] [Indexed: 05/31/2023] Open
Abstract
Skin epidermis constitutes the outer permeability barrier that protects the body from dehydration, heat loss, and myriad external assaults. Mechanisms that maintain barrier integrity in constantly challenged adult skin and how epidermal dysregulation shapes the local immune microenvironment and whole-body metabolism remain poorly understood. Here, we demonstrate that inducible and simultaneous ablation of transcription factor-encoding Ovol1 and Ovol2 in adult epidermis results in barrier dysregulation through impacting epithelial-mesenchymal plasticity and inflammatory gene expression. We find that aberrant skin immune activation then ensues, featuring Langerhans cell mobilization and T cell responses, and leading to elevated levels of secreted inflammatory factors in circulation. Finally, we identify failure to gain body weight and accumulate body fat as long-term consequences of epidermal-specific Ovol1/2 loss and show that these global metabolic changes along with the skin barrier/immune defects are partially rescued by immunosuppressant dexamethasone. Collectively, our study reveals key regulators of adult barrier maintenance and suggests a causal connection between epidermal dysregulation and whole-body metabolism that is in part mediated through aberrant immune activation.
Collapse
Affiliation(s)
- Morgan Dragan
- Department of Biological Chemistry, School of MedicineUniversity of CaliforniaIrvineCAUSA
- The NSF‐Simons Center for Multiscale Cell Fate ResearchUniversity of CaliforniaIrvineCAUSA
| | - Zeyu Chen
- Department of Biological Chemistry, School of MedicineUniversity of CaliforniaIrvineCAUSA
- Present address:
Department of Dermatology, Shanghai Tenth People's HospitalTongji University School of MedicineShanghaiChina
- Present address:
Institute of PsoriasisTongji University School of MedicineShanghaiChina
| | - Yumei Li
- Department of Biological Chemistry, School of MedicineUniversity of CaliforniaIrvineCAUSA
| | - Johnny Le
- Department of Biological Chemistry, School of MedicineUniversity of CaliforniaIrvineCAUSA
| | - Peng Sun
- Department of Biological Chemistry, School of MedicineUniversity of CaliforniaIrvineCAUSA
| | - Daniel Haensel
- Department of Biological Chemistry, School of MedicineUniversity of CaliforniaIrvineCAUSA
- Present address:
Program in Epithelial BiologyStanford University School of MedicineStanfordCAUSA
| | - Suhas Sureshchandra
- Department of Physiology and Biophysics, School of MedicineUniversity of CaliforniaIrvineCAUSA
| | - Anh Pham
- Department of Biological Chemistry, School of MedicineUniversity of CaliforniaIrvineCAUSA
| | - Eddie Lu
- Department of Biological Chemistry, School of MedicineUniversity of CaliforniaIrvineCAUSA
| | - Katherine Thanh Pham
- Department of Biological Chemistry, School of MedicineUniversity of CaliforniaIrvineCAUSA
| | - Amandine Verlande
- Department of Biological Chemistry, School of MedicineUniversity of CaliforniaIrvineCAUSA
| | - Remy Vu
- Department of Biological Chemistry, School of MedicineUniversity of CaliforniaIrvineCAUSA
- The NSF‐Simons Center for Multiscale Cell Fate ResearchUniversity of CaliforniaIrvineCAUSA
| | - Guadalupe Gutierrez
- Department of Biological Chemistry, School of MedicineUniversity of CaliforniaIrvineCAUSA
| | - Wei Li
- Department of Biological Chemistry, School of MedicineUniversity of CaliforniaIrvineCAUSA
| | - Cholsoon Jang
- Department of Biological Chemistry, School of MedicineUniversity of CaliforniaIrvineCAUSA
| | - Selma Masri
- Department of Biological Chemistry, School of MedicineUniversity of CaliforniaIrvineCAUSA
| | - Xing Dai
- Department of Biological Chemistry, School of MedicineUniversity of CaliforniaIrvineCAUSA
- The NSF‐Simons Center for Multiscale Cell Fate ResearchUniversity of CaliforniaIrvineCAUSA
- Department of Dermatology, School of MedicineUniversity of CaliforniaIrvineCAUSA
| |
Collapse
|
26
|
Gavaud S, Haurogné K, Buchet A, Garcia Vinado I, Allard M, Lehébel A, Leblanc-Maridor M, Bach JM, Belloc C, Lieubeau B, Hervé J. Effects of improved early-life conditions on health, welfare, and performance of pigs raised on a conventional farm. Animal 2023; 17:100810. [PMID: 37172358 DOI: 10.1016/j.animal.2023.100810] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2022] [Revised: 03/30/2023] [Accepted: 04/03/2023] [Indexed: 05/14/2023] Open
Abstract
