1
|
Kim EY, Abides J, Keller CR, Martinez SR, Li W. Tumor Microenvironment Lactate: Is It a Cancer Progression Marker, Immunosuppressant, and Therapeutic Target? Molecules 2025; 30:1763. [PMID: 40333742 PMCID: PMC12029365 DOI: 10.3390/molecules30081763] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2025] [Revised: 04/12/2025] [Accepted: 04/12/2025] [Indexed: 05/09/2025] Open
Abstract
The "Warburg effect" is a term coined a century ago for the preferential use of glycolysis over aerobic respiration in tumor cells for energy production, even under aerobic conditions. Although this is a less efficient mechanism of generating energy from glucose, aerobic glycolysis, in addition to the canonical anaerobic glycolysis, is an effective means of lactate production. The abundant waste product, lactate, yielded by the dual glycolysis in a tumor, has been discovered to be a major biomolecule that drives cancer progression. Lactate is a metabolic energy source that, via cell membrane lactate transporters, shuttles in and out of cancer cells as well as cancer cell-associated stromal cells and immune cells within the tumor microenvironment (TME). Additionally, lactate serves as a pH tuner, signaling ligand and transducer, epigenetic and gene transcription regulator, TME modifier, immune suppressor, chemoresistance modulator, and prognostic marker. With such broad functionalities, the production-consumption-reproduction of TME lactate fuels tumor growth and dissemination. Here, we elaborate on the lactate sources that contribute to the pool of lactate in the TME, the functions of TME lactate, the influence of the TME lactate on immune cell function and local tissue immunity, and anticancer therapeutic approaches adopting lactate manipulations and their efficacies. By scrutinizing these properties of the TME lactate and others that have been well addressed in the field, it is expected that a better weighing of the influence of the TME lactate on cancer development, progression, prognosis, and therapeutic efficacy can be achieved.
Collapse
Affiliation(s)
- Eugene Y. Kim
- Department of Translational Medicine and Physiology, Elson S. Floyd College of Medicine, Washington State University, Spokane, WA 99202, USA; (E.Y.K.); (J.A.); (C.R.K.)
| | - Joyce Abides
- Department of Translational Medicine and Physiology, Elson S. Floyd College of Medicine, Washington State University, Spokane, WA 99202, USA; (E.Y.K.); (J.A.); (C.R.K.)
- Doctor of Medicine Program, Elson S. Floyd College of Medicine, Washington State University, Spokane, WA 99202, USA
| | - Chandler R. Keller
- Department of Translational Medicine and Physiology, Elson S. Floyd College of Medicine, Washington State University, Spokane, WA 99202, USA; (E.Y.K.); (J.A.); (C.R.K.)
| | - Steve R. Martinez
- Department of Medical Education and Clinical Sciences, Elson S. Floyd College of Medicine, Washington State University, Spokane, WA 99202, USA
- Providence Regional Cancer Partnership, Providence Regional Medical Center, Everett, WA 98201, USA
| | - Weimin Li
- Department of Translational Medicine and Physiology, Elson S. Floyd College of Medicine, Washington State University, Spokane, WA 99202, USA; (E.Y.K.); (J.A.); (C.R.K.)
| |
Collapse
|
2
|
Dai Y, Wen H, Lai X, Huang J, Li J. Novel role of GRK2 in isoprenaline-induced activation of Na +/H + exchanger 3 independent of β2-adrenergic receptor signaling. Mol Biol Rep 2025; 52:218. [PMID: 39932653 DOI: 10.1007/s11033-025-10326-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2024] [Accepted: 01/31/2025] [Indexed: 05/08/2025]
Abstract
BACKGROUND The activation of Na+/H+ exchanger 3 (NHE3) by β2-adrenergic receptor (β2-AR) signaling is well-established. Our research indicates that isoprenaline (ISO) induces activation of NHE3 independent of β2AR signaling but through a different way that has not been elucidated before. METHODS The activation of NHE3 in HK-2 cell lines was quantified using the fluorescence probe BCECF/AM. The expression levels of G protein-coupled receptor kinase 2 (GRK2) and its downstream effector, β-arrestin 1 (ARRB1), were assessed through Western blot analysis and immunohistochemical staining. ISO-induced β2-AR signaling was blocked by ICI 118,551, a β2-AR antagonist, in HK-2 cells. RESULTS ISO treatment significantly enhanced NHE3 activity, which was reduced by 64.5% with a GRK2 inhibitor (GRK2-IN) and completely inhibited by propranolol (PRO), a non-selective β-adrenergic receptor blocker. Neither GRK2-IN nor PRO impacted NHE3 activity in the absence of ISO. Additionally, while GRK2 expression remained unchanged, ISO markedly decreased ARRB1 expression. This decrease was mitigated by 64.08% with GRK2-IN and entirely blocked by PRO. GRK2-IN and PRO alone did not significantly alter ARRB1 expression. CONCLUSION Our study suggests that ISO triggers downstream GRK2/ARRB1 signaling to increase NHE3 activity independent of traditional β2AR signaling. Given the fundamental role of NHE3 in renal water-sodium reabsorption, these insights may contribute to new strategies for the prevention and treatment of hypertension.
Collapse
Affiliation(s)
- Yongfa Dai
- Department of Cardiovascular Medicine, The First Affiliated Hospital of Guangxi Medical University, 06 Shuangyong Road, Qingxiu District, Nanning, 530021, Guangxi, China
| | - Hong Wen
- Department of Cardiovascular Medicine, The First Affiliated Hospital of Guangxi Medical University, 06 Shuangyong Road, Qingxiu District, Nanning, 530021, Guangxi, China
| | - Xiaomei Lai
- Department of Cardiovascular Medicine, The First Affiliated Hospital of Guangxi Medical University, 06 Shuangyong Road, Qingxiu District, Nanning, 530021, Guangxi, China
| | - Jing Huang
- Department of Cardiovascular Medicine, The First Affiliated Hospital of Guangxi Medical University, 06 Shuangyong Road, Qingxiu District, Nanning, 530021, Guangxi, China
| | - Jianling Li
- Department of Cardiovascular Medicine, The First Affiliated Hospital of Guangxi Medical University, 06 Shuangyong Road, Qingxiu District, Nanning, 530021, Guangxi, China.
| |
Collapse
|
3
|
Gonzalez-Pujana A, Igartua M, Hernandez RM, Santos-Vizcaino E. Laponite nanoclays for the sustained delivery of therapeutic proteins. Eur J Pharm Sci 2024; 201:106858. [PMID: 39033884 DOI: 10.1016/j.ejps.2024.106858] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 06/22/2024] [Accepted: 07/17/2024] [Indexed: 07/23/2024]
Abstract
Protein therapeutics hold immense promise for treating a wide array of diseases. However, their efficacy is often compromised by rapid degradation and clearance. The synthetic smectite clay Laponite emerges as a promising candidate for their sustained delivery. Despite its unique properties allow to load and release proteins mitigating burst release and extending their effects, precise control over Laponite-protein interactions remains challenging since it depends on a complex interplay of factors whose implication is not fully understood yet. The aim of this review article is to shed light on this issue, providing a comprehensive discussion of the factors influencing protein loading and release, including the physicochemical properties of the nanoclay and proteins, pH, dispersion buffer, clay/protein concentration and Laponite degradation. Furthermore, we thoroughly revise the array of bioactive proteins that have been delivered from formulations containing the nanoclay, highlighting Laponite-polymer nanocomposite hydrogels, a promising avenue currently under extensive investigation.
Collapse
Affiliation(s)
- Ainhoa Gonzalez-Pujana
- NanoBioCel Research Group, Laboratory of Pharmaceutics, School of Pharmacy, University of the Basque Country (UPV/EHU), Paseo de la Universidad 7, Vitoria-Gasteiz 01006, Spain; Biomedical Research Networking Centre in Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Institute of Health Carlos III, Madrid, Spain; Bioaraba, NanoBioCel Research Group, Vitoria-Gasteiz, Spain
| | - Manoli Igartua
- NanoBioCel Research Group, Laboratory of Pharmaceutics, School of Pharmacy, University of the Basque Country (UPV/EHU), Paseo de la Universidad 7, Vitoria-Gasteiz 01006, Spain; Biomedical Research Networking Centre in Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Institute of Health Carlos III, Madrid, Spain; Bioaraba, NanoBioCel Research Group, Vitoria-Gasteiz, Spain
| | - Rosa Maria Hernandez
- NanoBioCel Research Group, Laboratory of Pharmaceutics, School of Pharmacy, University of the Basque Country (UPV/EHU), Paseo de la Universidad 7, Vitoria-Gasteiz 01006, Spain; Biomedical Research Networking Centre in Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Institute of Health Carlos III, Madrid, Spain; Bioaraba, NanoBioCel Research Group, Vitoria-Gasteiz, Spain.
| | - Edorta Santos-Vizcaino
- NanoBioCel Research Group, Laboratory of Pharmaceutics, School of Pharmacy, University of the Basque Country (UPV/EHU), Paseo de la Universidad 7, Vitoria-Gasteiz 01006, Spain; Biomedical Research Networking Centre in Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Institute of Health Carlos III, Madrid, Spain; Bioaraba, NanoBioCel Research Group, Vitoria-Gasteiz, Spain.
| |
Collapse
|
4
|
Aaen P, Kristensen KB, Antony A, Hansen SH, Cornett C, Pedersen SF, Boedtkjer E. Na +/H +-exchange inhibition by cariporide is compensated via Na +,HCO 3--cotransport and has no net growth consequences for ErbB2-driven breast carcinomas. Biochim Biophys Acta Mol Basis Dis 2024; 1870:167450. [PMID: 39111631 DOI: 10.1016/j.bbadis.2024.167450] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Revised: 07/17/2024] [Accepted: 07/31/2024] [Indexed: 08/10/2024]
Abstract
Defense against intracellular acidification of breast cancer tissue depends on net acid extrusion via Na+,HCO3--cotransporter NBCn1/Slc4a7 and Na+/H+-exchanger NHE1/Slc9a1. NBCn1 is increasingly recognized as breast cancer susceptibility protein and promising therapeutic target, whereas evidence for targeting NHE1 is discordant. Currently, selective small molecule inhibitors exist against NHE1 but not NBCn1. Cellular assays-with some discrepancies-link NHE1 activity to proliferation, migration, and invasion; and disrupted NHE1 expression can reduce triple-negative breast cancer growth. Studies on human breast cancer tissue associate high NHE1 expression with reduced metastasis and-in some molecular subtypes-improved patient survival. Here, we evaluate Na+/H+-exchange and therapeutic potential of the NHE1 inhibitor cariporide/HOE-642 in murine ErbB2-driven breast cancer. Ex vivo, cariporide inhibits net acid extrusion in breast cancer tissue (IC50 = 0.18 μM) and causes small decreases in steady-state intracellular pH (pHi). In vivo, we deliver cariporide orally, by osmotic minipumps, and by intra- and peritumoral injections to address the low oral bioavailability and fast metabolism. Prolonged cariporide administration in vivo upregulates NBCn1 expression, shifts pHi regulation towards CO2/HCO3--dependent mechanisms, and shows no net effect on the growth rate of ErbB2-driven primary breast carcinomas. Cariporide also does not influence proliferation markers in breast cancer tissue. Oral, but not parenteral, cariporide elevates serum glucose by ∼1.5 mM. In conclusion, acute administration of cariporide ex vivo powerfully inhibits net acid extrusion from breast cancer tissue but lowers steady-state pHi minimally. Prolonged cariporide administration in vivo is compensated via NBCn1 and we observe no discernible effect on growth of ErbB2-driven breast carcinomas.
