1
|
Ragnarsson ÁS, Uriarte IL, Howell C, Saeed KH, Weidner T. The Orientation of Human Fibrinogen at Biomedically Relevant Polydimethylsiloxane-Water Interfaces. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2025. [PMID: 40332484 DOI: 10.1021/acs.langmuir.5c00581] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2025]
Abstract
The adsorption of fibrinogen on biomaterial surfaces, particularly polydimethylsiloxane (PDMS), plays a key role in foreign body reactions and has recently been shown to be one of the main factors driving catheter-associated urinary tract infections (CAUTIs). Yet, despite detailed studies on the fibrinogen's solution and crystal structures, its behavior at material interfaces is less understood. Using sum frequency generation (SFG) spectroscopy and structural modeling, we determined the binding pose and conformation of human fibrinogen at the PDMS-buffer interface. Fibrinogen adopts an upright orientation on PDMS with minimal bending. Comparisons with spectra recorded at the air-water interface and literature data on polystyrene reveal significant differences in orientation: fibrinogen binds flat and bent at these model hydrophobic interfaces, while upright conformations are observed on liquid PDMS. These findings demonstrate specific interaction beyond simple hydrophobic attraction at the PDMS interface and hint at the critical role of surface chemistry in dictating fibrinogen's interfacial structure and its implications for biomaterial design aimed at reducing foreign body reactions and CAUTIs.
Collapse
Affiliation(s)
| | - Irati Lasa Uriarte
- Department of Chemistry, Aarhus University, Langelandsgade 140, Aarhus C 8000, Denmark
| | - Caitlin Howell
- Department of Chemical and Biomedical Engineering, University of Maine, Jenness Hall, Orono, Maine 04469, United States
- Graduate School of Biomedical Science and Engineering, University of Maine, 75 Long Road, Orono, Maine 04469, United States
| | - Khezar Hayat Saeed
- Department of Chemistry, Aarhus University, Langelandsgade 140, Aarhus C 8000, Denmark
| | - Tobias Weidner
- Department of Chemistry, Aarhus University, Langelandsgade 140, Aarhus C 8000, Denmark
| |
Collapse
|
2
|
Amod A, Anand AA, Sahoo AK, Samanta SK. Diagnostic and therapeutic strategies in combating implanted medical device-associated bacterial biofilm infections. Folia Microbiol (Praha) 2025; 70:321-342. [PMID: 39865215 DOI: 10.1007/s12223-025-01242-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Accepted: 01/14/2025] [Indexed: 01/28/2025]
Abstract
Bacterial biofilms exhibit remarkable resistance against conventional antibiotics and are capable of evading the humoral immune response. They account for nearly 80% of chronic infections in humans. Development of bacterial biofilms on medical implants results in their malfunctioning and subsequently leads to high mortality rates worldwide. Therefore, early and precise diagnosis of bacterial biofilms on implanted medical devices is essential to prevent their failure and associated complications. Culture-based methods are time consuming, more prone to contamination and often exhibit low sensitivity. Different molecular, imaging, and physical methods can aid in more accurate and faster detection of implant-associated bacterial biofilms. Biofilm growth on implant surface can be prevented either through modification of the implant material or by application of different antibacterial coatings on implant surface. Experimental studies have shown that pre-existing biofilms from medical implants can be removed by breaking down biofilm matrix, utilizing physical methods, nanomaterials and antimicrobial peptides. The current review delves into mechanism of biofilm formation on implanted medical devices and the subsequent host immune response. Much emphasis has been laid on different ongoing diagnostic and therapeutic strategies to achieve improved patient outcomes and reduced socio-economic burden.
Collapse
Affiliation(s)
- Ayush Amod
- Department of Applied Sciences, Indian Institute of Information Technology Allahabad, Prayagraj, 211012, Uttar Pradesh, India.
| | - Ananya Anurag Anand
- Department of Applied Sciences, Indian Institute of Information Technology Allahabad, Prayagraj, 211012, Uttar Pradesh, India
| | - Amaresh Kumar Sahoo
- Department of Applied Sciences, Indian Institute of Information Technology Allahabad, Prayagraj, 211012, Uttar Pradesh, India
| | - Sintu Kumar Samanta
- Department of Applied Sciences, Indian Institute of Information Technology Allahabad, Prayagraj, 211012, Uttar Pradesh, India.
| |
Collapse
|
3
|
Abbott IJ, Anderson CRB, van Gorp E, Wallis SC, Roberts JA, Meletiadis J, Peleg AY. Oral ciprofloxacin biofilm activity in a catheter-associated urinary tract infection model. J Antimicrob Chemother 2025; 80:413-426. [PMID: 39626168 PMCID: PMC11787899 DOI: 10.1093/jac/dkae424] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2024] [Accepted: 11/06/2024] [Indexed: 02/04/2025] Open
Abstract
BACKGROUND Catheter-associated urinary tract infections (CA-UTIs) are a common hospital-acquired infection. We examined ciprofloxacin activity in a novel CA-UTI in vitro model. METHODS Three ATCC strains [Escherichia coli (ECO)-25922, Klebsiella pneumoniae (KPN)-700721, Pseudomonas aeruginosa (PAE)-27853] and 45 clinical urinary isolates were assessed. Biofilm mass and planktonic bacterial density were quantified during drug-free incubation (72 h) and following ciprofloxacin exposure (equivalent 750 mg orally q12h, 3 days). RESULTS ECO produced smaller biofilms (6.3 ± 1.1 log10 cfu/cm2) compared with KPN (7.1 ± 0.7 log10 cfu/cm2) and PAE (7.0 ± 1.2 log10 cfu/cm2), which extended along the entire catheter length. Following ciprofloxacin, all isolates with MIC > 4 mg/L had minimal biofilm disruption or planktonic kill. Ciprofloxacin resistance was most common in PAE isolates (10/16 isolates), compared with ECO (3/16 isolates) and KPN (6/16 isolates). Greater ciprofloxacin exposure (AUC0-24/MIC) was required for a 3 log10 biofilm kill for KPN (5858; R2 = 0.7774) compared with ECO (2117; R2 = 0.7907) and PAE (2485; R2 = 0.8260). Due to persistent growth in the bladder, ECO required greater ciprofloxacin exposure for a 3 log10 planktonic kill (5920; R2 = 0.8440) compared with KPN (2825; R2 = 0.9121) and PAE (1760; R2 = 0.8781). Monte Carlo simulation supported a 95% PTA for both a 3 log10 biofilm and planktonic kill for ECO and KPN isolates with MIC ≤ 0.5 mg/L and PAE isolates with MIC ≤ 1 mg/L. CONCLUSIONS In a novel CA-UTI model, following simulated ciprofloxacin therapy, KPN biofilms were comparatively more difficult to disrupt, ECO planktonic growth frequently persisted in the bladder, and PAE had greater propensity for emergence of ciprofloxacin resistance.
Collapse
Affiliation(s)
- Iain J Abbott
- Department of Infectious Diseases, Alfred Hospital and School of Translational Medicine, Monash University, Melbourne, Victoria, Australia
| | - Connor R B Anderson
- Department of Infectious Diseases, Alfred Hospital and School of Translational Medicine, Monash University, Melbourne, Victoria, Australia
| | - Elke van Gorp
- Department of Infectious Diseases, Alfred Hospital and School of Translational Medicine, Monash University, Melbourne, Victoria, Australia
| | - Steve C Wallis
- University of Queensland Centre for Clinical Research, Faculty of Medicine, The University of Queensland, Brisbane, Australia
| | - Jason A Roberts
- University of Queensland Centre for Clinical Research, Faculty of Medicine, The University of Queensland, Brisbane, Australia
| | - Joseph Meletiadis
- Clinical Microbiology Laboratory, Attikon University Hospital, Medical School, National and Kapodistrian University of Athens, Haidari, Athens, Greece
| | - Anton Y Peleg
- Department of Infectious Diseases, Alfred Hospital and School of Translational Medicine, Monash University, Melbourne, Victoria, Australia
- Department of Microbiology, Infection Program, Monash Biomedicine Discovery Institute, Monash University, Clayton, Victoria, Australia
| |
Collapse
|
4
|
Timm MR, Russell SK, Hultgren SJ. Urinary tract infections: pathogenesis, host susceptibility and emerging therapeutics. Nat Rev Microbiol 2025; 23:72-86. [PMID: 39251839 DOI: 10.1038/s41579-024-01092-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/25/2024] [Indexed: 09/11/2024]
Abstract
Urinary tract infections (UTIs), which include any infection of the urethra, bladder or kidneys, account for an estimated 400 million infections and billions of dollars in health-care spending per year. The most common bacterium implicated in UTI is uropathogenic Escherichia coli, but diverse pathogens including Klebsiella, Enterococcus, Pseudomonas, Staphylococcus and even yeast such as Candida species can also cause UTIs. UTIs occur in both women and men and in both healthy and immunocompromised patients. However, certain patient factors predispose to disease: for example, female sex, history of prior UTI, or the presence of a urinary catheter or other urinary tract abnormality. The current clinical paradigm for the treatment of UTIs involves the use of antibiotics. Unfortunately, the efficacy of this approach is dwindling as the prevalence of antimicrobial resistance rises among UTI isolates, and the immense quantity of antibiotics prescribed annually for these infections contributes to the emergence of resistant pathogens. Therefore, there is an urgent need for new antibiotics and non-antibiotic treatment and prevention strategies. In this Review, we discuss how recent studies of bacterial pathogenesis, recurrence, persistence, host-pathogen interactions and host susceptibility factors have elucidated new and promising targets for the treatment and prevention of UTIs.
Collapse
Affiliation(s)
- Morgan R Timm
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, MO, USA
- Center for Women's Infectious Disease Research, Washington University School of Medicine, St. Louis, MO, USA
| | - Seongmi K Russell
- Department of Paediatrics, Washington University School of Medicine, St. Louis, MO, USA
| | - Scott J Hultgren
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, MO, USA.
