1
|
Li J, Luo P, Li Z, Wang Q, Huang X, Wang K, Wang R, Chen R. Extrachromosomal Circular DNA in Cancer: Mechanisms and Clinical Applications. Cell Prolif 2025:e70040. [PMID: 40300805 DOI: 10.1111/cpr.70040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2025] [Revised: 03/10/2025] [Accepted: 03/28/2025] [Indexed: 05/01/2025] Open
Abstract
Extrachromosomal circular DNA (eccDNA) has emerged as a critical area of cancer research due to its ubiquitous presence in tumour cells and significant role in tumorigenesis, progression and drug resistance. Recent studies demonstrate that eccDNA promotes cancer progression by influencing genomic instability, amplifying oncogenes, regulating gene expression and enhancing tumour cell adaptability to adverse conditions. While the precise mechanisms underlying eccDNA formation and its biological functions remain unclear, its potential applications in cancer diagnosis, prognosis and targeted therapy are gaining increasing recognition. This review summarises the latest advancements in eccDNA research, highlighting its potential as both a biomarker and a therapeutic target. Additionally, it emphasises the translational potential of eccDNA in clinical diagnostics and personalised treatment strategies, offering new perspectives for future cancer research and innovative therapies.
Collapse
Affiliation(s)
- Jiajia Li
- Hangzhou Geriatric Hospital, (Department of Stomatology), Affiliated Hangzhou First People's Hospital Chengbei Campus, School of Medicine, Westlake University, Hangzhou, Zhejiang, China
- School of Rehabilitation Medicine, Binzhou Medical University, Yantai, Shandong, China
| | - Peng Luo
- Department of Oncology, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Zhengrui Li
- School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Qi Wang
- School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Xufeng Huang
- School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Keliang Wang
- Department of Gastroenterology, Ningbo No. 2 Hospital, Ningbo, Zhejiang, China
| | - Ruo Wang
- Shengli Clinical Medical College of Fujian Medical University, Department of Breast Surgery, Fujian Provincial Hospital, Fuzhou University Affiliated Provincial Hospital, Fuzhou, China
| | - Runzhi Chen
- Hangzhou Geriatric Hospital, (Department of Stomatology), Affiliated Hangzhou First People's Hospital Chengbei Campus, School of Medicine, Westlake University, Hangzhou, Zhejiang, China
| |
Collapse
|
2
|
de Paula TS, Leite DDMB, Lobo-Hajdu G, Vacelet J, Thompson F, Hajdu E. The complete mitochondrial DNA of the carnivorous sponge Lycopodina hypogea is putatively complemented by microDNAs. PeerJ 2024; 12:e18255. [PMID: 39559335 PMCID: PMC11572364 DOI: 10.7717/peerj.18255] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Accepted: 09/16/2024] [Indexed: 11/20/2024] Open
Abstract
Carnivorous sponges (Porifera, Demospongiae, Cladorhizidae), contrary to the usual filter-feeding mechanism of sponges, are specialized in catching larger prey through adhesive surfaces or hook-like spicules. The mitochondrial DNA of sponges overall present several divergences from other metazoans, and while presenting unique features among major transitions, such as in calcarean and glass sponges, poriferan mitogenomes are relatively stable within their groups. Here, we report and discuss the mitogenome of Lycopodina hypogea (Vacelet & Boury-Esnault, 1996), which greatly vary from its subordinal counterparts in both structure and gene order. This mitogenome is seemingly multipartite into three chromosomes, two of them as microDNAs. The main chromosome, chrM1, is unusually large, 31,099 bp in length, has a unique gene order within Poecilosclerida, and presents two rRNA, 13 protein and 19 tRNA coding genes. Intergenic regions comprise approximately 40% of chrM1, bearing several terminal direct and inverted repeats (TDRr and TIRs) but holding no vestiges of former mitochondrial sequences, pseudogenes, or transposable elements. The nd4l and trnI(gau) genes are likely located in microDNAs thus comprising putative mitochondrial chromosomes chrM2, 291 bp, and chrM3, 140 bp, respectively. It is unclear which processes are responsible for the remarkable features of the of L. hypogea mitogenome, including a generalized gene rearrangement, long IGRs, and putative extrachromosomal genes in microDNAs.
Collapse
Affiliation(s)
- Thiago Silva de Paula
- Departamento de Genética, Universidade do Estado do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Dora de Moura Barbosa Leite
- Programa de Pós-graduação em Ciências Biológicas (Genética), Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Gisele Lobo-Hajdu
- Departamento de Genética, Universidade do Estado do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Jean Vacelet
- Institute Mediterranean Biodiversité Et D’ecologie, CNRS, Aix Marseille Université, Marseille, France
| | - Fabiano Thompson
- Departamento de Biologia Marinha, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Eduardo Hajdu
- Departamento de Invertebrados, Museu Nacional, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| |
Collapse
|
3
|
Artner T, Sharma S, Lang IM. Nucleic acid liquid biopsies in cardiovascular disease: Cell-free DNA liquid biopsies in cardiovascular disease. Atherosclerosis 2024; 398:118583. [PMID: 39353793 DOI: 10.1016/j.atherosclerosis.2024.118583] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/18/2024] [Revised: 08/15/2024] [Accepted: 08/29/2024] [Indexed: 10/04/2024]
Abstract
Cardiovascular disease (CVD) is the leading cause of death worldwide, and despite treatment efforts, cardiovascular function cannot always be restored, and progression of disease be prevented. Critical insights are oftentimes based on tissue samples. Current knowledge of tissue pathology typically relies on invasive biopsies or postmortem samples. Liquid biopsies, which assess circulating mediators to deduce the histology and pathology of distant tissues, have been advancing rapidly in cancer research and offer a promising approach to be translated to the understanding and treatment of CVD. The widely understood elevations in cell-free DNA during acute and chronic cardiovascular conditions, associate with disease, severity, and offer prognostic value. The role of neutrophil extracellular traps (NETs) and circulating nucleases in thrombosis provide a solid rationale for liquid biopsies in CVD. cfDNA originates from various tissue types and cellular sources, including mitochondria and nuclei, and can be used to trace cell and tissue type lineage, as well as to gain insight into the activation status of cells. This article discusses the origin, structure, and potential utility of cfDNA, offering a deeper and less invasive approach for the understanding of the complexities of CVD.
