1
|
Hogan MP, Holding ML, Nystrom GS, Lawrence KC, Broussard EM, Ellsworth SA, Mason AJ, Margres MJ, Gibbs HL, Parkinson CL, Rokyta DR. Life history and chromosome organization determine chemoreceptor gene expression in rattlesnakes. J Hered 2025:esae078. [PMID: 40296328 DOI: 10.1093/jhered/esae078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Accepted: 12/14/2024] [Indexed: 04/30/2025] Open
Abstract
Predatory species who hunt for their prey rely on a suite of integrated characters, including sensory traits that are also used for nonpredatory behaviors. Linking the evolution of sensory traits to specific selection pressures therefore requires a deep understanding of the underlying genetics and molecular mechanisms producing these complex phenotypes. However, this relationship remains poorly understood for complex sensory systems that consist of proteins encoded by large gene families. The chemosensory repertoire of rattlesnakes includes hundreds of type-2 vomeronasal receptors and olfactory receptors, representing the two largest gene families found in the genome. To investigate the biological importance of this chemoreceptor diversity, we assessed gene expression in the eastern diamondback rattlesnake (Crotalus adamanteus) and identified sex- and age-biased genes. We found type-2 vomeronasal receptor expression in the vomeronasal epithelium was limited to juvenile snakes, suggesting the sensory programming of this tissue may be correlated with early life development. In the olfactory epithelium, we found subtle expression biases that were more indicative of life history rather than development. We also found transcriptional evidence for dosage compensation of sex-linked genes and trait integration in the expression of transcription factors. We overlay our molecular characterizations in Crotalus adamanteus onto updated olfactory receptor and type-2 vomeronasal receptor phylogenies, providing a genetic road map for future research on these receptors. Finally, we investigated the deeper macroevolutionary context of the most highly expressed type-2 vomeronasal receptor gene spanning the rise of tetrapods and estimated the strength of positive selection for individual amino acid residues in the predicted protein structure. We hypothesize that this gene may have evolved as a conserved signaling subunit to ensure consistent G-protein coupled receptor functionality, potentially relaxing signaling constraints on other type-2 vomeronasal receptor paralogs and promoting ligand binding specificity.
Collapse
Affiliation(s)
- Michael P Hogan
- Department of Biological Sciences, Florida State University, Tallahassee, FL, United States
- Department of Ecology and Evolutionary Biology, University of Michigan, Ann Arbor, MI, United States
| | - Matthew L Holding
- Department of Biological Sciences, Florida State University, Tallahassee, FL, United States
- Department of Ecology and Evolutionary Biology, University of Michigan, Ann Arbor, MI, United States
- Life Sciences Institute, University of Michigan, Ann Arbor, MI, United States
| | - Gunnar S Nystrom
- Department of Biological Sciences, Florida State University, Tallahassee, FL, United States
| | - Kylie C Lawrence
- Department of Biological Sciences, Florida State University, Tallahassee, FL, United States
| | - Emilie M Broussard
- Department of Biological Sciences, Florida State University, Tallahassee, FL, United States
| | - Schyler A Ellsworth
- Department of Biological Sciences, Florida State University, Tallahassee, FL, United States
| | - Andrew J Mason
- Department of Evolution, Ecology and Organismal Biology, The Ohio State University, Columbus, OH, United States
| | - Mark J Margres
- Department of Integrative Biology, University of South Florida, Tampa, FL, United States
| | - H Lisle Gibbs
- Department of Evolution, Ecology and Organismal Biology, The Ohio State University, Columbus, OH, United States
| | | | - Darin R Rokyta
- Department of Biological Sciences, Florida State University, Tallahassee, FL, United States
| |
Collapse
|
2
|
Hirst SR, Beer MA, VanHorn CM, Rautsaw RM, Franz-Chávez H, Lopez BR, Chaparro RR, Rosales-García RA, Vásquez-Cruz V, Kelly-Hernández A, Amézquita SAS, Martínez DEL, Fiol TP, Rincón AR, Whittington AC, Castañeda-Gaytán G, Borja M, Parkinson CL, Strickland JL, Margres MJ. Island biogeography and competition drive rapid venom complexity evolution across rattlesnakes. Evolution 2025:qpaf074. [PMID: 40266827 DOI: 10.1093/evolut/qpaf074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2024] [Revised: 02/19/2025] [Accepted: 04/02/2025] [Indexed: 04/25/2025]
Abstract
Understanding how human-mediated environmental change affects biodiversity is key for conserving evolvability. Because the most severe impacts are ongoing, such an understanding is proving exceptionally difficult to attain. Islands are natural, replicated experiments that serve as proxies for habitat fragmentation and, therefore, allow us to use historical changes in biodiversity under Island Biogeography Theory (IBT) to predict the consequences of immediate anthropogenic impacts on functional trait evolution. Rattlesnake venoms are molecular phenotypes that mediate interactions with prey, and diet and venom complexity are positively correlated. Consequently, rattlesnake venoms allow us to investigate how functional traits co-vary with changes in biodiversity according to IBT. We collected venom from 83 rattlesnakes across multiple species and 11 islands in the Gulf of California and estimated venom complexity using the Shannon Diversity Index. Using a mixed effects modeling approach, we found that the number of congenerics, island isolation, and island area best predicted venom complexity variability. All variables exhibited a negative relationship with venom complexity, contrary to predictions for island area under IBT. Larger islands with more congenerics exhibited reduced trait complexity, perhaps reflecting niche partitioning and venom specialization. Ultimately, we used a synthetic eco-evolutionary framework to predict functional trait evolution across fragmented landscapes.
Collapse
Affiliation(s)
- Samuel R Hirst
- Department of Integrative Biology, University of South Florida, Tampa, FL, United States
| | - Marc A Beer
- School of Biological Sciences, Washington State University, Pullman, WA, United States
| | - Cameron M VanHorn
- Department of Integrative Biology, University of South Florida, Tampa, FL, United States
| | - Rhett M Rautsaw
- Department of Integrative Biology, University of South Florida, Tampa, FL, United States
- School of Biological Sciences, Washington State University, Pullman, WA, United States
| | | | - Bruno Rodriguez Lopez
- Facultad de Ciencias Biológicas, Universidad Juárez del Estado de Durango, Gòmez Palacio, Dur., México
| | | | | | - Víctor Vásquez-Cruz
- Facultad de Ciencias Biológicas y Agropecuarias, Universidad Veracruzana, Alto Lucero, Ver., Mexico
- PIMVS Herpetario Palancoatl, Còrdoba, Ver., Mexico
| | | | | | | | - Tania Perez Fiol
- Centro de Investigaciones Biològicas del Noroeste, S.C. Instituto Politécnico Nacional, La Paz, BCS, Mexico
| | - Alexandra Rubio Rincón
- Facultad de Ciencias Biológicas, Universidad Juárez del Estado de Durango, Gòmez Palacio, Dur., México
| | - A Carl Whittington
- Department of Biological Science, Florida State University, Tallahassee, FL, United States
| | - Gamaliel Castañeda-Gaytán
- Facultad de Ciencias Biológicas, Universidad Juárez del Estado de Durango, Gòmez Palacio, Dur., México
| | - Miguel Borja
- Facultad de Ciencias Biológicas, Universidad Juárez del Estado de Durango, Gòmez Palacio, Dur., México
| | | | - Jason L Strickland
- Department of Biological Science, Florida State University, Tallahassee, FL, United States
| | - Mark J Margres
- Department of Integrative Biology, University of South Florida, Tampa, FL, United States
| |
Collapse
|
3
|
Menon JC, Sreekrishnan TP, Nair SB, Pillay VV, Kanungo S, Aravind MS, Bharti OK, Joseph JK, Pati S. Snakebite envenoming in India: it is time we look beyond the concept of the Big Four species. Trans R Soc Trop Med Hyg 2025:traf042. [PMID: 40223652 DOI: 10.1093/trstmh/traf042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2024] [Revised: 02/04/2025] [Accepted: 03/28/2025] [Indexed: 04/15/2025] Open
Abstract
India faces substantial challenges from snakebite envenoming secondary to the high morbidity, mortality and financial burden, particularly in rural communities. While concentrated on the 'Big Four' venomous species, recent research indicates a necessity to expand the focus to encompass additional medically relevant species. This review emphasizes the geographic heterogeneity in venom among these snakes, which impacts antivenom effectiveness and necessitating region-specific formulations. This analysis highlights the shortcomings of current antivenoms and identifies non-Big Four species involved in snakebite envenoming, advocating for an urgent shift to inclusive antivenom strategies that integrate local venom profiles to enhance treatment effectiveness and thereby reduce snakebite-related morbidity and mortality. Improved training for healthcare providers and enhancements in anti-snake venom quality are essential for meeting the World Health Organization's 2030 Sustainable Development Goal objective of halving snakebite-related fatalities and disabilities. Incorporating snakebite management into national health programs and conducting epidemiological research systematically are crucial to mitigating this preventable health concern.
