1
|
Zhu B, Liu C, Luo M, Chen J, Tian S, Zhan T, Liu Y, Zhang H, Wang Z, Zhang J, Fang Y, Chen S, Wang X. Spatiotemporal dynamic changes of meningeal microenvironment influence meningeal lymphatic function following subarachnoid hemorrhage: from inflammatory response to tissue remodeling. J Neuroinflammation 2025; 22:131. [PMID: 40380229 PMCID: PMC12083004 DOI: 10.1186/s12974-025-03460-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2025] [Accepted: 05/02/2025] [Indexed: 05/19/2025] Open
Abstract
BACKGROUND Meningeal lymphatic vessels (mLVs) play a critical role in clearing erythrocytes from the subarachnoid space and immune cells from the brain parenchyma following subarachnoid hemorrhage (SAH). However, the drainage function of mLVs is impaired during the acute stage after SAH and gradually recovers in the subacute phase. We aimed to investigate the meningeal transcriptional response post-SAH and elucidate the dynamic influence of meningeal microenvironment on meningeal lymphatic function. METHODS We employed bioinformatics analysis of single-cell RNA sequencing and spatial transcriptomics to characterize the spatiotemporal dynamic changes in the early meningeal microenvironment post-SAH. In a mouse model of SAH, the early dynamic changes of the meningeal immune cells and the potential growth factor that promoted the early repair of the mLVs were further investigated and validated. RESULTS During the acute phase, myeloid cells early infiltrated the meninges and triggered inflammatory responses. In the subacute phase, the fibroblast population expanded significantly, contributing to tissue remodeling. The interplay between immune cells and fibroblasts regulated cell migration and phenotypic transition, potentially affecting the function of mLVs. Notably, placental growth factor (PGF) emerged as the most prominent ligand within the VEGF signaling pathway received by meningeal lymphatic endothelial cells (mLECs) post-SAH. This signaling event was associated with the early recovery of mLVs after acute immune responses. CONCLUSIONS Our study revealed a spatiotemporal transformation of the meningeal microenvironment from an "inflammatory response" phase to a "tissue remodeling" phase following SAH. Monocyte-derived macrophages and self-recruiting neutrophils contributed to impairment of mLVs in the acute stage, while PGF might serve as a key factor promoting early meningeal lymphatic function repair following the inflammatory response. These findings provided novel insights into the cellular dynamics underlying mLVs dysfunction and recovery post-SAH.
Collapse
Affiliation(s)
- Bingrui Zhu
- Department of Neurosurgery, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310009, China
- Key Laboratory of Precise Treatment and Clinical Translational Research of Neurological Diseases, Hangzhou, 310009, Zhejiang, China
- State Key Laboratory of Transvascular Implantation Devices, Hangzhou, 310009, China
| | - Changming Liu
- Zhejiang University School of Medicine, Hangzhou, 310058, China
| | - Ming Luo
- Department of Neurosurgery, Lishui Central Hospital, The Fifth Affiliated Hospital of Wenzhou Medical University, Lishui, 323000, China
| | - Jiarui Chen
- Department of Neurosurgery, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310009, China
- Key Laboratory of Precise Treatment and Clinical Translational Research of Neurological Diseases, Hangzhou, 310009, Zhejiang, China
- State Key Laboratory of Transvascular Implantation Devices, Hangzhou, 310009, China
| | - Sixuan Tian
- Department of Neurosurgery, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310009, China
- Key Laboratory of Precise Treatment and Clinical Translational Research of Neurological Diseases, Hangzhou, 310009, Zhejiang, China
- State Key Laboratory of Transvascular Implantation Devices, Hangzhou, 310009, China
| | - Tiantong Zhan
- Department of Neurosurgery, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310009, China
- Key Laboratory of Precise Treatment and Clinical Translational Research of Neurological Diseases, Hangzhou, 310009, Zhejiang, China
- State Key Laboratory of Transvascular Implantation Devices, Hangzhou, 310009, China
| | - Yibo Liu
- Department of Neurosurgery, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310009, China
- Key Laboratory of Precise Treatment and Clinical Translational Research of Neurological Diseases, Hangzhou, 310009, Zhejiang, China
- State Key Laboratory of Transvascular Implantation Devices, Hangzhou, 310009, China
| | - Haocheng Zhang
- Department of Neurosurgery, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310009, China
- Key Laboratory of Precise Treatment and Clinical Translational Research of Neurological Diseases, Hangzhou, 310009, Zhejiang, China
- State Key Laboratory of Transvascular Implantation Devices, Hangzhou, 310009, China
| | - Zhen Wang
- Department of Neurosurgery, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310009, China
- Key Laboratory of Precise Treatment and Clinical Translational Research of Neurological Diseases, Hangzhou, 310009, Zhejiang, China
- State Key Laboratory of Transvascular Implantation Devices, Hangzhou, 310009, China
| | - Jianmin Zhang
- Department of Neurosurgery, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310009, China
- Key Laboratory of Precise Treatment and Clinical Translational Research of Neurological Diseases, Hangzhou, 310009, Zhejiang, China
- State Key Laboratory of Transvascular Implantation Devices, Hangzhou, 310009, China
| | - Yuanjian Fang
- Department of Neurosurgery, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310009, China.
- Key Laboratory of Precise Treatment and Clinical Translational Research of Neurological Diseases, Hangzhou, 310009, Zhejiang, China.
- State Key Laboratory of Transvascular Implantation Devices, Hangzhou, 310009, China.
| | - Sheng Chen
- Department of Neurosurgery, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310009, China.
- Key Laboratory of Precise Treatment and Clinical Translational Research of Neurological Diseases, Hangzhou, 310009, Zhejiang, China.
- State Key Laboratory of Transvascular Implantation Devices, Hangzhou, 310009, China.
| | - Xiaoyu Wang
- Department of Neurosurgery, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310009, China.
- Key Laboratory of Precise Treatment and Clinical Translational Research of Neurological Diseases, Hangzhou, 310009, Zhejiang, China.
- State Key Laboratory of Transvascular Implantation Devices, Hangzhou, 310009, China.
| |
Collapse
|
2
|
Hitpass Romero K, Stevenson TJ, Smyth LCD, Watkin B, McCullough SJC, Vinnell L, Smith AM, Schweder P, Correia JA, Kipnis J, Dragunow M, Rustenhoven J. Age-related meningeal extracellular matrix remodeling compromises CNS lymphatic function. J Neuroinflammation 2025; 22:109. [PMID: 40247257 PMCID: PMC12007191 DOI: 10.1186/s12974-025-03436-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2025] [Accepted: 04/01/2025] [Indexed: 04/19/2025] Open
Abstract
Efficient clearance of central nervous system (CNS) waste proteins and appropriate immune surveillance is essential for brain health. These processes are facilitated by lymphatic networks present in the meninges that drain cerebrospinal fluid (CSF). Age-related impairments to meningeal lymphatic drainage contribute to CNS waste accumulation and immune dysfunction, yet the underlying mechanisms remain poorly understood. Here, we identify extracellular matrix (ECM) remodeling in the aged dura as a key driver of CSF clearance deficits, demonstrating that peri-lymphatic collagen accumulation disrupts lymphatic function. Exploring immune-derived factors contributing to this ECM remodeling, we identify transforming growth factor beta 1 (TGFβ1) as a major regulator using primary human dural fibroblasts. Using a novel mouse model with constitutively active TGFβ receptor 1 (TGFβR1) signaling in dural fibroblasts, we show that excessive peri-lymphatic collagen deposition impairs meningeal lymphatic drainage and alters meningeal immunity. Mechanistically, we reveal that ECM-associated matrix stiffness disrupts lymphatic junction integrity and impairs lymphangiogenesis in human lymphatic endothelial cells. These findings establish dural immune cell and fibroblast-mediated ECM remodeling as a critical regulator of CSF clearance and highlight it as a potential therapeutic target for restoring brain waste clearance in aging.
Collapse
Affiliation(s)
- Kate Hitpass Romero
- Department of Pharmacology and Clinical Pharmacology, The University of Auckland, Auckland, New Zealand
- Centre for Brain Research, The University of Auckland, Auckland, New Zealand
| | - Taylor J Stevenson
- Department of Pharmacology and Clinical Pharmacology, The University of Auckland, Auckland, New Zealand
- Centre for Brain Research, The University of Auckland, Auckland, New Zealand
| | - Leon C D Smyth
- Brain Immunology and Glia Center, School of Medicine, Washington University in St. Louis, St. Louis, MO, USA
- Department of Pathology and Immunology, School of Medicine, Washington University in St. Louis, St. Louis, MO, USA
- Immunology Graduate Program, School of Medicine, Washington University in St. Louis, St. Louis, MO, USA
| | - Ben Watkin
- Department of Pharmacology and Clinical Pharmacology, The University of Auckland, Auckland, New Zealand
- Centre for Brain Research, The University of Auckland, Auckland, New Zealand
| | - Samuel J C McCullough
- Department of Pharmacology and Clinical Pharmacology, The University of Auckland, Auckland, New Zealand
- Centre for Brain Research, The University of Auckland, Auckland, New Zealand
| | - Luca Vinnell
- Department of Pharmacology and Clinical Pharmacology, The University of Auckland, Auckland, New Zealand
- Centre for Brain Research, The University of Auckland, Auckland, New Zealand
| | - Amy M Smith
- Department of Pharmacology and Clinical Pharmacology, The University of Auckland, Auckland, New Zealand
- Centre for Brain Research, The University of Auckland, Auckland, New Zealand
| | - Patrick Schweder
- Centre for Brain Research, The University of Auckland, Auckland, New Zealand
- Auckland City Hospital, Auckland, 1023, New Zealand
| | - Jason A Correia
- Centre for Brain Research, The University of Auckland, Auckland, New Zealand
- Auckland City Hospital, Auckland, 1023, New Zealand
| | - Jonathan Kipnis
- Brain Immunology and Glia Center, School of Medicine, Washington University in St. Louis, St. Louis, MO, USA
- Department of Pathology and Immunology, School of Medicine, Washington University in St. Louis, St. Louis, MO, USA
- Immunology Graduate Program, School of Medicine, Washington University in St. Louis, St. Louis, MO, USA
| | - Mike Dragunow
- Department of Pharmacology and Clinical Pharmacology, The University of Auckland, Auckland, New Zealand
- Centre for Brain Research, The University of Auckland, Auckland, New Zealand
| | - Justin Rustenhoven
- Department of Pharmacology and Clinical Pharmacology, The University of Auckland, Auckland, New Zealand.
- Centre for Brain Research, The University of Auckland, Auckland, New Zealand.
| |
Collapse
|
3
|
Aderibigbe O, Wood LB, Margulies SS. Cyclosporine A Accelerates Neurorecovery Transcriptional Trajectory in a Swine Model of Diffuse Traumatic Brain Injury. Int J Mol Sci 2025; 26:3531. [PMID: 40331981 PMCID: PMC12026708 DOI: 10.3390/ijms26083531] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2025] [Revised: 04/04/2025] [Accepted: 04/05/2025] [Indexed: 05/08/2025] Open
Abstract
Mild traumatic brain injury (mTBI) is a leading cause of morbidity in children with both short- and long-term neurological, cognitive, cerebrovascular, and emotional deficits. These deficits have been attributed to ongoing pathophysiological cascades that occur acutely and persist post-injury. Given our limited understanding of the transcriptional changes associated with these pathophysiological cascades, we studied formalin-fixed paraffin-embedded (FFPE) tissues from the frontal cortex (FC) and the hippocampus + amygdala (H&A) regions of swine (N = 40) after a sagittal rapid non-impact head rotation (RNR). We then sequenced RNA to define transcriptional changes at 1 day and 1 week after injury and investigated the protective influence of cyclosporine A (CsA) treatment. Differentially expressed genes (DEGs) were classified into five temporal patterns (Early, Transient, Persistent, Intensified, Delayed, or Late). DEGs were more abundant at 1 week than 1 day. Shared significant gene ontology annotations in both regions included terms associated with neuronal distress at 1 day and neurorecovery at 1 week. CsA (20 mg/kg/day) infused for 1 day (beginning at 6 h after injury) accelerated 466 DEGs in the FC and 2794 DEGs in the H&A, such that the CsA-treated transcriptional profile was associated with neurorecovery. Overall, our data reveal the effects of anatomic region and elapsed time on gene expression post-mTBI and motivate future studies of CsA treatment.
Collapse
Affiliation(s)
- Oluwagbemisola Aderibigbe
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA 30332, USA;
| | - Levi B. Wood
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA 30332, USA;
- George W. Woodruff School of Mechanical Engineering and Parker H. Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, GA 30332, USA
| | - Susan S. Margulies
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA 30332, USA;
| |
Collapse
|
4
|
Biscetti L, Vaiasicca S, Giorgetti B, Sarchielli P, Orlando F, Di Rienzo A, Carrassi E, Di Rosa M, Marcozzi S, Casoli T, Pelliccioni G. Neuroinflammation increases in old and oldest-old rats except for dura mater meningeal tissue with significant gender differences: a translational perspective. Biogerontology 2025; 26:73. [PMID: 40085280 DOI: 10.1007/s10522-025-10212-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2024] [Accepted: 02/27/2025] [Indexed: 03/16/2025]
Abstract
Neuroinflammaging is the nervous system version of inflammaging, the low-grade inflammation that develops with advanced age, aside from active disease or infection. Despite neuroinflammaging has been widely investigated, some important issues still need to be resolved such as the analysis of the extremely old subjects and the evaluation of specific brain areas. On this background, we conducted a study to analyze expression of inflammatory and anti-inflammatory genes in Wistar rats of different ages, including the oldest-old, in different brain regions. We found that pro-inflammatory mediators were generally up-regulated with age in cortex, hippocampus, and striatum, especially in the oldest-old group. Specifically, TNF-α showed an increment in expression with age in striatum, IL-1β and IFN-γ in hippocampus, and MCP-1 in cortex, hippocampus and striatum. Conversely, CX3CL1 and NOS2 showed a significant reduction of expression in the cortex of the oldest-old group. A different situation was observed in dura mater where TNF-α, IL-6, IL-1β, CX3CL1, and MCP-1 expression decreased in the older groups in comparison with the younger groups. With age the anti-inflammatory cytokines IL-4 and IL-10 were down-regulated in cortex, and TGF-β1 in dura mater, while IL-4 was up-regulated in the oldest-old group in hippocampus. Finally, we observed that female brains underwent an age-related increase of pro-inflammatory cytokines expression compared to males, except for striatum, and a general down-regulation of anti-inflammatory cytokines within each age group. Protein validation of selected factors by ELISA tests supported the observed changes. These data may represent a basis for future research about the neurobiology of aging, in particular in the neurodegenerative disorder framework.
