1
|
Bryant JL, McCabe J, Klews CC, Johnson M, Atchley AN, Cousins TW, Barnard-Davidson M, Smith KM, Ackermann MR, Netherland M, Hasan NA, Jordan PA, Forsythe ES, Ball PN, Seal BS. Phenotypic and Complete Reference Whole Genome Sequence Analyses of Two Paenibacillus spp. Isolates from a Gray Wolf ( Canis lupus) Gastrointestinal Tract. Vet Sci 2025; 12:51. [PMID: 39852926 PMCID: PMC11769508 DOI: 10.3390/vetsci12010051] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2024] [Revised: 01/09/2025] [Accepted: 01/10/2025] [Indexed: 01/26/2025] Open
Abstract
Inflammatory bowel disease (IBD) is increasing among mammals around the world, and domestic dogs are no exception. There is no approved cure for canine IBD with limited treatment options. Novel probiotic bacteria discovery from free-ranging animals for the treatment of IBD in domestic pets can likely yield promising probiotic candidates. Consequently, the overall aim was to isolate bacteria from free-ranging animals that could potentially be utilized as novel probiotics. Two bacteria identified as unique Paenibacillus spp. strains by small ribosomal RNA (16S) gene sequencing were isolated from the gastrointestinal tract of a North American Gray Wolf (Canis lupus). The bacteria were typed as Gram-variable, and both were catalase/oxidase positive as well as sensitive to commonly used antibiotics. The bacteria digested complex carbohydrates and lipids by standard assays. The isolated bacteria also inhibited the growth of Staphylococcus aureus and Micrococcus luteus. The whole genome sequence (WGS) length of bacterial isolate ClWae17B was 6,939,193 bp, while ClWae19 was 7,032,512 bp, both similar in size to other Paenibacillus spp. The genomes of both bacteria encoded enzymes involved with the metabolism of complex starches and lipids, such as lyases and pectinases, along with encoding antimicrobials such as lanthipeptides, lasso peptides, and cyclic-lactone-autoinducers. No pernicious virulence genes were identified in the WGS of either bacterial isolate. Phylogenetically, the most closely related bacteria based on 16S gene sequences and WGS were P. taichungensis for ClWae17B and P. amylolyticus for ClWae19. WGS analyses and phenotypic assays supported the hypothesis that the isolates described constitute two novel candidate probiotic bacteria for potential use in dogs.
Collapse
Affiliation(s)
- Jessika L. Bryant
- Biology Program, Oregon State University-Cascades, 1500 SW Chandler Avenue, Bend, OR 97702, USA; (J.L.B.); (C.C.K.); (M.J.); (A.N.A.); (T.W.C.); (K.M.S.); (P.A.J.); (E.S.F.)
| | - Jennifer McCabe
- Biology Program, Oregon State University-Cascades, 1500 SW Chandler Avenue, Bend, OR 97702, USA; (J.L.B.); (C.C.K.); (M.J.); (A.N.A.); (T.W.C.); (K.M.S.); (P.A.J.); (E.S.F.)
| | - C. Cristoph Klews
- Biology Program, Oregon State University-Cascades, 1500 SW Chandler Avenue, Bend, OR 97702, USA; (J.L.B.); (C.C.K.); (M.J.); (A.N.A.); (T.W.C.); (K.M.S.); (P.A.J.); (E.S.F.)
| | - MiCayla Johnson
- Biology Program, Oregon State University-Cascades, 1500 SW Chandler Avenue, Bend, OR 97702, USA; (J.L.B.); (C.C.K.); (M.J.); (A.N.A.); (T.W.C.); (K.M.S.); (P.A.J.); (E.S.F.)
| | - Ariel N. Atchley
- Biology Program, Oregon State University-Cascades, 1500 SW Chandler Avenue, Bend, OR 97702, USA; (J.L.B.); (C.C.K.); (M.J.); (A.N.A.); (T.W.C.); (K.M.S.); (P.A.J.); (E.S.F.)
| | - Thomas W. Cousins
- Biology Program, Oregon State University-Cascades, 1500 SW Chandler Avenue, Bend, OR 97702, USA; (J.L.B.); (C.C.K.); (M.J.); (A.N.A.); (T.W.C.); (K.M.S.); (P.A.J.); (E.S.F.)
| | - Maya Barnard-Davidson
- Biology Program, Oregon State University-Cascades, 1500 SW Chandler Avenue, Bend, OR 97702, USA; (J.L.B.); (C.C.K.); (M.J.); (A.N.A.); (T.W.C.); (K.M.S.); (P.A.J.); (E.S.F.)
| | - Kristina M. Smith
- Biology Program, Oregon State University-Cascades, 1500 SW Chandler Avenue, Bend, OR 97702, USA; (J.L.B.); (C.C.K.); (M.J.); (A.N.A.); (T.W.C.); (K.M.S.); (P.A.J.); (E.S.F.)
| | - Mark R. Ackermann
- Oregon Veterinary Diagnostic Laboratory, OSU Carlson College of Veterinary Medicine, 134 Magruder Hall, 700 SW 30th, Corvallis, OR 97331, USA
| | - Michael Netherland
- EzBiome Inc., 704 Quince Orchard Rd Suite 250, Gaithersburg, MD 20878, USA; (M.N.J.); (N.A.H.)
| | - Nur A. Hasan
- EzBiome Inc., 704 Quince Orchard Rd Suite 250, Gaithersburg, MD 20878, USA; (M.N.J.); (N.A.H.)
| | - Peter A. Jordan
- Biology Program, Oregon State University-Cascades, 1500 SW Chandler Avenue, Bend, OR 97702, USA; (J.L.B.); (C.C.K.); (M.J.); (A.N.A.); (T.W.C.); (K.M.S.); (P.A.J.); (E.S.F.)
| | - Evan S. Forsythe
- Biology Program, Oregon State University-Cascades, 1500 SW Chandler Avenue, Bend, OR 97702, USA; (J.L.B.); (C.C.K.); (M.J.); (A.N.A.); (T.W.C.); (K.M.S.); (P.A.J.); (E.S.F.)
| | - Patrick N. Ball
- Biology Program, Oregon State University-Cascades, 1500 SW Chandler Avenue, Bend, OR 97702, USA; (J.L.B.); (C.C.K.); (M.J.); (A.N.A.); (T.W.C.); (K.M.S.); (P.A.J.); (E.S.F.)
| | - Bruce S. Seal
- Biology Program, Oregon State University-Cascades, 1500 SW Chandler Avenue, Bend, OR 97702, USA; (J.L.B.); (C.C.K.); (M.J.); (A.N.A.); (T.W.C.); (K.M.S.); (P.A.J.); (E.S.F.)
| |
Collapse
|
2
|
Lafferty DJR, Trujillo SM, Hilderbrand GV, Sears A, Christian P, Payer D, Hake M. Bear baiting risks and mitigations: An assessment using expert opinion analyses. PLoS One 2024; 19:e0312192. [PMID: 39585855 PMCID: PMC11588233 DOI: 10.1371/journal.pone.0312192] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Accepted: 10/02/2024] [Indexed: 11/27/2024] Open
Abstract
Bear baiting is authorized in 12 states, 2 territories, and 8 provinces across North America. In Alaska, more than 70% of lands managed by the National Park Service (NPS) are open to some form of hunting including National Preserves where non-conflicting state wildlife hunting regulations apply. Alaska state regulations authorize bear baiting with few restrictions on the type or amount of bait that can be used to attract bears; although, restrictions related to bait station distance from roads and trails (¼ mile) and cabins/dwellings (1 mile) apply. However, National Preserves host diverse recreational activities in addition to hunting (e.g., hiking, camping, fishing). Because road and trail access to and within Alaska National Park and Preserve lands is limited, hunting and non-hunting-related activities often occur in the same areas-increasing potential for conflict between potentially non-compatible activities. We developed questionnaires about potential impacts on NPS lands, which were distributed to 14 NPS and 27 non-NPS bear research and management experts. We collated respondents' opinions regarding consistency of bear baiting practices with state and federal mandates for wildlife management. While minor differences in expert opinions were noted, findings from this study are unequivocal. Bear baiting is functionally equivalent to feeding bears, bears may defend a bait station similar to how they would defend a carcass, and bear baiting can lead to human food-conditioning in bears. Bear baiting also increases the likelihood bears will be killed in defense of life and property, and alters natural bear behaviors and ecological processes. Further, current mitigation strategies to minimize public safety risks and potential property damage are inadequate. For example, because bears are known to defend food resources, avoiding food conditioning of bears is central to the educational messaging of all entities that manage bears. In short, bear baiting is a harvest practice that challenges harmony between State mandates, which emphasize hunter opportunity, and NPS mandates that include public safety and natural processes.