Collapse
Affiliation(s)
- Tyler Artner
- Department of Internal Medicine II, Cardiology, Medical University of Vienna, Austria.
| | - Smriti Sharma
- Department of Internal Medicine II, Cardiology, Medical University of Vienna, Austria
| | - Irene M Lang
- Department of Internal Medicine II, Cardiology, Medical University of Vienna, Austria.
| |
Collapse
|
4
|
Nag S, Bisker G. Dissipative Self-Assembly of Patchy Particles under Nonequilibrium Drive: A Computational Study. J Chem Theory Comput 2024; 20:8844-8861. [PMID: 39365844 PMCID: PMC11500309 DOI: 10.1021/acs.jctc.4c00856] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Revised: 08/24/2024] [Accepted: 09/12/2024] [Indexed: 10/06/2024]
Abstract
Inspired by biology and implemented using nanotechnology, the self-assembly of patchy particles has emerged as a pivotal mechanism for constructing complex structures that mimic natural systems with diverse functionalities. Here, we explore the dissipative self-assembly of patchy particles under nonequilibrium conditions, with the aim of overcoming the constraints imposed by equilibrium assembly. Utilizing extensive Monte Carlo (MC) and Molecular Dynamics (MD) simulations, we provide insight into the effects of external forces that mirror natural and chemical processes on the assembly rates and the stability of the resulting assemblies comprising 8, 10, and 13 patchy particles. Implemented by a favorable bond-promoting drive in MC or a pulsed square wave potential in MD, our simulations reveal the role these external drives play in accelerating assembly kinetics and enhancing structural stability, evidenced by a decrease in the time to first assembly and an increase in the duration the system remains in an assembled state. Through the analysis of an order parameter, entropy production, bond dynamics, and interparticle forces, we unravel the underlying mechanisms driving these advancements. We also validated our key findings by simulating a larger system of 100 patchy particles. Our comprehensive results not only shed light on the impact of external stimuli on self-assembly processes but also open a promising pathway for expanding the application by leveraging patchy particles for novel nanostructures.
Collapse
Affiliation(s)
- Shubhadeep Nag
- Department
of Biomedical Engineering, Faculty of Engineering, Tel Aviv University, Tel Aviv 69978, Israel
| | - Gili Bisker
- Department
of Biomedical Engineering, Faculty of Engineering, Tel Aviv University, Tel Aviv 69978, Israel
- The
Center for Physics and Chemistry of Living Systems, Tel Aviv University, Tel Aviv 6997801, Israel
- The
Center for Nanoscience and Nanotechnology, Tel Aviv University, Tel Aviv 6997801, Israel
- The
Center for Light-Matter Interaction, Tel
Aviv University, Tel Aviv 6997801, Israel
- The
Center for Computational Molecular and Materials Science, Tel Aviv University, Tel Aviv 6997801, Israel
| |
Collapse
|
5
|
Axelsson J, LeBlanc D, Shojaeisaadi H, Meier MJ, Fitzgerald DM, Nachmanson D, Carlson J, Golubeva A, Higgins J, Smith T, Lo FY, Pilsner R, Williams A, Salk J, Marchetti F, Yauk C. Frequency and spectrum of mutations in human sperm measured using duplex sequencing correlate with trio-based de novo mutation analyses. Sci Rep 2024; 14:23134. [PMID: 39379474 PMCID: PMC11461794 DOI: 10.1038/s41598-024-73587-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Accepted: 09/18/2024] [Indexed: 10/10/2024] Open
Abstract
De novo mutations (DNMs) are drivers of genetic disorders. However, the study of DNMs is hampered by technological limitations preventing accurate quantification of ultra-rare mutations. Duplex Sequencing (DS) theoretically has < 1 error/billion base-pairs (bp). To determine the DS utility to quantify and characterize DNMs, we analyzed DNA from blood and spermatozoa from six healthy, 18-year-old Swedish men using the TwinStrand DS mutagenesis panel (48 kb spanning 20 genic and intergenic loci). The mean single nucleotide variant mutation frequency (MF) was 1.2 × 10- 7 per bp in blood and 2.5 × 10- 8 per bp in sperm, with the most common base substitution being C > T. Blood MF and substitution spectrum were similar to those reported in blood cells with an orthogonal method. The sperm MF was in the same order of magnitude and had a strikingly similar spectrum to DNMs from publicly available whole genome sequencing data from human pedigrees (1.2 × 10- 8 per bp). DS revealed much larger numbers of insertions and deletions in sperm over blood, driven by an abundance of putative extra-chromosomal circular DNAs. The study indicates the strong potential of DS to characterize human DNMs to inform factors that contribute to disease susceptibility and heritable genetic risks.
Collapse
Affiliation(s)
- Jonatan Axelsson
- Department of Biology, University of Ottawa, Ottawa, ON, K1N 6N5, Canada.
- Reproductive Medicine Centre, Skåne University Hospital, Malmö, Sweden.
- Department of Translational Medicine, Lund University, Malmö, Sweden.