- Center for Women's Infectious Disease Research, Washington University School of Medicine, St. Louis, MO, USA.
| |
Collapse
|
5
|
Ramaiah KB, Suresh I, Nesakumar N, Sai Subramanian N, Rayappan JBB. "Urinary tract infection: Conventional testing to developing Technologies". Clin Chim Acta 2025; 565:119979. [PMID: 39341530 DOI: 10.1016/j.cca.2024.119979] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Revised: 09/24/2024] [Accepted: 09/25/2024] [Indexed: 10/01/2024]
Abstract
Urinary tract infections (UTIs) present an escalating global health concern, precipitating increased hospitalizations and antibiotic utilization, thereby fostering the emergence of antimicrobial resistance. Current diagnostic modalities exhibit protracted timelines and substantial financial burdens, necessitating specialized infrastructures. Addressing these impediments mandates the development of a precise diagnostic paradigm to expedite identification and augment antibiotic stewardship. The application of biosensors, recognized for their transformative efficacy, emerges as a promising resolution. Recent strides in biosensor technologies have introduced pioneering methodologies, yielding pertinent biosensors and integrated systems with significant implications for point-of-care applications. This review delves into historical perspectives, furnishing a comprehensive delineation of advancements in UTI diagnostics, disease etiology, and biomarkers, underscoring the potential merits of these innovations for optimizing patient care.
Collapse
Affiliation(s)
- Kavi Bharathi Ramaiah
- School of Chemical and Biotechnology, SASTRA Deemed University, Thanjavur 613 401, Tamil Nadu, India; Biofilm Biology Lab & Antimicrobial Resistance Lab, Centre for Research in Infectious Diseases, SASTRA Deemed University, Thanjavur 613 401, Tamil Nadu, India
| | - Indhu Suresh
- Centre for Nanotechnology & Advanced Biomaterials (CeNTAB), SASTRA Deemed University, Thanjavur 613401, Tamil Nadu, India; School of Electrical and Electronics Engineering, SASTRA Deemed University, Thanjavur 613401, Tamil Nadu, India
| | - Noel Nesakumar
- Centre for Nanotechnology & Advanced Biomaterials (CeNTAB), SASTRA Deemed University, Thanjavur 613401, Tamil Nadu, India; School of Chemical and Biotechnology, SASTRA Deemed University, Thanjavur 613 401, Tamil Nadu, India
| | - N Sai Subramanian
- School of Chemical and Biotechnology, SASTRA Deemed University, Thanjavur 613 401, Tamil Nadu, India; Biofilm Biology Lab & Antimicrobial Resistance Lab, Centre for Research in Infectious Diseases, SASTRA Deemed University, Thanjavur 613 401, Tamil Nadu, India.
| | - John Bosco Balaguru Rayappan
- Centre for Nanotechnology & Advanced Biomaterials (CeNTAB), SASTRA Deemed University, Thanjavur 613401, Tamil Nadu, India; School of Electrical and Electronics Engineering, SASTRA Deemed University, Thanjavur 613401, Tamil Nadu, India.
| |
Collapse
|
6
|
El Husseini N, Carter JA, Lee VT. Urinary tract infections and catheter-associated urinary tract infections caused by Pseudomonas aeruginosa. Microbiol Mol Biol Rev 2024; 88:e0006622. [PMID: 39431861 DOI: 10.1128/mmbr.00066-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2024] Open
Abstract
SUMMARYUrinary tract infection (UTI) is one of the most common infections in otherwise healthy individuals. UTI is also common in healthcare settings where patients often require urinary catheters to alleviate urinary retention. The placement of a urinary catheter often leads to catheter-associated urinary tract infection (CAUTI) caused by a broad range of opportunistic pathogens, commonly referred to as ESKAPE (Enterococcus, Staphylococcus, Klebsiella, Acinetobacter, Pseudomonas, and Enterobacter) pathogens. Our understanding of CAUTI is complicated by the differences in pathogens, in initial microbial load, changes that occur due to the duration of catheterization, and the relationship between infection (colonization) and disease symptoms. To advance our understanding of CAUTI, we reviewed UTI and CAUTI caused by Pseudomonas aeruginosa which is unique in that it is not commonly found associated with human microbiomes. For this reason, the ability of P. aeruginosa to cause UTI and CAUTI requires the introduction of the bacteria to the bladder from catheterization. Once in the host, the virulence factors used by P. aeruginosa in these infections remain an area of ongoing research. In this review, we will discuss studies that focus on P. aeruginosa UTI and CAUTI to better understand the infection dynamics and outcome in clinical settings, virulence factors associated with P. aeruginosa isolated from the urinary tract, and animal studies to test which bacterial factors are required for this infection. Understanding how P. aeruginosa can cause UTI and CAUTI can provide an understanding of how these infections initiate and progress and may provide possible strategies to limit these infections.
Collapse
Affiliation(s)
- Nour El Husseini
- Department of Cell Biology and Molecular Genetics, University of Maryland at College Park, College Park, Maryland, USA
| | - Jared A Carter
- Department of Cell Biology and Molecular Genetics, University of Maryland at College Park, College Park, Maryland, USA
| | - Vincent T Lee
- Department of Cell Biology and Molecular Genetics, University of Maryland at College Park, College Park, Maryland, USA
| |
Collapse
|
7
|
Yao C, Teng X, Sun D, McCoy CP, Zhang S. Enhanced antifouling and anti-swarming properties poly (sulfobetaine methacrylate-co-2-hydroxy-3-phenoxypropyl acrylate) hydrogel coatings for urinary catheters. Colloids Surf B Biointerfaces 2024; 245:114277. [PMID: 39342727 DOI: 10.1016/j.colsurfb.2024.114277] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Revised: 09/23/2024] [Accepted: 09/26/2024] [Indexed: 10/01/2024]
Abstract
Catheter-associated urinary tract infection (CAUTI) remains an unsolved challenge to date, particularly with the emergence and rapid spread of antimicrobial-resistant bacterial pathogens. Despite extensive research, a catheter coating that can offer intrinsic resistance to host protein deposition, bacterial biofilm formation, and swarming is still urgently required. Zwitterionic hydrogel coatings due to their superior lubricity and antifouling properties represent a promising candidate, but their weak mechanical stability in water and poor resistance to bacterial swarming migration limit their application in urinary catheters for infection control. In this research, we describe the fabrication of a multifunctional catheter coating by copolymerizing zwitterionic sulfobetaine methacrylate (SBMA) polymers and a swarming inhibitor material, 2-hydroxy-3-phenoxypropyl acrylate (HPA). The introduction of polyHPA (PHPA) effectively impeded the uncontrolled swelling behavior of the zwitterionic PSBMA hydrogel, resulting in enhanced mechanical stability. Moreover, the copolymer coating retains the antifouling and anti-swarming properties of the homopolymers when challenged with fibrinogen, Escherichia coli, and Proteus mirabilis. The HPA content significantly correlated with its anti-adhesion activity against fibrinogen and biofilm, and the coating with an SBMA: HPA monomer feed molar ratio of 4:1 showed the best antifouling activity, reducing fibrinogen deposition by about 40 % and biofilm coverage by around fourfold compared to the uncoated polydimethylsiloxane (PDMS) surface. Furthermore, the copolymer coating also exhibited no cytotoxicity, suggesting it as a promising catheter coating for preventing CAUTI.
Collapse
Affiliation(s)
- Chenghao Yao
- School of Pharmacy, Queen's University Belfast, Belfast BT9 7BL, UK
| | - Xiao Teng
- School of Pharmacy, Queen's University Belfast, Belfast BT9 7BL, UK
| | - Dan Sun
- School of Mechanical and Aerospace Engineering, Queen's University Belfast, Belfast BT9 5 AU, UK
| | | | - Shuai Zhang
- School of Pharmacy, Queen's University Belfast, Belfast BT9 7BL, UK.
| |
Collapse
|
8
|
Applebee Z, Howell C. Multi-component liquid-infused systems: a new approach to functional coatings. INDUSTRIAL CHEMISTRY & MATERIALS 2024; 2:378-392. [PMID: 39165661 PMCID: PMC11334363 DOI: 10.1039/d4im00003j] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Accepted: 02/23/2024] [Indexed: 08/22/2024]
Abstract
Antifouling liquid-infused surfaces have generated interest in multiple fields due to their diverse applications in industry and medicine. In nearly all reports to date, the liquid component consists of only one chemical species. However, unlike traditional solid surfaces, the unique nature of liquid surfaces holds the potential for synergistic and even adaptive functionality simply by including additional elements in the liquid coating. In this work, we explore the concept of multi-component liquid-infused systems, in which the coating liquid consists of a primary liquid and a secondary component or components that provide additional functionality. For ease of understanding, we categorize recently reported multi-component liquid-infused surfaces according to the size of the secondary components: molecular scale, in which the secondary components are molecules; nanoscale, in which they are nanoparticles or their equivalent; and microscale, in which the additional components are micrometer size or above. We present examples at each scale, showing how introducing a secondary element into the liquid can result in synergistic effects, such as maintaining a pristine surface while actively modifying the surrounding environment, which are difficult to achieve in other surface treatments. The review highlights the diversity of fabrication methods and provides perspectives on future research directions. Introducing secondary components into the liquid matrix of liquid-infused surfaces is a promising strategy with significant potential to create a new class of multifunctional materials. Keywords: Active surfaces; Antimicrobial; Antifouling; Interfaces; Sensing surfaces.