Collapse
Affiliation(s)
| | | | - Belinda Giorgetti
- Center for Neurobiology of Aging, IRCCS INRCA, Via Birarelli 8, 60121, Ancona, Italy
| | | | - Fiorenza Orlando
- Experimental Animal Models for Aging Research, IRCCS INRCA, 60121, Ancona, Italy
| | - Alessandro Di Rienzo
- Department of Neurosurgery, Azienda Ospedali Riuniti Ancona, Università Politecnica Delle Marche, 60126, Ancona, Italy
| | - Erika Carrassi
- Department of Neurosurgery, ASST Niguarda, 20126, Milan, Italy
| | - Mirko Di Rosa
- Centre for Biostatistics and Applied Geriatric Clinical Epidemiology, IRCCS INRCA, 60124, Ancona, Italy
| | - Serena Marcozzi
- Advanced Technology Center for Aging Research and Geriatric Mouse Clinic, IRCCS INRCA, 60121, Ancona, Italy
| | - Tiziana Casoli
- Center for Neurobiology of Aging, IRCCS INRCA, Via Birarelli 8, 60121, Ancona, Italy.
| | | |
Collapse
|
5
|
Patel PU, Regmi A, Dass AI, Rojas OL. Immune conversations at the border: meningeal immunity in health and disease. Front Immunol 2025; 16:1531068. [PMID: 39944687 PMCID: PMC11813769 DOI: 10.3389/fimmu.2025.1531068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2024] [Accepted: 01/10/2025] [Indexed: 05/09/2025] Open
Abstract
The brain and spinal cord, collectively known as the central nervous system, are encapsulated by an overlapping series of membranes known as the meninges. Once considered primarily a physical barrier for central nervous system protection, the bordering meninges are now recognized as highly immunologically active. The meninges host diverse resident immune cells and serve as a critical interface with peripheral immunity, playing multifaceted roles in maintaining central nervous system homeostasis, responding to pathogenic threats, and neurological disorders. This review summarizes recent advancements in our understanding of meningeal immunity including its structural composition, physiological functions, and role in health and disease.
Collapse
Affiliation(s)
- Preya U. Patel
- Department of Immunology, University of Toronto, Toronto, ON, Canada
- Krembil Research Institute, University Health Network, Toronto, ON, Canada
| | - Aryan Regmi
- Department of Immunology, University of Toronto, Toronto, ON, Canada
- Krembil Research Institute, University Health Network, Toronto, ON, Canada
| | - Angelina I. Dass
- Department of Immunology, University of Toronto, Toronto, ON, Canada
- Krembil Research Institute, University Health Network, Toronto, ON, Canada
| | - Olga L. Rojas
- Department of Immunology, University of Toronto, Toronto, ON, Canada
- Krembil Research Institute, University Health Network, Toronto, ON, Canada
| |
Collapse
|
6
|
Kursancew ACS, Faller CJ, Bortoluzzi DP, Niero LB, Brandão B, Danielski LG, Petronilho F, Generoso JS. Neuroinflammatory Response in the Traumatic Brain Injury: An Update. Neurochem Res 2024; 50:64. [PMID: 39718667 DOI: 10.1007/s11064-024-04316-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Revised: 11/25/2024] [Accepted: 12/09/2024] [Indexed: 12/25/2024]
Abstract
The central nervous system (CNS) comprises membranes and barriers that are vital to brain homeostasis. Membranes form a robust shield around neural structures, ensuring protection and structural integrity. At the same time, barriers selectively regulate the exchange of substances between blood and brain tissue, which is essential for maintaining homeostasis. Another highlight is the glymphatic system, which cleans metabolites and waste from the brain. Traumatic brain injury (TBI) represents a significant cause of disability and mortality worldwide, resulting from the application of direct mechanical force to the head that results in a primary injury. Therefore, this review aims to elucidate the mechanisms associated with the secondary injury cascade, in which there is intense activation of glial cells, dysfunction of the glymphatic system, glutamatergic neurotoxicity, additional molecular and biochemical changes that lead to a neuroinflammatory process, and oxidative stress and in which way they can be associated with cognitive damage that is capable of lasting for an extended period.
Collapse
Affiliation(s)
- Amanda C S Kursancew
- Laboratory of Experimental Neurology, Graduate Program in Health Sciences, University of Southern Santa Catarina (UNESC), Criciúma, SC, Brazil
| | - Cristiano Julio Faller
- Laboratory of Experimental Neurology, Graduate Program in Health Sciences, University of Southern Santa Catarina (UNESC), Criciúma, SC, Brazil
| | - Daniel Paulo Bortoluzzi
- Laboratory of Experimental Pathophysiology, Graduate Program in Health Sciences, University of Southern Santa Catarina (UNESC), Criciúma, SC, Brazil
| | - Luana Budny Niero
- Laboratory of Experimental Pathophysiology, Graduate Program in Health Sciences, University of Southern Santa Catarina (UNESC), Criciúma, SC, Brazil
| | - Beatriz Brandão
- Laboratory of Experimental Neurology, Graduate Program in Health Sciences, University of Southern Santa Catarina (UNESC), Criciúma, SC, Brazil
| | - Lucineia Gainski Danielski
- Translational Psychiatry Program, Faillace Department of Psychiatry and Behavioral Sciences, McGovern Medical School, The University of Texas Health Science Center at Houston (UTHealth), Houston, TX, USA
| | - Fabricia Petronilho
- Laboratory of Experimental Neurology, Graduate Program in Health Sciences, University of Southern Santa Catarina (UNESC), Criciúma, SC, Brazil
| | - Jaqueline S Generoso
- Laboratory of Experimental Neurology, Graduate Program in Health Sciences, University of Southern Santa Catarina (UNESC), Criciúma, SC, Brazil.
| |
Collapse
|
7
|
Gupta A, Bice Z, Chen V, Chen Y, Veltri AJ, Lin CW, Ma X, Pan AY, Zennadi R, Palecek SP, Mohieldin AM, Nauli SM, Ramchandran R, Rarick KR. Severe traumatic brain injury temporally affects cerebral blood flow, endothelial cell phenotype, and cilia. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.11.19.623875. [PMID: 39605741 PMCID: PMC11601676 DOI: 10.1101/2024.11.19.623875] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2024]
Abstract
Background Previous clinical work suggested that altered cerebral blood flow (CBF) in severe traumatic brain injury (sTBI) correlates with poor executive function and clinical outcome. However, the molecular consequences of altered CBF on endothelial cells (ECs) and their blood flow-sensor organelle called cilia are not known. Methods We performed laser speckle contrast imaging, single cell isolation, and single cell RNA sequencing (scRNAseq) after sTBI in a closed skull, linear impact mouse model. Validation of select ciliary target protein changes was performed using flow cytometry. Additionally, in vitro experiments modeled the post-injury hypoxic environment to evaluate the effect on cilia protein ARL13B in human brain microvascular ECs. Results We detected immediate reductions in CBF that were sustained for at least 100 minutes in both impacted and non-impacted sides of the brain. Our scRNAseq data detected heterogeneity in the brain cortex-derived EC cluster and demonstrated that two of five unique EC sub-clusters changed their relative proportions post-sTBI. Consistent with flow changes, we identified multiple genes associated with the fluid shear stress pathway that were significantly differentially expressed in brain ECs post-injury. Also, ECs displayed activation of ischemic pathway as early as day 1 post-injury, and enrichment of hypoxia pathway at day 7 and 28 post- injury. Arl13b ciliary gene expression was lost on day 1 in ECs cluster and remained lost for the entire course of the injury. We validated the loss of cilia protein ARL13B specifically from brain ECs as early as day 1 post-injury and detected the protein in the peripheral blood of the injured mice. We also determined that hypoxia could induce loss of ARL13B protein from cultured ECs. Conclusions In severe TBI, blood flow is disrupted in both impacted and non-impacted regions of the brain, creating a hypoxic environment that may influence ciliary gene and protein expression on ECs.
Collapse
|
8
|
Chen Z, Wang Z, Mentis AFA, Stey AM, Schwulst SJ. Factors associated with unfavorable outcomes in older patients with traumatic brain injury: analysis from the "All of Us" research program. Front Neurol 2024; 15:1452995. [PMID: 39628897 PMCID: PMC11611856 DOI: 10.3389/fneur.2024.1452995] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Accepted: 10/21/2024] [Indexed: 12/06/2024] Open
Abstract
Traumatic brain injury (TBI) afflicts approximately 70 million people worldwide annually, with patients aged 65 years and older accounting for an increasing proportion of TBI patients. Older patients also experience increased morbidity and mortality post-TBI compared to their younger counterparts. Nevertheless, clinical trials often exclude older TBI patients, and age-specific TBI treatment is lacking. We hypothesized that the APOE genotype and age-associated comorbidities, such as heart disease, are associated with unfavorable outcomes following TBI in older patients. We utilized a dataset from the "All of Us research" (AoU) to study this vulnerable population post-TBI. Launched by the National Institutes of Health (NIH), AoU is a nationwide prospective cohort study aiming to enroll 1 million or more individuals by emphasizing traditionally underrepresented populations in the United States. We defined patients diagnosed with post-concussion syndromes (PCS) as those with unfavorable TBI outcomes, and we also assessed the associations between PCS observed in older patients and different comorbidities variables/APOE genotypes via multiple logistic regression models. Consequently, APOE ε4 allele was strongly associated with PCS in patients aged 65 and older. Our findings provide direct evidence for developing better predictive tools and potentially improving the clinical guidance and management of older adults with TBI.
Collapse
Affiliation(s)
- Zhangying Chen
- Department of Surgery, Division of Trauma and Critical Care, Northwestern University Feinberg School of Medicine, Chicago, IL, United States
- Driskill Graduate Program in Life Sciences, Northwestern University Feinberg School of Medicine, Chicago, IL, United States
| | - Zihao Wang
- Department of Statistics and Actuarial Science, University of Waterloo, Waterloo, ON, Canada
| | - Alexios-Fotios A. Mentis
- Medical School, National and Kapodistrian University of Athens, Athens, Greece
- BGI Genomics, BGI-Shenzhen, Shenzhen, Guangdong, China
| | - Anne M. Stey
- Department of Surgery, Division of Trauma and Critical Care, Northwestern University Feinberg School of Medicine, Chicago, IL, United States
| | - Steven J. Schwulst
- Department of Surgery, Division of Trauma and Critical Care, Northwestern University Feinberg School of Medicine, Chicago, IL, United States
| |
Collapse
|
9
|
Zhang X, Liu L, Chai Y, Zhang J, Deng Q, Chen X. Reimagining the meninges from a neuroimmune perspective: a boundary, but not peripheral. J Neuroinflammation 2024; 21:299. [PMID: 39548515 PMCID: PMC11568633 DOI: 10.1186/s12974-024-03286-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2024] [Accepted: 11/03/2024] [Indexed: 11/18/2024] Open
Abstract
Recent advances in neuroscience have transformed our understanding of the meninges, the layers surrounding the central nervous system (CNS). Two key findings have advanced our understanding: researchers identified cranial bone marrow as a reservoir for meningeal immune cells, and rediscovered a brain lymphatic system. Once viewed merely as a protective barrier, the meninges are now recognized as a dynamic interface crucial for neuroimmune interactions. This shift in perspective highlights their unique role in maintaining CNS balance, shaping brain development, and regulating responses to injury and disease. This review synthesizes the latest insights into meningeal anatomy and function, with a focus on newly identified structures such as dural-associated lymphoid tissues (DALT) and arachnoid cuff exit (ACE) points. We also examine the diverse immune cell populations within the meninges and their interactions with the CNS, underscoring the emerging view of the meninges as active participants in brain immunity. Finally, we outline critical unanswered questions about meningeal immunity, proposing directions for future research. By addressing these knowledge gaps, we aim to deepen our understanding of the meninges' role in brain health and disease, potentially paving the way for novel therapeutic approaches.
Collapse
Affiliation(s)
- Xian Zhang
- Department of Neurosurgery, Tianjin Medical University General Hospital, No.154, Anshan Road, Tianjin, 300052, P.R. China
- Tianjin Neurological Institute, Key Laboratory of Post-Trauma Neuro-Repair and Regeneration in Central Nervous System, Ministry of Education, Tianjin, P.R. China
| | - Liang Liu
- Department of Neurosurgery, Tianjin Medical University General Hospital, No.154, Anshan Road, Tianjin, 300052, P.R. China
- Tianjin Neurological Institute, Key Laboratory of Post-Trauma Neuro-Repair and Regeneration in Central Nervous System, Ministry of Education, Tianjin, P.R. China
| | - Yan Chai
- Tianjin Neurological Institute, Key Laboratory of Post-Trauma Neuro-Repair and Regeneration in Central Nervous System, Ministry of Education, Tianjin, P.R. China
| | - Jianning Zhang
- Department of Neurosurgery, Tianjin Medical University General Hospital, No.154, Anshan Road, Tianjin, 300052, P.R. China
- Tianjin Neurological Institute, Key Laboratory of Post-Trauma Neuro-Repair and Regeneration in Central Nervous System, Ministry of Education, Tianjin, P.R. China
| | - Quanjun Deng
- Department of Neurosurgery, Tianjin Medical University General Hospital, No.154, Anshan Road, Tianjin, 300052, P.R. China.
| | - Xin Chen
- Department of Neurosurgery, Tianjin Medical University General Hospital, No.154, Anshan Road, Tianjin, 300052, P.R. China.
