1
|
Chu Y, Yang S, Chen X. Fibroblast growth factor receptor signaling in metabolic dysfunction-associated fatty liver disease: Pathogenesis and therapeutic targets. Pharmacol Ther 2025; 269:108844. [PMID: 40113178 DOI: 10.1016/j.pharmthera.2025.108844] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2025] [Revised: 02/08/2025] [Accepted: 02/20/2025] [Indexed: 03/22/2025]
Abstract
Metabolic dysfunction-associated fatty liver disease (MAFLD) has emerged as a significant hepatic manifestation of metabolic syndrome, with its prevalence increasing globally alongside the epidemics of obesity and diabetes. MAFLD represents a continuum of liver damage, spanning from uncomplicated steatosis to metabolic dysfunction-associated steatohepatitis (MASH). This condition can advance to more severe outcomes, including fibrosis and cirrhosis. Fibroblast growth factor receptors (FGFRs) are a family of four receptor tyrosine kinases (FGFR1-4) that interact with both paracrine and endocrine fibroblast growth factors (FGFs). This interaction activates the phosphorylation of tyrosine kinase residues, thereby triggering downstream signaling pathways, including RAS-MAPK, JAK-STAT, PI3K-AKT, and PLCγ. In the context of MAFLD, paracrine FGF-FGFR signaling is predominantly biased toward the development of liver fibrosis and carcinogenesis. In contrast, endocrine FGF-FGFR signaling is primarily biased toward regulating the metabolism of bile acids, carbohydrates, lipids, and phosphate, as well as maintaining the overall balance of energy metabolism in the body. The interplay between these biased signaling pathways significantly influences the progression of MAFLD. This review explores the critical functions of FGFR signaling in MAFLD from three perspectives: first, it examines the primary roles of FGFRs relative to their structure; second, it summarizes FGFR signaling in hepatic lipid metabolism, elucidating mechanisms underlying the occurrence and progression of MAFLD; finally, it highlights recent advancements in drug development aimed at targeting FGFR signaling for the treatment of MAFLD and its associated diseases.
Collapse
Affiliation(s)
- Yi Chu
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, College of Animal Science and Technology & College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China
| | - Su Yang
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, College of Animal Science and Technology & College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China
| | - Xiaodong Chen
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, College of Animal Science and Technology & College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China.
| |
Collapse
|
2
|
Huang ZL, Zhang SB, Xu SF, Gu XN, Wu ZQ, Zhang Y, Li J, Ji LL. TSG attenuated NAFLD and facilitated weight loss in HFD-fed mice via activating the RUNX1/FGF21 signaling axis. Acta Pharmacol Sin 2025:10.1038/s41401-025-01568-w. [PMID: 40307458 DOI: 10.1038/s41401-025-01568-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/25/2024] [Accepted: 04/14/2025] [Indexed: 05/02/2025]
Abstract
Non-alcoholic fatty liver disease (NAFLD) is a chronic liver disease characterized by steatosis in hepatocytes and is now becoming the major cause of liver-related mortality. Fibroblast growth factor 21 (FGF21) is an endocrine hormone mainly secreted by the liver, which can bind to its receptor (FGFR) and co-receptor beta klotho (KLB) to form a receptor complex, exerting its lipid-lowering function. 2,3,5,4'-Tetrahydroxy-stilbene-2-O-β-D-glucoside (TSG), a natural compound isolated from Polygonum multiflorum Thunb, has shown excellent activity in lowering lipid content and efficacy in improving NAFLD. In this study we investigated whether FGF21 was implicated in the therapeutic effect of TSG in NAFLD mice. NAFLD was induced in mice by feeding with a high-fat diet (HFD) for 12 weeks, and treated with TSG (20, 40 mg·kg-1·d-1, i.g.) during the last 4 weeks. We showed that TSG treatment significantly alleviated NAFLD in HFD-fed mice evidenced by reduced hepatic triglyceride (TG) and non-esterified fatty acids (NEFA), diminished lipid droplets and decreased NAFLD activity score (NAS) in liver tissues. We demonstrated that TSG treatment significantly increased the mRNA and protein levels of FGF21 in vitro and in vivo, and reduced lipid accumulation in both the liver and adipose tissues. Transcriptomics analysis revealed that TSG treatment significantly increased the nuclear translocation of a transcription factor RUNX1. Knockdown of Runx1 in HFD-fed mice eliminated the efficacy of TSG in alleviating NAFLD, reducing hepatic lipid accumulation and regulating FGF21 signaling pathway in liver and adipose tissues. In conclusion, TSG alleviates NAFLD by enhancing the FGF21-mediated lipid metabolism in a RUNX1-dependent manner.
Collapse
Affiliation(s)
- Zhen-Lin Huang
- The MOE Key Laboratory for Standardization of Chinese Medicines, Shanghai Key Laboratory of Compound Chinese Medicines and The SATCM Key Laboratory for New Resources and Quality Evaluation of Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Shao-Bo Zhang
- The MOE Key Laboratory for Standardization of Chinese Medicines, Shanghai Key Laboratory of Compound Chinese Medicines and The SATCM Key Laboratory for New Resources and Quality Evaluation of Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Shang-Fu Xu
- Key Laboratory of Cell Engineering of Guizhou Province, Affiliated Hospital of Zunyi Medical University, Zunyi, 563000, China
| | - Xin-Nan Gu
- The MOE Key Laboratory for Standardization of Chinese Medicines, Shanghai Key Laboratory of Compound Chinese Medicines and The SATCM Key Laboratory for New Resources and Quality Evaluation of Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Ze-Qi Wu
- The MOE Key Laboratory for Standardization of Chinese Medicines, Shanghai Key Laboratory of Compound Chinese Medicines and The SATCM Key Laboratory for New Resources and Quality Evaluation of Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Yue Zhang
- The MOE Key Laboratory for Standardization of Chinese Medicines, Shanghai Key Laboratory of Compound Chinese Medicines and The SATCM Key Laboratory for New Resources and Quality Evaluation of Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Jian Li
- Department of Pharmaceutics, China Pharmaceutical University, Nanjing, 210009, China
- Technology Center of Jinling Pharmaceutical Co., Ltd, Nanjing, 210009, China
| | - Li-Li Ji
- The MOE Key Laboratory for Standardization of Chinese Medicines, Shanghai Key Laboratory of Compound Chinese Medicines and The SATCM Key Laboratory for New Resources and Quality Evaluation of Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China.
| |
Collapse
|
3
|
Cui X, Sun Q, Wang H. Targeting fibroblast growth factor (FGF)-21: a promising strategy for metabolic dysfunction-associated steatotic liver disease treatment. Front Pharmacol 2025; 16:1510322. [PMID: 40331190 PMCID: PMC12052895 DOI: 10.3389/fphar.2025.1510322] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2024] [Accepted: 04/09/2025] [Indexed: 05/08/2025] Open
Abstract
Metabolic dysfunction-associated steatitic liver disease (MASLD) is the predominant chronic liver disease, with its incidence increasing year by year. It has emerged as the most rapidly increasing contributor to liver-related mortality worldwide and is becoming a principal cause of end-stage liver disorders, primarily cancer of the liver and liver transplantation, hence putting a substantial economic burden on public health. The approval of Resmetirom signifies significant advancement in the treatment of metabolic dysfunction-associated steatohepatitis (MASH); nonetheless, the heterogeneity of MASLD renders it challenging for a single medication to address the requirements of all patients. Consequently, it is essential to formulate varied therapeutic approaches for distinct pathogenic causes and phases of disease. Fibroblast growth factor 21 (FGF21), a member of the fibroblast growth factor family, plays a positive and protective role in MASLD. It attenuates hepatic steatosis and lipotoxicity, ameliorates insulin resistance (IR), reduces oxidative stress, endoplasmic reticulum (ER) stress, and inflammation, as well as possesses anti-fibrotic effects. As a result, FGF21 has the potential to treat MASLD. In this review, we will address the possible mechanisms of FGF21 therapy for MASLD to facilitate the development of clinical therapies targeting FGF21 for MASLD.
Collapse
Affiliation(s)
- Xinyue Cui
- First Clinical School of Medicine, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Quanhao Sun
- First Clinical School of Medicine, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Haiqiang Wang
- Department of Gastroenterology, First Affiliated Hospital, Heilongjiang University of Chinese Medicine, Harbin, China
| |
Collapse
|
4
|
He Q, Li Y, Yu R, Lin M. Association of FGF21 with Metabolic and Cardiovascular Diseases: A Mendelian Randomization Analysis. Exp Clin Endocrinol Diabetes 2025. [PMID: 40245929 DOI: 10.1055/a-2549-6889] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 04/19/2025]
Abstract
Studies have covered a possible relevance between fibroblast growth factor 21 (FGF21) and obesity-related metabolic complications and cardiovascular disease (CVD). Nevertheless, whether FGF21 is a causative factor in these diseases is not known. Using a bidirectional, two-sample Mendelian randomization (MR) approach, this study sought to establish a causal relationship between FGF21 and seven metabolic diseases and six CVDs. A large-scale meta-analysis dataset of genome-wide association studies (GWAS) was analyzed to generate summary-level statistics for FGF21. The diseases we studied included non-alcoholic fatty liver disease (NAFLD), obesity, type 2 diabetes (T2DM), hypertension, gestational diabetes (GDM), gestational hypertension (GHTN), pre-eclampsia or eclampsia (PE), atherosclerosis, cardiomyopathy (CMP), coronary heart disease (CHD), coronary atherosclerosis, heart failure (HF), myocardial infarction (MI) and the corresponding summary GAWS data were retrieved from the FinnGen Biobank and IEU Open GWAS Project database. The inverse variance-weighted (IVW) algorithm was the primary approach utilized for the MR analysis. The MR-Egger regression and MR-PRESSO tests were implemented to evaluate horizontal pleiotropy. The heterogeneity of instrumental variables was subsequently assessed utilizing Cochran's Q statistics.When diseases are used as exposures, MR analysis results of the IVW method indicated that NAFLD (Beta=- 0.047, 95% CI=- 0.08 to - 0.014; p=0.006), obesity (Beta=0.087, 95% CI=0.021-0.153; p=0.009), T2DM (Beta=0.071, 95% CI=0.037-0.106; p<0.001) correlated causally with FGF21. Nevertheless, FGF21 was not causally related to the remaining metabolic diseases and CVDs, according to the results of the MR analysis (p>0.05). It was demonstrated that the aforementioned results were robust and devoid of pleiotropy.Our study supports a causal association between NAFLD, obesity, and T2DM with FGF21. No substantial evidence exists to establish a causal relationship between FGF21 and other diseases. This study provides opportunities for the early prevention and innovative therapy of NAFLD, obesity, and T2DM.