Collapse
Affiliation(s)
- Zachary Applebee
- Department of Chemical and Biomedical Engineering, Maine College of Engineering and Computing, University of Maine ME 04469 USA
- Graduate School of Biomedical Science and Engineering, University of Maine ME 04469 USA
| | - Caitlin Howell
- Department of Chemical and Biomedical Engineering, Maine College of Engineering and Computing, University of Maine ME 04469 USA
- Graduate School of Biomedical Science and Engineering, University of Maine ME 04469 USA
| |
Collapse
|
9
|
Fong C, Andersen MJ, Kunesh E, Leonard E, Durand D, Coombs R, Flores-Mireles AL, Howell C. Effect of free liquid layer quantity on bacteria and protein adhesion to liquid infused polymers. Biointerphases 2024; 19:041003. [PMID: 39136648 PMCID: PMC11324329 DOI: 10.1116/6.0003776] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Revised: 07/09/2024] [Accepted: 07/22/2024] [Indexed: 08/16/2024] Open
Abstract
Liquid-infused polymers are recognized for their ability to repel foulants, making them promising for biomedical applications including catheter-associated urinary tract infections (CAUTIs). However, the impact of the quantity of free liquid layer covering the surface on protein and bacterial adhesion is not well understood. Here, we explore how the amount of free silicone liquid layer in infused silicone catheter materials influences the adhesion of bacteria and proteins relevant to CAUTIs. To alter the quantity of the free liquid layer, we either physically removed excess liquid from fully infused catheter materials or partially infused them. We then evaluated the impact on bacterial and host protein adhesion. Physical removal of the free liquid layer from the fully infused samples reduced the height of the liquid layer from 60 μm to below detection limits and silicone liquid loss into the environment by approximately 64% compared to controls, without significantly increasing the deposition of protein fibrinogen or the adhesion of the common uropathogen Enterococcus faecalis. Partially infused samples showed even greater reductions in liquid loss: samples infused to 70%-80% of their maximum capacity exhibited about an 85% decrease in liquid loss compared to fully infused controls. Notably, samples with more than 70% infusion did not show significant increases in fibrinogen or E. faecalis adhesion. These findings suggest that adjusting the levels of the free liquid layer in infused polymers can influence protein and bacterial adhesion on their surfaces. Moreover, removing the free liquid layer can effectively reduce liquid loss from these polymers while maintaining their functionality.
Collapse
Affiliation(s)
- ChunKi Fong
- Author to whom correspondence should be addressed:
| | - Marissa Jeme Andersen
- Department of Biological Sciences and Department of Chemistry and Biochemistry, College of Science, Notre Dame University, South Bend, Indiana 46556
| | - Emma Kunesh
- Department of Chemical and Biomedical Engineering, Maine College of Engineering and Computing, University of Maine, Orono, Maine 04469
| | - Evan Leonard
- Department of Chemical and Biomedical Engineering, Maine College of Engineering and Computing, University of Maine, Orono, Maine 04469
| | - Donovan Durand
- Department of Chemical and Biomedical Engineering, Maine College of Engineering and Computing, University of Maine, Orono, Maine 04469
| | - Rachel Coombs
- Department of Chemical and Biomedical Engineering, Maine College of Engineering and Computing, University of Maine, Orono, Maine 04469
| | - Ana Lidia Flores-Mireles
- Department of Biological Sciences and Department of Chemistry and Biochemistry, College of Science, Notre Dame University, South Bend, Indiana 46556
| | | |
Collapse
|
10
|
Avila‐Cobian LF, De Benedetti S, Hoshino H, Nguyen VT, El‐Araby AM, Sader S, Hu DD, Cole SL, Kim C, Fisher JF, Champion MM, Mobashery S. Lytic transglycosylase Slt of Pseudomonas aeruginosa as a periplasmic hub protein. Protein Sci 2024; 33:e5038. [PMID: 38864725 PMCID: PMC11168074 DOI: 10.1002/pro.5038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Revised: 05/10/2024] [Accepted: 05/12/2024] [Indexed: 06/13/2024]
Abstract
Peptidoglycan is a major constituent of the bacterial cell wall. Its integrity as a polymeric edifice is critical for bacterial survival and, as such, it is a preeminent target for antibiotics. The peptidoglycan is a dynamic crosslinked polymer that undergoes constant biosynthesis and turnover. The soluble lytic transglycosylase (Slt) of Pseudomonas aeruginosa is a periplasmic enzyme involved in this dynamic turnover. Using amber-codon-suppression methodology in live bacteria, we incorporated a fluorescent chromophore into the structure of Slt. Fluorescent microscopy shows that Slt populates the length of the periplasmic space and concentrates at the sites of septation in daughter cells. This concentration persists after separation of the cells. Amber-codon-suppression methodology was also used to incorporate a photoaffinity amino acid for the capture of partner proteins. Mass-spectrometry-based proteomics identified 12 partners for Slt in vivo. These proteomics experiments were complemented with in vitro pulldown analyses. Twenty additional partners were identified. We cloned the genes and purified to homogeneity 22 identified partners. Biophysical characterization confirmed all as bona fide Slt binders. The identities of the protein partners of Slt span disparate periplasmic protein families, inclusive of several proteins known to be present in the divisome. Notable periplasmic partners (KD < 0.5 μM) include PBPs (PBP1a, KD = 0.07 μM; PBP5 = 0.4 μM); other lytic transglycosylases (SltB2, KD = 0.09 μM; RlpA, KD = 0.4 μM); a type VI secretion system effector (Tse5, KD = 0.3 μM); and a regulatory protease for alginate biosynthesis (AlgO, KD < 0.4 μM). In light of the functional breadth of its interactome, Slt is conceptualized as a hub protein within the periplasm.
Collapse
Affiliation(s)
- Luis F. Avila‐Cobian
- Department of Chemistry and BiochemistryUniversity of Notre DameNotre DameIndianaUSA
| | - Stefania De Benedetti
- Department of Chemistry and BiochemistryUniversity of Notre DameNotre DameIndianaUSA
| | - Hidekazu Hoshino
- Department of Chemistry and BiochemistryUniversity of Notre DameNotre DameIndianaUSA
| | - Van T. Nguyen
- Department of Chemistry and BiochemistryUniversity of Notre DameNotre DameIndianaUSA
| | - Amr M. El‐Araby
- Department of Chemistry and BiochemistryUniversity of Notre DameNotre DameIndianaUSA
| | - Safaa Sader
- Department of Chemistry and BiochemistryUniversity of Notre DameNotre DameIndianaUSA
| | - Daniel D. Hu
- Department of Chemistry and BiochemistryUniversity of Notre DameNotre DameIndianaUSA
| | - Sara L. Cole
- Department of Chemistry and BiochemistryUniversity of Notre DameNotre DameIndianaUSA
| | - Choon Kim
- Department of Chemistry and BiochemistryUniversity of Notre DameNotre DameIndianaUSA
| | - Jed F. Fisher
- Department of Chemistry and BiochemistryUniversity of Notre DameNotre DameIndianaUSA
| | - Matthew M. Champion
- Department of Chemistry and BiochemistryUniversity of Notre DameNotre DameIndianaUSA
| | - Shahriar Mobashery
- Department of Chemistry and BiochemistryUniversity of Notre DameNotre DameIndianaUSA
| |
Collapse
|
11
|
Rima M, Villeneuve-Faure C, Soumbo M, El Garah F, Pilloux L, Roques C, Makasheva K. Towards a better understanding of the effect of protein conditioning layers on microbial adhesion: a focused investigation of fibronectin and bovine serum albumin layers on SiO 2 surfaces. Biomater Sci 2024; 12:3086-3099. [PMID: 38716803 DOI: 10.1039/d4bm00099d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/12/2024]
Abstract
The interaction of foreign implants with their surrounding environment is significantly influenced by the adsorption of proteins on the biomaterial surfaces, playing a role in microbial adhesion. Therefore, understanding protein adsorption on solid surfaces and its effect on microbial adhesion is essential to assess the associated risk of infection. The aim of this study is to evaluate the effect of conditioning by fibronectin (Fn) or bovine serum albumin (BSA) protein layers of silica (SiO2) surfaces on the adhesion and detachment of two pathogenic microorganisms: Pseudomonas aeruginosa PAO1-Tn7-gfp and Candida albicans CIP 48.72. Experiments are conducted under both static and hydrodynamic conditions using a shear stress flow chamber. Through the use of very low wall shear stresses, the study brings the link between the static and dynamic conditions of microbial adhesion. The results reveal that the microbial adhesion critically depends on: (i) the presence of a protein layer conditioning the SiO2 surface, (ii) the type of protein and (iii) the protein conformation and organization in the conditioning layer. In addition, a very distinct adhesion behaviour of P. aeruginosa is observed towards the two tested proteins, Fn and BSA. This effect is reinforced by the amount of proteins adsorbed on the surface and their organization in the layer. The results are discussed in the light of atomic force microscopy analysis of the organization and conformation of proteins in the layers after adsorption on the SiO2 surface, as well as the specificity in bacterial behaviour when interacting with these protein layers. The study also demonstrates the very distinctive behaviours of the prokaryote P. aeruginosa PAO1-Tn7-gfp compared to the eukaryote C. albicans CIP 48.72. This underscores the importance of considering species-specific interactions between the protein conditioning layer and different pathogenic microorganisms, which appear crucial in designing tailored anti-adhesive surfaces.
Collapse
Affiliation(s)
- Maya Rima
- LGC, University of Toulouse, CNRS, UTIII, INPT, Toulouse, France.
| | | | - Marvine Soumbo
- LGC, University of Toulouse, CNRS, UTIII, INPT, Toulouse, France.