Collapse
Affiliation(s)
- Jaideep C Menon
- Adult Cardiology and Public Health, Amrita Institute of Medical Sciences, Kochi 682041, India
| | - T P Sreekrishnan
- Emergency Medicine, Amrita Institute of Medical Sciences, Kochi 682041, India
| | - Sabarish B Nair
- Emergency Medicine, Amrita Institute of Medical Sciences, Kochi 682041, India
| | - Vijay V Pillay
- Poison Control Centre, Professor, Amrita Institute of Medical Sciences, Amrita Vishwa Vidyapeetham, Kochi 682041, India
| | - Srikanta Kanungo
- ICMR-Regional Medical Research Centre, Bhubaneshwar 751023, India
| | - M S Aravind
- Department of Public Health, Amrita Institute of Medical Sciences, Kochi 682041, India
| | - Omesh K Bharti
- State Institute of Health and family Welfare, Himachal Pradesh, India
| | - Joseph K Joseph
- Department of Nephrology, Little Flower Hospital and Research Centre, Angamaly, Kochi 683572, India
| | - Sanghamitra Pati
- ICMR-Regional Medical Research Centre, Bhubaneshwar 751023, India
| |
Collapse
|
4
|
Nachtigall PG, Nystrom GS, Broussard EM, Wray KP, Junqueira-de-Azevedo ILM, Parkinson CL, Margres MJ, Rokyta DR. A Segregating Structural Variant Defines Novel Venom Phenotypes in the Eastern Diamondback Rattlesnake. Mol Biol Evol 2025; 42:msaf058. [PMID: 40101100 PMCID: PMC11965796 DOI: 10.1093/molbev/msaf058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2024] [Revised: 03/03/2025] [Accepted: 03/06/2025] [Indexed: 03/20/2025] Open
Abstract
Of all mutational mechanisms contributing to phenotypic variation, structural variants are both among the most capable of causing major effects as well as the most technically challenging to identify. Intraspecific variation in snake venoms is widely reported, and one of the most dramatic patterns described is the parallel evolution of streamlined neurotoxic rattlesnake venoms from hemorrhagic ancestors by means of deletion of snake venom metalloproteinase (SVMP) toxins and recruitment of neurotoxic dimeric phospholipase A2 (PLA2) toxins. While generating a haplotype-resolved, chromosome-level genome assembly for the eastern diamondback rattlesnake (Crotalus adamanteus), we discovered that our genome animal was heterozygous for a ∼225 Kb deletion containing six SVMP genes, paralleling one of the two steps involved in the origin of neurotoxic rattlesnake venoms. Range-wide population-genomic analysis revealed that, although this deletion is rare overall, it is the dominant homozygous genotype near the northwestern periphery of the species' range, where this species is vulnerable to extirpation. Although major SVMP deletions have been described in at least five other rattlesnake species, C. adamanteus is unique in not additionally gaining neurotoxic PLA2s. Previous work established a superficially complementary north-south gradient in myotoxin (MYO) expression based on copy number variation with high expression in the north and low in the south, yet we found that the SVMP and MYO genotypes vary independently, giving rise to an array of diverse, novel venom phenotypes across the range. Structural variation, therefore, forms the basis for the major axes of geographic venom variation for C. adamanteus.
Collapse
Affiliation(s)
- Pedro G Nachtigall
- Department of Biological Science, Florida State University, Tallahassee, FL, USA
- Laboratório de Toxinologia Aplicada, CeTICS, Instituto Butantan, São Paulo, SP, Brazil
| | - Gunnar S Nystrom
- Department of Biological Science, Florida State University, Tallahassee, FL, USA
| | - Emilie M Broussard
- Department of Biological Science, Florida State University, Tallahassee, FL, USA
| | - Kenneth P Wray
- Biodiversity Center, University of Texas at Austin, Austin, TX, USA
| | | | | | - Mark J Margres
- Department of Integrative Biology, University of South Florida, Tampa, FL, USA
| | - Darin R Rokyta
- Department of Biological Science, Florida State University, Tallahassee, FL, USA
| |
Collapse
|
5
|
Hirst SR, Rautsaw RM, VanHorn CM, Beer MA, McDonald PJ, Rosales García RA, Rodriguez Lopez B, Rubio Rincón A, Franz Chávez H, Vásquez-Cruz V, Kelly Hernández A, Storfer A, Borja M, Castañeda-Gaytán G, Frandsen PB, Parkinson CL, Strickland JL, Margres MJ. Where the "ruber" Meets the Road: Using the Genome of the Red Diamond Rattlesnake to Unravel the Evolutionary Processes Driving Venom Evolution. Genome Biol Evol 2024; 16:evae198. [PMID: 39255072 PMCID: PMC11440179 DOI: 10.1093/gbe/evae198] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Revised: 08/15/2024] [Accepted: 09/02/2024] [Indexed: 09/12/2024] Open
Abstract
Understanding the proximate and ultimate causes of phenotypic variation is fundamental in evolutionary research, as such variation provides the substrate for selection to act upon. Although trait variation can arise due to selection, the importance of neutral processes is sometimes understudied. We presented the first reference-quality genome of the Red Diamond Rattlesnake (Crotalus ruber) and used range-wide 'omic data to estimate the degree to which neutral and adaptive evolutionary processes shaped venom evolution. We characterized population structure and found substantial genetic differentiation across two populations, each with distinct demographic histories. We identified significant differentiation in venom expression across age classes with substantially reduced but discernible differentiation across populations. We then used conditional redundancy analysis to test whether venom expression variation was best predicted by neutral divergence patterns or geographically variable (a)biotic factors. Snake size was the most significant predictor of venom variation, with environment, prey availability, and neutral sequence variation also identified as significant factors, though to a lesser degree. By directly including neutrality in the model, our results confidently highlight the predominant, yet not singular, role of life history in shaping venom evolution.