Nowadays, most pigs are raised indoors, on intensive farms providing a poor environment. In these conditions, the risk of the occurrence of damaging behaviours is high, with dramatic consequences for animal health and welfare as well as economic losses for farmers. Early-life conditions may predispose individuals to develop damaging behaviours later in life. In contrast, reinforcing affiliative behaviours between piglets before weaning might help to prevent tail-biting episodes. In this field study, we aimed at improving early-life conditions of piglets on a commercial farm by completely suppressing painful procedures and staggering their exposure to weaning stress factors. The alternative early-life management strategy combined housing in free-farrowing pens with temporary crating of the sow, socialisation during the lactation period with whole-life maintenance of the hierarchical groups, and delayed transfer to the postweaning room after sow removal. Control conditions included birth in farrowing crates, tail docking, absence of socialisation during the lactation period, abrupt weaning with immediate transfer to the postweaning room and mixing with non-littermates. We evaluated the health, welfare, and performance of alternatively raised pigs (n = 80) as compared to controls (n = 75). Visits were made throughout the lifespan of individuals to evaluate their growth and health status. Body and tail lesions were scored as proxy measures of aggressiveness and impaired welfare. Blood and bristle samples were periodically collected to evaluate stress, inflammation and immune competence. While the whole-life performance of pigs was similar among groups, the alternative early-life conditions prevented the growth slowdown usually observed after weaning. In addition, alternatively raised pigs displayed more neutrophils, eosinophils and monocytes the day after weaning, as well as higher C-Reactive Protein levels. One week later, their monocytes displayed greater phagocytic capacity. Altogether, these data suggest an enhanced innate immune competence for alternatively raised pigs around weaning. Piglets reared under alternative conditions also exhibited fewer and less severe body lesions than standard pigs, one week after weaning. In contrast, they showed more tail lesions on days 36 and 66 associated with greater levels of acute phase proteins (C-Reactive Protein and haptoglobin). To conclude, alternative early-life management better prepared piglets for weaning. However, the whole-life maintenance of early-established social groups was not sufficient to prevent the occurrence of damaging behaviours in undocked pigs.
Collapse
Affiliation(s)
- S Gavaud
- Oniris, INRAE, IECM, Nantes, France
| | | | - A Buchet
- Cooperl Innovation, Lamballe, France
| | | | - M Allard
- Oniris, INRAE, IECM, Nantes, France
| | - A Lehébel
- Oniris, INRAE, BIOEPAR, Nantes, France
| | | | - J M Bach
- Oniris, INRAE, IECM, Nantes, France
| | - C Belloc
- Oniris, INRAE, BIOEPAR, Nantes, France
| | | | - J Hervé
- Oniris, INRAE, IECM, Nantes, France.
| |
Collapse
|
27
|
Rohwedder I, Wackerbarth LM, Heinig K, Ballweg A, Altstätter J, Ripphahn M, Nussbaum C, Salvermoser M, Bierschenk S, Straub T, Gunzer M, Schmidt-Supprian M, Kolben T, Schulz C, Ma A, Walzog B, Heinig M, Sperandio M. A20 and the noncanonical NF-κB pathway are key regulators of neutrophil recruitment during fetal ontogeny. JCI Insight 2023; 8:155968. [PMID: 36633909 PMCID: PMC9977499 DOI: 10.1172/jci.insight.155968] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Accepted: 01/11/2023] [Indexed: 01/13/2023] Open
Abstract
Newborns are at high risk of developing neonatal sepsis, particularly if born prematurely. This has been linked to divergent requirements the immune system has to fulfill during intrauterine compared with extrauterine life. By transcriptomic analysis of fetal and adult neutrophils, we shed new light on the molecular mechanisms of neutrophil maturation and functional adaption during fetal ontogeny. We identified an accumulation of differentially regulated genes within the noncanonical NF-κB signaling pathway accompanied by constitutive nuclear localization of RelB and increased surface expression of TNF receptor type II in fetal neutrophils, as well as elevated levels of lymphotoxin α in fetal serum. Furthermore, we found strong upregulation of the negative inflammatory regulator A20 (Tnfaip3) in fetal neutrophils, which was accompanied by pronounced downregulation of the canonical NF-κB pathway. Functionally, overexpressing A20 in Hoxb8 cells led to reduced adhesion of these neutrophil-like cells in a flow chamber system. Conversely, mice with a neutrophil-specific A20 deletion displayed increased inflammation in vivo. Taken together, we have uncovered constitutive activation of the noncanonical NF-κB pathway with concomitant upregulation of A20 in fetal neutrophils. This offers perfect adaption of neutrophil function during intrauterine fetal life but also restricts appropriate immune responses particularly in prematurely born infants.
