1
|
Sun J, Hirai M, Takaki Y, Evans PN, Nunoura T, Rinke C. Metagenomic insights into taxonomic and functional patterns in shallow coastal and deep subseafloor sediments in the Western Pacific. Microb Genom 2025; 11. [PMID: 40100697 PMCID: PMC11920076 DOI: 10.1099/mgen.0.001351] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/20/2025] Open
Abstract
Marine sediments are vast, underexplored habitats and represent one of the largest carbon deposits on our planet. Microbial communities drive nutrient cycling in these sediments, but the full extent of their taxonomic and metabolic diversity remains to be explored. Here, we analysed shallow coastal and deep subseafloor sediment cores from 0.01 to nearly 600 metres below the seafloor, in the Western Pacific Region. Applying metagenomics, we identified several taxonomic clusters across all samples, which mainly aligned with depth and sediment type. Inferring functional patterns provided insights into possible ecological roles of the main microbial taxa. These included Chloroflexota, the most abundant phylum across all samples, whereby the classes Dehalococcoida and Anaerolineae dominated deep-subsurface and most shallow coastal sediments, respectively. Thermoproteota and Asgardarchaeota were the most abundant phyla among Archaea, contributing to high relative abundances of Archaea reaching over 50% in some samples. We recovered high-quality metagenome-assembled genomes for all main prokaryotic lineages and proposed names for three phyla, i.e. Tangaroaeota phyl. nov. (former RBG-13-66-14), Ryujiniota phyl. nov. (former UBA6262) and Spongiamicota phyl. nov. (former UBA8248). Metabolic capabilities across all samples ranged from aerobic respiration and photosynthesis in the shallowest sediment layers to heterotrophic carbon utilization, sulphate reduction and methanogenesis in deeper anoxic sediments. We also identified taxa with the potential to be involved in nitrogen and sulphur cycling and heterotrophic carbon utilization. In summary, this study contributes to our understanding of the taxonomic and functional diversity in benthic prokaryotic communities across marine sediments in the Western Pacific Region.
Collapse
Affiliation(s)
- Jiarui Sun
- School of the Environment, The University of Queensland, St. Lucia, QLD, Australia
| | - Miho Hirai
- Institute for Extra-cutting-edge Science and Technology Avant-garde Research (X-star), Japan Agency for Marine-Earth Science & Technology (JAMSTEC), Yokosuka, Kanagawa, Japan
| | - Yoshihiro Takaki
- Institute for Extra-cutting-edge Science and Technology Avant-garde Research (X-star), Japan Agency for Marine-Earth Science & Technology (JAMSTEC), Yokosuka, Kanagawa, Japan
| | - Paul N Evans
- Australian Centre for Ecogenomics, School of Chemistry and Molecular Biosciences, The University of Queensland, St. Lucia, QLD, Australia
| | - Takuro Nunoura
- Institute for Extra-cutting-edge Science and Technology Avant-garde Research (X-star), Japan Agency for Marine-Earth Science & Technology (JAMSTEC), Yokosuka, Kanagawa, Japan
- Research Center for Bioscience and Nanoscience (CeBN), Japan Agency for Marine-Earth Science and Technology (JAMSTEC), Yokosuka, Japan
| | - Christian Rinke
- Australian Centre for Ecogenomics, School of Chemistry and Molecular Biosciences, The University of Queensland, St. Lucia, QLD, Australia
- Department of Microbiology, The University of Innsbruck, 6020 Innsbruck, Austria
| |
Collapse
|
2
|
Zhao M, Li Y, Chen H, Chen Y, Zheng L, Wu Y, Wang K, Pan Z, Yu T, Wang T. Metagenomic study of the microbiome and key geochemical potentials associated with architectural heritage sites: a case study of the Song Dynasty city wall in Shou County, China. Front Microbiol 2024; 15:1453430. [PMID: 39526141 PMCID: PMC11543536 DOI: 10.3389/fmicb.2024.1453430] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Accepted: 10/14/2024] [Indexed: 11/16/2024] Open
Abstract
Historical cultural heritage sites are valuable for all of mankind, as they reflect the material and spiritual wealth of by nations, countries, or specific groups during the development of human civilization. The types and functions of microorganisms that form biofilms on the surfaces of architectural heritage sites influence measures to preserve and protect these sites. These microorganisms contribute to the biocorrosion of architectural heritage structures through the cycling of chemical elements. The ancient city wall of Shou County is a famous architectural and cultural heritage site from China's Song Dynasty, and the protection and study of this site have substantial historical and cultural significance. In this study, we used metagenomics to study the microbial diversity and taxonomic composition of the Song Dynasty city wall in Shou County, a tangible example of Chinese cultural heritage. The study covered three main topics: (1) examining the distribution of bacteria in the biofilm on the surfaces of the Song Dynasty city wall in Shou County; (2) predicting the influence of bacteria involved in the C, N, and S cycles on the corrosion of the city wall via functional gene analysis; and (3) discussing cultural heritage site protection measures for biocorrosion-related bacteria to investigate the impact of biocorrosion on the Song Dynasty city wall in Shou County, a tangible example of Chinese cultural heritage. The study revealed that (1) the biofilm bacteria mainly belonged to Proteobacteria, Actinobacteria, Cyanobacteria, Bacteroidetes, and Firmicutes, which accounted for more than 70% of the total bacteria in the biofilms. The proportion of fungi in the microbial community of the well-preserved city wall was greater than that in the damaged city wall. The proportion of archaea was low-less than 1%. (2) According to the Shannon diversity index, the well-preserved portion of the ancient city wall had the highest diversity of bacteria, fungi, and archaea, and bacterial diversity on the good city wall was greater than that on the corroded city wall. (3) Bray-Curtis distances revealed that the genomes of the two good city walls were similar and that the genomes of the corroded city wall portions were similar. Researchers also detected human intestine-related bacteria in four locations on the city walls, with the proportion of these bacteria in the microbial community being greater on good city walls than on bad city walls. (4) KEGG functional analysis revealed that the energy metabolism and inorganic ion transport activities of the bacterial community on the corroded city wall were greater than those of the good city wall. (5) In the carbon cycle, the absence of active glycolysis, the ED pathway, and the TCA cycle played significant roles in the collapse of the east city wall. (6) The nitrogen cycling processes involved ammonia oxidation and nitrite reduction to nitrate. (7) In the sulfur cycle, researchers discovered a crucial differential functional gene, SoxY, which facilitates the conversion of thiosulfate to sulfate. This study suggests that, in the future, biological approaches can be used to help cultural heritage site protectors achieve targeted and precise protection of cultural relics through the use of microbial growth inhibition technology. The results of this study serve as a guide for the protection of cultural heritage sites in other parts of China and provide a useful supplement to research on the protection of world cultural heritage or architectural heritage sites.
Collapse
Affiliation(s)
- Mingyi Zhao
- Faculty of Humanities and Arts, Macau University of Science and Technology, Taipa, Macao SAR, China
| | - Yanyu Li
- Faculty of Humanities and Arts, Macau University of Science and Technology, Taipa, Macao SAR, China
| | - Huanhuan Chen
- Faculty of Humanities and Arts, Macau University of Science and Technology, Taipa, Macao SAR, China
| | - Yile Chen
- Faculty of Humanities and Arts, Macau University of Science and Technology, Taipa, Macao SAR, China
| | - Liang Zheng
- Faculty of Humanities and Arts, Macau University of Science and Technology, Taipa, Macao SAR, China
| | - Yue Wu
- Shanghai Biogenuinetech Co., Ltd., Shanghai, China
| | - Kang Wang
- College of Life Sciences, Qingdao University, Qingdao, China
| | - Zhao Pan
- School of Art and Design, Shandong Jiaotong University, Changqing University Science and Technology Park, Jinan, China
| | - Tao Yu
- Institutes for Translational Medicine, Qingdao University, Qingdao, China
| | - Tao Wang
- The Affiliated Hospital of Qingdao University, Qingdao, China
| |
Collapse
|
3
|
Maestre‐Carballa L, Navarro‐López V, Martinez‐Garcia M. Metagenomic airborne resistome from urban hot spots through the One Health lens. ENVIRONMENTAL MICROBIOLOGY REPORTS 2024; 16:e13306. [PMID: 38923122 PMCID: PMC11194455 DOI: 10.1111/1758-2229.13306] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Accepted: 05/31/2024] [Indexed: 06/28/2024]
Abstract
Human activities are a significant contributor to the spread of antibiotic resistance genes (ARGs), which pose a serious threat to human health. These ARGs can be transmitted through various pathways, including air, within the context of One Health. This study used metagenomics to monitor the resistomes in urban air from two critical locations: a wastewater treatment plant and a hospital, both indoor and outdoor. The presence of cell-like structures was confirmed through fluorescence microscopy. The metagenomic analysis revealed a wide variety of ARGs and a high diversity of antibiotic-resistant bacteria in the airborne particles collected. The wastewater treatment plant showed higher relative abundances with 32 ARG hits per Gb and m3, followed by the main entrance of the hospital (indoor) with ≈5 ARG hits per Gb and m3. The hospital entrance exhibited the highest ARG richness, with a total of 152 different ARGs classified into nine categories of antibiotic resistance. Common commensal and pathogenic bacteria carrying ARGs, such as Moraxella, Staphylococcus and Micrococcus, were detected in the indoor airborne particles of the hospital. Interestingly, no ARGs were shared among all the samples analysed, indicating a highly variable dynamic of airborne resistomes. Furthermore, the study found no ARGs in the airborne viral fractions analysed, suggesting that airborne viruses play a negligible role in the dissemination of ARGs.
Collapse
Affiliation(s)
- Lucia Maestre‐Carballa
- Department of Physiology, Genetics, and MicrobiologyUniversity of AlicanteAlicanteSpain
- Instituto Multidisciplinar Para el Estudio del Medio Ramon MargalefUniversity of AlicanteAlicanteSpain
| | - Vicente Navarro‐López
- Clinical Microbiology and Infectious Disease UnitHospital Universitario VinalopóElcheSpain
| | - Manuel Martinez‐Garcia
- Department of Physiology, Genetics, and MicrobiologyUniversity of AlicanteAlicanteSpain
- Instituto Multidisciplinar Para el Estudio del Medio Ramon MargalefUniversity of AlicanteAlicanteSpain
| |
Collapse
|
4
|
Messer LF, Bourne DG, Robbins SJ, Clay M, Bell SC, McIlroy SJ, Tyson GW. A genome-centric view of the role of the Acropora kenti microbiome in coral health and resilience. Nat Commun 2024; 15:2902. [PMID: 38575584 PMCID: PMC10995205 DOI: 10.1038/s41467-024-46905-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Accepted: 03/13/2024] [Indexed: 04/06/2024] Open
Abstract
Microbial diversity has been extensively explored in reef-building corals. However, the functional roles of coral-associated microorganisms remain poorly elucidated. Here, we recover 191 bacterial and 10 archaeal metagenome-assembled genomes (MAGs) from the coral Acropora kenti (formerly A. tenuis) and adjacent seawater, to identify microbial functions and metabolic interactions within the holobiont. We show that 82 MAGs were specific to the A. kenti holobiont, including members of the Pseudomonadota, Bacteroidota, and Desulfobacterota. A. kenti-specific MAGs displayed significant differences in their genomic features and functional potential relative to seawater-specific MAGs, with a higher prevalence of genes involved in host immune system evasion, nitrogen and carbon fixation, and synthesis of five essential B-vitamins. We find a diversity of A. kenti-specific MAGs encode the biosynthesis of essential amino acids, such as tryptophan, histidine, and lysine, which cannot be de novo synthesised by the host or Symbiodiniaceae. Across a water quality gradient spanning 2° of latitude, A. kenti microbial community composition is correlated to increased temperature and dissolved inorganic nitrogen, with corresponding enrichment in molecular chaperones, nitrate reductases, and a heat-shock protein. We reveal mechanisms of A. kenti-microbiome-symbiosis on the Great Barrier Reef, highlighting the interactions underpinning the health of this keystone holobiont.
Collapse
Affiliation(s)
- Lauren F Messer
- Centre for Microbiome Research, School of Biomedical Sciences, Translational Research Institute, Queensland University of Technology, Brisbane, QLD, 4102, Australia.
- Division of Biological and Environmental Sciences, Faculty of Natural Sciences, University of Stirling, Stirling, FK9 4LA, Scotland, UK.
| | - David G Bourne
- College of Science and Engineering, James Cook University, Townsville, QLD, 4811, Australia
- Australian Institute of Marine Science, Townsville, QLD, 4810, Australia
| | - Steven J Robbins
- Australian Centre for Ecogenomics, School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, QLD, 4072, Australia
| | - Megan Clay
- Centre for Microbiome Research, School of Biomedical Sciences, Translational Research Institute, Queensland University of Technology, Brisbane, QLD, 4102, Australia
| | - Sara C Bell
- College of Science and Engineering, James Cook University, Townsville, QLD, 4811, Australia
- Australian Institute of Marine Science, Townsville, QLD, 4810, Australia
| | - Simon J McIlroy
- Centre for Microbiome Research, School of Biomedical Sciences, Translational Research Institute, Queensland University of Technology, Brisbane, QLD, 4102, Australia
| | - Gene W Tyson
- Centre for Microbiome Research, School of Biomedical Sciences, Translational Research Institute, Queensland University of Technology, Brisbane, QLD, 4102, Australia.
| |
Collapse
|
5
|
Clerc EE, Raina JB, Keegstra JM, Landry Z, Pontrelli S, Alcolombri U, Lambert BS, Anelli V, Vincent F, Masdeu-Navarro M, Sichert A, De Schaetzen F, Sauer U, Simó R, Hehemann JH, Vardi A, Seymour JR, Stocker R. Strong chemotaxis by marine bacteria towards polysaccharides is enhanced by the abundant organosulfur compound DMSP. Nat Commun 2023; 14:8080. [PMID: 38057294 PMCID: PMC10700628 DOI: 10.1038/s41467-023-43143-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Accepted: 11/01/2023] [Indexed: 12/08/2023] Open
Abstract
The ability of marine bacteria to direct their movement in response to chemical gradients influences inter-species interactions, nutrient turnover, and ecosystem productivity. While many bacteria are chemotactic towards small metabolites, marine organic matter is predominantly composed of large molecules and polymers. Yet, the signalling role of these large molecules is largely unknown. Using in situ and laboratory-based chemotaxis assays, we show that marine bacteria are strongly attracted to the abundant algal polysaccharides laminarin and alginate. Unexpectedly, these polysaccharides elicited stronger chemoattraction than their oligo- and monosaccharide constituents. Furthermore, chemotaxis towards laminarin was strongly enhanced by dimethylsulfoniopropionate (DMSP), another ubiquitous algal-derived metabolite. Our results indicate that DMSP acts as a methyl donor for marine bacteria, increasing their gradient detection capacity and facilitating their access to polysaccharide patches. We demonstrate that marine bacteria are capable of strong chemotaxis towards large soluble polysaccharides and uncover a new ecological role for DMSP in enhancing this attraction. These navigation behaviours may contribute to the rapid turnover of polymers in the ocean, with important consequences for marine carbon cycling.
Collapse
Affiliation(s)
- Estelle E Clerc
- Institute of Environmental Engineering, Department of Civil, Environmental and Geomatic Engineering, ETH Zurich, Zurich, Switzerland
| | | | - Johannes M Keegstra
- Institute of Environmental Engineering, Department of Civil, Environmental and Geomatic Engineering, ETH Zurich, Zurich, Switzerland
| | - Zachary Landry
- Institute of Environmental Engineering, Department of Civil, Environmental and Geomatic Engineering, ETH Zurich, Zurich, Switzerland
| | - Sammy Pontrelli
- Institute of Molecular Systems Biology, Department of Biology, ETH Zurich, Zurich, Switzerland
| | - Uria Alcolombri
- Institute of Environmental Engineering, Department of Civil, Environmental and Geomatic Engineering, ETH Zurich, Zurich, Switzerland
- Institute for Life Sciences, Department of Plant and Environmental Sciences, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Bennett S Lambert
- Institute of Environmental Engineering, Department of Civil, Environmental and Geomatic Engineering, ETH Zurich, Zurich, Switzerland
| | - Valerio Anelli
- Institute of Environmental Engineering, Department of Civil, Environmental and Geomatic Engineering, ETH Zurich, Zurich, Switzerland
| | - Flora Vincent
- Department of Plant and Environmental Sciences, Weizmann Institute of Science, Rehovot, Israel
- Developmental Biology Unit, European Molecular Biological Laboratory, Heidelberg, 69117, Germany
| | | | - Andreas Sichert
- Max Planck Institute for Marine Microbiology, Bremen, Germany
| | - Frédéric De Schaetzen
- Institute of Environmental Engineering, Department of Civil, Environmental and Geomatic Engineering, ETH Zurich, Zurich, Switzerland
| | - Uwe Sauer
- Institute of Molecular Systems Biology, Department of Biology, ETH Zurich, Zurich, Switzerland
| | - Rafel Simó
- Institut de Ciències del Mar, CSIC, Barcelona, Catalonia, Spain
| | | | - Assaf Vardi
- Department of Plant and Environmental Sciences, Weizmann Institute of Science, Rehovot, Israel
| | - Justin R Seymour
- Climate Change Cluster, University of Technology Sydney, Ultimo, Australia
| | - Roman Stocker
- Institute of Environmental Engineering, Department of Civil, Environmental and Geomatic Engineering, ETH Zurich, Zurich, Switzerland.
| |
Collapse
|
6
|
Alvarez-Molina A, Cobo-Díaz JF, Alexa EA, Crispie F, Prieto M, López M, Cotter PD, Alvarez-Ordóñez A. Sequencing-based analysis of the microbiomes of Spanish food processing facilities reveals environment-specific variation in the dominant taxa and antibiotic resistance genes. Food Res Int 2023; 173:113442. [PMID: 37803768 DOI: 10.1016/j.foodres.2023.113442] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2023] [Revised: 07/11/2023] [Accepted: 09/09/2023] [Indexed: 10/08/2023]
Abstract
In the last years, advances in high throughput sequencing technologies have opened the possibility to broaden environmental monitoring activities in facilities processing food, offering expanded opportunities for characterizing in an untargeted manner the microbiome and resistome of foods and food processing environments (FPE) with huge potential benefits in food safety management systems. Here the microbiome and resistome of FPE from slaughterhouses (n = 3), dairy (n = 12) and meat (n = 10) processing plants were assessed through whole metagenome sequencing of 2 composite samples for each facility, comprising 10 FPE swabs taken from food contact surfaces and 10 FPE samples from non-food contact surfaces, respectively. FPE from slaughterhouses had more diverse microbiomes and resistomes, while FPE from dairy processing plants showed the highest β-dispersion, consistent with a more heterogeneous microbiome and resistome composition. The predominant bacterial genera depended on the industry type, with Pseudomonas and Psychrobacter being highly dominant in surfaces from slaughterhouses and meat industries, while different lactic acid bacteria predominated in dairy industries. The most abundant antimicrobial resistance genes (ARG) found were associated with resistance to aminoglycosides, tetracyclines and quaternary ammonium compounds (QAC). ARGs relating to resistance to aminoglycosides and tetracyclines were significantly more prevalent in slaughterhouses than in food processing plants, while QAC resistance genes were particularly abundant in some food contact surfaces from dairy and meat processing plants, suggesting that daily sanitation under suboptimal conditions may be selecting for persistent microbiota tolerant to these biocides in some facilities. The taxonomic mapping of ARG pointed to specific bacterial genera, such as Escherichia, Bacillus, or Staphylococcus, as carriers of the most relevant resistance determinants. About 63% of all ARG reads were assigned to contigs classified as plasmid-associated, indicating that the resistome of FPE may be strongly shaped through the spread of mobile genetic elements. Overall, the relevance of FPE as reservoirs of ARG was confirmed and it was demonstrated that next generation sequencing technologies allowing a deep characterisation of sources and routes of spread of microorganisms and antimicrobial resistance determinants in food industry settings hold promise to be integrated in monitoring and food safety management programmes.