Collapse
Affiliation(s)
- Samuel R Hirst
- Department of Integrative Biology, University of South Florida, Tampa, FL, USA
| | - Rhett M Rautsaw
- Department of Integrative Biology, University of South Florida, Tampa, FL, USA
- School of Biological Sciences, Washington State University, Pullman, WA, USA
| | - Cameron M VanHorn
- Department of Integrative Biology, University of South Florida, Tampa, FL, USA
| | - Marc A Beer
- School of Biological Sciences, Washington State University, Pullman, WA, USA
| | - Preston J McDonald
- Department of Integrative Biology, University of South Florida, Tampa, FL, USA
| | | | - Bruno Rodriguez Lopez
- Facultad de Ciencias Biológicas, Universidad Juárez del Estado de Durango, Durango, Mexico
| | - Alexandra Rubio Rincón
- Facultad de Ciencias Biológicas, Universidad Juárez del Estado de Durango, Durango, Mexico
| | | | - Víctor Vásquez-Cruz
- Facultad de Ciencias Biológicas y Agropecuarias, Universidad Veracruzana, Veracruz, Mexico
- PIMVS Herpetario Palancoatl, Veracruz, Mexico
| | | | - Andrew Storfer
- School of Biological Sciences, Washington State University, Pullman, WA, USA
| | - Miguel Borja
- Facultad de Ciencias Biológicas, Universidad Juárez del Estado de Durango, Durango, Mexico
| | | | - Paul B Frandsen
- Department of Plant and Wildlife Sciences, Brigham Young University, Provo, UT, USA
| | | | | | - Mark J Margres
- Department of Integrative Biology, University of South Florida, Tampa, FL, USA
| |
Collapse
|
6
|
Entiauspe-Neto OM, Nachtigall PG, Borges-Martins M, Junqueira-de-Azevedo ILM, Grazziotin FG. Highly conserved and extremely variable: The paradoxical pattern of toxin expression revealed by comparative venom-gland transcriptomics of Phalotris (Serpentes: Dipsadidae). Toxicon 2024; 244:107740. [PMID: 38705487 DOI: 10.1016/j.toxicon.2024.107740] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2024] [Revised: 04/11/2024] [Accepted: 04/27/2024] [Indexed: 05/07/2024]
Abstract
Although non-front fanged snakes account for almost two-thirds of snake diversity, most studies on venom composition and evolution focus exclusively on front-fanged species, which comprise most of the clinically relevant accidents. Comprehensive reports on venom composition of non-front fanged snakes are still scarce for several groups. In this study, we address such shortage of knowledge by providing new insights about the venom composition among species of Phalotris, a poorly studied Neotropical dipsadid genus. Phalotris are known for their specialized venom delivery system and toxic venoms, which can cause life-threatening accidents in humans. We evaluate the venom-gland transcriptome of Phalotris, comparing the following three South American species: P. reticulatus for the Araucaria Pine forests, P. lemniscatus for the Pampa grasslands, and P. mertensi for the Brazilian Cerrado. Our results indicate similar venom profiles, in which they share a high expression level of Kunitz-type inhibitors (KUNZ). On the other hand, comparative analyses revealed substantial differences in the expression levels of C-type lectins (CTL) and snake venom metalloproteinases (SVMP). The diverse set of SVMP and CTL isoforms shows signals of positive selection, and we also identified truncated forms of type III SVMPs, which resemble type II and type I SVMPs of viperids. Additionally, we identified a CNP precursor hosting a proline-rich region containing a BPP motif resembling those commonly detected in viperid venoms with hypotensive activity. Altogether, our results suggest an evolutionary history favoring high expression levels of few KUNZ isoforms in Phalotris venoms, contrasting with a highly diverse set of SVMP and CTL isoforms. Such diversity can be comparable with the venom variability observed in some viperids. Our findings highlight the extreme phenotypic diversity of non-front fanged snakes and the importance to allocate greater effort to study neglected groups of Colubroidea.
Collapse
Affiliation(s)
- Omar M Entiauspe-Neto
- Laboratório de Coleções Zoológicas, Instituto Butantan, 05503-900, Av. Vital Brazil, 1500, Butantã, São Paulo, SP, Brazil; Programa de Pós-graduação em Biologia Animal, Departamento de Zoologia, Instituto de Biociências, Universidade Federal do Rio Grande do Sul, Av. Bento Gonçalves, CEP 91501-970, Porto Alegre, RS, Brazil.
| | - Pedro G Nachtigall
- Laboratório de Toxinologia Aplicada, Instituto Butantan, 05503-900, Av. Vital Brazil, 1500, Butantã, São Paulo, SP, Brazil
| | - Márcio Borges-Martins
- Programa de Pós-graduação em Biologia Animal, Departamento de Zoologia, Instituto de Biociências, Universidade Federal do Rio Grande do Sul, Av. Bento Gonçalves, CEP 91501-970, Porto Alegre, RS, Brazil
| | | | - Felipe G Grazziotin
- Laboratório de Coleções Zoológicas, Instituto Butantan, 05503-900, Av. Vital Brazil, 1500, Butantã, São Paulo, SP, Brazil
| |
Collapse
|
7
|
Hogan MP, Holding ML, Nystrom GS, Colston TJ, Bartlett DA, Mason AJ, Ellsworth SA, Rautsaw RM, Lawrence KC, Strickland JL, He B, Fraser P, Margres MJ, Gilbert DM, Gibbs HL, Parkinson CL, Rokyta DR. The genetic regulatory architecture and epigenomic basis for age-related changes in rattlesnake venom. Proc Natl Acad Sci U S A 2024; 121:e2313440121. [PMID: 38578985 PMCID: PMC11032440 DOI: 10.1073/pnas.2313440121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Accepted: 03/13/2024] [Indexed: 04/07/2024] Open
Abstract
Developmental phenotypic changes can evolve under selection imposed by age- and size-related ecological differences. Many of these changes occur through programmed alterations to gene expression patterns, but the molecular mechanisms and gene-regulatory networks underlying these adaptive changes remain poorly understood. Many venomous snakes, including the eastern diamondback rattlesnake (Crotalus adamanteus), undergo correlated changes in diet and venom expression as snakes grow larger with age, providing models for identifying mechanisms of timed expression changes that underlie adaptive life history traits. By combining a highly contiguous, chromosome-level genome assembly with measures of expression, chromatin accessibility, and histone modifications, we identified cis-regulatory elements and trans-regulatory factors controlling venom ontogeny in the venom glands of C. adamanteus. Ontogenetic expression changes were significantly correlated with epigenomic changes within genes, immediately adjacent to genes (e.g., promoters), and more distant from genes (e.g., enhancers). We identified 37 candidate transcription factors (TFs), with the vast majority being up-regulated in adults. The ontogenetic change is largely driven by an increase in the expression of TFs associated with growth signaling, transcriptional activation, and circadian rhythm/biological timing systems in adults with corresponding epigenomic changes near the differentially expressed venom genes. However, both expression activation and repression contributed to the composition of both adult and juvenile venoms, demonstrating the complexity and potential evolvability of gene regulation for this trait. Overall, given that age-based trait variation is common across the tree of life, we provide a framework for understanding gene-regulatory-network-driven life-history evolution more broadly.