Collapse
Affiliation(s)
- Pernille Aaen
- Department of Biomedicine, Aarhus University, Aarhus, Denmark
| | | | - Arththy Antony
- Department of Biomedicine, Aarhus University, Aarhus, Denmark
| | - Steen H Hansen
- Department of Pharmacy, University of Copenhagen, Copenhagen, Denmark
| | - Claus Cornett
- Department of Pharmacy, University of Copenhagen, Copenhagen, Denmark
| | - Stine F Pedersen
- Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | - Ebbe Boedtkjer
- Department of Biomedicine, Aarhus University, Aarhus, Denmark.
| |
Collapse
|
5
|
Jiang M, Salari A, Stock C, Nikolovska K, Boedtkjer E, Amiri M, Seidler UE. The electroneutral Na +-HCO 3- cotransporter NBCn1 (SLC4A7) modulates colonic enterocyte pH i, proliferation, and migration. Am J Physiol Cell Physiol 2024; 326:C1625-C1636. [PMID: 38646790 PMCID: PMC11371319 DOI: 10.1152/ajpcell.00079.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 04/05/2024] [Accepted: 04/06/2024] [Indexed: 04/23/2024]
Abstract
NBCn1 (SLC4A7) is one of the two major Na+-HCO3- cotransporters in the human colonic epithelium, expressed predominantly in the highly proliferating colonocytes at the cryptal base. Increased NBCn1 expression levels are reported in tumors, including colorectal cancer. The study explores its importance for maintenance of the intracellular pH (pHi), as well as the proliferative, adhesive, and migratory behavior of the self-differentiating Caco2BBe colonic tumor cell line. In the self-differentiating Caco2BBe cells, NBCn1 mRNA was highly expressed from the proliferative stage until full differentiation. The downregulation of NBCn1 expression by RNA interference affected proliferation and differentiation and decreased intracellular pH (pHi) of the cells in correlation with the degree of knockdown. In addition, a disturbed cell adhesion and reduced migratory speed were associated with NBCn1 knockdown. Murine colonic Nbcn1-/- enteroids also displayed reduced proliferative activity. In the migrating Caco2BBe cells, NBCn1 was found at the leading edge and in colocalization with the focal adhesion markers vinculin and paxillin, which suggests that NBCn1 is involved in the establishment of cell-matrix adhesion. Our data highlight the physiological significance of NBCn1 in modulating epithelial pH homeostasis and cell-matrix interactions in the proliferative region of the colonic epithelium and unravel the molecular mechanism behind pathological overexpression of this transporter in human colorectal cancers.NEW & NOTEWORTHY The transporter NBCn1 plays a central role in maintaining homeostasis within Caco2BBe colonic epithelial cells through its regulation of intracellular pH, matrix adhesion, migration, and proliferation. These observations yield valuable insights into the molecular mechanism of the aberrant upregulation of this transporter in human colorectal cancers.
Collapse
Affiliation(s)
- Min Jiang
- Department of Gastroenterology, Hepatology, Infectious Diseases and Endocrinology, Hannover Medical School, Hannover, Germany
| | - Azam Salari
- Department of Gastroenterology, Hepatology, Infectious Diseases and Endocrinology, Hannover Medical School, Hannover, Germany
| | - Christian Stock
- Department of Gastroenterology, Hepatology, Infectious Diseases and Endocrinology, Hannover Medical School, Hannover, Germany
| | - Katerina Nikolovska
- Department of Gastroenterology, Hepatology, Infectious Diseases and Endocrinology, Hannover Medical School, Hannover, Germany
| | - Ebbe Boedtkjer
- Department of Biomedicine, Aarhus University, Aarhus, Denmark
| | - Mahdi Amiri
- Department of Gastroenterology, Hepatology, Infectious Diseases and Endocrinology, Hannover Medical School, Hannover, Germany
| | - Ursula E Seidler
- Department of Gastroenterology, Hepatology, Infectious Diseases and Endocrinology, Hannover Medical School, Hannover, Germany
| |
Collapse
|
6
|
Abdellatif AAH, Bouazzaoui A, Tawfeek HM, Younis MA. MCT4 knockdown by tumor microenvironment-responsive nanoparticles remodels the cytokine profile and eradicates aggressive breast cancer cells. Colloids Surf B Biointerfaces 2024; 238:113930. [PMID: 38692174 DOI: 10.1016/j.colsurfb.2024.113930] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Revised: 04/15/2024] [Accepted: 04/24/2024] [Indexed: 05/03/2024]
Abstract
Breast cancer is a wide-spread threat to the women's health. The drawbacks of conventional treatments necessitate the development of alternative strategies, where gene therapy has regained hope in achieving an efficient eradication of aggressive tumors. Monocarboxylate transporter 4 (MCT4) plays pivotal roles in the growth and survival of various tumors, which offers a promising target for treatment. In the present study, pH-responsive lipid nanoparticles (LNPs) based on the ionizable lipid,1,2-dioleoyl-3-dimethylammonium propane (DODAP), were designed for the delivery of siRNA targeting MCT4 gene to the breast cancer cells. Following multiple steps of characterization and optimization, the anticancer activities of the LNPs were assessed against an aggressive breast cancer cell line, 4T1, in comparison with a normal cell line, LX-2. The selection of the helper phospholipid to be incorporated into the LNPs had a dramatic impact on their gene delivery performance. The optimized LNPs enabled a powerful MCT4 silencing by ∼90 % at low siRNA concentrations, with a subsequent ∼80 % cytotoxicity to 4T1 cells. Meanwhile, the LNPs demonstrated a 5-fold higher affinity to the breast cancer cells versus the normal cells, in which they had a minimum effect. Moreover, the MCT4 knockdown by the treatment remodeled the cytokine profile in 4T1 cells, as evidenced by 90 % and ∼64 % reduction in the levels of TNF-α and IL-6; respectively. The findings of this study are promising for potential clinical applications. Furthermore, the simple and scalable delivery vector developed herein can serve as a breast cancer-targeting platform for the delivery of other RNA therapeutics.
Collapse
Affiliation(s)
- Ahmed A H Abdellatif
- Department of Pharmaceutics, College of Pharmacy, Qassim University, Buraidah 51452, Saudi Arabia; Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Al-Azhar University, Assiut 71524, Egypt.
| | - Abdellatif Bouazzaoui
- Department of Medical Genetics, Faculty of Medicine, Umm Al-Qura University, Makkah 21955, Saudi Arabia; Science and Technology Unit, Umm Al-Qura University, Makkah 21955, Saudi Arabia; Department of Internal Medicine III (Haematology and Internal Oncology), University Hospital Regensburg, Franz-Josef-Strauß-Allee 11, Regensburg 93053, Germany
| | - Hesham M Tawfeek
- Department of Industrial Pharmacy, Faculty of Pharmacy, Assiut University, Assiut 71526, Egypt
| | - Mahmoud A Younis
- Department of Industrial Pharmacy, Faculty of Pharmacy, Assiut University, Assiut 71526, Egypt.
| |
Collapse
|
7
|
Axelsen TV, Olesen C, Khan D, Mohammadi A, Bouzinova EV, Nielsen CJF, Mele M, Hauerslev KR, Pedersen HL, Balling E, Vahl P, Tramm T, Christiansen PM, Boedtkjer E. Antibodies toward Na +,HCO 3--cotransporter NBCn1/SLC4A7 block net acid extrusion and cause pH-dependent growth inhibition and apoptosis in breast cancer. Br J Cancer 2024; 130:1206-1220. [PMID: 38310186 PMCID: PMC10991555 DOI: 10.1038/s41416-024-02591-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 01/09/2024] [Accepted: 01/17/2024] [Indexed: 02/05/2024] Open
Abstract
BACKGROUND Na+,HCO3--cotransporter NBCn1/Slc4a7 accelerates murine breast carcinogenesis. Lack of specific pharmacological tools previously restricted therapeutic targeting of NBCn1 and identification of NBCn1-dependent functions in human breast cancer. METHODS We develop extracellularly-targeted anti-NBCn1 antibodies, screen for functional activity on cells, and evaluate (a) mechanisms of intracellular pH regulation in human primary breast carcinomas, (b) proliferation, cell death, and tumor growth consequences of NBCn1 in triple-negative breast cancer, and (c) association of NBCn1-mediated Na+,HCO3--cotransport with human breast cancer metastasis. RESULTS We identify high-affinity (KD ≈ 0.14 nM) anti-NBCn1 antibodies that block human NBCn1-mediated Na+,HCO3--cotransport in cells, without cross-reactivity towards human NBCe1 or murine NBCn1. These anti-NBCn1 antibodies abolish Na+,HCO3--cotransport activity in freshly isolated primary organoids from human breast carcinomas and lower net acid extrusion effectively in primary breast cancer tissue from patients with macrometastases in axillary lymph nodes. Inhibitory anti-NBCn1 antibodies decelerate tumor growth in vivo by ~50% in a patient-derived xenograft model of triple-negative breast cancer and pH-dependently reduce colony formation, cause G2/M-phase cell cycle accumulation, and increase apoptosis of metastatic triple-negative breast cancer cells in vitro. CONCLUSIONS Inhibitory anti-NBCn1 antibodies block net acid extrusion in human breast cancer tissue, particularly from patients with disseminated disease, and pH-dependently limit triple-negative breast cancer growth.