- Department of Laboratory Medicine, Lund University, Lund, Sweden.
| | - Danielle LeBlanc
- Environmental Health Science and Research Bureau, Health Canada, Ottawa, Canada
| | | | - Matthew J Meier
- Environmental Health Science and Research Bureau, Health Canada, Ottawa, Canada
| | | | | | | | | | | | | | - Fang Yin Lo
- TwinStrand Biosciences, Inc., Seattle, WA, USA
| | - Richard Pilsner
- Department of Obstetrics & Gynecology, Wayne State University, Detroit, MI, USA
| | - Andrew Williams
- Environmental Health Science and Research Bureau, Health Canada, Ottawa, Canada
| | - Jesse Salk
- TwinStrand Biosciences, Inc., Seattle, WA, USA
| | - Francesco Marchetti
- Environmental Health Science and Research Bureau, Health Canada, Ottawa, Canada
| | - Carole Yauk
- Department of Biology, University of Ottawa, Ottawa, ON, K1N 6N5, Canada
| |
Collapse
|
6
|
Qian Y, Hong X, Yu Y, Du C, Li J, Yu J, Xiao W, Chen C, Huang D, Zhong T, Li J, Xiang X, Li Z. Characterization and functional analysis of extrachromosomal circular DNA discovered from circulating extracellular vesicles in liver failure. Clin Transl Med 2024; 14:e70059. [PMID: 39406484 PMCID: PMC11479749 DOI: 10.1002/ctm2.70059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2024] [Revised: 09/27/2024] [Accepted: 10/04/2024] [Indexed: 10/20/2024] Open
Affiliation(s)
- Yongbing Qian
- Department of Liver SurgeryRen Ji HospitalShanghai Jiao Tong University School of MedicineShanghaiChina
| | - Xiaoning Hong
- Scientific Research CenterThe Seventh Affiliated HospitalSun Yat‐sen UniversityShenzhenChina
| | - Yang Yu
- Scientific Research CenterThe Seventh Affiliated HospitalSun Yat‐sen UniversityShenzhenChina
| | - Cong Du
- Cell‐gene Therapy Translational Medicine Research CenterThe Third Affiliated HospitalSun Yat‐sen UniversityGuangzhouChina
| | - Jing Li
- College of Medicine and ForensicsXi'an Jiaotong University Health Science CenterXi'anChina
| | - Jiaying Yu
- Scientific Research CenterThe Seventh Affiliated HospitalSun Yat‐sen UniversityShenzhenChina
| | - Wenjun Xiao
- Scientific Research CenterThe Seventh Affiliated HospitalSun Yat‐sen UniversityShenzhenChina
| | - Chen Chen
- Department of Liver SurgeryRen Ji HospitalShanghai Jiao Tong University School of MedicineShanghaiChina
| | - Defa Huang
- Department of Laboratory MedicineFirst Affiliated Hospital of Gannan Medical UniversityGanzhouChina
| | - Tianyu Zhong
- Department of Laboratory MedicineFirst Affiliated Hospital of Gannan Medical UniversityGanzhouChina
| | - Jiang Li
- Scientific Research CenterThe Seventh Affiliated HospitalSun Yat‐sen UniversityShenzhenChina
| | - Xi Xiang
- Scientific Research CenterThe Seventh Affiliated HospitalSun Yat‐sen UniversityShenzhenChina
| | - Zhigang Li
- Scientific Research CenterThe Seventh Affiliated HospitalSun Yat‐sen UniversityShenzhenChina
- Shenzhen Key Laboratory of Chinese Medicine Active Substance Screening and Translational ResearchShenzhenChina
| |
Collapse
|
7
|
Wang J, Huang P, Hou F, Hao D, Li W, Jin H. Predicting gestational diabetes mellitus risk at 11-13 weeks' gestation: the role of extrachromosomal circular DNA. Cardiovasc Diabetol 2024; 23:289. [PMID: 39113025 PMCID: PMC11304788 DOI: 10.1186/s12933-024-02381-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/11/2024] [Accepted: 07/30/2024] [Indexed: 08/11/2024] Open
Abstract
BACKGROUND Gestational diabetes mellitus (GDM) significantly impacts maternal and infant health both immediately and over the long term, yet effective early diagnostic biomarkers are currently lacking. Thus, it is essential to identify early diagnostic biomarkers for GDM risk screening. Extrachromosomal circular DNA (eccDNA), being more stable than linear DNA and involved in disease pathologies, is a viable biomarker candidate for diverse conditions. In this study, eccDNA biomarkers identified for early diagnosis and assessment of GDM risk were explored. METHODS Using Circle-seq, we identified plasma eccDNA profiles in five pregnant women who later developed GDM and five matched healthy controls at 11-13 weeks of gestation. These profiles were subsequently analyzed through bioinformatics and validated through outward PCR combined with Sanger sequencing. Furthermore, candidate eccDNA was validated by quantitative PCR (qPCR) in a larger cohort of 70 women who developed GDM and 70 normal glucose-tolerant (NGT) subjects. A ROC curve assessed the eccDNA's diagnostic potential for GDM. RESULTS 2217 eccDNAs were differentially detected between future GDM patients and controls, with 1289 increased and 928 decreased in abundance. KEGG analysis linked eccDNA genes mainly to GDM-related pathways such as Rap1, MAPK, and PI3K-Akt, and Insulin resistance, among others. Validation confirmed a significant decrease in eccDNA PRDM16circle in the plasma of 70 women who developed GDM compared to 70 NGT women, consistent with the eccDNA-seq results. PRDM16circle showed significant diagnostic value in 11-13 weeks of gestation (AUC = 0.941, p < 0.001). CONCLUSIONS Our study first demonstrats that eccDNAs are aberrantly produced in women who develop GDM, including PRDM16circle, which can predict GDM at an early stage of pregnancy, indicating its potential as a biomarker. TRIAL REGISTRATION ChiCTR2300075971, http://www.chictr.org.cn . Registered 20 September 2023.