Collapse
Affiliation(s)
| | - José F Cobo-Díaz
- Department of Food Hygiene and Technology, Universidad de León, León, Spain
| | - Elena A Alexa
- Department of Food Hygiene and Technology, Universidad de León, León, Spain
| | - Fiona Crispie
- APC Microbiome Ireland, University College Cork, Cork, Ireland; Teagasc Food Research Centre, Fermoy, Co. Cork, Ireland
| | - Miguel Prieto
- Department of Food Hygiene and Technology, Universidad de León, León, Spain; Institute of Food Science and Technology, Universidad de León, León, Spain
| | - Mercedes López
- Department of Food Hygiene and Technology, Universidad de León, León, Spain; Institute of Food Science and Technology, Universidad de León, León, Spain
| | - Paul D Cotter
- APC Microbiome Ireland, University College Cork, Cork, Ireland; Teagasc Food Research Centre, Fermoy, Co. Cork, Ireland
| | - Avelino Alvarez-Ordóñez
- Department of Food Hygiene and Technology, Universidad de León, León, Spain; Institute of Food Science and Technology, Universidad de León, León, Spain.
| |
Collapse
|
7
|
Patangia DV, Grimaud G, Linehan K, Ross RP, Stanton C. Microbiota and Resistome Analysis of Colostrum and Milk from Dairy Cows Treated with and without Dry Cow Therapies. Antibiotics (Basel) 2023; 12:1315. [PMID: 37627735 PMCID: PMC10451192 DOI: 10.3390/antibiotics12081315] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 07/27/2023] [Accepted: 08/04/2023] [Indexed: 08/27/2023] Open
Abstract
This study investigated the longitudinal impact of methods for the drying off of cows with and without dry cow therapy (DCT) on the microbiota and resistome profile in colostrum and milk samples from cows. Three groups of healthy dairy cows (n = 24) with different antibiotic treatments during DCT were studied. Colostrum and milk samples from Month 0 (M0), 2 (M2), 4 (M4) and 6 (M6) were analysed using whole-genome shotgun-sequencing. The microbial diversity from antibiotic-treated groups was different and higher than that of the non-antibiotic group. This difference was more evident in milk compared to colostrum, with increasing diversity seen only in antibiotic-treated groups. The microbiome of antibiotic-treated groups clustered separately from the non-antibiotic group at M2-, M4- and M6 milk samples, showing the effect of antibiotic treatment on between-group (beta) diversity. The non-antibiotic group did not show a high relative abundance of mastitis-causing pathogens during early lactation and was more associated with genera such as Psychrobacter, Serratia, Gordonibacter and Brevibacterium. A high relative abundance of antibiotic resistance genes (ARGs) was observed in the milk of antibiotic-treated groups with the Cephaguard group showing a significantly high abundance of genes conferring resistance to cephalosporin, aminoglycoside and penam classes. The data support the use of non-antibiotic alternatives for drying off in cows.
Collapse
Affiliation(s)
- Dhrati V. Patangia
- School of Microbiology, University College Cork, T12 K8AF Cork, Ireland; (D.V.P.); (R.P.R.)
- Biosciences Building, Teagasc Food Research Centre, P61 C996 Fermoy, Ireland
- APC Microbiome Ireland, University College Cork, T12 K8AF Cork, Ireland
| | - Ghjuvan Grimaud
- Biosciences Building, Teagasc Food Research Centre, P61 C996 Fermoy, Ireland
- APC Microbiome Ireland, University College Cork, T12 K8AF Cork, Ireland
| | - Kevin Linehan
- School of Microbiology, University College Cork, T12 K8AF Cork, Ireland; (D.V.P.); (R.P.R.)
- Biosciences Building, Teagasc Food Research Centre, P61 C996 Fermoy, Ireland
- APC Microbiome Ireland, University College Cork, T12 K8AF Cork, Ireland
| | - R. Paul Ross
- School of Microbiology, University College Cork, T12 K8AF Cork, Ireland; (D.V.P.); (R.P.R.)
- APC Microbiome Ireland, University College Cork, T12 K8AF Cork, Ireland
| | - Catherine Stanton
- Biosciences Building, Teagasc Food Research Centre, P61 C996 Fermoy, Ireland
- APC Microbiome Ireland, University College Cork, T12 K8AF Cork, Ireland
| |
Collapse
|
8
|
Green SJ, Torok T, Allen JE, Eloe-Fadrosh E, Jackson SA, Jiang SC, Levine SS, Levy S, Schriml LM, Thomas WK, Wood JM, Tighe SW. Metagenomic Methods for Addressing NASA's Planetary Protection Policy Requirements on Future Missions: A Workshop Report. ASTROBIOLOGY 2023; 23:897-907. [PMID: 37102710 PMCID: PMC10457625 DOI: 10.1089/ast.2022.0044] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2022] [Accepted: 01/23/2023] [Indexed: 06/19/2023]
Abstract
Molecular biology methods and technologies have advanced substantially over the past decade. These new molecular methods should be incorporated among the standard tools of planetary protection (PP) and could be validated for incorporation by 2026. To address the feasibility of applying modern molecular techniques to such an application, NASA conducted a technology workshop with private industry partners, academics, and government agency stakeholders, along with NASA staff and contractors. The technical discussions and presentations of the Multi-Mission Metagenomics Technology Development Workshop focused on modernizing and supplementing the current PP assays. The goals of the workshop were to assess the state of metagenomics and other advanced molecular techniques in the context of providing a validated framework to supplement the bacterial endospore-based NASA Standard Assay and to identify knowledge and technology gaps. In particular, workshop participants were tasked with discussing metagenomics as a stand-alone technology to provide rapid and comprehensive analysis of total nucleic acids and viable microorganisms on spacecraft surfaces, thereby allowing for the development of tailored and cost-effective microbial reduction plans for each hardware item on a spacecraft. Workshop participants recommended metagenomics approaches as the only data source that can adequately feed into quantitative microbial risk assessment models for evaluating the risk of forward (exploring extraterrestrial planet) and back (Earth harmful biological) contamination. Participants were unanimous that a metagenomics workflow, in tandem with rapid targeted quantitative (digital) PCR, represents a revolutionary advance over existing methods for the assessment of microbial bioburden on spacecraft surfaces. The workshop highlighted low biomass sampling, reagent contamination, and inconsistent bioinformatics data analysis as key areas for technology development. Finally, it was concluded that implementing metagenomics as an additional workflow for addressing concerns of NASA's robotic mission will represent a dramatic improvement in technology advancement for PP and will benefit future missions where mission success is affected by backward and forward contamination.
Collapse
Affiliation(s)
- Stefan J. Green
- Genomics and Microbiome Core Facility, Rush University Medical Center, Chicago, Illinois, USA
| | - Tamas Torok
- Ecology Department, Lawrence Berkeley National Laboratory, Berkeley, California, USA
| | | | - Emiley Eloe-Fadrosh
- DOE Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, California, USA
| | - Scott A. Jackson
- National Institute of Standards and Technology, Gaithersburg, Maryland, USA
| | - Sunny C. Jiang
- Department of Civil and Environmental Engineering, University of California, Irvine, California, USA
| | - Stuart S. Levine
- MIT BioMicro Center, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
| | - Shawn Levy
- HudsonAlpha Institute for Biotechnology, Huntsville, Alabama, USA
| | - Lynn M. Schriml
- Institute for Genome Sciences, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - W. Kelley Thomas
- Hubbard Center for Genome Studies, University of New Hampshire, Durham, New Hampshire, USA
| | - Jason M. Wood
- Research Informatics Core, University of Illinois at Chicago, Chicago, Illinois, USA
| | - Scott W. Tighe
- Vermont Integrative Genomics, University of Vermont, Burlington, Vermont, USA
| |
Collapse
|
9
|
Feehan B, Ran Q, Dorman V, Rumback K, Pogranichniy S, Ward K, Goodband R, Niederwerder MC, Lee STM. Novel complete methanogenic pathways in longitudinal genomic study of monogastric age-associated archaea. Anim Microbiome 2023; 5:35. [PMID: 37461084 DOI: 10.1186/s42523-023-00256-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Accepted: 07/11/2023] [Indexed: 07/20/2023] Open
Abstract
BACKGROUND Archaea perform critical roles in the microbiome system, including utilizing hydrogen to allow for enhanced microbiome member growth and influencing overall host health. With the majority of microbiome research focusing on bacteria, the functions of archaea are largely still under investigation. Understanding methanogenic functions during the host lifetime will add to the limited knowledge on archaeal influence on gut and host health. In our study, we determined lifelong archaea dynamics, including detection and methanogenic functions, while assessing global, temporal and host distribution of our novel archaeal metagenome-assembled genomes (MAGs). We followed 7 monogastric swine throughout their life, from birth to adult (1-156 days of age), and collected feces at 22 time points. The samples underwent gDNA extraction, Illumina sequencing, bioinformatic quality and assembly processes, MAG taxonomic assignment and functional annotation. MAGs were utilized in downstream phylogenetic analysis for global, temporal and host distribution in addition to methanogenic functional potential determination. RESULTS We generated 1130 non-redundant MAGs, representing 588 unique taxa at the species level, with 8 classified as methanogenic archaea. The taxonomic classifications were as follows: orders Methanomassiliicoccales (5) and Methanobacteriales (3); genera UBA71 (3), Methanomethylophilus (1), MX-02 (1), and Methanobrevibacter (3). We recovered the first US swine Methanobrevibacter UBA71 sp006954425 and Methanobrevibacter gottschalkii MAGs. The Methanobacteriales MAGs were identified primarily during the young, preweaned host whereas Methanomassiliicoccales primarily in the adult host. Moreover, we identified our methanogens in metagenomic sequences from Chinese swine, US adult humans, Mexican adult humans, Swedish adult humans, and paleontological humans, indicating that methanogens span different hosts, geography and time. We determined complete metabolic pathways for all three methanogenic pathways: hydrogenotrophic, methylotrophic, and acetoclastic. This study provided the first evidence of acetoclastic methanogenesis in archaea of monogastric hosts which indicated a previously unknown capability for acetate utilization in methanogenesis for monogastric methanogens. Overall, we hypothesized that the age-associated detection patterns were due to differential substrate availability via the host diet and microbial metabolism, and that these methanogenic functions are likely crucial to methanogens across hosts. This study provided a comprehensive, genome-centric investigation of monogastric-associated methanogens which will further improve our understanding of microbiome development and functions.
Collapse
Affiliation(s)
- Brandi Feehan
- Division of Biology, College of Arts and Sciences, Kansas State University, Manhattan, KS, 66506, USA
| | - Qinghong Ran
- Division of Biology, College of Arts and Sciences, Kansas State University, Manhattan, KS, 66506, USA
| | - Victoria Dorman
- Division of Biology, College of Arts and Sciences, Kansas State University, Manhattan, KS, 66506, USA
| | - Kourtney Rumback
- Division of Biology, College of Arts and Sciences, Kansas State University, Manhattan, KS, 66506, USA
| | - Sophia Pogranichniy
- Division of Biology, College of Arts and Sciences, Kansas State University, Manhattan, KS, 66506, USA
| | - Kaitlyn Ward
- Division of Biology, College of Arts and Sciences, Kansas State University, Manhattan, KS, 66506, USA
| | - Robert Goodband
- Department of Animal Sciences and Industry, College of Agriculture, Kansas State University, Manhattan, KS, 66506, USA
| | | | - Sonny T M Lee
- Division of Biology, College of Arts and Sciences, Kansas State University, Manhattan, KS, 66506, USA.
| |
Collapse
|
10
|
Back to Basics: A Simplified Improvement to Multiple Displacement Amplification for Microbial Single-Cell Genomics. Int J Mol Sci 2023; 24:ijms24054270. [PMID: 36901710 PMCID: PMC10002425 DOI: 10.3390/ijms24054270] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 01/23/2023] [Accepted: 02/15/2023] [Indexed: 02/25/2023] Open
Abstract
Microbial single-cell genomics (SCG) provides access to the genomes of rare and uncultured microorganisms and is a complementary method to metagenomics. Due to the femtogram-levels of DNA in a single microbial cell, sequencing the genome requires whole genome amplification (WGA) as a preliminary step. However, the most common WGA method, multiple displacement amplification (MDA), is known to be costly and biased against specific genomic regions, preventing high-throughput applications and resulting in uneven genome coverage. Thus, obtaining high-quality genomes from many taxa, especially minority members of microbial communities, becomes difficult. Here, we present a volume reduction approach that significantly reduces costs while improving genome coverage and uniformity of DNA amplification products in standard 384-well plates. Our results demonstrate that further volume reduction in specialized and complex setups (e.g., microfluidic chips) is likely unnecessary to obtain higher-quality microbial genomes. This volume reduction method makes SCG more feasible for future studies, thus helping to broaden our knowledge on the diversity and function of understudied and uncharacterized microorganisms in the environment.
Collapse
|
11
|
Hallstrøm S, Raina JB, Ostrowski M, Parks DH, Tyson GW, Hugenholtz P, Stocker R, Seymour JR, Riemann L. Chemotaxis may assist marine heterotrophic bacterial diazotrophs to find microzones suitable for N 2 fixation in the pelagic ocean. THE ISME JOURNAL 2022; 16:2525-2534. [PMID: 35915168 PMCID: PMC9561647 DOI: 10.1038/s41396-022-01299-4] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Revised: 07/18/2022] [Accepted: 07/20/2022] [Indexed: 06/05/2023]
Abstract
Heterotrophic bacterial diazotrophs (HBDs) are ubiquitous in the pelagic ocean, where they have been predicted to carry out the anaerobic process of nitrogen fixation within low-oxygen microenvironments associated with marine pelagic particles. However, the mechanisms enabling particle colonization by HBDs are unknown. We hypothesized that HBDs use chemotaxis to locate and colonize suitable microenvironments, and showed that a cultivated marine HBD is chemotactic toward amino acids and phytoplankton-derived DOM. Using an in situ chemotaxis assay, we also discovered that diverse HBDs at a coastal site are motile and chemotactic toward DOM from various phytoplankton taxa and, indeed, that the proportion of diazotrophs was up to seven times higher among the motile fraction of the bacterial community compared to the bulk seawater community. Finally, three of four HBD isolates and 16 of 17 HBD metagenome assembled genomes, recovered from major ocean basins and locations along the Australian coast, each encoded >85% of proteins affiliated with the bacterial chemotaxis pathway. These results document the widespread capacity for chemotaxis in diverse and globally relevant marine HBDs. We suggest that HBDs could use chemotaxis to seek out and colonize low-oxygen microenvironments suitable for nitrogen fixation, such as those formed on marine particles. Chemotaxis in HBDs could therefore affect marine nitrogen and carbon biogeochemistry by facilitating nitrogen fixation within otherwise oxic waters, while also altering particle degradation and the efficiency of the biological pump.
Collapse
Affiliation(s)
- Søren Hallstrøm
- Marine Biological Section, Department of Biology, University of Copenhagen, Helsingør, Denmark
| | - Jean-Baptiste Raina
- Climate Change Cluster, Faculty of Science, University of Technology Sydney, Sydney, NSW, Australia
| | - Martin Ostrowski
- Climate Change Cluster, Faculty of Science, University of Technology Sydney, Sydney, NSW, Australia
| | - Donovan H Parks
- Australian Centre for Ecogenomics, School of Chemistry and Molecular Biosciences, The University of Queensland, St. Lucia, QLD, Australia
| | - Gene W Tyson
- Centre for Microbiome Research, School of Biomedical Science, Translational Research Institute, Queensland University of Technology, Woolloongabba, QLD, Australia
| | - Philip Hugenholtz
- Australian Centre for Ecogenomics, School of Chemistry and Molecular Biosciences, The University of Queensland, St. Lucia, QLD, Australia
| | - Roman Stocker
- Institute of Environmental Engineering, Department of Civil, Environmental and Geomatic Engineering, ETH Zurich, Zurich, Switzerland
| | - Justin R Seymour
- Climate Change Cluster, Faculty of Science, University of Technology Sydney, Sydney, NSW, Australia
| | - Lasse Riemann
- Marine Biological Section, Department of Biology, University of Copenhagen, Helsingør, Denmark.
| |
Collapse
|
12
|
Wang C, Zhang L, Jiang X, Ma W, Geng H, Wang X, Li M. Toward efficient and high-fidelity metagenomic data from sub-nanogram DNA: evaluation of library preparation and decontamination methods. BMC Biol 2022; 20:225. [PMID: 36209213 PMCID: PMC9548135 DOI: 10.1186/s12915-022-01418-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Accepted: 09/27/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Shotgun metagenomic sequencing has greatly expanded the understanding of microbial communities in various biological niches. However, it is still challenging to efficiently convert sub-nanogram DNA to high-quality metagenomic libraries and obtain high-fidelity data, hindering the exploration of niches with low microbial biomass. RESULTS To cope with this challenge comprehensively, we evaluated the performance of various library preparation methods on 0.5 pg-5 ng synthetic microbial community DNA, characterized contaminants, and further applied different in silico decontamination methods. First, we discovered that whole genome amplification prior to library construction led to worse outcomes than preparing libraries directly. Among different non-WGA-based library preparation methods, we found the endonuclease-based method being generally good for different amounts of template and the tagmentation-based method showing specific advantages with 0.5 pg template, based on evaluation metrics including fidelity, proportion of designated reads, and reproducibility. The load of contaminating DNA introduced by library preparation varied from 0.01 to 15.59 pg for different kits and accounted for 0.05 to 45.97% of total reads. A considerable fraction of the contaminating reads were mapped to human commensal and pathogenic microbes, thus potentially leading to erroneous conclusions in human microbiome studies. Furthermore, the best performing in silico decontamination method in our evaluation, Decontam-either, was capable of recovering the real microbial community from libraries where contaminants accounted for less than 10% of total reads, but not from libraries with heavy and highly varied contaminants. CONCLUSIONS This study demonstrates that high-quality metagenomic data can be obtained from samples with sub-nanogram microbial DNA by combining appropriate library preparation and in silico decontamination methods and provides a general reference for method selection for samples with varying microbial biomass.