Collapse
Affiliation(s)
- Michael P. Hogan
- Department of Biological Science, Florida State University, Tallahassee, FL32306
| | - Matthew L. Holding
- Department of Biological Science, Florida State University, Tallahassee, FL32306
- Life Sciences Institute, University of Michigan, Ann Arbor, MI48109
| | - Gunnar S. Nystrom
- Department of Biological Science, Florida State University, Tallahassee, FL32306
| | - Timothy J. Colston
- Department of Biological Science, Florida State University, Tallahassee, FL32306
- Department of Biology, University of Puerto Rico at Mayagüez, Mayagüez, PR00681
| | - Daniel A. Bartlett
- Department of Biological Science, Florida State University, Tallahassee, FL32306
| | - Andrew J. Mason
- Department of Biological Sciences, Clemson University, Clemson, SC29634
- Department of Evolution, Ecology and Organismal Biology, The Ohio State University, Columbus, OH43210
| | - Schyler A. Ellsworth
- Department of Biological Science, Florida State University, Tallahassee, FL32306
| | - Rhett M. Rautsaw
- Department of Biological Sciences, Clemson University, Clemson, SC29634
- Department of Integrative Biology, University of South Florida, Tampa, FL33620
- School of Biological Sciences, Washington State University, Pullman, WA99164
| | - Kylie C. Lawrence
- Department of Biological Science, Florida State University, Tallahassee, FL32306
| | - Jason L. Strickland
- Department of Biological Sciences, Clemson University, Clemson, SC29634
- Department of Biology, University of South Alabama, Mobile, AL36688
| | - Bing He
- Department of Biological Science, Florida State University, Tallahassee, FL32306
| | - Peter Fraser
- Department of Biological Science, Florida State University, Tallahassee, FL32306
| | - Mark J. Margres
- Department of Integrative Biology, University of South Florida, Tampa, FL33620
| | - David M. Gilbert
- Laboratory of Chromosome Replication and Epigenome Regulation, San Diego Biomedical Research Institute, San Diego, CA92121
| | - H. Lisle Gibbs
- Department of Evolution, Ecology and Organismal Biology, The Ohio State University, Columbus, OH43210
| | - Christopher L. Parkinson
- Department of Biological Sciences, Clemson University, Clemson, SC29634
- Department of Forestry and Environmental Conservation, Clemson University, Clemson, SC29634
| | - Darin R. Rokyta
- Department of Biological Science, Florida State University, Tallahassee, FL32306
| |
Collapse
|
8
|
Phan P, Deshwal A, McMahon TA, Slikas M, Andrews E, Becker B, Kumar TKS. A Review of Rattlesnake Venoms. Toxins (Basel) 2023; 16:2. [PMID: 38276526 PMCID: PMC10818703 DOI: 10.3390/toxins16010002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 12/08/2023] [Accepted: 12/12/2023] [Indexed: 01/27/2024] Open
Abstract
Venom components are invaluable in biomedical research owing to their specificity and potency. Many of these components exist in two genera of rattlesnakes, Crotalus and Sistrurus, with high toxicity and proteolytic activity variation. This review focuses on venom components within rattlesnakes, and offers a comparison and itemized list of factors dictating venom composition, as well as presenting their known characteristics, activities, and significant applications in biosciences. There are 64 families and subfamilies of proteins present in Crotalus and Sistrurus venom. Snake venom serine proteases (SVSP), snake venom metalloproteases (SVMP), and phospholipases A2 (PLA2) are the standard components in Crotalus and Sistrurus venom. Through this review, we highlight gaps in the knowledge of rattlesnake venom; there needs to be more information on the venom composition of three Crotalus species and one Sistrurus subspecies. We discuss the activity and importance of both major and minor components in biomedical research and drug development.
Collapse
Affiliation(s)
- Phuc Phan
- Department of Chemistry and Biochemistry, University of Arkansas, Fayetteville, AR 72701, USA;
| | - Anant Deshwal
- Department of Biology, Bradley University, Peoria, IL 61625, USA; (T.A.M.); (M.S.); (E.A.)
| | - Tyler Anthony McMahon
- Department of Biology, Bradley University, Peoria, IL 61625, USA; (T.A.M.); (M.S.); (E.A.)
| | - Matthew Slikas
- Department of Biology, Bradley University, Peoria, IL 61625, USA; (T.A.M.); (M.S.); (E.A.)
| | - Elodie Andrews
- Department of Biology, Bradley University, Peoria, IL 61625, USA; (T.A.M.); (M.S.); (E.A.)
| | - Brian Becker
- Department of Biological Sciences, University of Arkansas, Fayetteville, AR 72701, USA;
| | | |
Collapse
|
9
|
Heptinstall TC, Strickland JL, Rosales-Garcia RA, Rautsaw RM, Simpson CL, Nystrom GS, Ellsworth SA, Hogan MP, Borja M, Fernandes Campos P, Grazziotin FG, Rokyta DR, Junqueira-de-Azevedo ILM, Parkinson CL. Venom phenotype conservation suggests integrated specialization in a lizard-eating snake. Toxicon 2023; 229:107135. [PMID: 37146732 PMCID: PMC11000244 DOI: 10.1016/j.toxicon.2023.107135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Revised: 04/18/2023] [Accepted: 04/24/2023] [Indexed: 05/07/2023]
Abstract
Biological specialization reduces the size of niche space while increasing efficiency in the use of available resources. Specialization often leads to phenotypic changes via natural selection aligning with niche space constraints. Commonly observed changes are in size, shape, behavior, and traits associated with feeding. One often selected trait for dietary specialization is venom, which, in snakes, often shows variation dependent on diet across and within species. The Neotropical Blunt-headed Treesnake (Imantodes cenchoa) is a highly specialized, rear-fanged, arboreal, lizard hunter that displays a long thin body, enlarged eyes, and a large Duvernoy's gland. However, toxin characterization of I. cenchoa has never been completed. Here, we use RNA-seq and mass spectrometry to assemble, annotate, and analyze the venom gland transcriptomes of four I. cenchoa from across their range. We find a lack of significant venom variation at the sequence and expression levels, suggesting venom conservation across the species. We propose this conservation provides evidence of a specialized venom repertoire, adapted to maximize efficiency of capturing and processing lizards. Importantly, this study provides the most complete venom gland transcriptomes of I. cenchoa and evidence of venom specialization in a rear-fanged snake, giving insight into selective pressures of venom across all snake species.
Collapse
Affiliation(s)
| | - Jason L Strickland
- Department of Biological Sciences, Clemson University, Clemson, SC, 29634, USA; Department of Biology, University of South Alabama, Mobile, AL, 36688, USA
| | | | - Rhett M Rautsaw
- Department of Biological Sciences, Clemson University, Clemson, SC, 29634, USA; School of Biological Sciences, Washington State University, Pullman, WA, 99164, USA; Department of Integrative Biology, University of South Florida, Tampa, FL, 33620, USA
| | - Cassandra L Simpson
- Department of Biological Sciences, Clemson University, Clemson, SC, 29634, USA
| | - Gunnar S Nystrom
- Department of Biological Science, Florida State University, Tallahassee, FL, 32306, USA
| | - Schyler A Ellsworth
- Department of Biological Science, Florida State University, Tallahassee, FL, 32306, USA
| | - Michael P Hogan
- Department of Biological Science, Florida State University, Tallahassee, FL, 32306, USA
| | - Miguel Borja
- Facultad de Ciencias Biológicas, Universdad Juárez del Estado de Durango, Av. Universidad s/n. Fracc. Filadelfia, C.P. 35070, Gómez Palacio, Dgo., Mexico
| | | | - Felipe G Grazziotin
- Laboratório Especial de Colecões Zoológicas, Instituto Butantan, São Paulo, São Paulo, Brazil
| | - Darin R Rokyta
- Department of Biological Science, Florida State University, Tallahassee, FL, 32306, USA
| | | | - Christopher L Parkinson
- Department of Biological Sciences, Clemson University, Clemson, SC, 29634, USA; Department of Forestry and Environmental Conservation, Clemson University, Clemson, SC, 29634, USA.
| |
Collapse
|
10
|
Myers EA, Strickland JL, Rautsaw RM, Mason AJ, Schramer TD, Nystrom GS, Hogan MP, Yooseph S, Rokyta DR, Parkinson CL. De Novo Genome Assembly Highlights the Role of Lineage-Specific Gene Duplications in the Evolution of Venom in Fea's Viper (Azemiops feae). Genome Biol Evol 2022; 14:evac082. [PMID: 35670514 PMCID: PMC9256536 DOI: 10.1093/gbe/evac082] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/25/2022] [Indexed: 11/12/2022] Open
Abstract
Despite the medical significance to humans and important ecological roles filled by vipers, few high-quality genomic resources exist for these snakes outside of a few genera of pitvipers. Here we sequence, assemble, and annotate the genome of Fea's Viper (Azemiops feae). This taxon is distributed in East Asia and belongs to a monotypic subfamily, sister to the pitvipers. The newly sequenced genome resulted in a 1.56 Gb assembly, a contig N50 of 1.59 Mb, with 97.6% of the genome assembly in contigs >50 Kb, and a BUSCO completeness of 92.4%. We found that A. feae venom is primarily composed of phospholipase A2 (PLA2) proteins expressed by genes that likely arose from lineage-specific PLA2 gene duplications. Additionally, we show that renin, an enzyme associated with blood pressure regulation in mammals and known from the venoms of two viper species including A. feae, is expressed in the venom gland at comparative levels to known toxins and is present in the venom proteome. The cooption of this gene as a toxin may be more widespread in viperids than currently known. To investigate the historical population demographics of A. feae, we performed coalescent-based analyses and determined that the effective population size has remained stable over the last 100 kyr. This suggests Quaternary glacial cycles likely had minimal influence on the demographic history of A. feae. This newly assembled genome will be an important resource for studying the genomic basis of phenotypic evolution and understanding the diversification of venom toxin gene families.