Collapse
Affiliation(s)
- Jin Wang
- Prenatal Diagnosis Center, Jinan Maternal and Child Health Care Hospital, No.2, Jianguo Xiaojing Roud, Jinan, 250002, Shandong Province, People's Republic of China
| | - Pengyu Huang
- Fujian Provincial Sperm Bank, Fujian Maternity and Child Health Hospital College of Clinical Medicine for Obstetrics & Gynecology and Pediatrics, Fujian Medical University, Fuzhou, 350005, Fujian Province, People's Republic of China
| | - Fei Hou
- Prenatal Diagnosis Center, Jinan Maternal and Child Health Care Hospital, No.2, Jianguo Xiaojing Roud, Jinan, 250002, Shandong Province, People's Republic of China
| | - Dongdong Hao
- Department of Family Planning, Jinan Maternal and Child Health Care Hospital, Jinan, Shandong Province, People's Republic of China
| | - Wushan Li
- Department of Obstetrics, Jinan Maternal and Child Health Care Hospital, Jinan, Shandong Province, People's Republic of China
| | - Hua Jin
- Prenatal Diagnosis Center, Jinan Maternal and Child Health Care Hospital, No.2, Jianguo Xiaojing Roud, Jinan, 250002, Shandong Province, People's Republic of China.
| |
Collapse
|
8
|
Fang J, Ying L, Ma Z, Yang Y, Zhu R, Su D. The distribution of the extrachromosomal DNA molecules in early lung cancer. Sci Prog 2024; 107:368504241276771. [PMID: 39228317 PMCID: PMC11375654 DOI: 10.1177/00368504241276771] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/05/2024]
Abstract
Lung cancer (LC) is a highly lethal cancer worldwide. Research on the distribution and nature of extrachromosomal DNA molecules (EcDNAm) in early LC is scarce. In this study, after removing linear DNA and mitochondrial circular DNA, EcDNAm were extracted from two paired LC tissue samples and amplified using rolling circle amplification. High throughput extrachromosomal DNA (EcDNA) or RNA sequencing and bioinformatics analysis were subsequently utilized to explore the distribution and nature of the EcDNAm. Additionally, to elucidate the role of oncogenes with large EcDNAm sizes, gene ontology and Kyoto Encyclopedia of Genes and Genomes pathway analyses were performed. The RNA sequencing results revealed significant differences in certain genes between tumors and corresponding normal samples. At the same time, slight distinctions were observed between relapsed and non-relapsed tumor samples. The nature of the EcDNAm was compared between LC samples and matched normal samples. There was a tendency for the number of EcDNAm with longer size (EcDNA) and its containing driver oncogenes to be higher in cancer samples. Enrichment analysis of the cancer samples revealed enrichment in biological processes, such as positive regulation of protein localization, axon development, and in-utero embryonic development. This study highlights the universal distribution and characteristics of EcDNAm in early LC. Moreover, our work fills the investigation of the EcDNAm gap and future studies should focus on the application of EcDNA as a potential biomarker in patients with early LC.
Collapse
Affiliation(s)
- Jianfei Fang
- Department of Pathology, Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, Zhejiang, China
| | - Lisha Ying
- Zhejiang Cancer Institute, Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, Zhejiang, China
| | - Zhengxiao Ma
- Postgraduate Training Base Alliance of Wenzhou Medical University (Zhejiang Cancer Hospital), Hangzhou, Zhejiang, China
| | - Ying Yang
- The Second Clinical Medical College, Zhejiang Chinese Medicine University, Hangzhou, Zhejiang, China
| | - Rui Zhu
- Department of Pathology, Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, Zhejiang, China
| | - Dan Su
- Department of Pathology, Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, Zhejiang, China
- Postgraduate Training Base Alliance of Wenzhou Medical University (Zhejiang Cancer Hospital), Hangzhou, Zhejiang, China
| |
Collapse
|
9
|
Farahmand S, SamadiAfshar S, Hosseini L. TA-Cloning for Diabetes Treatment: Expressing Corynebacterium Malic Enzyme Gene in E. coli. Curr Microbiol 2024; 81:167. [PMID: 38727744 DOI: 10.1007/s00284-024-03686-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Accepted: 04/02/2024] [Indexed: 05/16/2024]
Abstract
Diabetes mellitus represents a persistent metabolic condition marked by heightened levels of blood glucose, presenting a considerable worldwide health concern, and finding targeted treatment for it is a crucial priority for global health. Gram-positive aerobic bacteria, predominantly inhabiting water and soil, are known carriers of various enzyme-encoding genetic material, which includes the malic enzyme gene that plays a role in insulin secretion. Corynebacterium glutamicum bacteria (ATCC 21799) were acquired from the Pasteur Institute and confirmed using microbiological and molecular tests, including DNA extraction. After identification, gene purification and cloning of the maeB gene were performed using the TA Cloning method. Additionally, the enhancement of enzyme expression was assessed using the expression vector pET-28a, and validation of simulation results was monitored through a real-time PCR analysis. Based on previous studies, the malic enzyme plays a pivotal role in maintaining glucose homeostasis, and increased expression of this enzyme has been associated with enhanced insulin sensitivity. However, the production of malic enzyme has encountered numerous challenges and difficulties. This study successfully isolated the malic enzyme genes via Corynebacterium glutamicum and introduced them into Escherichia coli for high-yield production. According to the results, the optimum temperature for the activity of enzymes has been identified as 39 °C.