Collapse
Affiliation(s)
- Diana J. R. Lafferty
- Department of Biology, Wildlife Ecology and Conservation Science Lab, Northern Michigan University, Marquette, MI, United States of America
| | - Sarah M. Trujillo
- Department of Biology and Wildlife, University of Alaska, Fairbanks, AK, United States of America
| | | | - Andee Sears
- National Park Service–Alaska Region, Anchorage, AK, United States of America
| | - Peter Christian
- National Park Service–Alaska Region, Anchorage, AK, United States of America
| | - David Payer
- National Park Service–Alaska Region, Anchorage, AK, United States of America
| | - Mary Hake
- National Park Service–Alaska Region, Anchorage, AK, United States of America
| |
Collapse
|
3
|
Martin Bideguren G, Razgour O, Alberdi A. Quantitative Synthesis of Microbe-Driven Acclimation and Adaptation in Wild Vertebrates. Evol Appl 2024; 17:e70025. [PMID: 39391863 PMCID: PMC11464772 DOI: 10.1111/eva.70025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Revised: 07/04/2024] [Accepted: 09/23/2024] [Indexed: 10/12/2024] Open
Abstract
Microorganisms associated with animals harbour a unique set of functional traits pivotal for the normal functioning of their hosts. This realisation has led researchers to hypothesise that animal-associated microbial communities may boost the capacity of their hosts to acclimatise and adapt to environmental changes, two eco-evolutionary processes with significant applied relevance. Aiming to assess the importance of microorganisms for wild vertebrate conservation, we conducted a quantitative systematic review to evaluate the scientific evidence for the contribution of gut microorganisms to the acclimation and adaptation capacity of wild vertebrate hosts. After screening 1974 publications, we scrutinised the 109 studies that met the inclusion criteria based on 10 metrics encompassing study design, methodology and reproducibility. We found that the studies published so far were not able to resolve the contribution of gut microorganisms due to insufficient study design and research methods for addressing the hypothesis. Our findings underscore the limited application to date of microbiome knowledge in vertebrate conservation and management, highlighting the need for a paradigm shift in research approaches. Considering these results, we advocate for a shift from observational studies to experimental manipulations, where fitness or related indicators are measured, coupled with an update in molecular techniques used to analyse microbial functions. In addition, closer collaboration with conservation managers and practitioners from the inception of the project is needed to encourage meaningful application of microbiome knowledge in adaptive wildlife conservation management.
Collapse
Affiliation(s)
- Garazi Martin Bideguren
- Center for Evolutionary Hologenomics, Globe InstituteUniversity of CopenhagenCopenhagenDenmark
| | - Orly Razgour
- BiosciencesUniversity of Exeter, Streatham CampusExeterUK
| | - Antton Alberdi
- Center for Evolutionary Hologenomics, Globe InstituteUniversity of CopenhagenCopenhagenDenmark
| |
Collapse
|
4
|
Ochoa-Sánchez M, Acuña-Gómez EP, Moraga CA, Gaete K, Acevedo J, Eguiarte LE, Souza V. The ephemeral microbiota: Ecological context and environmental variability drive the body surface microbiota composition of Magellanic penguins across subantarctic breeding colonies. Mol Ecol 2024; 33:e17472. [PMID: 39077982 DOI: 10.1111/mec.17472] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 07/03/2024] [Accepted: 07/08/2024] [Indexed: 07/31/2024]
Abstract
Environmental microbes routinely colonize wildlife body surface microbiota. However, animals experience dynamic environmental shifts throughout their daily routine. Yet, the effect of ecological shifts in wildlife body surface microbiota has been poorly explored. Here, we sequenced the hypervariable region V3-V4 of the 16S rRNA gene to characterize the body surface microbiota of wild Magellanic penguins (Spheniscus magellanicus) under two ecological contexts: (1) Penguins walking along the coast and (2) Penguins sheltered underground in their nest, across three subantarctic breeding colonies in the Magellan Strait, Chile. Despite ecological contexts, our results revealed that Moraxellaceae bacteria were the most predominant and abundant taxa associated with penguin body surfaces. Nevertheless, we detected colony-specific core bacteria associated with penguin bodies. The most abundant were: Deinococcus in the Contramaestre colony, Fusobacterium in the Tuckers 1 colony, and Clostridium sensu stricto 1 in the Tuckers 2 colony. Our results give a new perspective on the niche environmental hypothesis for wild seabirds. First, the ecological characteristics of each colony were associated with the microbial communities from the nest soil and the body surface of penguins inside the nests. For example, in the colonies with heterogenous vegetation cover (i.e. the Tuckers Islets), there was a similar microbial composition between the nest soil and the body surface of penguins. In contrast, on the more arid colony (Contramaestre), we detected differences in the microbial communities between the nest soil and the body surface of penguins.
Collapse
Affiliation(s)
- Manuel Ochoa-Sánchez
- Departamento de Ecología Evolutiva, Instituto de Ecología, Universidad Nacional Autónoma de México, Ciudad de México, México
- Centro de Estudios del Cuaternario de Fuego, Patagonia y Antártica (CEQUA), Punta Arenas, Chile
- Posgrado en Ciencias Biológicas, Universidad Nacional Autónoma de México, Ciudad de México, México
| | - E Paola Acuña-Gómez
- Centro de Estudios del Cuaternario de Fuego, Patagonia y Antártica (CEQUA), Punta Arenas, Chile
| | - Claudio A Moraga
- Centro de Estudios del Cuaternario de Fuego, Patagonia y Antártica (CEQUA), Punta Arenas, Chile
| | - Katherine Gaete
- Centro de Estudios del Cuaternario de Fuego, Patagonia y Antártica (CEQUA), Punta Arenas, Chile
| | - Jorge Acevedo
- Centro de Estudios del Cuaternario de Fuego, Patagonia y Antártica (CEQUA), Punta Arenas, Chile
| | - Luis E Eguiarte
- Departamento de Ecología Evolutiva, Instituto de Ecología, Universidad Nacional Autónoma de México, Ciudad de México, México
| | - Valeria Souza
- Departamento de Ecología Evolutiva, Instituto de Ecología, Universidad Nacional Autónoma de México, Ciudad de México, México
- Centro de Estudios del Cuaternario de Fuego, Patagonia y Antártica (CEQUA), Punta Arenas, Chile
| |
Collapse
|
5
|
Ruiz-Barrionuevo JM, Kardas E, Rodríguez-Barreras R, Quiñones-Otero MA, Ruiz-Diaz CP, Toledo-Hernández C, Godoy-Vitorino F. Shifts in the gut microbiota of sea urchin Diadema antillarum associated with the 2022 disease outbreak. Front Microbiol 2024; 15:1409729. [PMID: 39135877 PMCID: PMC11317302 DOI: 10.3389/fmicb.2024.1409729] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Accepted: 06/27/2024] [Indexed: 08/15/2024] Open
Abstract
Introduction In recent decades, Caribbean coral reefs have lost many vital marine species due to diseases. The well-documented mass mortality event of the long-spined black sea urchin Diadema antillarum in the early 1980s stands out among these collapses. This die-off killed over 90% of D. antillarum changing the reefscape from coral to algal-dominated. Nearly 40 years later, D. antillarum populations have yet to recover. In early 2022, a new mortality event of D. antillarum was reported along the Caribbean, including Puerto Rico. Methods This study identifies the gut microbiota changes associated with the D. antillarum during this mortality event. It contrasts them with the bacterial composition of gut samples from healthy individuals collected in 2019 by using 16S rRNA sequencing analyses. Results Notably, the die-off group's core microbiome resembled bacteria commonly found in the human skin and gut, suggesting potential anthropogenic contamination and wastewater pollution as contributing factors to the 2022 dysbiosis. The animals collected in 2022, especially those with signs of disease, lacked keystone taxa normally found in Diadema including Photobacterium and Propionigenium. Discussion The association between human microbes and disease stages in the long-spined urchin D. antillarum, especially in relation to anthropogenic contamination, highlights a complex interplay between environmental stressors and marine health. While these microbes might not be the direct cause of death in this species of sea urchins, their presence and proliferation can indicate underlying issues, such as immune depletion due to pollution, habitat destruction, or climate change, that ultimately compromise the health of these marine organisms.