Collapse
Affiliation(s)
- Edward A Myers
- Department of Biological Sciences, Clemson University, Clemson, SC 29634, USA
| | - Jason L Strickland
- Department of Biological Sciences, Clemson University, Clemson, SC 29634, USA
- Department of Biology, University of South Alabama, Mobile, AL 36688, USA
| | - Rhett M Rautsaw
- Department of Biological Sciences, Clemson University, Clemson, SC 29634, USA
| | - Andrew J Mason
- Department of Biological Sciences, Clemson University, Clemson, SC 29634, USA
- Department of Evolution, Ecology and Organismal Biology, The Ohio State University, Columbus, OH 43210, USA
| | - Tristan D Schramer
- Department of Biological Sciences, Clemson University, Clemson, SC 29634, USA
| | - Gunnar S Nystrom
- Department of Biological Science, Florida State University, Tallahassee, FL 32306, USA
| | - Michael P Hogan
- Department of Biological Science, Florida State University, Tallahassee, FL 32306, USA
| | - Shibu Yooseph
- Department of Computer Science, Genomics and Bioinformatics Cluster, University of Central Florida, 4000 Central Florida Blvd, Orlando, FL 32816, USA
| | - Darin R Rokyta
- Department of Biological Science, Florida State University, Tallahassee, FL 32306, USA
| | - Christopher L Parkinson
- Department of Biological Sciences, Clemson University, Clemson, SC 29634, USA
- Department of Forestry and Environmental Conservation, Clemson University, Clemson, SC 29634, USA
| |
Collapse
|
11
|
Differences in PLA2 Constitution Distinguish the Venom of Two Endemic Brazilian Mountain Lanceheads, Bothrops cotiara and Bothrops fonsecai. Toxins (Basel) 2022; 14:toxins14040237. [PMID: 35448846 PMCID: PMC9028134 DOI: 10.3390/toxins14040237] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Revised: 02/15/2022] [Accepted: 02/23/2022] [Indexed: 02/01/2023] Open
Abstract
Interspecific differences in snake venom compositions can result from distinct regulatory mechanisms acting in each species. However, comparative analyses focusing on identifying regulatory elements and patterns that led to distinct venom composition are still scarce. Among venomous snakes, Bothrops cotiara and Bothrops fonsecai represent ideal models to complement our understanding of the regulatory mechanisms of venom production. These recently diverged species share a similar specialized diet, habitat, and natural history, but each presents a distinct venom phenotype. Here, we integrated data from the venom gland transcriptome and miRNome and the venom proteome of B. fonsecai and B. cotiara to better understand the regulatory mechanisms that may be acting to produce differing venom compositions. We detected not only the presence of similar toxin isoforms in both species but also distinct expression profiles of phospholipases A2 (PLA2) and some snake venom metalloproteinases (SVMPs) and snake venom serine proteinases (SVSPs) isoforms. We found evidence of modular expression regulation of several toxin isoforms implicated in venom divergence and observed correlated expression of several transcription factors. We did not find strong evidence for miRNAs shaping interspecific divergence of the venom phenotypes, but we identified a subset of toxin isoforms whose final expression may be fine-tuned by specific miRNAs. Sequence analysis on orthologous toxins showed a high rate of substitutions between PLA2s, which indicates that these toxins may be under strong positive selection or represent paralogous toxins in these species. Our results support other recent studies in suggesting that gene regulation is a principal mode of venom evolution across recent timescales, especially among species with conserved ecotypes.
Collapse
|
12
|
Zdenek CN, Chowdhury A, Haw GYH, Violette A, Fourmy R, Christ T, Vonk FJ, Fry BG. Taxon-selective venom variation in adult and neonate Daboia russelii (Russell's Viper), and antivenom efficacy. Toxicon 2022; 205:11-19. [PMID: 34752826 DOI: 10.1016/j.toxicon.2021.11.004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Revised: 10/16/2021] [Accepted: 11/03/2021] [Indexed: 10/19/2022]
Abstract
Major variations in venom composition can occur between juvenile and adult venomous snakes. However, due to logistical constraints, antivenoms are produced using adult venoms in immunising mixtures, possibly resulting in limited neutralisation of juvenile snake venoms. Daboia russelii is one of the leading causes of snakebite death across South Asia. Its venom is potently procoagulant, causing stroke in prey animals but causing in humans consumptive coagulopathy-a net anticoagulant state-and sometimes death resulting from hemorrhage. In this in vitro study, we compared the venom activity of-and antivenom efficacy against-six 2-week-old D. russelii relative to that of their parents. Using a coagulation analyser, we quantified the relative coagulotoxicity of these venoms in human, avian, and amphibian plasma. The overall potency on human plasma was similar across all adult and neonate venoms, and SII (Serum Institute of India) antivenom was equipotent in neutralising these coagulotoxic effects. In addition, all venoms were also similar in their action upon avian plasma. In contrast, the neonate venoms were more potent on amphibian plasma, suggesting amphibians make up a larger proportion of neonate diet than adult diet. A similar venom potency in human and avian plasmas but varying selectivity for amphibian plasma suggests ontogenetic differences in toxin isoforms within the factor X or factor V activating classes, thereby providing a testable hypothesis for future transcriptomics work. By providing insights into the functional venom differences between adult and neonate D. russelii venoms, we hope to inform clinical treatment of patients envenomated by this deadly species and to shed new light on the natural history of these extremely medically important snakes.
Collapse
Affiliation(s)
- Christina N Zdenek
- Venom Evolution Lab, School of Biological Sciences, University of Queensland, St Lucia, Qld, 4072, Australia
| | - Abhinandan Chowdhury
- Venom Evolution Lab, School of Biological Sciences, University of Queensland, St Lucia, Qld, 4072, Australia
| | - Grace Y H Haw
- Venom Evolution Lab, School of Biological Sciences, University of Queensland, St Lucia, Qld, 4072, Australia
| | - Aude Violette
- Alphabiotoxine Laboratory Sprl, Barberie 15, 7911, Montroeul-au-bois, Belgium
| | - Rudy Fourmy
- Alphabiotoxine Laboratory Sprl, Barberie 15, 7911, Montroeul-au-bois, Belgium
| | | | - Freek J Vonk
- Naturalis Biodiversity Center, Leiden, the Netherlands; Division of BioAnalytical Chemistry, Amsterdam Institute of Molecular and Life Sciences, Vrije Universiteit Amsterdam, De Boelelaan 1085, 1081, HV, Amsterdam, the Netherlands.
| | - Bryan G Fry
- Venom Evolution Lab, School of Biological Sciences, University of Queensland, St Lucia, Qld, 4072, Australia.