- LAPLACE, University of Toulouse, CNRS, UTIII, INPT, Toulouse, France.
| | - Fatima El Garah
- LGC, University of Toulouse, CNRS, UTIII, INPT, Toulouse, France.
| | - Ludovic Pilloux
- LGC, University of Toulouse, CNRS, UTIII, INPT, Toulouse, France.
| | - Christine Roques
- LGC, University of Toulouse, CNRS, UTIII, INPT, Toulouse, France.
| | - Kremena Makasheva
- LAPLACE, University of Toulouse, CNRS, UTIII, INPT, Toulouse, France.
| |
Collapse
|
12
|
Duan X, Xu Y, Zhang Z, Ma X, Wang C, Ma W, Jia F, Pan X, Liu Y, Zhao Y, Li Q, Liu Z, Yang Y. Piezoelectrically-activated antibacterial catheter for prevention of urinary tract infections in an on-demand manner. Mater Today Bio 2024; 26:101089. [PMID: 38779557 PMCID: PMC11109010 DOI: 10.1016/j.mtbio.2024.101089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Revised: 04/13/2024] [Accepted: 05/10/2024] [Indexed: 05/25/2024] Open
Abstract
Catheter-associated urinary tract infection (CAUTI) is a common clinical problem, especially during long-term catheterization, causing additional pain to patients. The development of novel antimicrobial coatings is needed to prolong the service life of catheters and reduce the incidence of CAUTIs. Herein, we designed an antimicrobial catheter coated with a piezoelectric zinc oxide nanoparticles (ZnO NPs)-incorporated polyvinylidene difluoride-hexafluoropropylene (ZnO-PVDF-HFP) membrane. ZnO-PVDF-HFP could be stably coated onto silicone catheters simply by a one-step solution film-forming method, very convenient for industrial production. In vitro, it was demonstrated that ZnO-PVDF-HFP coating could significantly inhibit bacterial growth and the formation of bacterial biofilm under ultrasound-mediated mechanical stimulation even after 4 weeks. Importantly, the on and off of antimicrobial activity as well as the strenth of antibacterial property could be controlled in an adaptive manner via ultrasound. In a rabbit model, the ZnO-PVDF-HFP-coated catheter significantly reduced the incidence CAUTIs compared with clinically-commonly used catheters under assistance of ultrasonication, and no side effect was detected. Collectively, the study provided a novel antibacterial catheter to prevent the occurrence of CAUTIs, whose antibacterial activity could be controlled in on-demand manner, adaptive to infection situation and promising in clinical application.
Collapse
Affiliation(s)
- Xiaofeng Duan
- Department of Urology, The Third Affiliated Hospital of Jinzhou Medical University, Jinzhou, Liaoning, 121000, China
| | - Yongde Xu
- Department of Urology, Beijing Friendship Hospital, Capital Medical University, Beijing, 100050, China
| | - Zhifa Zhang
- Department of Neurosurgery, The First Medical Center of Chinese PLA General Hospital, Beijing, 100853, China
| | - Xinbo Ma
- Senior Department of Orthopedics, The Fourth Medical Center of PLA General Hospital, No. 51, Fucheng Road, Haidian District, Beijing, 100048, China
| | - Cui Wang
- Beijing Institute of Basic Medical Sciences, No. 27 Taiping Road, Haidian District, Beijing, 100850, China
| | - Wenjing Ma
- Beijing Institute of Basic Medical Sciences, No. 27 Taiping Road, Haidian District, Beijing, 100850, China
| | - Fan Jia
- Department of Urology, The Third Affiliated Hospital of Jinzhou Medical University, Jinzhou, Liaoning, 121000, China
| | - Xiaoying Pan
- Department of Urology, The Affiliated Hospital of Changchun University of Chinese Medicine, Changchun, Jilin, 130021, China
| | - Yang Liu
- Department of Urology, The Affiliated Hospital of Changchun University of Chinese Medicine, Changchun, Jilin, 130021, China
| | - Yantao Zhao
- Senior Department of Orthopedics, The Fourth Medical Center of PLA General Hospital, No. 51, Fucheng Road, Haidian District, Beijing, 100048, China
| | - Qihong Li
- Department of Stomatology, The Fifth Medical Center, Chinese PLA General Hospital, Beijing, 100071, China
| | - Zhiqiang Liu
- Beijing Institute of Basic Medical Sciences, No. 27 Taiping Road, Haidian District, Beijing, 100850, China
| | - Yong Yang
- Department of Urology, The Affiliated Hospital of Changchun University of Chinese Medicine, Changchun, Jilin, 130021, China
| |
Collapse
|
13
|
Tan M, Wang F, Yang J, Zhong Z, Chen G, Chen Z. Hydroxyl silicone oil grafting onto a rough thermoplastic polyurethane surface created durable super-hydrophobicity. JOURNAL OF BIOMATERIALS SCIENCE. POLYMER EDITION 2024; 35:1359-1378. [PMID: 38490948 DOI: 10.1080/09205063.2024.2329453] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Accepted: 03/06/2024] [Indexed: 03/17/2024]
Abstract
Indwelling medical catheters are frequently utilized in medical procedures, but they are highly susceptible to infection, posing a vital challenge for both health workers and patients. In this study, the superhydrophobic micro-nanostructure surface was constructed on the surface of thermoplastic polyurethane (TPU) membrane using heavy calcium carbonate (CaCO3) template. To decrease the surface free energy, hydroxyl silicone oil was grafted onto the surface, forming a super-hydrophobic surface. The water contact angle (WCA) increased from 91.1° to 143 ± 3° when the concentration of heavy calcium CaCO3 was 20% (weight-to-volume (w/v)). However, the increased WCA was unstable and tended to decrease over time. After grafting hydroxyl silicone oil, the WCA rose to 152.05 ± 1.62° and remained consistently high for a period of 30 min. Attenuated total reflection infrared spectroscopy (ATR-FTIR) analysis revealed a chemical crosslinking between silicone oil and the surface of TPU. Furthermore, Scanning electron microscope (SEM) image showed the presence of numerous nanoparticles on the micro surface. Atomic force microscope (AFM) testing indicated a significant improvement in surface roughness. This method of creating a hydrophobic surface demonstrated several advantages, including resistance to cell, bacterial, protein, and platelet adhesion and good biosecurity. Therefore, it holds promising potential for application in the development of TPU-based medical catheters with antibacterial properties.
Collapse
Affiliation(s)
- Miaomiao Tan
- School of Pharmacy and Bioengineering, Chongqing University of Technology, Chongqing, China
| | - Fuping Wang
- School of Pharmacy and Bioengineering, Chongqing University of Technology, Chongqing, China
| | - Jinlan Yang
- School of Pharmacy and Bioengineering, Chongqing University of Technology, Chongqing, China
| | - Zhengpeng Zhong
- School of Pharmacy and Bioengineering, Chongqing University of Technology, Chongqing, China
| | - Guobao Chen
- School of Pharmacy and Bioengineering, Chongqing University of Technology, Chongqing, China
| | - Zhongmin Chen
- School of Pharmacy and Bioengineering, Chongqing University of Technology, Chongqing, China
| |
Collapse
|
14
|
Molina JJ, Kohler KN, Gager C, Andersen MJ, Wongso E, Lucas ER, Paik A, Xu W, Donahue DL, Bergeron K, Klim A, Caparon MG, Hultgren SJ, Desai A, Ploplis VA, Flick MJ, Castellino FJ, Flores-Mireles AL. Fibrinolytic-deficiencies predispose hosts to septicemia from a catheter-associated UTI. Nat Commun 2024; 15:2704. [PMID: 38538626 PMCID: PMC10973455 DOI: 10.1038/s41467-024-46974-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Accepted: 03/15/2024] [Indexed: 04/04/2024] Open
Abstract
Catheter-associated urinary tract infections (CAUTIs) are amongst the most common nosocomial infections worldwide and are difficult to treat partly due to development of multidrug-resistance from CAUTI-related pathogens. Importantly, CAUTI often leads to secondary bloodstream infections and death. A major challenge is to predict when patients will develop CAUTIs and which populations are at-risk for bloodstream infections. Catheter-induced inflammation promotes fibrinogen (Fg) and fibrin accumulation in the bladder which are exploited as a biofilm formation platform by CAUTI pathogens. Using our established mouse model of CAUTI, here we identified that host populations exhibiting either genetic or acquired fibrinolytic-deficiencies, inducing fibrin deposition in the catheterized bladder, are predisposed to severe CAUTI and septicemia by diverse uropathogens in mono- and poly-microbial infections. Furthermore, here we found that Enterococcus faecalis, a prevalent CAUTI pathogen, uses the secreted protease, SprE, to induce fibrin accumulation and create a niche ideal for growth, biofilm formation, and persistence during CAUTI.
Collapse
Affiliation(s)
- Jonathan J Molina
- Integrated Biomedical Sciences, University of Notre Dame, Notre Dame, IN, 46556, USA
- Department of Biological Sciences, University of Notre Dame, Notre Dame, IN, 46556, USA
| | - Kurt N Kohler
- Department of Biological Sciences, University of Notre Dame, Notre Dame, IN, 46556, USA
| | - Christopher Gager
- Department of Biological Sciences, University of Notre Dame, Notre Dame, IN, 46556, USA
| | - Marissa J Andersen
- Department of Biological Sciences, University of Notre Dame, Notre Dame, IN, 46556, USA
| | - Ellsa Wongso
- Department of Biological Sciences, University of Notre Dame, Notre Dame, IN, 46556, USA
| | - Elizabeth R Lucas
- Department of Biological Sciences, University of Notre Dame, Notre Dame, IN, 46556, USA
| | - Andrew Paik
- Department of Biological Sciences, University of Notre Dame, Notre Dame, IN, 46556, USA
| | - Wei Xu
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, MO, 63110, USA
- Center for Women's Infectious Disease Research, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - Deborah L Donahue
- W. M. Keck Center for Transgene Research, University of Notre Dame, Notre Dame, IN, 46556, USA
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, IN, 46556, USA
| | - Karla Bergeron
- Department of Surgery, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - Aleksandra Klim
- Department of Surgery, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - Michael G Caparon
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, MO, 63110, USA
- Center for Women's Infectious Disease Research, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - Scott J Hultgren
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, MO, 63110, USA
- Center for Women's Infectious Disease Research, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - Alana Desai
- Department of Surgery, Washington University School of Medicine, St. Louis, MO, 63110, USA
- Department of Urology, University of Washington Medical Center, Seattle, WA, 98133-9733, USA
| | - Victoria A Ploplis
- W. M. Keck Center for Transgene Research, University of Notre Dame, Notre Dame, IN, 46556, USA
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, IN, 46556, USA
| | - Matthew J Flick
- Department of Pathology and Laboratory Medicine, University of North Carolina, Chapel Hill, NC, 27599, USA
- UNC Blood Research Center, University of North Carolina, Chapel Hill, NC, 27599, USA
| | - Francis J Castellino
- W. M. Keck Center for Transgene Research, University of Notre Dame, Notre Dame, IN, 46556, USA
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, IN, 46556, USA
| | - Ana L Flores-Mireles
- Integrated Biomedical Sciences, University of Notre Dame, Notre Dame, IN, 46556, USA.