Collapse
Affiliation(s)
- Trine V Axelsen
- Department of Biomedicine, Aarhus University, Aarhus, Denmark
| | - Claus Olesen
- Department of Biomedicine, Aarhus University, Aarhus, Denmark
| | - Danish Khan
- Department of Biomedicine, Aarhus University, Aarhus, Denmark
| | - Ali Mohammadi
- Department of Biomedicine, Aarhus University, Aarhus, Denmark
| | | | | | - Marco Mele
- Department of Surgery, Randers Regional Hospital, Randers, Denmark
| | - Katrine R Hauerslev
- Department of Plastic and Breast Surgery, Aarhus University Hospital, Aarhus, Denmark
| | - Helene L Pedersen
- Department of Pathology, Randers Regional Hospital, Randers, Denmark
| | - Eva Balling
- Department of Surgery, Randers Regional Hospital, Randers, Denmark
| | - Pernille Vahl
- Department of Pathology, Aarhus University Hospital, Aarhus, Denmark
| | - Trine Tramm
- Department of Pathology, Aarhus University Hospital, Aarhus, Denmark
- Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | - Peer M Christiansen
- Department of Surgery, Randers Regional Hospital, Randers, Denmark
- Department of Plastic and Breast Surgery, Aarhus University Hospital, Aarhus, Denmark
- Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | - Ebbe Boedtkjer
- Department of Biomedicine, Aarhus University, Aarhus, Denmark.
| |
Collapse
|
8
|
Pedersen SHF. Acid-base transporters in the context of tumor heterogeneity. Pflugers Arch 2024; 476:689-701. [PMID: 38332178 DOI: 10.1007/s00424-024-02918-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Revised: 01/20/2024] [Accepted: 01/29/2024] [Indexed: 02/10/2024]
Abstract
The copious metabolic acid production and -extrusion by cancer cells render poorly vascularized regions of solid tumors highly acidic. A growing list of proton - and bicarbonate transporters has been suggested to contribute to net acid extrusion from cancer cells, and/or been shown to be dysregulated and favor malignant development in various cancers. The great majority of these roles have been studied at the level of the cancer cells. However, recent advances in understanding of the cellular and physicochemical heterogeneity of solid tumors both enable and necessitate a reexamination of the regulation and roles of acid-base transporters in such malignancies. This review will briefly summarize the state-of-the-art, with a focus on the SLC9A and SLC4A families, for which most evidence is available. This is followed by a discussion of key concepts and open questions arising from recent insights and of the challenges that need to be tackled to address them. Finally, opportunities and challenges in therapeutic targeting of the acid-base transportome in cancers will be addressed.
Collapse
Affiliation(s)
- Stine Helene Falsig Pedersen
- Section for Cell Biology and Physiology, Department of Biology, Faculty of Science, University of Copenhagen, Universitetsparken 13, 2100, Copenhagen, Denmark.
| |
Collapse
|
9
|
Fustaino V, Papoff G, Ruberti F, Ruberti G. Co-Expression Network Analysis Unveiled lncRNA-mRNA Links Correlated to Epidermal Growth Factor Receptor-Tyrosine Kinase Inhibitor Resistance and/or Intermediate Epithelial-to-Mesenchymal Transition Phenotypes in a Human Non-Small Cell Lung Cancer Cellular Model System. Int J Mol Sci 2024; 25:3863. [PMID: 38612674 PMCID: PMC11011530 DOI: 10.3390/ijms25073863] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Revised: 03/24/2024] [Accepted: 03/25/2024] [Indexed: 04/14/2024] Open
Abstract
We investigated mRNA-lncRNA co-expression patterns in a cellular model system of non-small cell lung cancer (NSCLC) sensitive and resistant to the epithelial growth factor receptor (EGFR) tyrosine kinase inhibitors (TKIs) erlotinib/gefitinib. The aim of this study was to unveil insights into the complex mechanisms of NSCLC targeted therapy resistance and epithelial-to-mesenchymal transition (EMT). Genome-wide RNA expression was quantified for weighted gene co-expression network analysis (WGCNA) to correlate the expression levels of mRNAs and lncRNAs. Functional enrichment analysis and identification of lncRNAs were conducted on modules associated with the EGFR-TKI response and/or intermediate EMT phenotypes. We constructed lncRNA-mRNA co-expression networks and identified key modules and their enriched biological functions. Processes enriched in the selected modules included RHO (A, B, C) GTPase and regulatory signaling pathways, apoptosis, inflammatory and interleukin signaling pathways, cell adhesion, cell migration, cell and extracellular matrix organization, metabolism, and lipid metabolism. Interestingly, several lncRNAs, already shown to be dysregulated in cancer, are connected to a small number of mRNAs, and several lncRNAs are interlinked with each other in the co-expression network.
Collapse
Affiliation(s)
- Valentina Fustaino
- Institute of Biochemistry and Cell Biology, National Research Council (IBBC-CNR), Campus Adriano Buzzati Traverso, Via E. Ramarini 32, 00015 Monterotondo (Roma), Italy; (G.P.); (F.R.)
| | | | | | | |
Collapse
|
10
|
Mehata AK, Singh V, Vikas, Srivastava P, Koch B, Kumar M, Muthu MS. Chitosan nanoplatform for the co-delivery of palbociclib and ultra-small magnesium nanoclusters: dual receptor targeting, therapy and imaging. Nanotheranostics 2024; 8:179-201. [PMID: 38444739 PMCID: PMC10911970 DOI: 10.7150/ntno.94364] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Accepted: 01/26/2024] [Indexed: 03/07/2024] Open
Abstract
Theranostic nanoparticles have gained significant attention in cancer diagnosis and therapy. In this study, estrone (ES) and folic acid (FA) functionalized single and dual receptor targeted theranostic chitosan nanoparticles were developed for breast cancer imaging and therapy. These nanoparticles (NPs) were loaded with palbociclib (PB) and ultra-small magnesium nanoclusters (UMN). The developed nontargeted theranostic NPs (PB-UMN-CS-NPs), estrogen receptor targeted theranostic NPs (PB-UMN-CS-ES-NPs), folate receptor targeted theranostic NPs (PB-UMN-CS-FA-NPs), and dual targeted theranostic NPs (PB-UMN-CS-ES-FA-NPs) have particle sizes of 178.4 ± 1.21 nm, 181.6± 1.35 nm, 185.1± 1.33 nm, and 198.2± 1.43 nm with surface charges of +19.02± 0.382 mV, +13.89±0.410 mV, +16.72±0.527 mV and +15.23±0.377 mV, respectively. Cytotoxicity studies on estrogen receptor (ER) and folate receptor (FR) expressing breast cancer cells revealed that dual-targeted theranostic NPs (PB-UMN-CS-FA-ES-NPs) were more effective, inhibiting cell growth by 54.17 and 42.23 times in MCF-7 and T-47D cells compared to free PB, respectively. Additionally, developed NPs were capable of inhibiting the cell cycle progression of MCF-7 cells from the G1 phase to the S phase more efficiently compared to free PB. Ultrasound and photoacoustic (USG/PA) imaging demonstrated that dual targeted theranostic NPs were capable of effectively reducing hypoxic tumor volume and significantly suppressing tumor vascularity compared to free PB, nontargeted, FR targeted and ER targeted NPs. Moreover, in vivo optical imaging demonstrated tumor specific accumulation of the dual-targeted theranostic NPs. Furthermore, in vitro hemocompatibility and histopathological studies confirmed the biocompatibility of developed nanoformulations.
Collapse
Affiliation(s)
- Abhishesh Kumar Mehata
- Department of Pharmaceutical Engineering and Technology, IIT (Banaras Hindu University), Varanasi-221005, UP, India
| | - Virendra Singh
- Cancer Biology Laboratory, Department of Zoology Institute of Science, (Banaras Hindu University), Varanasi-221005, UP, India
| | - Vikas
- Department of Pharmaceutical Engineering and Technology, IIT (Banaras Hindu University), Varanasi-221005, UP, India
| | - Prachi Srivastava
- Nano2Micro Material Design Lab, Chemical Engineering and Technology, IIT BHU, Varanasi-221005, UP, India
| | - Biplob Koch
- Cancer Biology Laboratory, Department of Zoology Institute of Science, (Banaras Hindu University), Varanasi-221005, UP, India
| | - Manoj Kumar
- Nano2Micro Material Design Lab, Chemical Engineering and Technology, IIT BHU, Varanasi-221005, UP, India
| | - Madaswamy S. Muthu
- Department of Pharmaceutical Engineering and Technology, IIT (Banaras Hindu University), Varanasi-221005, UP, India
| |
Collapse
|
11
|
Abstract
Cancers undergo sequential changes to proton (H+) concentration and sensing that are consequences of the disease and facilitate its further progression. The impact of protonation state on protein activity can arise from alterations to amino acids or their titration. Indeed, many cancer-initiating mutations influence pH balance, regulation or sensing in a manner that enables growth and invasion outside normal constraints as part of oncogenic transformation. These cancer-supporting effects become more prominent when tumours develop an acidic microenvironment owing to metabolic reprogramming and disordered perfusion. The ensuing intracellular and extracellular pH disturbances affect multiple aspects of tumour biology, ranging from proliferation to immune surveillance, and can even facilitate further mutagenesis. As a selection pressure, extracellular acidosis accelerates disease progression by favouring acid-resistant cancer cells, which are typically associated with aggressive phenotypes. Although acid-base disturbances in tumours often occur alongside hypoxia and lactate accumulation, there is now ample evidence for a distinct role of H+-operated responses in key events underpinning cancer. The breadth of these actions presents therapeutic opportunities to change the trajectory of disease.