Collapse
Affiliation(s)
- Qingwen He
- Affiliated Women's Hospital of Jiangnan University, Wuxi, China
| | - Yuguang Li
- Affiliated Women's Hospital of Jiangnan University, Wuxi, China
| | - Renqiang Yu
- Affiliated Women's Hospital of Jiangnan University, Wuxi, China
| | - Mengyuan Lin
- Affiliated Women's Hospital of Jiangnan University, Wuxi, China
| |
Collapse
|
5
|
Ye S, Lin J, Zhang Y, Li J, Wang Y, Liang F, Wu J, Xu Y, Lin L, Zhao Y. RhFGF21 protects the skin from UVB irradiation in diabetic mice through the inhibition of epidermal cell apoptosis and macrophage-mediated inflammation via the SIRT1 signaling pathway. Biochim Biophys Acta Mol Basis Dis 2025; 1871:167724. [PMID: 40020529 DOI: 10.1016/j.bbadis.2025.167724] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2024] [Revised: 01/25/2025] [Accepted: 02/13/2025] [Indexed: 03/03/2025]
Abstract
BACKGROUND Ultraviolet B (UVB) irradiation can damage skin tissue. Diabetes aggravates skin lesions. Fibroblast growth factor 21 (FGF21) is significantly involved in exerting protective effects and facilitating tissue repair. Therefore, this study aimed to investigate the impact of recombinant human FGF21 (rhFGF21) on diabetic skin affected by UVB damage. METHODS UVB irradiation (270 mJ/cm2) was administered to diabetic mice for 5 consecutive days to establish UVB-irradiated skin injury, and rhFGF21 was administered daily after irradiation. Human immortalized keratinocytes (HaCaT) and mouse peritoneal macrophages (MPMs) were cultured under high glucose (HG) conditions for 3 days, followed by treatment with rhFGF21 for 1 h before UVB irradiation or lipopolysaccharide (LPS) stimulation. We analyzed the effects of UVB irradiation on diabetic skin via laser Doppler flowmetry, histopathological staining, TUNEL assays, RT-PCR, Western blotting, MTT assays and Hoechst 33258 staining. RESULTS Our findings indicated that the skin of diabetic mice was more severely damaged by UVB irradiation, and rhFGF21 alleviated this damage. RhFGF21 inhibited apoptosis and inflammatory responses in the skin tissues of diabetic mice. These changes were primarily reflected in increase of the sirtuin 1 (SIRT1) level in epidermal cells and peritoneal macrophages of mice. Moreover, rhFGF21 not only increased the survival rate of HaCaT cells but also decreased the generation of pro-inflammatory cytokines in MPMs. Notably, SIRT1 inhibitor (EX527) was capable of reversing these effects. CONCLUSIONS RhFGF21 attenuates UVB-induced damage to the skin of diabetic mice, predominantly by suppressing epidermal cell apoptosis and macrophage-mediated inflammatory responses via the SIRT signaling pathway.
Collapse
Affiliation(s)
- Shasha Ye
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Jingjing Lin
- Pharmacy department, Wenzhou TCM Hospital of Zhejiang Chinese Medical University, Wenzhou, Zhejiang, China
| | - Yujie Zhang
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Jiana Li
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Yichen Wang
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Fei Liang
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Junyi Wu
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Yifan Xu
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Li Lin
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, China; Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), School of Pharmaceutical Science, Wenzhou Medical University, Wenzhou, Zhejiang, China; State Key Laboratory of Macromolecular Drugs and Large-scale Manufacturing, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, China.
| | - Yeli Zhao
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, China.
| |
Collapse
|
6
|
Kovynev A, Charchuta MM, Begtašević A, Ducarmon QR, Rensen PCN, Schönke M. Combination of dietary fiber and exercise training improves fat loss in mice but does not ameliorate MASLD more than exercise alone. Am J Physiol Gastrointest Liver Physiol 2025; 328:G399-G410. [PMID: 40033967 DOI: 10.1152/ajpgi.00317.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/03/2024] [Revised: 01/02/2025] [Accepted: 02/20/2025] [Indexed: 03/05/2025]
Abstract
Lifestyle interventions, such as diet and exercise, are currently the main therapies against metabolic dysfunction-associated steatotic liver disease (MASLD). However, not much is known about the combined impact of fiber and exercise on the modulation of gut-liver axis and MASLD amelioration. Here, we studied the impact of the combination of exercise training and a fiber-rich diet on the amelioration of MASLD. Male APOE*3-Leiden.CETP mice were fed a high-fat high-cholesterol diet with or without the addition of fiber (10% inulin) and exercise trained on a treadmill, or remained sedentary. Exercise training and fiber supplementation reduced fat mass gain and lowered plasma glucose levels. Only the combination treatment, however, induced fat loss and decreased plasma triglyceride and cholesterol levels compared with sedentary control mice. Exercise training with and without the addition of fiber had a similar ameliorating effect on the MASLD score. Only exercise without fiber decreased the hepatic expression of inflammatory markers. Fiber diet was mainly responsible for remodeling the gut microbial composition, with an increase in the relative abundance of the short-chain fatty acid (SCFA)-producing genera Anaerostipes and Muribaculaceae, whereas, surprisingly, exercise training alone and with fiber resulted in the highest increase of SCFA production. Overall, the combination of exercise training and dietary fiber decreases fat mass and improves glucose and lipid homeostasis but does not have an additional synergistic positive effect on liver health compared with exercise training alone.NEW & NOTEWORTHY The combination of dietary fiber intake and exercise training has a synergetic beneficial effect on the metabolic health, resulting in fat loss, lowered blood glucose, and lowered plasma lipid levels in mice with steatotic liver disease. However, fiber supplementation, despite a positive remodulation of the gut-liver axis, does not have an additional positive effect on liver health compared with exercise training alone.
Collapse
Affiliation(s)
- Artemiy Kovynev
- Division of Endocrinology, Department of Medicine, Leiden University Medical Center, Leiden, The Netherlands
- Einthoven Laboratory for Experimental Vascular Medicine, Leiden University Medical Center, Leiden, The Netherlands
| | - Mikołaj M Charchuta
- Division of Endocrinology, Department of Medicine, Leiden University Medical Center, Leiden, The Netherlands
- Einthoven Laboratory for Experimental Vascular Medicine, Leiden University Medical Center, Leiden, The Netherlands
| | - Amina Begtašević
- Division of Endocrinology, Department of Medicine, Leiden University Medical Center, Leiden, The Netherlands
- Einthoven Laboratory for Experimental Vascular Medicine, Leiden University Medical Center, Leiden, The Netherlands
| | - Quinten R Ducarmon
- Leiden University Center for Infectious Diseases, Leiden University Medical Center, Leiden, The Netherlands
| | - Patrick C N Rensen
- Division of Endocrinology, Department of Medicine, Leiden University Medical Center, Leiden, The Netherlands
- Einthoven Laboratory for Experimental Vascular Medicine, Leiden University Medical Center, Leiden, The Netherlands
| | - Milena Schönke
- Division of Endocrinology, Department of Medicine, Leiden University Medical Center, Leiden, The Netherlands
- Einthoven Laboratory for Experimental Vascular Medicine, Leiden University Medical Center, Leiden, The Netherlands
| |
Collapse
|
7
|
Guan F, Wang R, Yi Z, Luo P, Liu W, Xie Y, Liu Z, Xia Z, Zhang H, Cheng Q. Tissue macrophages: origin, heterogenity, biological functions, diseases and therapeutic targets. Signal Transduct Target Ther 2025; 10:93. [PMID: 40055311 PMCID: PMC11889221 DOI: 10.1038/s41392-025-02124-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2024] [Revised: 11/01/2024] [Accepted: 12/15/2024] [Indexed: 05/04/2025] Open
Abstract
Macrophages are immune cells belonging to the mononuclear phagocyte system. They play crucial roles in immune defense, surveillance, and homeostasis. This review systematically discusses the types of hematopoietic progenitors that give rise to macrophages, including primitive hematopoietic progenitors, erythro-myeloid progenitors, and hematopoietic stem cells. These progenitors have distinct genetic backgrounds and developmental processes. Accordingly, macrophages exhibit complex and diverse functions in the body, including phagocytosis and clearance of cellular debris, antigen presentation, and immune response, regulation of inflammation and cytokine production, tissue remodeling and repair, and multi-level regulatory signaling pathways/crosstalk involved in homeostasis and physiology. Besides, tumor-associated macrophages are a key component of the TME, exhibiting both anti-tumor and pro-tumor properties. Furthermore, the functional status of macrophages is closely linked to the development of various diseases, including cancer, autoimmune disorders, cardiovascular disease, neurodegenerative diseases, metabolic conditions, and trauma. Targeting macrophages has emerged as a promising therapeutic strategy in these contexts. Clinical trials of macrophage-based targeted drugs, macrophage-based immunotherapies, and nanoparticle-based therapy were comprehensively summarized. Potential challenges and future directions in targeting macrophages have also been discussed. Overall, our review highlights the significance of this versatile immune cell in human health and disease, which is expected to inform future research and clinical practice.
Collapse
Affiliation(s)
- Fan Guan
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
- Xiangya School of Medicine, Central South University, Changsha, China
| | - Ruixuan Wang
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Zhenjie Yi
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Peng Luo
- Department of Oncology, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Wanyao Liu
- Xiangya School of Medicine, Central South University, Changsha, China
| | - Yao Xie
- Xiangya School of Medicine, Central South University, Changsha, China
| | - Zaoqu Liu
- Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Zhiwei Xia
- Department of Neurology, Hunan Aerospace Hospital, Hunan Normal University, Changsha, China.
| | - Hao Zhang
- Department of Neurosurgery, The Second Affiliated Hospital, Chongqing Medical University, Chongqing, China.
| | - Quan Cheng
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, China.
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China.
| |
Collapse
|
8
|
Budkowska M, Ostrycharz-Jasek E, Cecerska-Heryć E, Dołęgowska K, Siennicka A, Nazarewski Ł, Rykowski P, Dołęgowska B. The Impact of Human Liver Transplantation on the Concentration of Fibroblast Growth Factors: FGF19 and FGF21. Int J Mol Sci 2025; 26:1299. [PMID: 39941067 PMCID: PMC11818808 DOI: 10.3390/ijms26031299] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2024] [Revised: 01/24/2025] [Accepted: 01/31/2025] [Indexed: 02/16/2025] Open
Abstract
The multitude of processes in which the liver participates makes it vulnerable to many serious diseases, which can lead to chronic organ failure. Modern medicine bases the treatment of end-stage liver failure on liver transplantation. To ensure the proper functioning of the transplanted liver, a balance of cellular and immunological processes and appropriate concentrations of many different factors are necessary, including, among others, fibroblast growth factors (FGFs). Over the last several years, studies have focused on some FGF growth factors, i.e., FGF19 and FGF21. These two growth factors belong to the FGF19 subfamily, and we concentrate on these two factors in our work. These factors diffuse away from the site of secretion into the blood, acting as hormones. FGF19 is a growth factor with a high therapeutic potential, involved in the homeostasis of bile acids necessary to maintain the proper function of the transplanted liver. FGF21, in turn, plays an important role in regulating lipid and glucose homeostasis. This study aimed to evaluate changes in the concentration of growth factors FGF19 and FGF21 in the plasma of 84 patients before, 24 h, and 2 weeks after liver transplantation (ELISA test was used). Additionally, the correlations of the basic laboratory parameters-alanine aminotransferase (ALT), aspartate aminotransferase (AST), gamma-glutamyl transpeptidase (GGTP), alkaline phosphatase (ALP), total bilirubin, C-reactive protein (CRP), albumin and hemoglobin (Hb)-with FGF19 and FGF21 were determined. Our studies noted statistically significant changes in FGF19 and FGF21 concentrations before, 24 h, and 2 weeks after liver transplantation. The highest values for FGF19 before liver transplantation and the lowest values 24 h after this surgery were observed for FGF21; the highest concentrations were observed the day after liver transplantation, and the lowest were observed immediately before surgery. Observations of increases and decreases in the concentration of the examined factors at individual time points (before and after transplantation) allow us to suspect that FGF19 has an adaptive and protective function toward the transplanted liver. At the same time, FGF21 may affect the regenerative mechanisms of the damaged organ.