Collapse
Affiliation(s)
- Chun Wang
- Beijing Institute of Genomics, Chinese Academy of Sciences, and China National Center for Bioinformation, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Li Zhang
- Beijing Institute of Genomics, Chinese Academy of Sciences, and China National Center for Bioinformation, Beijing, 100101, China.
| | - Xuan Jiang
- Beijing Institute of Genomics, Chinese Academy of Sciences, and China National Center for Bioinformation, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Wentai Ma
- Beijing Institute of Genomics, Chinese Academy of Sciences, and China National Center for Bioinformation, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Hui Geng
- Department of Geriatrics, Peking University First Hospital, Beijing, 100034, China
| | - Xue Wang
- Beijing Center for Disease Prevention and Control, Beijing, 100013, China
| | - Mingkun Li
- Beijing Institute of Genomics, Chinese Academy of Sciences, and China National Center for Bioinformation, Beijing, 100101, China.
- University of Chinese Academy of Sciences, Beijing, 100049, China.
- Center for Excellence in Animal Evolution and Genetics, Chinese Academy of Sciences, Kunming, 650223, China.
| |
Collapse
|
13
|
Historical contingencies and phage induction diversify bacterioplankton communities at the microscale. Proc Natl Acad Sci U S A 2022; 119:e2117748119. [PMID: 35862452 PMCID: PMC9335236 DOI: 10.1073/pnas.2117748119] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
In many natural environments, microorganisms decompose microscale resource patches made of complex organic matter. The growth and collapse of populations on these resource patches unfold within spatial ranges of a few hundred micrometers or less, making such microscale ecosystems hotspots of heterotrophic metabolism. Despite the potential importance of patch-level dynamics for the large-scale functioning of heterotrophic microbial communities, we have not yet been able to delineate the ecological processes that control natural populations at the microscale. Here, we address this challenge by characterizing the natural marine communities that assembled on over 1,000 individual microscale particles of chitin, the most abundant marine polysaccharide. Using low-template shotgun metagenomics and imaging, we find significant variation in microscale community composition despite the similarity in initial species pools across replicates. Chitin-degrading taxa that were rare in seawater established large populations on a subset of particles, resulting in a wide range of predicted chitinolytic abilities and biomass at the level of individual particles. We show, through a mathematical model, that this variability can be attributed to stochastic colonization and historical contingencies affecting the tempo of growth on particles. We find evidence that one biological process leading to such noisy growth across particles is differential predation by temperate bacteriophages of chitin-degrading strains, the keystone members of the community. Thus, initial stochasticity in assembly states on individual particles, amplified through ecological interactions, may have significant consequences for the diversity and functionality of systems of microscale patches.
Collapse
|
14
|
Pascual-García A, Schwartzman J, Enke TN, Iffland-Stettner A, Cordero OX, Bonhoeffer S. Turnover in Life-Strategies Recapitulates Marine Microbial Succession Colonizing Model Particles. Front Microbiol 2022; 13:812116. [PMID: 35814698 PMCID: PMC9260654 DOI: 10.3389/fmicb.2022.812116] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Accepted: 04/29/2022] [Indexed: 12/02/2022] Open
Abstract
Particulate organic matter (POM) in the ocean sustains diverse communities of bacteria that mediate the remineralization of organic complex matter. However, the variability of these particles and of the environmental conditions surrounding them present a challenge to the study of the ecological processes shaping particle-associated communities and their function. In this work, we utilize data from experiments in which coastal water communities are grown on synthetic particles to ask which are the most important ecological drivers of their assembly and associated traits. Combining 16S rRNA amplicon sequencing with shotgun metagenomics, together with an analysis of the full genomes of a subset of isolated strains, we were able to identify two-to-three distinct community classes, corresponding to early vs. late colonizers. We show that these classes are shaped by environmental selection (early colonizers) and facilitation (late colonizers) and find distinctive traits associated with each class. While early colonizers have a larger proportion of genes related to the uptake of nutrients, motility, and environmental sensing with few pathways enriched for metabolism, late colonizers devote a higher proportion of genes for metabolism, comprising a wide array of different pathways including the metabolism of carbohydrates, amino acids, and xenobiotics. Analysis of selected pathways suggests the existence of a trophic-chain topology connecting both classes for nitrogen metabolism, potential exchange of branched chain amino acids for late colonizers, and differences in bacterial doubling times throughout the succession. The interpretation of these traits suggests a distinction between early and late colonizers analogous to other classifications found in the literature, and we discuss connections with the classical distinction between r- and K-strategists.
Collapse
Affiliation(s)
- Alberto Pascual-García
- Institute of Integrative Biology, Eidgenössische Technische Hochschule (ETH)-Zürich, Zurich, Switzerland
- *Correspondence: Alberto Pascual-García
| | - Julia Schwartzman
- Department of Civil and Environmental Engineering, Massachusetts Institute of Technology, Cambridge, MA, United States
| | - Tim N. Enke
- Department of Civil and Environmental Engineering, Massachusetts Institute of Technology, Cambridge, MA, United States
- Institute of Biogeochemistry and Pollutant Dynamics, Eidgenössische Technische Hochschule (ETH)-Zürich, Zurich, Switzerland
| | - Arion Iffland-Stettner
- Institute of Integrative Biology, Eidgenössische Technische Hochschule (ETH)-Zürich, Zurich, Switzerland
| | - Otto X. Cordero
- Department of Civil and Environmental Engineering, Massachusetts Institute of Technology, Cambridge, MA, United States
| | - Sebastian Bonhoeffer
- Institute of Integrative Biology, Eidgenössische Technische Hochschule (ETH)-Zürich, Zurich, Switzerland
| |
Collapse
|
15
|
Goussarov G, Mysara M, Vandamme P, Van Houdt R. Introduction to the principles and methods underlying the recovery of metagenome-assembled genomes from metagenomic data. Microbiologyopen 2022; 11:e1298. [PMID: 35765182 PMCID: PMC9179125 DOI: 10.1002/mbo3.1298] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Revised: 05/19/2022] [Accepted: 05/19/2022] [Indexed: 11/18/2022] Open
Abstract
The rise of metagenomics offers a leap forward for understanding the genetic diversity of microorganisms in many different complex environments by providing a platform that can identify potentially unlimited numbers of known and novel microorganisms. As such, it is impossible to imagine new major initiatives without metagenomics. Nevertheless, it represents a relatively new discipline with various levels of complexity and demands on bioinformatics. The underlying principles and methods used in metagenomics are often seen as common knowledge and often not detailed or fragmented. Therefore, we reviewed these to guide microbiologists in taking the first steps into metagenomics. We specifically focus on a workflow aimed at reconstructing individual genomes, that is, metagenome-assembled genomes, integrating DNA sequencing, assembly, binning, identification and annotation.
Collapse
Affiliation(s)
- Gleb Goussarov
- Microbiology Unit, Belgian Nuclear Research Centre (SCK CEN)MolBelgium
- Laboratory of Microbiology and BCCM/LMG Bacteria Collection, Faculty of SciencesGhent UniversityGhentBelgium
| | - Mohamed Mysara
- Microbiology Unit, Belgian Nuclear Research Centre (SCK CEN)MolBelgium
| | - Peter Vandamme
- Laboratory of Microbiology and BCCM/LMG Bacteria Collection, Faculty of SciencesGhent UniversityGhentBelgium
| | - Rob Van Houdt
- Microbiology Unit, Belgian Nuclear Research Centre (SCK CEN)MolBelgium
| |
Collapse
|
16
|
Wang H, Yang GX, Hu Y, Lam P, Sangha K, Siciliano D, Swenerton A, Miller R, Tilley P, Von Dadelszen P, Kalyan S, Tang P, Patel MS. Comprehensive human amniotic fluid metagenomics supports the sterile womb hypothesis. Sci Rep 2022; 12:6875. [PMID: 35477737 PMCID: PMC9046152 DOI: 10.1038/s41598-022-10869-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2021] [Accepted: 04/04/2022] [Indexed: 11/17/2022] Open
Abstract
As metagenomic approaches for detecting infectious agents have improved, each tissue that was once thought to be sterile has been found to harbor a variety of microorganisms. Controversy still exists over the status of amniotic fluid, which is part of an immunologically privileged zone that is required to prevent maternal immune system rejection of the fetus. Due to this privilege, the exclusion of microbes has been proposed to be mandatory, leading to the sterile womb hypothesis. Since nucleic acid yields from amniotic fluid are very low, contaminating nucleic acid found in water, reagents and the laboratory environment frequently confound attempts to address this hypothesis. Here we present metagenomic criteria for microorganism detection and a metagenomic method able to be performed with small volumes of starting material, while controlling for exogenous contamination, to circumvent these and other pitfalls. We use this method to show that human mid-gestational amniotic fluid has no detectable virome or microbiome, supporting the sterile womb hypothesis.
Collapse
Affiliation(s)
- HanChen Wang
- Department of Medical Genetics, University of British Columbia, Vancouver, BC, Canada.,Department of Physiology, McGill University, Montreal, QC, Canada
| | - Gui Xiang Yang
- Department of Medical Genetics, University of British Columbia, Vancouver, BC, Canada
| | - Yuxiang Hu
- Department of Obstetrics and Gynaecology, University of British Columbia, Vancouver, BC, Canada.,CureImmune Therapeutics Inc., Vancouver, BC, Canada
| | - Patricia Lam
- Department of Medical Genetics, University of British Columbia, Vancouver, BC, Canada.,Center for Gene Therapy, Abigail Wexner Research Institute, Nationwide Children's Hospital, Columbus, OH, USA
| | - Karan Sangha
- Department of Medical Genetics, University of British Columbia, Vancouver, BC, Canada
| | - Dawn Siciliano
- Department of Medical Genetics, University of British Columbia, Vancouver, BC, Canada
| | - Anne Swenerton
- Department of Medical Genetics, University of British Columbia, Vancouver, BC, Canada
| | - Ruth Miller
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, BC, Canada.,British Columbia Centre for Disease Control, Vancouver, BC, Canada.,Contextual Genomics Inc., Vancouver, BC, Canada
| | - Peter Tilley
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, BC, Canada.,British Columbia Centre for Disease Control, Vancouver, BC, Canada
| | - Peter Von Dadelszen
- Department of Obstetrics and Gynaecology, University of British Columbia, Vancouver, BC, Canada.,Department of Women and Children's Health, School of Life Course Sciences, King's College London, London, UK
| | - Shirin Kalyan
- Division of Endocrinology and Metabolism, Department of Medicine, University of British Columbia, Vancouver, BC, Canada
| | - Patrick Tang
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, BC, Canada.,British Columbia Centre for Disease Control, Vancouver, BC, Canada.,Department of Pathology, Sidra Medical and Research Center, Doha, Qatar
| | - Millan S Patel
- BC Children's Hospital Research Institute, University of British Columbia, Vancouver, BC, Canada. .,Department of Medical Genetics, University of British Columbia, 4500 Oak St., Rm. C234, Vancouver, BC, V6H 3N1, Canada.
| |
Collapse
|
17
|
Raina JB, Lambert BS, Parks DH, Rinke C, Siboni N, Bramucci A, Ostrowski M, Signal B, Lutz A, Mendis H, Rubino F, Fernandez VI, Stocker R, Hugenholtz P, Tyson GW, Seymour JR. Chemotaxis shapes the microscale organization of the ocean's microbiome. Nature 2022; 605:132-138. [PMID: 35444277 DOI: 10.1038/s41586-022-04614-3] [Citation(s) in RCA: 48] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2020] [Accepted: 03/04/2022] [Indexed: 01/04/2023]
Abstract
The capacity of planktonic marine microorganisms to actively seek out and exploit microscale chemical hotspots has been widely theorized to affect ocean-basin scale biogeochemistry1-3, but has never been examined comprehensively in situ among natural microbial communities. Here, using a field-based microfluidic platform to quantify the behavioural responses of marine bacteria and archaea, we observed significant levels of chemotaxis towards microscale hotspots of phytoplankton-derived dissolved organic matter (DOM) at a coastal field site across multiple deployments, spanning several months. Microscale metagenomics revealed that a wide diversity of marine prokaryotes, spanning 27 bacterial and 2 archaeal phyla, displayed chemotaxis towards microscale patches of DOM derived from ten globally distributed phytoplankton species. The distinct DOM composition of each phytoplankton species attracted phylogenetically and functionally discrete populations of bacteria and archaea, with 54% of chemotactic prokaryotes displaying highly specific responses to the DOM derived from only one or two phytoplankton species. Prokaryotes exhibiting chemotaxis towards phytoplankton-derived compounds were significantly enriched in the capacity to transport and metabolize specific phytoplankton-derived chemicals, and displayed enrichment in functions conducive to symbiotic relationships, including genes involved in the production of siderophores, B vitamins and growth-promoting hormones. Our findings demonstrate that the swimming behaviour of natural prokaryotic assemblages is governed by specific chemical cues, which dictate important biogeochemical transformation processes and the establishment of ecological interactions that structure the base of the marine food web.
Collapse
Affiliation(s)
- Jean-Baptiste Raina
- Climate Change Cluster, Faculty of Science, University of Technology Sydney, Ultimo, New South Wales, Australia.
| | - Bennett S Lambert
- Ralph M. Parsons Laboratory, Department of Civil and Environmental Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA.,Department of Applied Ocean Physics and Engineering, Woods Hole Oceanographic Institution, Woods Hole, MA, USA.,Center for Environmental Genomics, School of Oceanography, University of Washington, Seattle, WA, USA.,Department of Civil, Environmental and Geomatic Engineering, ETH Zurich, Zurich, Switzerland
| | - Donovan H Parks
- Australian Centre for Ecogenomics, School of Chemistry and Molecular Biosciences, The University of Queensland, St Lucia, Queensland, Australia
| | - Christian Rinke
- Australian Centre for Ecogenomics, School of Chemistry and Molecular Biosciences, The University of Queensland, St Lucia, Queensland, Australia
| | - Nachshon Siboni
- Climate Change Cluster, Faculty of Science, University of Technology Sydney, Ultimo, New South Wales, Australia
| | - Anna Bramucci
- Climate Change Cluster, Faculty of Science, University of Technology Sydney, Ultimo, New South Wales, Australia
| | - Martin Ostrowski
- Climate Change Cluster, Faculty of Science, University of Technology Sydney, Ultimo, New South Wales, Australia
| | - Brandon Signal
- Climate Change Cluster, Faculty of Science, University of Technology Sydney, Ultimo, New South Wales, Australia
| | - Adrian Lutz
- Metabolomics Australia, Bio21 Institute, The University of Melbourne, Parkville, Victoria, Australia
| | - Himasha Mendis
- Metabolomics Australia, Bio21 Institute, The University of Melbourne, Parkville, Victoria, Australia
| | - Francesco Rubino
- Australian Centre for Ecogenomics, School of Chemistry and Molecular Biosciences, The University of Queensland, St Lucia, Queensland, Australia
| | - Vicente I Fernandez
- Department of Civil, Environmental and Geomatic Engineering, ETH Zurich, Zurich, Switzerland
| | - Roman Stocker
- Department of Civil, Environmental and Geomatic Engineering, ETH Zurich, Zurich, Switzerland
| | - Philip Hugenholtz
- Australian Centre for Ecogenomics, School of Chemistry and Molecular Biosciences, The University of Queensland, St Lucia, Queensland, Australia
| | - Gene W Tyson
- Australian Centre for Ecogenomics, School of Chemistry and Molecular Biosciences, The University of Queensland, St Lucia, Queensland, Australia.,Centre for Microbiome Research, School of Biomedical Sciences, Translational Research Institute, Queensland University of Technology, Woolloongabba, Queensland, Australia
| | - Justin R Seymour
- Climate Change Cluster, Faculty of Science, University of Technology Sydney, Ultimo, New South Wales, Australia.
| |
Collapse
|
18
|
The Chronic Wound Phageome: Phage Diversity and Associations with Wounds and Healing Outcomes. Microbiol Spectr 2022; 10:e0277721. [PMID: 35435739 PMCID: PMC9248897 DOI: 10.1128/spectrum.02777-21] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
Two leading impediments to chronic wound healing are polymicrobial infection and biofilm formation. Recent studies have characterized the bacterial fraction of these microbiomes and have begun to elucidate compositional correlations to healing outcomes. However, the factors that drive compositional shifts are still being uncovered. The virome may play an important role in shaping bacterial community structure and function. Previous work on the skin virome determined that it was dominated by bacteriophages, viruses that infect bacteria. To characterize the virome, we enrolled 20 chronic wound patients presenting at an outpatient wound care clinic in a microbiome survey, collecting swab samples from healthy skin and chronic wounds (diabetic, venous, arterial, or pressure) before and after a single, sharp debridement procedure. We investigated the virome using a virus-like particle enrichment procedure, shotgun metagenomic sequencing, and a k-mer-based, reference-dependent taxonomic classification method. Taxonomic composition, diversity, and associations with covariates are presented. We find that the wound virome is highly diverse, with many phages targeting known pathogens, and may influence bacterial community composition and functionality in ways that impact healing outcomes. IMPORTANCE Chronic wounds are an increasing medical burden. These wounds are known to be rich in microbial content, including both bacteria and bacterial viruses (phages). The viruses may play an important role in shaping bacterial community structure and function. We analyzed the virome and bacterial composition of 20 patients with chronic wounds. The viruses found in wounds are highly diverse compared to normal skin, unlike the bacterial composition, where diversity is decreased. These data represent an initial look at this relatively understudied component of the chronic wound microbiome and may help inform future phage-based interventions.