Collapse
Affiliation(s)
- Juliana M. Ruiz-Barrionuevo
- Instituto de Ecología Regional (IER), Universidad Nacional de Tucumán (UNT)-Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Tucumán, Argentina
- Facultad de Ciencias Naturales e Instituto Miguel Lillo, Universidad Nacional de Tucumán (UNT), Tucumán, Argentina
| | - Elif Kardas
- Department of Microbiology, University of Puerto Rico, School of Medicine, San Juan, PR, United States
- Department of Biology, University of Puerto Rico, Rio Piedras campus, San Juan, PR, United States
| | - Ruber Rodríguez-Barreras
- Department of Biology, University of Puerto Rico, Mayagüez campus, Mayagüez, PR, United States
- Department of Biology, University of Puerto Rico at Bayamón, Bayamón, PR, United States
| | - Marcos A. Quiñones-Otero
- Planning Department, University of Puerto Rico, Río Piedras Campus, San Juan, PR, United States
- Sociedad Ambiente Marino, San Juan, PR, United States
| | | | | | - Filipa Godoy-Vitorino
- Department of Microbiology, University of Puerto Rico, School of Medicine, San Juan, PR, United States
| |
Collapse
|
6
|
Bai X, Zhong H, Cui X, Wang T, Gu Y, Li M, Miao X, Li J, Lu L, Xu W, Li D, Sun J. Metagenomic profiling uncovers microbiota and antibiotic resistance patterns across human, chicken, pig fecal, and soil environments. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 947:174734. [PMID: 39002589 DOI: 10.1016/j.scitotenv.2024.174734] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 07/10/2024] [Accepted: 07/10/2024] [Indexed: 07/15/2024]
Abstract
The ongoing and progressive evolution of antibiotic resistance presents escalating challenges for the clinical management and prevention of bacterial infections. Understanding the makeup of resistance genomes and accurately quantifying the current abundance of antibiotic resistance genes (ARGs) are crucial for assessing the threat of antimicrobial resistance (AMR) to public health. This comprehensive study investigated the distribution and diversity of bacterial community composition, ARGs, and virulence factors (VFs) across human, chicken, pig fecal, and soil microbiomes in various provinces of China. As a result, multidrug resistance was identified across all samples. Core ARGs primarily related to multidrug, MLS (Macrolides-Lincosamide-Streptogramins), and tetracycline resistance were characterized. A significant correlation between ARGs and bacterial taxa was observed, especially in soil samples. Probiotic strains such as Lactobacillus harbored ARGs, potentially contributing to the dissemination of antibiotic resistance. We screened subsets of ARGs from samples from different sources as indicators to assess the level of ARGs contamination in samples, with high accuracy. These results underline the complex relationship between microbial communities, resistance mechanisms, and environmental factors, emphasizing the importance of continued research and monitoring to better understand these dynamics.
Collapse
Affiliation(s)
- Xue Bai
- Antibiotics Research and Re-evaluation Key Laboratory of Sichuan Province, Chengdu University, Chengdu 610106, China; College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China
| | - Hang Zhong
- Chongqing Academy of Animal Sciences, Chongqing 402460, China
| | - Xiang Cui
- Department of Clinical Animal Medicine, College of Animal Medicine, Huazhong Agricultural University, Wuhan 430070, China
| | - Tao Wang
- Antibiotics Research and Re-evaluation Key Laboratory of Sichuan Province, Chengdu University, Chengdu 610106, China
| | - Yiren Gu
- College of Animal & Veterinary Sciences, Southwest Minzu University, Chengdu 610041, China
| | - Mingzhou Li
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China
| | - Xiaomeng Miao
- Institute of Animal Husbandry and Veterinary Medicine, Guizhou Academy of Agricultural Sciences, Guiyang 550005, China
| | - Jing Li
- College of Agriculture, Kunming University, Kunming 650214, China
| | - Lizhi Lu
- National Center of Technology Innovation for Swine, Chongqing 402460, China
| | - Wenwu Xu
- National Center of Technology Innovation for Swine, Chongqing 402460, China.
| | - Diyan Li
- Antibiotics Research and Re-evaluation Key Laboratory of Sichuan Province, Chengdu University, Chengdu 610106, China.
| | - Jing Sun
- Chongqing Academy of Animal Sciences, Chongqing 402460, China; Chongqing Academy of Animal Sciences, Chongqing 402461, China.
| |
Collapse
|
7
|
Łopucki R, Sajnaga E, Kalwasińska A, Klich D, Kitowski I, Stępień-Pyśniak D, Christensen H. Green spaces contribute to structural resilience of the gut microbiota in urban mammals. Sci Rep 2024; 14:15508. [PMID: 38969657 PMCID: PMC11226671 DOI: 10.1038/s41598-024-66209-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2024] [Accepted: 06/28/2024] [Indexed: 07/07/2024] Open
Abstract
The gut microbiome of wild animals is subject to various environmental influences, including those associated with human-induced alterations to the environment. We investigated how the gut microbiota of a synurbic rodent species, the striped field mouse (Apodemus agrarius), change in cities of varying sizes, seeking the urban microbiota signature for this species. Fecal samples for analysis were collected from animals living in non-urbanized areas and green spaces of different-sized cities (Poland). Metagenomic 16S rRNA gene sequencing and further bioinformatics analyses were conducted. Significant differences in the composition of gut microbiomes among the studied populations were found. However, the observed changes were dependent on local habitat conditions, without strong evidence of a correlation with the size of the urbanized area. The results suggest that ecological detachment from a more natural, non-urban environment does not automatically lead to the development of an "urban microbiome" model in the studied rodent. The exposure to the natural environment in green spaces may serve as a catalyst for microbiome transformations, providing a previously underestimated contribution to the maintenance of native gut microbial communities in urban mammals.
Collapse
Affiliation(s)
- Rafał Łopucki
- Department of Biomedicine and Environmental Research, The John Paul II Catholic University of Lublin, Konstantynów 1J, 20-708, Lublin, Poland.
| | - Ewa Sajnaga
- Department of Biomedicine and Environmental Research, The John Paul II Catholic University of Lublin, Konstantynów 1J, 20-708, Lublin, Poland
| | - Agnieszka Kalwasińska
- Department of Environmental Microbiology and Biotechnology, Nicolaus Copernicus University in Toruń, Lwowska 1, 87-100, Toruń, Poland
| | - Daniel Klich
- Department of Animal Genetics and Conservation, Warsaw University of Life Sciences (SGGW), Ciszewskiego 8, 02-786, Warsaw, Poland
| | - Ignacy Kitowski
- University College of Applied Sciences in Chełm, Pocztowa 54, 22-100, Chełm, Poland
| | - Dagmara Stępień-Pyśniak
- Department of Veterinary Prevention and Avian Diseases, University of Life Sciences in Lublin, Głęboka 30, 20-612, Lublin, Poland
| | - Henrik Christensen
- Department of Veterinary and Animal Sciences, University of Copenhagen, Stigbøjlen 4, Frederiksberg C, Denmark
| |
Collapse
|
8
|
Mistrick J, Kipp EJ, Weinberg SI, Adams CC, Larsen PA, Craft ME. Microbiome diversity and zoonotic bacterial pathogen prevalence in Peromyscus mice from agricultural landscapes and synanthropic habitat. Mol Ecol 2024; 33:e17309. [PMID: 38429967 DOI: 10.1111/mec.17309] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 01/20/2024] [Accepted: 02/01/2024] [Indexed: 03/03/2024]
Abstract
Rodents are key reservoirs of zoonotic pathogens and play an important role in disease transmission to humans. Importantly, anthropogenic land-use change has been found to increase the abundance of rodents that thrive in human-built environments (synanthropic rodents), particularly rodent reservoirs of zoonotic disease. Anthropogenic environments also affect the microbiome of synanthropic wildlife, influencing wildlife health and potentially introducing novel pathogens. Our objective was to examine the effect of agricultural development and synanthropic habitat on microbiome diversity and the prevalence of zoonotic bacterial pathogens in wild Peromyscus mice to better understand the role of these rodents in pathogen maintenance and transmission. We conducted 16S amplicon sequencing on faecal samples using long-read nanopore sequencing technology to characterize the rodent microbiome. We compared microbiome diversity and composition between forest and synanthropic habitats in agricultural and undeveloped landscapes and screened for putative pathogenic bacteria. Microbiome richness, diversity, and evenness were higher in the agricultural landscape and synanthropic habitat compared to undeveloped-forest habitat. Microbiome composition also differed significantly between agricultural and undeveloped landscapes and forest and synanthropic habitats. We detected overall low diversity and abundance of putative pathogenic bacteria, though putative pathogens were more likely to be found in mice from the agricultural landscape. Our findings show that landscape- and habitat-level anthropogenic factors affect Peromyscus microbiomes and suggest that landscape-level agricultural development may be important to predict zoonotic pathogen prevalence. Ultimately, understanding how anthropogenic land-use change and synanthropy affect rodent microbiomes and pathogen prevalence is important to managing transmission of rodent-borne zoonotic diseases to humans.