Collapse
Affiliation(s)
- Marta Budkowska
- Department of Medical Analytics, Pomeranian Medical University, Al. Powstańców Wielkopolskich 72, 70-111 Szczecin, Poland;
| | - Ewa Ostrycharz-Jasek
- Institute of Biology, University of Szczecin, 71-412 Szczecin, Poland;
- Doctoral School, University of Szczecin, 70-383 Szczecin, Poland
- Molecular Biology and Biotechnology Center, University of Szczecin, 71-412 Szczecin, Poland
| | - Elżbieta Cecerska-Heryć
- Department of Laboratory Medicine, Pomeranian Medical University, Al. Powstańców Wielkopolskich 72, 70-111 Szczecin, Poland; (E.C.-H.); (B.D.)
| | - Katarzyna Dołęgowska
- Department of Immunology Diagnostics, Pomeranian Medical University, Al. Powstanców Wielkopolskich 72, 70-111 Szczecin, Poland;
| | - Aldona Siennicka
- Department of Medical Analytics, Pomeranian Medical University, Al. Powstańców Wielkopolskich 72, 70-111 Szczecin, Poland;
| | - Łukasz Nazarewski
- Department of General, Transplant and Liver Surgery, Medical University of Warsaw, ul Banacha 1a, 02-097 Warsaw, Poland; (Ł.N.); (P.R.)
| | - Paweł Rykowski
- Department of General, Transplant and Liver Surgery, Medical University of Warsaw, ul Banacha 1a, 02-097 Warsaw, Poland; (Ł.N.); (P.R.)
| | - Barbara Dołęgowska
- Department of Laboratory Medicine, Pomeranian Medical University, Al. Powstańców Wielkopolskich 72, 70-111 Szczecin, Poland; (E.C.-H.); (B.D.)
| |
Collapse
|
9
|
Maffeis C, Morandi A, Zusi C, Olivieri F, Fornari E, Cavarzere P, Piona C, Corradi M, Emiliani F, Da Ros A, Berni Canani R, Mantovani A, Targher G. Hepatic lipogenesis marked by GCKR-modulated triglycerides increases serum FGF21 in children/teens with obesity. Diabetes Obes Metab 2025; 27:825-834. [PMID: 39611214 DOI: 10.1111/dom.16081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Revised: 10/31/2024] [Accepted: 11/08/2024] [Indexed: 11/30/2024]
Abstract
AIMS Fibroblast growth factor 21 (FGF21) decreases hepatic lipogenesis in animal models, and FGF21 analogues decrease serum triglycerides (TG) in adults in phase-2 trials. On the other hand, serum FGF21 is associated with higher TG in observational studies of people with obesity, raising a sort of paradox. We tested the hypothesis that FGF21 is induced by TG in youth with obesity, as a compensatory mechanism. MATERIALS AND METHODS We recruited 159 children/adolescents with obesity (80 males, 12.7 ± 2.1 years). Besides serum FGF21 and lipid dosages, we genotyped the Pro446Leu variant at glucokinase regulator (GCKR) as a known marker of genetically increased hepatic de novo lipogenesis, and we used it as an instrumental variable to establish a cause-and-effect relationship between FGF21 and TG, according to a Mendelian randomization analysis. RESULTS The Pro446Leu variant increased circulating TG (β = +0.35, p < 0.001), which was positively associated with circulating FGF21 (β = +0.42, p < 0.001). The Pro446Leu variant increased FGF-21 (β = +0.14, p = 0.031) with the expected slope (β-coefficient) in case of association entirely mediated by TG: 0.35 (slope between Pro446Ala and TG) × 0.42 (slope between TG and FGF21) = 0.14. CONCLUSIONS Hepatic lipogenesis, marked by GCKR-modulated triglycerides, is significantly associated with increased serum FGF-21 in children/adolescents with obesity.
Collapse
Affiliation(s)
- Claudio Maffeis
- Department of Surgery, Dentistry, Gynecology and Pediatrics, Section of Pediatric Diabetes and Metabolism, University of Verona, Verona, Italy
- Department of Mother and Child, Pediatric Unit B, University Hospital of Verona, Verona, Italy
| | - Anita Morandi
- Department of Surgery, Dentistry, Gynecology and Pediatrics, Section of Pediatric Diabetes and Metabolism, University of Verona, Verona, Italy
- Department of Mother and Child, Pediatric Unit B, University Hospital of Verona, Verona, Italy
| | - Chiara Zusi
- Department of Surgery, Dentistry, Gynecology and Pediatrics, Section of Pediatric Diabetes and Metabolism, University of Verona, Verona, Italy
| | - Francesca Olivieri
- Department of Mother and Child, Pediatric Unit B, University Hospital of Verona, Verona, Italy
| | - Elena Fornari
- Department of Mother and Child, Pediatric Unit B, University Hospital of Verona, Verona, Italy
| | - Paolo Cavarzere
- Department of Mother and Child, Pediatric Unit B, University Hospital of Verona, Verona, Italy
| | - Claudia Piona
- Department of Surgery, Dentistry, Gynecology and Pediatrics, Section of Pediatric Diabetes and Metabolism, University of Verona, Verona, Italy
- Department of Mother and Child, Pediatric Unit B, University Hospital of Verona, Verona, Italy
| | - Massimiliano Corradi
- Department of Surgery, Dentistry, Gynecology and Pediatrics, Section of Pediatric Diabetes and Metabolism, University of Verona, Verona, Italy
| | - Federica Emiliani
- Department of Surgery, Dentistry, Gynecology and Pediatrics, Section of Pediatric Diabetes and Metabolism, University of Verona, Verona, Italy
| | - Alessandro Da Ros
- Postgraduate School of Pediatrics, University of Verona, Verona, Italy
| | - Roberto Berni Canani
- Department of Translational Medical Science, University of Naples Federico II, Naples, Italy
| | | | - Giovanni Targher
- Department of Medicine, University of Verona, Verona, Italy
- Metabolic Diseases Research Unit, IRCCS Sacro Cuore-Don Calabria Hospital, Negrar di Valpolicella, Italy
| |
Collapse
|
10
|
Hoekx CA, Martinez-Tellez B, Straat ME, Bizino MB, van Eyk HJ, Lamb HJ, Smit JWA, Jazet IM, Nahon KJ, Janssen LGM, Rensen PCN, Boon MR. Circulating FGF21 is lower in South Asians compared with Europids with type 2 diabetes mellitus. Endocr Connect 2025; 14:e240362. [PMID: 39641307 PMCID: PMC11728930 DOI: 10.1530/ec-24-0362] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Revised: 11/12/2024] [Accepted: 12/06/2024] [Indexed: 12/07/2024]
Abstract
Objective Inflammation contributes to the development of type 2 diabetes mellitus (T2DM). While South Asians are more prone to develop T2DM than Europids, the inflammatory phenotype of the South Asian population remains relatively unknown. Therefore, we aimed to investigate potential differences in circulating levels of inflammation-related proteins in South Asians compared with Europids with T2DM. Method In this secondary analysis of three randomized controlled trials, relative plasma levels of 73 inflammation-related proteins were measured using an Olink Target Inflammation panel and the serum fibroblast growth factor 21 (FGF21) concentration using an ELISA kit in Dutch South Asians (n = 47) and Dutch Europids (n = 49) with T2DM. Results Of the 73 inflammation-related proteins, the relative plasma levels of six proteins were higher (stem cell factor, caspase-8, C-C motif chemokine ligand 28, interferon-gamma, sulfotransferase 1A1 and cystatin D; q-value <0.05), while relative levels of six proteins were lower (FGF21, human fibroblast collagenase, interferon-8, C-C motif chemokine ligand 4, C-X-C motif chemokine ligand 6 and monocyte chemoattractant protein-1; q-value <0.05) in South Asians compared with Europids. Of these, the effect size of FGF21 was the largest, particularly in females. We validated this finding by assessing the FGF21 concentration in serum. The FGF21 concentration was indeed lower in South Asians compared with Europids with T2DM in both males (-42.2%; P < 0.05) and females (-58.5%; P < 0.001). Conclusion Relative plasma levels of 12 inflammation-related proteins differed between South Asians and Europids with T2DM, with a significantly pronounced reduction in FGF21. In addition, the serum FGF21 concentration was significantly lower in South Asian males and females compared with Europids. Whether low FGF21 is an underlying cause or consequence of T2DM in South Asians remains to be determined. Clinical trial registration ClinicalTrials.gov (NCT01761318, registration date 20-12-2012; NCT02660047, registration date 21-03-2018; and NCT03012113, registration date 06-01-2017).
Collapse
Affiliation(s)
- Carlijn A Hoekx
- Division of Endocrinology, Department of Medicine, Leiden University Medical Center, Leiden, The Netherlands
- Einthoven Laboratory for Experimental Vascular Medicine, Leiden University Medical Center, Leiden, The Netherlands
| | - Borja Martinez-Tellez
- Division of Endocrinology, Department of Medicine, Leiden University Medical Center, Leiden, The Netherlands
- Einthoven Laboratory for Experimental Vascular Medicine, Leiden University Medical Center, Leiden, The Netherlands
- Department of Nursing Physiotherapy and Medicine, SPORT Research Group (CTS-1024), CERNEP Research Center, University of Almería, Almería, Spain
- Biomedical Research Unit, Torrecárdenas University Hospital, Almería, Spain
- CIBER de Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III, Granada, Spain
| | - Maaike E Straat
- Division of Endocrinology, Department of Medicine, Leiden University Medical Center, Leiden, The Netherlands
- Einthoven Laboratory for Experimental Vascular Medicine, Leiden University Medical Center, Leiden, The Netherlands
| | - Maurice B Bizino
- Division of Endocrinology, Department of Medicine, Leiden University Medical Center, Leiden, The Netherlands
- Department of Radiology, Leiden University Medical Center, Leiden, The Netherlands
| | - Huub J van Eyk
- Division of Endocrinology, Department of Medicine, Leiden University Medical Center, Leiden, The Netherlands
- Einthoven Laboratory for Experimental Vascular Medicine, Leiden University Medical Center, Leiden, The Netherlands
| | - Hildebrandus J Lamb
- Department of Radiology, Leiden University Medical Center, Leiden, The Netherlands
| | - Johannes W A Smit
- Department of Medicine, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Ingrid M Jazet
- Division of Endocrinology, Department of Medicine, Leiden University Medical Center, Leiden, The Netherlands
- Einthoven Laboratory for Experimental Vascular Medicine, Leiden University Medical Center, Leiden, The Netherlands
| | - Kimberly J Nahon
- Division of Endocrinology, Department of Medicine, Leiden University Medical Center, Leiden, The Netherlands
- Einthoven Laboratory for Experimental Vascular Medicine, Leiden University Medical Center, Leiden, The Netherlands
| | - Laura G M Janssen
- Division of Endocrinology, Department of Medicine, Leiden University Medical Center, Leiden, The Netherlands
- Einthoven Laboratory for Experimental Vascular Medicine, Leiden University Medical Center, Leiden, The Netherlands
| | - Patrick C N Rensen
- Division of Endocrinology, Department of Medicine, Leiden University Medical Center, Leiden, The Netherlands
- Einthoven Laboratory for Experimental Vascular Medicine, Leiden University Medical Center, Leiden, The Netherlands
| | - Mariëtte R Boon
- Division of Endocrinology, Department of Medicine, Leiden University Medical Center, Leiden, The Netherlands
- Einthoven Laboratory for Experimental Vascular Medicine, Leiden University Medical Center, Leiden, The Netherlands
| |
Collapse
|
11
|
Kovynev A, Ying Z, Zhang S, Olgiati E, Lambooij JM, Visentin C, Guigas B, Ducarmon QR, Rensen PCN, Schönke M. Timing Matters: Late, but Not Early, Exercise Training Ameliorates MASLD in Part by Modulating the Gut-Liver Axis in Mice. J Pineal Res 2024; 76:e70003. [PMID: 39539028 DOI: 10.1111/jpi.70003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/17/2024] [Revised: 10/10/2024] [Accepted: 10/21/2024] [Indexed: 11/16/2024]
Abstract
Metabolic dysfunction-associated steatotic liver disease (MASLD) affects two billion people worldwide and is currently mostly treatable via lifestyle interventions, such as exercise training. However, it is unclear whether the positive effects of exercise are restricted to unique circadian windows. We therefore aimed to study whether the timing of exercise training differentially modulates MASLD development. Twenty weeks old male APOE*3-Leiden.CETP mice were fed a high fat-high cholesterol diet to induce MASLD and treadmill-trained for 1 h five times per week for 12 weeks either early (ZT13; E-RUN) or late (ZT22; L-RUN) in the dark phase while corresponding sedentary groups (E-SED and L-SED) did not. Late, but not early exercise training decreased the MASLD score, body weight, fat mass, and liver triglycerides, accompanied by an altered composition of the gut microbiota. Specifically, only late exercise training increased the abundance of short-chain fatty acid-producing bacterial families and genera, such as Akkermansia, Lachnospiraceae, and Rikenella. To assess the role of the gut microbiota in training-induced effects, the study was repeated and trained (ZT22 only, RUN) or sedentary mice (SED) served as fecal donors for sedentary recipient mice (RUN FMT and SED FMT). Fecal microbiota transplantation reduced liver weight and plasma triglycerides in RUN FMT compared to SED FMT and tended to lower the MASLD score and liver triglycerides. Timing of exercise training is a critical factor for the positive effect on MASLD in this preclinical model, and the effect of late exercise is partially mediated via the gut-liver axis.