Collapse
|
19
|
Goussarov G, Claesen J, Mysara M, Cleenwerck I, Leys N, Vandamme P, Van Houdt R. Accurate prediction of metagenome-assembled genome completeness by MAGISTA, a random forest model built on alignment-free intra-bin statistics. ENVIRONMENTAL MICROBIOME 2022; 17:9. [PMID: 35248155 PMCID: PMC8898458 DOI: 10.1186/s40793-022-00403-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Accepted: 02/17/2022] [Indexed: 05/03/2023]
Abstract
BACKGROUND Although the total number of microbial taxa on Earth is under debate, it is clear that only a small fraction of these has been cultivated and validly named. Evidently, the inability to culture most bacteria outside of very specific conditions severely limits their characterization and further studies. In the last decade, a major part of the solution to this problem has been the use of metagenome sequencing, whereby the DNA of an entire microbial community is sequenced, followed by the in silico reconstruction of genomes of its novel component species. The large discrepancy between the number of sequenced type strain genomes (around 12,000) and total microbial diversity (106-1012 species) directs these efforts to de novo assembly and binning. Unfortunately, these steps are error-prone and as such, the results have to be intensely scrutinized to avoid publishing incomplete and low-quality genomes. RESULTS We developed MAGISTA (metagenome-assembled genome intra-bin statistics assessment), a novel approach to assess metagenome-assembled genome quality that tackles some of the often-neglected drawbacks of current reference gene-based methods. MAGISTA is based on alignment-free distance distributions between contig fragments within metagenomic bins, rather than a set of reference genes. For proper training, a highly complex genomic DNA mock community was needed and constructed by pooling genomic DNA of 227 bacterial strains, specifically selected to obtain a wide variety representing the major phylogenetic lineages of cultivable bacteria. CONCLUSIONS MAGISTA achieved a 20% reduction in root-mean-square error in comparison to the marker gene approach when tested on publicly available mock metagenomes. Furthermore, our highly complex genomic DNA mock community is a very valuable tool for benchmarking (new) metagenome analysis methods.
Collapse
Affiliation(s)
- Gleb Goussarov
- Microbiology Unit, Belgian Nuclear Research Centre (SCK CEN), Mol, Belgium
- Laboratory of Microbiology and BCCM/LMG Bacteria Collection, Faculty of Sciences, Ghent University, Ghent, Belgium
| | - Jürgen Claesen
- Microbiology Unit, Belgian Nuclear Research Centre (SCK CEN), Mol, Belgium
- Department of Epidemiology & Biostatistics, Amsterdam UMC, VU University, Amsterdam, The Netherlands
| | - Mohamed Mysara
- Microbiology Unit, Belgian Nuclear Research Centre (SCK CEN), Mol, Belgium
| | - Ilse Cleenwerck
- Laboratory of Microbiology and BCCM/LMG Bacteria Collection, Faculty of Sciences, Ghent University, Ghent, Belgium
| | - Natalie Leys
- Microbiology Unit, Belgian Nuclear Research Centre (SCK CEN), Mol, Belgium
| | - Peter Vandamme
- Laboratory of Microbiology and BCCM/LMG Bacteria Collection, Faculty of Sciences, Ghent University, Ghent, Belgium
| | - Rob Van Houdt
- Microbiology Unit, Belgian Nuclear Research Centre (SCK CEN), Mol, Belgium.
| |
Collapse
|
20
|
Hatori MN, Modavi C, Xu P, Weisgerber D, Abate AR. Dual-layered hydrogels allow complete genome recovery with nucleic acid cytometry. Biotechnol J 2022; 17:e2100483. [PMID: 35088927 PMCID: PMC9208836 DOI: 10.1002/biot.202100483] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Revised: 12/09/2021] [Accepted: 12/09/2021] [Indexed: 11/09/2022]
Abstract
Targeting specific cells for sequencing is important for applications in cancer, microbiology, and infectious disease. Nucleic acid cytometry is a powerful approach for accomplishing this because it allows specific cells to be isolated based on sequence biomarkers that are otherwise impossible to detect. However, existing methods require specialized microfluidic devices, limiting adoption. Here, we describe a modified workflow that uses particle-templated emulsification and flow cytometry to conduct the essential steps of cell detection and sorting normally accomplished by microfluidics. Our microfluidic-free workflow allows facile isolation and sequencing of cells, viruses, and nucleic acids and thus provides a powerful enrichment approach for targeted sequencing applications. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Makiko N Hatori
- Department of Bioengineering and Therapeutic Sciences, California Institute for Quantitative Biosciences, University of California, San Francisco, CA, 94158, USA
| | - Cyrus Modavi
- Department of Bioengineering and Therapeutic Sciences, California Institute for Quantitative Biosciences, University of California, San Francisco, CA, 94158, USA
| | - Peng Xu
- Department of Bioengineering and Therapeutic Sciences, California Institute for Quantitative Biosciences, University of California, San Francisco, CA, 94158, USA
| | - Daniel Weisgerber
- Department of Bioengineering and Therapeutic Sciences, California Institute for Quantitative Biosciences, University of California, San Francisco, CA, 94158, USA
| | - Adam R Abate
- Department of Bioengineering and Therapeutic Sciences, California Institute for Quantitative Biosciences, University of California, San Francisco, CA, 94158, USA.,Chan Zuckerberg Biohub, San Francisco, CA, 94158, USA
| |
Collapse
|
21
|
Cobo-Díaz JF, Alvarez-Molina A, Alexa EA, Walsh CJ, Mencía-Ares O, Puente-Gómez P, Likotrafiti E, Fernández-Gómez P, Prieto B, Crispie F, Ruiz L, González-Raurich M, López M, Prieto M, Cotter P, Alvarez-Ordóñez A. Microbial colonization and resistome dynamics in food processing environments of a newly opened pork cutting industry during 1.5 years of activity. MICROBIOME 2021; 9:204. [PMID: 34645520 PMCID: PMC8515711 DOI: 10.1186/s40168-021-01131-9] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Accepted: 07/17/2021] [Indexed: 06/13/2023]
Abstract
BACKGROUND The microorganisms that inhabit food processing environments (FPE) can strongly influence the associated food quality and safety. In particular, the possibility that FPE may act as a reservoir of antibiotic-resistant microorganisms, and a hotspot for the transmission of antibiotic resistance genes (ARGs) is a concern in meat processing plants. Here, we monitor microbial succession and resistome dynamics relating to FPE through a detailed analysis of a newly opened pork cutting plant over 1.5 years of activity. RESULTS We identified a relatively restricted principal microbiota dominated by Pseudomonas during the first 2 months, while a higher taxonomic diversity, an increased representation of other taxa (e.g., Acinetobacter, Psychrobacter), and a certain degree of microbiome specialization on different surfaces was recorded later on. An increase in total abundance, alpha diversity, and β-dispersion of ARGs, which were predominantly assigned to Acinetobacter and associated with resistance to certain antimicrobials frequently used on pig farms of the region, was detected over time. Moreover, a sharp increase in the occurrence of extended-spectrum β-lactamase-producing Enterobacteriaceae and vancomycin-resistant Enterococcaceae was observed when cutting activities started. ARGs associated with resistance to β-lactams, tetracyclines, aminoglycosides, and sulphonamides frequently co-occurred, and mobile genetic elements (i.e., plasmids, integrons) and lateral gene transfer events were mainly detected at the later sampling times in drains. CONCLUSIONS The observations made suggest that pig carcasses were a source of resistant bacteria that then colonized FPE and that drains, together with some food-contact surfaces, such as equipment and table surfaces, represented a reservoir for the spread of ARGs in the meat processing facility. Video Abstract.
Collapse
Affiliation(s)
- José F. Cobo-Díaz
- Department of Food Hygiene and Technology, Universidad de León, León, Spain
| | | | - Elena A. Alexa
- Department of Food Hygiene and Technology, Universidad de León, León, Spain
- Present address: Microbiology Department, National University of Ireland, Galway, Ireland
| | - Calum J. Walsh
- Teagasc Food Research Centre, Fermoy, Co. Cork, Ireland
- APC Microbiome Ireland, University College Cork, Cork, Ireland
| | | | - Paula Puente-Gómez
- Department of Food Hygiene and Technology, Universidad de León, León, Spain
| | - Eleni Likotrafiti
- Department of Food Science & Technology, International Hellenic University, Thessaloniki, Greece
| | | | - Bernardo Prieto
- Department of Food Hygiene and Technology, Universidad de León, León, Spain
- Institute of Food Science and Technology, Universidad de León, León, Spain
| | - Fiona Crispie
- Teagasc Food Research Centre, Fermoy, Co. Cork, Ireland
| | - Lorena Ruiz
- Dairy Research Institute, Spanish National Research Council, Instituto de Productos Lácteos de Asturias-CSIC, Villaviciosa, Spain
- MicroHealth Group, Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), 33011 Oviedo, Asturias Spain
| | - Montserrat González-Raurich
- Department of Food Hygiene and Technology, Universidad de León, León, Spain
- Institute of Food Science and Technology, Universidad de León, León, Spain
| | - Mercedes López
- Department of Food Hygiene and Technology, Universidad de León, León, Spain
- Institute of Food Science and Technology, Universidad de León, León, Spain
| | - Miguel Prieto
- Department of Food Hygiene and Technology, Universidad de León, León, Spain
- Institute of Food Science and Technology, Universidad de León, León, Spain
| | - Paul Cotter
- Teagasc Food Research Centre, Fermoy, Co. Cork, Ireland
- APC Microbiome Ireland, University College Cork, Cork, Ireland
| | - Avelino Alvarez-Ordóñez
- Department of Food Hygiene and Technology, Universidad de León, León, Spain
- Institute of Food Science and Technology, Universidad de León, León, Spain
| |
Collapse
|
22
|
Lundberg DS, Pramoj Na Ayutthaya P, Strauß A, Shirsekar G, Lo WS, Lahaye T, Weigel D. Host-associated microbe PCR (hamPCR) enables convenient measurement of both microbial load and community composition. eLife 2021; 10:e66186. [PMID: 34292157 PMCID: PMC8387020 DOI: 10.7554/elife.66186] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Accepted: 07/19/2021] [Indexed: 12/26/2022] Open
Abstract
The ratio of microbial population size relative to the amount of host tissue, or 'microbial load', is a fundamental metric of colonization and infection, but it cannot be directly deduced from microbial amplicon data such as 16S rRNA gene counts. Because existing methods to determine load, such as serial dilution plating, quantitative PCR, and whole metagenome sequencing add substantial cost and/or experimental burden, they are only rarely paired with amplicon sequencing. We introduce host-associated microbe PCR (hamPCR), a robust strategy to both quantify microbial load and describe interkingdom microbial community composition in a single amplicon library. We demonstrate its accuracy across multiple study systems, including nematodes and major crops, and further present a cost-saving technique to reduce host overrepresentation in the library prior to sequencing. Because hamPCR provides an accessible experimental solution to the well-known limitations and statistical challenges of compositional data, it has far-reaching potential in culture-independent microbiology.
Collapse
Affiliation(s)
- Derek S Lundberg
- Department of Molecular Biology, Max Planck Institute for Developmental BiologyTübingenGermany
| | | | - Annett Strauß
- Department of Evolutionary Biology, Max Planck Institute for Developmental BiologyTübingenGermany
| | - Gautam Shirsekar
- Department of Molecular Biology, Max Planck Institute for Developmental BiologyTübingenGermany
| | - Wen-Sui Lo
- ZMBP-General Genetics, University of TübingenTübingenGermany
| | - Thomas Lahaye
- ZMBP-General Genetics, University of TübingenTübingenGermany
| | - Detlef Weigel
- Department of Molecular Biology, Max Planck Institute for Developmental BiologyTübingenGermany
| |
Collapse
|
23
|
Zhong ZP, Tian F, Roux S, Gazitúa MC, Solonenko NE, Li YF, Davis ME, Van Etten JL, Mosley-Thompson E, Rich VI, Sullivan MB, Thompson LG. Glacier ice archives nearly 15,000-year-old microbes and phages. MICROBIOME 2021; 9:160. [PMID: 34281625 PMCID: PMC8290583 DOI: 10.1186/s40168-021-01106-w] [Citation(s) in RCA: 55] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/12/2021] [Accepted: 05/31/2021] [Indexed: 05/05/2023]
Abstract
BACKGROUND Glacier ice archives information, including microbiology, that helps reveal paleoclimate histories and predict future climate change. Though glacier-ice microbes are studied using culture or amplicon approaches, more challenging metagenomic approaches, which provide access to functional, genome-resolved information and viruses, are under-utilized, partly due to low biomass and potential contamination. RESULTS We expand existing clean sampling procedures using controlled artificial ice-core experiments and adapted previously established low-biomass metagenomic approaches to study glacier-ice viruses. Controlled sampling experiments drastically reduced mock contaminants including bacteria, viruses, and free DNA to background levels. Amplicon sequencing from eight depths of two Tibetan Plateau ice cores revealed common glacier-ice lineages including Janthinobacterium, Polaromonas, Herminiimonas, Flavobacterium, Sphingomonas, and Methylobacterium as the dominant genera, while microbial communities were significantly different between two ice cores, associating with different climate conditions during deposition. Separately, ~355- and ~14,400-year-old ice were subject to viral enrichment and low-input quantitative sequencing, yielding genomic sequences for 33 vOTUs. These were virtually all unique to this study, representing 28 novel genera and not a single species shared with 225 environmentally diverse viromes. Further, 42.4% of the vOTUs were identifiable temperate, which is significantly higher than that in gut, soil, and marine viromes, and indicates that temperate phages are possibly favored in glacier-ice environments before being frozen. In silico host predictions linked 18 vOTUs to co-occurring abundant bacteria (Methylobacterium, Sphingomonas, and Janthinobacterium), indicating that these phages infected ice-abundant bacterial groups before being archived. Functional genome annotation revealed four virus-encoded auxiliary metabolic genes, particularly two motility genes suggest viruses potentially facilitate nutrient acquisition for their hosts. Finally, given their possible importance to methane cycling in ice, we focused on Methylobacterium viruses by contextualizing our ice-observed viruses against 123 viromes and prophages extracted from 131 Methylobacterium genomes, revealing that the archived viruses might originate from soil or plants. CONCLUSIONS Together, these efforts further microbial and viral sampling procedures for glacier ice and provide a first window into viral communities and functions in ancient glacier environments. Such methods and datasets can potentially enable researchers to contextualize new discoveries and begin to incorporate glacier-ice microbes and their viruses relative to past and present climate change in geographically diverse regions globally. Video Abstract.
Collapse
Affiliation(s)
- Zhi-Ping Zhong
- Byrd Polar and Climate Research Center, Ohio State University, Columbus, OH, USA
- Department of Microbiology, Ohio State University, Columbus, OH, USA
- Center of Microbiome Science, Ohio State University, Columbus, OH, USA
| | - Funing Tian
- Department of Microbiology, Ohio State University, Columbus, OH, USA
- Center of Microbiome Science, Ohio State University, Columbus, OH, USA
| | - Simon Roux
- Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | | | - Natalie E Solonenko
- Department of Microbiology, Ohio State University, Columbus, OH, USA
- Center of Microbiome Science, Ohio State University, Columbus, OH, USA
| | - Yueh-Fen Li
- Department of Microbiology, Ohio State University, Columbus, OH, USA
- Center of Microbiome Science, Ohio State University, Columbus, OH, USA
| | - Mary E Davis
- Byrd Polar and Climate Research Center, Ohio State University, Columbus, OH, USA
| | - James L Van Etten
- Department of Plant Pathology and Nebraska Center for Virology, University of Nebraska-Lincoln, Lincoln, NE, USA
| | - Ellen Mosley-Thompson
- Byrd Polar and Climate Research Center, Ohio State University, Columbus, OH, USA
- Center of Microbiome Science, Ohio State University, Columbus, OH, USA
- Department of Geography, Ohio State University, Columbus, OH, USA
| | - Virginia I Rich
- Byrd Polar and Climate Research Center, Ohio State University, Columbus, OH, USA
- Department of Microbiology, Ohio State University, Columbus, OH, USA
- Center of Microbiome Science, Ohio State University, Columbus, OH, USA
| | - Matthew B Sullivan
- Byrd Polar and Climate Research Center, Ohio State University, Columbus, OH, USA.
- Department of Microbiology, Ohio State University, Columbus, OH, USA.
- Center of Microbiome Science, Ohio State University, Columbus, OH, USA.
- Department of Civil, Environmental and Geodetic Engineering, Ohio State University, Columbus, OH, USA.
| | - Lonnie G Thompson
- Byrd Polar and Climate Research Center, Ohio State University, Columbus, OH, USA.
- Center of Microbiome Science, Ohio State University, Columbus, OH, USA.
- School of Earth Sciences, Ohio State University, Columbus, OH, USA.
| |
Collapse
|
24
|
Crofts TS, McFarland AG, Hartmann EM. Mosaic Ends Tagmentation (METa) Assembly for Highly Efficient Construction of Functional Metagenomic Libraries. mSystems 2021; 6:e0052421. [PMID: 34184912 PMCID: PMC8269240 DOI: 10.1128/msystems.00524-21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Accepted: 06/07/2021] [Indexed: 11/20/2022] Open
Abstract
Functional metagenomic libraries, physical bacterial libraries which allow the high-throughput capture and expression of microbiome genes, have been instrumental in the sequence-naive and cultivation-independent exploration of metagenomes. However, preparation of these libraries is often limited by their high DNA input requirement and their low cloning efficiency. Here, we describe a new method, mosaic ends tagmentation (METa) assembly, for highly efficient functional metagenomic library preparation. We applied tagmentation to metagenomic DNA from soil and gut microbiomes to prepare DNA inserts for high-throughput cloning into functional metagenomic libraries. The presence of mosaic end sequences in the resulting DNA fragments synergized with homology-based assembly cloning to result in a 300-fold increase in cloning efficiency compared to traditional blunt-cloning-based protocols. We show that compared to published libraries prepared by state-of-the-art protocols, METa assembly is on average ca. 20- to 200-fold more efficient and can prepare gigabase-sized libraries with as little as 200 ng of input DNA. We show the usefulness of METa assembly first by using a normative 5-μg mass of soil metagenomic DNA to prepare a 700-Gb library that allowed us to discover novel nourseothricin resistance genes and a potentially new mode of resistance to this antibiotic and second by using only 300 ng of goose fecal metagenomic DNA to prepare a 27-Gb library that captured numerous tetracycline and colistin resistance genes. METa assembly provides a streamlined, flexible, and efficient method for preparing functional metagenomic libraries, enabling new avenues of genetic and biochemical research into low-biomass or scarce microbiomes. IMPORTANCE Medically and industrially important genes can be recovered from microbial communities by high-throughput sequencing, but precise annotation is often limited to characterized genes and their relatives. Cloning a metagenome en masse into an expression host to produce a functional metagenomic library, directly connecting genes to functions, is a sequence-naive and cultivation-independent method to discover novel genes. The process of preparing these libraries is DNA greedy and inefficient, however. Here, we describe a library preparation method that is an order of magnitude more efficient and less DNA greedy. This method is consistently efficient across libraries prepared from cultures, a soil microbiome, and a goose fecal microbiome and allowed us to discover new antibiotic resistance genes and mechanisms. This library preparation method will potentially allow the functional metagenomic exploration of microbiomes that were previously off limits due to their rarity or low microbial biomass, such as biomedical swabs or exotic samples.