- Tianjin Neurological Institute, Key Laboratory of Post-Trauma Neuro-Repair and Regeneration in Central Nervous System, Ministry of Education, Tianjin, P.R. China.
| |
Collapse
|
10
|
Zhang Y, Li T, Wang G, Ma Y. Advancements in Single-Cell RNA Sequencing and Spatial Transcriptomics for Central Nervous System Disease. Cell Mol Neurobiol 2024; 44:65. [PMID: 39387975 PMCID: PMC11467076 DOI: 10.1007/s10571-024-01499-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Accepted: 09/26/2024] [Indexed: 10/15/2024]
Abstract
The incidence of central nervous system (CNS) disease has persistently increased over the last several years. There is an urgent need for effective methods to improve the cure rates of CNS disease. However, the precise molecular basis underlying the development and progression of major CNS diseases remains elusive. A complete molecular map will contribute to research on CNS disease treatment strategies. Emerging technologies such as single-cell RNA sequencing (scRNA-seq) and Spatial Transcriptomics (ST) are potent tools for exploring the molecular complexity, cell heterogeneity, and functional specificity of CNS disease. scRNA-seq and ST can provide insights into the disease at cellular and spatial transcription levels. This review presents a survey of scRNA-seq and ST studies on CNS diseases, such as chronic neurodegenerative diseases, acute CNS injuries, and others. These studies offer novel perspectives in treating and diagnosing CNS diseases by discovering new cell types or subtypes associated with the disease, proposing new pathophysiological mechanisms, uncovering novel therapeutic targets, and identifying putative biomarkers.
Collapse
Affiliation(s)
- Yuan Zhang
- Department of Pharmacy, School of Medicine, Shanghai East Hospital, Tongji University, Shanghai, 200120, China
| | - Teng Li
- Department of Laboratory Medicine, School of Medicine, Shanghai East Hospital, Tongji University, Shanghai, 200120, China
| | - Guangtian Wang
- Teaching Center of Pathogenic Biology, School of Basic Medical Sciences, Harbin Medical University, Harbin, 150081, Heilongjiang, China.
| | - Yabin Ma
- Department of Pharmacy, School of Medicine, Shanghai East Hospital, Tongji University, Shanghai, 200120, China.
| |
Collapse
|
11
|
Beatty AE, Barnes-Tompkins TM, Long KM, Tobiansky DJ. Comparative analysis of meningeal transcriptomes in birds: Potential pathways of resilience to repeated impacts. Anat Rec (Hoboken) 2024. [PMID: 39376204 DOI: 10.1002/ar.25583] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Revised: 08/18/2024] [Accepted: 09/09/2024] [Indexed: 10/09/2024]
Abstract
The meninges and associated vasculature (MAV) play a crucial role in maintaining cerebral integrity and homeostasis. Recent advances in transcriptomic analysis have illuminated the significance of the MAV in understanding the complex physiological interactions at the interface between the skull and the brain after exposure to mechanical stress. To investigate how physiological responses may confer resilience against repetitive mechanical stress, we performed the first transcriptomic analysis of avian MAV tissues using the Downy Woodpecker (Dryobates pubescens) and Tufted Titmouse (Baeolophus bicolor) as the comparison species. Our findings reveal divergences in gene expression profiles related to immune response, cellular stress management, and protein translation machinery. The male woodpeckers exhibit a tailored immune modulation strategy that potentially dampens neuroinflammation while preserving protective immunity. Overrepresented genes involved in cellular stress responses suggest enhanced mechanisms for mitigating damage and promoting repair. Additionally, the enrichment of translation-associated pathways hints at increased capacity for protein turnover and cellular remodeling vital for recovery. Our study not only fills a critical gap in avian neurobiology but also lays the groundwork for research in comparative neuroprotection.
Collapse
Affiliation(s)
- Abby E Beatty
- Department of Biology, St. Mary's College of Maryland, St. Mary's City, Maryland, USA
| | | | - Kira M Long
- Program in Ecology, Evolution, and Conservation Biology, University of Illinois Urbana-Champaign, Urbana-Champaign, Illinois, USA
- Department of Fish and Wildlife Sciences, University of Idaho, Moscow, Idaho, USA
| | - Daniel J Tobiansky
- Department of Biology, St. Mary's College of Maryland, St. Mary's City, Maryland, USA
- Program in Neuroscience, St. Mary's College of Maryland, St. Mary's City, Maryland, USA
| |
Collapse
|
12
|
Jha RM, Rajasundaram D, Sneiderman C, Schlegel BT, O'Brien C, Xiong Z, Janesko-Feldman K, Trivedi R, Vagni V, Zusman BE, Catapano JS, Eberle A, Desai SM, Jadhav AP, Mihaljevic S, Miller M, Raikwar S, Rani A, Rulney J, Shahjouie S, Raphael I, Kumar A, Phuah CL, Winkler EA, Simon DW, Kochanek PM, Kohanbash G. A single-cell atlas deconstructs heterogeneity across multiple models in murine traumatic brain injury and identifies novel cell-specific targets. Neuron 2024; 112:3069-3088.e4. [PMID: 39019041 DOI: 10.1016/j.neuron.2024.06.021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Revised: 05/07/2024] [Accepted: 06/20/2024] [Indexed: 07/19/2024]
Abstract
Traumatic brain injury (TBI) heterogeneity remains a critical barrier to translating therapies. Identifying final common pathways/molecular signatures that integrate this heterogeneity informs biomarker and therapeutic-target development. We present the first large-scale murine single-cell atlas of the transcriptomic response to TBI (334,376 cells) across clinically relevant models, sex, brain region, and time as a foundational step in molecularly deconstructing TBI heterogeneity. Results were unique to cell populations, injury models, sex, brain regions, and time, highlighting the importance of cell-level resolution. We identify cell-specific targets and previously unrecognized roles for microglial and ependymal subtypes. Ependymal-4 was a hub of neuroinflammatory signaling. A distinct microglial lineage shared features with disease-associated microglia at 24 h, with persistent gene-expression changes in microglia-4 even 6 months after contusional TBI, contrasting all other cell types that mostly returned to naive levels. Regional and sexual dimorphism were noted. CEREBRI, our searchable atlas (https://shiny.crc.pitt.edu/cerebri/), identifies previously unrecognized cell subtypes/molecular targets and is a leverageable platform for future efforts in TBI and other diseases with overlapping pathophysiology.
Collapse
Affiliation(s)
- Ruchira M Jha
- Department of Neurology, Barrow Neurological Institute, Phoenix, AZ 85013, USA; Department of Translational Neuroscience, Barrow Neurological Institute, Phoenix, AZ 85013, USA; Department of Neurosurgery, Barrow Neurological Institute, Phoenix, AZ 85013, USA; Safar Center for Resuscitation-Research, University of Pittsburgh, Pittsburgh, PA 15224, USA; Department of Critical Care Medicine, University of Pittsburgh, Pittsburgh, PA 15213, USA.
| | - Dhivyaa Rajasundaram
- Department of Pediatrics, Division of Health Informatics, University of Pittsburgh, Pittsburgh, PA 15224, USA
| | - Chaim Sneiderman
- Department of Neurological Surgery, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - Brent T Schlegel
- Department of Pediatrics, Division of Health Informatics, University of Pittsburgh, Pittsburgh, PA 15224, USA
| | - Casey O'Brien
- Department of Pediatrics, Division of Health Informatics, University of Pittsburgh, Pittsburgh, PA 15224, USA
| | - Zujian Xiong
- Department of Neurological Surgery, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - Keri Janesko-Feldman
- Safar Center for Resuscitation-Research, University of Pittsburgh, Pittsburgh, PA 15224, USA
| | - Ria Trivedi
- Department of Neurological Surgery, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - Vincent Vagni
- Safar Center for Resuscitation-Research, University of Pittsburgh, Pittsburgh, PA 15224, USA
| | - Benjamin E Zusman
- Department of Neurology, Massachusetts General Hospital, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02114, USA
| | - Joshua S Catapano
- Department of Neurosurgery, Barrow Neurological Institute, Phoenix, AZ 85013, USA
| | - Adam Eberle
- Department of Translational Neuroscience, Barrow Neurological Institute, Phoenix, AZ 85013, USA
| | | | - Ashutosh P Jadhav
- Department of Neurosurgery, Barrow Neurological Institute, Phoenix, AZ 85013, USA
| | - Sandra Mihaljevic
- Department of Translational Neuroscience, Barrow Neurological Institute, Phoenix, AZ 85013, USA
| | - Margaux Miller
- Department of Translational Neuroscience, Barrow Neurological Institute, Phoenix, AZ 85013, USA
| | - Sudhanshu Raikwar
- Department of Translational Neuroscience, Barrow Neurological Institute, Phoenix, AZ 85013, USA
| | - Anupama Rani
- Department of Translational Neuroscience, Barrow Neurological Institute, Phoenix, AZ 85013, USA
| | - Jarrod Rulney
- University of Arizona School of Medicine, Tucson, AZ 85724, USA
| | - Shima Shahjouie
- Department of Translational Neuroscience, Barrow Neurological Institute, Phoenix, AZ 85013, USA; Department of Neurology, Pennsylvania State University, Hershey, PA 17033, USA
| | - Itay Raphael
- Department of Neurological Surgery, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - Aditya Kumar
- Department of Neurology, Barrow Neurological Institute, Phoenix, AZ 85013, USA; Department of Translational Neuroscience, Barrow Neurological Institute, Phoenix, AZ 85013, USA; Department of Neurosurgery, Barrow Neurological Institute, Phoenix, AZ 85013, USA
| | - Chia-Ling Phuah
- Department of Neurology, Barrow Neurological Institute, Phoenix, AZ 85013, USA; Department of Translational Neuroscience, Barrow Neurological Institute, Phoenix, AZ 85013, USA; Department of Neurosurgery, Barrow Neurological Institute, Phoenix, AZ 85013, USA
| | - Ethan A Winkler
- Neurosurgery, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Dennis W Simon
- Department of Pediatrics, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - Patrick M Kochanek
- Safar Center for Resuscitation-Research, University of Pittsburgh, Pittsburgh, PA 15224, USA; Department of Critical Care Medicine, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - Gary Kohanbash
- Department of Neurological Surgery, University of Pittsburgh, Pittsburgh, PA 15213, USA; Department of Immunology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA
| |
Collapse
|
13
|
Zarate SM, Kirabo A, Hinton AO, Santisteban MM. Neuroimmunology of Cardiovascular Disease. Curr Hypertens Rep 2024; 26:339-347. [PMID: 38613621 PMCID: PMC11199253 DOI: 10.1007/s11906-024-01301-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/15/2024] [Indexed: 04/15/2024]
Abstract
PURPOSE OF REVIEW Cardiovascular disease (CVD) is a leading cause of death and chronic disability worldwide. Yet, despite extensive intervention strategies the number of persons affected by CVD continues to rise. Thus, there is great interest in unveiling novel mechanisms that may lead to new treatments. Considering this dilemma, recent focus has turned to the neuroimmune mechanisms involved in CVD pathology leading to a deeper understanding of the brain's involvement in disease pathology. This review provides an overview of new and salient findings regarding the neuroimmune mechanisms that contribute to CVD. RECENT FINDINGS The brain contains neuroimmune niches comprised of glia in the parenchyma and immune cells at the brain's borders, and there is strong evidence that these neuroimmune niches are important in both health and disease. Mechanistic studies suggest that the activation of glia and immune cells in these niches modulates CVD progression in hypertension and heart failure and contributes to the inevitable end-organ damage to the brain. This review provides evidence supporting the role of neuroimmune niches in CVD progression. However, additional research is needed to understand the effects of prolonged neuroimmune activation on brain function.
Collapse
Affiliation(s)
- Sara M Zarate
- Division of Clinical Pharmacology, Department of Medicine, Vanderbilt University Medical Center, Nashville, USA
| | - Annet Kirabo
- Division of Clinical Pharmacology, Department of Medicine, Vanderbilt University Medical Center, Nashville, USA
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, USA
- Vanderbilt Center for Immunobiology, Nashville, USA
- Vanderbilt Institute for Infection, Immunology, and Inflammation, Nashville, USA
- Vanderbilt Institute for Global Health, Nashville, USA
| | - Antentor O Hinton
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, USA
| | - Monica M Santisteban
- Division of Clinical Pharmacology, Department of Medicine, Vanderbilt University Medical Center, Nashville, USA.
- Vanderbilt Institute for Infection, Immunology, and Inflammation, Nashville, USA.
- Vanderbilt Memory and Alzheimer's Center, Vanderbilt University Medical Center, Nashville, USA.
| |
Collapse
|
14
|
Dourson AJ, Darken RS, Baranski TJ, Gereau RW, Ross WT, Nahman-Averbuch H. The role of androgens in migraine pathophysiology. NEUROBIOLOGY OF PAIN (CAMBRIDGE, MASS.) 2024; 16:100171. [PMID: 39498299 PMCID: PMC11532460 DOI: 10.1016/j.ynpai.2024.100171] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Revised: 10/01/2024] [Accepted: 10/04/2024] [Indexed: 11/07/2024]
Abstract
Migraine affects ∼12 % of the worldwide population and is more prevalent in females, which suggests a role of sex hormones in migraine pathophysiology. Most studies have focused on estrogen and progesterone, and the involvement of androgens has been less studied. However, due to the recent advances in androgen interventions, which could advance new androgen-based migraine treatments, it is critical to better understand the role of androgens in migraine. Testosterone, the most studied androgen, was found to have an antinociceptive effect in various animal and human pain studies. Thus, it could also have a protective effect related to lower migraine severity and prevalence. In this review, we discuss studies examining the role of androgens on migraine-related symptoms in migraine animal models. Additionally, we summarize the results of human studies comparing androgen levels between patients with migraine and healthy controls, studies assessing the relationships between androgen levels and migraine severity, and intervention studies examining the impact of testosterone treatment on migraine severity. Many of the studies have limitations, however, the results suggest that androgens may have a minor effect on migraine. Still, it is possible that androgens are involved in migraine pathophysiology in a sub-group of patients such as in adolescents or postmenopausal women. We discuss potential mechanisms in which testosterone, as the main androgen tested, can impact migraine. These mechanisms range from the cellular level to systems and behavior and include the effect of testosterone on sensory neurons, the immune and vascular systems, the stress response, brain function, and mood. Lastly, we suggest future directions to advance this line of research.