| |
Collapse
|
13
|
Schramer TD, Rautsaw RM, Bayona-Serrano JD, Nystrom GS, West TR, Ortiz-Medina JA, Sabido-Alpuche B, Meneses-Millán M, Borja M, Junqueira-de-Azevedo ILM, Rokyta DR, Parkinson CL. An integrative view of the toxic potential of Conophis lineatus (Dipsadidae: Xenodontinae), a medically relevant rear-fanged snake. Toxicon 2021; 205:38-52. [PMID: 34793822 DOI: 10.1016/j.toxicon.2021.11.009] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Revised: 10/25/2021] [Accepted: 11/10/2021] [Indexed: 10/19/2022]
Abstract
Most traditional research on snake venoms has focused on front-fanged snake families (Viperidae, Elapidae, and Atractaspididae). However, venom is now generally accepted as being a much more broadly possessed trait within snakes, including species traditionally considered harmless. Unfortunately, due to historical inertia and methodological challenges, the toxin repertoires of non-front-fanged snake families (e.g., Colubridae, Dipsadidae, and Natricidae) have been heavily neglected despite the knowledge of numerous species capable of inflicting medically relevant envenomations. Integrating proteomic data for validation, we perform a de novo assembly and analysis of the Duvernoy's venom gland transcriptome of the Central American Road Guarder (Dipsadidae: Xenodontinae: Conophis lineatus), a species known for its potent bite. We identified 28 putative toxin transcripts from 13 toxin families in the Duvernoy's venom gland transcriptome, comprising 63.7% of total transcriptome expression. In addition to ubiquitous snake toxin families, we proteomically confirmed several atypical venom components. The most highly expressed toxins (55.6% of total toxin expression) were recently described snake venom matrix metalloproteases (svMMPs), with 48.0% of svMMP expression contributable to a novel svMMP isoform. We investigate the evolution of the new svMMP isoform in the context of rear-fanged snakes using phylogenetics. Finally, we examine the morphology of the venom apparatus using μCT and explore how the venom relates to autecology and the highly hemorrhagic effects seen in human envenomations. Importantly, we provide the most complete venom characterization of this medically relevant snake species to date, producing insights into the effects and evolution of its venom, and point to future research directions to better understand the venoms of 'harmless' non-front-fanged snakes.
Collapse
Affiliation(s)
- Tristan D Schramer
- Department of Biological Sciences, Clemson University, Clemson, SC, USA.
| | - Rhett M Rautsaw
- Department of Biological Sciences, Clemson University, Clemson, SC, USA
| | | | - Gunnar S Nystrom
- Department of Biological Science, Florida State University, Tallahassee, FL, USA
| | - Taylor R West
- Department of Ecology and Evolutionary Biology, University of Michigan, Ann Arbor, MI, USA
| | - Javier A Ortiz-Medina
- Departamento de Sistemática y Ecología Acuática, El Colegio de La Frontera Sur, Unidad Chetumal, Chetumal, Quintana Roo, Mexico; Unidad de Manejo para La Conservación de La Vida Silvestre, Tsáab Kaan, Baca, Yucatán, Mexico; HERP.MX A.C., Villa de Álvarez, Colima, Mexico
| | - Bianca Sabido-Alpuche
- Unidad de Manejo para La Conservación de La Vida Silvestre, Tsáab Kaan, Baca, Yucatán, Mexico
| | - Marcos Meneses-Millán
- Unidad de Manejo para La Conservación de La Vida Silvestre, Tsáab Kaan, Baca, Yucatán, Mexico
| | - Miguel Borja
- Facultad de Ciencias Biológicas, Universidad Juárez Del Estado de Durango, Gómez Palacio, Durango, Mexico
| | - Inácio L M Junqueira-de-Azevedo
- Laboratório de Toxinologia Aplicada, Instituto Butantan, São Paulo, Brazil; Center of Toxins, Immune-Response and Cell Signaling (CeTICS), São Paulo, Brazil
| | - Darin R Rokyta
- Department of Biological Science, Florida State University, Tallahassee, FL, USA
| | - Christopher L Parkinson
- Department of Biological Sciences, Clemson University, Clemson, SC, USA; Department of Forestry and Environmental Conservation, Clemson University, Clemson, SC, USA.
| |
Collapse
|
14
|
Attarde S, Khochare S, Iyer A, Dam P, Martin G, Sunagar K. Venomics of the Enigmatic Andaman Cobra ( Naja sagittifera) and the Preclinical Failure of Indian Antivenoms in Andaman and Nicobar Islands. Front Pharmacol 2021; 12:768210. [PMID: 34759827 PMCID: PMC8573199 DOI: 10.3389/fphar.2021.768210] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Accepted: 10/05/2021] [Indexed: 11/13/2022] Open
Abstract
The Andaman and Nicobar Islands are an abode to a diversity of flora and fauna, including the many endemic species of snakes, such as the elusive Andaman cobra (Naja sagittifera). However, the ecology and evolution of venomous snakes inhabiting these islands have remained entirely uninvestigated. This study aims to bridge this knowledge gap by investigating the evolutionary history of N. sagittifera and its venom proteomic, biochemical and toxicity profile. Phylogenetic reconstructions confirmed the close relationship between N. sagittifera and the Southeast Asian monocellate cobra (N. kaouthia). Overlooking this evolutionary history, a polyvalent antivenom manufactured using the venom of the spectacled cobra (N. naja) from mainland India is used for treating N. sagittifera envenomations. Comparative evaluation of venoms of these congeners revealed significant differences in their composition, functions and potencies. Given the close phylogenetic relatedness between N. sagittifera and N. kaouthia, we further assessed the cross-neutralising efficacy of Thai monovalent N. kaouthia antivenom against N. sagittifera venoms. Our findings revealed the inadequate preclinical performance of the Indian polyvalent and Thai monovalent antivenoms in neutralising N. sagittifera venoms. Moreover, the poor efficacy of the polyvalent antivenom against N. naja venom from southern India further revealed the critical need to manufacture region-specific Indian antivenoms.
Collapse
Affiliation(s)
- Saurabh Attarde
- Evolutionary Venomics Lab, Centre for Ecological Sciences, Indian Institute of Science, Bangalore, India
| | - Suyog Khochare
- Evolutionary Venomics Lab, Centre for Ecological Sciences, Indian Institute of Science, Bangalore, India
| | - Ashwin Iyer
- Evolutionary Venomics Lab, Centre for Ecological Sciences, Indian Institute of Science, Bangalore, India
| | - Paulomi Dam
- Evolutionary Venomics Lab, Centre for Ecological Sciences, Indian Institute of Science, Bangalore, India
| | | | - Kartik Sunagar
- Evolutionary Venomics Lab, Centre for Ecological Sciences, Indian Institute of Science, Bangalore, India
| |
Collapse
|
15
|
Modahl CM, Saviola AJ, Mackessy SP. Integration of transcriptomic and proteomic approaches for snake venom profiling. Expert Rev Proteomics 2021; 18:827-834. [PMID: 34663159 DOI: 10.1080/14789450.2021.1995357] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
INTRODUCTION Snake venoms contain many protein and peptide isoforms with high levels of sequence variation, even within a single species. AREAS COVERED In this review, we highlight several examples, from both published and unpublished work in our lab, demonstrating how a combined venom gland transcriptome and proteome methodology allows for comprehensive characterization of venoms, including those from understudied rear-fanged snake species, and we provide recommendations for using these approaches. EXPERT OPINION When characterizing venoms, peptide mass fingerprinting using databases built predominately from protein sequences originating from model organisms can be disadvantageous, especially when the intention is to document protein diversity. Therefore, the use of species-specific venom gland transcriptomes corrects for the absence of these unique peptide sequences in databases. The integration of transcriptomics and proteomics improves the accuracy of either approach alone for venom profiling.