Collapse
Affiliation(s)
- Janine Mistrick
- Department of Ecology, Evolution and Behavior, College of Biological Sciences, University of Minnesota, St. Paul, Minnesota, USA
| | - Evan J Kipp
- Department of Veterinary and Biomedical Sciences, College of Veterinary Medicine, University of Minnesota, St. Paul, Minnesota, USA
| | - Sarah I Weinberg
- School of Veterinary Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Collin C Adams
- Itasca Biological Station and Laboratories, University of Minnesota, Lake Itasca, Minnesota, USA
| | - Peter A Larsen
- Department of Veterinary and Biomedical Sciences, College of Veterinary Medicine, University of Minnesota, St. Paul, Minnesota, USA
| | - Meggan E Craft
- Department of Ecology, Evolution and Behavior, College of Biological Sciences, University of Minnesota, St. Paul, Minnesota, USA
| |
Collapse
|
9
|
Podar NA, Carrell AA, Cassidy KA, Klingeman DM, Yang Z, Stahler EA, Smith DW, Stahler DR, Podar M. From wolves to humans: oral microbiome resistance to transfer across mammalian hosts. mBio 2024; 15:e0334223. [PMID: 38299854 PMCID: PMC10936156 DOI: 10.1128/mbio.03342-23] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Accepted: 12/21/2023] [Indexed: 02/02/2024] Open
Abstract
The mammalian mouth is colonized by complex microbial communities, adapted to specific niches, and in homeostasis with the host. Individual microbes interact metabolically and rely primarily on nutrients provided by the host, with which they have potentially co-evolved along the mammalian lineages. The oral environment is similar across mammals, but the diversity, specificity, and evolution of community structure in related or interacting mammals are little understood. Here, we compared the oral microbiomes of dogs with those of wild wolves and humans. In dogs, we found an increased microbial diversity relative to wolves, possibly related to the transition to omnivorous nutrition following domestication. This includes a larger diversity of Patescibacteria than previously reported in any other oral microbiota. The oral microbes are most distinct at bacterial species or strain levels, with few if any shared between humans and canids, while the close evolutionary relationship between wolves and dogs is reflected by numerous shared taxa. More taxa are shared at higher taxonomic levels including with humans, supporting their more ancestral common mammalian colonization followed by diversification. Phylogenies of selected oral bacterial lineages do not support stable human-dog microbial transfers but suggest diversification along mammalian lineages (apes and canids). Therefore, despite millennia of cohabitation and close interaction, the host and its native community controls and limits the assimilation of new microbes, even if closely related. Higher resolution metagenomic and microbial physiological studies, covering a larger mammalian diversity, should help understand how oral communities assemble, adapt, and interact with their hosts.IMPORTANCENumerous types of microbes colonize the mouth after birth and play important roles in maintaining oral health. When the microbiota-host homeostasis is perturbed, proliferation of some bacteria leads to diseases such as caries and periodontitis. Unlike the gut microbiome, the diversity of oral microbes across the mammalian evolutionary space is not understood. Our study compared the oral microbiomes of wild wolves, dogs, and apes (humans, chimpanzees, and bonobos), with the aim of identifying if microbes have been potentially exchanged between humans and dogs as a result of domestication and cohabitation. We found little if any evidence for such exchanges. The significance of our research is in finding that the oral microbiota and/or the host limit the acquisition of exogenous microbes, which is important in the context of natural exclusion of potential novel pathogens. We provide a framework for expanded higher-resolution studies across domestic and wild animals to understand resistance/resilience.
Collapse
Affiliation(s)
- Nicholas A. Podar
- School of Engineering, Vanderbilt University, Nashville, Tennessee, USA
| | - Alyssa A. Carrell
- Biosciences Department, Oak Ridge National Laboratory, Oak Ridge, Tennessee, USA
| | - Kira A. Cassidy
- Yellowstone Center for Resources, National Park Service, Yellowstone National Park, Wyoming, USA
| | - Dawn M. Klingeman
- Biosciences Department, Oak Ridge National Laboratory, Oak Ridge, Tennessee, USA
| | - Zamin Yang
- Biosciences Department, Oak Ridge National Laboratory, Oak Ridge, Tennessee, USA
| | - Erin A. Stahler
- Yellowstone Center for Resources, National Park Service, Yellowstone National Park, Wyoming, USA
| | - Douglas W. Smith
- Yellowstone Center for Resources, National Park Service, Yellowstone National Park, Wyoming, USA
| | - Daniel R. Stahler
- Yellowstone Center for Resources, National Park Service, Yellowstone National Park, Wyoming, USA
| | - Mircea Podar
- Biosciences Department, Oak Ridge National Laboratory, Oak Ridge, Tennessee, USA
| |
Collapse
|
10
|
Sarkar A, McInroy CJA, Harty S, Raulo A, Ibata NGO, Valles-Colomer M, Johnson KVA, Brito IL, Henrich J, Archie EA, Barreiro LB, Gazzaniga FS, Finlay BB, Koonin EV, Carmody RN, Moeller AH. Microbial transmission in the social microbiome and host health and disease. Cell 2024; 187:17-43. [PMID: 38181740 PMCID: PMC10958648 DOI: 10.1016/j.cell.2023.12.014] [Citation(s) in RCA: 34] [Impact Index Per Article: 34.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 12/06/2023] [Accepted: 12/06/2023] [Indexed: 01/07/2024]
Abstract
Although social interactions are known to drive pathogen transmission, the contributions of socially transmissible host-associated mutualists and commensals to host health and disease remain poorly explored. We use the concept of the social microbiome-the microbial metacommunity of a social network of hosts-to analyze the implications of social microbial transmission for host health and disease. We investigate the contributions of socially transmissible microbes to both eco-evolutionary microbiome community processes (colonization resistance, the evolution of virulence, and reactions to ecological disturbance) and microbial transmission-based processes (transmission of microbes with metabolic and immune effects, inter-specific transmission, transmission of antibiotic-resistant microbes, and transmission of viruses). We consider the implications of social microbial transmission for communicable and non-communicable diseases and evaluate the importance of a socially transmissible component underlying canonically non-communicable diseases. The social transmission of mutualists and commensals may play a significant, under-appreciated role in the social determinants of health and may act as a hidden force in social evolution.