Collapse
Affiliation(s)
- Adam J. Dourson
- Department of Anesthesiology, Washington University School of Medicine, St. Louis, MO, USA
- Washington University Pain Center, Washington University School of Medicine, St. Louis, MO, USA
| | - Rachel S. Darken
- Department of Neurology, Washington University School of Medicine, St. Louis Missouri, USA
| | - Thomas J. Baranski
- Division of Endocrinology, Diabetes and Metabolism Washington University School of Medicine in St. Louis Missouri, USA
| | - Robert W. Gereau
- Department of Anesthesiology, Washington University School of Medicine, St. Louis, MO, USA
- Washington University Pain Center, Washington University School of Medicine, St. Louis, MO, USA
| | - Whitney Trotter Ross
- Division of Minimally Invasive Gynecologic Surgery, Washington University in St. Louis, St. Louis, MO, USA
| | - Hadas Nahman-Averbuch
- Department of Anesthesiology, Washington University School of Medicine, St. Louis, MO, USA
- Washington University Pain Center, Washington University School of Medicine, St. Louis, MO, USA
| |
Collapse
|
15
|
Huang S, Han J, Zheng H, Li M, Huang C, Kui X, Liu J. Structural and functional connectivity of the whole brain and subnetworks in individuals with mild traumatic brain injury: predictors of patient prognosis. Neural Regen Res 2024; 19:1553-1558. [PMID: 38051899 PMCID: PMC10883483 DOI: 10.4103/1673-5374.387971] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Accepted: 09/04/2023] [Indexed: 12/07/2023] Open
Abstract
Abstract
JOURNAL/nrgr/04.03/01300535-202407000-00035/figure1/v/2023-11-20T171125Z/r/image-tiff
Patients with mild traumatic brain injury have a diverse clinical presentation, and the underlying pathophysiology remains poorly understood. Magnetic resonance imaging is a non-invasive technique that has been widely utilized to investigate neurobiological markers after mild traumatic brain injury. This approach has emerged as a promising tool for investigating the pathogenesis of mild traumatic brain injury. Graph theory is a quantitative method of analyzing complex networks that has been widely used to study changes in brain structure and function. However, most previous mild traumatic brain injury studies using graph theory have focused on specific populations, with limited exploration of simultaneous abnormalities in structural and functional connectivity. Given that mild traumatic brain injury is the most common type of traumatic brain injury encountered in clinical practice, further investigation of the patient characteristics and evolution of structural and functional connectivity is critical. In the present study, we explored whether abnormal structural and functional connectivity in the acute phase could serve as indicators of longitudinal changes in imaging data and cognitive function in patients with mild traumatic brain injury. In this longitudinal study, we enrolled 46 patients with mild traumatic brain injury who were assessed within 2 weeks of injury, as well as 36 healthy controls. Resting-state functional magnetic resonance imaging and diffusion-weighted imaging data were acquired for graph theoretical network analysis. In the acute phase, patients with mild traumatic brain injury demonstrated reduced structural connectivity in the dorsal attention network. More than 3 months of follow-up data revealed signs of recovery in structural and functional connectivity, as well as cognitive function, in 22 out of the 46 patients. Furthermore, better cognitive function was associated with more efficient networks. Finally, our data indicated that small-worldness in the acute stage could serve as a predictor of longitudinal changes in connectivity in patients with mild traumatic brain injury. These findings highlight the importance of integrating structural and functional connectivity in understanding the occurrence and evolution of mild traumatic brain injury. Additionally, exploratory analysis based on subnetworks could serve a predictive function in the prognosis of patients with mild traumatic brain injury.
Collapse
Affiliation(s)
- Sihong Huang
- Department of Radiology, The Second Xiangya Hospital, Central South University, Changsha, Hunan Province, China
| | - Jungong Han
- Department of Computer Science, Aberystwyth University, Aberystwyth, Ceredigion, UK
| | - Hairong Zheng
- Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangdong Province, China
| | - Mengjun Li
- Department of Radiology, The Second Xiangya Hospital, Central South University, Changsha, Hunan Province, China
| | - Chuxin Huang
- Department of Radiology, The Second Xiangya Hospital, Central South University, Changsha, Hunan Province, China
| | - Xiaoyan Kui
- School of Computer Science and Engineering, Central South University, Changsha, Hunan Province, China
| | - Jun Liu
- Department of Radiology, The Second Xiangya Hospital, Central South University, Changsha, Hunan Province, China
- Department of Radiology, Quality Control Center of Hunan Province, Changsha, Hunan Province, China
- Clinical Research Center for Medical Imaging of Hunan Province, Changsha, Hunan Province, China
| |
Collapse
|
16
|
Iannucci J, Dominy R, Bandopadhyay S, Arthur EM, Noarbe B, Jullienne A, Krkasharyan M, Tobin RP, Pereverzev A, Beevers S, Venkatasamy L, Souza KA, Jupiter DC, Dabney A, Obenaus A, Newell-Rogers MK, Shapiro LA. Traumatic brain injury alters the effects of class II invariant peptide (CLIP) antagonism on chronic meningeal CLIP + B cells, neuropathology, and neurobehavioral impairment in 5xFAD mice. J Neuroinflammation 2024; 21:165. [PMID: 38937750 PMCID: PMC11212436 DOI: 10.1186/s12974-024-03146-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Accepted: 05/29/2024] [Indexed: 06/29/2024] Open
Abstract
BACKGROUND Traumatic brain injury (TBI) is a significant risk factor for Alzheimer's disease (AD), and accumulating evidence supports a role for adaptive immune B and T cells in both TBI and AD pathogenesis. We previously identified B cell and major histocompatibility complex class II (MHCII)-associated invariant chain peptide (CLIP)-positive B cell expansion after TBI. We also showed that antagonizing CLIP binding to the antigen presenting groove of MHCII after TBI acutely reduced CLIP + splenic B cells and was neuroprotective. The current study investigated the chronic effects of antagonizing CLIP in the 5xFAD Alzheimer's mouse model, with and without TBI. METHODS 12-week-old male wild type (WT) and 5xFAD mice were administered either CLIP antagonist peptide (CAP) or vehicle, once at 30 min after either sham or a lateral fluid percussion injury (FPI). Analyses included flow cytometric analysis of immune cells in dural meninges and spleen, histopathological analysis of the brain, magnetic resonance diffusion tensor imaging, cerebrovascular analysis, and assessment of motor and neurobehavioral function over the ensuing 6 months. RESULTS 9-month-old 5xFAD mice had significantly more CLIP + B cells in the meninges compared to age-matched WT mice. A one-time treatment with CAP significantly reduced this population in 5xFAD mice. Importantly, CAP also improved some of the immune, histopathological, and neurobehavioral impairments in 5xFAD mice over the ensuing six months. Although FPI did not further elevate meningeal CLIP + B cells, it did negate the ability of CAP to reduce meningeal CLIP + B cells in the 5xFAD mice. FPI at 3 months of age exacerbated some aspects of AD pathology in 5xFAD mice, including further reducing hippocampal neurogenesis, increasing plaque deposition in CA3, altering microgliosis, and disrupting the cerebrovascular structure. CAP treatment after injury ameliorated some but not all of these FPI effects.
Collapse
Affiliation(s)
- Jaclyn Iannucci
- Department of Neuroscience and Experimental Therapeutics, College of Medicine, Texas A&M University, Bryan, TX, USA
| | - Reagan Dominy
- Department of Neuroscience and Experimental Therapeutics, College of Medicine, Texas A&M University, Bryan, TX, USA
| | - Shreya Bandopadhyay
- Department of Neuroscience and Experimental Therapeutics, College of Medicine, Texas A&M University, Bryan, TX, USA
| | - E Madison Arthur
- Department of Neuroscience and Experimental Therapeutics, College of Medicine, Texas A&M University, Bryan, TX, USA
| | - Brenda Noarbe
- Division of Biomedical Sciences, University of California Riverside, Riverside, CA, USA
| | - Amandine Jullienne
- Division of Biomedical Sciences, University of California Riverside, Riverside, CA, USA
| | - Margret Krkasharyan
- Division of Biomedical Sciences, University of California Riverside, Riverside, CA, USA
| | - Richard P Tobin
- Department of Surgery, Division of Surgical Oncology, University of Colorado Anschutz Medical Campus, Denver, CO, USA
| | - Aleksandr Pereverzev
- Department of Neuroscience and Experimental Therapeutics, College of Medicine, Texas A&M University, Bryan, TX, USA
| | - Samantha Beevers
- Department of Neuroscience and Experimental Therapeutics, College of Medicine, Texas A&M University, Bryan, TX, USA
| | - Lavanya Venkatasamy
- Department of Neuroscience and Experimental Therapeutics, College of Medicine, Texas A&M University, Bryan, TX, USA
| | - Karienn A Souza
- Department of Neuroscience and Experimental Therapeutics, College of Medicine, Texas A&M University, Bryan, TX, USA
| | - Daniel C Jupiter
- Department of Biostatistics and Data Science, Department of Orthopaedics and Rehabilitation, The University of Texas Medical Branch, Galveston, TX, USA
| | - Alan Dabney
- Department of Statistics, College of Arts & Sciences, Texas A&M University, College Station, TX, USA
| | - Andre Obenaus
- Division of Biomedical Sciences, University of California Riverside, Riverside, CA, USA
| | - M Karen Newell-Rogers
- Department of Neuroscience and Experimental Therapeutics, College of Medicine, Texas A&M University, Bryan, TX, USA.
- Department of Medical Physiology, College of Medicine, Texas A&M University, Bryan, TX, USA.
| | - Lee A Shapiro
- Department of Neuroscience and Experimental Therapeutics, College of Medicine, Texas A&M University, Bryan, TX, USA.
| |
Collapse
|
17
|
Roy ER, Li S, Saroukhani S, Wang Y, Cao W. Fate-mapping and functional dissection reveal perilous influence of type I interferon signaling in mouse brain aging. Mol Neurodegener 2024; 19:48. [PMID: 38886816 PMCID: PMC11184889 DOI: 10.1186/s13024-024-00736-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Accepted: 05/31/2024] [Indexed: 06/20/2024] Open
Abstract
BACKGROUND Aging significantly elevates the risk of developing neurodegenerative diseases. Neuroinflammation is a universal hallmark of neurodegeneration as well as normal brain aging. Which branches of age-related neuroinflammation, and how they precondition the brain toward pathological progression, remain ill-understood. The presence of elevated type I interferon (IFN-I) has been documented in the aged brain, but its role in promoting degenerative processes, such as the loss of neurons in vulnerable regions, has not been studied in depth. METHODS To comprehend the scope of IFN-I activity in the aging brain, we surveyed IFN-I-responsive reporter mice at multiple ages. We also examined 5- and 24-month-old mice harboring selective ablation of Ifnar1 in microglia to observe the effects of manipulating this pathway during the aging process using bulk RNA sequencing and histological parameters. RESULTS We detected age-dependent IFN-I signal escalation in multiple brain cell types from various regions, especially in microglia. Selective ablation of Ifnar1 from microglia in aged mice significantly reduced overall brain IFN-I signature, dampened microglial reactivity, lessened neuronal loss, restored expression of key neuronal genes and pathways, and diminished the accumulation of lipofuscin, a core hallmark of cellular aging in the brain. CONCLUSIONS Overall, our study demonstrates pervasive IFN-I activity during normal mouse brain aging and reveals a pathogenic, pro-degenerative role played by microglial IFN-I signaling in perpetuating neuroinflammation, neuronal dysfunction, and molecular aggregation. These findings extend the understanding of a principal axis of age-related inflammation in the brain, one likely shared with multiple neurological disorders, and provide a rationale to modulate aberrant immune activation to mitigate neurodegenerative process at all stages.
Collapse
Affiliation(s)
- Ethan R Roy
- Department of Anesthesiology, Critical Care and Pain Medicine, McGovern Medical School, University of Texas Health Science Center at Houston, 6431 Fannin St, Houston, TX, 77030, USA.
| | - Sanming Li
- Department of Anesthesiology, Critical Care and Pain Medicine, McGovern Medical School, University of Texas Health Science Center at Houston, 6431 Fannin St, Houston, TX, 77030, USA
| | - Sepideh Saroukhani
- Division of Clinical and Translational Sciences, Department of Internal Medicine, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX, USA
- Biostatistics, Epidemiology and Research Design, Center for Clinical and Translational Sciences, The University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Yanyu Wang
- Department of Anesthesiology, Critical Care and Pain Medicine, McGovern Medical School, University of Texas Health Science Center at Houston, 6431 Fannin St, Houston, TX, 77030, USA
| | - Wei Cao
- Department of Anesthesiology, Critical Care and Pain Medicine, McGovern Medical School, University of Texas Health Science Center at Houston, 6431 Fannin St, Houston, TX, 77030, USA.
| |
Collapse
|
18
|
Omodaka S, Kato Y, Sato Y, Falcone-Juengert J, Zhang H, Kanoke A, Eckalbar WL, Endo H, Hsieh CL, Aran D, Liu J. Defective interferon signaling in the circulating monocytes of type 2 diabetic mice. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.06.03.597050. [PMID: 38895236 PMCID: PMC11185546 DOI: 10.1101/2024.06.03.597050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/21/2024]
Abstract
Type 2 diabetes mellitus (T2DM) is associated with poor outcome after stroke. Peripheral monocytes play a critical role in the secondary injury and recovery of damaged brain tissue after stroke, but the underlying mechanisms are largely unclear. To investigate transcriptome changes and molecular networks across monocyte subsets in response to T2DM and stroke, we performed single-cell RNA-sequencing (scRNAseq) from peripheral blood mononuclear cells and bulk RNA-sequencing from blood monocytes from four groups of adult mice, consisting of T2DM model db/db and normoglycemic control db/+ mice with or without ischemic stroke. Via scRNAseq we found that T2DM expands the monocyte population at the expense of lymphocytes, which was validated by flow cytometry. Among the monocytes, T2DM also disproportionally increased the inflammatory subsets with Ly6C+ and negative MHC class II expression (MO.6C+II-). Conversely, monocytes from control mice without stroke are enriched with steady-state classical monocyte subset of MO.6C+II+ but with the least percentage of MO.6C+II- subtype. Apart from enhancing inflammation and coagulation, enrichment analysis from both scRNAseq and bulk RNAseq revealed that T2DM specifically suppressed type-1 and type-2 interferon signaling pathways crucial for antigen presentation and the induction of ischemia tolerance. Preconditioning by lipopolysaccharide conferred neuroprotection against ischemic brain injury in db/+ but not in db/db mice and coincided with a lesser induction of brain Interferon-regulatory-factor-3 in the brains of the latter mice. Our results suggest that the increased diversity and altered transcriptome in the monocytes of T2DM mice underlie the worse stroke outcome by exacerbating secondary injury and potentiating stroke-induced immunosuppression. Significance Statement The mechanisms involved in the detrimental diabetic effect on stroke are largely unclear. We show here, for the first time, that peripheral monocytes have disproportionally altered the subsets and changed transcriptome under diabetes and/or stroke conditions. Moreover, genes in the IFN-related signaling pathways are suppressed in the diabetic monocytes, which underscores the immunosuppression and impaired ischemic tolerance under the T2DM condition. Our data raise a possibility that malfunctioned monocytes may systemically and focally affect the host, leading to the poor outcome of diabetes in the setting of stroke. The results yield important clues to molecular mechanisms involved in the detrimental diabetic effect on stroke outcome.