- Department of Biological Sciences, University of Notre Dame, Notre Dame, IN, 46556, USA.
- W. M. Keck Center for Transgene Research, University of Notre Dame, Notre Dame, IN, 46556, USA.
| |
Collapse
|
15
|
Duque-Sanchez L, Qu Y, Voelcker NH, Thissen H. Tackling catheter-associated urinary tract infections with next-generation antimicrobial technologies. J Biomed Mater Res A 2024; 112:312-335. [PMID: 37881094 DOI: 10.1002/jbm.a.37630] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Revised: 09/21/2023] [Accepted: 10/10/2023] [Indexed: 10/27/2023]
Abstract
Urinary catheters and other medical devices associated with the urinary tract such as stents are major contributors to nosocomial urinary tract infections (UTIs) as they provide an access path for pathogens to enter the bladder. Considering that catheter-associated urinary tract infections (CAUTIs) account for approximately 75% of UTIs and that UTIs represent the most common type of healthcare-associated infections, novel anti-infective device technologies are urgently required. The rapid rise of antimicrobial resistance in the context of CAUTIs further highlights the importance of such preventative strategies. In this review, the risk factors for pathogen colonization in the urinary tract are dissected, taking into account the nature and mechanistics of this unique environment. Moreover, the most promising next-generation preventative strategies are critically assessed, focusing in particular on anti-infective surface coatings. Finally, emerging approaches in this field and their likely clinical impact are examined.
Collapse
Affiliation(s)
- Lina Duque-Sanchez
- Department of Manufacturing, Commonwealth Scientific and Industrial Research Organization (CSIRO), Clayton, Victoria, Australia
- Faculty of Pharmacy and Pharmaceutical Sciences, Monash University, Parkville, Victoria, Australia
| | - Yue Qu
- Infection and Immunity Program, Department of Microbiology, Monash Biomedicine Discovery Institute, Monash University, Clayton, Victoria, Australia
- Department of Infectious Diseases, The Alfred Hospital and Central Clinical School, Monash University, Melbourne, Victoria, Australia
| | - Nicolas H Voelcker
- Faculty of Pharmacy and Pharmaceutical Sciences, Monash University, Parkville, Victoria, Australia
- Melbourne Centre for Nanofabrication, Victorian Node of the Australian National Fabrication Facility, Materials Science and Engineering, Monash University, Clayton, Victoria, Australia
| | - Helmut Thissen
- Department of Manufacturing, Commonwealth Scientific and Industrial Research Organization (CSIRO), Clayton, Victoria, Australia
| |
Collapse
|
16
|
Teng X, Yao C, McCoy CP, Zhang S. Comparison of Superhydrophilic, Liquid-Like, Liquid-Infused, and Superhydrophobic Surfaces in Preventing Catheter-Associated Urinary Tract Infection and Encrustation. ACS Biomater Sci Eng 2024; 10:1162-1172. [PMID: 38183269 PMCID: PMC10865292 DOI: 10.1021/acsbiomaterials.3c01577] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 12/26/2023] [Accepted: 12/28/2023] [Indexed: 01/08/2024]
Abstract
Over the past decade, superhydrophilic zwitterionic surfaces, slippery liquid-infused porous surfaces, covalently attached liquid-like surfaces, and superhydrophobic surfaces have emerged as the most promising strategies to prevent biofouling on biomedical devices. Despite working through different mechanisms, they have demonstrated superior efficacy in preventing the adhesion of biomolecules (e.g., proteins and bacteria) compared with conventional material surfaces. However, their potential in combating catheter-associated urinary tract infection (CAUTI) remains uncertain. In this research, we present the fabrication of these four coatings for urinary catheters and conduct a comparative assessment of their antifouling properties through a stepwise approach. Notably, the superhydrophilic zwitterionic coating demonstrated the highest antifouling activity, reducing 72.3% of fibrinogen deposition and over 75% of bacterial adhesion (Escherichia coli and Staphylococcus aureus) when compared with an uncoated polyvinyl chloride (PVC) surface. The zwitterionic coating also exhibited robust repellence against blood and improved surface lubricity, decreasing the dynamic coefficient of friction from 0.63 to 0.35 as compared with the PVC surface. Despite the fact that the superhydrophilic zwitterionic and hydrophobic liquid-like surfaces showed great promise in retarding crystalline biofilm formation in the presence of Proteus mirabilis, it is worth noting that their long-term antifouling efficacy may be compromised by the proliferation and migration of colonized bacteria as they are unable to kill them or inhibit their swarming. These findings underscore both the potential and limitations of these ultralow fouling materials as urinary catheter coatings for preventing CAUTI.
Collapse
Affiliation(s)
- Xiao Teng
- School of Pharmacy, Queen’s University Belfast, Belfast BT9 7BL, U.K.
| | - Chenghao Yao
- School of Pharmacy, Queen’s University Belfast, Belfast BT9 7BL, U.K.
| | - Colin P. McCoy
- School of Pharmacy, Queen’s University Belfast, Belfast BT9 7BL, U.K.
| | - Shuai Zhang
- School of Pharmacy, Queen’s University Belfast, Belfast BT9 7BL, U.K.
| |
Collapse
|
17
|
Malone M, Nygren E, Hamberg T, Radzieta M, Jensen SO. In vitro and in vivo evaluation of the antimicrobial effectiveness of non-medicated hydrophobic wound dressings. Int Wound J 2024; 21:e14416. [PMID: 37770025 PMCID: PMC10824701 DOI: 10.1111/iwj.14416] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 09/13/2023] [Accepted: 09/14/2023] [Indexed: 10/03/2023] Open
Abstract
There is an increasing use of non-medicated wound dressing with claims of irreversible bacterial binding. Most of the data are from in vitro models which lack clinical relevance. This study employed a range of in vitro experiments to address this gap and we complemented our experimental designs with in vivo observations using dressings obtained from patients with diabetes-related foot ulcers. A hydrophobic wound dressing was compared with a control silicone dressing in vitro. Test dressings were placed on top of a Pseudomonas aeruginosa challenge suspension with increasing concentrations of suspension inoculum in addition to supplementation with phosphate buffered saline (PBS) or increased protein content (IPC). Next, we used the challenge suspensions obtained at the end of the first experiment, where bacterial loads from the suspensions were enumerated following test dressing exposure. Further, the time-dependent bacterial attachment was investigated over 1 and 24 h. Lastly, test dressings were exposed to a challenge suspension with IPC, with or without the addition of the bacteriostatic agent Deferiprone to assess the impacts of limiting bacterial growth in the experimental design. Lastly, two different wound dressings with claims of bacterial binding were obtained from patients with chronic diabetes-related foot ulcers after 72 h of application and observed using scanning electron microscope (SEM). Bacteria were enumerated from each dressing after a 1-h exposure time. There was no statistical difference in bacterial attachment between both test dressings when using different suspension inoculum concentrations or test mediums. Bacterial attachment to the two test dressings was significantly lower (p < 0.0001) when IPC was used instead of PBS. In the challenge suspension with PBS, only the hydrophobic dressing achieved a statistically significant reduction in bacterial loads (0.5 ± 0.05 log colony forming units; p = 0.001). In the presence of IPC, there was no significant reduction in bacterial loads for either test dressing. When bacterial growth was arrested, attachment to the test dressings did not increase over time, suggesting that the number of bacteria on the test dressings increases over time due to bacterial growth. SEM identified widespread adsorption of host fouling across the test dressings which occurred prior to microbial binding. Therein, microbial attachment occurred predominantly to host fouling and not directly to the dressings. Bacterial binding is not unique to dialkylcarbamoyl chloride (DACC) dressings and under clinically relevant in vitro conditions and in vivo observations, we demonstrate (in addition to previously published work) that the bacterial binding capabilities are not effective at reducing the number of bacteria in laboratory models or human wounds.