Collapse
Affiliation(s)
- Artemiy Kovynev
- Department of Medicine, Division of Endocrinology, Leiden University Medical Center, Leiden, The Netherlands
- Einthoven Laboratory for Experimental Vascular Medicine, Leiden University Medical Center, Leiden, The Netherlands
| | - Zhixiong Ying
- Department of Medicine, Division of Endocrinology, Leiden University Medical Center, Leiden, The Netherlands
- Einthoven Laboratory for Experimental Vascular Medicine, Leiden University Medical Center, Leiden, The Netherlands
| | - Sen Zhang
- Department of Medicine, Division of Endocrinology, Leiden University Medical Center, Leiden, The Netherlands
- Einthoven Laboratory for Experimental Vascular Medicine, Leiden University Medical Center, Leiden, The Netherlands
| | - Emanuele Olgiati
- Department of Medicine, Division of Endocrinology, Leiden University Medical Center, Leiden, The Netherlands
- Einthoven Laboratory for Experimental Vascular Medicine, Leiden University Medical Center, Leiden, The Netherlands
| | - Joost M Lambooij
- Leiden University Center for Infectious Diseases (LUCID), Leiden University Medical Center, Leiden, The Netherlands
- Department of Cell and Chemical Biology, Leiden University Medical Center, Leiden, The Netherlands
| | - Clara Visentin
- Department of Medicine, Division of Endocrinology, Leiden University Medical Center, Leiden, The Netherlands
- Einthoven Laboratory for Experimental Vascular Medicine, Leiden University Medical Center, Leiden, The Netherlands
| | - Bruno Guigas
- Leiden University Center for Infectious Diseases (LUCID), Leiden University Medical Center, Leiden, The Netherlands
| | - Quinten R Ducarmon
- Leiden University Center for Infectious Diseases (LUCID), Leiden University Medical Center, Leiden, The Netherlands
| | - Patrick C N Rensen
- Department of Medicine, Division of Endocrinology, Leiden University Medical Center, Leiden, The Netherlands
- Einthoven Laboratory for Experimental Vascular Medicine, Leiden University Medical Center, Leiden, The Netherlands
| | - Milena Schönke
- Department of Medicine, Division of Endocrinology, Leiden University Medical Center, Leiden, The Netherlands
- Einthoven Laboratory for Experimental Vascular Medicine, Leiden University Medical Center, Leiden, The Netherlands
| |
Collapse
|
12
|
McMurphy TB, Park A, Heizer PJ, Bottenfield C, Kurasawa JH, Ikeda Y, Doran MR. AAV-mediated co-expression of an immunogenic transgene plus PD-L1 enables sustained expression through immunological evasion. Sci Rep 2024; 14:28853. [PMID: 39572604 PMCID: PMC11582688 DOI: 10.1038/s41598-024-75698-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Accepted: 10/08/2024] [Indexed: 11/24/2024] Open
Abstract
Adeno-associated virus (AAV) vectors can mediate long-term expression of immunogenic transgenes in vivo through transduction of tolerogenic cells in the liver. Tissue-targeted AAV vectors allow transduction of non-hepatic cells, but this necessitates development of strategies to minimize transgene immunogenicity. Here, we first validated that AAV capsids with tissue-specific tropism and transgene promoters enabled expression of the immunogenic protein, firefly luciferase, in liver, muscle, or adipose tissue. Cellular immunity was detectable in animals where luciferase was expressed in muscle or adipose, but not liver tissue. With the objective of enhancing tolerance of transduced non-hepatic cells, AAV vectors were engineered to co-express luciferase plus the immune checkpoint protein, PD-L1. In animals where transduced cells expressed luciferase but not PD-L1, there was incremental depletion of transduced cells over time. By contrast, the bioluminescent signal increased incrementally over the study, and was significantly greater, in the muscle and adipose tissue of animals where PD-L1 was co-expressed with luciferase. Our data demonstrate that PD-L1 co-expression facilitates persistent, tissue-targeted expression of immunogenic transgenes without transducing tolerogenic hepatic cells. Our strategy of PD-L1 co-expression may provide a versatile platform for sustained expression of immunogenic transgenes in gene and cell therapies.
Collapse
Affiliation(s)
- Travis B McMurphy
- Biologics Engineering, Oncology R&D, AstraZeneca, One MedImmune Way, Gaithersburg, MD, 20878, USA
| | - Andrew Park
- Biologics Engineering, Oncology R&D, AstraZeneca, One MedImmune Way, Gaithersburg, MD, 20878, USA
| | - Patrick J Heizer
- Biologics Engineering, Oncology R&D, AstraZeneca, One MedImmune Way, Gaithersburg, MD, 20878, USA
| | - Crystal Bottenfield
- Biologics Engineering, Oncology R&D, AstraZeneca, One MedImmune Way, Gaithersburg, MD, 20878, USA
| | - James H Kurasawa
- Biologics Engineering, Oncology R&D, AstraZeneca, One MedImmune Way, Gaithersburg, MD, 20878, USA
| | - Yasuhiro Ikeda
- Biologics Engineering, Oncology R&D, AstraZeneca, One MedImmune Way, Gaithersburg, MD, 20878, USA.
| | - Michael R Doran
- Biologics Engineering, Oncology R&D, AstraZeneca, One MedImmune Way, Gaithersburg, MD, 20878, USA.
| |
Collapse
|
13
|
Xu G, Qiu F, Zhang W, Li S, Chen J, Wang G, Wang Y, Pan J, Pan X. Fibroblast growth factor 21 alleviates acetaminophen induced acute liver injury by activating Sirt1 mediated autophagy. Cell Signal 2024; 123:111379. [PMID: 39233207 DOI: 10.1016/j.cellsig.2024.111379] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2024] [Revised: 07/27/2024] [Accepted: 08/31/2024] [Indexed: 09/06/2024]
Abstract
BACKGROUND AND AIMS Acetaminophen (APAP) is the main cause of acute liver injury (ALI) in the Western. Our previous study has shown that fenofibrate activated hepatic expression of fibroblast growth factor 21 (FGF21) can protect the liver form APAP injuries by promoting autophagy. However, the underlying mechanism involved in FGF21-mediated autophagy remains unsolved. METHODS The ALI mice model was established by intraperitoneal injection of APAP. To investigate the influence of FGF21 on autophagy and Sirt1 expression in APAP-induced ALI, FGF21 knockout (FGF21KO) mice and exogenously supplemented mouse recombinant FGF21 protein were used. In addition, primary isolated hepatocytes and the Sirt1 inhibitor EX527 were used to observe whether FGF21 activated autophagy in APAP injury is regulated by Sirt1 at the cellular level. RESULTS FGF21, Sirt1, and autophagy levels increased in mice with acute liver injury (ALI) and in primary cultured hepatocytes. Deletion of the FGF21 gene exacerbated APAP-induced liver necrosis and oxidative stress, and decreased mitochondrial potential. It also reduced the mRNA and protein levels of autophagy-related proteins such as Sirt1, LC3-II, and p62, as well as the number of autophagosomes. Replenishment of FGF21 reversed these processes. In addition, EX527 partially counteracted the protective effect of FGF21 by worsening oxidative damage, mitochondrial damage, and reducing autophagy in primary liver cells treated with APAP. CONCLUSION FGF21 increases autophagy by upregulating Sirt1 to alleviate APAP-induced injuries.
Collapse
Affiliation(s)
- Guangsen Xu
- School of Pharmaceutical Sciences, Wenzhou Medical University, University Town, Wenzhou, Zhejiang 325035, China
| | - Feng Qiu
- School of Pharmaceutical Sciences, Wenzhou Medical University, University Town, Wenzhou, Zhejiang 325035, China
| | - Wenshu Zhang
- School of Pharmaceutical Sciences, Wenzhou Medical University, University Town, Wenzhou, Zhejiang 325035, China; Department of Pharmacy, The First People's Hospital of Yuhang District, Hangzhou, Zhejiang 311100, China
| | - Supeng Li
- School of Pharmaceutical Sciences, Wenzhou Medical University, University Town, Wenzhou, Zhejiang 325035, China
| | - Jiale Chen
- School of Pharmaceutical Sciences, Wenzhou Medical University, University Town, Wenzhou, Zhejiang 325035, China
| | - Guiyun Wang
- School of Pharmaceutical Sciences, Wenzhou Medical University, University Town, Wenzhou, Zhejiang 325035, China
| | - Ye Wang
- School of Pharmaceutical Sciences, Wenzhou Medical University, University Town, Wenzhou, Zhejiang 325035, China
| | - Jingye Pan
- Department of Intensive Care Unit, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325000, China.
| | - Xuebo Pan
- School of Pharmaceutical Sciences, Wenzhou Medical University, University Town, Wenzhou, Zhejiang 325035, China.
| |
Collapse
|
14
|
Meroni M, Dongiovanni P, Tiano F, Piciotti R, Alisi A, Panera N. β-Klotho as novel therapeutic target in Metabolic Dysfunction-Associated Steatotic Liver Disease (MASLD): A narrative review. Biomed Pharmacother 2024; 180:117608. [PMID: 39490050 DOI: 10.1016/j.biopha.2024.117608] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Revised: 10/10/2024] [Accepted: 10/21/2024] [Indexed: 11/05/2024] Open
Abstract
Metabolic Dysfunction-Associated Steatotic Liver Disease (MASLD) represents the most frequent cause of hepatic disorder, and its progressive form defined as Metabolic Dysfunction-Associated Steatohepatitis (MASH) contributes to the development of fibrosis/cirrhosis and hepatocellular carcinoma (HCC). Today effective therapeutic strategies addressing MASH-related comorbidities, inflammation, and fibrosis are needed. The fibroblast growth factor (FGF) 19 and 21 and their fibroblast growth factor receptor/β-Klotho (KLB) complexes have recently emerged as promising druggable targets for MASLD. However, less is known regarding the causative association between KLB activity and advanced stages of liver disease. In the present narrative review, we aimed to provide an up-to-date picture of the role of the KLB co-receptor in MASLD development and progression. We performed a detailed analysis of recently published preclinical and clinical data to decipher the molecular mechanisms underlying KLB function and to correlate the presence of inherited or acquired KLB aberrancies with the predisposition towards MASLD. Moreover, we described ongoing clinical trials evaluating the therapeutic approaches targeting FGF19-21/FGFR/KLB in patients with MASLD and discussed the challenges related to their use. We furtherly described that KLB exhibits protective effects against metabolic disorders by acting in an FGF-dependent and independent manner thus triggering the hypothesis that KLB soluble forms may play a critical role in preserving liver health. Therefore, targeting KLB may provide promising strategies for treating MASLD, as supported by experimental evidence and ongoing clinical trials.