Collapse
|
19
|
Mokbel AY, Burns MP, Main BS. The contribution of the meningeal immune interface to neuroinflammation in traumatic brain injury. J Neuroinflammation 2024; 21:135. [PMID: 38802931 PMCID: PMC11131220 DOI: 10.1186/s12974-024-03122-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2024] [Accepted: 05/03/2024] [Indexed: 05/29/2024] Open
Abstract
Traumatic brain injury (TBI) is a major cause of disability and mortality worldwide, particularly among the elderly, yet our mechanistic understanding of what renders the post-traumatic brain vulnerable to poor outcomes, and susceptible to neurological disease, is incomplete. It is well established that dysregulated and sustained immune responses elicit negative consequences after TBI; however, our understanding of the neuroimmune interface that facilitates crosstalk between central and peripheral immune reservoirs is in its infancy. The meninges serve as the interface between the brain and the immune system, facilitating important bi-directional roles in both healthy and disease settings. It has been previously shown that disruption of this system exacerbates neuroinflammation in age-related neurodegenerative disorders such as Alzheimer's disease; however, we have an incomplete understanding of how the meningeal compartment influences immune responses after TBI. In this manuscript, we will offer a detailed overview of the holistic nature of neuroinflammatory responses in TBI, including hallmark features observed across clinical and animal models. We will highlight the structure and function of the meningeal lymphatic system, including its role in immuno-surveillance and immune responses within the meninges and the brain. We will provide a comprehensive update on our current knowledge of meningeal-derived responses across the spectrum of TBI, and identify new avenues for neuroimmune modulation within the neurotrauma field.
Collapse
Affiliation(s)
- Alaa Y Mokbel
- Department of Neuroscience, Georgetown University Medical Center, New Research Building-EG11, 3970 Reservoir Rd, NW, Washington, DC, 20057, USA
| | - Mark P Burns
- Department of Neuroscience, Georgetown University Medical Center, New Research Building-EG11, 3970 Reservoir Rd, NW, Washington, DC, 20057, USA
| | - Bevan S Main
- Department of Neuroscience, Georgetown University Medical Center, New Research Building-EG11, 3970 Reservoir Rd, NW, Washington, DC, 20057, USA.
| |
Collapse
|
20
|
Roy ER, Li S, Wang Y, Cao W. Fate-mapping and functional dissection reveal perilous influence of type I interferon signaling in mouse brain aging. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.20.595027. [PMID: 38826478 PMCID: PMC11142053 DOI: 10.1101/2024.05.20.595027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2024]
Abstract
Although aging significantly elevates the risk of developing neurodegenerative diseases, how age-related neuroinflammation preconditions the brain toward pathological progression is ill-understood. To comprehend the scope of type I interferon (IFN-I) activity in the aging brain, we surveyed IFN-I-responsive reporter mice and detected age-dependent signal escalation in multiple brain cell types from various regions. Selective ablation of Ifnar1 from microglia in aged mice significantly reduced overall brain IFN-I signature, dampened microglial reactivity, lessened neuronal loss, and diminished the accumulation of lipofuscin, a core hallmark of cellular aging in the brain. Overall, our study demonstrates pervasive IFN-I activity during normal mouse brain aging and reveals a pathogenic role played by microglial IFN-I signaling in perpetuating neuroinflammation, neuronal dysfunction, and molecular aggregation. These findings extend the understanding of a principal axis of age-related inflammation in the brain, and provide a rationale to modulate aberrant immune activation to mitigate neurodegenerative process at all stages.
Collapse
|
21
|
Chen Q, Wu M, Tang Q, Yan P, Zhu L. Age-Related Alterations in Immune Function and Inflammation: Focus on Ischemic Stroke. Aging Dis 2024; 15:1046-1074. [PMID: 37728582 PMCID: PMC11081165 DOI: 10.14336/ad.2023.0721-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Accepted: 07/21/2023] [Indexed: 09/21/2023] Open
Abstract
The aging of the global population poses significant scientific challenges. Moreover, the biological process of aging is the most significant risk factor for most chronic illnesses; therefore, understanding the molecular and cellular mechanisms underlying these aging-related challenges is crucial for extending the healthy lifespan of older individuals. Preventing brain aging remains a priority public health goal, and integrative and comprehensive aging analyses have revealed that immunosenescence is a potential cause of age-related brain damage and disease (e.g., stroke). Importantly, the neuroinflammatory and immune systems present two-way contact and thus can affect each other. Emerging evidence supports the numerous effects of immunosenescence- and inflammation-mediated immunity in neurologically injured brains. In this study, we briefly outline how aging alters the pathophysiology and transcriptional amplitude in patients who experienced stroke and then discuss how the immune system and its cellular components and molecular mechanisms are affected by age after stroke. Finally, we highlight emerging interventions with the potential to slow down or reduce aging and prevent stroke onset.
Collapse
Affiliation(s)
- Qiuxin Chen
- The First Affiliated Hospital of Heilongjiang University of Chinese Medicine, Harbin 150000, China
| | - Minmin Wu
- Heilongjiang University of Chinese Medicine, Harbin 150000, China
| | - Qiang Tang
- The Second Affiliated Hospital of Heilongjiang University of Chinese Medicine, Harbin 150000, China
| | - Peiyu Yan
- Faculty of Chinese Medicine, Macau University of Science and Technology, Macau 999078, China
- State Key Laboratory of Quality Research in Chinese Medicines, Macau University of Science and Technology, Macau 999078, China
| | - Luwen Zhu
- The Second Affiliated Hospital of Heilongjiang University of Chinese Medicine, Harbin 150000, China
| |
Collapse
|
22
|
Da Mesquita S, Rua R. Brain border-associated macrophages: common denominators in infection, aging, and Alzheimer's disease? Trends Immunol 2024; 45:346-357. [PMID: 38632001 PMCID: PMC11088519 DOI: 10.1016/j.it.2024.03.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Revised: 03/18/2024] [Accepted: 03/20/2024] [Indexed: 04/19/2024]
Abstract
Mammalian brain border-associated macrophages (BAMs) are strategically positioned to support vital properties and processes: for example, the composition of the brain's perivascular extracellular matrix and cerebrospinal fluid flow via the glymphatic pathway. BAMs also effectively restrict the spread of infectious microbes into the brain. However, while fighting infections, BAMs sustain long-term transcriptomic changes and can be replaced by inflammatory monocytes, potentially leading to a gradual loss of their beneficial homeostatic functions. We hypothesize that by expediting the deterioration of BAMs, multiple infection episodes might be associated with accelerated brain aging and the putative development of neurodegenerative diseases. Our viewpoint is supported by recent studies suggesting that rejuvenating aged BAMs, and counterbalancing their detrimental inflammatory signatures during infections, might hold promise in treating aging-related neurological disorders, including Alzheimer's disease (AD).
Collapse
Affiliation(s)
| | - Rejane Rua
- Centre d'Immunologie de Marseille-Luminy, Aix Marseille Université, Inserm, CNRS, Marseille, France.
| |
Collapse
|
23
|
Tang L, Xie D, Wang S, Gao C, Pan S. Piezo1 Knockout Improves Post-Stroke Cognitive Dysfunction by Inhibiting the Interleukin-6 (IL-6)/Glutathione Peroxidase 4 (GPX4) Pathway. J Inflamm Res 2024; 17:2257-2270. [PMID: 38633449 PMCID: PMC11022880 DOI: 10.2147/jir.s448903] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Accepted: 03/19/2024] [Indexed: 04/19/2024] Open
Abstract
Background Cerebral infarction often results in post-stroke cognitive impairment, which impairs the quality of life and causes long-term disability. Astrocytes, the most abundant glial cells in the central nervous system, have a crucial role in cerebral ischemia and neuroinflammation. We explored the possible advantages of interleukin-6 (IL-6), a powerful pro-inflammatory cytokine produced by astrocytes, for post-stroke cognitive function. Methods Mendelian randomization was applied to analyze the GWAS database of stroke patients, obtaining a causal relationship between IL-6 and stroke. Further validation of this relationship and its mechanisms was conducted. Using a mouse model of cerebral infarction, we demonstrated a significant increase in IL-6 expression in astrocytes surrounding the ischemic lesion. This protective effect of Piezo1 knockout was attributed to the downregulation of matrix metalloproteinases and upregulation of tight junction proteins, such as occludin and zonula occludens-1 (ZO-1). Results Two-step Mendelian randomization revealed that IL-6 exposure is a risk factor for stroke. Moreover, we conducted behavioral assessments and observed that Piezo1 knockout mice that received intranasal administration of astrocyte-derived IL-6 showed notable improvement in cognitive function compared to control mice. This enhancement was associated with reduced neuronal cell death and suppressed astrocyte activation, preserving ZO-1. Conclusion Our study shows that astrocyte-derived IL-6 causes cognitive decline after stroke by protecting the blood-brain barrier. This suggests that piezo1 knockout may reduce cognitive impairment after brain ischemia. Further research on the mechanisms and IL-6 delivery methods may lead to new therapies for post-stroke cognition.
Collapse
Affiliation(s)
- Lujia Tang
- Department of Emergency, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200092, People’s Republic of China
| | - Di Xie
- Department of Emergency, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200092, People’s Republic of China
| | - Shangyuan Wang
- Department of Emergency, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200092, People’s Republic of China
| | - Chengjin Gao
- Department of Emergency, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200092, People’s Republic of China
| | - Shuming Pan
- Department of Emergency, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200092, People’s Republic of China
| |
Collapse
|
24
|
Leonard J, Wei X, Browning J, Gudenschwager-Basso EK, Li J, Harris EA, Olsen ML, Theus MH. Transcriptomic alterations in cortical astrocytes following the development of post-traumatic epilepsy. Sci Rep 2024; 14:8367. [PMID: 38600221 PMCID: PMC11006850 DOI: 10.1038/s41598-024-58904-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Accepted: 04/04/2024] [Indexed: 04/12/2024] Open
Abstract
Post-traumatic epilepsy (PTE) stands as one of the numerous debilitating consequences that follow traumatic brain injury (TBI). Despite its impact on many individuals, the current landscape offers only a limited array of reliable treatment options, and our understanding of the underlying mechanisms and susceptibility factors remains incomplete. Among the potential contributors to epileptogenesis, astrocytes, a type of glial cell, have garnered substantial attention as they are believed to promote hyperexcitability and the development of seizures in the brain following TBI. The current study evaluated the transcriptomic changes in cortical astrocytes derived from animals that developed seizures as a result of severe focal TBI. Using RNA-Seq and ingenuity pathway analysis (IPA), we unveil a distinct gene expression profile in astrocytes, including alterations in genes supporting inflammation, early response modifiers, and neuropeptide-amidating enzymes. The findings underscore the complex molecular dynamics in astrocytes during PTE development, offering insights into therapeutic targets and avenues for further exploration.
Collapse
Affiliation(s)
- John Leonard
- Department of Biomedical Sciences and Pathobiology, Faculty of Health Sciences, Virginia Tech, 970 Washington Street SW, Life Sciences I; Rm 249 (MC0910), Blacksburg, VA, 24061, USA
| | - Xiaoran Wei
- School of Neuroscience, Virginia Tech, Blacksburg, VA, 24061, USA
| | - Jack Browning
- School of Neuroscience, Virginia Tech, Blacksburg, VA, 24061, USA
| | - Erwin Kristobal Gudenschwager-Basso
- Department of Biomedical Sciences and Pathobiology, Faculty of Health Sciences, Virginia Tech, 970 Washington Street SW, Life Sciences I; Rm 249 (MC0910), Blacksburg, VA, 24061, USA
| | - Jiangtao Li
- School of Neuroscience, Virginia Tech, Blacksburg, VA, 24061, USA
| | - Elizabeth A Harris
- Department of Biomedical Sciences and Pathobiology, Faculty of Health Sciences, Virginia Tech, 970 Washington Street SW, Life Sciences I; Rm 249 (MC0910), Blacksburg, VA, 24061, USA
| | - Michelle L Olsen
- School of Neuroscience, Virginia Tech, Blacksburg, VA, 24061, USA
| | - Michelle H Theus
- Department of Biomedical Sciences and Pathobiology, Faculty of Health Sciences, Virginia Tech, 970 Washington Street SW, Life Sciences I; Rm 249 (MC0910), Blacksburg, VA, 24061, USA.
| |
Collapse
|
25
|
Lozinski BM, Ghorbani S, Yong VW. Biology of neurofibrosis with focus on multiple sclerosis. Front Immunol 2024; 15:1370107. [PMID: 38596673 PMCID: PMC11002094 DOI: 10.3389/fimmu.2024.1370107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2024] [Accepted: 03/12/2024] [Indexed: 04/11/2024] Open
Abstract
Tissue damage elicits a wound healing response of inflammation and remodeling aimed at restoring homeostasis. Dysregulation of wound healing leads to accumulation of effector cells and extracellular matrix (ECM) components, collectively termed fibrosis, which impairs organ functions. Fibrosis of the central nervous system, neurofibrosis, is a major contributor to the lack of neural regeneration and it involves fibroblasts, microglia/macrophages and astrocytes, and their deposited ECM. Neurofibrosis occurs commonly across neurological conditions. This review describes processes of wound healing and fibrosis in tissues in general, and in multiple sclerosis in particular, and considers approaches to ameliorate neurofibrosis to enhance neural recovery.