Collapse
Affiliation(s)
- Matthew Malone
- Research and DevelopmentMolnlycke Healthcare ABGothenburgSweden
- South West Sydney Limb Preservation and Wound ResearchSouth West Sydney Local Health DistrictSydneyNew South WalesAustralia
- Infectious Diseases and Microbiology, School of MedicineWestern Sydney UniversitySydneyNew South WalesAustralia
| | - Erik Nygren
- Research and DevelopmentMolnlycke Healthcare ABGothenburgSweden
| | - Tina Hamberg
- Research and DevelopmentMolnlycke Healthcare ABGothenburgSweden
| | - Michael Radzieta
- South West Sydney Limb Preservation and Wound ResearchSouth West Sydney Local Health DistrictSydneyNew South WalesAustralia
- Infectious Diseases and Microbiology, School of MedicineWestern Sydney UniversitySydneyNew South WalesAustralia
| | - Slade O. Jensen
- South West Sydney Limb Preservation and Wound ResearchSouth West Sydney Local Health DistrictSydneyNew South WalesAustralia
- Infectious Diseases and Microbiology, School of MedicineWestern Sydney UniversitySydneyNew South WalesAustralia
| |
Collapse
|
18
|
Hawas S, Qin J, Wiedbrauk S, Fairfull-Smith K, Totsika M. Preclinical Evaluation of Nitroxide-Functionalised Ciprofloxacin as a Novel Antibiofilm Drug Hybrid for Urinary Tract Infections. Antibiotics (Basel) 2023; 12:1479. [PMID: 37887180 PMCID: PMC10604439 DOI: 10.3390/antibiotics12101479] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 09/20/2023] [Accepted: 09/21/2023] [Indexed: 10/28/2023] Open
Abstract
Urinary tract infections (UTIs) are the second most common bacterial infection with high recurrence rates and can involve biofilm formation on patient catheters. Biofilms are inherently tolerant to antimicrobials, making them difficult to eradicate. Many antibiofilm agents alone do not have bactericidal activity; therefore, linking them to antibiotics is a promising antibiofilm strategy. However, many of these hybrid agents have not been tested in relevant preclinical settings, limiting their potential for clinical translation. Here, we evaluate a ciprofloxacin di-nitroxide hybrid (CDN11), previously reported to have antibiofilm activity against uropathogenic Escherichia coli (UPEC) strain UTI89 in vitro, as a potential UTI therapeutic using multiple preclinical models that reflect various aspects of UTI pathogenesis. We report improved in vitro activity over the parent drug ciprofloxacin against mature UTI89 biofilms formed inside polyethylene catheters. In bladder cell monolayers infected with UTI89, treatment with CDN11 afforded significant reduction in bacterial titers, including intracellular UPEC. Infected mouse bladders containing biofilm-like intracellular reservoirs of UPEC UTI89 showed decreased bacterial loads after ex vivo bladder treatment with CDN11. Activity for CDN11 was reported across different models of UTI, showcasing nitroxide-antibiotic hybridization as a promising antibiofilm approach. The pipeline we described here could be readily used in testing other new therapeutic compounds, fast-tracking the development of novel antibiofilm therapeutics.
Collapse
Affiliation(s)
- Sophia Hawas
- Centre for Immunology and Infection Control, School of Biomedical Sciences, Faculty of Health, Queensland University of Technology, Brisbane, QLD 4006, Australia; (S.H.); (J.Q.)
- Max Planck Queensland Centre, Queensland University of Technology, Brisbane, QLD 4059, Australia
| | - Jilong Qin
- Centre for Immunology and Infection Control, School of Biomedical Sciences, Faculty of Health, Queensland University of Technology, Brisbane, QLD 4006, Australia; (S.H.); (J.Q.)
| | - Sandra Wiedbrauk
- School of Chemistry and Physics, Faculty of Science, Queensland University of Technology, Brisbane, QLD 4000, Australia; (S.W.); (K.F.-S.)
- Centre for Materials Science, Queensland University of Technology, Brisbane, QLD 4000, Australia
| | - Kathryn Fairfull-Smith
- School of Chemistry and Physics, Faculty of Science, Queensland University of Technology, Brisbane, QLD 4000, Australia; (S.W.); (K.F.-S.)
- Centre for Materials Science, Queensland University of Technology, Brisbane, QLD 4000, Australia
| | - Makrina Totsika
- Centre for Immunology and Infection Control, School of Biomedical Sciences, Faculty of Health, Queensland University of Technology, Brisbane, QLD 4006, Australia; (S.H.); (J.Q.)
- Max Planck Queensland Centre, Queensland University of Technology, Brisbane, QLD 4059, Australia
| |
Collapse
|
19
|
Fong C, Andersen MJ, Kunesh E, Leonard E, Durand D, Coombs R, Flores-Mireles AL, Howell C. Removal of Free Liquid Layer from Liquid-Infused Catheters Reduces Silicone Loss into the Environment while Maintaining Adhesion Resistance. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2023:2023.09.14.23295548. [PMID: 37790393 PMCID: PMC10543054 DOI: 10.1101/2023.09.14.23295548] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/05/2023]
Abstract
Silicone urinary catheters infused with silicone liquid offer an effective alternative to antibiotic coatings, reducing microbial adhesion while decreasing bladder colonization and systemic dissemination. However, loss of free silicone liquid from the surface into the host system is undesirable. To reduce the potential for liquid loss, free silicone liquid was removed from the surface of liquid-infused catheters by either removing excess liquid from fully infused samples or by partial infusion. The effect on bacterial and host protein adhesion was then assessed. Removing the free liquid from fully infused samples resulted in a ~64% decrease in liquid loss into the environment compared to controls, with no significant increase in deposition of the host protein fibrinogen or the adhesion of the common uropathogen Enterococcus faecalis. Partially infusing samples decreased liquid loss as total liquid content decreased, with samples infused to 70-80% of their maximum capacity showing a ~85% reduction in liquid loss compared to fully infused controls. Furthermore, samples above 70% infusion showed no significant increase in fibrinogen or E. faecalis adhesion. Together, the results suggest that eliminating free liquid layer, mechanically or through partial infusion, can reduce liquid loss from liquid-infused catheters while preserving functionality.
Collapse
Affiliation(s)
- ChunKi Fong
- Department of Chemical and Biomedical Engineering, Maine College of Engineering and Computing, University of Maine, ME 04469
- Graduate School of Biomedical Science and Engineering, University of Maine, ME 04469
| | - Marissa Jeme Andersen
- Department of Biological Sciences and Department of Chemistry and Biochemistry, College of Science, Notre Dame University, IN 46556 USA
| | - Emma Kunesh
- Department of Chemical and Biomedical Engineering, Maine College of Engineering and Computing, University of Maine, ME 04469
| | - Evan Leonard
- Department of Chemical and Biomedical Engineering, Maine College of Engineering and Computing, University of Maine, ME 04469
| | - Donovan Durand
- Department of Chemical and Biomedical Engineering, Maine College of Engineering and Computing, University of Maine, ME 04469
| | - Rachel Coombs
- Department of Chemical and Biomedical Engineering, Maine College of Engineering and Computing, University of Maine, ME 04469
| | - Ana Lidia Flores-Mireles
- Department of Biological Sciences and Department of Chemistry and Biochemistry, College of Science, Notre Dame University, IN 46556 USA
| | - Caitlin Howell
- Department of Chemical and Biomedical Engineering, Maine College of Engineering and Computing, University of Maine, ME 04469
- Graduate School of Biomedical Science and Engineering, University of Maine, ME 04469
| |
Collapse
|
20
|
La Bella AA, Andersen MJ, Gervais NC, Molina JJ, Molesan A, Stuckey PV, Wensing L, Nobile CJ, Shapiro RS, Santiago-Tirado FH, Flores-Mireles AL. The catheterized bladder environment promotes Efg1- and Als1-dependent Candida albicans infection. SCIENCE ADVANCES 2023; 9:eade7689. [PMID: 36867691 PMCID: PMC9984171 DOI: 10.1126/sciadv.ade7689] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Accepted: 01/31/2023] [Indexed: 06/18/2023]
Abstract
Catheter-associated urinary tract infections (CAUTIs) account for 40% of hospital-acquired infections (HAIs). As 20 to 50% of hospitalized patients receive catheters, CAUTIs are one of the most common HAIs, resulting in increased morbidity, mortality, and health care costs. Candida albicans is the second most common CAUTI uropathogen, yet relative to its bacterial counterparts, little is known about how fungal CAUTIs are established. Here, we show that the catheterized bladder environment induces Efg1- and fibrinogen (Fg)-dependent biofilm formation that results in CAUTI. In addition, we identify the adhesin Als1 as the critical fungal factor for C. albicans Fg-urine biofilm formation. Furthermore, we show that in the catheterized bladder, a dynamic and open system, both filamentation and attachment are required, but each by themselves are not sufficient for infection. Our study unveils the mechanisms required for fungal CAUTI establishment, which may aid in the development of future therapies to prevent these infections.
Collapse
Affiliation(s)
- Alyssa Ann La Bella
- Department of Biological Sciences, University of Notre Dame, Notre Dame, IN, USA
| | | | - Nicholas C. Gervais
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, ON, Canada
| | | | - Alex Molesan
- Department of Biological Sciences, University of Notre Dame, Notre Dame, IN, USA
| | - Peter V. Stuckey
- Department of Biological Sciences, University of Notre Dame, Notre Dame, IN, USA
| | - Lauren Wensing
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, ON, Canada
| | - Clarissa J. Nobile
- Department of Molecular and Cell Biology, University of California, Merced, Merced, CA, USA
- Health Sciences Research Institute, University of California, Merced, Merced, CA, USA
| | - Rebecca S. Shapiro
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, ON, Canada
| | | | | |
Collapse
|
21
|
Gervais NC, La Bella AA, Wensing LF, Sharma J, Acquaviva V, Best M, Cadena López RO, Fogal M, Uthayakumar D, Chavez A, Santiago-Tirado F, Flores-Mireles AL, Shapiro RS. Development and applications of a CRISPR activation system for facile genetic overexpression in Candida albicans. G3 (BETHESDA, MD.) 2023; 13:jkac301. [PMID: 36450451 PMCID: PMC9911074 DOI: 10.1093/g3journal/jkac301] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Revised: 11/02/2021] [Accepted: 11/04/2022] [Indexed: 12/02/2022]
Abstract
For the fungal pathogen Candida albicans, genetic overexpression readily occurs via a diversity of genomic alterations, such as aneuploidy and gain-of-function mutations, with important consequences for host adaptation, virulence, and evolution of antifungal drug resistance. Given the important role of overexpression on C. albicans biology, it is critical to develop and harness tools that enable the analysis of genes expressed at high levels in the fungal cell. Here, we describe the development, optimization, and application of a novel, single-plasmid-based CRISPR activation (CRISPRa) platform for targeted genetic overexpression in C. albicans, which employs a guide RNA to target an activator complex to the promoter region of a gene of interest, thus driving transcriptional expression of that gene. Using this system, we demonstrate the ability of CRISPRa to drive high levels of gene expression in C. albicans, and we assess optimal guide RNA targeting for robust and constitutive overexpression. We further demonstrate the specificity of the system via RNA sequencing. We highlight the application of CRISPR activation to overexpress genes involved in pathogenesis and drug susceptibility, and contribute toward the identification of novel phenotypes. Consequently, this tool will facilitate a broad range of applications for the study of C. albicans genetic overexpression.