Collapse
Affiliation(s)
- Terence S. Crofts
- Department of Molecular Biosciences, Northwestern University, Evanston, Illinois, USA
| | - Alexander G. McFarland
- Department of Civil and Environmental Engineering, Northwestern University, Evanston, Illinois, USA
| | - Erica M. Hartmann
- Department of Civil and Environmental Engineering, Northwestern University, Evanston, Illinois, USA
| |
Collapse
|
25
|
Alanin KWS, Junco LMF, Jørgensen JB, Nielsen TK, Rasmussen MA, Kot W, Hansen LH. Metaviromes Reveal the Dynamics of Pseudomonas Host-Specific Phages Cultured and Uncultured by Plaque Assay. Viruses 2021; 13:959. [PMID: 34064231 PMCID: PMC8224292 DOI: 10.3390/v13060959] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Revised: 05/14/2021] [Accepted: 05/18/2021] [Indexed: 12/17/2022] Open
Abstract
Isolating single phages using plaque assays is a laborious and time-consuming process. Whether single isolated phages are the most lyse-effective, the most abundant in viromes, or those with the highest ability to make plaques in solid media is not well known. With the increasing accessibility of high-throughput sequencing, metaviromics is often used to describe viruses in environmental samples. By extracting and sequencing metaviromes from organic waste with and without exposure to a host-of-interest, we show a host-related phage community's shift, as well as identify the most enriched phages. Moreover, we isolated plaque-forming single phages using the same virome-host matrix to observe how enrichments in liquid media correspond to the metaviromic data. In this study, we observed a significant shift (p = 0.015) of the 47 identified putative Pseudomonas phages with a minimum twofold change above zero in read abundance when adding a Pseudomonas syringae DC3000 host. Surprisingly, it appears that only two out of five plaque-forming phages from the same organic waste sample, targeting the Pseudomonas strain, were highly abundant in the metavirome, while the other three were almost absent despite host exposure. Lastly, our sequencing results highlight how long reads from Oxford Nanopore elevates the assembly quality of metaviromes, compared to short reads alone.
Collapse
Affiliation(s)
- Katrine Wacenius Skov Alanin
- Department of Plant and Environmental Sciences, University of Copenhagen, 1871 Frederiksberg C, Denmark; (K.W.S.A.); (L.M.F.J.); (J.B.J.); (T.K.N.)
- Department of Environmental Science, Aarhus University, 4000 Roskilde, Denmark
| | - Laura Milena Forero Junco
- Department of Plant and Environmental Sciences, University of Copenhagen, 1871 Frederiksberg C, Denmark; (K.W.S.A.); (L.M.F.J.); (J.B.J.); (T.K.N.)
| | - Jacob Bruun Jørgensen
- Department of Plant and Environmental Sciences, University of Copenhagen, 1871 Frederiksberg C, Denmark; (K.W.S.A.); (L.M.F.J.); (J.B.J.); (T.K.N.)
| | - Tue Kjærgaard Nielsen
- Department of Plant and Environmental Sciences, University of Copenhagen, 1871 Frederiksberg C, Denmark; (K.W.S.A.); (L.M.F.J.); (J.B.J.); (T.K.N.)
| | - Morten Arendt Rasmussen
- Department of Food Science, University of Copenhagen, 1958 Frederiksberg C, Denmark;
- COPSAC, Copenhagen Prospective Studies on Asthma in Childhood, Herlev and Gentofte Hospital, University of Copenhagen, 2820 Gentofte, Denmark
| | - Witold Kot
- Department of Plant and Environmental Sciences, University of Copenhagen, 1871 Frederiksberg C, Denmark; (K.W.S.A.); (L.M.F.J.); (J.B.J.); (T.K.N.)
| | - Lars Hestbjerg Hansen
- Department of Plant and Environmental Sciences, University of Copenhagen, 1871 Frederiksberg C, Denmark; (K.W.S.A.); (L.M.F.J.); (J.B.J.); (T.K.N.)
| |
Collapse
|
26
|
Paoli L, Sunagawa S. Space, time and microdiversity: towards a resolution revolution in microbiomics. ENVIRONMENTAL MICROBIOLOGY REPORTS 2021; 13:31-35. [PMID: 33063432 PMCID: PMC7894491 DOI: 10.1111/1758-2229.12897] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Accepted: 10/12/2020] [Indexed: 06/11/2023]
Affiliation(s)
- Lucas Paoli
- Department of Biology, Institute of Microbiology and Swiss Institute of Bioinformatics, ETH ZürichZürichSwitzerland
| | - Shinichi Sunagawa
- Department of Biology, Institute of Microbiology and Swiss Institute of Bioinformatics, ETH ZürichZürichSwitzerland
| |
Collapse
|
27
|
CheckV assesses the quality and completeness of metagenome-assembled viral genomes. Nat Biotechnol 2020; 39:578-585. [PMID: 33349699 PMCID: PMC8116208 DOI: 10.1038/s41587-020-00774-7] [Citation(s) in RCA: 781] [Impact Index Per Article: 156.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Accepted: 11/12/2020] [Indexed: 02/07/2023]
Abstract
Millions of new viral sequences have been identified from metagenomes, but the quality and completeness of these sequences vary considerably. Here we present CheckV, an automated pipeline for identifying closed viral genomes, estimating the completeness of genome fragments and removing flanking host regions from integrated proviruses. CheckV estimates completeness by comparing sequences with a large database of complete viral genomes, including 76,262 identified from a systematic search of publicly available metagenomes, metatranscriptomes and metaviromes. After validation on mock datasets and comparison to existing methods, we applied CheckV to large and diverse collections of metagenome-assembled viral sequences, including IMG/VR and the Global Ocean Virome. This revealed 44,652 high-quality viral genomes (that is, >90% complete), although the vast majority of sequences were small fragments, which highlights the challenge of assembling viral genomes from short-read metagenomes. Additionally, we found that removal of host contamination substantially improved the accurate identification of auxiliary metabolic genes and interpretation of viral-encoded functions.
Collapse
|
28
|
Bharucha T, Oeser C, Balloux F, Brown JR, Carbo EC, Charlett A, Chiu CY, Claas ECJ, de Goffau MC, de Vries JJC, Eloit M, Hopkins S, Huggett JF, MacCannell D, Morfopoulou S, Nath A, O'Sullivan DM, Reoma LB, Shaw LP, Sidorov I, Simner PJ, Van Tan L, Thomson EC, van Dorp L, Wilson MR, Breuer J, Field N. STROBE-metagenomics: a STROBE extension statement to guide the reporting of metagenomics studies. THE LANCET. INFECTIOUS DISEASES 2020; 20:e251-e260. [PMID: 32768390 PMCID: PMC7406238 DOI: 10.1016/s1473-3099(20)30199-7] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/13/2019] [Revised: 03/09/2020] [Accepted: 03/12/2020] [Indexed: 02/07/2023]
Abstract
The term metagenomics refers to the use of sequencing methods to simultaneously identify genomic material from all organisms present in a sample, with the advantage of greater taxonomic resolution than culture or other methods. Applications include pathogen detection and discovery, species characterisation, antimicrobial resistance detection, virulence profiling, and study of the microbiome and microecological factors affecting health. However, metagenomics involves complex and multistep processes and there are important technical and methodological challenges that require careful consideration to support valid inference. We co-ordinated a multidisciplinary, international expert group to establish reporting guidelines that address specimen processing, nucleic acid extraction, sequencing platforms, bioinformatics considerations, quality assurance, limits of detection, power and sample size, confirmatory testing, causality criteria, cost, and ethical issues. The guidance recognises that metagenomics research requires pragmatism and caution in interpretation, and that this field is rapidly evolving.
Collapse
Affiliation(s)
- Tehmina Bharucha
- Department of Biochemistry, University of Oxford, Oxford, UK; Lao-Oxford-Mahosot Hospital-Wellcome Trust Research Unit, Microbiology Laboratory, Mahosot Hospital, Vientiane, Laos.
| | - Clarissa Oeser
- Centre for Molecular Epidemiology and Translational Research, University College London, London, UK
| | | | - Julianne R Brown
- Microbiology, Virology and Infection Prevention and Control, Great Ormond Street Hospital for Children, London, UK
| | - Ellen C Carbo
- Department of Medical Microbiology, Leiden University Medical Center, Leiden, Netherlands
| | - Andre Charlett
- Statistics, Modelling and Economics Department, Public Health England, London, UK
| | - Charles Y Chiu
- Department of Laboratory Medicine, University of California San Francisco, San Francisco, CA, USA
| | - Eric C J Claas
- Department of Medical Microbiology, Leiden University Medical Center, Leiden, Netherlands
| | - Marcus C de Goffau
- Wellcome Sanger Institute, Hinxton, UK; Department of Veterinary Medicine, University of Cambridge, Cambridge, UK
| | - Jutte J C de Vries
- Department of Medical Microbiology, Leiden University Medical Center, Leiden, Netherlands
| | - Marc Eloit
- Pathogen Discovery Laboratory, Institut Pasteur, Paris, France
| | - Susan Hopkins
- Healthcare-Associated Infection and Antimicrobial Resistance, Public Health England, London, UK; Infectious Diseases Unit, Royal Free Hospital, London, UK
| | - Jim F Huggett
- National Measurement Laboratory, LGC, Teddington, UK; School of Biosciences & Medicine, Faculty of Health & Medical Sciences, University of Surrey, Guildford, UK
| | - Duncan MacCannell
- Office of Advanced Molecular Detection, Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - Sofia Morfopoulou
- Division of Infection and Immunity, University College London, London, UK
| | - Avindra Nath
- Section of Infections of the Nervous System, National Institutes of Health, Bethesda, MD, USA
| | | | - Lauren B Reoma
- Section of Infections of the Nervous System, National Institutes of Health, Bethesda, MD, USA
| | - Liam P Shaw
- Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Igor Sidorov
- Department of Medical Microbiology, Leiden University Medical Center, Leiden, Netherlands
| | - Patricia J Simner
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Le Van Tan
- Emerging Infections Group, Oxford University Clinical Research Unit, Ho Chi Minh city, Vietnam
| | - Emma C Thomson
- MRC-University of Glasgow Centre for Virus Research, University of Glasgow, Glasgow, UK
| | - Lucy van Dorp
- UCL Genetics Institute, University College London, London, UK
| | - Michael R Wilson
- Weill Institute for Neurosciences and Department of Neurology, University of California, San Francisco, CA, USA
| | - Judith Breuer
- Division of Infection and Immunity, University College London, London, UK; Great Ormond Street Hospital for Children, London, UK
| | - Nigel Field
- Centre for Molecular Epidemiology and Translational Research, University College London, London, UK
| |
Collapse
|
29
|
Džunková M, Moya A, Chen X, Kelly C, D’Auria G. Detection of mixed-strain infections by FACS and ultra-low input genome sequencing. Gut Microbes 2020; 11:305-309. [PMID: 30289342 PMCID: PMC7524272 DOI: 10.1080/19490976.2018.1526578] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/18/2018] [Revised: 08/30/2018] [Accepted: 09/11/2018] [Indexed: 02/03/2023] Open
Abstract
The epidemiological tracking of a bacterial outbreak may be jeopardized by the presence of multiple pathogenic strains in one patient. Nevertheless, this fact is not considered in most of the epidemiological studies and only one colony per patient is sequenced. On the other hand, the routine whole genome sequencing of many isolates from each patient would be costly and unnecessary, because the number of strains in a patient is never known a priori. In addition, the result would be biased by microbial culture conditions. Herein we propose an approach for detecting mixed-strain infection, providing C. difficile infection as an example. The cells of the target pathogenic species are collected from the bacterial suspension by the fluorescence activated cell sorting (FACS) and a shallow genome sequencing is performed. A modified sequencing library preparation protocol for low-input DNA samples can be used for low prevalence gut pathogens (< 0.1% of the total microbiome). This FACS-seq approach reduces diagnostics time (no culture is needed) and may promote discoveries of novel strains. Methodological details, possible issues and future directions for the sequencing of these natural pan-genomes are herein discussed.
Collapse
Affiliation(s)
- Mária Džunková
- Department of Genomics and Health, Foundation for the Promotion of Health and Biomedical Research of Valencia Region (FISABIO-Public Health), València, Spain
- CIBER in Epidemiology and Public Health (CIBEResp), Madrid, Spain
- Institute for Integrative Systems Biology (I2SysBio), The University of Valencia and The Spanish National Research Council (CSIC)-UVEG), València, Spain
- Australian Centre for Ecogenomics, The University of Queensland, St Lucia, Australia
| | - Andrés Moya
- Department of Genomics and Health, Foundation for the Promotion of Health and Biomedical Research of Valencia Region (FISABIO-Public Health), València, Spain
- CIBER in Epidemiology and Public Health (CIBEResp), Madrid, Spain
- Institute for Integrative Systems Biology (I2SysBio), The University of Valencia and The Spanish National Research Council (CSIC)-UVEG), València, Spain
| | - Xinhua Chen
- Division of Gastroenterology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, USA
| | - Ciaran Kelly
- Division of Gastroenterology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, USA
| | - Giuseppe D’Auria
- Department of Genomics and Health, Foundation for the Promotion of Health and Biomedical Research of Valencia Region (FISABIO-Public Health), València, Spain
- CIBER in Epidemiology and Public Health (CIBEResp), Madrid, Spain
- Institute for Integrative Systems Biology (I2SysBio), The University of Valencia and The Spanish National Research Council (CSIC)-UVEG), València, Spain
- Sequencing and Bioinformatics Service of the Foundation for the Promotion of Health and Biomedical Research of Valencia Region (FISABIO-Public Health), València, Spain
| |
Collapse
|
30
|
Scharhauser F, Zimmermann J, Ott JA, Leisch N, Gruber‐Vodicka HR. Morphology of obligate ectosymbionts reveals Paralaxus gen. nov.: A new circumtropical genus of marine stilbonematine nematodes. ZOOL SCR 2020; 49:379-394. [PMID: 34857981 PMCID: PMC8614112 DOI: 10.1111/zsc.12399] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2019] [Revised: 11/05/2019] [Accepted: 11/14/2019] [Indexed: 11/30/2022]
Abstract
Stilbonematinae are a subfamily of conspicuous marine nematodes, distinguished by a coat of sulphur-oxidizing bacterial ectosymbionts on their cuticle. As most nematodes, the worm hosts have a relatively simple anatomy and few taxonomically informative characters, and this has resulted in numerous taxonomic reassignments and synonymizations. Recent studies using a combination of morphological and molecular traits have helped to improve the taxonomy of Stilbonematinae but also raised questions on the validity of several genera. Here, we describe a new circumtropically distributed genus Paralaxus (Stilbonematinae) with three species: Paralaxus cocos sp. nov., P. bermudensis sp. nov. and P. columbae sp. nov. We used single worm metagenomes to generate host 18S rRNA and cytochrome c oxidase I (COI) as well as symbiont 16S rRNA gene sequences. Intriguingly, COI alignments and primer matching analyses suggest that the COI is not suitable for PCR-based barcoding approaches in Stilbonematinae as the genera have a highly diverse base composition and no conserved primer sites. The phylogenetic analyses of all three gene sets, however, confirm the morphological assignments and support the erection of the new genus Paralaxus as well as corroborate the status of the other stilbonematine genera. Paralaxus most closely resembles the stilbonematine genus Laxus in overlapping sets of diagnostic features but can be distinguished from Laxus by the morphology of the genus-specific symbiont coat. Our re-analyses of key parameters of the symbiont coat morphology as character for all Stilbonematinae genera show that with amended descriptions, including the coat, highly reliable genus assignments can be obtained.
Collapse
Affiliation(s)
- Florian Scharhauser
- Department of Limnology and Bio‐OceanographyUniversity of ViennaViennaAustria
| | | | - Jörg A. Ott
- Department of Limnology and Bio‐OceanographyUniversity of ViennaViennaAustria
| | | | | |
Collapse
|
31
|
Grieb A, Bowers RM, Oggerin M, Goudeau D, Lee J, Malmstrom RR, Woyke T, Fuchs BM. A pipeline for targeted metagenomics of environmental bacteria. MICROBIOME 2020; 8:21. [PMID: 32061258 PMCID: PMC7024552 DOI: 10.1186/s40168-020-0790-7] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2019] [Accepted: 01/19/2020] [Indexed: 05/19/2023]
Abstract
BACKGROUND Metagenomics and single cell genomics provide a window into the genetic repertoire of yet uncultivated microorganisms, but both methods are usually taxonomically untargeted. The combination of fluorescence in situ hybridization (FISH) and fluorescence activated cell sorting (FACS) has the potential to enrich taxonomically well-defined clades for genomic analyses. METHODS Cells hybridized with a taxon-specific FISH probe are enriched based on their fluorescence signal via flow cytometric cell sorting. A recently developed FISH procedure, the hybridization chain reaction (HCR)-FISH, provides the high signal intensities required for flow cytometric sorting while maintaining the integrity of the cellular DNA for subsequent genome sequencing. Sorted cells are subjected to shotgun sequencing, resulting in targeted metagenomes of low diversity. RESULTS Pure cultures of different taxonomic groups were used to (1) adapt and optimize the HCR-FISH protocol and (2) assess the effects of various cell fixation methods on both the signal intensity for cell sorting and the quality of subsequent genome amplification and sequencing. Best results were obtained for ethanol-fixed cells in terms of both HCR-FISH signal intensity and genome assembly quality. Our newly developed pipeline was successfully applied to a marine plankton sample from the North Sea yielding good quality metagenome assembled genomes from a yet uncultivated flavobacterial clade. CONCLUSIONS With the developed pipeline, targeted metagenomes at various taxonomic levels can be efficiently retrieved from environmental samples. The resulting metagenome assembled genomes allow for the description of yet uncharacterized microbial clades. Video abstract.