Collapse
Affiliation(s)
- Ina Rohwedder
- Institute of Cardiovascular Physiology and Pathophysiology, Walter-Brendel-Center of Experimental Medicine, Biomedical Center Munich, LMU Munich, Planegg-Martinsried, Germany
| | - Lou Martha Wackerbarth
- Institute of Cardiovascular Physiology and Pathophysiology, Walter-Brendel-Center of Experimental Medicine, Biomedical Center Munich, LMU Munich, Planegg-Martinsried, Germany
| | - Kristina Heinig
- Institute of Cardiovascular Physiology and Pathophysiology, Walter-Brendel-Center of Experimental Medicine, Biomedical Center Munich, LMU Munich, Planegg-Martinsried, Germany
| | - Annamaria Ballweg
- Institute of Cardiovascular Physiology and Pathophysiology, Walter-Brendel-Center of Experimental Medicine, Biomedical Center Munich, LMU Munich, Planegg-Martinsried, Germany
| | - Johannes Altstätter
- Institute of Cardiovascular Physiology and Pathophysiology, Walter-Brendel-Center of Experimental Medicine, Biomedical Center Munich, LMU Munich, Planegg-Martinsried, Germany
| | - Myriam Ripphahn
- Institute of Cardiovascular Physiology and Pathophysiology, Walter-Brendel-Center of Experimental Medicine, Biomedical Center Munich, LMU Munich, Planegg-Martinsried, Germany
| | - Claudia Nussbaum
- Division of Neonatology, Department of Pediatrics, Dr. von Hauner Children's Hospital, LMU Munich, Munich, Germany
| | - Melanie Salvermoser
- Institute of Cardiovascular Physiology and Pathophysiology, Walter-Brendel-Center of Experimental Medicine, Biomedical Center Munich, LMU Munich, Planegg-Martinsried, Germany
| | - Susanne Bierschenk
- Institute of Cardiovascular Physiology and Pathophysiology, Walter-Brendel-Center of Experimental Medicine, Biomedical Center Munich, LMU Munich, Planegg-Martinsried, Germany
| | - Tobias Straub
- Core Facility Bioinformatics, Biomedical Center Munich, Faculty of Medicine, LMU Munich, Planegg-Martinsried, Germany
| | - Matthias Gunzer
- Institute for Experimental Immunology and Imaging, University of Duisburg-Essen, Essen, Germany.,Leibniz-Institut für Analytische Wissenschaften - ISAS - e.V., Dortmund, Germany
| | | | | | - Christian Schulz
- Medical Clinic I, University Hospital, LMU Munich, Munich, Germany
| | - Averil Ma
- Department of Medicine, University of California, San Francisco, San Francisco, California, USA
| | - Barbara Walzog
- Institute of Cardiovascular Physiology and Pathophysiology, Walter-Brendel-Center of Experimental Medicine, Biomedical Center Munich, LMU Munich, Planegg-Martinsried, Germany
| | - Matthias Heinig
- Institute of Computational Biology, Helmholtz Munich, Munich, Germany.,Department of Informatics, TU Munich, Munich, Germany
| | - Markus Sperandio
- Institute of Cardiovascular Physiology and Pathophysiology, Walter-Brendel-Center of Experimental Medicine, Biomedical Center Munich, LMU Munich, Planegg-Martinsried, Germany
| |
Collapse
|
28
|
Polcz VE, Rincon JC, Hawkins RB, Barrios EL, Efron PA, Moldawer LL, Larson SD. TRAINED IMMUNITY: A POTENTIAL APPROACH FOR IMPROVING HOST IMMUNITY IN NEONATAL SEPSIS. Shock 2023; 59:125-134. [PMID: 36383390 PMCID: PMC9957873 DOI: 10.1097/shk.0000000000002054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
ABSTRACT Sepsis, a dysregulated host immune response to infection, is one of the leading causes of neonatal mortality worldwide. Improved understanding of the perinatal immune system is critical to improve therapies to both term and preterm neonates at increased risk of sepsis. Our narrative outlines the known and unknown aspects of the human immune system through both the immune tolerant in utero period and the rapidly changing antigen-rich period after birth. We will highlight the key differences in innate and adaptive immunity noted through these developmental stages and how the unique immune phenotype in early life contributes to the elevated risk of overwhelming infection and dysregulated immune responses to infection upon exposure to external antigens shortly after birth. Given an initial dependence on neonatal innate immune host responses, we will discuss the concept of innate immune memory, or "trained immunity," and describe several potential immune modulators, which show promise in altering the dysregulated immune response in newborns and improving resilience to sepsis.