Collapse
Affiliation(s)
- Pawel Swietach
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, UK.
| | - Ebbe Boedtkjer
- Department of Biomedicine, Aarhus University, Aarhus, Denmark.
| | - Stine Falsig Pedersen
- Department of Biology, University of Copenhagen, University of Copenhagen, Faculty of Science, København, Denmark.
| |
Collapse
|
12
|
Di Y, Deng R, Liu Z, Mao Y, Gao Y, Zhao Q, Wang S. Optimized strategies of ROS-based nanodynamic therapies for tumor theranostics. Biomaterials 2023; 303:122391. [PMID: 37995457 DOI: 10.1016/j.biomaterials.2023.122391] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 10/29/2023] [Accepted: 11/04/2023] [Indexed: 11/25/2023]
Abstract
Reactive oxygen species (ROS) play a crucial role in regulating the metabolism of tumor growth, metastasis, death and other biological processes. ROS-based nanodynamic therapies (NDTs) are becoming attractive due to non-invasive, low side effects and tumor-specific advantages. NDTs have rapidly developed into numerous branches, such as photodynamic therapy, chemodynamic therapy, sonodynamic therapy and so on. However, the complexity of the tumor microenvironment and the limitations of existing sensitizers have greatly restricted the therapeutic effects of NDTs, which heavily rely on ROS levels. To address the limitations of NDTs, various strategies have been developed to increase ROS yield, which is an urgent aspect for the positive development of NDTs. In this review, the nanodynamic potentiation strategies in terms of unique properties and universalities of NDTs are comprehensively outlined. We mainly summarize the current dilemmas faced by each NDT and the respective solutions. Meanwhile, the NDTs universalities-based potentiation strategies and NDTs-based combined treatments are elaborated. Finally, we conclude with a discussion of the key issues and challenges faced in the development and clinical transformation of NDTs.
Collapse
Affiliation(s)
- Yifan Di
- Department of Pharmaceutics, School of Pharmacy, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang, Liaoning Province 110016, China
| | - Ruizhu Deng
- Department of Pharmaceutics, School of Pharmacy, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang, Liaoning Province 110016, China
| | - Zhu Liu
- Department of Pharmaceutics, School of Pharmacy, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang, Liaoning Province 110016, China
| | - Yuling Mao
- Department of Pharmaceutics, School of Pharmacy, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang, Liaoning Province 110016, China
| | - Yikun Gao
- School of Medical Devices, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Qinfu Zhao
- Department of Pharmaceutics, School of Pharmacy, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang, Liaoning Province 110016, China.
| | - Siling Wang
- Department of Pharmaceutics, School of Pharmacy, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang, Liaoning Province 110016, China.
| |
Collapse
|
13
|
Patrucco D, Cutrin JC, Longo DL, Botto E, Cong L, Aime S, Delli Castelli D. In Situ Insonation of Alkaline Buffer Containing Liposomes Leads to a Net Improvement of the Therapeutic Outcome in a Triple Negative Breast Cancer Murine Model. Adv Healthc Mater 2023; 12:e2301480. [PMID: 37709294 DOI: 10.1002/adhm.202301480] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Revised: 09/12/2023] [Indexed: 09/16/2023]
Abstract
Breast cancer is characterized by an acidic micro-environment. Acidic extracellular pH gives cancer cells an evolutionary advantage, hence, neutralization of the extracellular pH has been considered as a potential therapeutic strategy. To address the issue of systemic pH alteration, an approach based on the targeted delivery of the buffering solution to the tumor region is investigated. The method relies on the use of low frequency ultrasound and sono-sensitive liposomes loaded with buffers at alkaline pH (LipHUS). After the i.v. injection of LipHUS, the application of ultrasound (US) at the sites of the pathology induces a local increase of pH that results highly effective in i) inhibiting primary tumor growth, ii) reducing tumor recurrence after surgery, and iii) suppressing metastases' formation. The experiments are carried out on a triple negative breast cancer mouse model. The results obtained demonstrate that localized and triggered release of bicarbonate or PBS buffer from sonosensitive liposomes represents an efficient therapeutic tool for treating triple-negative breast cancer. This approach holds promise for potential clinical translation.
Collapse
Affiliation(s)
- Deyssy Patrucco
- Department of Molecular Biotechnology and Health Science, University of Turin, Via Nizza 52, Turin, 10126, Italy
| | - Juan Carlos Cutrin
- Department of Molecular Biotechnology and Health Science, University of Turin, Via Nizza 52, Turin, 10126, Italy
| | - Dario Livio Longo
- Istituto di Biostrutture e Bioimmagini (IBB), Consiglio Nazionale delle Ricerche (CNR), Via Tommaso De Amicis, 95, Naples, 80145, Italy
| | - Elena Botto
- Istituto di Biostrutture e Bioimmagini (IBB), Consiglio Nazionale delle Ricerche (CNR), Via Tommaso De Amicis, 95, Naples, 80145, Italy
| | - Li Cong
- Key Laboratory of Smart Drug Delivery, Ministry of Education, School of Pharmacy, Fudan University, Shanghai, 201203, China
| | - Silvio Aime
- IRCCS SDN, SYNLAB, Via Gianturco 113, Naples, 80143, Italy
| | - Daniela Delli Castelli
- Department of Molecular Biotechnology and Health Science, University of Turin, Via Nizza 52, Turin, 10126, Italy
| |
Collapse
|
14
|
Wang B, Zhao L, Yang C, Lin Y, Wang S, Ye Y, Luo J, Shen Z. IDH1 K224 acetylation promotes colorectal cancer via miR-9-5p/NHE1 axis-mediated regulation of acidic microenvironment. iScience 2023; 26:107206. [PMID: 37456829 PMCID: PMC10339209 DOI: 10.1016/j.isci.2023.107206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Revised: 04/10/2023] [Accepted: 06/21/2023] [Indexed: 07/18/2023] Open
Abstract
The acidic microenvironment is considered an important factor in colorectal cancer (CRC) that contributes to malignant transformation. However, the underlying mechanism remains unclear. In a previous study, we confirmed that IDH1 K224 deacetylation promotes enzymatic activity and the production of α-KG. Here, we further investigate the effect of IDH1 hyperacetylation on the CRC acidic microenvironment. We demonstrate that increased α-KG affects hydroxylation of Ago2 and mediates miR-9-5p targeting NHE1 protein. Knockdown of NHE1 dramatically attenuates CRC cell proliferation and migration by restricting transport of intracellular H+ out of cells. Furthermore, we show that miR-9-5p is the microRNA with the most significant difference in the alteration of IDH1 K224 acetylation and can downregulate NHE1 mRNA. Our data also indicate that hydroxylation stabilizes Ago2, which in turn promotes miR-9-5p activity. Taken together, our results reveal a novel mechanism through which IDH1 deacetylation regulates the cellular acidic microenvironment and inhibits CRC metastasis.
Collapse
Affiliation(s)
- Bo Wang
- Department of Gastroenterological Surgery, Laboratory of Surgical Oncology, Beijing Key Laboratory of Colorectal Cancer Diagnosis and Treatment Research, Peking University People’s Hospital, No.11 Xizhimen South Street, Beijing 100044, P.R. China
| | - Long Zhao
- Department of Gastroenterological Surgery, Laboratory of Surgical Oncology, Beijing Key Laboratory of Colorectal Cancer Diagnosis and Treatment Research, Peking University People’s Hospital, No.11 Xizhimen South Street, Beijing 100044, P.R. China
| | - Changjiang Yang
- Department of Gastroenterological Surgery, Laboratory of Surgical Oncology, Beijing Key Laboratory of Colorectal Cancer Diagnosis and Treatment Research, Peking University People’s Hospital, No.11 Xizhimen South Street, Beijing 100044, P.R. China
| | - Yilin Lin
- Department of Gastroenterological Surgery, Laboratory of Surgical Oncology, Beijing Key Laboratory of Colorectal Cancer Diagnosis and Treatment Research, Peking University People’s Hospital, No.11 Xizhimen South Street, Beijing 100044, P.R. China
| | - Shan Wang
- Department of Gastroenterological Surgery, Laboratory of Surgical Oncology, Beijing Key Laboratory of Colorectal Cancer Diagnosis and Treatment Research, Peking University People’s Hospital, No.11 Xizhimen South Street, Beijing 100044, P.R. China
| | - Yingjiang Ye
- Department of Gastroenterological Surgery, Laboratory of Surgical Oncology, Beijing Key Laboratory of Colorectal Cancer Diagnosis and Treatment Research, Peking University People’s Hospital, No.11 Xizhimen South Street, Beijing 100044, P.R. China
| | - Jianyuan Luo
- Department of Medical Genetics, Peking University Health Science Center, Beijing 100191, P.R. China
| | - Zhanlong Shen
- Department of Gastroenterological Surgery, Laboratory of Surgical Oncology, Beijing Key Laboratory of Colorectal Cancer Diagnosis and Treatment Research, Peking University People’s Hospital, No.11 Xizhimen South Street, Beijing 100044, P.R. China
| |
Collapse
|
15
|
Mehata AK, Singh V, Singh N, Mandal A, Dash D, Koch B, Muthu MS. Chitosan- g-estrone Nanoparticles of Palbociclib Vanished Hypoxic Breast Tumor after Targeted Delivery: Development and Ultrasound/Photoacoustic Imaging. ACS APPLIED MATERIALS & INTERFACES 2023. [PMID: 37433149 DOI: 10.1021/acsami.3c03184] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/13/2023]
Abstract
Breast cancer is the leading cause of death among women globally. Approximately 80% of all breast cancers diagnosed are overexpressed with estrogen receptors (ERs). In this study, we have developed an estrone (Egen)-grafted chitosan-based polymeric nanocarrier for the targeted delivery of palbociclib (PLB) to breast cancer. The nanoparticles (NPs) were prepared by solvent evaporation using the ionic gelation method and characterized for particle size, zeta potential, polydispersity, surface morphology, surface chemistry, drug entrapment efficiency, cytotoxicity assay, cellular uptake, and apoptosis study. The developed PLB-CS NPs and PLB-CS-g-Egen NPs had a particle size of 116.3 ± 1.53 nm and 141.6 ± 1.97 nm, respectively. The zeta potential of PLB-CS NPs and PLB-CS-g-Egen NPs was found to be 18.70 ± 0.416 mV and 12.45 ± 0.574 mV, respectively. The morphological analysis demonstrated that all NPs were spherical in shape and had a smooth surface. An in vitro cytotoxicity assay was performed in estrogen receptor (ER)-expressing MCF7 cells and T47D cells, which suggested that targeted NPs were 57.34- and 30.32-fold more cytotoxic compared to the pure PLB, respectively. Additionally, cell cycle analysis confirmed that cell cycle progression from the G1 into S phase was blocked more efficiently by targeted NPs compared to nontargeted NPs and PLB in MCF7 cells. In vivo pharmacokinetic studies demonstrated that entrapment of the PLB in the NPs improved the half-life and bioavailability by ∼2-3-fold. Further, ultrasound and photoacoustic imaging of DMBA induced breast cancer in the Sprague-Dawley (SD) rat showed that targeted NPs completely vanished breast tumor, reduced hypoxic tumor volume, and suppressed tumor angiogenesis more efficiently compared to the nontargeted NPs and free PLB. Further, in vitro hemocompatibility and histopathology studies suggested that NPs were biocompatible and safe for clinical use.