Collapse
Affiliation(s)
| | | | - V. Wee Yong
- Hotchkiss Brain Institute and the Department of Clinical Neuroscience, University of Calgary, Calgary, AB, Canada
| |
Collapse
|
26
|
Browning JL, Wilson KA, Shandra O, Wei X, Mahmutovic D, Maharathi B, Robel S, VandeVord PJ, Olsen ML. Applying Proteomics and Computational Approaches to Identify Novel Targets in Blast-Associated Post-Traumatic Epilepsy. Int J Mol Sci 2024; 25:2880. [PMID: 38474127 DOI: 10.3390/ijms25052880] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Revised: 02/20/2024] [Accepted: 02/22/2024] [Indexed: 03/14/2024] Open
Abstract
Traumatic brain injury (TBI) can lead to post-traumatic epilepsy (PTE). Blast TBI (bTBI) found in Veterans presents with several complications, including cognitive and behavioral disturbances and PTE; however, the underlying mechanisms that drive the long-term sequelae are not well understood. Using an unbiased proteomics approach in a mouse model of repeated bTBI (rbTBI), this study addresses this gap in the knowledge. After rbTBI, mice were monitored using continuous, uninterrupted video-EEG for up to four months. Following this period, we collected cortex and hippocampus tissues from three groups of mice: those with post-traumatic epilepsy (PTE+), those without epilepsy (PTE-), and the control group (sham). Hundreds of differentially expressed proteins were identified in the cortex and hippocampus of PTE+ and PTE- relative to sham. Focusing on protein pathways unique to PTE+, pathways related to mitochondrial function, post-translational modifications, and transport were disrupted. Computational metabolic modeling using dysregulated protein expression predicted mitochondrial proton pump dysregulation, suggesting electron transport chain dysregulation in the epileptic tissue relative to PTE-. Finally, data mining enabled the identification of several novel and previously validated TBI and epilepsy biomarkers in our data set, many of which were found to already be targeted by drugs in various phases of clinical testing. These findings highlight novel proteins and protein pathways that may drive the chronic PTE sequelae following rbTBI.
Collapse
Affiliation(s)
- Jack L Browning
- School of Neuroscience, Virginia Polytechnic Institute and State University, Blacksburg, VA 24061, USA
- Genetics, Bioinformatics and Computational Biology, Virginia Polytechnic Institute and State University, Blacksburg, VA 24061, USA
| | - Kelsey A Wilson
- Department of Biomedical Engineering and Mechanics, Virginia Polytechnic Institute and State University, Blacksburg, VA 24061, USA
| | - Oleksii Shandra
- Department of Biomedical Engineering, Florida International University, Miami, FL 33174, USA
| | - Xiaoran Wei
- Virginia-Maryland College of Veterinary Medicine, Virginia Polytechnic Institute and State University, Blacksburg, VA 24061, USA
| | - Dzenis Mahmutovic
- Department of Cell Developmental and Integrative Biology, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Biswajit Maharathi
- Neurology & Rehabilitation, University of Illinois, Chicago, IL 60612, USA
| | - Stefanie Robel
- Department of Cell Developmental and Integrative Biology, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Pamela J VandeVord
- Department of Biomedical Engineering and Mechanics, Virginia Polytechnic Institute and State University, Blacksburg, VA 24061, USA
- Salem Veteran Affairs Medical Center, Salem, VA 24153, USA
| | - Michelle L Olsen
- School of Neuroscience, Virginia Polytechnic Institute and State University, Blacksburg, VA 24061, USA
| |
Collapse
|
27
|
Chen Z, Ford K, Islam M, Iamsawat S, Davis B, Weiss C, Schwulst S. ANTI-CD49D ANTIBODY TREATMENT IMPROVES SURVIVAL AND ATTENUATES NEUROCOGNITIVE DEFICITS AFTER TRAUMATIC BRAIN INJURY IN AGED MICE. Shock 2024; 61:112-119. [PMID: 38010092 PMCID: PMC10841910 DOI: 10.1097/shk.0000000000002256] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2023]
Abstract
ABSTRACT Patients 65 years and older account for an increasing proportion of traumatic brain injury (TBI) patients. Aged TBI patients experience increased morbidity and mortality compared with young TBI patients. We previously demonstrated a marked accumulation of CD8 + T-cells within the brains of aged TBI mice compared with young TBI mice. Therefore, we hypothesized that blocking peripheral T-cell infiltration into the injured brain would improve neurocognitive outcomes in aged mice after TBI. Young and aged male C57BL/6 mice underwent TBI via controlled cortical impact versus sham injury. Two hours after injuries, mice received an anti-CD49d antibody (aCD49d Ab) to block peripheral lymphocyte infiltration or its isotype control. Dosing was repeated every 2 weeks. Mortality was tracked. Neurocognitive testing for anxiety, associative learning, and memory was assessed. Motor function was evaluated. Plasma was collected for cytokine analysis. Flow cytometry was used to phenotype different immune cells within the brains. Consequently, aCD49d Ab treatment significantly improved post-TBI survival, anxiety level, associative learning, memory, and motor function in aged mice 2 months after TBI compared with isotype control treated mice. aCD49d Ab treatment augmented T H 2 response in the plasma of aged mice 2 months after TBI compared with isotype control-treated mice. Notably, aCD49d Ab treatment significantly reduced activated CD8 + cytotoxic T-cells within aged mouse brains after TBI. Contrastingly, no difference was detected in young mice after aCD49d Ab treatment. Collectively, aCD49 Ab treatment reduced T-cells in the injured brain, improved survival, and attenuated neurocognitive and gait deficits. Hence, aCD49d Ab may be a promising therapeutic intervention in aged TBI subjects-a population often excluded in TBI clinical trials.
Collapse
Affiliation(s)
- Zhangying Chen
- Department of Surgery, Division of Trauma and Critical
Care, Northwestern University Feinberg School of Medicine, Chicago IL, USA
- Driskill Graduate Program in Life Sciences, Northwestern
University Feinberg School of Medicine, Chicago IL, USA
| | - Kacie Ford
- Department of Surgery, Division of Trauma and Critical
Care, Northwestern University Feinberg School of Medicine, Chicago IL, USA
| | - Mecca Islam
- Department of Surgery, Division of Trauma and Critical
Care, Northwestern University Feinberg School of Medicine, Chicago IL, USA
| | - Supinya Iamsawat
- Department of Microbiology and Immunology, Northwestern
University Feinberg School of Medicine, Chicago, IL
| | - Booker Davis
- Department of Surgery, Division of Trauma and Critical
Care, Northwestern University Feinberg School of Medicine, Chicago IL, USA
| | - Craig Weiss
- Department of Neuroscience, Feinberg School of Medicine,
Northwestern University, Chicago, Illinois, USA
| | - Steven Schwulst
- Department of Surgery, Division of Trauma and Critical
Care, Northwestern University Feinberg School of Medicine, Chicago IL, USA
| |
Collapse
|
28
|
Pietilä R, Del Gaudio F, He L, Vázquez-Liébanas E, Vanlandewijck M, Muhl L, Mocci G, Bjørnholm KD, Lindblad C, Fletcher-Sandersjöö A, Svensson M, Thelin EP, Liu J, van Voorden AJ, Torres M, Antila S, Xin L, Karlström H, Storm-Mathisen J, Bergersen LH, Moggio A, Hansson EM, Ulvmar MH, Nilsson P, Mäkinen T, Andaloussi Mäe M, Alitalo K, Proulx ST, Engelhardt B, McDonald DM, Lendahl U, Andrae J, Betsholtz C. Molecular anatomy of adult mouse leptomeninges. Neuron 2023; 111:3745-3764.e7. [PMID: 37776854 DOI: 10.1016/j.neuron.2023.09.002] [Citation(s) in RCA: 41] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Revised: 07/07/2023] [Accepted: 09/05/2023] [Indexed: 10/02/2023]
Abstract
Leptomeninges, consisting of the pia mater and arachnoid, form a connective tissue investment and barrier enclosure of the brain. The exact nature of leptomeningeal cells has long been debated. In this study, we identify five molecularly distinct fibroblast-like transcriptomes in cerebral leptomeninges; link them to anatomically distinct cell types of the pia, inner arachnoid, outer arachnoid barrier, and dural border layer; and contrast them to a sixth fibroblast-like transcriptome present in the choroid plexus and median eminence. Newly identified transcriptional markers enabled molecular characterization of cell types responsible for adherence of arachnoid layers to one another and for the arachnoid barrier. These markers also proved useful in identifying the molecular features of leptomeningeal development, injury, and repair that were preserved or changed after traumatic brain injury. Together, the findings highlight the value of identifying fibroblast transcriptional subsets and their cellular locations toward advancing the understanding of leptomeningeal physiology and pathology.
Collapse
Affiliation(s)
- Riikka Pietilä
- Department of Immunology, Genetics and Pathology, Rudbeck Laboratory, Uppsala University, 75185 Uppsala, Sweden
| | - Francesca Del Gaudio
- Department of Medicine Huddinge, Karolinska Institutet, 14157 Huddinge, Sweden; Department of Cell and Molecular Biology, Karolinska Institutet, 17177 Stockholm, Sweden
| | - Liqun He
- Department of Immunology, Genetics and Pathology, Rudbeck Laboratory, Uppsala University, 75185 Uppsala, Sweden
| | - Elisa Vázquez-Liébanas
- Department of Immunology, Genetics and Pathology, Rudbeck Laboratory, Uppsala University, 75185 Uppsala, Sweden
| | - Michael Vanlandewijck
- Department of Immunology, Genetics and Pathology, Rudbeck Laboratory, Uppsala University, 75185 Uppsala, Sweden; Department of Medicine Huddinge, Karolinska Institutet, 14157 Huddinge, Sweden
| | - Lars Muhl
- Department of Medicine Huddinge, Karolinska Institutet, 14157 Huddinge, Sweden
| | - Giuseppe Mocci
- Department of Medicine Huddinge, Karolinska Institutet, 14157 Huddinge, Sweden
| | - Katrine D Bjørnholm
- Department of Neurobiology, Care Sciences and Society, Division of Neurogeriatrics, Center for Alzheimer Research, Karolinska Institutet, 17177 Stockholm, Sweden
| | - Caroline Lindblad
- Department of Clinical Neuroscience, Karolinska Institutet, 17177 Stockholm, Sweden; Department of Neurosurgery, Uppsala University Hospital, 75185 Uppsala, Sweden; Department of Medical Sciences, Uppsala University, 75185 Uppsala, Sweden
| | - Alexander Fletcher-Sandersjöö
- Department of Clinical Neuroscience, Karolinska Institutet, 17177 Stockholm, Sweden; Department of Neurosurgery, Karolinska University Hospital, 17176 Stockholm, Sweden
| | - Mikael Svensson
- Department of Clinical Neuroscience, Karolinska Institutet, 17177 Stockholm, Sweden; Department of Neurology, Karolinska University Hospital, 17176 Stockholm, Sweden
| | - Eric P Thelin
- Department of Clinical Neuroscience, Karolinska Institutet, 17177 Stockholm, Sweden; Department of Neurology, Karolinska University Hospital, 17176 Stockholm, Sweden
| | - Jianping Liu
- Department of Medicine Huddinge, Karolinska Institutet, 14157 Huddinge, Sweden
| | - A Jantine van Voorden
- Department of Immunology, Genetics and Pathology, Rudbeck Laboratory, Uppsala University, 75185 Uppsala, Sweden
| | - Monica Torres
- Department of Immunology, Genetics and Pathology, Rudbeck Laboratory, Uppsala University, 75185 Uppsala, Sweden
| | - Salli Antila
- Wihuri Research Institute and Translational Cancer Medicine Program, University of Helsinki, 00014 Helsinki, Finland
| | - Li Xin
- Theodor Kocher Institute, University of Bern, 3012 Bern, Switzerland
| | - Helena Karlström
- Department of Neurobiology, Care Sciences and Society, Division of Neurogeriatrics, Center for Alzheimer Research, Karolinska Institutet, 17177 Stockholm, Sweden
| | - Jon Storm-Mathisen
- Division of Anatomy, Department of Molecular Medicine, Institute of Basic Medical Sciences, University of Oslo, 0317 Oslo, Norway
| | - Linda Hildegard Bergersen
- Brain and Muscle Energy Group, Institute of Oral Biology, University of Oslo, 0316 Oslo, Norway; Center for Healthy Aging, Copenhagen University, 2200 Copenhagen, Denmark
| | - Aldo Moggio
- Department of Cell and Molecular Biology, Karolinska Institutet, 17177 Stockholm, Sweden
| | - Emil M Hansson
- Department of Cell and Molecular Biology, Karolinska Institutet, 17177 Stockholm, Sweden
| | - Maria H Ulvmar
- Department of Medical Biochemistry and Microbiology, Uppsala University, 75123 Uppsala, Sweden
| | - Per Nilsson
- Department of Neurobiology, Care Sciences and Society, Division of Neurogeriatrics, Center for Alzheimer Research, Karolinska Institutet, 17177 Stockholm, Sweden
| | - Taija Mäkinen
- Department of Immunology, Genetics and Pathology, Rudbeck Laboratory, Uppsala University, 75185 Uppsala, Sweden
| | - Maarja Andaloussi Mäe
- Department of Immunology, Genetics and Pathology, Rudbeck Laboratory, Uppsala University, 75185 Uppsala, Sweden
| | - Kari Alitalo
- Wihuri Research Institute and Translational Cancer Medicine Program, University of Helsinki, 00014 Helsinki, Finland
| | - Steven T Proulx
- Theodor Kocher Institute, University of Bern, 3012 Bern, Switzerland
| | - Britta Engelhardt
- Theodor Kocher Institute, University of Bern, 3012 Bern, Switzerland
| | - Donald M McDonald
- Cardiovascular Research Institute, UCSF Helen Diller Family Comprehensive Cancer Center, and Department of Anatomy, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Urban Lendahl
- Department of Cell and Molecular Biology, Karolinska Institutet, 17177 Stockholm, Sweden
| | - Johanna Andrae
- Department of Immunology, Genetics and Pathology, Rudbeck Laboratory, Uppsala University, 75185 Uppsala, Sweden
| | - Christer Betsholtz
- Department of Immunology, Genetics and Pathology, Rudbeck Laboratory, Uppsala University, 75185 Uppsala, Sweden; Department of Medicine Huddinge, Karolinska Institutet, 14157 Huddinge, Sweden.
| |
Collapse
|
29
|
Wangler LM, Godbout JP. Microglia moonlighting after traumatic brain injury: aging and interferons influence chronic microglia reactivity. Trends Neurosci 2023; 46:926-940. [PMID: 37723009 PMCID: PMC10592045 DOI: 10.1016/j.tins.2023.08.008] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Revised: 08/11/2023] [Accepted: 08/24/2023] [Indexed: 09/20/2023]
Abstract
Most of the individuals who experience traumatic brain injury (TBI) develop neuropsychiatric and cognitive complications that negatively affect recovery and health span. Activation of multiple inflammatory pathways persists after TBI, but it is unclear how inflammation contributes to long-term behavioral and cognitive deficits. One outcome of TBI is microglial priming and subsequent hyper-reactivity to secondary stressors, injuries, or immune challenges that further augment complications. Additionally, microglia priming with aging contributes to exaggerated glial responses to TBI. One prominent inflammatory pathway, interferon (IFN) signaling, is increased after TBI and may contribute to microglial priming and subsequent reactivity. This review discusses the contributions of microglia to inflammatory processes after TBI, as well as the influence of aging and IFNs on microglia reactivity and chronic inflammation after TBI.