Collapse
Affiliation(s)
- Valerie E Polcz
- Department of Surgery and Sepsis and Critical Illness Research Center, University of Florida College of Medicine, Gainesville, Florida
| | | | | | | | | | | | | |
Collapse
|
29
|
Dobson R, Rog D, Ovadia C, Murray K, Hughes S, Ford HL, Pearson OR, White S, Bonham N, Mathews J, Nelson-Piercy C, Brex P. Anti-CD20 therapies in pregnancy and breast feeding: a review and ABN guidelines. Pract Neurol 2023; 23:6-14. [PMID: 35803727 DOI: 10.1136/pn-2022-003426] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/13/2022] [Indexed: 02/02/2023]
Abstract
Neurologists increasingly use anti-CD20 therapies, including for women of childbearing age, despite these medications being unlicensed for use in pregnancy. Current evidence suggests that women can safely conceive while taking anti-CD20 therapy. Women should not be denied treatment during pregnancy when it is clinically indicated, although they should be counselled regarding live vaccinations for their infant. Women receiving regular ocrelizumab for multiple sclerosis should preferably wait 3 months before trying to conceive. There are few data around ofatumumab in pregnancy, and while there is probably a class effect across all anti-CD20 therapies, ofatumumab may need to be continued during pregnancy to maintain efficacy. We recommend that anti-CD20 therapies can be safely given while breast feeding. It is important to make time to discuss treatments with women of childbearing age to help them choose their most suitable treatment. Outcomes should be monitored in pregnancy registries.
Collapse
Affiliation(s)
- Ruth Dobson
- Preventive Neurology Unit, Wolfson Institute of Population Health, Queen Mary University, London, UK .,Department of Neurology, The Royal London Hospital, London, UK
| | - David Rog
- Manchester Centre for Clinical Neurosciences, Salford Royal NHS Foundation Trust, Salford, UK
| | - Caroline Ovadia
- Department of Women and Children's Health, King's College London, London, UK
| | - Katy Murray
- Anne Rowling Regenerative Neurology Clinic, The University of Edinburgh, Edinburgh, UK.,Department of Neurology, Forth Valley Royal Hospital, Larbert, UK
| | - Stella Hughes
- Department of Neurology, Belfast Health and Social Care Trust, Belfast, UK
| | - Helen L Ford
- Department of Neurology, Leeds Teaching Hospitals NHS Trust, Leeds, UK.,Department of Neurosciences, University of Leeds Faculty of Medicine and Health, Leeds, UK
| | - Owen R Pearson
- Department of Neurology, Morriston Hospital, Swansea, UK
| | - Sarah White
- Department of Neurology, St George's Hospitals NHS Trust, London, UK
| | - Nicola Bonham
- Department of Neurology, Forth Valley Royal Hospital, Larbert, UK
| | - Joela Mathews
- Department of Neurology, The Royal London Hospital, London, UK
| | - Catherine Nelson-Piercy
- Department of Obstetrics, Guy's and St Thomas' Hospitals NHS Trust, London, UK.,Department of Obstetrics, King's College Hospital NHS Foundation Trust, London, UK
| | - Peter Brex
- Department of Neurology, King's College Hospital NHS Foundation Trust, London, UK
| |
Collapse
|
30
|
Singh DK, Miller CM, Orgel KA, Dave M, Mackay S, Good M. Necrotizing enterocolitis: Bench to bedside approaches and advancing our understanding of disease pathogenesis. Front Pediatr 2023; 10:1107404. [PMID: 36714655 PMCID: PMC9874231 DOI: 10.3389/fped.2022.1107404] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Accepted: 12/20/2022] [Indexed: 01/13/2023] Open
Abstract
Necrotizing enterocolitis (NEC) is a devastating, multifactorial disease mainly affecting the intestine of premature infants. Recent discoveries have significantly enhanced our understanding of risk factors, as well as, cellular and genetic mechanisms of this complex disease. Despite these advancements, no essential, single risk factor, nor the mechanism by which each risk factor affects NEC has been elucidated. Nonetheless, recent research indicates that maternal factors, antibiotic exposure, feeding, hypoxia, and altered gut microbiota pose a threat to the underdeveloped immunity of preterm infants. Here we review predisposing factors, status of unwarranted immune responses, and microbial pathogenesis in NEC based on currently available scientific evidence. We additionally discuss novel techniques and models used to study NEC and how this research translates from the bench to the bedside into potential treatment strategies.