Collapse
Affiliation(s)
- Amar Sarkar
- Department of Human Evolutionary Biology, Harvard University, Cambridge, MA, USA.
| | - Cameron J A McInroy
- Department of Human Evolutionary Biology, Harvard University, Cambridge, MA, USA
| | - Siobhán Harty
- Independent, Tandy Court, Spitalfields, Dublin, Ireland
| | - Aura Raulo
- Department of Biology, University of Oxford, Oxford, UK; Department of Computing, University of Turku, Turku, Finland
| | - Neil G O Ibata
- Department of Human Evolutionary Biology, Harvard University, Cambridge, MA, USA
| | - Mireia Valles-Colomer
- Department of Medicine and Life Sciences, Pompeu Fabra University, Barcelona, Spain; Department of Cellular, Computational and Integrative Biology, University of Trento, Trento, Italy
| | - Katerina V-A Johnson
- Institute of Psychology, Leiden University, Leiden, the Netherlands; Department of Psychiatry, University of Oxford, Oxford, UK
| | - Ilana L Brito
- Meinig School of Biomedical Engineering, Cornell University, Ithaca, NY, USA
| | - Joseph Henrich
- Department of Human Evolutionary Biology, Harvard University, Cambridge, MA, USA
| | - Elizabeth A Archie
- Department of Biological Sciences, University of Notre Dame, Notre Dame, IN, USA
| | - Luis B Barreiro
- Committee on Immunology, University of Chicago, Chicago, IL, USA; Department of Medicine, University of Chicago, Chicago, IL, USA; Committee on Genetics, Genomics and Systems Biology, University of Chicago, Chicago, IL, USA
| | - Francesca S Gazzaniga
- Molecular Pathology Unit, Cancer Center, Massachusetts General Hospital Research Institute, Charlestown, MA, USA; Department of Pathology, Harvard Medical School, Boston, MA, USA
| | - B Brett Finlay
- Department of Microbiology and Immunology, University of British Columbia, Vancouver, BC, Canada; Michael Smith Laboratories, University of British Columbia, Vancouver, BC, Canada; Department of Biochemistry, University of British Columbia, Vancouver, BC, Canada
| | - Eugene V Koonin
- National Center for Biotechnology Information, National Library of Medicine, Bethesda, MD, USA
| | - Rachel N Carmody
- Department of Human Evolutionary Biology, Harvard University, Cambridge, MA, USA
| | - Andrew H Moeller
- Department of Ecology and Evolutionary Biology, Cornell University, Ithaca, NY, USA
| |
Collapse
|
11
|
Switzer AD, Callahan BJ, Costello EK, Bik EM, Fontaine C, Gulland FM, Relman DA. Rookery through rehabilitation: Microbial community assembly in newborn harbour seals after maternal separation. Environ Microbiol 2023; 25:2182-2202. [PMID: 37329141 PMCID: PMC11180496 DOI: 10.1111/1462-2920.16444] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Accepted: 05/22/2023] [Indexed: 06/18/2023]
Abstract
Microbial community assembly remains largely unexplored in marine mammals, despite its potential importance for conservation and management. Here, neonatal microbiota assembly was studied in harbour seals (Phoca vitulina richardii) at a rehabilitation facility soon after maternal separation, through weaning, to the time of release back to their native environment. We found that the gingival and rectal communities of rehabilitated harbour seals were distinct from the microbiotas of formula and pool water, and became increasingly diverse and dissimilar over time, ultimately resembling the gingival and rectal communities of local wild harbour seals. Harbour seal microbiota assembly was compared to that of human infants, revealing the rapid emergence of host specificity and evidence of phylosymbiosis even though these harbour seals had been raised by humans. Early life prophylactic antibiotics were associated with changes in the composition of the harbour seal gingival and rectal communities and surprisingly, with transient increases in alpha diversity, perhaps because of microbiota sharing during close cohabitation with other harbour seals. Antibiotic-associated effects dissipated over time. These results suggest that while early life maternal contact may provide seeding for microbial assembly, co-housing of conspecifics during rehabilitation may help neonatal mammals achieve a healthy host-specific microbiota with features of resilience.
Collapse
Affiliation(s)
- Alexandra D. Switzer
- Department of Medicine, School of Medicine, Stanford University, Stanford, CA, United States
- Department of Microbiology and Immunology, School of Medicine, Stanford University, Stanford, CA, United States
| | - Benjamin J. Callahan
- Department of Population Health and Pathobiology, College of Veterinary Medicine, North Carolina State University, Raleigh, NC, United States
- Department of Statistics, Stanford University, Stanford, CA, United States
| | - Elizabeth K. Costello
- Department of Medicine, School of Medicine, Stanford University, Stanford, CA, United States
| | | | | | - Frances M.D. Gulland
- The Marine Mammal Center, Sausalito, CA, United States
- Wildlife Health Center, School of Veterinary Medicine, University of California at Davis, Davis, CA, United States
| | - David A. Relman
- Department of Medicine, School of Medicine, Stanford University, Stanford, CA, United States
- Department of Microbiology and Immunology, School of Medicine, Stanford University, Stanford, CA, United States
- Infectious Diseases Section, VA Palo Alto Health Care System, Palo Alto, CA, United States
| |
Collapse
|
12
|
Jiang X, Liu J, Xi Y, Zhang Q, Wang Y, Zhao M, Lu X, Wu H, Shan T, Ni B, Zhang W, Ma X. Virome of high-altitude canine digestive tract and genetic characterization of novel viruses potentially threatening human health. mSphere 2023; 8:e0034523. [PMID: 37724888 PMCID: PMC10597464 DOI: 10.1128/msphere.00345-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2023] [Accepted: 07/25/2023] [Indexed: 09/21/2023] Open
Abstract
The majority of currently emerging infectious illnesses are zoonotic infections, which have caused serious public health and economic implications. The development of viral metagenomics has helped us to explore unknown viruses. We collected 1,970 canine feces from Yushu and Guoluo in the plateau region of China for this study to do a metagenomics analysis of the viral community of the canine digestive tract. Our analysis identified 203 novel viruses, classified into 11 known families and 2 unclassified groups. These viruses include the hepatitis E virus, first identified in dogs, and the astrovirus, coronavirus, polyomavirus, and others. The relationship between the newly identified canine viruses and known viruses was investigated through the use of phylogenetic analysis. Furthermore, we demonstrated the cross-species transmission of viruses and predicted new viruses that may cause diseases in both humans and animals, providing technical support for the prevention and control of diseases caused by environmental pollution viruses. IMPORTANCE Most emerging infectious diseases are due to zoonotic disease agents. Because of their effects on the security of human or animal life, agriculture production, and food safety, zoonotic illnesses and livestock diseases are of worldwide significance. Because dogs are closely related to humans and domestic animals, they serve as one of the important links in the transmission of zoonotic and livestock diseases. Canines can contaminate the environment in which humans live such as water and soil through secretions, potentially altering the human gut microbiota or causing diseases. Our study enriched the viral community in the digestive tract microbiome of dogs and found types of viruses that threaten human health, providing technical support for the prevention and control of early warning of diseases caused by environmental contaminant viruses.
Collapse
Affiliation(s)
- Xiaojie Jiang
- Department of Microbiology, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu, China
| | - Jia Liu
- Qinghai Institute of Endemic Disease Prevention and Control, Xining, Qinghai, China
| | - Yuan Xi
- Department of Microbiology, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu, China
| | - Qing Zhang
- Qinghai Institute of Endemic Disease Prevention and Control, Xining, Qinghai, China
| | - Yongshun Wang
- Qinghai Institute of Endemic Disease Prevention and Control, Xining, Qinghai, China
| | - Min Zhao
- Department of Microbiology, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu, China
| | - Xiang Lu
- Department of Microbiology, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu, China
| | - Haisheng Wu
- Qinghai Institute of Endemic Disease Prevention and Control, Xining, Qinghai, China
| | - Tongling Shan
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, China
| | - Bin Ni
- Department of Microbiology, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu, China
| | - Wen Zhang
- Department of Microbiology, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu, China
| | - Xiao Ma
- Qinghai Institute of Endemic Disease Prevention and Control, Xining, Qinghai, China
| |
Collapse
|
13
|
Hanski E, Khanyari M, Li J, Bates KA, Zuther S, Maiden MCJ, Kock R, Knowles SCL. Gut microbiota of the critically endangered Saiga antelope across two wild populations in a year without mass mortality. Sci Rep 2023; 13:17236. [PMID: 37821478 PMCID: PMC10567781 DOI: 10.1038/s41598-023-44393-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Accepted: 10/07/2023] [Indexed: 10/13/2023] Open
Abstract
The Saiga are migratory antelopes inhabiting the grasslands of Eurasia. Over the last century, Saiga have been pushed to the brink of extinction by mass mortality events and intense poaching. Yet, despite the high profile of the Saiga as an animal of conservation concern, little is known of its biology. In particular, the gut microbiota of Saiga has not been studied, despite its potential importance in health. Here, we characterise the gut microbiota of Saiga from two geographically distinct populations in Kazakhstan and compare it with that of other antelope species. We identified a consistent gut microbial diversity and composition among individuals and across two Saiga populations during a year without die-offs, with over 85% of bacterial genera being common to both populations despite vast geographic separation. We further show that the Saiga gut microbiota resembled that of five other antelopes. The putative causative agent of Saiga mass die-offs, Pasteurella multocida, was not detected in the Saiga microbiota. Our findings provide the first description of the Saiga gut microbiota, generating a baseline for future work investigating the microbiota's role in health and mass die-offs, and supporting the conservation of this critically endangered species.