Collapse
Affiliation(s)
- Marica Meroni
- Medicine and Metabolic Diseases; Fondazione IRCCS Cà Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Paola Dongiovanni
- Medicine and Metabolic Diseases; Fondazione IRCCS Cà Granda Ospedale Maggiore Policlinico, Milan, Italy.
| | - Francesca Tiano
- Research Unit of Genetics of Complex Phenotypes, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - Roberto Piciotti
- Research Unit of Genetics of Complex Phenotypes, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy; Department of Pathophysiology and Transplantation, University of Milan, Milan 20122, Italy
| | - Anna Alisi
- Research Unit of Genetics of Complex Phenotypes, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy.
| | - Nadia Panera
- Research Unit of Genetics of Complex Phenotypes, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| |
Collapse
|
15
|
Inia JA, Attema J, de Ruiter C, Menke AL, Caspers MPM, Verschuren L, Wilson M, Arlantico A, Brightbill HD, Jukema JW, van den Hoek AM, Princen HMG, Chen MZ, Morrison MC. Therapeutic effects of FGF21 mimetic bFKB1 on MASH and atherosclerosis in Ldlr-/-.Leiden mice. FASEB J 2024; 38:e70087. [PMID: 39463193 PMCID: PMC11580715 DOI: 10.1096/fj.202401397r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Revised: 09/06/2024] [Accepted: 09/19/2024] [Indexed: 10/29/2024]
Abstract
Fibroblast growth factor 21 (FGF21) is a promising target for treatment of obesity-associated diseases including metabolic dysfunction-associated steatohepatitis (MASH) and atherosclerosis. We evaluated the effects of the bispecific anti-FGF21-β klotho (KLB) agonist antibody bFKB1 in a preclinical model of MASH and atherosclerosis. Low-density lipoprotein receptor knockout (Ldlr-/-).Leiden mice received a high-fat diet for 20 weeks, followed by treatment with an isotype control antibody or bFKB1 for 12 weeks. Effects on plasma risk markers and (histo)pathology of liver, adipose tissue, and heart were evaluated alongside hepatic transcriptomics analysis. bFKB1 lowered body weight (-21%) and adipose tissue mass (-22%) without reducing food intake. The treatment also improved plasma insulin (-80%), cholesterol (-48%), triglycerides (-76%), alanine transaminase (ALT: -79%), and liver weight (-43%). Hepatic steatosis and inflammation were strongly reduced (macrovesicular steatosis -34%; microvesicular steatosis -100%; inflammation -74%) and while the total amount of fibrosis was not affected, bFKB1 did decrease new collagen formation (-49%). Correspondingly, hepatic transcriptomics and pathway analysis revealed the mechanistic background underlying these histological improvements, demonstrating broad inactivation of inflammatory and profibrotic transcriptional programs by bFKB1. In epididymal white adipose tissue, bFKB1 reduced adipocyte size (-16%) and inflammation (-52%) and induced browning, signified by increased uncoupling protein-1 (UCP1) protein expression (8.5-fold increase). In the vasculature, bFKB1 had anti-atherogenic effects, lowering total atherosclerotic lesion area (-38%). bFKB1 has strong beneficial metabolic effects associated with a reduction in hepatic steatosis, inflammation, and atherosclerosis. Analysis of new collagen formation and profibrotic transcriptional programs indicate that bFKB1 treatment may have antifibrotic potential in a longer treatment duration as well.
Collapse
Affiliation(s)
- José A. Inia
- Department of Metabolic Health ResearchThe Netherlands Organisation for Applied Scientific Research (TNO)LeidenThe Netherlands
- Department of CardiologyLeiden University Medical Centre (LUMC)LeidenThe Netherlands
- Einthoven Laboratory for Experimental Vascular MedicineLUMCLeidenThe Netherlands
| | - Joline Attema
- Department of Metabolic Health ResearchThe Netherlands Organisation for Applied Scientific Research (TNO)LeidenThe Netherlands
| | - Christa de Ruiter
- Department of Metabolic Health ResearchThe Netherlands Organisation for Applied Scientific Research (TNO)LeidenThe Netherlands
| | - Aswin L. Menke
- Department of Metabolic Health ResearchThe Netherlands Organisation for Applied Scientific Research (TNO)LeidenThe Netherlands
| | | | - Lars Verschuren
- Department of Microbiology and Systems BiologyTNOLeidenThe Netherlands
| | | | | | | | - J. Wouter Jukema
- Department of CardiologyLeiden University Medical Centre (LUMC)LeidenThe Netherlands
- Einthoven Laboratory for Experimental Vascular MedicineLUMCLeidenThe Netherlands
- Netherlands Heart InstituteUtrechtThe Netherlands
| | - Anita M. van den Hoek
- Department of Metabolic Health ResearchThe Netherlands Organisation for Applied Scientific Research (TNO)LeidenThe Netherlands
| | - Hans M. G. Princen
- Department of Metabolic Health ResearchThe Netherlands Organisation for Applied Scientific Research (TNO)LeidenThe Netherlands
| | - Mark Z. Chen
- Translational ImmunologyGenentech Inc.South San FranciscoCaliforniaUSA
| | - Martine C. Morrison
- Department of Metabolic Health ResearchThe Netherlands Organisation for Applied Scientific Research (TNO)LeidenThe Netherlands
| |
Collapse
|
16
|
Trusz GJ. Fibroblast growth factor 21. Differentiation 2024; 139:100793. [PMID: 38991938 DOI: 10.1016/j.diff.2024.100793] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 06/23/2024] [Accepted: 06/28/2024] [Indexed: 07/13/2024]
Abstract
Fibroblast growth factor 21 (FGF21) belongs to the FGF19 subfamily and acts systemically, playing a key role in inter-organ crosstalk. Ranging from metabolism, reproduction, and immunity, FGF21 is a pleiotropic hormone which contributes to various physiological processes. Although most of its production across species stems from hepatic tissues, expression of FGF21 in mice has also been identified in adipose tissue, thymus, heart, pancreas, and skeletal muscle. Elevated FGF21 levels are affiliated with various diseases and conditions, such as obesity, type 2 diabetes, preeclampsia, as well as cancer. Murine knockout models are viable and show modest weight gain, while overexpression and gain-of-function models display resistance to weight gain, altered bone volume, and enhanced immunity. In addition, FGF21-based therapies are at the forefront of biopharmaceutical strategies aimed at treating metabolic dysfunction-associated steatotic liver disease.
Collapse
Affiliation(s)
- Guillaume J Trusz
- Department of Immunology, The University of Texas MD Anderson Cancer Center, Houston, Texas 77030, USA.
| |
Collapse
|
17
|
Ma Y, Wang J, Xiao W, Fan X. A review of MASLD-related hepatocellular carcinoma: progress in pathogenesis, early detection, and therapeutic interventions. Front Med (Lausanne) 2024; 11:1410668. [PMID: 38895182 PMCID: PMC11184143 DOI: 10.3389/fmed.2024.1410668] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2024] [Accepted: 05/20/2024] [Indexed: 06/21/2024] Open
Abstract
The incidence of metabolic dysfunction-associated steatotic liver disease (MASLD) is continuously rising, evolving into a global health challenge. Concurrently, cases of hepatocellular carcinoma (HCC) associated with MASLD are also on the increase. Although traditional risk factors such as age, gender, and metabolic factors play significant roles in the development of HCC, it cannot be overlooked that MASLD, triggered by changes in modern lifestyle and dietary habits, may also exacerbate the risk of HCC, and this phenomenon is common even among non-obese individuals. Regrettably, MASLD often fails to receive timely diagnosis, resulting in a limited number of patients receiving HCC surveillance. Moreover, there is currently a lack of clear definition for the target population for surveillance beyond patients with cirrhosis. Consequently, MASLD-related HCC is often detected at a late stage, precluding the optimal timing for curative treatment. However, our understanding of the pathogenesis and progression of HCC remains limited. Therefore, this paper reviews relevant literature from recent years, delving into multiple dimensions such as pathogenesis, surveillance and diagnosis, prevention, and treatment, aiming to provide new ideas and directions for the prevention and treatment of MASLD-related HCC.
Collapse
Affiliation(s)
- Yang Ma
- Department of Human Anatomy, School of Basic Medicine, Guilin Medical University, Guilin, China
| | - Jinguo Wang
- School of Public Health, Guilin Medical University, Guilin, China
| | - Wenping Xiao
- Department of Human Anatomy, School of Basic Medicine, Guilin Medical University, Guilin, China
| | - Xiaoming Fan
- Department of Human Anatomy, School of Basic Medicine, Guilin Medical University, Guilin, China
| |
Collapse
|
18
|
Berezin OO, Berezina TA, Hoppe UC, Lichtenauer M, Berezin AE. Diagnostic and predictive abilities of myokines in patients with heart failure. ADVANCES IN PROTEIN CHEMISTRY AND STRUCTURAL BIOLOGY 2024; 142:45-98. [PMID: 39059994 DOI: 10.1016/bs.apcsb.2023.12.021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/28/2024]
Abstract
Myokines are defined as a heterogenic group of numerous cytokines, peptides and metabolic derivates, which are expressed, synthesized, produced, and released by skeletal myocytes and myocardial cells and exert either auto- and paracrine, or endocrine effects. Previous studies revealed that myokines play a pivotal role in mutual communications between skeletal muscles, myocardium and remote organs, such as brain, vasculature, bone, liver, pancreas, white adipose tissue, gut, and skin. Despite several myokines exert complete divorced biological effects mainly in regulation of skeletal muscle hypertrophy, residential cells differentiation, neovascularization/angiogenesis, vascular integrity, endothelial function, inflammation and apoptosis/necrosis, attenuating ischemia/hypoxia and tissue protection, tumor growth and malignance, for other occasions, their predominant effects affect energy homeostasis, glucose and lipid metabolism, adiposity, muscle training adaptation and food behavior. Last decade had been identified 250 more myokines, which have been investigating for many years further as either biomarkers or targets for heart failure management. However, only few myokines have been allocated to a promising tool for monitoring adverse cardiac remodeling, ischemia/hypoxia-related target-organ dysfunction, microvascular inflammation, sarcopenia/myopathy and prediction for poor clinical outcomes among patients with HF. This we concentrate on some most plausible myokines, such as myostatin, myonectin, brain-derived neurotrophic factor, muslin, fibroblast growth factor 21, irisin, leukemia inhibitory factor, developmental endothelial locus-1, interleukin-6, nerve growth factor and insulin-like growth factor-1, which are suggested to be useful biomarkers for HF development and progression.
Collapse
Affiliation(s)
- Oleksandr O Berezin
- Luzerner Psychiatrie AG, Department of Senior Psychiatrie, St. Urban, Switzerland
| | - Tetiana A Berezina
- Department of Internal Medicine and Nephrology, VitaCenter, Zaporozhye, Ukraine
| | - Uta C Hoppe
- Department of Internal Medicine II, Division of Cardiology, Paracelsus Medical University, Salzburg, Austria
| | - Michael Lichtenauer
- Department of Internal Medicine II, Division of Cardiology, Paracelsus Medical University, Salzburg, Austria
| | - Alexander E Berezin
- Department of Internal Medicine II, Division of Cardiology, Paracelsus Medical University, Salzburg, Austria.
| |
Collapse
|
19
|
Wang YF, Zhang WL, Li ZX, Liu Y, Tan J, Yin HZ, Zhang ZC, Piao XJ, Ruan MH, Dai ZH, Wang SJ, Mu CY, Yuan JH, Sun SH, Liu H, Yang F. METTL14 downregulation drives S100A4 + monocyte-derived macrophages via MyD88/NF-κB pathway to promote MAFLD progression. Signal Transduct Target Ther 2024; 9:91. [PMID: 38627387 PMCID: PMC11021505 DOI: 10.1038/s41392-024-01797-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2023] [Revised: 03/12/2024] [Accepted: 03/13/2024] [Indexed: 04/19/2024] Open
Abstract
Without intervention, a considerable proportion of patients with metabolism-associated fatty liver disease (MAFLD) will progress from simple steatosis to metabolism-associated steatohepatitis (MASH), liver fibrosis, and even hepatocellular carcinoma. However, the molecular mechanisms that control progressive MAFLD have yet to be fully determined. Here, we unraveled that the expression of the N6-methyladenosine (m6A) methyltransferase METTL14 is remarkably downregulated in the livers of both patients and several murine models of MAFLD, whereas hepatocyte-specific depletion of this methyltransferase aggravated lipid accumulation, liver injury, and fibrosis. Conversely, hepatic Mettl14 overexpression alleviated the above pathophysiological changes in mice fed on a high-fat diet (HFD). Notably, in vivo and in vitro mechanistic studies indicated that METTL14 downregulation decreased the level of GLS2 by affecting the translation efficiency mediated by YTHDF1 in an m6A-depedent manner, which might help to form an oxidative stress microenvironment and accordingly recruit Cx3cr1+Ccr2+ monocyte-derived macrophages (Mo-macs). In detail, Cx3cr1+Ccr2+ Mo-macs can be categorized into M1-like macrophages and S100A4-positive macrophages and then further activate hepatic stellate cells (HSCs) to promote liver fibrosis. Further experiments revealed that CX3CR1 can activate the transcription of S100A4 via CX3CR1/MyD88/NF-κB signaling pathway in Cx3cr1+Ccr2+ Mo-macs. Restoration of METTL14 or GLS2, or interfering with this signal transduction pathway such as inhibiting MyD88 could ameliorate liver injuries and fibrosis. Taken together, these findings indicate potential therapies for the treatment of MAFLD progression.