Collapse
Affiliation(s)
| | - Anthony J Saviola
- Department of Biochemistry and Molecular Genetics, University of Colorado Anschutz Medical Campus, Aurora, USA
| | - Stephen P Mackessy
- School of Biological Sciences, University of Northern Colorado, Greeley, USA
| |
Collapse
|
16
|
Deshwal A, Phan P, Datta J, Kannan R, Thallapuranam SK. A Meta-Analysis of the Protein Components in Rattlesnake Venom. Toxins (Basel) 2021; 13:toxins13060372. [PMID: 34071038 DOI: 10.3390/toxins13060372] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2021] [Revised: 05/20/2021] [Accepted: 05/21/2021] [Indexed: 11/16/2022] Open
Abstract
The specificity and potency of venom components give them a unique advantage in developing various pharmaceutical drugs. Though venom is a cocktail of proteins, rarely are the synergy and association between various venom components studied. Understanding the relationship between various components of venom is critical in medical research. Using meta-analysis, we observed underlying patterns and associations in the appearance of the toxin families. For Crotalus, Dis has the most associations with the following toxins: PDE; BPP; CRL; CRiSP; LAAO; SVMP P-I and LAAO; SVMP P-III and LAAO. In Sistrurus venom, CTL and NGF have the most associations. These associations can predict the presence of proteins in novel venom and understand synergies between venom components for enhanced bioactivity. Using this approach, the need to revisit the classification of proteins as major components or minor components is highlighted. The revised classification of venom components is based on ubiquity, bioactivity, the number of associations, and synergies. The revised classification can be expected to trigger increased research on venom components, such as NGF, which have high biomedical significance. Using hierarchical clustering, we observed that the genera's venom compositions were similar, based on functional characteristics rather than phylogenetic relationships.
Collapse
Affiliation(s)
- Anant Deshwal
- Division of Biology, University of Tennessee, Knoxville, TN 37996, USA
| | - Phuc Phan
- Department of Chemistry and Biochemistry, University of Arkansas, Fayetteville, AR 72701, USA
| | - Jyotishka Datta
- Department of Statistics, Virginia Polytechnic Institute and State University, Blacksburg, VA 24061, USA
| | - Ragupathy Kannan
- Department of Biology, University of Arkansas-Fort Smith, Fort Smith, AR 72913, USA
| | | |
Collapse
|
17
|
Hofmann EP, Rautsaw RM, Mason AJ, Strickland JL, Parkinson CL. Duvernoy's Gland Transcriptomics of the Plains Black-Headed Snake, Tantilla nigriceps (Squamata, Colubridae): Unearthing the Venom of Small Rear-Fanged Snakes. Toxins (Basel) 2021; 13:336. [PMID: 34066626 PMCID: PMC8148590 DOI: 10.3390/toxins13050336] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Revised: 05/03/2021] [Accepted: 05/04/2021] [Indexed: 12/13/2022] Open
Abstract
The venoms of small rear-fanged snakes (RFS) remain largely unexplored, despite increased recognition of their importance in understanding venom evolution more broadly. Sequencing the transcriptome of venom-producing glands has greatly increased the ability of researchers to examine and characterize the toxin repertoire of small taxa with low venom yields. Here, we use RNA-seq to characterize the Duvernoy's gland transcriptome of the Plains Black-headed Snake, Tantilla nigriceps, a small, semi-fossorial colubrid that feeds on a variety of potentially dangerous arthropods including centipedes and spiders. We generated transcriptomes of six individuals from three localities in order to both characterize the toxin expression of this species for the first time, and to look for initial evidence of venom variation in the species. Three toxin families-three-finger neurotoxins (3FTxs), cysteine-rich secretory proteins (CRISPs), and snake venom metalloproteinases (SVMPIIIs)-dominated the transcriptome of T. nigriceps; 3FTx themselves were the dominant toxin family in most individuals, accounting for as much as 86.4% of an individual's toxin expression. Variation in toxin expression between individuals was also noted, with two specimens exhibiting higher relative expression of c-type lectins than any other sample (8.7-11.9% compared to <1%), and another expressed CRISPs higher than any other toxin. This study provides the first Duvernoy's gland transcriptomes of any species of Tantilla, and one of the few transcriptomic studies of RFS not predicated on a single individual. This initial characterization demonstrates the need for further study of toxin expression variation in this species, as well as the need for further exploration of small RFS venoms.
Collapse
Affiliation(s)
- Erich P. Hofmann
- Department of Biological Sciences, Clemson University, Clemson, SC 29634, USA; (E.P.H.); (R.M.R.); (A.J.M.); (J.L.S.)
| | - Rhett M. Rautsaw
- Department of Biological Sciences, Clemson University, Clemson, SC 29634, USA; (E.P.H.); (R.M.R.); (A.J.M.); (J.L.S.)
| | - Andrew J. Mason
- Department of Biological Sciences, Clemson University, Clemson, SC 29634, USA; (E.P.H.); (R.M.R.); (A.J.M.); (J.L.S.)
| | - Jason L. Strickland
- Department of Biological Sciences, Clemson University, Clemson, SC 29634, USA; (E.P.H.); (R.M.R.); (A.J.M.); (J.L.S.)
| | - Christopher L. Parkinson
- Department of Biological Sciences, Clemson University, Clemson, SC 29634, USA; (E.P.H.); (R.M.R.); (A.J.M.); (J.L.S.)
- Department of Forestry and Environmental Conservation, Clemson University, Clemson, SC 29634, USA
| |
Collapse
|
18
|
Remarkable intrapopulation venom variability in the monocellate cobra (Naja kaouthia) unveils neglected aspects of India's snakebite problem. J Proteomics 2021; 242:104256. [PMID: 33957314 DOI: 10.1016/j.jprot.2021.104256] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Revised: 04/29/2021] [Accepted: 05/01/2021] [Indexed: 11/20/2022]
Abstract
Interpopulation venom variation has been widely documented in snakes across large geographical distances. This variability is known to markedly influence the effectiveness of snakebite therapy, as antivenoms manufactured against one population may not be effective against others. In contrast, the extent of intrapopulation venom variability, especially at finer geographical scales, remains largely uninvestigated. Moreover, given the historical focus on the 'big four' Indian snakes, our understanding of venom variation in medically important yet neglected snakes, such as the monocellate cobra (Naja kaouthia), remains unclear. To address this shortcoming, we investigated N. kaouthia venoms sampled across a small spatial scale (<50 km) in Eastern India. An interdisciplinary approach employed in this study unveiled considerable intrapopulation differences in the venom proteomic composition, pharmacological and biochemical activities, and toxicity profiles. Documentation of stark differences in venoms at such a finer geographical scale, despite the influence of similar ecological and environmental conditions, is intriguing. Furthermore, evaluation of in vitro and in vivo venom recognition and neutralisation potential of Indian polyvalent 'big four' antivenoms and Thai monovalent N. kaouthia antivenom revealed concerning deficiencies. These results highlight the negative impact of phylogenetic divergence and intrapopulation snake venom variation on the effectiveness of conventional antivenom therapy. SIGNIFICANCE: In contrast to our understanding of snake venom variation across large distances, which is theorised to be shaped by disparities in ecology and environment, intrapopulation variation at finer geographic scales remains scarcely investigated. Assessment of intrapopulation venom variability in Naja kaouthia at a small spatial scale (<50 km) in Eastern India unravelled considerable differences in venom compositions, activities and potencies. While the influence of subtle differences in prey preference and local adaptations cannot be ruled out, these findings, perhaps, also emphasise the role of accelerated molecular evolutionary regimes that rapidly introduce variations in evolutionarily younger lineages, such as advanced snakes. The inability of 'big four' Indian antivenoms and Thai N. kaouthia monovalent antivenom in countering these variations highlights the importance of phylogenetic considerations for the development of efficacious snakebite therapy. Thus, we provide valuable insights into the venoms of one of the most medically important yet neglected Indian snakes.