Collapse
Affiliation(s)
- Nicholas C Gervais
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, ON N1H 5N4, Canada
| | - Alyssa A La Bella
- Department of Biological Sciences, University of Notre Dame, Notre Dame, IN 46556, USA
| | - Lauren F Wensing
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, ON N1H 5N4, Canada
| | - Jehoshua Sharma
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, ON N1H 5N4, Canada
| | - Victoria Acquaviva
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, ON N1H 5N4, Canada
| | - Madison Best
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, ON N1H 5N4, Canada
| | | | - Meea Fogal
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, ON N1H 5N4, Canada
| | - Deeva Uthayakumar
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, ON N1H 5N4, Canada
- Present address: Department of Immunology, University of Toronto, Toronto, ON, Canada
| | - Alejandro Chavez
- Department of Pathology and Cell Biology, Columbia University College of Physicians and Surgeons, New York, NY 10032, USA
| | | | - Ana L Flores-Mireles
- Department of Biological Sciences, University of Notre Dame, Notre Dame, IN 46556, USA
| | - Rebecca S Shapiro
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, ON N1H 5N4, Canada
| |
Collapse
|
22
|
Zhang S, Teng X, Liang X, Gadd GM, McCoy CP, Dong Y, Wang Y, Zhao Q. Fibrinogen Deposition on Silicone Oil-Infused Silver-Releasing Urinary Catheters Compromises Antibiofilm and Anti-Encrustation Properties. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2023; 39:1562-1572. [PMID: 36661856 PMCID: PMC9893812 DOI: 10.1021/acs.langmuir.2c03020] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Revised: 01/03/2023] [Indexed: 06/17/2023]
Abstract
Slippery silicone-oil-infused (SOI) surfaces have recently emerged as a promising alternative to conventional anti-infection coatings for urinary catheters to combat biofilm and encrustation formation. Benefiting from the ultralow low hysteresis and slippery behavior, the liquid-like SOI coatings have been found to effectively reduce bacterial adhesion under both static and flow conditions. However, in real clinical settings, the use of catheters may also trigger local inflammation, leading to release of host-secreted proteins, such as fibrinogen (Fgn) that deposits on the catheter surfaces, creating a niche that can be exploited by uropathogens to cause infections. In this work, we report on the fabrication of a silicone oil-infused silver-releasing catheter which exhibited superior durability and robust antibacterial activity in aqueous conditions, reducing biofilm formation of two key uropathogens Escherichia coli and Proteus mirabilis by ∼99%, when compared with commercial all-silicone catheters after 7 days while remaining noncytotoxic toward L929 mouse fibroblasts. After exposure to Fgn, the oil-infused surfaces induced conformational changes in the protein which accelerated adsorption onto the surfaces. The deposited Fgn blocked the interaction of silver with the bacteria and served as a scaffold, which promoted bacterial colonization, resulting in a compromised antibiofilm activity. Fgn binding also facilitated the migration of Proteus mirabilis over the catheter surfaces and accelerated the deposition and spread of crystalline biofilm. Our findings suggest that the use of silicone oil-infused silver-releasing urinary catheters may not be a feasible strategy to combat infections and associated complications arising from severe inflammation.
Collapse
Affiliation(s)
- Shuai Zhang
- School
of Pharmacy, Queen’s University Belfast, BT9 7BL, Belfast, United Kingdom
| | - Xiao Teng
- School
of Pharmacy, Queen’s University Belfast, BT9 7BL, Belfast, United Kingdom
| | - Xinjin Liang
- School
of Life Sciences, University of Dundee, DD1 5EH, Dundee, United Kingdom
- School
of Mechanical and Aerospace Engineering, Queen’s University Belfast, BT9 AG, Belfast, United Kingdom
| | - Geoffrey Michael Gadd
- School
of Life Sciences, University of Dundee, DD1 5EH, Dundee, United Kingdom
- State
Key Laboratory of Heavy Oil Processing, Beijing Key Laboratory of
Oil and Gas Pollution Control, China University
of Petroleum, Beijing102249, China
| | - Colin Peter McCoy
- School
of Pharmacy, Queen’s University Belfast, BT9 7BL, Belfast, United Kingdom
| | - Yuhang Dong
- School
of Science and Engineering, University of
Dundee, DD1 4HN, Dundee, United Kingdom
| | - Yimeng Wang
- School
of Science and Engineering, University of
Dundee, DD1 4HN, Dundee, United Kingdom
| | - Qi Zhao
- School
of Science and Engineering, University of
Dundee, DD1 4HN, Dundee, United Kingdom
| |
Collapse
|
23
|
Lila ASA, Rajab AAH, Abdallah MH, Rizvi SMD, Moin A, Khafagy ES, Tabrez S, Hegazy WAH. Biofilm Lifestyle in Recurrent Urinary Tract Infections. LIFE (BASEL, SWITZERLAND) 2023; 13:life13010148. [PMID: 36676100 PMCID: PMC9865985 DOI: 10.3390/life13010148] [Citation(s) in RCA: 51] [Impact Index Per Article: 25.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Revised: 12/27/2022] [Accepted: 12/30/2022] [Indexed: 01/06/2023]
Abstract
Urinary tract infections (UTIs) represent one of the most common infections that are frequently encountered in health care facilities. One of the main mechanisms used by bacteria that allows them to survive hostile environments is biofilm formation. Biofilms are closed bacterial communities that offer protection and safe hiding, allowing bacteria to evade host defenses and hide from the reach of antibiotics. Inside biofilm communities, bacteria show an increased rate of horizontal gene transfer and exchange of resistance and virulence genes. Additionally, bacterial communication within the biofilm allows them to orchestrate the expression of virulence genes, which further cements the infestation and increases the invasiveness of the infection. These facts stress the necessity of continuously updating our information and understanding of the etiology, pathogenesis, and eradication methods of this growing public health concern. This review seeks to understand the role of biofilm formation in recurrent urinary tact infections by outlining the mechanisms underlying biofilm formation in different uropathogens, in addition to shedding light on some biofilm eradication strategies.
Collapse
Affiliation(s)
- Amr S. Abu Lila
- Department of Pharmaceutics, College of Pharmacy, University of Ha’il, Ha’il 81442, Saudi Arabia
- Molecular Diagnostics and Personalized Therapeutics Unit, University of Ha’il, Ha’il 81442, Saudi Arabia
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Zagazig University, Zagazig 44519, Egypt
- Correspondence: (A.S.A.L.); (W.A.H.H.)
| | - Azza A. H. Rajab
- Department of Microbiology and Immunology, Faculty of Pharmacy, Zagazig University, Zagazig 44519, Egypt
| | - Marwa H. Abdallah
- Department of Pharmaceutics, College of Pharmacy, University of Ha’il, Ha’il 81442, Saudi Arabia
- Molecular Diagnostics and Personalized Therapeutics Unit, University of Ha’il, Ha’il 81442, Saudi Arabia
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Zagazig University, Zagazig 44519, Egypt
| | - Syed Mohd Danish Rizvi
- Department of Pharmaceutics, College of Pharmacy, University of Ha’il, Ha’il 81442, Saudi Arabia
- Molecular Diagnostics and Personalized Therapeutics Unit, University of Ha’il, Ha’il 81442, Saudi Arabia
| | - Afrasim Moin
- Department of Pharmaceutics, College of Pharmacy, University of Ha’il, Ha’il 81442, Saudi Arabia
- Molecular Diagnostics and Personalized Therapeutics Unit, University of Ha’il, Ha’il 81442, Saudi Arabia
| | - El-Sayed Khafagy
- Department of Pharmaceutics, College of Pharmacy, Prince Sattam bin Abdulaziz University, Al-Kharj 11942, Saudi Arabia
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Suez Canal University, Ismailia 41522, Egypt
| | - Shams Tabrez
- King Fahd Medical Research Center, King Abdulaziz University, Jeddah 21589, Saudi Arabia
- Department of Medical Laboratory Sciences, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Wael A. H. Hegazy
- Department of Microbiology and Immunology, Faculty of Pharmacy, Zagazig University, Zagazig 44519, Egypt
- Pharmacy Program, Department of Pharmaceutical Sciences, Oman College of Health Sciences, Muscat 113, Oman
- Correspondence: (A.S.A.L.); (W.A.H.H.)
| |
Collapse
|
24
|
In vitro studies of the protein-interaction network of cell-wall lytic transglycosylase RlpA of Pseudomonas aeruginosa. Commun Biol 2022; 5:1314. [PMID: 36451021 PMCID: PMC9712689 DOI: 10.1038/s42003-022-04230-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Accepted: 11/07/2022] [Indexed: 12/03/2022] Open
Abstract
The protein networks of cell-wall-biosynthesis assemblies are largely unknown. A key class of enzymes in these assemblies is the lytic transglycosylases (LTs), of which eleven exist in P. aeruginosa. We have undertaken a pulldown strategy in conjunction with mass-spectrometry-based proteomics to identify the putative binding partners for the eleven LTs of P. aeruginosa. A total of 71 putative binding partners were identified for the eleven LTs. A systematic assessment of the binding partners of the rare lipoprotein A (RlpA), one of the pseudomonal LTs, was made. This 37-kDa lipoprotein is involved in bacterial daughter-cell separation by an unknown process. RlpA participates in both the multi-protein and multi-enzyme divisome and elongasome assemblies. We reveal an extensive protein-interaction network for RlpA involving at least 19 proteins. Their kinetic parameters for interaction with RlpA were assessed by microscale thermophoresis, surface-plasmon resonance, and isothermal-titration calorimetry. Notable RlpA binding partners include PBP1b, PBP4, and SltB1. Elucidation of the protein-interaction networks for each of the LTs, and specifically for RlpA, opens opportunities for the study of their roles in the complex protein assemblies intimately involved with the cell wall as a structural edifice critical for bacterial survival.