Collapse
Affiliation(s)
- Dhirendra K. Singh
- Division of Neonatal-Perinatal Medicine, Department of Pediatrics, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Claire M. Miller
- Division of Neonatal-Perinatal Medicine, Department of Pediatrics, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Kelly A. Orgel
- Division of Neonatal-Perinatal Medicine, Department of Pediatrics, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Mili Dave
- University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, NC, United States
| | - Stephen Mackay
- Division of Neonatal-Perinatal Medicine, Department of Pediatrics, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Misty Good
- Division of Neonatal-Perinatal Medicine, Department of Pediatrics, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| |
Collapse
|
31
|
Jordan A, Carding SR, Hall LJ. The early-life gut microbiome and vaccine efficacy. THE LANCET. MICROBE 2022; 3:e787-e794. [PMID: 36088916 DOI: 10.1016/s2666-5247(22)00185-9] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Revised: 05/31/2022] [Accepted: 06/08/2022] [Indexed: 12/24/2022]
Abstract
Vaccines are one of the greatest successes of public health, preventing millions of cases of disease and death in children each year. However, the efficacy of many vaccines can vary greatly between infants from geographically and socioeconomically distinct locations. Differences in the composition of the intestinal microbiome have emerged as one of the main factors that can account for variations in immunisation outcomes. In this Review, we assess the influence of the gut microbiota upon early life immunity, focusing on two important members of the microbiota with health-promoting and immunomodulatory properties: Bifidobacterium and Bacteroides. Additionally, we discuss their immune stimulatory microbial properties, interactions with the host, and their effect on vaccine responses and efficacy in infants. We also provide an overview of current microbiota-based approaches to enhance vaccine outcomes, and describe novel microbe-derived components that could lead to safer, more effective vaccines and vaccine adjuvants.
Collapse
Affiliation(s)
- Anne Jordan
- Gut Microbes & Health, Quadram Institute Bioscience, Norwich Research Park, Norwich, UK
| | - Simon R Carding
- Gut Microbes & Health, Quadram Institute Bioscience, Norwich Research Park, Norwich, UK; Norwich Medical School, University of East Anglia, Norwich, UK
| | - Lindsay J Hall
- Gut Microbes & Health, Quadram Institute Bioscience, Norwich Research Park, Norwich, UK; Norwich Medical School, University of East Anglia, Norwich, UK; Intestinal Microbiome, School of Life Sciences, ZIEL Institute for Food & Health, Technical University of Munich, Munich, Germany.
| |
Collapse
|
32
|
Yang J, Zou M, Chu X, Floess S, Li Y, Delacher M, Huehn J. Inflammatory perturbations in early life long-lastingly shape the transcriptome and TCR repertoire of the first wave of regulatory T cells. Front Immunol 2022; 13:991671. [PMID: 36119090 PMCID: PMC9471859 DOI: 10.3389/fimmu.2022.991671] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Accepted: 08/15/2022] [Indexed: 11/17/2022] Open
Abstract
The first wave of Foxp3+ regulatory T cells (Tregs) generated in neonates is critical for the life-long prevention of autoimmunity. Although it is widely accepted that neonates are highly susceptible to infections, the impact of neonatal infections on this first wave of Tregs is completely unknown. Here, we challenged newborn Treg fate-mapping mice (Foxp3eGFPCreERT2xROSA26STOP-eYFP) with the Toll-like receptor (TLR) agonists LPS and poly I:C to mimic inflammatory perturbations upon neonatal bacterial or viral infections, respectively, and subsequently administrated tamoxifen during the first 8 days of life to selectively label the first wave of Tregs. Neonatally-tagged Tregs preferentially accumulated in non-lymphoid tissues (NLTs) when compared to secondary lymphoid organs (SLOs) irrespective of the treatment. One week post challenge, no differences in the frequency and phenotypes of neonatally-tagged Tregs were observed between challenged mice and untreated controls. However, upon aging, a decreased frequency of neonatally-tagged Tregs in both NLTs and SLOs was detected in challenged mice when compared to untreated controls. This decrease became significant 12 weeks post challenge, with no signs of altered Foxp3 stability. Remarkably, this late decrease in the frequency of neonatally-tagged Tregs only occurred when newborns were challenged, as treating 8-days-old mice with TLR agonists did not result in long-lasting alterations of the first wave of Tregs. Combined single-cell T cell receptor (TCR)-seq and RNA-seq revealed that neonatal inflammatory perturbations drastically diminished TCR diversity and long-lastingly altered the transcriptome of neonatally-tagged Tregs, exemplified by lower expression of Tigit, Foxp3, and Il2ra. Together, our data demonstrate that a single, transient encounter with a pathogen in early life can have long-lasting consequences for the first wave of Tregs, which might affect immunological tolerance, prevention of autoimmunity, and other non-canonical functions of tissue-resident Tregs in adulthood.