Collapse
Affiliation(s)
- Abhishesh Kumar Mehata
- Department of Pharmaceutical Engineering and Technology, Indian Institute of Technology, (BHU), Varanasi 221005, Uttar Pradesh, India
| | - Virendra Singh
- Cancer Biology Laboratory, Department of Zoology Institute of Science, (BHU), Varanasi 221005, Uttar Pradesh, India
| | - Nitesh Singh
- Department of Biochemistry, Institute of Medical Sciences, (BHU), Varanasi 221005, Uttar Pradesh, India
| | - Abhijit Mandal
- Department of Radiotherapy and Radiation Medicine, Institute of Medical Sciences, (BHU), Varanasi 221005, Uttar Pradesh, India
| | - Debabrata Dash
- Department of Biochemistry, Institute of Medical Sciences, (BHU), Varanasi 221005, Uttar Pradesh, India
| | - Biplob Koch
- Cancer Biology Laboratory, Department of Zoology Institute of Science, (BHU), Varanasi 221005, Uttar Pradesh, India
| | - Madaswamy S Muthu
- Department of Pharmaceutical Engineering and Technology, Indian Institute of Technology, (BHU), Varanasi 221005, Uttar Pradesh, India
| |
Collapse
|
16
|
Leslie TK, Brackenbury WJ. Sodium channels and the ionic microenvironment of breast tumours. J Physiol 2023; 601:1543-1553. [PMID: 36183245 PMCID: PMC10953337 DOI: 10.1113/jp282306] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Accepted: 08/11/2022] [Indexed: 11/08/2022] Open
Abstract
Cancers of epithelial origin such as breast, prostate, cervical, gastric, colon and lung cancer account for a large proportion of deaths worldwide. Better treatment of metastasis, the main cause of cancer deaths, is therefore urgently required. Several of these tumours have been shown to have an abnormally high concentration of Na+ ([Na+ ]) and emerging evidence points to this accumulation being due to elevated intracellular [Na+ ]. This poses intriguing questions about the cellular mechanisms underlying Na+ dysregulation in cancer, and its pathophysiological significance. Elevated intracellular [Na+ ] may be due to alterations in activity of the Na+ /K+ -ATPase, and/or increased influx via Na+ channels and Na+ -linked transporters. Maintenance of the electrochemical Na+ gradient across the plasma membrane is vital to power many cellular processes that are highly active in cancer cells, including glucose and glutamine import. Na+ channels are also upregulated in cancer cells, which in turn promotes tumour growth and metastasis. For example, ENaC and ASICs are overexpressed in cancers, increasing invasion and proliferation. In addition, voltage-gated Na+ channels are also upregulated in a range of tumour types, where they promote metastatic cell behaviours via various mechanisms, including membrane potential depolarisation and altered pH regulation. Together, recent findings relating to elevated Na+ in the tumour microenvironment and how this may be regulated by several classes of Na+ channels provide a link between altered Na+ handling and poor clinical outcome. There are new opportunities to leverage this altered Na+ microenvironment for therapeutic benefit, as exemplified by several ongoing clinical trials.
Collapse
Affiliation(s)
- Theresa K. Leslie
- Department of BiologyUniversity of YorkHeslingtonYorkUK
- York Biomedical Research InstituteUniversity of YorkHeslingtonYorkUK
| | - William J. Brackenbury
- Department of BiologyUniversity of YorkHeslingtonYorkUK
- York Biomedical Research InstituteUniversity of YorkHeslingtonYorkUK
| |
Collapse
|
17
|
Liu X, Qin H, Zhang L, Jia C, Chao Z, Qin X, Zhang H, Chen C. Hyperoxia induces glucose metabolism reprogramming and intracellular acidification by suppressing MYC/MCT1 axis in lung cancer. Redox Biol 2023; 61:102647. [PMID: 36867943 PMCID: PMC10011425 DOI: 10.1016/j.redox.2023.102647] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Revised: 02/20/2023] [Accepted: 02/24/2023] [Indexed: 03/02/2023] Open
Abstract
The perils and promises of inspiratory hyperoxia (IH) in oncology are still controversial, especially for patients with lung cancer. Increasing evidence shows that hyperoxia exposure is relevant to the tumor microenvironment. However, the detailed role of IH on the acid-base homeostasis of lung cancer cells remains unclear. In this study, the effects of 60% oxygen exposure on intra- and extracellular pH were systematically evaluated in H1299 and A549 cells. Our data indicate that hyperoxia exposure reduces intracellular pH, which might be expected to reduce the proliferation, invasion, and epithelial-to-mesenchymal transition of lung cancer cells. RNA sequencing, Western blot, and PCR analysis reveal that monocarboxylate transporter 1 (MCT1) mediates intracellular lactate accumulation and intracellular acidification of H1299 and A549 cells at 60% oxygen exposure. In vivo studies further demonstrate that MCT1 knockdown dramatically reduces lung cancer growth, invasion, and metastasis. The results of luciferase and ChIP-qPCR assays further confirm that MYC is a transcription factor of MCT1, and PCR and Western blot assays confirm that MYC is downregulated under hyperoxic conditions. Collectively, our data reveal that hyperoxia can suppress the MYC/MCT1 axis and cause the accumulation of lactate and intracellular acidification, thereby retarding tumor growth and metastasis.
Collapse
Affiliation(s)
- Xiucheng Liu
- Department of Thoracic Surgery, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, 200433, China; Thoracic Surgery Laboratory, Xuzhou Medical University, Xuzhou, Jiangsu, 221006, China
| | - Hao Qin
- Thoracic Surgery Laboratory, Xuzhou Medical University, Xuzhou, Jiangsu, 221006, China; Department of Thoracic Surgery, Affiliated Hospital of Xuzhou Medical University, 99 West Huaihai Road, Xuzhou, 221006, Jiangsu, China
| | - Li Zhang
- Thoracic Surgery Laboratory, Xuzhou Medical University, Xuzhou, Jiangsu, 221006, China
| | - Caili Jia
- Thoracic Surgery Laboratory, Xuzhou Medical University, Xuzhou, Jiangsu, 221006, China
| | - Zhixiang Chao
- Thoracic Surgery Laboratory, Xuzhou Medical University, Xuzhou, Jiangsu, 221006, China
| | - Xichun Qin
- Thoracic Surgery Laboratory, Xuzhou Medical University, Xuzhou, Jiangsu, 221006, China
| | - Hao Zhang
- Thoracic Surgery Laboratory, Xuzhou Medical University, Xuzhou, Jiangsu, 221006, China; Department of Thoracic Surgery, Affiliated Hospital of Xuzhou Medical University, 99 West Huaihai Road, Xuzhou, 221006, Jiangsu, China.
| | - Chang Chen
- Department of Thoracic Surgery, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, 200433, China; Shanghai Engineering Research Center of Lung Transplantation, Shanghai, China.
| |
Collapse
|
18
|
Lee S, Toft NJ, Axelsen TV, Espejo MS, Pedersen TM, Mele M, Pedersen HL, Balling E, Johansen T, Burton M, Thomassen M, Vahl P, Christiansen P, Boedtkjer E. Carbonic anhydrases reduce the acidity of the tumor microenvironment, promote immune infiltration, decelerate tumor growth, and improve survival in ErbB2/HER2-enriched breast cancer. Breast Cancer Res 2023; 25:46. [PMID: 37098526 PMCID: PMC10127511 DOI: 10.1186/s13058-023-01644-1] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Accepted: 03/30/2023] [Indexed: 04/27/2023] Open
Abstract
BACKGROUND Carbonic anhydrases catalyze CO2/HCO3- buffer reactions with implications for effective H+ mobility, pH dynamics, and cellular acid-base sensing. Yet, the integrated consequences of carbonic anhydrases for cancer and stromal cell functions, their interactions, and patient prognosis are not yet clear. METHODS We combine (a) bioinformatic analyses of human proteomic data and bulk and single-cell transcriptomic data coupled to clinicopathologic and prognostic information; (b) ex vivo experimental studies of gene expression in breast tissue based on quantitative reverse transcription and polymerase chain reactions, intracellular and extracellular pH recordings based on fluorescence confocal microscopy, and immunohistochemical protein identification in human and murine breast cancer biopsies; and (c) in vivo tumor size measurements, pH-sensitive microelectrode recordings, and microdialysis-based metabolite analyses in mice with experimentally induced breast carcinomas. RESULTS Carbonic anhydrases-particularly the extracellular isoforms CA4, CA6, CA9, CA12, and CA14-undergo potent expression changes during human and murine breast carcinogenesis. In patients with basal-like/triple-negative breast cancer, elevated expression of the extracellular carbonic anhydrases negatively predicts survival, whereas, surprisingly, the extracellular carbonic anhydrases positively predict patient survival in HER2/ErbB2-enriched breast cancer. Carbonic anhydrase inhibition attenuates cellular net acid extrusion and extracellular H+ elimination from diffusion-restricted to peripheral and well-perfused regions of human and murine breast cancer tissue. Supplied in vivo, the carbonic anhydrase inhibitor acetazolamide acidifies the microenvironment of ErbB2-induced murine breast carcinomas, limits tumor immune infiltration (CD3+ T cells, CD19+ B cells, F4/80+ macrophages), lowers inflammatory cytokine (Il1a, Il1b, Il6) and transcription factor (Nfkb1) expression, and accelerates tumor growth. Supporting the immunomodulatory influences of carbonic anhydrases, patient survival benefits associated with high extracellular carbonic anhydrase expression in HER2-enriched breast carcinomas depend on the tumor inflammatory profile. Acetazolamide lowers lactate levels in breast tissue and blood without influencing breast tumor perfusion, suggesting that carbonic anhydrase inhibition lowers fermentative glycolysis. CONCLUSIONS We conclude that carbonic anhydrases (a) elevate pH in breast carcinomas by accelerating net H+ elimination from cancer cells and across the interstitial space and (b) raise immune infiltration and inflammation in ErbB2/HER2-driven breast carcinomas, restricting tumor growth and improving patient survival.