Collapse
Affiliation(s)
- Yue-Fan Wang
- The Third Department of Hepatic Surgery, Eastern Hepatobiliary Surgery Hospital Affiliated to Naval Medical University, 200438, Shanghai, China
- The Department of Medical Genetics, Naval Medical University, 200433, Shanghai, China
| | - Wen-Li Zhang
- The Third Department of Hepatic Surgery, Eastern Hepatobiliary Surgery Hospital Affiliated to Naval Medical University, 200438, Shanghai, China
| | - Zhi-Xuan Li
- Translational Medicine Research Center, Medical Innovation Research Division and Fourth Medical Center of the Chinese PLA General Hospital, 100048, Beijing, China
| | - Yue Liu
- The Department of Pharmaceutical Analysis, School of Pharmacy, Naval Medical University, 200433, Shanghai, China
| | - Jian Tan
- The Department of Medical Genetics, Naval Medical University, 200433, Shanghai, China
| | - Hao-Zan Yin
- The Department of Medical Genetics, Naval Medical University, 200433, Shanghai, China
| | - Zhi-Chao Zhang
- The Third Department of Hepatic Surgery, Eastern Hepatobiliary Surgery Hospital Affiliated to Naval Medical University, 200438, Shanghai, China
| | - Xian-Jie Piao
- The Third Department of Hepatic Surgery, Eastern Hepatobiliary Surgery Hospital Affiliated to Naval Medical University, 200438, Shanghai, China
| | - Min-Hao Ruan
- The Third Department of Hepatic Surgery, Eastern Hepatobiliary Surgery Hospital Affiliated to Naval Medical University, 200438, Shanghai, China
| | - Zhi-Hui Dai
- The Department of Medical Genetics, Naval Medical University, 200433, Shanghai, China
| | - Si-Jie Wang
- The Department of Medical Genetics, Naval Medical University, 200433, Shanghai, China
| | - Chen-Yang Mu
- The Department of Medical Genetics, Naval Medical University, 200433, Shanghai, China
| | - Ji-Hang Yuan
- The Department of Medical Genetics, Naval Medical University, 200433, Shanghai, China
| | - Shu-Han Sun
- The Department of Medical Genetics, Naval Medical University, 200433, Shanghai, China
| | - Hui Liu
- The Third Department of Hepatic Surgery, Eastern Hepatobiliary Surgery Hospital Affiliated to Naval Medical University, 200438, Shanghai, China.
| | - Fu Yang
- The Department of Medical Genetics, Naval Medical University, 200433, Shanghai, China.
- Key Laboratory of Biosafety Defense, Ministry of Education, 200433, Shanghai, China.
- Shanghai Key Laboratory of Medical Biodefense, 200433, Shanghai, China.
| |
Collapse
|
20
|
Lu H. Inflammatory liver diseases and susceptibility to sepsis. Clin Sci (Lond) 2024; 138:435-487. [PMID: 38571396 DOI: 10.1042/cs20230522] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2023] [Revised: 01/09/2024] [Accepted: 03/12/2024] [Indexed: 04/05/2024]
Abstract
Patients with inflammatory liver diseases, particularly alcohol-associated liver disease and metabolic dysfunction-associated fatty liver disease (MAFLD), have higher incidence of infections and mortality rate due to sepsis. The current focus in the development of drugs for MAFLD is the resolution of non-alcoholic steatohepatitis and prevention of progression to cirrhosis. In patients with cirrhosis or alcoholic hepatitis, sepsis is a major cause of death. As the metabolic center and a key immune tissue, liver is the guardian, modifier, and target of sepsis. Septic patients with liver dysfunction have the highest mortality rate compared with other organ dysfunctions. In addition to maintaining metabolic homeostasis, the liver produces and secretes hepatokines and acute phase proteins (APPs) essential in tissue protection, immunomodulation, and coagulation. Inflammatory liver diseases cause profound metabolic disorder and impairment of energy metabolism, liver regeneration, and production/secretion of APPs and hepatokines. Herein, the author reviews the roles of (1) disorders in the metabolism of glucose, fatty acids, ketone bodies, and amino acids as well as the clearance of ammonia and lactate in the pathogenesis of inflammatory liver diseases and sepsis; (2) cytokines/chemokines in inflammatory liver diseases and sepsis; (3) APPs and hepatokines in the protection against tissue injury and infections; and (4) major nuclear receptors/signaling pathways underlying the metabolic disorders and tissue injuries as well as the major drug targets for inflammatory liver diseases and sepsis. Approaches that focus on the liver dysfunction and regeneration will not only treat inflammatory liver diseases but also prevent the development of severe infections and sepsis.
Collapse
Affiliation(s)
- Hong Lu
- Department of Pharmacology, SUNY Upstate Medical University, Syracuse, NY 13210, U.S.A
| |
Collapse
|
21
|
Hu C, Qiao W, Li X, Ning ZK, Liu J, Dalangood S, Li H, Yu X, Zong Z, Wen Z, Gui J. Tumor-secreted FGF21 acts as an immune suppressor by rewiring cholesterol metabolism of CD8 +T cells. Cell Metab 2024; 36:630-647.e8. [PMID: 38309268 DOI: 10.1016/j.cmet.2024.01.005] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Revised: 11/19/2023] [Accepted: 01/10/2024] [Indexed: 02/05/2024]
Abstract
Tumors employ diverse strategies for immune evasion. Unraveling the mechanisms by which tumors suppress anti-tumor immunity facilitates the development of immunotherapies. Here, we have identified tumor-secreted fibroblast growth factor 21 (FGF21) as a pivotal immune suppressor. FGF21 is upregulated in multiple types of tumors and promotes tumor progression. Tumor-secreted FGF21 significantly disrupts anti-tumor immunity by rewiring cholesterol metabolism of CD8+T cells. Mechanistically, FGF21 sustains the hyperactivation of AKT-mTORC1-sterol regulatory-element-binding protein 1 (SREBP1) signal axis in the activated CD8+T cells, resulting in the augment of cholesterol biosynthesis and T cell exhaustion. FGF21 knockdown or blockade using a neutralizing antibody normalizes AKT-mTORC1 signaling and reduces excessive cholesterol accumulation in CD8+T cells, thus restoring CD8+T cytotoxic function and robustly suppressing tumor growth. Our findings reveal FGF21 as a "secreted immune checkpoint" that hampers anti-tumor immunity, suggesting that inhibiting FGF21 could be a valuable strategy to enhance the cancer immunotherapy efficacy.
Collapse
Affiliation(s)
- Cegui Hu
- State Key Laboratory of Systems Medicine for Cancer, Renji-Med X Clinical Stem Cell Research Center, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
| | - Wen Qiao
- State Key Laboratory of Systems Medicine for Cancer, Renji-Med X Clinical Stem Cell Research Center, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
| | - Xiang Li
- Joint International Research Laboratory of Metabolic & Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Zhi-Kun Ning
- Department of Gastroenterological Surgery, the Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang 330006, Jiangxi, China
| | - Jiang Liu
- Department of Gastroenterological Surgery, the Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang 330006, Jiangxi, China
| | - Sumiya Dalangood
- State Key Laboratory of Systems Medicine for Cancer, Renji-Med X Clinical Stem Cell Research Center, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
| | - Hanjun Li
- State Key Laboratory of Systems Medicine for Cancer, Renji-Med X Clinical Stem Cell Research Center, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
| | - Xiang Yu
- Joint International Research Laboratory of Metabolic & Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Zhen Zong
- Department of Gastroenterological Surgery, the Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang 330006, Jiangxi, China.
| | - Zhenke Wen
- Jiangsu Key Laboratory of Infection and Immunity, Institutes of Biology and Medical Sciences, Soochow University, Suzhou 215123, China.
| | - Jun Gui
- State Key Laboratory of Systems Medicine for Cancer, Renji-Med X Clinical Stem Cell Research Center, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China.
| |
Collapse
|
22
|
Yazıcı D, Demir SÇ, Sezer H. Insulin Resistance, Obesity, and Lipotoxicity. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2024; 1460:391-430. [PMID: 39287860 DOI: 10.1007/978-3-031-63657-8_14] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/19/2024]
Abstract
Lipotoxicity, originally used to describe the destructive effects of excess fat accumulation on glucose metabolism, causes functional impairments in several metabolic pathways, both in adipose tissue and peripheral organs, like liver, heart, pancreas, and muscle. Ectopic lipid accumulation in the kidneys, liver, and heart has important clinical counterparts like diabetic nephropathy in type 2 diabetes mellitus, obesity-related glomerulopathy, nonalcoholic fatty liver disease, and cardiomyopathy. Insulin resistance due to lipotoxicity indirectly lead to reproductive system disorders, like polycystic ovary syndrome. Lipotoxicity has roles in insulin resistance and pancreatic beta-cell dysfunction. Increased circulating levels of lipids and the metabolic alterations in fatty acid utilization and intracellular signaling have been related to insulin resistance in muscle and liver. Different pathways, like novel protein kinase c pathways and the JNK-1 pathway, are involved as the mechanisms of how lipotoxicity leads to insulin resistance in nonadipose tissue organs, such as liver and muscle. Mitochondrial dysfunction plays a role in the pathogenesis of insulin resistance. Endoplasmic reticulum stress, through mainly increased oxidative stress, also plays an important role in the etiology of insulin resistance, especially seen in non-alcoholic fatty liver disease. Visceral adiposity and insulin resistance both increase the cardiometabolic risk, and lipotoxicity seems to play a crucial role in the pathophysiology of these associations.