Collapse
Affiliation(s)
- Eveliina Hanski
- Department of Biology, University of Oxford, Oxford, UK.
- Faculty of Medicine, University of Helsinki, Helsinki, Finland.
| | | | - Jingdi Li
- Department of Biology, University of Oxford, Oxford, UK
| | | | - Steffen Zuther
- Association for the Conservation of Biodiversity of Kazakhstan, Astana, Kazakhstan
- Frankfurt Zoological Society, Frankfurt, Germany
| | | | - Richard Kock
- Centre for Emerging, Endemic and Exotic Diseases, The Royal Veterinary College, University of London, London, UK
| | | |
Collapse
|
14
|
Nguyen PN, Rehan SM. Environmental Effects on Bee Microbiota. MICROBIAL ECOLOGY 2023; 86:1487-1498. [PMID: 37099156 DOI: 10.1007/s00248-023-02226-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Accepted: 04/19/2023] [Indexed: 06/19/2023]
Abstract
Anthropogenic activities and increased land use, which include industrialization, agriculture and urbanization, directly affect pollinators by changing habitats and floral availability, and indirectly by influencing their microbial composition and diversity. Bees form vital symbioses with their microbiota, relying on microorganisms to perform physiological functions and aid in immunity. As altered environments and climate threaten bees and their microbiota, characterizing the microbiome and its complex relationships with its host offers insights into understanding bee health. This review summarizes the role of sociality in microbiota establishment, as well as examines if such factors result in increased susceptibility to altered microbiota due to environmental changes. We characterize the role of geographic distribution, temperature, precipitation, floral resources, agriculture, and urbanization on bee microbiota. Bee microbiota are affected by altered surroundings regardless of sociality. Solitary bees that predominantly acquire their microbiota through the environment are particularly sensitive to such effects. However, the microbiota of obligately eusocial bees are also impacted by environmental changes despite typically well conserved and socially inherited microbiota. We provide an overview of the role of microbiota in plant-pollinator relationships and how bee microbiota play a larger role in urban ecology, offering microbial connections between animals, humans, and the environment. Understanding bee microbiota presents opportunities for sustainable land use restoration and aiding in wildlife conservation.
Collapse
Affiliation(s)
| | - Sandra M Rehan
- Department of Biology, York University, Toronto, Canada.
| |
Collapse
|
15
|
Zhang Y, Su JQ, Liao H, Breed MF, Yao H, Shangguan H, Li HZ, Sun X, Zhu YG. Increasing Antimicrobial Resistance and Potential Human Bacterial Pathogens in an Invasive Land Snail Driven by Urbanization. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:7273-7284. [PMID: 37097110 DOI: 10.1021/acs.est.3c01233] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Our understanding of the role urbanization has in augmenting invasive species that carry human bacterial pathogens and antimicrobial resistance (AMR) remains poorly understood. Here, we investigated the gut bacterial communities, antibiotic resistance genes (ARGs) and potential antibiotic-resistant pathogens in giant African snails (Achatina fulica) collected across an urbanization gradient in Xiamen, China (n = 108). There was a lack of correlation between the microbial profiles of giant African snails and the soils of their habitats, and the resistome and human-associated bacteria were significantly higher than those of native snails as well as soils. We observed high diversity (601 ARG subtypes) and abundance (1.5 copies per 16S rRNA gene) of giant African snail gut resistome. Moreover, giant African snails in more urban areas had greater diversity and abundance of high-risk ARGs and potential human bacterial pathogens (e.g., ESKAPE pathogens). We highlight that urbanization significantly impacted the gut microbiomes and resistomes of these invasive snails, indicating that they harbor greater biological contaminants such as ARGs and potential human bacterial pathogens than native snails and soils. This study advances our understanding of the effect of urbanization on human bacterial pathogens and AMR in a problematic invasive snail and should help combat risks associated with invasive species under the One Health framework.
Collapse
Affiliation(s)
- Yiyue Zhang
- Key Laboratory of Urban Environment and Health, Ningbo Observation and Research Station, Fujian Key Laboratory of Watershed Ecology, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China
- Zhejiang Key Laboratory of Urban Environmental Processes and Pollution Control, CAS Haixi Industrial Technology Innovation Center in Beilun, Ningbo 315830, China
| | - Jian-Qiang Su
- Key Laboratory of Urban Environment and Health, Ningbo Observation and Research Station, Fujian Key Laboratory of Watershed Ecology, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China
- Zhejiang Key Laboratory of Urban Environmental Processes and Pollution Control, CAS Haixi Industrial Technology Innovation Center in Beilun, Ningbo 315830, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Hu Liao
- Key Laboratory of Urban Environment and Health, Ningbo Observation and Research Station, Fujian Key Laboratory of Watershed Ecology, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China
- Zhejiang Key Laboratory of Urban Environmental Processes and Pollution Control, CAS Haixi Industrial Technology Innovation Center in Beilun, Ningbo 315830, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Martin F Breed
- College of Science and Engineering, Flinders University, Bedford Park, South Australia 5042, Australia
| | - Haifeng Yao
- Key Laboratory of Urban Environment and Health, Ningbo Observation and Research Station, Fujian Key Laboratory of Watershed Ecology, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China
- Zhejiang Key Laboratory of Urban Environmental Processes and Pollution Control, CAS Haixi Industrial Technology Innovation Center in Beilun, Ningbo 315830, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Huayuan Shangguan
- Key Laboratory of Urban Environment and Health, Ningbo Observation and Research Station, Fujian Key Laboratory of Watershed Ecology, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China
- Zhejiang Key Laboratory of Urban Environmental Processes and Pollution Control, CAS Haixi Industrial Technology Innovation Center in Beilun, Ningbo 315830, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Hong-Zhe Li
- Key Laboratory of Urban Environment and Health, Ningbo Observation and Research Station, Fujian Key Laboratory of Watershed Ecology, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China
- Zhejiang Key Laboratory of Urban Environmental Processes and Pollution Control, CAS Haixi Industrial Technology Innovation Center in Beilun, Ningbo 315830, China
| | - Xin Sun
- Key Laboratory of Urban Environment and Health, Ningbo Observation and Research Station, Fujian Key Laboratory of Watershed Ecology, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China
- Zhejiang Key Laboratory of Urban Environmental Processes and Pollution Control, CAS Haixi Industrial Technology Innovation Center in Beilun, Ningbo 315830, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yong-Guan Zhu
- Key Laboratory of Urban Environment and Health, Ningbo Observation and Research Station, Fujian Key Laboratory of Watershed Ecology, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China
- Zhejiang Key Laboratory of Urban Environmental Processes and Pollution Control, CAS Haixi Industrial Technology Innovation Center in Beilun, Ningbo 315830, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
16
|
Diaz J, Redford KH, Reese AT. Captive and urban environments are associated with distinct gut microbiota in deer mice ( Peromyscus maniculatus). Biol Lett 2023; 19:20220547. [PMID: 36883780 PMCID: PMC9994099 DOI: 10.1098/rsbl.2022.0547] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/09/2023] Open
Abstract
Animals in captive and urban environments encounter evolutionarily novel conditions shaped by humans, such as altered diets, exposure to human-associated bacteria, and, potentially, medical interventions. Captive and urban environments have been demonstrated to affect gut microbial composition and diversity independently but have not yet been studied together. By sequencing the gut microbiota of deer mice living in laboratory, zoo, urban and natural settings, we sought to identify (i) whether captive deer mouse gut microbiota have similar composition regardless of husbandry conditions and (ii) whether captive and urban deer mice have similar gut microbial composition. We found that the gut microbiota of captive deer mice were distinct from those of free-living deer mice, indicating captivity has a consistent effect on the deer mouse microbiota regardless of location, lineage or husbandry conditions for a population. Additionally, the gut microbial composition, diversity and bacterial load of free-living urban mice were distinct from those of all other environment types. Together, these results indicate that gut microbiota associated with captivity and urbanization are likely not a shared response to increased exposure to humans but rather are shaped by environmental features intrinsic to captive and urban conditions.