Collapse
Affiliation(s)
- Anissa Grieb
- Max Planck Institute for Marine Microbiology, Celsiusstraße 1, 28359, Bremen, Germany
| | - Robert M Bowers
- DOE Joint Genome Institute, Lawrence Berkeley National Laboratory, Mail Stop: 91R183, 1 Cyclotron Road, Berkeley, CA, 94720, USA
| | - Monike Oggerin
- Max Planck Institute for Marine Microbiology, Celsiusstraße 1, 28359, Bremen, Germany
| | - Danielle Goudeau
- DOE Joint Genome Institute, Lawrence Berkeley National Laboratory, Mail Stop: 91R183, 1 Cyclotron Road, Berkeley, CA, 94720, USA
| | - Janey Lee
- DOE Joint Genome Institute, Lawrence Berkeley National Laboratory, Mail Stop: 91R183, 1 Cyclotron Road, Berkeley, CA, 94720, USA
| | - Rex R Malmstrom
- DOE Joint Genome Institute, Lawrence Berkeley National Laboratory, Mail Stop: 91R183, 1 Cyclotron Road, Berkeley, CA, 94720, USA
| | - Tanja Woyke
- DOE Joint Genome Institute, Lawrence Berkeley National Laboratory, Mail Stop: 91R183, 1 Cyclotron Road, Berkeley, CA, 94720, USA
| | - Bernhard M Fuchs
- Max Planck Institute for Marine Microbiology, Celsiusstraße 1, 28359, Bremen, Germany.
| |
Collapse
|
32
|
Sanders JG, Nurk S, Salido RA, Minich J, Xu ZZ, Zhu Q, Martino C, Fedarko M, Arthur TD, Chen F, Boland BS, Humphrey GC, Brennan C, Sanders K, Gaffney J, Jepsen K, Khosroheidari M, Green C, Liyanage M, Dang JW, Phelan VV, Quinn RA, Bankevich A, Chang JT, Rana TM, Conrad DJ, Sandborn WJ, Smarr L, Dorrestein PC, Pevzner PA, Knight R. Optimizing sequencing protocols for leaderboard metagenomics by combining long and short reads. Genome Biol 2019; 20:226. [PMID: 31672156 PMCID: PMC6822431 DOI: 10.1186/s13059-019-1834-9] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2019] [Accepted: 09/23/2019] [Indexed: 01/05/2023] Open
Abstract
As metagenomic studies move to increasing numbers of samples, communities like the human gut may benefit more from the assembly of abundant microbes in many samples, rather than the exhaustive assembly of fewer samples. We term this approach leaderboard metagenome sequencing. To explore protocol optimization for leaderboard metagenomics in real samples, we introduce a benchmark of library prep and sequencing using internal references generated by synthetic long-read technology, allowing us to evaluate high-throughput library preparation methods against gold-standard reference genomes derived from the samples themselves. We introduce a low-cost protocol for high-throughput library preparation and sequencing.
Collapse
Affiliation(s)
- Jon G Sanders
- Department of Pediatrics, University of California San Diego School of Medicine, La Jolla, CA, 92093, USA
| | - Sergey Nurk
- Center for Algorithmic Biotechnology, Institute for Translational Biomedicine, St. Petersburg State University, St. Petersburg, Russia
| | - Rodolfo A Salido
- Department of Pediatrics, University of California San Diego School of Medicine, La Jolla, CA, 92093, USA
| | - Jeremiah Minich
- Department of Pediatrics, University of California San Diego School of Medicine, La Jolla, CA, 92093, USA
| | - Zhenjiang Z Xu
- Department of Pediatrics, University of California San Diego School of Medicine, La Jolla, CA, 92093, USA
| | - Qiyun Zhu
- Department of Pediatrics, University of California San Diego School of Medicine, La Jolla, CA, 92093, USA
| | - Cameron Martino
- Department of Pediatrics, University of California San Diego School of Medicine, La Jolla, CA, 92093, USA
- Bioinformatics and Systems Biology Program, University of California San Diego, La Jolla, CA, USA
| | - Marcus Fedarko
- Department of Computer Science and Engineering, University of California San Diego, La Jolla, CA, USA
| | - Timothy D Arthur
- Department of Pediatrics, University of California San Diego School of Medicine, La Jolla, CA, 92093, USA
| | | | - Brigid S Boland
- Division of Gastroenterology, Department of Medicine, University of California San Diego, La Jolla, CA, USA
- Inflammatory Bowel Disease Center, University of California San Diego, La Jolla, CA, USA
| | - Greg C Humphrey
- Department of Pediatrics, University of California San Diego School of Medicine, La Jolla, CA, 92093, USA
| | - Caitriona Brennan
- Department of Pediatrics, University of California San Diego School of Medicine, La Jolla, CA, 92093, USA
| | - Karenina Sanders
- Department of Pediatrics, University of California San Diego School of Medicine, La Jolla, CA, 92093, USA
| | - James Gaffney
- Department of Pediatrics, University of California San Diego School of Medicine, La Jolla, CA, 92093, USA
| | - Kristen Jepsen
- Institute for Genomic Medicine, University of California San Diego, La Jolla, CA, USA
| | - Mahdieh Khosroheidari
- Institute for Genomic Medicine, University of California San Diego, La Jolla, CA, USA
| | - Cliff Green
- Institute for Genomic Medicine, University of California San Diego, La Jolla, CA, USA
| | - Marlon Liyanage
- Department of Pediatrics, University of California San Diego School of Medicine, La Jolla, CA, 92093, USA
| | - Jason W Dang
- Department of Pediatrics, University of California San Diego School of Medicine, La Jolla, CA, 92093, USA
| | - Vanessa V Phelan
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, La Jolla, CA, USA
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado, Aurora, CO, USA
| | - Robert A Quinn
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, La Jolla, CA, USA
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI, USA
| | - Anton Bankevich
- Center for Algorithmic Biotechnology, Institute for Translational Biomedicine, St. Petersburg State University, St. Petersburg, Russia
| | - John T Chang
- Division of Gastroenterology, Department of Medicine, University of California San Diego, La Jolla, CA, USA
- Inflammatory Bowel Disease Center, University of California San Diego, La Jolla, CA, USA
| | - Tariq M Rana
- Department of Pediatrics, University of California San Diego School of Medicine, La Jolla, CA, 92093, USA
| | - Douglas J Conrad
- Division of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, University of California San Diego, 9500 Gilman Drive, La Jolla, CA, 92093, USA
| | - William J Sandborn
- Division of Gastroenterology, Department of Medicine, University of California San Diego, La Jolla, CA, USA
- Inflammatory Bowel Disease Center, University of California San Diego, La Jolla, CA, USA
- Center for Microbiome Innovation, Jacobs School of Engineering, University of California San Diego, La Jolla, CA, USA
| | - Larry Smarr
- Department of Computer Science and Engineering, University of California San Diego, La Jolla, CA, USA
- California Institute for Telecommunications and Information Technology, University of California San Diego, La Jolla, CA, USA
| | - Pieter C Dorrestein
- Department of Pediatrics, University of California San Diego School of Medicine, La Jolla, CA, 92093, USA
- Institute for Genomic Medicine, University of California San Diego, La Jolla, CA, USA
- Collaborative Mass Spectrometry Innovation Center, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, La Jolla, CA, USA
| | - Pavel A Pevzner
- Department of Computer Science and Engineering, University of California San Diego, La Jolla, CA, USA
- Center for Microbiome Innovation, Jacobs School of Engineering, University of California San Diego, La Jolla, CA, USA
| | - Rob Knight
- Department of Pediatrics, University of California San Diego School of Medicine, La Jolla, CA, 92093, USA.
- Department of Computer Science and Engineering, University of California San Diego, La Jolla, CA, USA.
- Center for Microbiome Innovation, Jacobs School of Engineering, University of California San Diego, La Jolla, CA, USA.
- California Institute for Telecommunications and Information Technology, University of California San Diego, La Jolla, CA, USA.
- Department of Bioengineering, University of California San Diego, La Jolla, CA, USA.
| |
Collapse
|
33
|
Boyd JA, Woodcroft BJ, Tyson GW. GraftM: a tool for scalable, phylogenetically informed classification of genes within metagenomes. Nucleic Acids Res 2019; 46:e59. [PMID: 29562347 PMCID: PMC6007438 DOI: 10.1093/nar/gky174] [Citation(s) in RCA: 95] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2017] [Accepted: 03/06/2018] [Indexed: 12/01/2022] Open
Abstract
Large-scale metagenomic datasets enable the recovery of hundreds of population genomes from environmental samples. However, these genomes do not typically represent the full diversity of complex microbial communities. Gene-centric approaches can be used to gain a comprehensive view of diversity by examining each read independently, but traditional pairwise comparison approaches typically over-classify taxonomy and scale poorly with increasing metagenome and database sizes. Here we introduce GraftM, a tool that uses gene specific packages to rapidly identify gene families in metagenomic data using hidden Markov models (HMMs) or DIAMOND databases, and classifies these sequences using placement into pre-constructed gene trees. The speed and accuracy of GraftM was benchmarked with in silico and in vitro mock communities using taxonomic markers, and was found to have higher accuracy at the family level with a processing time 2.0–3.7× faster than currently available software. Exploration of a wetland metagenome using 16S rRNA- and methyl-coenzyme M reductase (McrA)-specific gpkgs revealed taxonomic and functional shifts across a depth gradient. Analysis of the NCBI nr database using the McrA gpkg allowed the detection of novel sequences belonging to phylum-level lineages. A growing collection of gpkgs is available online (https://github.com/geronimp/graftM_gpkgs), where curated packages can be uploaded and exchanged.
Collapse
Affiliation(s)
- Joel A Boyd
- Australian Centre for Ecogenomics, School of Chemistry and Molecular Biosciences, University of Queensland, St Lucia 4072, Queensland, Australia
| | - Ben J Woodcroft
- Australian Centre for Ecogenomics, School of Chemistry and Molecular Biosciences, University of Queensland, St Lucia 4072, Queensland, Australia
| | - Gene W Tyson
- Australian Centre for Ecogenomics, School of Chemistry and Molecular Biosciences, University of Queensland, St Lucia 4072, Queensland, Australia
| |
Collapse
|
34
|
Defining the human gut host–phage network through single-cell viral tagging. Nat Microbiol 2019; 4:2192-2203. [DOI: 10.1038/s41564-019-0526-2] [Citation(s) in RCA: 72] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2018] [Accepted: 06/25/2019] [Indexed: 12/18/2022]
|
35
|
Trubl G, Roux S, Solonenko N, Li YF, Bolduc B, Rodríguez-Ramos J, Eloe-Fadrosh EA, Rich VI, Sullivan MB. Towards optimized viral metagenomes for double-stranded and single-stranded DNA viruses from challenging soils. PeerJ 2019; 7:e7265. [PMID: 31309007 PMCID: PMC6612421 DOI: 10.7717/peerj.7265] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2019] [Accepted: 06/07/2019] [Indexed: 11/29/2022] Open
Abstract
Soils impact global carbon cycling and their resident microbes are critical to their biogeochemical processing and ecosystem outputs. Based on studies in marine systems, viruses infecting soil microbes likely modulate host activities via mortality, horizontal gene transfer, and metabolic control. However, their roles remain largely unexplored due to technical challenges with separating, isolating, and extracting DNA from viruses in soils. Some of these challenges have been overcome by using whole genome amplification methods and while these have allowed insights into the identities of soil viruses and their genomes, their inherit biases have prevented meaningful ecological interpretations. Here we experimentally optimized steps for generating quantitatively-amplified viral metagenomes to better capture both ssDNA and dsDNA viruses across three distinct soil habitats along a permafrost thaw gradient. First, we assessed differing DNA extraction methods (PowerSoil, Wizard mini columns, and cetyl trimethylammonium bromide) for quantity and quality of viral DNA. This established PowerSoil as best for yield and quality of DNA from our samples, though ∼1/3 of the viral populations captured by each extraction kit were unique, suggesting appreciable differential biases among DNA extraction kits. Second, we evaluated the impact of purifying viral particles after resuspension (by cesium chloride gradients; CsCl) and of viral lysis method (heat vs bead-beating) on the resultant viromes. DNA yields after CsCl particle-purification were largely non-detectable, while unpurified samples yielded 1–2-fold more DNA after lysis by heat than by bead-beating. Virome quality was assessed by the number and size of metagenome-assembled viral contigs, which showed no increase after CsCl-purification, but did from heat lysis relative to bead-beating. We also evaluated sample preparation protocols for ssDNA virus recovery. In both CsCl-purified and non-purified samples, ssDNA viruses were successfully recovered by using the Accel-NGS 1S Plus Library Kit. While ssDNA viruses were identified in all three soil types, none were identified in the samples that used bead-beating, suggesting this lysis method may impact recovery. Further, 13 ssDNA vOTUs were identified compared to 582 dsDNA vOTUs, and the ssDNA vOTUs only accounted for ∼4% of the assembled reads, implying dsDNA viruses were dominant in these samples. This optimized approach was combined with the previously published viral resuspension protocol into a sample-to-virome protocol for soils now available at protocols.io, where community feedback creates ‘living’ protocols. This collective approach will be particularly valuable given the high physicochemical variability of soils, which will may require considerable soil type-specific optimization. This optimized protocol provides a starting place for developing quantitatively-amplified viromic datasets and will help enable viral ecogenomic studies on organic-rich soils.
Collapse
Affiliation(s)
- Gareth Trubl
- Department of Microbiology, The Ohio State University, Columbus, OH, United States of America.,Current affiliation: Physical and Life Sciences Directorate, Lawrence Livermore National Laboratory, Livermore, CA, United States of America
| | - Simon Roux
- United States Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Walnut Creek, CA, United States of America
| | - Natalie Solonenko
- Department of Microbiology, The Ohio State University, Columbus, OH, United States of America
| | - Yueh-Fen Li
- Department of Microbiology, The Ohio State University, Columbus, OH, United States of America
| | - Benjamin Bolduc
- Department of Microbiology, The Ohio State University, Columbus, OH, United States of America
| | - Josué Rodríguez-Ramos
- Department of Microbiology, The Ohio State University, Columbus, OH, United States of America.,Current affiliation: Department of Soil and Crop Sciences, Colorado State University, Fort Collins, CO, United States of America
| | - Emiley A Eloe-Fadrosh
- United States Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Walnut Creek, CA, United States of America
| | - Virginia I Rich
- Department of Microbiology, The Ohio State University, Columbus, OH, United States of America
| | - Matthew B Sullivan
- Department of Microbiology, The Ohio State University, Columbus, OH, United States of America.,Department of Civil, Environmental and Geodetic Engineering, The Ohio State University, Columbus, OH, United States of America
| |
Collapse
|
36
|
Abstract
Single-cell genomics allows bypassing the culturing step and to directly access environmental microbes one cell at a time. The method has been successfully applied to explore archaeal and bacterial candidate phyla, referred to as microbial dark matter. Here I summarize the single-cell genomics workflow, including sample preparation and preservation, high-throughput fluorescence-activated cell sorting, cell lysis and amplification of environmental samples. Furthermore I describe phylogenetic screening based on 16S rRNA genes and suggest a suitable library preparation and sequencing approach.
Collapse
Affiliation(s)
- Christian Rinke
- Australian Centre for Ecogenomics, University of Queensland, Brisbane, QLD, Australia.
| |
Collapse
|
37
|
Kallies R, Hölzer M, Brizola Toscan R, Nunes da Rocha U, Anders J, Marz M, Chatzinotas A. Evaluation of Sequencing Library Preparation Protocols for Viral Metagenomic Analysis from Pristine Aquifer Groundwaters. Viruses 2019; 11:E484. [PMID: 31141902 PMCID: PMC6631259 DOI: 10.3390/v11060484] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2019] [Revised: 05/26/2019] [Accepted: 05/27/2019] [Indexed: 01/03/2023] Open
Abstract
Viral ecology of terrestrial habitats is yet-to be extensively explored, in particular the terrestrial subsurface. One problem in obtaining viral sequences from groundwater aquifer samples is the relatively low amount of virus particles. As a result, the amount of extracted DNA may not be sufficient for direct sequencing of such samples. Here we compared three DNA amplification methods to enrich viral DNA from three pristine limestone aquifer assemblages of the Hainich Critical Zone Exploratory to evaluate potential bias created by the different amplification methods as determined by viral metagenomics. Linker amplification shotgun libraries resulted in lowest redundancy among the sequencing reads and showed the highest diversity, while multiple displacement amplification produced the highest number of contigs with the longest average contig size, suggesting a combination of these two methods is suitable for the successful enrichment of viral DNA from pristine groundwater samples. In total, we identified 27,173, 5,886 and 32,613 viral contigs from the three samples from which 11.92 to 18.65% could be assigned to taxonomy using blast. Among these, members of the Caudovirales order were the most abundant group (52.20 to 69.12%) dominated by Myoviridae and Siphoviridae. Those, and the high number of unknown viral sequences, substantially expand the known virosphere.
Collapse
Affiliation(s)
- René Kallies
- Helmholtz Centre for Environmental Research - UFZ, Department of Environmental Microbiology, 04318 Leipzig, Germany.
| | - Martin Hölzer
- Friedrich Schiller University Jena, RNA Bioinformatics and High-Throughput Analysis, 07743 Jena, Germany.
- European Virus Bioinformatics Center, 07743 Jena, Germany.
| | - Rodolfo Brizola Toscan
- Helmholtz Centre for Environmental Research - UFZ, Department of Environmental Microbiology, 04318 Leipzig, Germany.
| | - Ulisses Nunes da Rocha
- Helmholtz Centre for Environmental Research - UFZ, Department of Environmental Microbiology, 04318 Leipzig, Germany.
| | - John Anders
- Helmholtz Centre for Environmental Research - UFZ, Department of Environmental Microbiology, 04318 Leipzig, Germany.
- Bioinformatics Group, Department of Computer Science and Interdisciplinary Center for Bioinformatics, University Leipzig, 04081 Leipzig, Germany.
| | - Manja Marz
- Friedrich Schiller University Jena, RNA Bioinformatics and High-Throughput Analysis, 07743 Jena, Germany.