Collapse
|
25
|
Regan DP, Fong C, Bond ACS, Desjardins C, Hardcastle J, Hung SH, Holmes AP, Schiffman JD, Maginnis MS, Howell C. Improved Recovery of Captured Airborne Bacteria and Viruses with Liquid-Coated Air Filters. ACS APPLIED MATERIALS & INTERFACES 2022; 14:50543-50556. [PMID: 36331290 PMCID: PMC10028737 DOI: 10.1021/acsami.2c14754] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
The COVID-19 pandemic has revealed the importance of the detection of airborne pathogens. Here, we present composite air filters featuring a bioinspired liquid coating that facilitates the removal of captured aerosolized bacteria and viruses for further analysis. We tested three types of air filters: commercial polytetrafluoroethylene (PTFE), which is well known for creating stable liquid coatings, commercial high-efficiency particulate air (HEPA) filters, which are widely used, and in-house-manufactured cellulose nanofiber mats (CNFMs), which are made from sustainable materials. All filters were coated with omniphobic fluorinated liquid to maximize the release of pathogens. We found that coating both the PTFE and HEPA filters with liquid improved the rate at which Escherichia coli was recovered using a physical removal process compared to uncoated controls. Notably, the coated HEPA filters also increased the total number of recovered cells by 57%. Coating the CNFM filters did not improve either the rate of release or the total number of captured cells. The most promising materials, the liquid-coated HEPA, filters were then evaluated for their ability to facilitate the removal of pathogenic viruses via a chemical removal process. Recovery of infectious JC polyomavirus, a nonenveloped virus that attacks the central nervous system, was increased by 92% over uncoated controls; however, there was no significant difference in the total amount of genomic material recovered compared to that of controls. In contrast, significantly more genomic material was recovered for SARS-CoV-2, the airborne, enveloped virus, which causes COVID-19, from liquid-coated filters. Although the amount of infectious SARS-CoV-2 recovered was 58% higher, these results were not significantly different from uncoated filters due to high variability. These results suggest that the efficient recovery of airborne pathogens from liquid-coated filters could improve air sampling efforts, enhancing biosurveillance and global pathogen early warning.
Collapse
Affiliation(s)
- Daniel P Regan
- Department of Chemical and Biomedical Engineering, University of Maine, 5737 Jenness Hall, Orono, Maine04469, United States
- Graduate School of Biomedical Science and Engineering, University of Maine, 42 Stodder Hall, Orono, Maine04469, United States
| | - ChunKi Fong
- Graduate School of Biomedical Science and Engineering, University of Maine, 42 Stodder Hall, Orono, Maine04469, United States
| | - Avery C S Bond
- Department of Molecular and Biomedical Sciences, University of Maine, 320 Hitchner Hall, Orono, Maine04469, United States
| | - Claudia Desjardins
- Department of Molecular and Biomedical Sciences, University of Maine, 320 Hitchner Hall, Orono, Maine04469, United States
| | - Justin Hardcastle
- Graduate School of Biomedical Science and Engineering, University of Maine, 42 Stodder Hall, Orono, Maine04469, United States
| | - Shao-Hsiang Hung
- Department of Chemical Engineering, University of Massachusetts Amherst, Amherst, Massachusetts01003-9303, United States
| | - Andrew P Holmes
- Cooperative Extension, University of Maine, 17 Godfrey Drive, Orono, Maine04473, United States
| | - Jessica D Schiffman
- Department of Chemical Engineering, University of Massachusetts Amherst, Amherst, Massachusetts01003-9303, United States
| | - Melissa S Maginnis
- Graduate School of Biomedical Science and Engineering, University of Maine, 42 Stodder Hall, Orono, Maine04469, United States
- Department of Molecular and Biomedical Sciences, University of Maine, 320 Hitchner Hall, Orono, Maine04469, United States
| | - Caitlin Howell
- Department of Chemical and Biomedical Engineering, University of Maine, 5737 Jenness Hall, Orono, Maine04469, United States
- Graduate School of Biomedical Science and Engineering, University of Maine, 42 Stodder Hall, Orono, Maine04469, United States
| |
Collapse
|
26
|
Yang Y, Zhu Q, Xu LP, Zhang X. Bioinspired liquid-infused surface for biomedical and biosensing applications. Front Bioeng Biotechnol 2022; 10:1032640. [PMID: 36246360 PMCID: PMC9557121 DOI: 10.3389/fbioe.2022.1032640] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Accepted: 09/13/2022] [Indexed: 11/18/2022] Open
Abstract
Nature always inspires us to develop advanced materials for diverse applications. The liquid-infused surface (LIS) inspired by Nepenthes pitcher plants has aroused broad interest in fabricating anti-biofouling materials over the past decade. The infused liquid layer on the solid substrate repels immiscible fluids and displays ultralow adhesion to various biomolecules. Due to these fascinating features, bioinspired LIS has been applied in biomedical-related fields. Here, we review the recent progress of LIS in bioengineering, medical devices, and biosensing, and highlight how the infused liquid layer affects the performance of medical materials. The prospects for the future trend of LIS are also presented.
Collapse
Affiliation(s)
- Yuemeng Yang
- Beijing Key Laboratory for Bioengineering and Sensing Technology, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing, China
| | - Qinglin Zhu
- Beijing Key Laboratory for Bioengineering and Sensing Technology, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing, China
| | - Li-Ping Xu
- Beijing Key Laboratory for Bioengineering and Sensing Technology, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing, China
- *Correspondence: Li-Ping Xu, ; Xueji Zhang,
| | - Xueji Zhang
- School of Biomedical Engineering, Health Science Center, Shenzhen University, Shenzhen, China
- *Correspondence: Li-Ping Xu, ; Xueji Zhang,
| |
Collapse
|
27
|
Nasrollahian S, Halaji M, Hosseini A, Teimourian M, Armaki MT, Rajabnia M, Gholinia H, Pournajaf A. Genetic Diversity, Carbapenem Resistance Genes, and Biofilm Formation in UPEC Isolated from Patients with Catheter-Associated Urinary Tract Infection in North of Iran. Int J Clin Pract 2022; 2022:9520362. [PMID: 36187911 PMCID: PMC9507725 DOI: 10.1155/2022/9520362] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/12/2022] [Accepted: 08/24/2022] [Indexed: 11/18/2022] Open
Abstract
BACKGROUND Infections due to carbapenem-resistant Enterobacteriaceae (CRE) are associated in patients with urinary catheters alarming rate of emergency status. The aim of this study is to investigate the molecular causes of carbapenem resistance among UPEC as well as antimicrobial resistance trends. Additionally, the potential of isolates to produce biofilms, in addition to their clonal and genetic diversity, was investigated. Material and Methods. A cross-sectional study was accomplished on a collection of 76 non-duplicate UPEC isolates obtained from CAUTIs from May 2021 to September 2021. The modified carbapenem inactivation method (mCIM) and EDTA-modified carbapenem inactivation method (eCIM) test was performed for the detection of carbapenemase and metallo-beta-lactamase activity. Also, the presence of carbapenemase genes was determined using PCR assays. In 96-well microtiter plates, biofilm development was evaluated. ERIC-PCR was used to investigate the clonal and genetic variety of isolates. RESULTS A total of 76 confirmed UPEC isolates were obtained from patients mentioned to teaching hospitals in Babol, Iran. The results of antibiotic susceptibility testing revealed a high rate of antibiotic resistance against nalidixic acid (81.6%) and trimethoprim-sulfamethoxazole (80.3%). Among UPEC isolates, 63.2% and 13.2% of UPEC isolates were positive for MBL production. The frequencies of the studied genes are in order of bla NDM (14.5%), bla OXA-23 (2.6%), and bla OXA-48 (2.6%). Forty-two isolates (55.3%) were positive for biofilm formation. ERIC-PCR revealed that UPEC isolates could be categorized into nine clusters A-I and five isolates were categorized as a singleton. CONCLUSION The high prevalence of MDR and carbapenemase-producing isolates among the UPEC strain in this investigation is concerning. Moreover, the bla NDM was the most frequent cause of producing metallo-beta-lactamase and carbapenemase. Also, analysis revealed a partial genetic similarity among the studied isolates, indicating that the same UPEC clones may have spread to other hospital units.
Collapse
Affiliation(s)
- Sina Nasrollahian
- Department of Medical Microbiology and Biotechnology, School of Medicine, Babol University of Medical Sciences, Babol, Iran
| | - Mehrdad Halaji
- Infectious Diseases and Tropical Medicine Research Center, Health Research Institute, Babol University of Medical Sciences, Babol, Iran
| | - Akramasadat Hosseini
- Department of Pathology, School of Medicine, Babol University of Medical Sciences, Babol, Iran
| | - Mohammad Teimourian
- Department of Urology, School of Medicine, Babol University of Medical Sciences, Babol, Iran
| | - Mojtaba Taghizadeh Armaki
- Infectious Diseases and Tropical Medicine Research Center, Health Research Institute, Babol University of Medical Sciences, Babol, Iran
| | - Mehdi Rajabnia
- Infectious Diseases and Tropical Medicine Research Center, Health Research Institute, Babol University of Medical Sciences, Babol, Iran
| | - Hemmat Gholinia
- Social Determinants of Health Research Center, Health Research Institute, Babol University of Medical Sciences, Babol, Iran
| | - Abazar Pournajaf
- Infectious Diseases and Tropical Medicine Research Center, Health Research Institute, Babol University of Medical Sciences, Babol, Iran
| |
Collapse
|