Collapse
Affiliation(s)
| | - Saber SamadiAfshar
- Pediatric Health Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Ladan Hosseini
- Department of Biology, Payame Noor University (PNU), Tehran, Iran
| |
Collapse
|
10
|
Zhou L, Tang W, Ye B, Zou L. Characterization, biogenesis model, and current bioinformatics of human extrachromosomal circular DNA. Front Genet 2024; 15:1385150. [PMID: 38746056 PMCID: PMC11092383 DOI: 10.3389/fgene.2024.1385150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Accepted: 04/12/2024] [Indexed: 05/16/2024] Open
Abstract
Human extrachromosomal circular DNA, or eccDNA, has been the topic of extensive investigation in the last decade due to its prominent regulatory role in the development of disorders including cancer. With the rapid advancement of experimental, sequencing and computational technology, millions of eccDNA records are now accessible. Unfortunately, the literature and databases only provide snippets of this information, preventing us from fully understanding eccDNAs. Researchers frequently struggle with the process of selecting algorithms and tools to examine eccDNAs of interest. To explain the underlying formation mechanisms of the five basic classes of eccDNAs, we categorized their characteristics and functions and summarized eight biogenesis theories. Most significantly, we created a clear procedure to help in the selection of suitable techniques and tools and thoroughly examined the most recent experimental and bioinformatics methodologies and data resources for identifying, measuring and analyzing eccDNA sequences. In conclusion, we highlighted the current obstacles and prospective paths for eccDNA research, specifically discussing their probable uses in molecular diagnostics and clinical prediction, with an emphasis on the potential contribution of novel computational strategies.
Collapse
Affiliation(s)
- Lina Zhou
- School of Medicine, Chongqing University, Department of Clinical Data Research, Chongqing Emergency Medical Center, Chongqing University Central Hospital, Chongqing University, Chongqing, China
| | - Wenyi Tang
- School of Medicine, Chongqing University, Department of Clinical Data Research, Chongqing Emergency Medical Center, Chongqing University Central Hospital, Chongqing University, Chongqing, China
| | - Bo Ye
- School of Medicine, Chongqing University, Department of Clinical Data Research, Chongqing Emergency Medical Center, Chongqing University Central Hospital, Chongqing University, Chongqing, China
| | - Lingyun Zou
- School of Medicine, Chongqing University, Department of Clinical Data Research, Chongqing Emergency Medical Center, Chongqing University Central Hospital, Chongqing University, Chongqing, China
- School of Medicine, Jinan University, Guangzhou, Guangdong, China
| |
Collapse
|
11
|
Zhang C, Du Q, Zhou X, Qu T, Liu Y, Ma K, Shen Z, Wang Q, Zhang Z, Zhang R. Differential expression and analysis of extrachromosomal circular DNAs as serum biomarkers in pulmonary arterial hypertension. Respir Res 2024; 25:181. [PMID: 38664836 PMCID: PMC11046951 DOI: 10.1186/s12931-024-02808-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2023] [Accepted: 04/06/2024] [Indexed: 04/28/2024] Open
Abstract
BACKGROUND Extrachromosomal circular DNAs (eccDNAs) have been reported to play a key role in the occurrence and development of various diseases. However, the characterization and role of eccDNAs in pulmonary arterial hypertension (PAH) remain unclear. METHODS In the discovery cohort, we first explored eccDNA expression profiles by Circle-sequencing analysis. The candidate eccDNAs were validated by routine polymerase chain reaction (PCR), TOPO-TA cloning and Sanger sequencing. In the validation cohort, 30 patients with PAH and 10 healthy controls were recruited for qPCR amplification to detect the candidate eccDNAs. Datas at the baseline were collected, including clinical background, biochemical variables, echocardiography and hemodynamic factors. Receiver operating characteristic curve was used to investigate the diagnostic effect of the eccDNA. RESULTS We identified a total of 21,741 eccDNAs in plasma samples of 3 IPAH patients and 3 individuals in good health, and the expression frequency, GC content, length distribution, and genome distribution of the eccDNAs were thoroughly characterized and analyzed. In the validation cohort, 687 eccDNAs were differentially expressed in patients with IPAH compared with healthy controls (screening threshold: |FC|≥2 and P < 0.05). Gene Ontology (GO) and the Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis showed that the specific eccDNAs in IPAH were significantly enriched in calcium channel activity, the mitogen-activated protein kinase pathway, and the wnt signaling pathway. Verification queue found that the expression of eccDNA-chr2:131208878-131,424,362 in PAH was considerably higher than that in healthy controls and exhibited a high level of accuracy in predicting PAH with a sensitivity of 86.67% and a specificity of 90%. Furthermore, correlation analysis disclosed a significant association between serum eccDNA-chr2:131208878-131,424,362 and mean pulmonary artery pressure (mPAP) (r = 0.396, P = 0.03), 6 min walking distance (6MWD) (r = -0.399, P = 0.029), N-terminal pro-B-type natriuretic peptide (NT-proBNP) (r = 0.685, P < 0.001) and cardiac index (CI) (r = - 0.419, P = 0.021). CONCLUSIONS This is the first study to identify and characterize eccDNAs in patients with PAH. We revealed that serum eccDNA-chr2:131208878-131,424,362 is significantly overexpressed and can be used in the diagnosis of PAH, indicating its potential as a novel non-invasive biomarker.