- European Virus Bioinformatics Center, 07743 Jena, Germany.
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, 04103 Leipzig, Germany.
| | - Antonis Chatzinotas
- Helmholtz Centre for Environmental Research - UFZ, Department of Environmental Microbiology, 04318 Leipzig, Germany.
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, 04103 Leipzig, Germany.
| |
Collapse
|
38
|
Roux S, Trubl G, Goudeau D, Nath N, Couradeau E, Ahlgren NA, Zhan Y, Marsan D, Chen F, Fuhrman JA, Northen TR, Sullivan MB, Rich VI, Malmstrom RR, Eloe-Fadrosh EA. Optimizing de novo genome assembly from PCR-amplified metagenomes. PeerJ 2019; 7:e6902. [PMID: 31119088 PMCID: PMC6511391 DOI: 10.7717/peerj.6902] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2018] [Accepted: 04/03/2019] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Metagenomics has transformed our understanding of microbial diversity across ecosystems, with recent advances enabling de novo assembly of genomes from metagenomes. These metagenome-assembled genomes are critical to provide ecological, evolutionary, and metabolic context for all the microbes and viruses yet to be cultivated. Metagenomes can now be generated from nanogram to subnanogram amounts of DNA. However, these libraries require several rounds of PCR amplification before sequencing, and recent data suggest these typically yield smaller and more fragmented assemblies than regular metagenomes. METHODS Here we evaluate de novo assembly methods of 169 PCR-amplified metagenomes, including 25 for which an unamplified counterpart is available, to optimize specific assembly approaches for PCR-amplified libraries. We first evaluated coverage bias by mapping reads from PCR-amplified metagenomes onto reference contigs obtained from unamplified metagenomes of the same samples. Then, we compared different assembly pipelines in terms of assembly size (number of bp in contigs ≥ 10 kb) and error rates to evaluate which are the best suited for PCR-amplified metagenomes. RESULTS Read mapping analyses revealed that the depth of coverage within individual genomes is significantly more uneven in PCR-amplified datasets versus unamplified metagenomes, with regions of high depth of coverage enriched in short inserts. This enrichment scales with the number of PCR cycles performed, and is presumably due to preferential amplification of short inserts. Standard assembly pipelines are confounded by this type of coverage unevenness, so we evaluated other assembly options to mitigate these issues. We found that a pipeline combining read deduplication and an assembly algorithm originally designed to recover genomes from libraries generated after whole genome amplification (single-cell SPAdes) frequently improved assembly of contigs ≥10 kb by 10 to 100-fold for low input metagenomes. CONCLUSIONS PCR-amplified metagenomes have enabled scientists to explore communities traditionally challenging to describe, including some with extremely low biomass or from which DNA is particularly difficult to extract. Here we show that a modified assembly pipeline can lead to an improved de novo genome assembly from PCR-amplified datasets, and enables a better genome recovery from low input metagenomes.
Collapse
Affiliation(s)
- Simon Roux
- Department of Energy Joint Genome Institute, Walnut Creek, CA, United States of America
| | - Gareth Trubl
- Department of Microbiology, Ohio State University, Columbus, OH, United States of America
| | - Danielle Goudeau
- Department of Energy Joint Genome Institute, Walnut Creek, CA, United States of America
| | - Nandita Nath
- Department of Energy Joint Genome Institute, Walnut Creek, CA, United States of America
| | - Estelle Couradeau
- Environmental Genomics and Systems Biology, Lawrence Berkeley National Laboratory, Berkeley, CA, United States of America
| | - Nathan A. Ahlgren
- Department of Biology, Clark University, Worcester, MA, United States of America
| | - Yuanchao Zhan
- Institution of Marine and Environmental Technology, University of Maryland Center for Environmental Science, Cambridge, MD, United States of America
| | - David Marsan
- Institution of Marine and Environmental Technology, University of Maryland Center for Environmental Science, Cambridge, MD, United States of America
| | - Feng Chen
- Institution of Marine and Environmental Technology, University of Maryland Center for Environmental Science, Cambridge, MD, United States of America
| | - Jed A. Fuhrman
- Department of Biological Sciences, University of Southern California, Los Angeles, CA, United States of America
| | - Trent R. Northen
- Department of Energy Joint Genome Institute, Walnut Creek, CA, United States of America
| | - Matthew B. Sullivan
- Department of Microbiology, Ohio State University, Columbus, OH, United States of America
- Department of Civil, Environmental and Geodetic Engineering, Ohio State University, Columbus, OH, United States of America
| | - Virginia I. Rich
- Department of Microbiology, Ohio State University, Columbus, OH, United States of America
| | - Rex R. Malmstrom
- Department of Energy Joint Genome Institute, Walnut Creek, CA, United States of America
| | | |
Collapse
|
39
|
Minich JJ, Humphrey G, Benitez RAS, Sanders J, Swafford A, Allen EE, Knight R. High-Throughput Miniaturized 16S rRNA Amplicon Library Preparation Reduces Costs while Preserving Microbiome Integrity. mSystems 2018; 3:e00166-18. [PMID: 30417111 PMCID: PMC6222042 DOI: 10.1128/msystems.00166-18] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2018] [Accepted: 10/10/2018] [Indexed: 11/20/2022] Open
Abstract
Next-generation sequencing technologies have enabled many advances across biology, with microbial ecology benefiting primarily through expanded sample sizes. Although the cost of running sequencing instruments has decreased substantially over time, the price of library preparation methods has largely remained unchanged. In this study, we developed a low-cost miniaturized (5-µl volume) high-throughput (384-sample) amplicon library preparation method with the Echo 550 acoustic liquid handler. Our method reduces costs of library preparation to $1.42 per sample, a 58% reduction compared to existing automated methods and a 21-fold reduction from commercial kits, without compromising sequencing success or distorting the microbial community composition analysis. We further validated the optimized method by sampling five body sites from 46 Pacific chub mackerel fish caught across 16 sampling events over seven months from the Scripps Institution of Oceanography pier in La Jolla, CA. Fish microbiome samples were processed with the miniaturized 5-µl reaction volume with 0.2 µl of genomic DNA (gDNA) and the standard 25-µl reaction volume with 1 µl of gDNA. Between the two methods, alpha diversity was highly correlated (R 2 > 0.95), while distances of technical replicates were much lower than within-body-site variation (P < 0.0001), further validating the method. The cost savings of implementing the miniaturized library preparation (going from triplicate 25-µl reactions to triplicate 5-µl reactions) are large enough to cover a MiSeq sequencing run for 768 samples while preserving accurate microbiome measurements. IMPORTANCE Reduced costs of sequencing have tremendously impacted the field of microbial ecology, allowing scientists to design more studies with larger sample sizes that often exceed 10,000 samples. Library preparation costs have not kept pace with sequencing prices, although automated liquid handling robots provide a unique opportunity to bridge this gap while also decreasing human error. Here, we take advantage of an acoustic liquid handling robot to develop a high-throughput miniaturized library preparation method of a highly cited and broadly used 16S rRNA gene amplicon reaction. We evaluate the potential negative effects of reducing the PCR volume along with varying the amount of gDNA going into the reaction. Our optimized method reduces sample-processing costs while continuing to generate a high-quality microbiome readout that is indistinguishable from the original method.
Collapse
Affiliation(s)
- Jeremiah J. Minich
- Marine Biology Research Division, Scripps Institution of Oceanography, University of California San Diego, La Jolla, California, USA
| | - Greg Humphrey
- Department of Pediatrics, University of California San Diego, La Jolla, California, USA
| | - Rodolfo A. S. Benitez
- Department of Pediatrics, University of California San Diego, La Jolla, California, USA
| | - Jon Sanders
- Department of Pediatrics, University of California San Diego, La Jolla, California, USA
| | - Austin Swafford
- Center for Microbiome Innovation, Jacobs School of Engineering, University of California San Diego, La Jolla, California, USA
| | - Eric E. Allen
- Marine Biology Research Division, Scripps Institution of Oceanography, University of California San Diego, La Jolla, California, USA
- Center for Microbiome Innovation, Jacobs School of Engineering, University of California San Diego, La Jolla, California, USA
- Division of Biological Sciences, University of California San Diego, La Jolla, California, USA
| | - Rob Knight
- Department of Pediatrics, University of California San Diego, La Jolla, California, USA
- Center for Microbiome Innovation, Jacobs School of Engineering, University of California San Diego, La Jolla, California, USA
- Department of Computer Science and Engineering, University of California San Diego, La Jolla, California, USA
| |
Collapse
|
40
|
Trubl G, Jang HB, Roux S, Emerson JB, Solonenko N, Vik DR, Solden L, Ellenbogen J, Runyon AT, Bolduc B, Woodcroft BJ, Saleska SR, Tyson GW, Wrighton KC, Sullivan MB, Rich VI. Soil Viruses Are Underexplored Players in Ecosystem Carbon Processing. mSystems 2018; 3:e00076-18. [PMID: 30320215 PMCID: PMC6172770 DOI: 10.1128/msystems.00076-18] [Citation(s) in RCA: 156] [Impact Index Per Article: 22.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2018] [Accepted: 08/24/2018] [Indexed: 01/10/2023] Open
Abstract
Rapidly thawing permafrost harbors ∼30 to 50% of global soil carbon, and the fate of this carbon remains unknown. Microorganisms will play a central role in its fate, and their viruses could modulate that impact via induced mortality and metabolic controls. Because of the challenges of recovering viruses from soils, little is known about soil viruses or their role(s) in microbial biogeochemical cycling. Here, we describe 53 viral populations (viral operational taxonomic units [vOTUs]) recovered from seven quantitatively derived (i.e., not multiple-displacement-amplified) viral-particle metagenomes (viromes) along a permafrost thaw gradient at the Stordalen Mire field site in northern Sweden. Only 15% of these vOTUs had genetic similarity to publicly available viruses in the RefSeq database, and ∼30% of the genes could be annotated, supporting the concept of soils as reservoirs of substantial undescribed viral genetic diversity. The vOTUs exhibited distinct ecology, with different distributions along the thaw gradient habitats, and a shift from soil-virus-like assemblages in the dry palsas to aquatic-virus-like assemblages in the inundated fen. Seventeen vOTUs were linked to microbial hosts (in silico), implicating viruses in infecting abundant microbial lineages from Acidobacteria, Verrucomicrobia, and Deltaproteobacteria, including those encoding key biogeochemical functions such as organic matter degradation. Thirty auxiliary metabolic genes (AMGs) were identified and suggested virus-mediated modulation of central carbon metabolism, soil organic matter degradation, polysaccharide binding, and regulation of sporulation. Together, these findings suggest that these soil viruses have distinct ecology, impact host-mediated biogeochemistry, and likely impact ecosystem function in the rapidly changing Arctic. IMPORTANCE This work is part of a 10-year project to examine thawing permafrost peatlands and is the first virome-particle-based approach to characterize viruses in these systems. This method yielded >2-fold-more viral populations (vOTUs) per gigabase of metagenome than vOTUs derived from bulk-soil metagenomes from the same site (J. B. Emerson, S. Roux, J. R. Brum, B. Bolduc, et al., Nat Microbiol 3:870-880, 2018, https://doi.org/10.1038/s41564-018-0190-y). We compared the ecology of the recovered vOTUs along a permafrost thaw gradient and found (i) habitat specificity, (ii) a shift in viral community identity from soil-like to aquatic-like viruses, (iii) infection of dominant microbial hosts, and (iv) carriage of host metabolic genes. These vOTUs can impact ecosystem carbon processing via top-down (inferred from lysing dominant microbial hosts) and bottom-up (inferred from carriage of auxiliary metabolic genes) controls. This work serves as a foundation which future studies can build upon to increase our understanding of the soil virosphere and how viruses affect soil ecosystem services.
Collapse
Affiliation(s)
- Gareth Trubl
- Department of Microbiology, The Ohio State University, Columbus, Ohio, USA
| | - Ho Bin Jang
- Department of Microbiology, The Ohio State University, Columbus, Ohio, USA
| | - Simon Roux
- Department of Microbiology, The Ohio State University, Columbus, Ohio, USA
| | - Joanne B. Emerson
- Department of Microbiology, The Ohio State University, Columbus, Ohio, USA
| | - Natalie Solonenko
- Department of Microbiology, The Ohio State University, Columbus, Ohio, USA
| | - Dean R. Vik
- Department of Microbiology, The Ohio State University, Columbus, Ohio, USA
| | - Lindsey Solden
- Department of Microbiology, The Ohio State University, Columbus, Ohio, USA
| | - Jared Ellenbogen
- Department of Microbiology, The Ohio State University, Columbus, Ohio, USA
| | | | - Benjamin Bolduc
- Department of Microbiology, The Ohio State University, Columbus, Ohio, USA
| | - Ben J. Woodcroft
- Australian Centre for Ecogenomics, The University of Queensland, St. Lucia, Queensland, Australia
| | - Scott R. Saleska
- Department of Ecology and Evolutionary Biology, University of Arizona, Tucson, Arizona, USA
| | - Gene W. Tyson
- Australian Centre for Ecogenomics, The University of Queensland, St. Lucia, Queensland, Australia
| | - Kelly C. Wrighton
- Department of Microbiology, The Ohio State University, Columbus, Ohio, USA
| | - Matthew B. Sullivan
- Department of Microbiology, The Ohio State University, Columbus, Ohio, USA
- Department of Civil, Environmental and Geodetic Engineering, The Ohio State University, Columbus, Ohio, USA
| | - Virginia I. Rich
- Department of Microbiology, The Ohio State University, Columbus, Ohio, USA
| |
Collapse
|
41
|
Hardwick SA, Chen WY, Wong T, Kanakamedala BS, Deveson IW, Ongley SE, Santini NS, Marcellin E, Smith MA, Nielsen LK, Lovelock CE, Neilan BA, Mercer TR. Synthetic microbe communities provide internal reference standards for metagenome sequencing and analysis. Nat Commun 2018; 9:3096. [PMID: 30082706 PMCID: PMC6078961 DOI: 10.1038/s41467-018-05555-0] [Citation(s) in RCA: 63] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2018] [Accepted: 06/20/2018] [Indexed: 12/12/2022] Open
Abstract
The complexity of microbial communities, combined with technical biases in next-generation sequencing, pose a challenge to metagenomic analysis. Here, we develop a set of internal DNA standards, termed “sequins” (sequencing spike-ins), that together constitute a synthetic community of artificial microbial genomes. Sequins are added to environmental DNA samples prior to library preparation, and undergo concurrent sequencing with the accompanying sample. We validate the performance of sequins by comparison to mock microbial communities, and demonstrate their use in the analysis of real metagenome samples. We show how sequins can be used to measure fold change differences in the size and structure of accompanying microbial communities, and perform quantitative normalization between samples. We further illustrate how sequins can be used to benchmark and optimize new methods, including nanopore long-read sequencing technology. We provide metagenome sequins, along with associated data sets, protocols, and an accompanying software toolkit, as reference standards to aid in metagenomic studies. Complex microbial communities pose a challenge to metagenomic analysis. Here the authors develop ‘sequins’, internal DNA standards that represent a synthetic community of artificial genomes.
Collapse
Affiliation(s)
- Simon A Hardwick
- Garvan Institute of Medical Research, Sydney, 2010, NSW, Australia.,St. Vincent's Clinical School, Faculty of Medicine, UNSW Sydney, Sydney, 2052, NSW, Australia
| | - Wendy Y Chen
- Garvan Institute of Medical Research, Sydney, 2010, NSW, Australia.,St. Vincent's Clinical School, Faculty of Medicine, UNSW Sydney, Sydney, 2052, NSW, Australia
| | - Ted Wong
- Garvan Institute of Medical Research, Sydney, 2010, NSW, Australia
| | | | - Ira W Deveson
- Garvan Institute of Medical Research, Sydney, 2010, NSW, Australia.,St. Vincent's Clinical School, Faculty of Medicine, UNSW Sydney, Sydney, 2052, NSW, Australia
| | - Sarah E Ongley
- School of Biotechnology and Biomolecular Sciences, UNSW Sydney, Sydney, 2052, NSW, Australia.,School of Environmental and Life Sciences, The University of Newcastle, Callaghan, 2308, NSW, Australia
| | - Nadia S Santini
- Centre for Marine Bioinnovation UNSW Sydney, Sydney, 2052, NSW, Australia.,Instituto de Ecologia, Universidad Nacional Autonoma de Mexico, Mexico City, 04500, Mexico
| | - Esteban Marcellin
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, 4072, Queensland, Australia
| | - Martin A Smith
- Garvan Institute of Medical Research, Sydney, 2010, NSW, Australia.,St. Vincent's Clinical School, Faculty of Medicine, UNSW Sydney, Sydney, 2052, NSW, Australia
| | - Lars K Nielsen
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, 4072, Queensland, Australia
| | - Catherine E Lovelock
- School of Biological Sciences, The University of Queensland, Brisbane, 4072, QLD, Australia
| | - Brett A Neilan
- School of Biotechnology and Biomolecular Sciences, UNSW Sydney, Sydney, 2052, NSW, Australia.,School of Environmental and Life Sciences, The University of Newcastle, Callaghan, 2308, NSW, Australia
| | - Tim R Mercer
- Garvan Institute of Medical Research, Sydney, 2010, NSW, Australia. .,St. Vincent's Clinical School, Faculty of Medicine, UNSW Sydney, Sydney, 2052, NSW, Australia. .,Altius Institute for Biomedical Sciences, Seattle, 98121, WA, USA.
| |
Collapse
|
42
|
Enrichment of Clinically Relevant Organisms in Spontaneous Preterm-Delivered Placentas and Reagent Contamination across All Clinical Groups in a Large Pregnancy Cohort in the United Kingdom. Appl Environ Microbiol 2018; 84:AEM.00483-18. [PMID: 29776928 PMCID: PMC6029081 DOI: 10.1128/aem.00483-18] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2018] [Accepted: 04/28/2018] [Indexed: 12/11/2022] Open
Abstract
Preterm birth is associated with both psychological and physical disabilities and is the leading cause of infant morbidity and mortality worldwide. Infection is known to be an important cause of spontaneous preterm birth, and recent research has implicated variation in the “placental microbiome” in the risk of preterm birth. Consistent with data from previous studies, the abundances of certain clinically relevant species differed between spontaneous preterm- and nonspontaneous preterm- or term-delivered placentas. These results support the view that a proportion of spontaneous preterm births have an intrauterine-infection component. However, an additional observation from this study was that a substantial proportion of sequenced reads were contaminating reads rather than DNA from endogenous, clinically relevant species. This observation warrants caution in the interpretation of sequencing outputs from low-biomass samples such as the placenta. In this study, differences in the placental microbiota from term and preterm deliveries in a large pregnancy cohort in the United Kingdom were studied by using 16S-targeted amplicon sequencing. The impacts of contamination from DNA extraction, PCR reagents, and the delivery itself were also examined. A total of 400 placental samples from 256 singleton pregnancies were analyzed, and differences between spontaneous preterm-, nonspontaneous preterm-, and term-delivered placentas were investigated. DNA from recently delivered placentas was extracted, and screening for bacterial DNA was carried out by using targeted sequencing of the 16S rRNA gene on the Illumina MiSeq platform. Sequenced reads were analyzed for the presence of contaminating operational taxonomic units (OTUs) identified via sequencing of negative extraction and PCR-blank samples. Differential abundances and between-sample (beta) diversity metrics were then compared. A large proportion of the reads sequenced from the extracted placental samples mapped to OTUs that were also found for negative extractions. Striking differences in the compositions of samples were also observed, according to whether the placenta was delivered abdominally or vaginally, providing strong circumstantial evidence for delivery contamination as an important contributor to observed microbial profiles. When OTU- and genus-level abundances were compared between the groups of interest, a number of organisms were enriched in the spontaneous preterm-delivery cohort, including organisms that have been associated previously with adverse pregnancy outcomes, specifically Mycoplasma spp. and Ureaplasma spp. However, analyses of the overall community structure did not reveal convincing evidence for the existence of a reproducible “preterm placental microbiome.” IMPORTANCE Preterm birth is associated with both psychological and physical disabilities and is the leading cause of infant morbidity and mortality worldwide. Infection is known to be an important cause of spontaneous preterm birth, and recent research has implicated variation in the “placental microbiome” in the risk of preterm birth. Consistent with data from previous studies, the abundances of certain clinically relevant species differed between spontaneous preterm- and nonspontaneous preterm- or term-delivered placentas. These results support the view that a proportion of spontaneous preterm births have an intrauterine-infection component. However, an additional observation from this study was that a substantial proportion of sequenced reads were contaminating reads rather than DNA from endogenous, clinically relevant species. This observation warrants caution in the interpretation of sequencing outputs from low-biomass samples such as the placenta.