Collapse
Affiliation(s)
- Jessica Diaz
- Department of Ecology, Behavior, and Evolution, University of California, San Diego, La Jolla, CA 92093, USA
| | - Kent H Redford
- Archipelago Consulting, Portland, ME 04112, USA.,School of Marine and Environmental Programs, University of New England, Biddeford, ME 2350, USA
| | - Aspen T Reese
- Department of Ecology, Behavior, and Evolution, University of California, San Diego, La Jolla, CA 92093, USA.,Center for Microbiome Innovation, University of California, San Diego, La Jolla, CA 92093, USA
| |
Collapse
|
17
|
Zhao J, Yao Y, Dong M, Xiao H, Xiong Y, Yang S, Li D, Xie M, Ni Q, Zhang M, Xu H. Diet and high altitude strongly drive convergent adaptation of gut microbiota in wild macaques, humans, and dogs to high altitude environments. Front Microbiol 2023; 14:1067240. [PMID: 36910187 PMCID: PMC9995840 DOI: 10.3389/fmicb.2023.1067240] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Accepted: 02/03/2023] [Indexed: 02/25/2023] Open
Abstract
Animal gut microbiota plays an indispensable role in host adaptation to different altitude environments. At present, little is known about the mechanism of animal gut microbiota in host adaptation to high altitude environments. Here, we selected wild macaques, humans, and dogs with different levels of kinship and intimate relationships in high altitude and low altitude environments, and analyzed the response of their gut microbiota to the host diet and altitude environments. Alpha diversity analysis found that at high altitude, the gut microbiota diversity of wild macaques with more complex diet in the wild environments is much higher than that of humans and dogs with simpler diet (p < 0.05), and beta diversity analysis found that the UniFrac distance between humans and dogs was significantly lower than between humans and macaques (p < 0.05), indicating that diet strongly drive the convergence of gut microbiota among species. Meanwhile, alpha diversity analysis found that among three subjects, the gut microbiota diversity of high altitude population is higher than that of low altitude population (ACE index in three species, Shannon index in dog and macaque and Simpson index in dog, p < 0.05), and beta diversity analysis found that the UniFrac distances among the three subjects in the high altitude environments were significantly lower than in the low altitude environments (p < 0.05). Additionally, core shared ASVs analysis found that among three subjects, the number of core microbiota in high altitude environments is higher than in low altitude environments, up to 5.34 times (1,105/207), and the proportion and relative abundance of the core bacteria types in each species were significantly higher in high altitude environments than in low altitude environments (p < 0.05). The results showed that high altitude environments played an important role in driving the convergence of gut microbiota among species. Furthermore, the neutral community model trial found that the gut microbiota of the three subjects was dispersed much more at high altitude than at low altitude, implying that the gut microbiota convergence of animals at high altitudes may be partly due to the microbial transmission between hosts mediated by human activities.
Collapse
Affiliation(s)
- Junsong Zhao
- College of Life Science, Sichuan Agricultural University, Ya’an, China
- College of Agronomy and Life Sciences, Zhaotong University, Zhaotong, China
| | - Yongfang Yao
- College of Life Science, Sichuan Agricultural University, Ya’an, China
| | - Mengmeng Dong
- College of Life Science, Sichuan Agricultural University, Ya’an, China
| | - Hongtao Xiao
- College of Life Science, Sichuan Agricultural University, Ya’an, China
| | - Ying Xiong
- College of Life Science, Sichuan Agricultural University, Ya’an, China
| | - Shengzhi Yang
- College of Life Science, Sichuan Agricultural University, Ya’an, China
| | - Diyan Li
- School of Pharmacy, Chengdu University, Chengdu, China
| | - Meng Xie
- College of Life Science, Sichuan Agricultural University, Ya’an, China
| | - Qingyong Ni
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, China
| | - Mingwang Zhang
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, China
| | - Huailiang Xu
- College of Life Science, Sichuan Agricultural University, Ya’an, China
| |
Collapse
|
18
|
Li H, Xia W, Liu X, Wang X, Liu G, Chen H, Zhu L, Li D. Food provisioning results in functional, but not compositional, convergence of the gut microbiomes of two wild Rhinopithecus species: Evidence of functional redundancy in the gut microbiome. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 858:159957. [PMID: 36343820 DOI: 10.1016/j.scitotenv.2022.159957] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Revised: 10/29/2022] [Accepted: 10/31/2022] [Indexed: 06/16/2023]
Abstract
The consumption of similar diets has led to the convergence of gut microbial compositions and functions across phylogenetically distinct animals. However, given the functional redundancy in gut microbiomes, it remains unclear whether synchrony occurs in their functions only and not in their composition, even within phylogenetically close animals consuming a similar diet. In this study, we collected fresh fecal samples from a Rhinopithecus roxellana population in April 2021 (before food provisioning) and June and December 2021 (after food provisioning) and used high-throughput sequencing methods (full-length 16S rRNA gene sequencing and metagenomes) to investigate changes in the gut microbiome due to food provisioning. Combining the results from our previous studies on a wild Rhinopithecus bieti population, we found that the artificial food provisions (e.g., apples, carrots, and peanuts) affected the gut microbiome, and synchrony occurred only in its functions and antibiotic resistance gene community in both Rhinopithecus species, reflecting its ecological functional redundancy. Given the current findings (e.g., depletion in probiotic microbes, dysbiosis in the gut microbial community, and changes in the antibiotic resistance gene profile), anthropogenic disturbances (e.g., food provisioning) would have potential negative effects on host health. Therefore, human activity in animal conservation should be rethought from the standpoint of gut microbial diversity.
Collapse
Affiliation(s)
- Hong Li
- Key Laboratory of Southwest China Wildlife Resources Conservation (Ministry of Education), China West Normal University, Nanchong, Sichuan, China; Horticulture Research Institute, Sichuan Academy of Agricultural Sciences, Chengdu, Sichuan, China
| | - Wancai Xia
- Key Laboratory of Southwest China Wildlife Resources Conservation (Ministry of Education), China West Normal University, Nanchong, Sichuan, China
| | - Xingyu Liu
- Key Laboratory of Southwest China Wildlife Resources Conservation (Ministry of Education), China West Normal University, Nanchong, Sichuan, China
| | - Xueyu Wang
- Key Laboratory of Southwest China Wildlife Resources Conservation (Ministry of Education), China West Normal University, Nanchong, Sichuan, China
| | - Guoqi Liu
- Mingke Biotechnology, Hangzhou, China
| | - Hua Chen
- Mingke Biotechnology, Hangzhou, China
| | - Lifeng Zhu
- School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, China.
| | - Dayong Li
- Key Laboratory of Southwest China Wildlife Resources Conservation (Ministry of Education), China West Normal University, Nanchong, Sichuan, China.