Collapse
Affiliation(s)
- Lynde M Wangler
- Department of Neuroscience, The Ohio State University Wexner Medical Center, 333 W 10th Ave, Columbus, OH, USA
| | - Jonathan P Godbout
- Department of Neuroscience, The Ohio State University Wexner Medical Center, 333 W 10th Ave, Columbus, OH, USA; Institute for Behavioral Medicine Research, Ohio State University Wexner Medical Center, 460 Medical Center Drive, Columbus, OH, USA; Chronic Brain Injury Program, The Ohio State University, 190 North Oval Mall, Columbus, OH, USA.
| |
Collapse
|
30
|
Quintana JF, Sinton MC, Chandrasegaran P, Kumar Dubey L, Ogunsola J, Al Samman M, Haley M, McConnell G, Kuispond Swar NR, Ngoyi DM, Bending D, de Lecea L, MacLeod A, Mabbott NA. The murine meninges acquire lymphoid tissue properties and harbour autoreactive B cells during chronic Trypanosoma brucei infection. PLoS Biol 2023; 21:e3002389. [PMID: 37983289 PMCID: PMC10723712 DOI: 10.1371/journal.pbio.3002389] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Revised: 12/15/2023] [Accepted: 10/17/2023] [Indexed: 11/22/2023] Open
Abstract
The meningeal space is a critical brain structure providing immunosurveillance for the central nervous system (CNS), but the impact of infections on the meningeal immune landscape is far from being fully understood. The extracellular protozoan parasite Trypanosoma brucei, which causes human African trypanosomiasis (HAT) or sleeping sickness, accumulates in the meningeal spaces, ultimately inducing severe meningitis and resulting in death if left untreated. Thus, sleeping sickness represents an attractive model to study immunological dynamics in the meninges during infection. Here, by combining single-cell transcriptomics and mass cytometry by time-of-flight (CyTOF) with in vivo interventions, we found that chronic T. brucei infection triggers the development of ectopic lymphoid aggregates (ELAs) in the murine meninges. These infection-induced ELAs were defined by the presence of ER-TR7+ fibroblastic reticular cells, CD21/35+ follicular dendritic cells (FDCs), CXCR5+ PD1+ T follicular helper-like phenotype, GL7+ CD95+ GC-like B cells, and plasmablasts/plasma cells. Furthermore, the B cells found in the infected meninges produced high-affinity autoantibodies able to recognise mouse brain antigens, in a process dependent on LTβ signalling. A mid-throughput screening identified several host factors recognised by these autoantibodies, including myelin basic protein (MBP), coinciding with cortical demyelination and brain pathology. In humans, we identified the presence of autoreactive IgG antibodies in the cerebrospinal fluid (CSF) of second stage HAT patients that recognised human brain lysates and MBP, consistent with our findings in experimental infections. Lastly, we found that the pathological B cell responses we observed in the meninges required the presence of T. brucei in the CNS, as suramin treatment before the onset of the CNS stage prevented the accumulation of GL7+ CD95+ GC-like B cells and brain-specific autoantibody deposition. Taken together, our data provide evidence that the meningeal immune response during chronic T. brucei infection results in the acquisition of lymphoid tissue-like properties, broadening our understanding of meningeal immunity in the context of chronic infections. These findings have wider implications for understanding the mechanisms underlying the formation ELAs during chronic inflammation resulting in autoimmunity in mice and humans, as observed in other autoimmune neurodegenerative disorders, including neuropsychiatric lupus and multiple sclerosis.
Collapse
Affiliation(s)
- Juan F. Quintana
- Lydia Becker Institute of Immunology and Inflammation, University of Manchester, United Kingdom
- Division of Immunology, Immunity to Infection and Health, Manchester Academic Health Science Centre, University of Manchester, United Kingdom
- School of Biodiversity, One Health, Veterinary Medicine (SBOHVM), College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow United Kingdom
| | - Matthew C. Sinton
- Lydia Becker Institute of Immunology and Inflammation, University of Manchester, United Kingdom
- Division of Cardiovascular Sciences, University of Manchester, United Kingdom
| | - Praveena Chandrasegaran
- School of Biodiversity, One Health, Veterinary Medicine (SBOHVM), College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow United Kingdom
| | | | - John Ogunsola
- School of Biodiversity, One Health, Veterinary Medicine (SBOHVM), College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow United Kingdom
| | - Moumen Al Samman
- School of Biodiversity, One Health, Veterinary Medicine (SBOHVM), College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow United Kingdom
| | - Michael Haley
- Lydia Becker Institute of Immunology and Inflammation, University of Manchester, United Kingdom
- Division of Immunology, Immunity to Infection and Health, Manchester Academic Health Science Centre, University of Manchester, United Kingdom
| | - Gail McConnell
- Strathclyde Institute of Pharmacy and Biomedical Sciences (SIPBS), University of Strathclyde, Glasgow, United Kingdom
| | - Nono-Raymond Kuispond Swar
- Department of Parasitology, National Institute of Biomedical Research, Kinshasa, Democratic Republic of the Congo
| | - Dieudonné Mumba Ngoyi
- Department of Parasitology, National Institute of Biomedical Research, Kinshasa, Democratic Republic of the Congo
| | - David Bending
- Institute of Immunology and Immunotherapy, College of Medical and Dental Sciences, University of Birmingham, Birmingham, United Kingdom
| | - Luis de Lecea
- Stanford University School of Medicine, Stanford, California, United States of America
| | - Annette MacLeod
- School of Biodiversity, One Health, Veterinary Medicine (SBOHVM), College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow United Kingdom
| | - Neil A. Mabbott
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Edinburgh, United Kingdom
| |
Collapse
|
31
|
Pokrajac NT, Tokarew NJA, Gurdita A, Ortin-Martinez A, Wallace VA. Meningeal macrophages inhibit chemokine signaling in pre-tumor cells to suppress mouse medulloblastoma initiation. Dev Cell 2023; 58:2015-2031.e8. [PMID: 37774709 DOI: 10.1016/j.devcel.2023.08.033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Revised: 07/10/2023] [Accepted: 08/30/2023] [Indexed: 10/01/2023]
Abstract
The microenvironment profoundly influences tumor initiation across numerous tissues but remains understudied in brain tumors. In the cerebellum, canonical Wnt signaling controlled by Norrin/Frizzled4 (Fzd4) activation in meningeal endothelial cells is a potent inhibitor of preneoplasia and tumor progression in mouse models of Sonic hedgehog medulloblastoma (Shh-MB). Single-cell transcriptome profiling and phenotyping of the meninges indicate that Norrin/Frizzled4 sustains the activation of meningeal macrophages (mMΦs), characterized by Lyve1 and CXCL4 expression, during the critical preneoplastic period. Depleting mMΦs during this period enhances preneoplasia and tumorigenesis, phenocopying the effects of Norrin loss. The anti-tumorigenic function of mMΦs is derived from the expression of CXCL4, which counters CXCL12/CXCR4 signaling in pre-tumor cells, thereby inhibiting cell-cycle progression and promoting migration away from the pre-tumor niche. These findings identify a pivotal role for mMΦs as key mediators in chemokine-regulated anti-cancer crosstalk between the stroma and pre-tumor cells in the control of MB initiation.
Collapse
Affiliation(s)
- Nenad T Pokrajac
- Donald K. Johnson Eye Institute, Krembil Research Institute, University Health Network, Toronto, ON M5T 2S8, Canada; Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Nicholas J A Tokarew
- Donald K. Johnson Eye Institute, Krembil Research Institute, University Health Network, Toronto, ON M5T 2S8, Canada
| | - Akshay Gurdita
- Donald K. Johnson Eye Institute, Krembil Research Institute, University Health Network, Toronto, ON M5T 2S8, Canada; Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Arturo Ortin-Martinez
- Donald K. Johnson Eye Institute, Krembil Research Institute, University Health Network, Toronto, ON M5T 2S8, Canada; Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Valerie A Wallace
- Donald K. Johnson Eye Institute, Krembil Research Institute, University Health Network, Toronto, ON M5T 2S8, Canada; Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON M5S 1A8, Canada; Department of Ophthalmology and Vision Sciences, University of Toronto, Toronto, ON M5T 3A9, Canada.
| |
Collapse
|
32
|
Santorella E, Balsbaugh JL, Ge S, Saboori P, Baker D, Pachter JS. Proteomic interrogation of the meninges reveals the molecular identities of structural components and regional distinctions along the CNS axis. Fluids Barriers CNS 2023; 20:74. [PMID: 37858244 PMCID: PMC10588166 DOI: 10.1186/s12987-023-00473-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Accepted: 10/04/2023] [Indexed: 10/21/2023] Open
Abstract
The meninges surround the brain and spinal cord, affording physical protection while also serving as a niche of neuroimmune activity. Though possessing stromal qualities, its complex cellular and extracellular makeup has yet to be elaborated, and it remains unclear whether the meninges vary along the neuroaxis. Hence, studies were carried-out to elucidate the protein composition and structural organization of brain and spinal cord meninges in normal, adult Biozzi ABH mice. First, shotgun, bottom-up proteomics was carried-out. Prominent proteins at both brain and spinal levels included Type II collagen and Type II keratins, representing extracellular matrix (ECM) and cytoskeletal categories, respectively. While the vast majority of total proteins detected was shared between both meningeal locales, more were uniquely detected in brain than in spine. This pattern was also seen when total proteins were subdivided by cellular compartment, except in the case of the ECM category where brain and spinal meninges each had near equal number of unique proteins, and Type V and type III collagen registered exclusively in the spine. Quantitative analysis revealed differential expression of several collagens and cytoskeletal proteins between brain and spinal meninges. High-resolution immunofluorescence and immunogold-scanning electronmicroscopy on sections from whole brain and spinal cord - still encased within bone -identified major proteins detected by proteomics, and highlighted their association with cellular and extracellular elements of variously shaped arachnoid trabeculae. Western blotting aligned with the proteomic and immunohistological analyses, reinforcing differential appearance of proteins in brain vs spinal meninges. Results could reflect regional distinctions in meninges that govern protective and/or neuroimmune functions.
Collapse
Affiliation(s)
- Elise Santorella
- Department of Immunology, UConn Health, 263 Farmington Ave, Farmington, CT, 06030, USA
| | - Jeremy L Balsbaugh
- Proteomics and Metabolomics Facility, Center for Open Research Resources & Equipment, University of Connecticut, Storrs, CT, 06269, USA
| | - Shujun Ge
- Department of Immunology, UConn Health, 263 Farmington Ave, Farmington, CT, 06030, USA
| | - Parisa Saboori
- Department of Mechanical Engineering, Manhattan College, Bronx, NY, 10071, USA
| | - David Baker
- Blizard Institute, Queen Mary University of London, London, England
| | - Joel S Pachter
- Department of Immunology, UConn Health, 263 Farmington Ave, Farmington, CT, 06030, USA.
| |
Collapse
|
33
|
Rego S, Sanchez G, Da Mesquita S. Current views on meningeal lymphatics and immunity in aging and Alzheimer's disease. Mol Neurodegener 2023; 18:55. [PMID: 37580702 PMCID: PMC10424377 DOI: 10.1186/s13024-023-00645-0] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Accepted: 08/02/2023] [Indexed: 08/16/2023] Open
Abstract
Alzheimer's disease (AD) is an aging-related form of dementia associated with the accumulation of pathological aggregates of amyloid beta and neurofibrillary tangles in the brain. These phenomena are accompanied by exacerbated inflammation and marked neuronal loss, which altogether contribute to accelerated cognitive decline. The multifactorial nature of AD, allied to our still limited knowledge of its etiology and pathophysiology, have lessened our capacity to develop effective treatments for AD patients. Over the last few decades, genome wide association studies and biomarker development, alongside mechanistic experiments involving animal models, have identified different immune components that play key roles in the modulation of brain pathology in AD, affecting its progression and severity. As we will relay in this review, much of the recent efforts have been directed to better understanding the role of brain innate immunity, and particularly of microglia. However, and despite the lack of diversity within brain resident immune cells, the brain border tissues, especially the meninges, harbour a considerable number of different types and subtypes of adaptive and innate immune cells. Alongside microglia, which have taken the centre stage as important players in AD research, there is new and exciting evidence pointing to adaptive immune cells, namely T and B cells found in the brain and its meninges, as important modulators of neuroinflammation and neuronal (dys)function in AD. Importantly, a genuine and functional lymphatic vascular network is present around the brain in the outermost meningeal layer, the dura. The meningeal lymphatics are directly connected to the peripheral lymphatic system in different mammalian species, including humans, and play a crucial role in preserving a "healthy" immune surveillance of the CNS, by shaping immune responses, not only locally at the meninges, but also at the level of the brain tissue. In this review, we will provide a comprehensive view on our current knowledge about the meningeal lymphatic vasculature, emphasizing its described roles in modulating CNS fluid and macromolecule drainage, meningeal and brain immunity, as well as glial and neuronal function in aging and in AD.