Collapse
|
43
|
Abstract
There are more than one million microbial cells in every drop of seawater, and their collective metabolisms not only recycle nutrients that can then be used by larger organisms but also catalyze key chemical transformations that maintain Earth’s habitability. Understanding how these microbes interact with each other and with multicellular hosts is critical to reliably quantify any functional aspect of their metabolisms and to predicting their outcomes on larger scales. There are more than one million microbial cells in every drop of seawater, and their collective metabolisms not only recycle nutrients that can then be used by larger organisms but also catalyze key chemical transformations that maintain Earth’s habitability. Understanding how these microbes interact with each other and with multicellular hosts is critical to reliably quantify any functional aspect of their metabolisms and to predict their outcomes on larger scales. Following a large body of literature pioneered by Farooq Azam and colleagues more than 30 years ago, I emphasize the importance of studying microbial interactions at the appropriate scale if we want to fully decipher the roles that they play in oceanic ecosystems.
Collapse
|
44
|
Cremers G, Gambelli L, van Alen T, van Niftrik L, Op den Camp HJM. Bioreactor virome metagenomics sequencing using DNA spike-ins. PeerJ 2018; 6:e4351. [PMID: 29441238 PMCID: PMC5807891 DOI: 10.7717/peerj.4351] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2017] [Accepted: 01/19/2018] [Indexed: 11/20/2022] Open
Abstract
With the emergence of Next Generation Sequencing, major advances were made with regard to identifying viruses in natural environments. However, bioinformatical research on viruses is still limited because of the low amounts of viral DNA that can be obtained for analysis. To overcome this limitation, DNA is often amplified with multiple displacement amplification (MDA), which may cause an unavoidable bias. Here, we describe a case study in which the virome of a bioreactor is sequenced using Ion Torrent technology. DNA-spiking of samples is compared with MDA-amplified samples. DNA for spiking was obtained by amplifying a bacterial 16S rRNA gene. After sequencing, the 16S rRNA gene reads were removed by mapping to the Silva database. Three samples were tested, a whole genome from Enterobacteria P1 Phage and two viral metagenomes from an infected bioreactor. For one sample, the new DNA-spiking protocol was compared with the MDA technique. When MDA was applied, the overall GC content of the reads showed a bias towards lower GC%, indicating a change in composition of the DNA sample. Assemblies using all available reads from both MDA and the DNA-spiked samples resulted in six viral genomes. All six genomes could be almost completely retrieved (97.9%–100%) when mapping the reads from the DNA-spiked sample to those six genomes. In contrast, 6.3%–77.7% of three viral genomes was covered by reads obtained using the MDA amplification method and only three were nearly fully covered (97.4%–100%). This case study shows that DNA-spiking could be a simple and inexpensive alternative with very low bias for sequencing of metagenomes for which low amounts of DNA are available.
Collapse
Affiliation(s)
- Geert Cremers
- Department of Microbiology, Institute of Water and Wetland Research, Faculty of Science, Radboud University, Nijmegen, Netherlands
| | - Lavinia Gambelli
- Department of Microbiology, Institute of Water and Wetland Research, Faculty of Science, Radboud University, Nijmegen, Netherlands
| | - Theo van Alen
- Department of Microbiology, Institute of Water and Wetland Research, Faculty of Science, Radboud University, Nijmegen, Netherlands
| | - Laura van Niftrik
- Department of Microbiology, Institute of Water and Wetland Research, Faculty of Science, Radboud University, Nijmegen, Netherlands
| | - Huub J M Op den Camp
- Department of Microbiology, Institute of Water and Wetland Research, Faculty of Science, Radboud University, Nijmegen, Netherlands
| |
Collapse
|
45
|
Hirai M, Nishi S, Tsuda M, Sunamura M, Takaki Y, Nunoura T. Library Construction from Subnanogram DNA for Pelagic Sea Water and Deep-Sea Sediments. Microbes Environ 2017; 32:336-343. [PMID: 29187708 PMCID: PMC5745018 DOI: 10.1264/jsme2.me17132] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Shotgun metagenomics is a low biased technology for assessing environmental microbial diversity and function. However, the requirement for a sufficient amount of DNA and the contamination of inhibitors in environmental DNA leads to difficulties in constructing a shotgun metagenomic library. We herein examined metagenomic library construction from subnanogram amounts of input environmental DNA from subarctic surface water and deep-sea sediments using two library construction kits: the KAPA Hyper Prep Kit and Nextera XT DNA Library Preparation Kit, with several modifications. The influence of chemical contaminants associated with these environmental DNA samples on library construction was also investigated. Overall, shotgun metagenomic libraries were constructed from 1 pg to 1 ng of input DNA using both kits without harsh library microbial contamination. However, the libraries constructed from 1 pg of input DNA exhibited larger biases in GC contents, k-mers, or small subunit (SSU) rRNA gene compositions than those constructed from 10 pg to 1 ng DNA. The lower limit of input DNA for low biased library construction in this study was 10 pg. Moreover, we revealed that technology-dependent biases (physical fragmentation and linker ligation vs. tagmentation) were larger than those due to the amount of input DNA.
Collapse
Affiliation(s)
- Miho Hirai
- Research and Development (R&D) Center for Marine Biosciences, Japan Agency for Marine-Earth Science and Technology (JAMSTEC)
| | - Shinro Nishi
- Research and Development (R&D) Center for Marine Biosciences, Japan Agency for Marine-Earth Science and Technology (JAMSTEC).,Ecosystem Observation and Evaluation Methodology Research Unit, Project Team for Development of New-generation Research Protocol for Submarine Resources, Japan Agency for Marine-Earth Science and Technology (JAMSTEC)
| | - Miwako Tsuda
- Ecosystem Observation and Evaluation Methodology Research Unit, Project Team for Development of New-generation Research Protocol for Submarine Resources, Japan Agency for Marine-Earth Science and Technology (JAMSTEC)
| | - Michinari Sunamura
- Ecosystem Observation and Evaluation Methodology Research Unit, Project Team for Development of New-generation Research Protocol for Submarine Resources, Japan Agency for Marine-Earth Science and Technology (JAMSTEC).,Department of Earth and Planetary Science, The University of Tokyo
| | - Yoshihiro Takaki
- Research and Development (R&D) Center for Marine Biosciences, Japan Agency for Marine-Earth Science and Technology (JAMSTEC).,Ecosystem Observation and Evaluation Methodology Research Unit, Project Team for Development of New-generation Research Protocol for Submarine Resources, Japan Agency for Marine-Earth Science and Technology (JAMSTEC).,Department of Subsurface Geobiological Analysis and Research, Japan Agency for Marine-Earth Science and Technology (JAMSTEC)
| | - Takuro Nunoura
- Research and Development (R&D) Center for Marine Biosciences, Japan Agency for Marine-Earth Science and Technology (JAMSTEC).,Ecosystem Observation and Evaluation Methodology Research Unit, Project Team for Development of New-generation Research Protocol for Submarine Resources, Japan Agency for Marine-Earth Science and Technology (JAMSTEC)
| |
Collapse
|
46
|
Lambert BS, Raina JB, Fernandez VI, Rinke C, Siboni N, Rubino F, Hugenholtz P, Tyson GW, Seymour JR, Stocker R. A microfluidics-based in situ chemotaxis assay to study the behaviour of aquatic microbial communities. Nat Microbiol 2017; 2:1344-1349. [DOI: 10.1038/s41564-017-0010-9] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2017] [Accepted: 07/19/2017] [Indexed: 11/09/2022]
|
47
|
Hotaling S, Hood E, Hamilton TL. Microbial ecology of mountain glacier ecosystems: biodiversity, ecological connections and implications of a warming climate. Environ Microbiol 2017; 19:2935-2948. [PMID: 28419666 DOI: 10.1111/1462-2920.13766] [Citation(s) in RCA: 85] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2017] [Revised: 04/08/2017] [Accepted: 04/11/2017] [Indexed: 11/29/2022]
Abstract
Glacier ecosystems are teeming with life on, beneath, and to a lesser degree, within their icy masses. This conclusion largely stems from polar research, with less attention paid to mountain glaciers that overlap environmentally and ecologically with their polar counterparts in some ways, but diverge in others. One difference lies in the susceptibility of mountain glaciers to the near-term threat of climate change, as they tend to be much smaller in both area and volume. Moreover, mountain glaciers are typically steeper, more dependent upon basal sliding for movement, and experience higher seasonal precipitation. Here, we provide a modern synthesis of the microbial ecology of mountain glacier ecosystems, and particularly those at low- to mid-latitudes. We focus on five ecological zones: the supraglacial surface, englacial interior, subglacial bedrock-ice interface, proglacial streams and glacier forefields. For each, we discuss the role of microbiota in biogeochemical cycling and outline ecological and hydrological connections among zones, underscoring the interconnected nature of these ecosystems. Collectively, we highlight the need to: better document the biodiversity and functional roles of mountain glacier microbiota; describe the ecological implications of rapid glacial retreat under climate change and resolve the relative contributions of ecological zones to broader ecosystem function.
Collapse
Affiliation(s)
- Scott Hotaling
- Department of Biology, University of Kentucky, Lexington, KY, 40506, USA
| | - Eran Hood
- Department of Natural Science, University of Alaska Southeast, Juneau, AK, 99801, USA
| | - Trinity L Hamilton
- Department of Biological Sciences, University of Cincinnati, Cincinnati, OH, 45221, USA
| |
Collapse
|
48
|
Seymour JR, Amin SA, Raina JB, Stocker R. Zooming in on the phycosphere: the ecological interface for phytoplankton-bacteria relationships. Nat Microbiol 2017; 2:17065. [PMID: 28555622 DOI: 10.1038/nmicrobiol.2017.65] [Citation(s) in RCA: 578] [Impact Index Per Article: 72.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2016] [Accepted: 03/23/2017] [Indexed: 12/28/2022]
Abstract
By controlling nutrient cycling and biomass production at the base of the food web, interactions between phytoplankton and bacteria represent a fundamental ecological relationship in aquatic environments. Although typically studied over large spatiotemporal scales, emerging evidence indicates that this relationship is often governed by microscale interactions played out within the region immediately surrounding individual phytoplankton cells. This microenvironment, known as the phycosphere, is the planktonic analogue of the rhizosphere in plants. The exchange of metabolites and infochemicals at this interface governs phytoplankton-bacteria relationships, which span mutualism, commensalism, antagonism, parasitism and competition. The importance of the phycosphere has been postulated for four decades, yet only recently have new technological and conceptual frameworks made it possible to start teasing apart the complex nature of this unique microbial habitat. It has subsequently become apparent that the chemical exchanges and ecological interactions between phytoplankton and bacteria are far more sophisticated than previously thought and often require close proximity of the two partners, which is facilitated by bacterial colonization of the phycosphere. It is also becoming increasingly clear that while interactions taking place within the phycosphere occur at the scale of individual microorganisms, they exert an ecosystem-scale influence on fundamental processes including nutrient provision and regeneration, primary production, toxin biosynthesis and biogeochemical cycling. Here we review the fundamental physical, chemical and ecological features of the phycosphere, with the goal of delivering a fresh perspective on the nature and importance of phytoplankton-bacteria interactions in aquatic ecosystems.
Collapse
Affiliation(s)
- Justin R Seymour
- Climate Change Cluster (C3), University of Technology Sydney, New South Wales 2007, Australia
| | - Shady A Amin
- Department of Biology, New York University Abu Dhabi, PO Box 129188, Abu Dhabi, United Arab Emirates.,Department of Chemistry, New York University Abu Dhabi, PO Box 129188, Abu Dhabi, United Arab Emirates
| | - Jean-Baptiste Raina
- Climate Change Cluster (C3), University of Technology Sydney, New South Wales 2007, Australia
| | - Roman Stocker
- Institute of Environmental Engineering, Department of Civil, Environmental and Geomatic Engineering, ETH Zurich, Stefano-Franscini-Platz 5, 8093 Zurich, Switzerland
| |
Collapse
|
49
|
Ji P, Zhang Y, Wang J, Zhao F. MetaSort untangles metagenome assembly by reducing microbial community complexity. Nat Commun 2017; 8:14306. [PMID: 28112173 PMCID: PMC5264255 DOI: 10.1038/ncomms14306] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2016] [Accepted: 12/14/2016] [Indexed: 12/31/2022] Open
Abstract
Most current approaches to analyse metagenomic data rely on reference genomes. Novel microbial communities extend far beyond the coverage of reference databases and de novo metagenome assembly from complex microbial communities remains a great challenge. Here we present a novel experimental and bioinformatic framework, metaSort, for effective construction of bacterial genomes from metagenomic samples. MetaSort provides a sorted mini-metagenome approach based on flow cytometry and single-cell sequencing methodologies, and employs new computational algorithms to efficiently recover high-quality genomes from the sorted mini-metagenome by the complementary of the original metagenome. Through extensive evaluations, we demonstrated that metaSort has an excellent and unbiased performance on genome recovery and assembly. Furthermore, we applied metaSort to an unexplored microflora colonized on the surface of marine kelp and successfully recovered 75 high-quality genomes at one time. This approach will greatly improve access to microbial genomes from complex or novel communities.
Collapse
Affiliation(s)
- Peifeng Ji
- Computational Genomics Lab, Beijing Institutes of Life Science, Chinese Academy of Sciences, Beijing 100101, China
| | - Yanming Zhang
- Computational Genomics Lab, Beijing Institutes of Life Science, Chinese Academy of Sciences, Beijing 100101, China
| | - Jinfeng Wang
- Computational Genomics Lab, Beijing Institutes of Life Science, Chinese Academy of Sciences, Beijing 100101, China
| | - Fangqing Zhao
- Computational Genomics Lab, Beijing Institutes of Life Science, Chinese Academy of Sciences, Beijing 100101, China
| |
Collapse
|
50
|
Wiehlmann L, Pienkowska K, Hedtfeld S, Dorda M, Tümmler B. Impact of sample processing on human airways microbial metagenomes. J Biotechnol 2017; 250:51-55. [PMID: 28119120 DOI: 10.1016/j.jbiotec.2017.01.001] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2016] [Revised: 01/04/2017] [Accepted: 01/10/2017] [Indexed: 11/19/2022]
Abstract
Whole metagenome shotgun sequencing provides information about the gene content and the composition of microbial communities provided that the processing of the samples does not introduce a methodology-driven bias. We tested the impact of DNA isolation and storage period on the metagenome profile. Deep throat swabs were collected from healthy adults and an infected infant. DNA was isolated by sonification or enzymatic lysis either immediately or after 24h storage in agar gel Amies transport medium at room temperature. Disruption of cells and subsequent fragmentation of DNA by sonification was as suitable as the common enzymatic lysis to generate high-quality metagenomes particularly for low total DNA input of less than ten nanograms. Conversely, storage of samples for 24h produced severely distorted metagenomes. The majority of species became less abundant or even extinct, whereas a few Streptococcus, Neisseria and Haemophilus spp. proliferated so that the total number of bacterial reads increased at the expense of human reads. We recommend that samples for metagenome analysis should be immediately processed or frozen at -80°C.
Collapse
Affiliation(s)
- Lutz Wiehlmann
- Clinical Research Group, OE 6711, Medizinische Hochschule Hannover, D-30625 Hannover, Germany; Core Unit 'Next Generation Sequencing', Medizinische Hochschule Hannover, D-30625 Hannover, Germany; Institute for Human Genetics, Medizinische Hochschule Hannover, D-30625 Hannover, Germany.
| | - Katarzyna Pienkowska
- Clinical Research Group, OE 6711, Medizinische Hochschule Hannover, D-30625 Hannover, Germany.
| | - Silke Hedtfeld
- Clinical Research Group, OE 6711, Medizinische Hochschule Hannover, D-30625 Hannover, Germany.
| | - Marie Dorda
- Clinical Research Group, OE 6711, Medizinische Hochschule Hannover, D-30625 Hannover, Germany; Core Unit 'Next Generation Sequencing', Medizinische Hochschule Hannover, D-30625 Hannover, Germany.
| | - Burkhard Tümmler
- Clinical Research Group, OE 6711, Medizinische Hochschule Hannover, D-30625 Hannover, Germany; Biomedical Research in Endstage and Obstructive Lung Disease Hannover (BREATH), Member of the German Center for Lung Research, D-30625 Hannover, Germany.
| |
Collapse
|