Collapse
Affiliation(s)
- Chun Zhang
- Department of Respiratory Medicine, Zhongda Hospital of Southeast University, Dingjiaqiao 87, Nanjing City, Jiangsu Province, 210000, People's Republic of China
| | - Qiang Du
- Department of Respiratory Medicine, Zhongda Hospital of Southeast University, Dingjiaqiao 87, Nanjing City, Jiangsu Province, 210000, People's Republic of China
| | - Xiao Zhou
- Department of Respiratory Medicine, Zhongda Hospital of Southeast University, Dingjiaqiao 87, Nanjing City, Jiangsu Province, 210000, People's Republic of China
| | - Tianyu Qu
- Department of Respiratory Medicine, Zhongda Hospital of Southeast University, Dingjiaqiao 87, Nanjing City, Jiangsu Province, 210000, People's Republic of China
| | - Yingying Liu
- Department of Respiratory Medicine, Zhongda Hospital of Southeast University, Dingjiaqiao 87, Nanjing City, Jiangsu Province, 210000, People's Republic of China
| | - Kai Ma
- Department of Respiratory Medicine, Zhongda Hospital of Southeast University, Dingjiaqiao 87, Nanjing City, Jiangsu Province, 210000, People's Republic of China
| | - Ziling Shen
- Department of Respiratory Medicine, Zhongda Hospital of Southeast University, Dingjiaqiao 87, Nanjing City, Jiangsu Province, 210000, People's Republic of China
| | - Qun Wang
- Department of Respiratory Medicine, Zhongda Hospital of Southeast University, Dingjiaqiao 87, Nanjing City, Jiangsu Province, 210000, People's Republic of China
| | - Zaikui Zhang
- Center of Pathology and Clinical Laboratory, Sir Run Run Hospital, Nanjing Medical University, Nanjing, 210000, People's Republic of China
| | - Ruifeng Zhang
- Department of Respiratory Medicine, Zhongda Hospital of Southeast University, Dingjiaqiao 87, Nanjing City, Jiangsu Province, 210000, People's Republic of China.
| |
Collapse
|
12
|
Abbasi AF, Asim MN, Ahmed S, Dengel A. Long extrachromosomal circular DNA identification by fusing sequence-derived features of physicochemical properties and nucleotide distribution patterns. Sci Rep 2024; 14:9466. [PMID: 38658614 PMCID: PMC11043385 DOI: 10.1038/s41598-024-57457-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Accepted: 03/18/2024] [Indexed: 04/26/2024] Open
Abstract
Long extrachromosomal circular DNA (leccDNA) regulates several biological processes such as genomic instability, gene amplification, and oncogenesis. The identification of leccDNA holds significant importance to investigate its potential associations with cancer, autoimmune, cardiovascular, and neurological diseases. In addition, understanding these associations can provide valuable insights about disease mechanisms and potential therapeutic approaches. Conventionally, wet lab-based methods are utilized to identify leccDNA, which are hindered by the need for prior knowledge, and resource-intensive processes, potentially limiting their broader applicability. To empower the process of leccDNA identification across multiple species, the paper in hand presents the very first computational predictor. The proposed iLEC-DNA predictor makes use of SVM classifier along with sequence-derived nucleotide distribution patterns and physicochemical properties-based features. In addition, the study introduces a set of 12 benchmark leccDNA datasets related to three species, namely Homo sapiens (HM), Arabidopsis Thaliana (AT), and Saccharomyces cerevisiae (SC/YS). It performs large-scale experimentation across 12 benchmark datasets under different experimental settings using the proposed predictor, more than 140 baseline predictors, and 858 encoder ensembles. The proposed predictor outperforms baseline predictors and encoder ensembles across diverse leccDNA datasets by producing average performance values of 81.09%, 62.2% and 81.08% in terms of ACC, MCC and AUC-ROC across all the datasets. The source code of the proposed and baseline predictors is available at https://github.com/FAhtisham/Extrachrosmosomal-DNA-Prediction . To facilitate the scientific community, a web application for leccDNA identification is available at https://sds_genetic_analysis.opendfki.de/iLEC_DNA/.
Collapse
Affiliation(s)
- Ahtisham Fazeel Abbasi
- Department of Computer Science, Rhineland-Palatinate Technical University of Kaiserslautern-Landau, 67663, Kaiserslautern, Germany.
- German Research Center for Artificial Intelligence GmbH, 67663, Kaiserslautern, Germany.
| | - Muhammad Nabeel Asim
- German Research Center for Artificial Intelligence GmbH, 67663, Kaiserslautern, Germany.
| | - Sheraz Ahmed
- German Research Center for Artificial Intelligence GmbH, 67663, Kaiserslautern, Germany
| | - Andreas Dengel
- Department of Computer Science, Rhineland-Palatinate Technical University of Kaiserslautern-Landau, 67663, Kaiserslautern, Germany
- German Research Center for Artificial Intelligence GmbH, 67663, Kaiserslautern, Germany
| |
Collapse
|
13
|
Deng E, Fan X. Categorizing Extrachromosomal Circular DNA as Biomarkers in Serum of Cancer. Biomolecules 2024; 14:488. [PMID: 38672504 PMCID: PMC11048305 DOI: 10.3390/biom14040488] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Revised: 04/07/2024] [Accepted: 04/10/2024] [Indexed: 04/28/2024] Open
Abstract
Extrachromosomal circular DNA (eccDNA), a double-stranded circular DNA molecule found in multiple organisms, has garnered an increasing amount of attention in recent years due to its close association with the initiation, malignant progression, and heterogeneous evolution of cancer. The presence of eccDNA in serum assists in non-invasive tumor diagnosis as a biomarker that can be assessed via liquid biopsies. Furthermore, the specific expression patterns of eccDNA provide new insights into personalized cancer therapy. EccDNA plays a pivotal role in tumorigenesis, development, diagnosis, and treatment. In this review, we comprehensively outline the research trajectory of eccDNA, discuss its role as a diagnostic and prognostic biomarker, and elucidate its regulatory mechanisms in cancer. In particular, we emphasize the potential application value of eccDNA in cancer diagnosis and treatment and anticipate the development of novel tumor diagnosis strategies based on serum eccDNA in the future.