Collapse
Affiliation(s)
- Soojung Lee
- Department of Biomedicine, Aarhus University, Hoegh-Guldbergs Gade 10, Building 1115, DK-8000, Aarhus C, Denmark
| | - Nicolai J Toft
- Department of Biomedicine, Aarhus University, Hoegh-Guldbergs Gade 10, Building 1115, DK-8000, Aarhus C, Denmark
| | - Trine V Axelsen
- Department of Biomedicine, Aarhus University, Hoegh-Guldbergs Gade 10, Building 1115, DK-8000, Aarhus C, Denmark
| | - Maria Sofia Espejo
- Department of Biomedicine, Aarhus University, Hoegh-Guldbergs Gade 10, Building 1115, DK-8000, Aarhus C, Denmark
| | - Tina M Pedersen
- Department of Biomedicine, Aarhus University, Hoegh-Guldbergs Gade 10, Building 1115, DK-8000, Aarhus C, Denmark
| | - Marco Mele
- Department of Surgery, Randers Regional Hospital, Randers, Denmark
| | - Helene L Pedersen
- Department of Pathology, Randers Regional Hospital, Randers, Denmark
| | - Eva Balling
- Department of Surgery, Randers Regional Hospital, Randers, Denmark
| | - Tonje Johansen
- Department of Pathology, Randers Regional Hospital, Randers, Denmark
| | - Mark Burton
- Department of Clinical Genetics, University of Southern Denmark, Odense, Denmark
- Clinical Genome Center, University and Region of Southern Denmark, Odense, Denmark
- Department of Clinical Medicine, University of Southern Denmark, Odense, Denmark
| | - Mads Thomassen
- Department of Clinical Genetics, University of Southern Denmark, Odense, Denmark
- Clinical Genome Center, University and Region of Southern Denmark, Odense, Denmark
| | - Pernille Vahl
- Department of Pathology, Aarhus University Hospital, Aarhus, Denmark
| | - Peer Christiansen
- Department of Surgery, Randers Regional Hospital, Randers, Denmark
- Department of Plastic and Breast Surgery, Aarhus University Hospital, Aarhus, Denmark
| | - Ebbe Boedtkjer
- Department of Biomedicine, Aarhus University, Hoegh-Guldbergs Gade 10, Building 1115, DK-8000, Aarhus C, Denmark.
| |
Collapse
|
19
|
Hu J, Li G, Liu Z, Ma H, Yuan W, Lu Z, Zhang D, Ling H, Zhang F, Liu Y, Liu C, Qiu Y. Bicarbonate transporter SLC4A7 promotes EMT and metastasis of HNSCC by activating the PI3K/AKT/mTOR signaling pathway. Mol Carcinog 2023; 62:628-640. [PMID: 36727616 DOI: 10.1002/mc.23511] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Revised: 10/30/2022] [Accepted: 10/31/2022] [Indexed: 02/03/2023]
Abstract
Head and neck squamous cell carcinoma (HNSCC) is the sixth most common cancer worldwide. Currently, therapeutic modalities such as surgery, chemotherapy, radiotherapy, and immunotherapy are being used to treat HNSCC. However, the treatment outcomes of most patients are dismal because they are already in middle or advanced stage by the time of diagnosis and poorly responsive to treatments. It is therefore of great interest to clarify mechanisms that contribute to the metastasis of cells to identify possible targets for therapy. In this study, we identified the Na+ -coupled bicarbonate transporter, SLC4A7, play essential roles in the metastasis of HNSCC. Our results showed that the relative expression of SLC4A7 messenger RNA was highly expressed in HNSCCs samples from TCGA, and compared with precancerous cells of human oral mucosa (DOK), SLC4A7 was highly expressed in HNSCC cell lines. In vitro and in vivo experiments showed that dysregulation of SLC4A7 had minor influence on the proliferation of HNSCC but impacted HNSCC's migration and invasion. Meanwhile, SLC4A7 could promote epithelial-mesenchymal transition (EMT) in HNSCC. RNA-seq, KEGG pathway enrichment analysis and Western blot further revealed that downregulation of SLC4A7 in HNSCC cells inhibited the PI3K/AKT pathway. These findings were further validated via rescue experiments using a small molecule inhibitor of PI3K/mTOR (GDC-0980). Our findings suggest that SLC4A7 promotes EMT and metastasis of HNSCC through the PI3K/AKT/mTOR signaling pathway, which may be a valuable predictive biomarker and potential therapeutic target in HNSCC.
Collapse
Affiliation(s)
- Junli Hu
- Department of Otolaryngology Head and Neck Surgery, Xiangya Hospital, Central South University, Changsha, China.,Otolaryngology Major Disease Research Key Laboratory of Hunan Province, Changsha, China.,Clinical Research Center for Pharyngolaryngeal Diseases and Voice Disorders in Hunan Province, Changsha, China.,Department of Otolaryngology Head and Neck Surgery, Yantian District People's Hospital, Shenzhen, Guangdong, China
| | - Guo Li
- Department of Otolaryngology Head and Neck Surgery, Xiangya Hospital, Central South University, Changsha, China.,Otolaryngology Major Disease Research Key Laboratory of Hunan Province, Changsha, China.,Clinical Research Center for Pharyngolaryngeal Diseases and Voice Disorders in Hunan Province, Changsha, China.,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Zhifeng Liu
- Department of Otolaryngology Head and Neck Surgery, Xiangya Hospital, Central South University, Changsha, China.,Otolaryngology Major Disease Research Key Laboratory of Hunan Province, Changsha, China.,Clinical Research Center for Pharyngolaryngeal Diseases and Voice Disorders in Hunan Province, Changsha, China
| | - Huiling Ma
- Department of Otolaryngology Head and Neck Surgery, Xiangya Hospital, Central South University, Changsha, China.,Otolaryngology Major Disease Research Key Laboratory of Hunan Province, Changsha, China.,Clinical Research Center for Pharyngolaryngeal Diseases and Voice Disorders in Hunan Province, Changsha, China
| | - Wenhui Yuan
- Department of Otolaryngology Head and Neck Surgery, Xiangya Hospital, Central South University, Changsha, China.,Otolaryngology Major Disease Research Key Laboratory of Hunan Province, Changsha, China.,Clinical Research Center for Pharyngolaryngeal Diseases and Voice Disorders in Hunan Province, Changsha, China
| | - Zhaoyi Lu
- Department of Otolaryngology Head and Neck Surgery, Xiangya Hospital, Central South University, Changsha, China.,Otolaryngology Major Disease Research Key Laboratory of Hunan Province, Changsha, China.,Clinical Research Center for Pharyngolaryngeal Diseases and Voice Disorders in Hunan Province, Changsha, China
| | - Diekuo Zhang
- Department of Otolaryngology Head and Neck Surgery, Xiangya Hospital, Central South University, Changsha, China.,Otolaryngology Major Disease Research Key Laboratory of Hunan Province, Changsha, China.,Clinical Research Center for Pharyngolaryngeal Diseases and Voice Disorders in Hunan Province, Changsha, China
| | - Hang Ling
- Department of Otolaryngology Head and Neck Surgery, Xiangya Hospital, Central South University, Changsha, China.,Otolaryngology Major Disease Research Key Laboratory of Hunan Province, Changsha, China.,Clinical Research Center for Pharyngolaryngeal Diseases and Voice Disorders in Hunan Province, Changsha, China
| | - Fengyu Zhang
- Department of Otolaryngology Head and Neck Surgery, Xiangya Hospital, Central South University, Changsha, China.,Otolaryngology Major Disease Research Key Laboratory of Hunan Province, Changsha, China.,Clinical Research Center for Pharyngolaryngeal Diseases and Voice Disorders in Hunan Province, Changsha, China
| | - Yong Liu
- Department of Otolaryngology Head and Neck Surgery, Xiangya Hospital, Central South University, Changsha, China.,Otolaryngology Major Disease Research Key Laboratory of Hunan Province, Changsha, China.,Clinical Research Center for Pharyngolaryngeal Diseases and Voice Disorders in Hunan Province, Changsha, China.,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Chao Liu
- Department of Otolaryngology Head and Neck Surgery, Xiangya Hospital, Central South University, Changsha, China.,Otolaryngology Major Disease Research Key Laboratory of Hunan Province, Changsha, China.,Clinical Research Center for Pharyngolaryngeal Diseases and Voice Disorders in Hunan Province, Changsha, China.,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Yuanzheng Qiu
- Department of Otolaryngology Head and Neck Surgery, Xiangya Hospital, Central South University, Changsha, China.,Otolaryngology Major Disease Research Key Laboratory of Hunan Province, Changsha, China.,Clinical Research Center for Pharyngolaryngeal Diseases and Voice Disorders in Hunan Province, Changsha, China.,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| |
Collapse
|
20
|
Ali ES, Lipońska A, O'Hara BP, Amici DR, Torno MD, Gao P, Asara JM, Yap MNF, Mendillo ML, Ben-Sahra I. The mTORC1-SLC4A7 axis stimulates bicarbonate import to enhance de novo nucleotide synthesis. Mol Cell 2022; 82:3284-3298.e7. [PMID: 35772404 PMCID: PMC9444906 DOI: 10.1016/j.molcel.2022.06.008] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2022] [Revised: 05/15/2022] [Accepted: 06/07/2022] [Indexed: 12/12/2022]
Abstract
Bicarbonate (HCO3-) ions maintain pH homeostasis in eukaryotic cells and serve as a carbonyl donor to support cellular metabolism. However, whether the abundance of HCO3- is regulated or harnessed to promote cell growth is unknown. The mechanistic target of rapamycin complex 1 (mTORC1) adjusts cellular metabolism to support biomass production and cell growth. We find that mTORC1 stimulates the intracellular transport of HCO3- to promote nucleotide synthesis through the selective translational regulation of the sodium bicarbonate cotransporter SLC4A7. Downstream of mTORC1, SLC4A7 mRNA translation required the S6K-dependent phosphorylation of the translation factor eIF4B. In mTORC1-driven cells, loss of SLC4A7 resulted in reduced cell and tumor growth and decreased flux through de novo purine and pyrimidine synthesis in human cells and tumors without altering the intracellular pH. Thus, mTORC1 signaling, through the control of SLC4A7 expression, harnesses environmental bicarbonate to promote anabolic metabolism, cell biomass, and growth.