Collapse
Affiliation(s)
- Shanon Rego
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL, 32224, USA
- Post-baccalaureate Research Education Program, Mayo Clinic Graduate School of Biomedical Sciences, Mayo Clinic, Jacksonville, FL, 32224, USA
| | - Guadalupe Sanchez
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL, 32224, USA
- Neuroscience Ph.D. Program, Mayo Clinic Graduate School of Biomedical Sciences, Mayo Clinic, Jacksonville, FL, 32224, USA
| | - Sandro Da Mesquita
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL, 32224, USA.
- Post-baccalaureate Research Education Program, Mayo Clinic Graduate School of Biomedical Sciences, Mayo Clinic, Jacksonville, FL, 32224, USA.
- Neuroscience Ph.D. Program, Mayo Clinic Graduate School of Biomedical Sciences, Mayo Clinic, Jacksonville, FL, 32224, USA.
| |
Collapse
|
34
|
Buenaventura RG, Harvey AC, Burns MP, Main BS. Traumatic brain injury induces an adaptive immune response in the meningeal transcriptome that is amplified by aging. Front Neurosci 2023; 17:1210175. [PMID: 37588516 PMCID: PMC10425597 DOI: 10.3389/fnins.2023.1210175] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Accepted: 07/07/2023] [Indexed: 08/18/2023] Open
Abstract
Traumatic Brain Injury (TBI) is a major cause of disability and mortality, particularly among the elderly, yet our mechanistic understanding of how age renders the post-traumatic brain vulnerable to poor clinical outcomes and susceptible to neurological disease remains poorly understood. It is well established that dysregulated and sustained immune responses contribute to negative outcomes after TBI, however our understanding of the interactions between central and peripheral immune reservoirs is still unclear. The meninges serve as the interface between the brain and the immune system, facilitating important bi-directional roles in healthy and disease settings. It has been previously shown that disruption of this system exacerbates inflammation in age related neurodegenerative disorders such as Alzheimer's disease, however we have an incomplete understanding of how the meningeal compartment influences immune responses after TBI. Here, we examine the meningeal tissue and its response to brain injury in young (3-months) and aged (18-months) mice. Utilizing a bioinformatic approach, high-throughput RNA sequencing demonstrates alterations in the meningeal transcriptome at sub-acute (7-days) and chronic (1 month) timepoints after injury. We find that age alone chronically exacerbates immunoglobulin production and B cell responses. After TBI, adaptive immune response genes are up-regulated in a temporal manner, with genes involved in T cell responses elevated sub-acutely, followed by increases in B cell related genes at chronic time points after injury. Pro-inflammatory cytokines are also implicated as contributing to the immune response in the meninges, with ingenuity pathway analysis identifying interferons as master regulators in aged mice compared to young mice following TBI. Collectively these data demonstrate the temporal series of meningeal specific signatures, providing insights into how age leads to worse neuroinflammatory outcomes in TBI.
Collapse
Affiliation(s)
| | | | | | - Bevan S. Main
- Laboratory for Brain Injury and Dementia, Department of Neuroscience, Georgetown University, Washington, DC, United States
| |
Collapse
|
35
|
Salvador AFM, Dykstra T, Rustenhoven J, Gao W, Blackburn SM, Bhasiin K, Dong MQ, Guimarães RM, Gonuguntla S, Smirnov I, Kipnis J, Herz J. Age-dependent immune and lymphatic responses after spinal cord injury. Neuron 2023; 111:2155-2169.e9. [PMID: 37148871 PMCID: PMC10523880 DOI: 10.1016/j.neuron.2023.04.011] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Revised: 02/13/2023] [Accepted: 04/12/2023] [Indexed: 05/08/2023]
Abstract
Spinal cord injury (SCI) causes lifelong debilitating conditions. Previous works demonstrated the essential role of the immune system in recovery after SCI. Here, we explored the temporal changes of the response after SCI in young and aged mice in order to characterize multiple immune populations within the mammalian spinal cord. We revealed substantial infiltration of myeloid cells to the spinal cord in young animals, accompanied by changes in the activation state of microglia. In contrast, both processes were blunted in aged mice. Interestingly, we discovered the formation of meningeal lymphatic structures above the lesion site, and their role has not been examined after contusive injury. Our transcriptomic data predicted lymphangiogenic signaling between myeloid cells in the spinal cord and lymphatic endothelial cells (LECs) in the meninges after SCI. Together, our findings delineate how aging affects the immune response following SCI and highlight the participation of the spinal cord meninges in supporting vascular repair.
Collapse
Affiliation(s)
- Andrea Francesca M Salvador
- Brain Immunology and Glia (BIG) Center, Washington University in St. Louis, St. Louis, MO 63110, USA; Department of Pathology and Immunology, Division of Immunobiology, Washington University in St. Louis, St. Louis, MO 63110, USA; Neuroscience Graduate Program, University of Virginia, Charlottesville, VA 22903, USA
| | - Taitea Dykstra
- Brain Immunology and Glia (BIG) Center, Washington University in St. Louis, St. Louis, MO 63110, USA; Department of Pathology and Immunology, Division of Immunobiology, Washington University in St. Louis, St. Louis, MO 63110, USA
| | - Justin Rustenhoven
- Brain Immunology and Glia (BIG) Center, Washington University in St. Louis, St. Louis, MO 63110, USA; Department of Pathology and Immunology, Division of Immunobiology, Washington University in St. Louis, St. Louis, MO 63110, USA; Department of Pharmacology and Clinical Pharmacology, The University of Auckland, Auckland 1023, New Zealand
| | - Wenqing Gao
- Brain Immunology and Glia (BIG) Center, Washington University in St. Louis, St. Louis, MO 63110, USA; Department of Pathology and Immunology, Division of Immunobiology, Washington University in St. Louis, St. Louis, MO 63110, USA
| | - Susan M Blackburn
- Brain Immunology and Glia (BIG) Center, Washington University in St. Louis, St. Louis, MO 63110, USA; Department of Pathology and Immunology, Division of Immunobiology, Washington University in St. Louis, St. Louis, MO 63110, USA
| | - Kesshni Bhasiin
- Brain Immunology and Glia (BIG) Center, Washington University in St. Louis, St. Louis, MO 63110, USA; Department of Pathology and Immunology, Division of Immunobiology, Washington University in St. Louis, St. Louis, MO 63110, USA
| | - Michael Q Dong
- Thomas Jefferson University Hospital, Philadelphia, PA 19107, USA
| | - Rafaela Mano Guimarães
- Brain Immunology and Glia (BIG) Center, Washington University in St. Louis, St. Louis, MO 63110, USA; Department of Pathology and Immunology, Division of Immunobiology, Washington University in St. Louis, St. Louis, MO 63110, USA; Center for Research in Inflammatory Diseases (CRID), Department of Pharmacology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, São Paulo 14049-900, Brazil
| | - Sriharsha Gonuguntla
- Brain Immunology and Glia (BIG) Center, Washington University in St. Louis, St. Louis, MO 63110, USA; Department of Pathology and Immunology, Division of Immunobiology, Washington University in St. Louis, St. Louis, MO 63110, USA
| | - Igor Smirnov
- Brain Immunology and Glia (BIG) Center, Washington University in St. Louis, St. Louis, MO 63110, USA; Department of Pathology and Immunology, Division of Immunobiology, Washington University in St. Louis, St. Louis, MO 63110, USA
| | - Jonathan Kipnis
- Brain Immunology and Glia (BIG) Center, Washington University in St. Louis, St. Louis, MO 63110, USA; Department of Pathology and Immunology, Division of Immunobiology, Washington University in St. Louis, St. Louis, MO 63110, USA.
| | - Jasmin Herz
- Brain Immunology and Glia (BIG) Center, Washington University in St. Louis, St. Louis, MO 63110, USA; Department of Pathology and Immunology, Division of Immunobiology, Washington University in St. Louis, St. Louis, MO 63110, USA.
| |
Collapse
|
36
|
Dang Do AN, Sleat DE, Campbell K, Johnson NL, Zheng H, Wassif CA, Dale RK, Porter FD. Cerebrospinal Fluid Protein Biomarker Discovery in CLN3. J Proteome Res 2023; 22:2493-2508. [PMID: 37338096 PMCID: PMC11095826 DOI: 10.1021/acs.jproteome.3c00199] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/21/2023]
Abstract
Syndromic CLN3-Batten is a fatal, pediatric, neurodegenerative disease caused by variants in CLN3, which encodes the endolysosomal transmembrane CLN3 protein. No approved treatment for CLN3 is currently available. The protracted and asynchronous disease presentation complicates the evaluation of potential therapies using clinical disease progression parameters. Biomarkers as surrogates to measure the progression and effect of potential therapeutics are needed. We performed proteomic discovery studies using cerebrospinal fluid (CSF) samples from 28 CLN3-affected and 32 age-similar non-CLN3 individuals. Proximal extension assay (PEA) of 1467 proteins and untargeted data-dependent mass spectrometry [MS; MassIVE FTP server (ftp://MSV000090147@massive.ucsd.edu)] were used to generate orthogonal lists of protein marker candidates. At an adjusted p-value of <0.1 and threshold CLN3/non-CLN3 fold-change ratio of 1.5, PEA identified 54 and MS identified 233 candidate biomarkers. Some of these (NEFL, CHIT1) have been previously linked with other neurologic conditions. Others (CLPS, FAM217B, QRICH2, KRT16, ZNF333) appear to be novel. Both methods identified 25 candidate biomarkers, including CHIT1, NELL1, and ISLR2 which had absolute fold-change ratios >2. NELL1 and ISLR2 regulate axonal development in neurons and are intriguing new candidates for further investigation in CLN3. In addition to identifying candidate proteins for CLN3 research, this study provides a comparison of two large-scale proteomic discovery methods in CSF.
Collapse
Affiliation(s)
- An N. Dang Do
- Unit on Cellular Stress in Development and Diseases, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland 20892, United States
| | - David E. Sleat
- Center for Advanced Biotechnology and Medicine, Rutgers Biomedical Health Sciences, Piscataway, New Jersey 08854, United States
- Department of Biochemistry and Molecular Biology, Robert-Wood Johnson Medical School, Rutgers Biomedical Health Sciences, Piscataway, New Jersey 08854, United States
| | - Kiersten Campbell
- Bioinformatics and Scientific Programming Core, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland 20892, United States
| | - Nicholas L. Johnson
- Bioinformatics and Scientific Programming Core, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland 20892, United States
| | - Haiyan Zheng
- Center for Advanced Biotechnology and Medicine, Rutgers Biomedical Health Sciences, Piscataway, New Jersey 08854, United States
| | - Christopher A. Wassif
- Section on Molecular Dysmorphology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland 20892, United States
| | - Ryan K. Dale
- Bioinformatics and Scientific Programming Core, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland 20892, United States
| | - Forbes D. Porter
- Section on Molecular Dysmorphology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland 20892, United States
| |
Collapse
|
37
|
Semple BD, Panagiotopoulou O. Cranial Bone Changes Induced by Mild Traumatic Brain Injuries: A Neglected Player in Concussion Outcomes? Neurotrauma Rep 2023; 4:396-403. [PMID: 37350792 PMCID: PMC10282977 DOI: 10.1089/neur.2023.0025] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/24/2023] Open
Abstract
Mild traumatic brain injuries (TBIs), particularly when repetitive in nature, are increasingly recognized to have a range of significant negative implications for brain health. Much of the ongoing research in the field is focused on the neurological consequences of these injuries and the relationship between TBIs and long-term neurodegenerative conditions such as chronic traumatic encephalopathy and Alzheimer's disease. However, our understanding of the complex relationship between applied mechanical force at impact, brain pathophysiology, and neurological function remains incomplete. Past research has shown that mild TBIs, even below the threshold that results in cranial fracture, induce changes in cranial bone structure and morphology. These structural and physiological changes likely have implications for the transmission of mechanical force into the underlying brain parenchyma. Here, we review this evidence in the context of the current understanding of bone mechanosensitivity and the consequences of TBIs or concussions. We postulate that heterogeneity of the calvarium, including differing bone thickness attributable to past impacts, age, or individual variability, may be a modulator of outcomes after subsequent TBIs. We advocate for greater consideration of cranial responses to TBI in both experimental and computer modeling of impact biomechanics, and raise the hypothesis that calvarial bone thickness represents a novel biomarker of brain injury vulnerability post-TBI.
Collapse
Affiliation(s)
- Bridgette D. Semple
- Department of Neuroscience, Monash University, Prahran, Victoria, Australia
- Department of Neurology, Alfred Health, Prahran, Victoria, Australia
- Department of Medicine (Royal Melbourne Hospital), University of Melbourne, Parkville, Victoria, Australia
| | - Olga Panagiotopoulou
- Monash Biomedicine Discovery Institute, Department of Anatomy and Developmental Biology, Monash University, Clayton, Victoria, Australia
| |
Collapse
|
38
|
Goertz JE, Garcia-Bonilla L, Iadecola C, Anrather J. Immune compartments at the brain's borders in health and neurovascular diseases. Semin Immunopathol 2023; 45:437-449. [PMID: 37138042 PMCID: PMC10279585 DOI: 10.1007/s00281-023-00992-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Accepted: 03/14/2023] [Indexed: 05/05/2023]
Abstract
Recent evidence implicates cranial border immune compartments in the meninges, choroid plexus, circumventricular organs, and skull bone marrow in several neuroinflammatory and neoplastic diseases. Their pathogenic importance has also been described for cardiovascular diseases such as hypertension and stroke. In this review, we will examine the cellular composition of these cranial border immune niches, the potential pathways through which they might interact, and the evidence linking them to cardiovascular disease.
Collapse
Affiliation(s)
- Jennifer E Goertz
- Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, 407 East 61St Street; RR-405, New York, NY, 10065, USA
| | - Lidia Garcia-Bonilla
- Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, 407 East 61St Street; RR-405, New York, NY, 10065, USA
| | - Costantino Iadecola
- Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, 407 East 61St Street; RR-405, New York, NY, 10065, USA
| | - Josef Anrather
- Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, 407 East 61St Street; RR-405, New York, NY, 10065, USA.
| |
Collapse
|