Collapse
Affiliation(s)
- Enze Deng
- Guangzhou National Laboratory, No. 9 XingDaoHuanBei Road, Guangzhou International Bio Island, Guangzhou 510005, China
| | - Xiaoying Fan
- Guangzhou National Laboratory, No. 9 XingDaoHuanBei Road, Guangzhou International Bio Island, Guangzhou 510005, China
- GMU-GIBH Joint School of Life Sciences, The Fifth Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou 510005, China
| |
Collapse
|
14
|
Zhuang J, Zhang Y, Zhou C, Fan D, Huang T, Feng Q, Lu Y, Zhao Y, Zhao Q, Han B, Lu T. Dynamics of extrachromosomal circular DNA in rice. Nat Commun 2024; 15:2413. [PMID: 38499575 PMCID: PMC10948907 DOI: 10.1038/s41467-024-46691-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Accepted: 03/06/2024] [Indexed: 03/20/2024] Open
Abstract
The genome's dynamic nature, exemplified by elements like extrachromosomal circular DNA (eccDNA), is crucial for biodiversity and adaptation. Yet, the role of eccDNA in plants, particularly rice, remains underexplored. Here, we identify 25,598 eccDNAs, unveiling the widespread presence of eccDNA across six rice tissues and revealing its formation as a universal and random process. Interestingly, we discover that direct repeats play a pivotal role in eccDNA formation, pointing to a unique origin mechanism. Despite eccDNA's prevalence in coding sequences, its impact on gene expression is minimal, implying its roles beyond gene regulation. We also observe the association between eccDNA's formation and minor chromosomal deletions, providing insights of its possible function in regulating genome stability. Further, we discover eccDNA specifically accumulated in rice leaves, which may be associated with DNA damage caused by environmental stressors like intense light. In summary, our research advances understanding of eccDNA's role in the genomic architecture and offers valuable insights for rice cultivation and breeding.
Collapse
Affiliation(s)
- Jundong Zhuang
- School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, China
- National Center for Gene Research, National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, 200032, China
- University of Chinese Academy of Sciences, Beijing, 100039, China
| | - Yaoxin Zhang
- National Center for Gene Research, National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, 200032, China
- University of Chinese Academy of Sciences, Beijing, 100039, China
| | - Congcong Zhou
- National Center for Gene Research, National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, 200032, China
| | - Danlin Fan
- National Center for Gene Research, National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, 200032, China
| | - Tao Huang
- National Center for Gene Research, National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, 200032, China
| | - Qi Feng
- National Center for Gene Research, National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, 200032, China
| | - Yiqi Lu
- National Center for Gene Research, National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, 200032, China
| | - Yan Zhao
- National Center for Gene Research, National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, 200032, China
| | - Qiang Zhao
- National Center for Gene Research, National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, 200032, China
| | - Bin Han
- National Center for Gene Research, National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, 200032, China.
| | - Tingting Lu
- School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, China.
| |
Collapse
|
15
|
Andrisani O. Two important players in poor-prognosis hepatocellular carcinoma: Extrachromosomal circular DNA (eccDNA) and its passenger, the oncogenic miR-17~92 locus. Hepatology 2024; 79:6-8. [PMID: 37183875 PMCID: PMC11980994 DOI: 10.1097/hep.0000000000000453] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Accepted: 05/10/2023] [Indexed: 05/16/2023]
Affiliation(s)
- Ourania Andrisani
- Department of Basic Medical Sciences and Purdue Institute for Cancer Research, Purdue University, West Lafayette, Indiana, USA
| |
Collapse
|
16
|
Smalheiser NR. Mobile circular DNAs regulating memory and communication in CNS neurons. Front Mol Neurosci 2023; 16:1304667. [PMID: 38125007 PMCID: PMC10730651 DOI: 10.3389/fnmol.2023.1304667] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Accepted: 11/14/2023] [Indexed: 12/23/2023] Open
Abstract
Stimuli that stimulate neurons elicit transcription of immediate-early genes, a process which requires local sites of chromosomal DNA to form double-strand breaks (DSBs) generated by topoisomerase IIb within a few minutes, followed by repair within a few hours. Wakefulness, exploring a novel environment, and contextual fear conditioning also elicit turn-on of synaptic genes requiring DSBs and repair. It has been reported (in non-neuronal cells) that extrachromosomal circular DNA can form at DSBs as the sites are repaired. I propose that activated neurons may generate extrachromosomal circular DNAs during repair at DSB sites, thus creating long-lasting "markers" of that activity pattern which contain sequences from their sites of origin and which regulate long-term gene expression. Although the population of extrachromosomal DNAs is diverse and overall associated with pathology, a subclass of small circular DNAs ("microDNAs," ∼100-400 bases long), largely derives from unique genomic sequences and has attractive features to act as stable, mobile circular DNAs to regulate gene expression in a sequence-specific manner. Circular DNAs can be templates for the transcription of RNAs, particularly small inhibitory siRNAs, circular RNAs and other non-coding RNAs that interact with microRNAs. These may regulate translation and transcription of other genes involved in synaptic plasticity, learning and memory. Another possible fate for mobile DNAs is to be inserted stably into chromosomes after new DSB sites are generated in response to subsequent activation events. Thus, the insertions of mobile DNAs into activity-induced genes may tend to inactivate them and aid in homeostatic regulation to avoid over-excitation, as well as providing a "counter" for a neuron's activation history. Moreover, activated neurons release secretory exosomes that can be transferred to recipient cells to regulate their gene expression. Mobile DNAs may be packaged into exosomes, released in an activity-dependent manner, and transferred to recipient cells, where they may be templates for regulatory RNAs and possibly incorporated into chromosomes. Finally, aging and neurodegenerative diseases (including Alzheimer's disease) are also associated with an increase in DSBs in neurons. It will become important in the future to assess how pathology-associated DSBs may relate to activity-induced mobile DNAs, and whether the latter may potentially contribute to pathogenesis.