Collapse
Affiliation(s)
- Eunus S Ali
- Department of Biochemistry and Molecular Genetics, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA; Robert H. Lurie Comprehensive Cancer Center, Northwestern University, Chicago, IL 60611, USA
| | - Anna Lipońska
- Department of Microbiology-Immunology, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Brendan P O'Hara
- Department of Biochemistry and Molecular Genetics, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA; Robert H. Lurie Comprehensive Cancer Center, Northwestern University, Chicago, IL 60611, USA
| | - David R Amici
- Department of Biochemistry and Molecular Genetics, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA; Robert H. Lurie Comprehensive Cancer Center, Northwestern University, Chicago, IL 60611, USA
| | - Michael D Torno
- Department of Biochemistry and Molecular Genetics, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA; Robert H. Lurie Comprehensive Cancer Center, Northwestern University, Chicago, IL 60611, USA
| | - Peng Gao
- Metabolomics Core Facility, Robert H. Lurie Comprehensive Cancer Center, Northwestern University, Chicago, IL 60611, USA
| | - John M Asara
- Mass Spectrometry Core, Beth Israel Deaconess Medical Center, Department of Medicine, Harvard Medical School, Boston, MA 02115, USA
| | - Mee-Ngan F Yap
- Department of Microbiology-Immunology, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Marc L Mendillo
- Department of Biochemistry and Molecular Genetics, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA; Robert H. Lurie Comprehensive Cancer Center, Northwestern University, Chicago, IL 60611, USA
| | - Issam Ben-Sahra
- Department of Biochemistry and Molecular Genetics, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA; Robert H. Lurie Comprehensive Cancer Center, Northwestern University, Chicago, IL 60611, USA.
| |
Collapse
|
21
|
Sloth RA, Axelsen TV, Espejo MS, Toft NJ, Voss NCS, Burton M, Thomassen M, Vahl P, Boedtkjer E. Loss of RPTPγ primes breast tissue for acid extrusion, promotes malignant transformation and results in early tumour recurrence and shortened survival. Br J Cancer 2022; 127:1226-1238. [PMID: 35821297 DOI: 10.1038/s41416-022-01911-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Revised: 06/22/2022] [Accepted: 06/29/2022] [Indexed: 11/09/2022] Open
Abstract
BACKGROUND While cellular metabolism and acidic waste handling accelerate during breast carcinogenesis, temporal patterns of acid-base regulation and underlying molecular mechanisms responding to the tumour microenvironment remain unclear. METHODS We explore data from human cohorts and experimentally investigate transgenic mice to evaluate the putative extracellular HCO3--sensor Receptor Protein Tyrosine Phosphatase (RPTP)γ during breast carcinogenesis. RESULTS RPTPγ expression declines during human breast carcinogenesis and particularly in high-malignancy grade breast cancer. Low RPTPγ expression associates with poor prognosis in women with Luminal A or Basal-like breast cancer. RPTPγ knockout in mice favours premalignant changes in macroscopically normal breast tissue, accelerates primary breast cancer development, promotes malignant breast cancer histopathologies, and shortens recurrence-free survival. In RPTPγ knockout mice, expression of Na+,HCO3--cotransporter NBCn1-a breast cancer susceptibility protein-is upregulated in normal breast tissue but, contrary to wild-type mice, shows no further increase during breast carcinogenesis. Associated augmentation of Na+,HCO3--cotransport in normal breast tissue from RPTPγ knockout mice elevates steady-state intracellular pH, which has known pro-proliferative effects. CONCLUSIONS Loss of RPTPγ accelerates cellular net acid extrusion and elevates NBCn1 expression in breast tissue. As these effects precede neoplastic manifestations in histopathology, we propose that RPTPγ-dependent enhancement of Na+,HCO3--cotransport primes breast tissue for cancer development.
Collapse
Affiliation(s)
- Rasmus A Sloth
- Department of Biomedicine, Aarhus University, Aarhus, Denmark
| | - Trine V Axelsen
- Department of Biomedicine, Aarhus University, Aarhus, Denmark
| | | | - Nicolai J Toft
- Department of Biomedicine, Aarhus University, Aarhus, Denmark
| | - Ninna C S Voss
- Department of Biomedicine, Aarhus University, Aarhus, Denmark
| | - Mark Burton
- Department of Clinical Genetics, University of Southern Denmark, Odense, Denmark.,Clinical Genome Center, University and Region of Southern Denmark, Odense, Denmark.,Department of Clinical Medicine, University of Southern Denmark, Odense, Denmark
| | - Mads Thomassen
- Department of Clinical Genetics, University of Southern Denmark, Odense, Denmark.,Clinical Genome Center, University and Region of Southern Denmark, Odense, Denmark
| | - Pernille Vahl
- Department of Pathology, Aarhus University Hospital, Aarhus, Denmark
| | - Ebbe Boedtkjer
- Department of Biomedicine, Aarhus University, Aarhus, Denmark.
| |
Collapse
|
22
|
Chen W, Liu J, Zheng C, Bai Q, Gao Q, Zhang Y, Dong K, Lu T. Research Progress on Improving the Efficiency of CDT by Exacerbating Tumor Acidification. Int J Nanomedicine 2022; 17:2611-2628. [PMID: 35712639 PMCID: PMC9196673 DOI: 10.2147/ijn.s366187] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2022] [Accepted: 05/16/2022] [Indexed: 12/21/2022] Open
Abstract
In recent years, chemodynamic therapy (CDT) has received extensive attention as a novel means of cancer treatment. The CDT agents can exert Fenton and Fenton-like reactions in the acidic tumor microenvironment (TME), converting hydrogen peroxide (H2O2) into highly toxic hydroxyl radicals (·OH). However, the pH of TME, as an essential factor in the Fenton reaction, does not catalyze the reaction effectively, hindering its efficiency, which poses a significant challenge for the future clinical application of CDT. Therefore, this paper reviews various strategies to enhance the antitumor properties of nanomaterials by modulating tumor acidity. Ultimately, the performance of CDT can be further improved by inducing strong oxidative stress to produce sufficient ·OH. In this paper, the various acidification pathways and proton pumps with potential acidification functions are mainly discussed, such as catalytic enzymes, exogenous acids, CAIX, MCT, NHE, NBCn1, etc. The problems, opportunities, and challenges of CDT in the cancer field are also discussed, thereby providing new insights for the design of nanomaterials and laying the foundation for their future clinical applications.
Collapse
Affiliation(s)
- Wenting Chen
- Key Laboratory for Space Biosciences and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an, 710072, People's Republic of China
| | - Jinxi Liu
- Key Laboratory for Space Biosciences and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an, 710072, People's Republic of China
| | - Caiyun Zheng
- Key Laboratory for Space Biosciences and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an, 710072, People's Republic of China
| | - Que Bai
- Key Laboratory for Space Biosciences and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an, 710072, People's Republic of China
| | - Qian Gao
- Key Laboratory for Space Biosciences and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an, 710072, People's Republic of China
| | - Yanni Zhang
- Key Laboratory for Space Biosciences and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an, 710072, People's Republic of China
| | - Kai Dong
- School of Pharmacy, Xi'an Jiaotong University, Xi'an, 710072, People's Republic of China
| | - Tingli Lu
- Key Laboratory for Space Biosciences and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an, 710072, People's Republic of China
| |
Collapse
|
23
|
Henningsen MB, McWhan K, Dam VS, Mele M, Hauerslev KR, Voss NCS, Dabir PD, Balling E, Pedersen HL, Vahl P, Johansen T, Tramm T, Christiansen PM, Boedtkjer E. Amplified Ca 2+ dynamics and accelerated cell proliferation in breast cancer tissue during purinergic stimulation. Int J Cancer 2022; 151:1150-1165. [PMID: 35657342 PMCID: PMC9544627 DOI: 10.1002/ijc.34147] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Revised: 05/19/2022] [Accepted: 05/23/2022] [Indexed: 11/22/2022]
Abstract
Intracellular Ca2+ dynamics shape malignant behaviors of cancer cells. Whereas previous studies focused on cultured cancer cells, we here used breast organoids and colonic crypts freshly isolated from human and murine surgical biopsies. We performed fluorescence microscopy to evaluate intracellular Ca2+ concentrations in breast and colon cancer tissue with preferential focus on intracellular Ca2+ release in response to purinergic and cholinergic stimuli. Inhibition of the sarco‐/endoplasmic reticulum Ca2+ ATPase with cyclopiazonic acid elicited larger Ca2+ responses in breast cancer tissue, but not in colon cancer tissue, relative to respective normal tissue. The resting intracellular Ca2+ concentration was elevated, and ATP, UTP and acetylcholine induced strongly augmented intracellular Ca2+ responses in breast cancer tissue compared with normal breast tissue. In contrast, resting intracellular Ca2+ levels and acetylcholine‐induced increases in intracellular Ca2+ concentrations were unaffected and ATP‐ and UTP‐induced Ca2+ responses were smaller in colon cancer tissue compared with normal colon tissue. In accordance with the amplified Ca2+ responses, ATP and UTP substantially increased proliferative activity—evaluated by bromodeoxyuridine incorporation—in breast cancer tissue, whereas the effect was minimal in normal breast tissue. ATP caused cell death—identified with ethidium homodimer‐1 staining—in breast cancer tissue only at concentrations above the expected pathophysiological range. We conclude that intracellular Ca2+ responses are amplified in breast cancer tissue, but not in colon cancer tissue, and that nucleotide signaling stimulates breast cancer cell proliferation within the extracellular concentration range typical for solid cancer tissue.