Collapse
Affiliation(s)
- Dilek Yazıcı
- Koç University Medical School, Section of Endocrinology and Metabolism, Koç University Hospital, Topkapi, Istanbul, Turkey.
| | - Selin Çakmak Demir
- Koç University Medical School, Section of Endocrinology and Metabolism, Koç University Hospital, Topkapi, Istanbul, Turkey
| | - Havva Sezer
- Koç University Medical School, Section of Endocrinology and Metabolism, Koç University Hospital, Topkapi, Istanbul, Turkey
| |
Collapse
|
23
|
Hirai T, Wang W, Murono N, Iwasa K, Inoue M. Potential role of Akt in the regulation of fibroblast growth factor 21 by berberine. J Nat Med 2024; 78:169-179. [PMID: 37951850 DOI: 10.1007/s11418-023-01755-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Accepted: 10/16/2023] [Indexed: 11/14/2023]
Abstract
Fibroblast growth factor 21 (FGF21) is expressed in several organs, including the liver, adipose tissue, and cardiovascular system, and plays an important role in cross-talk with other organs by binding to specific FGF receptors and their co-receptors. FGF21 represents a potential target for the treatment of obesity, type 2 diabetes mellitus, and non-alcoholic steatohepatitis (NASH). The production of FGF21 in skeletal muscle was recently suggested to be beneficial for metabolic health through its autocrine and paracrine effects. However, the regulatory mechanisms of FGF21 in skeletal muscle remain unclear. In the present study, we showed that berberine regulated FGF21 production in C2C12 myotubes in a dose-dependent manner. We also examined the effects of A-674563, a selective Akt1 inhibitor, on the berberine-mediated regulation of FGF21 expression in C2C12 myotubes. Berberine significantly increased the secretion of FGF21 in C2C12 myotubes, while A-674563 attenuated this effect. Moreover, a pre-treatment with A-674563 effectively suppressed berberine-induced increases in Bmal1 expression in C2C12 myotubes, indicating that the up-regulation of Bmal1 after the berberine treatment was dependent on Akt1. Additionally, berberine-induced increases in FGF21 secretion were significantly attenuated in C2C12 cells transfected with Bmal1 siRNA, indicating the contribution of the core clock transcription factor BMAL1 to Akt-regulated FGF21 in response to berberine. Collectively, these results indicate that berberine regulates the expression of FGF21 through the Akt1 pathway in C2C12 myotubes. Moreover, the core clock gene Bmal1 may participate in the control of the myokine FGF21. Berberine stimulated Akt1-dependent FGF21 expression in C2C12 myotubes. The up-regulation of FGF21 through the modulation of PI3K/AKT1/BMAL1 in response to berberine may be involved in the regulation of cellular function (such as Glut1 expression) by acting in an autocrine and/or paracrine manner in skeletal muscle.
Collapse
Affiliation(s)
- Takao Hirai
- Laboratory of Medicinal Resources, School of Pharmacy, Aichi Gakuin University, Nagoya, 464-8650, Japan.
- Laboratory of Biochemical Pharmacology, Department of Health and Medical Sciences, Ishikawa Prefectural Nursing University, 1-1 Gakuendai, Kahoku, Ishikawa, 929-1210, Japan.
| | - Wei Wang
- Laboratory of Medicinal Resources, School of Pharmacy, Aichi Gakuin University, Nagoya, 464-8650, Japan
| | - Naoko Murono
- Community Health Nursing, Ishikawa Prefectural Nursing University, Kahoku, Ishikawa, 929-1210, Japan
| | - Kazuo Iwasa
- Department of Health and Medical Sciences, Ishikawa Prefectural Nursing University, Kahoku, Ishikawa, 929-1210, Japan
| | - Makoto Inoue
- Laboratory of Medicinal Resources, School of Pharmacy, Aichi Gakuin University, Nagoya, 464-8650, Japan
| |
Collapse
|
24
|
Gu S, Qiao Y, Liu S, Yang S, Cong S, Wang S, Yu D, Wang W, Chai X. Frontiers and hotspots of adipose tissue and NAFLD: a bibliometric analysis from 2002 to 2022. Front Physiol 2023; 14:1278952. [PMID: 38187139 PMCID: PMC10768199 DOI: 10.3389/fphys.2023.1278952] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Accepted: 12/04/2023] [Indexed: 01/09/2024] Open
Abstract
Background: The annual incidence of non-alcoholic fatty liver disease (NAFLD) continues to rise steadily. In recent years, adipose tissue (AT) has gained recognition as a pivotal contributor to the pathogenesis of NAFLD. Employing bibliometric analysis, we examined literature concerning AT and NAFLD. Methods: Relevant literature on AT in NAFLD from 1980 to 2022 was extracted from the Web of Science Core Collection. These records were visualized using CiteSpace and VOSviewer regarding publications, countries/regions, institutions, authors, journals, references, and keywords. Results: Since 2002, a total of 3,330 papers have been included, exhibiting an annual surge in publications. Notably, the quality of publications is superior in the USA and Europe. Kenneth Cusi stands out as the author with the highest number of publications and H-index. Hepatology is the journal boasting the highest citation and H-index. The University of California System holds the highest centrality among institutions. References specifically delve into physiological processes associated with AT in NAFLD. Currently, lipid metabolism and inflammation constitute the principal research mechanisms in the AT-based regulation of NAFLD, with pertinent keywords including microRNA, T cell, hypoxia, sarcopenia, hepatokine, gut microbiota, and autophagy. The Mediterranean diet is among the most widely recommended dietary approaches for potential NAFLD treatment. Conclusion: This paper represents the inaugural bibliometric study on the effects of AT on NAFLD, offering valuable insights and directions for future research.
Collapse
Affiliation(s)
- Shuxiao Gu
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Yanfang Qiao
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Susu Liu
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Shuangjie Yang
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Shibo Cong
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Sili Wang
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Deshuai Yu
- Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Wei Wang
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Xinlou Chai
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| |
Collapse
|
25
|
Yan J, Xie J, Xu S, Guo Y, Ji K, Li C, Gao H, Zhao L. Fibroblast growth factor 21 protects the liver from apoptosis in a type 1 diabetes mouse model via regulating L-lactate homeostasis. Biomed Pharmacother 2023; 168:115737. [PMID: 37862975 DOI: 10.1016/j.biopha.2023.115737] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Revised: 10/07/2023] [Accepted: 10/14/2023] [Indexed: 10/22/2023] Open
Abstract
AIMS/HYPOTHESIS Fibroblast growth factor 21 (FGF21) is a hepatokine with pleiotropic effects on glucose and lipid metabolic homeostasis. Here, we aimed to elucidate the mechanisms underlying the protective effects of FGF21 on L-lactate homeostasis and liver lesions in a type 1 diabetes mellitus (T1DM) mice model. METHODS Six-week-old male C57BL/6 mice were divided into control, T1DM, and FGF21 groups. We also examined hepatic apoptotic signaling and functional indices in wild-type and hydroxycarboxylic acid receptor 1 (HCA1) knockout mice with T1DM or long-term L-lactate exposure. After preincubation of high glucose- or L-lactate treated hepatic AML12 cells, L-lactate uptake, apoptosis, and monocarboxylic acid transporter 2 (MCT2) expression were investigated. RESULTS In a mouse model of T1DM, hepatic FGF21 expression was downregulated by approximately 1.5-fold at 13 weeks after the hyperglycemic insult. In vivo administration of exogenous FGF21 (2 mg/kg) to diabetic or L-lactate-infused mice significantly prevented hepatic oxidative stress and apoptosis by activating extracellular signal-regulated kinase (ERK)1/2, p38 mitogen-activated protein kinase (MAPK) and AMP-activated protein kinase (AMPK) pathways. HCA1-KO mice were less susceptible to diabetes- and L-lactate-induced hepatic apoptosis and dysfunction. In addition, inhibition of PI3K-mTOR activity revealed that FGF21 prevented L-lactate-induced Cori cycle alterations and hepatic apoptosis by upregulating MCT2 protein translation. CONCLUSIONS/INTERPRETATION These results demonstrate that L-lactate homeostasis may be a therapeutic target for T1DM-related hepatic dysfunction. The protective effects of FGF21 on hepatic damage were associated with its ability to ameliorate MCT2-dependent Cori cycle alterations and prevent HCA1-mediated inhibition of ERK1/2, p38 MAPK, and AMPK signaling.
Collapse
Affiliation(s)
- Jiapin Yan
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou 325035, Zhejiang, China
| | - Jiaojiao Xie
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou 325035, Zhejiang, China
| | - Sibei Xu
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou 325035, Zhejiang, China
| | - Yuejun Guo
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou 325035, Zhejiang, China
| | - Keru Ji
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou 325035, Zhejiang, China
| | - Chen Li
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou 325035, Zhejiang, China
| | - Hongchang Gao
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou 325035, Zhejiang, China; Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), Wenzhou 325035, Zhejiang, China.
| | - Liangcai Zhao
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou 325035, Zhejiang, China.
| |
Collapse
|
26
|
Yang M, Liu C, Jiang N, Liu Y, Luo S, Li C, Zhao H, Han Y, Chen W, Li L, Xiao L, Sun L. Fibroblast growth factor 21 in metabolic syndrome. Front Endocrinol (Lausanne) 2023; 14:1220426. [PMID: 37576954 PMCID: PMC10414186 DOI: 10.3389/fendo.2023.1220426] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Accepted: 07/11/2023] [Indexed: 08/15/2023] Open
Abstract
Metabolic syndrome is a complex metabolic disorder that often clinically manifests as obesity, insulin resistance/diabetes, hyperlipidemia, and hypertension. With the development of social and economic systems, the incidence of metabolic syndrome is increasing, bringing a heavy medical burden. However, there is still a lack of effective prevention and treatment strategies. Fibroblast growth factor 21 (FGF21) is a member of the human FGF superfamily and is a key protein involved in the maintenance of metabolic homeostasis, including reducing fat mass and lowering hyperglycemia, insulin resistance and dyslipidemia. Here, we review the current regulatory mechanisms of FGF21, summarize its role in obesity, diabetes, hyperlipidemia, and hypertension, and discuss the possibility of FGF21 as a potential target for the treatment of metabolic syndrome.
Collapse
Affiliation(s)
- Ming Yang
- Department of Nephrology, The Second Xiangya Hospital of Central South University, Changsha, China
- Hunan Key Laboratory of Kidney Disease and Blood Purification, Changsha, Hunan, China
| | - Chongbin Liu
- Department of Nephrology, The Second Xiangya Hospital of Central South University, Changsha, China
- Hunan Key Laboratory of Kidney Disease and Blood Purification, Changsha, Hunan, China
| | - Na Jiang
- Department of Nephrology, The Second Xiangya Hospital of Central South University, Changsha, China
- Hunan Key Laboratory of Kidney Disease and Blood Purification, Changsha, Hunan, China
| | - Yan Liu
- Department of Nephrology, The Second Xiangya Hospital of Central South University, Changsha, China
- Hunan Key Laboratory of Kidney Disease and Blood Purification, Changsha, Hunan, China
| | - Shilu Luo
- Department of Nephrology, The Second Xiangya Hospital of Central South University, Changsha, China
- Hunan Key Laboratory of Kidney Disease and Blood Purification, Changsha, Hunan, China
| | - Chenrui Li
- Department of Nephrology, The Second Xiangya Hospital of Central South University, Changsha, China
- Hunan Key Laboratory of Kidney Disease and Blood Purification, Changsha, Hunan, China
| | - Hao Zhao
- Department of Nephrology, The Second Xiangya Hospital of Central South University, Changsha, China
- Hunan Key Laboratory of Kidney Disease and Blood Purification, Changsha, Hunan, China
| | - Yachun Han
- Department of Nephrology, The Second Xiangya Hospital of Central South University, Changsha, China
- Hunan Key Laboratory of Kidney Disease and Blood Purification, Changsha, Hunan, China
| | - Wei Chen
- Department of Nephrology, The Second Xiangya Hospital of Central South University, Changsha, China
- Hunan Key Laboratory of Kidney Disease and Blood Purification, Changsha, Hunan, China
| | - Li Li
- Department of Nephrology, The Second Xiangya Hospital of Central South University, Changsha, China
- Hunan Key Laboratory of Kidney Disease and Blood Purification, Changsha, Hunan, China
| | - Li Xiao
- Department of Nephrology, The Second Xiangya Hospital of Central South University, Changsha, China
- Hunan Key Laboratory of Kidney Disease and Blood Purification, Changsha, Hunan, China
| | - Lin Sun
- Department of Nephrology, The Second Xiangya Hospital of Central South University, Changsha, China
- Hunan Key Laboratory of Kidney Disease and Blood Purification, Changsha, Hunan, China
| |
Collapse
|
27
|
Puengel T, Tacke F. Efruxifermin, an investigational treatment for fibrotic or cirrhotic non-alcoholic steatohepatitis (NASH). Expert Opin Investig Drugs 2023. [PMID: 37376813 DOI: 10.1080/13543784.2023.2230115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Revised: 06/14/2023] [Accepted: 06/23/2023] [Indexed: 06/29/2023]
Abstract
INTRODUCTION Non-alcoholic fatty liver disease (NAFLD) is the most prevalent chronic liver disease and strongly associated with metabolic disorders: obesity, type 2 diabetes (T2D), cardiovascular disease. Persistent metabolic injury results in inflammatory processes leading to nonalcoholic steatohepatitis (NASH), liver fibrosis and ultimately cirrhosis. To date, no pharmacologic agent is approved for the treatment of NASH. Fibroblast growth factor 21 (FGF21) agonism has been linked to beneficial metabolic effects ameliorating obesity, steatosis and insulin resistance, supporting its potential as a therapeutic target in NAFLD. AREAS COVERED Efruxifermin (EFX, also AKR-001 or AMG876) is an engineered Fc-FGF21 fusion protein with an optimized pharmacokinetic and pharmacodynamic profile, which is currently tested in several phase 2 clinical trials for the treatment of NASH, fibrosis and compensated liver cirrhosis. EFX improved metabolic disturbances including glycemic control, showed favorable safety and tolerability, and demonstrated antifibrotic efficacy according to FDA requirements for phase 3 trials. EXPERT OPINION While some other FGF-21 agonists (e.g. pegbelfermin) are currently not further investigated, available evidence supports the development of EFX as a promising anti-NASH drug in fibrotic and cirrhotic populations. However, antifibrotic efficacy, long-term safety and benefits (i.e. cardiovascular risk, decompensation events, disease progression, liver transplantation, mortality) remain to be determined.