| |
Collapse
|
19
|
Zhou J, Liao Z, Liu Z, Guo X, Zhang W, Chen Y. Urbanization increases stochasticity and reduces the ecological stability of microbial communities in amphibian hosts. Front Microbiol 2023; 13:1108662. [PMID: 36713161 PMCID: PMC9878570 DOI: 10.3389/fmicb.2022.1108662] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2022] [Accepted: 12/21/2022] [Indexed: 01/15/2023] Open
Abstract
Urbanization not only profoundly alters landscape profiles, ecosystems and vertebrate faunal diversity but also disturbs microbial communities by increasing stochasticity, vulnerability, biotic homogenization, etc. However, because of the buffering effect of host species, microbial communities are expected to be influenced by both host species and urbanization stresses. Therefore, the impacts of urbanization on animals' microbial symbionts could be more complex and uncertain. In this study, we quantified the urbanization degree of sampling sites and surveyed the gut and skin microbes of three amphibian host species in different sites in urban parks and nearby villages of Chengdu, Southwest China. Furthermore, a co-occurrence network analysis, the phylogenetic normalized stochasticity ratio and Sloan neutral community models were applied to infer the impact of urbanization on symbiotic microbial communities. For the three host species, urbanization increased the diversity of symbiotic microbes and the number of keystone microbial taxa. However, the negative effects of such increased diversification were evident, as the community stochasticity and co-occurrence network structure vulnerability also increased, while the network structure complexity and stability were reduced. Finally, the community stochasticity had positive associations with the network vulnerability, implying that the existence of many transient symbiotic rare microbial taxa in urban parks makes the symbiotic microbial community structure more fragile. Conclusively, urbanization increased the symbiotic microbial diversity at the cost of community stability; the results provide a new perspective for better understanding the complex triangulated environment-host-microbe relationship.
Collapse
Affiliation(s)
- Jin Zhou
- China-Croatia “Belt and Road” Joint Laboratory on Biodiversity and Ecosystem Services, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, China,Key Laboratory of Bio-Resources and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, Sichuan, China,University of Chinese Academy of Sciences, Beijing, China
| | - Ziyan Liao
- China-Croatia “Belt and Road” Joint Laboratory on Biodiversity and Ecosystem Services, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, China
| | - Zhidong Liu
- China-Croatia “Belt and Road” Joint Laboratory on Biodiversity and Ecosystem Services, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, China,University of Chinese Academy of Sciences, Beijing, China
| | - Xuecheng Guo
- China-Croatia “Belt and Road” Joint Laboratory on Biodiversity and Ecosystem Services, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, China,University of Chinese Academy of Sciences, Beijing, China
| | - Wenyan Zhang
- China-Croatia “Belt and Road” Joint Laboratory on Biodiversity and Ecosystem Services, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, China,University of Chinese Academy of Sciences, Beijing, China
| | - Youhua Chen
- China-Croatia “Belt and Road” Joint Laboratory on Biodiversity and Ecosystem Services, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, China,*Correspondence: Youhua Chen,
| |
Collapse
|
20
|
Vasconcelos DS, Harris DJ, Damas-Moreira I, Pereira A, Xavier R. Factors shaping the gut microbiome of five species of lizards from different habitats. PeerJ 2023; 11:e15146. [PMID: 37187519 PMCID: PMC10178224 DOI: 10.7717/peerj.15146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Accepted: 03/09/2023] [Indexed: 05/17/2023] Open
Abstract
Background Host-gut microbiota interactions are complex and can have a profound impact on the ecology and evolution of both counterparts. Several host traits such as systematics, diet and social behavior, and external factors such as prey availability and local environment are known to influence the composition and diversity of the gut microbiota. Methods In this study, we investigate the influence of systematics, sex, host size, and locality/habitat on gut microbiota diversity in five lizard species from two different sites in Portugal: Podarcis bocagei and Podarcis lusitanicus, living in syntopy in a rural area in northern Portugal (Moledo); the invasive Podarcis siculus and the native Podarcis virescens, living in sympatry in an urbanized environment (Lisbon); and the invasive Teira dugesii also living in an urban area (Lisbon). We also infer the potential microbial transmission occurring between species living in sympatry and syntopy. To achieve these goals, we use a metabarcoding approach to characterize the bacterial communities from the cloaca of lizards, sequencing the V4 region of the 16S rRNA. Results Habitat/locality was an important factor explaining differences in gut bacterial composition and structure, with species from urbanized environments having higher bacterial diversity. Host systematics (i.e., species) influenced gut bacterial community structure only in lizards from the urbanized environment. We also detected a significant positive correlation between lizard size and gut bacterial alpha-diversity in the invasive species P. siculus, which could be due to its higher exploratory behavior. Moreover, estimates of bacterial transmission indicate that P. siculus may have acquired a high proportion of local microbiota after its introduction. These findings confirm that a diverse array of host and environmental factors can influence lizards' gut microbiota.
Collapse
Affiliation(s)
- Diana S. Vasconcelos
- CIBIO - Centro de Investigação em Biodiversidade e Recursos Genéticos, InBIO Laboratório Associado, Campus de Vairão da Universidade do Porto, Vairão, Portugal
- Departamento de Biologia, Faculdade de Ciências da Universidade do Porto, Porto, Portugal
- BIOPOLIS Program in Genomics, Biodiversity and Land Planning, CIBIO - Campus de Vairão, Vairão, Portugal
| | - D. James Harris
- CIBIO - Centro de Investigação em Biodiversidade e Recursos Genéticos, InBIO Laboratório Associado, Campus de Vairão da Universidade do Porto, Vairão, Portugal
- BIOPOLIS Program in Genomics, Biodiversity and Land Planning, CIBIO - Campus de Vairão, Vairão, Portugal
| | | | - Ana Pereira
- CIBIO - Centro de Investigação em Biodiversidade e Recursos Genéticos, InBIO Laboratório Associado, Campus de Vairão da Universidade do Porto, Vairão, Portugal
- Departamento de Biologia, Faculdade de Ciências da Universidade do Porto, Porto, Portugal
- BIOPOLIS Program in Genomics, Biodiversity and Land Planning, CIBIO - Campus de Vairão, Vairão, Portugal
| | - Raquel Xavier
- CIBIO - Centro de Investigação em Biodiversidade e Recursos Genéticos, InBIO Laboratório Associado, Campus de Vairão da Universidade do Porto, Vairão, Portugal
- BIOPOLIS Program in Genomics, Biodiversity and Land Planning, CIBIO - Campus de Vairão, Vairão, Portugal
| |
Collapse
|
21
|
Wist B, Stolter C, Dausmann KH. Sugar addicted in the city: impact of urbanisation on food choice and diet composition of the Eurasian red squirrel ( Sciurus vulgaris). JOURNAL OF URBAN ECOLOGY 2022. [DOI: 10.1093/jue/juac012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Abstract
Urban wildlife faces a great variety of human-induced habitat alterations, among others changes in resource availability and composition, often resulting in serious declines in biodiversity. Nevertheless, Eurasian red squirrels (Sciurus vulgaris) occur in high densities in urban areas and seem to benefit from supplementary feeding. However, we still lack knowledge about consequences of urbanisation on mammalian foraging behaviour and nutrient intake. Thus, we investigated body mass, food choice and diet composition in squirrels from an urban core area versus a forest population in a cafeteria experiment. Urban individuals were lower in initial body mass and condition, but consumed significantly more g and kJ per day and significantly gained weight over the course of the experiment (around 2 weeks); nevertheless, the difference in body mass and condition persisted. All squirrels preferred hazelnuts, but urban squirrels had a wider dietary range and consumed more non-natural food items. Both groups prioritised fat and there was no difference in protein intake. Urban squirrels though had a significantly higher sugar intake, mainly by eating biscuits. Our results demonstrate clear effects of urbanisation on foraging behaviour and preferences, which has the potential for nutritional mismatch or negative side effects due to consumption of non-natural food items. Our findings show that highly supplemented urban core fragments might not serve as adequate refuge for wildlife.
Collapse
Affiliation(s)
- Bianca Wist
- Functional Ecology, Institute of Cell and Systems Biology of Animals, Martin-Luther-King-Platz 3, Universität Hamburg , 20146 Hamburg, Germany
| | - Caroline Stolter
- Department of Nature Conservation and Landscape Planning, Anhalt University of Applied Sciences, Strenzfelder Allee 28 , 06406 Bernburg, Germany
| | - Kathrin H Dausmann
- Functional Ecology, Institute of Cell and Systems Biology of Animals, Martin-Luther-King-Platz 3, Universität Hamburg , 20146 Hamburg, Germany
| |
Collapse
|