Collapse
Affiliation(s)
- Neil R. Smalheiser
- Department of Psychiatry, University of Illinois College of Medicine, Chicago, IL, United States
| |
Collapse
|
17
|
Jiang R, Yang M, Zhang S, Huang M. Advances in sequencing-based studies of microDNA and ecDNA: Databases, identification methods, and integration with single-cell analysis. Comput Struct Biotechnol J 2023; 21:3073-3080. [PMID: 37273851 PMCID: PMC10238454 DOI: 10.1016/j.csbj.2023.05.017] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Revised: 05/17/2023] [Accepted: 05/17/2023] [Indexed: 06/06/2023] Open
Abstract
Extrachromosomal circular DNA (eccDNA) is a class of circular DNA molecules that originate from genomic DNA but are separate from chromosomes. They are common in various organisms, with sizes ranging from a few hundred to millions of base pairs. A special type of large extrachromosomal DNA (ecDNA) is prevalent in cancer cells. Research on ecDNA has significantly contributed to our comprehension of cancer development, progression, evolution, and drug resistance. The use of next-generation (NGS) and third-generation sequencing (TGS) techniques to identify eccDNAs throughout the genome has become a trend in current research. Here, we briefly review current advances in the biological mechanisms and applications of two distinct types of eccDNAs: microDNA and ecDNA. In addition to presenting available identification tools based on sequencing data, we summarize the most recent efforts to integrate ecDNA with single-cell analysis and put forth suggestions to promote the process.
Collapse
Affiliation(s)
| | | | - Shufan Zhang
- School of Biology and Basic Medical Sciences, Soochow University, Suzhou 215123, China
| | - Moli Huang
- School of Biology and Basic Medical Sciences, Soochow University, Suzhou 215123, China
| |
Collapse
|
18
|
Chu J, Wang L, Cho J. PopRice extrachromosomal DNA sponges ABSCISIC ACID-INSENSITIVE 5 in rice seed-to-seedling transition. PLANT PHYSIOLOGY 2023; 192:56-59. [PMID: 36733191 PMCID: PMC10152647 DOI: 10.1093/plphys/kiad071] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Revised: 01/19/2023] [Accepted: 01/20/2023] [Indexed: 05/03/2023]
Abstract
Extrachromosomal DNA produced by a retrotransposon PopRice mediates gibberellin-abscisic acid antagonism in seed-to-seedling transition of rice by sponging the transcription factor OsABI5.
Collapse
Affiliation(s)
- Jie Chu
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai 200032, China
- University of Chinese Academy of Science, Beijing 100049, China
| | - Ling Wang
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai 200032, China
- University of Chinese Academy of Science, Beijing 100049, China
| | - Jungnam Cho
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai 200032, China
- University of Chinese Academy of Science, Beijing 100049, China
- CAS-JIC Centre for Excellence in Plant and Microbial Science, Shanghai 200032, China
| |
Collapse
|
19
|
Wen A, Zhang W, Xu J, Wang K, Hu H. Identification and characterization of extrachromosomal circular DNA in Wei and Large White pigs by high-throughput sequencing. Front Vet Sci 2023; 10:1085474. [PMID: 36816190 PMCID: PMC9935582 DOI: 10.3389/fvets.2023.1085474] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Accepted: 01/03/2023] [Indexed: 02/05/2023] Open
Abstract
Wei pig (WP) and Large White pig (LP) are fatty and lean breeds, respectively. Extrachromosomal circular DNA (eccDNA) plays an important role in regulating signaling pathway processes of cell. However, there are few reports regarding the eccDNA and ecDNA profiles in WP and LP. The present work aimed to investigate the eccDNA and ecDNA profiles between WP and LP. Three WPs and three LPs (100 ± 1.3 kg) were selected for analysis of eccDNA and ecDNA in the ear samples. Results showed that there were 39,686,953,656-58,411,217,258 and 53,824,168,657-58,311,810,737 clean data for WP and LP, respectively. Sequencing yielded 15,587-25,479 and 71,123-79,605 eccDNAs from the ear samples of WP and LP, respectively. There were 15,111 and 22,594 eccDNA-derived genes in the WP and LP, respectively, and 13,807 eccDNA-derived genes were common in the ear samples of both pigs. Sequencing yielded 13-19 and 27-43 ecDNAs in the ears of WP and LP, respectively. There were 1,005 and 1,777 ecDNA-derived genes in WP and LP, respectively, and 351 ecDNA-derived genes were common in the ear samples of both pigs. The most significant KEGG pathways of eccDNA-derived genes were axon guidance, focal adhesion, metabolic pathways, MAPK signaling pathway, Hedgehog signaling pathway, microRNAs in cancer, tight junction, phospholipase D signaling pathway, endocytosis, and sphingolipid signaling pathway. Furthermore, the most significant KEGG pathways of ecDNA-derived genes were olfactory transduction, B cell receptor signaling pathway, and chemical carcinogenesis. The eccDNA00044301 was lower abundance, while the ecDNA00000060 was higher abundance in WP compared with that in LP. Summary, we found that eccDNAs and ecDNAs are common in WP and LP and occur in sizes large enough to carry one or several partial or complete genes. These findings have expanded the knowledge repertoire of circular DNA in pig and will provide a reference for the use of pigs as a medical model and help discovery of new genetic markers to select high-quality breeds.
Collapse
Affiliation(s)
- Aiyou Wen
- College of Animal Science, Anhui Science and Technology University, Chuzhou, China
| | - Wei Zhang
- Institute of Animal Husbandry and Veterinary Medicine, Anhui Academy of Agricultural Sciences, Hefei, China
| | - Jingen Xu
- College of Animal Science, Anhui Science and Technology University, Chuzhou, China
| | - Kunping Wang
- College of Animal Science, Anhui Science and Technology University, Chuzhou, China
| | - Hong Hu
- College of Animal Science, Anhui Science and Technology University, Chuzhou, China,*Correspondence: Hong Hu ✉
| |
Collapse
|