Collapse
Affiliation(s)
| | - Kezia McWhan
- Department of Biomedicine, Aarhus University, Aarhus, Denmark
| | - Vibeke S Dam
- Department of Biomedicine, Aarhus University, Aarhus, Denmark
| | - Marco Mele
- Department of Surgery, Randers Regional Hospital, Randers, Denmark
| | - Katrine R Hauerslev
- Department of Plastic and Breast Surgery, Aarhus University Hospital, Aarhus, Denmark
| | - Ninna C S Voss
- Department of Biomedicine, Aarhus University, Aarhus, Denmark.,Department of Surgery, Randers Regional Hospital, Randers, Denmark
| | - Parag D Dabir
- Department on Pathology, Randers Regional Hospital, Randers, Denmark
| | - Eva Balling
- Department of Surgery, Randers Regional Hospital, Randers, Denmark
| | - Helene L Pedersen
- Department on Pathology, Randers Regional Hospital, Randers, Denmark
| | - Pernille Vahl
- Department of Pathology, Aarhus University Hospital, Aarhus, Denmark
| | - Tonje Johansen
- Department on Pathology, Randers Regional Hospital, Randers, Denmark
| | - Trine Tramm
- Department of Pathology, Aarhus University Hospital, Aarhus, Denmark
| | - Peer M Christiansen
- Department of Surgery, Randers Regional Hospital, Randers, Denmark.,Department of Plastic and Breast Surgery, Aarhus University Hospital, Aarhus, Denmark
| | - Ebbe Boedtkjer
- Department of Biomedicine, Aarhus University, Aarhus, Denmark
| |
Collapse
|
24
|
Regulation of proton partitioning in kinase-activating acute myeloid leukemia and its therapeutic implication. Leukemia 2022; 36:1990-2001. [PMID: 35624145 PMCID: PMC9343251 DOI: 10.1038/s41375-022-01606-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Revised: 05/11/2022] [Accepted: 05/12/2022] [Indexed: 11/21/2022]
Abstract
Gain-of-function kinase mutations are common in AML and usually portend an inferior prognosis. We reported a novel mechanism whereby kinase mutants induced intracellular alkalization characteristic in oncogenesis. Thirteen kinases were found to activate sodium/hydrogen exchanger (NHE1) in normal hematopoietic progenitors, of which FLT3-ITD, KRASG12D, and BTK phosphorylated NHE1 maintained alkaline intracellular pH (pHi) and supported survival of AML cells. Primary AML samples with kinase mutations also showed increased NHE1 phosphorylation and evidence of NHE1 addiction. Amiloride enhanced anti-leukemic effects and intracellular distribution of kinase inhibitors and chemotherapy. Co-inhibition of NHE1 and kinase synergistically acidified pHi in leukemia and inhibited its growth in vivo. Plasma from patients taking amiloride for diuresis reduced pHi of leukemia and enhanced cytotoxic effects of kinase inhibitors and chemotherapy in vitro. NHE1-mediated intracellular alkalization played a key pathogenetic role in transmitting the proliferative signal from mutated-kinase and could be exploited for therapeutic intervention in AML.
Collapse
|
25
|
Li Q, Qin X, Kou X, Li J, Li Z, Chen C. Anagliptin promotes apoptosis in mouse colon carcinoma cells via MCT-4/lactate-mediated intracellular acidosis. Exp Ther Med 2022; 23:282. [PMID: 35317435 PMCID: PMC8908463 DOI: 10.3892/etm.2022.11211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Accepted: 01/17/2022] [Indexed: 12/24/2022] Open
Abstract
Cancer cells frequently exhibit an acidic extracellular microenvironment, where inversion of the transmembrane pH gradient is associated with tumor proliferation and metastasis. To elucidate a new therapeutic target against cancer, the current study aimed to determine the mechanism by which the dipeptidyl peptidase-4 inhibitor anagliptin regulates the cellular pH gradient and concomitant extracellular acidosis during cancer progression. A total of 5x105 CT-26 cells (resuspended in phosphate buffer saline) were injected subcutaneously in the right flank of male BALB/c mice (weighing 25-28 g). The tumor samples were harvested, and lactate was detected using a lactate assay kit. Immunohistochemistry was used to detect the Ki67 and PCNA. MTT assay and flow cytometric were used to detect cell viability. Intracellular pH was detected by fluorescence pH indicator. The results revealed that anagliptin effectively reduced tumor growth, but did not affect the body weight of treated mice. Anagliptin reduced the accumulation of lactate in tumor sample. Treatment with anagliptin stimulated the apoptosis of CT-26 cells. And lactate excretion inhibition is accompanied by an increase in extracellular pH (pHe) after treatment with anagliptin. Furthermore, anagliptin induced intracellular acidification and reversed the low pHe gradient via monocarboxylate transporter-4 (MCT-4)-mediated lactate excretion. Additionally, anagliptin reversed the aberrant transmembrane extracellular/intracellular pH gradient by suppressing MCT-4-mediated lactate excretion, while also reducing mitochondrial membrane potential and inducing apoptosis. These data revealed a novel function of anagliptin in regulating lactate excretion from cancer cells, suggesting that anagliptin may be used as a potential treatment for cancer.
Collapse
Affiliation(s)
- Qi Li
- The Biotherapy Center, Harbin Medical University Cancer Hospital, Harbin, Heilongjiang 150086, P.R. China
| | - Xiaoling Qin
- The Biotherapy Center, Harbin Medical University Cancer Hospital, Harbin, Heilongjiang 150086, P.R. China
| | - Xiaotong Kou
- Department of Pharmacology (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, Heilongjiang 150086, P.R. China
| | - Jingyu Li
- Department of Pharmacology (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, Heilongjiang 150086, P.R. China
| | - Zhongsha Li
- Department of Pharmacology (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, Heilongjiang 150086, P.R. China
| | - Chang Chen
- Department of Pharmacology (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, Heilongjiang 150086, P.R. China
| |
Collapse
|
26
|
Li X, Fliegel L. Permissive role of Na +/H + exchanger isoform 1 in migration and invasion of triple-negative basal-like breast cancer cells. Mol Cell Biochem 2022; 477:1207-1216. [PMID: 35084672 DOI: 10.1007/s11010-022-04370-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Accepted: 01/20/2022] [Indexed: 12/14/2022]
Abstract
In breast cancer, it is the resulting metastasis that is the primary cause of fatality. pH regulatory proteins and the tumor microenvironment play an important role in metastasis of cancer cells and acid-extruding proteins are critical in this process. There are several types of breast cancer and triple-negative breast cancer tends to be more metastatic and invasive and is itself is composed of several types. MDA-MB-468 are a triple-negative breast cancer cell line and are classified as basal-like and basal tumors account for up to 15% of breast cancers. Here we examined the effect of removal of the acid-extruding protein, the Na+/H+ exchanger isoform one, from MDA-MB-468 cells. NHE1 was deleted from these cells using the CRISPR/Cas9 system. Western blotting and measurement of activity confirmed the absence of the protein. In wounding/cell migration experiments, deletion of NHE1 reduced the rate of cell migration in the presence of low- or high-serum concentrations. Anchorage-dependent colony formation was also greatly reduced by deletion of the NHE1 protein. Cell proliferation was not affected by knockout of NHE1. The results demonstrate that NHE1 has an important role in migration and invasion of basal-like triple-negative breast cancer cells.
Collapse
Affiliation(s)
- Xiuju Li
- Department of Biochemistry, Faculty of Medicine, University Alberta, Edmonton, AB, T6G 2H7, Canada
| | - Larry Fliegel
- Department of Biochemistry, Faculty of Medicine, University Alberta, Edmonton, AB, T6G 2H7, Canada.
| |
Collapse
|
27
|
Takatani-Nakase T, Matsui C, Hosotani M, Omura M, Takahashi K, Nakase I. Hypoxia enhances motility and EMT through the Na +/H + exchanger NHE-1 in MDA-MB-231 breast cancer cells. Exp Cell Res 2022; 412:113006. [PMID: 34979106 DOI: 10.1016/j.yexcr.2021.113006] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2021] [Revised: 12/23/2021] [Accepted: 12/30/2021] [Indexed: 12/15/2022]
Abstract
Breast cancer metastasis is the leading cause of cancer-related deaths. Hypoxia in the tumor mass is believed to trigger cell migration, which is involved in a crucial process of breast cancer metastasis. However, the molecular mechanisms underlying aggressive behavior under hypoxic conditions have not been fully elucidated. Here, we demonstrate the significant motility of MDA-MB-231 cells cultured under hypoxic conditions compared to that of cells cultured under normoxic conditions. MDA-MB-231 cells under hypoxic conditions showed a significant increase in Na+/H+ exchanger isoform 1 (NHE1) expression level, which was observed to co-locate in lamellipodia formation. Inhibition of NHE1 significantly suppressed the intracellular pH and the expression of mesenchymal markers, thereby blocking the high migration activity in hypoxia. Moreover, treatment with ciglitazone, a potent and selective peroxisome proliferator-activated receptor γ (PPARγ) agonist, modulated hypoxia-enhanced motion in cells via the repression of NHE1. These findings highlight that NHE1 is required for migratory activity through the enhancement of epithelial-mesenchymal transition (EMT) in MDA-MB-231 cells under hypoxic conditions, and we propose new drug repurposing strategies targeting hypoxia based on NHE1 suppression by effective usage of PPARγ agonists.
Collapse
Affiliation(s)
- Tomoka Takatani-Nakase
- Department of Pharmaceutics, School of Pharmacy and Pharmaceutical Sciences, Mukogawa Women's University, 11-68, Koshien Kyuban-cho, Nishinomiya, Hyogo, 663-8179, Japan; Institute for Bioscience, Mukogawa Women's University, 11-68, Koshien Kyuban-cho, Nishinomiya, Hyogo, 663-8179, Japan.
| | - Chihiro Matsui
- Department of Pharmaceutics, School of Pharmacy and Pharmaceutical Sciences, Mukogawa Women's University, 11-68, Koshien Kyuban-cho, Nishinomiya, Hyogo, 663-8179, Japan
| | - Maiko Hosotani
- Department of Pharmaceutics, School of Pharmacy and Pharmaceutical Sciences, Mukogawa Women's University, 11-68, Koshien Kyuban-cho, Nishinomiya, Hyogo, 663-8179, Japan
| | - Mika Omura
- Graduate School of Science, Osaka Prefecture University, 1-1, Gakuen-cho, Naka-ku, Sakai, Osaka, 599-8531, Japan
| | - Koichi Takahashi
- Department of Pharmaceutics, School of Pharmacy and Pharmaceutical Sciences, Mukogawa Women's University, 11-68, Koshien Kyuban-cho, Nishinomiya, Hyogo, 663-8179, Japan
| | - Ikuhiko Nakase
- Graduate School of Science, Osaka Prefecture University, 1-1, Gakuen-cho, Naka-ku, Sakai, Osaka, 599-8531, Japan; NanoSquare Research Institute, Osaka Prefecture University, 1-2, Gakuen-cho, Naka-ku, Sakai, Osaka, 599-8570, Japan.
| |
Collapse
|