Collapse
Affiliation(s)
- Juhao Yang
- Department Experimental Immunology, Helmholtz Centre for Infection Research, Braunschweig, Germany
- Roche Pharma Research and Early Development, Pharmaceutical Sciences, China Innovation Center of Roche, Shanghai, China
| | - Mangge Zou
- Department Experimental Immunology, Helmholtz Centre for Infection Research, Braunschweig, Germany
| | - Xiaojing Chu
- Department Computational Biology for Individualised Medicine, Centre for Individualised Infection Medicine (CiiM), Helmholtz Centre for Infection Research and Hannover Medical School, Hannover, Germany
| | - Stefan Floess
- Department Experimental Immunology, Helmholtz Centre for Infection Research, Braunschweig, Germany
| | - Yang Li
- Department Computational Biology for Individualised Medicine, Centre for Individualised Infection Medicine (CiiM), Helmholtz Centre for Infection Research and Hannover Medical School, Hannover, Germany
| | - Michael Delacher
- Institute of Immunology, University Medical Center Mainz, Mainz, Germany
- Research Centre for Immunotherapy, University Medical Center Mainz, Mainz, Germany
| | - Jochen Huehn
- Department Experimental Immunology, Helmholtz Centre for Infection Research, Braunschweig, Germany
- Cluster of Excellence RESIST (EXC 2155), Hannover Medical School, Hannover, Germany
- *Correspondence: Jochen Huehn,
| |
Collapse
|
33
|
How does age determine the development of human immune-mediated arthritis? Nat Rev Rheumatol 2022; 18:501-512. [PMID: 35948692 PMCID: PMC9363867 DOI: 10.1038/s41584-022-00814-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/01/2022] [Indexed: 11/08/2022]
Abstract
Does age substantially affect the emergence of human immune-mediated arthritis? Children do not usually develop immune-mediated articular inflammation during their first year of life. In patients with juvenile idiopathic arthritis, this apparent ‘immune privilege’ disintegrates, and chronic inflammation is associated with variable autoantibody signatures and patterns of disease that resemble adult arthritis phenotypes. Numerous mechanisms might be involved in this shift, including genetic and epigenetic predisposing factors, maturation of the immune system with a progressive modulation of putative tolerogenic controls, parallel development of microbial dysbiosis, accumulation of a pro-inflammatory burden driven by environmental exposures (the exposome) and comorbidity-related drivers. By exploring these mechanisms, we expand the discussion of three (not mutually exclusive) hypotheses on how these factors can contribute to the differences and similarities between the loss of immune tolerance in children and the development of established immune-mediated arthritis in adults. These three hypotheses relate to a critical window in genetics and epigenetics, immune maturation, and the accumulation of burden. The varied manifestation of the underlying mechanisms among individuals is only beginning to be clarified, but the establishment of a framework can facilitate the development of an integrated understanding of the pathogenesis of arthritis across all ages. In this Review, the authors discuss age-related arthropathy and the similarities and differences between childhood loss of immune tolerance and adult development of immune-mediated arthritis, and develop three hypotheses describing age-related mechanisms that contribute to the onset of arthritis. The arthritis-free ‘immune privilege’ of early childhood is overridden by multiple mechanisms, progressively and age-dependently, generating recognizable patterns of chronic inflammatory arthritis. The emergence of arthritis involves interconnected mechanisms related to immune priming, to a situational susceptibility and to the accumulation of an inflammatory burden. The accumulation of epigenetic drift may contribute to differences across ages. The exposome is expected to contribute to arthritis emergence in adults as well as in children.
Collapse
|