Collapse
Affiliation(s)
- Tobias Puengel
- Department of Hepatology & Gastroenterology, Charité - Universitätsmedizin Berlin, Campus Virchow-Klinikum and Campus Charité Mitte, Berlin, Germany
- Berlin Institute of Health, Berlin, Germany
| | - Frank Tacke
- Department of Hepatology & Gastroenterology, Charité - Universitätsmedizin Berlin, Campus Virchow-Klinikum and Campus Charité Mitte, Berlin, Germany
| |
Collapse
|
28
|
Houshmand M, Zeinali V, Hosseini A, Seifi A, Danaei B, Kamfar S. Investigation of FGF21 mRNA levels and relative mitochondrial DNA copy number levels and their relation in nonalcoholic fatty liver disease: a case-control study. Front Mol Biosci 2023; 10:1203019. [PMID: 37347041 PMCID: PMC10279952 DOI: 10.3389/fmolb.2023.1203019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Accepted: 05/22/2023] [Indexed: 06/23/2023] Open
Abstract
Background: Although the exact mechanisms of nonalcoholic fatty liver disease (NAFLD) are not fully understood, numerous pieces of evidence show that the variations in mitochondrial DNA (mtDNA) level and hepatic Fibroblast growth factor 21 (FGF21) expression may be related to NAFLD susceptibility. Objectives: The main objective of this study was to determine relative levels of mtDNA copy number and hepatic FGF21 expression in a cohort of Iranian NAFLD patients and evaluate the possible relationship. Methods: This study included 27 NAFLD patients (10 with nonalcoholic fatty liver (NAFL) and 17 with non-alcoholic steatohepatitis (NASH)) and ten healthy subjects. Total RNA and genomic DNA were extracted from liver tissue samples, and then mtDNA copy number and FGF21 expression levels were assessed by quantitative real-time PCR. Results: The relative level of hepatic mtDNA copy number was 3.9-fold higher in patients than in controls (p < 0.0001). NAFLD patients showed a 2.9-fold increase in hepatic FGF21 expression compared to controls (p < 0.013). Results showed that hepatic FGF21 expression was positively correlated with BMI, serum ALT, and AST levels (p < 0.05). The level of mitochondrial copy number and hepatic FGF21 expression was not significantly associated with stages of change in hepatic steatosis. Finally, there was a significant correlation between FGF21 expression and mitochondrial copy number in NAFLD patients (p = 0.027). Conclusion: Our findings suggest a considerable rise of hepatic FGF21 mRNA levels and mtDNA-CN and show a positive correlation between them in the liver tissue of NAFLD patients.
Collapse
Affiliation(s)
- Massoud Houshmand
- Department of Medical Genetics, National Institute for Genetic Engineering and Biotechnology, Tehran, Iran
| | - Vahide Zeinali
- Research Institute for Children’s Health, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Amirhossein Hosseini
- Pediatric Gastroenterology, Hepatology, and Nutrition Research Center, Research Institute for Children’s Health, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Atena Seifi
- Pediatric Nephrology Research Center, Research Institute for Children’s Health, Shahid Beheshti University of Medical Science, Tehran, Iran
| | - Bardia Danaei
- Department of Microbiology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Sharareh Kamfar
- Pediatric Congenital Hematologic Disorders Research Center, Research Institute for Children’s Health, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
29
|
Wang Y, Wei Z, Fan J, Song X, Xing S. Hyper-expression of GFP-fused active hFGF21 in tobacco chloroplasts. Protein Expr Purif 2023; 208-209:106271. [PMID: 37084839 DOI: 10.1016/j.pep.2023.106271] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Revised: 04/07/2023] [Accepted: 04/09/2023] [Indexed: 04/23/2023]
Abstract
Human fibroblast growth factor 21 (hFGF21) is a promising candidate for metabolic diseases. In this study, a tobacco chloroplast transformation vector, pWYP21406, was constructed that consisted of codon-optimized encoding gene hFGF21 fused with GFP at its 5' terminal; it was driven by the promoter of plastid rRNA operon (Prrn) and terminated by the terminator of plastid rps16 gene (Trps16). Spectinomycin-resistant gene (aadA) was the marker and placed in the same cistron between hFGF21 and the terminator Trps16. Transplastomic plants were generated by the biolistic bombardment method and proven to be homoplastic by Southern blotting analysis. The expression of GFP was detected under ultraviolet light and a laser confocal microscope. The expression of GFP-hFGF21 was confirmed by immunoblotting and quantified by enzyme-linked immunosorbnent assay (ELISA). The accumulation of GFP-hFGF21 was confirmed to be 12.44 ± 0.45% of the total soluble protein (i.e., 1.9232 ± 0.0673 g kg-1 of fresh weight). GFP-hFGF21 promoted the proliferation of hepatoma cell line HepG2, inducing the expression of glucose transporter 1 in hepatoma HepG2 cells and improving glucose uptake. These results suggested that a chloroplast expression is a promising approach for the production of bioactive recombinant hFGF21.
Collapse
Affiliation(s)
- Yunpeng Wang
- Jilin Provincial Crop Transgenic Science and Technology Innovation Center, Institute of Agricultural Biotechnology, Jilin Academy of Agricultural Sciences, Changchun, 130033, China
| | - Zhengyi Wei
- Jilin Provincial Crop Transgenic Science and Technology Innovation Center, Institute of Agricultural Biotechnology, Jilin Academy of Agricultural Sciences, Changchun, 130033, China; Maize Research Institute, Guangxi Academy of Agricultural Sciences, Nanning, 530007, China
| | - Jieying Fan
- Jilin Provincial Crop Transgenic Science and Technology Innovation Center, Institute of Agricultural Biotechnology, Jilin Academy of Agricultural Sciences, Changchun, 130033, China
| | - Xinyuan Song
- Jilin Provincial Crop Transgenic Science and Technology Innovation Center, Institute of Agricultural Biotechnology, Jilin Academy of Agricultural Sciences, Changchun, 130033, China.
| | - Shaochen Xing
- Jilin Provincial Crop Transgenic Science and Technology Innovation Center, Institute of Agricultural Biotechnology, Jilin Academy of Agricultural Sciences, Changchun, 130033, China.
| |
Collapse
|
30
|
Liu C, Song Z, Li Z, Boon MR, Schönke M, Rensen PCN, Wang Y. Dietary choline increases brown adipose tissue activation markers and improves cholesterol metabolism in female APOE*3-Leiden.CETP mice. Int J Obes (Lond) 2023; 47:236-243. [PMID: 36732416 DOI: 10.1038/s41366-023-01269-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Revised: 01/23/2023] [Accepted: 01/25/2023] [Indexed: 02/04/2023]
Abstract
OBJECTIVES Studies in mice have recently linked increased dietary choline consumption to increased incidence of obesity-related metabolic diseases, while several clinical trials have reported an anti-obesity effect of high dietary choline intake. Since the underlying mechanisms by which choline affects obesity are incompletely understood, the aim of the present study was to investigate the role of dietary choline supplementation in adiposity. METHODS Female APOE*3-Leiden.CETP mice, a well-established model for human-like lipoprotein metabolism and cardiometabolic diseases, were fed a Western-type diet supplemented with or without choline (1.2%, w/w) for up to 16 weeks. RESULTS Dietary choline reduced body fat mass gain, prevented adipocyte enlargement, and attenuated adipose tissue inflammation. Besides, choline ameliorated liver steatosis and damage, associated with an upregulation of hepatic genes involved in fatty acid oxidation. Moreover, choline reduced plasma cholesterol, as explained by a reduction of plasma non-HDL cholesterol. Mechanistically, choline reduced hepatic VLDL-cholesterol secretion and enhanced the selective uptake of fatty acids from triglyceride-rich lipoprotein (TRL)-like particles by brown adipose tissue (BAT), consequently accelerating the clearance of the cholesterol-enriched TRL remnants by the liver. CONCLUSIONS In APOE*3-Leiden.CETP mice, dietary choline reduces body fat by enhancing TRL-derived fatty acids by BAT, resulting in accelerated TRL turnover to improve hypercholesterolemia. These data provide a mechanistic basis for the observation in human intervention trials that high choline intake is linked with reduced body weight.
Collapse
Affiliation(s)
- Cong Liu
- Department of Medicine, Division of Endocrinology, Leiden University Medical Center, Leiden, The Netherlands
- Einthoven Laboratory for Experimental Vascular Medicine, Leiden University Medical Center, Leiden, The Netherlands
| | - Zikuan Song
- Department of Medicine, Division of Endocrinology, Leiden University Medical Center, Leiden, The Netherlands
- Einthoven Laboratory for Experimental Vascular Medicine, Leiden University Medical Center, Leiden, The Netherlands
| | - Zhuang Li
- Department of Medicine, Division of Endocrinology, Leiden University Medical Center, Leiden, The Netherlands
- Einthoven Laboratory for Experimental Vascular Medicine, Leiden University Medical Center, Leiden, The Netherlands
| | - Mariëtte R Boon
- Department of Medicine, Division of Endocrinology, Leiden University Medical Center, Leiden, The Netherlands
- Einthoven Laboratory for Experimental Vascular Medicine, Leiden University Medical Center, Leiden, The Netherlands
| | - Milena Schönke
- Department of Medicine, Division of Endocrinology, Leiden University Medical Center, Leiden, The Netherlands
- Einthoven Laboratory for Experimental Vascular Medicine, Leiden University Medical Center, Leiden, The Netherlands
| | - Patrick C N Rensen
- Department of Medicine, Division of Endocrinology, Leiden University Medical Center, Leiden, The Netherlands
- Einthoven Laboratory for Experimental Vascular Medicine, Leiden University Medical Center, Leiden, The Netherlands
- Med-X institute, Center for Immunological and Metabolic Diseases, and Department of Endocrinology, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an Jiaotong University, Xi'an, China
| | - Yanan Wang
- Department of Medicine, Division of Endocrinology, Leiden University Medical Center, Leiden, The Netherlands.
- Einthoven Laboratory for Experimental Vascular Medicine, Leiden University Medical Center, Leiden, The Netherlands.
- Med-X institute, Center for Immunological and Metabolic Diseases, and Department of Endocrinology, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an Jiaotong University, Xi'an, China.
| |
Collapse
|