Collapse
|
19
|
The Chemosensory Repertoire of the Eastern Diamondback Rattlesnake (Crotalus adamanteus) Reveals Complementary Genetics of Olfactory and Vomeronasal-Type Receptors. J Mol Evol 2021; 89:313-328. [PMID: 33881604 DOI: 10.1007/s00239-021-10007-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Accepted: 03/22/2021] [Indexed: 01/14/2023]
Abstract
Pitviper sensory perception incorporates diverse stimuli through the integration of trichromatic color vision, bifocal heat-sensing, and dual-system chemoperception. Chemoperception, or olfaction, is mediated by chemoreceptors in the olfactory bulb and the vomeronasal organ, but the true genomic complexity of the gene families and their relative contributions is unknown. A full genomic accounting of pitviper chemoperception directly complements our current understanding of their venoms by generating a more complete polyphenic representation of their predatory arsenal. To characterize the genetic repertoire of pitviper chemoperception, we analyzed a full-genome assembly for Crotalus adamanteus, the eastern diamondback rattlesnake. We identified hundreds of genes encoding both olfactory receptors (ORs; 362 full-length genes) and type-2 vomeronasal receptors (V2Rs; 430 full-length genes). Many chemoreceptor genes are organized into large tandem repeat arrays. Comparative analysis of V2R orthologs across squamates demonstrates how gene array expansion and contraction underlies the evolution of the chemoreceptor repertoire, which likely reflects shifts in life history traits. Chromosomal assignments of chemosensory genes identified sex chromosome specific chemoreceptor genes, providing gene candidates underlying observed sex-specific chemosensory-based behaviors. We detected widespread episodic evolution in the extracellular, ligand-binding domains of both ORs and V2Rs, suggesting the diversification of chemoreceptors is driven by transient periods of positive selection. We provide a robust genetic framework for studying pitviper chemosensory ecology and evolution.
Collapse
|
20
|
Senji Laxme RR, Attarde S, Khochare S, Suranse V, Martin G, Casewell NR, Whitaker R, Sunagar K. Biogeographical venom variation in the Indian spectacled cobra (Naja naja) underscores the pressing need for pan-India efficacious snakebite therapy. PLoS Negl Trop Dis 2021; 15:e0009150. [PMID: 33600405 PMCID: PMC7924803 DOI: 10.1371/journal.pntd.0009150] [Citation(s) in RCA: 63] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2020] [Revised: 03/02/2021] [Accepted: 01/18/2021] [Indexed: 01/08/2023] Open
Abstract
Background Snake venom composition is dictated by various ecological and environmental factors, and can exhibit dramatic variation across geographically disparate populations of the same species. This molecular diversity can undermine the efficacy of snakebite treatments, as antivenoms produced against venom from one population may fail to neutralise others. India is the world’s snakebite hotspot, with 58,000 fatalities and 140,000 morbidities occurring annually. Spectacled cobra (Naja naja) and Russell’s viper (Daboia russelii) are known to cause the majority of these envenomations, in part due to their near country-wide distributions. However, the impact of differing ecologies and environment on their venom compositions has not been comprehensively studied. Methods Here, we used a multi-disciplinary approach consisting of venom proteomics, biochemical and pharmacological analyses, and in vivo research to comparatively analyse N. naja venoms across a broad region (>6000 km; seven populations) covering India’s six distinct biogeographical zones. Findings By generating the most comprehensive pan-Indian proteomic and toxicity profiles to date, we unveil considerable differences in the composition, pharmacological effects and potencies of geographically-distinct venoms from this species and, through the use of immunological assays and preclinical experiments, demonstrate alarming repercussions on antivenom therapy. We find that commercially-available antivenom fails to effectively neutralise envenomations by the pan-Indian populations of N. naja, including a complete lack of neutralisation against the desert Naja population. Conclusion Our findings highlight the significant influence of ecology and environment on snake venom composition and potency, and stress the pressing need to innovate pan-India effective antivenoms to safeguard the lives, limbs and livelihoods of the country’s 200,000 annual snakebite victims. Annually, India is burdened by the highest number of snake envenomations across the globe, with over 58,000 fatalities and three times the number of morbidities, predominantly affecting the rural agrarian communities. The spectacled cobra (Naja naja) and Russell’s viper (Daboia russelii) are responsible for the vast majority of envenomations in the country, in part, due to their near country-wide distributions. In this study, we unveil the astounding differences in venom composition of N. naja from six different biogeographical zones across the country (>6000 km). We provide a comprehensive account of their disparate venom proteomic profiles, biochemical and pharmacological effects, and the associated potencies. Our study uncovers alarming differences in the efficacy of the marketed polyvalent antivenoms in neutralising these venoms, thereby, emphasising the pressing need to develop dose-efficacious and pan-India effective antivenoms for the treatment of snakebites in the country. This study also highlights the significant influence of ecology and diverse environments on the venom variability, insinuating the necessity for innovating cost-effective and pan-India efficacious solutions to safeguard the lives, limbs and livelihoods of India’s two hundred thousand annual snakebite victims.
Collapse
Affiliation(s)
- R. R. Senji Laxme
- Evolutionary Venomics Lab. Centre for Ecological Sciences, Indian Institute of Science, Bangalore, Karnataka, India
| | - Saurabh Attarde
- Evolutionary Venomics Lab. Centre for Ecological Sciences, Indian Institute of Science, Bangalore, Karnataka, India
| | - Suyog Khochare
- Evolutionary Venomics Lab. Centre for Ecological Sciences, Indian Institute of Science, Bangalore, Karnataka, India
| | - Vivek Suranse
- Evolutionary Venomics Lab. Centre for Ecological Sciences, Indian Institute of Science, Bangalore, Karnataka, India
| | - Gerard Martin
- The Liana Trust, Survey #1418/1419 Rathnapuri, Hunsur, Karnataka, India
| | - Nicholas R. Casewell
- Centre for Snakebite Research & Interventions, Liverpool School of Tropical Medicine, Pembroke Place, Liverpool, United Kingdom
| | - Romulus Whitaker
- Madras Crocodile Bank Trust/Centre for Herpetology, Mamallapuram, Tamil Nadu, India
| | - Kartik Sunagar
- Evolutionary Venomics Lab. Centre for Ecological Sciences, Indian Institute of Science, Bangalore, Karnataka, India
- * E-mail:
| |
Collapse
|
21
|
Sunagar K, Khochare S, Senji Laxme RR, Attarde S, Dam P, Suranse V, Khaire A, Martin G, Captain A. A Wolf in Another Wolf's Clothing: Post-Genomic Regulation Dictates Venom Profiles of Medically-Important Cryptic Kraits in India. Toxins (Basel) 2021; 13:toxins13010069. [PMID: 33477742 PMCID: PMC7832344 DOI: 10.3390/toxins13010069] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Revised: 12/30/2020] [Accepted: 01/01/2021] [Indexed: 12/21/2022] Open
Abstract
The Common Krait (Bungarus caeruleus) shares a distribution range with many other ‘phenotypically-similar’ kraits across the Indian subcontinent. Despite several reports of fatal envenomings by other Bungarus species, commercial Indian antivenoms are only manufactured against B. caeruleus. It is, therefore, imperative to understand the distribution of genetically distinct lineages of kraits, the compositional differences in their venoms, and the consequent impact of venom variation on the (pre)clinical effectiveness of antivenom therapy. To address this knowledge gap, we conducted phylogenetic and comparative venomics investigations of kraits in Southern and Western India. Phylogenetic reconstructions using mitochondrial markers revealed a new species of krait, Romulus’ krait (Bungarus romulusi sp. nov.), in Southern India. Additionally, we found that kraits with 17 mid-body dorsal scale rows in Western India do not represent a subspecies of the Sind Krait (B. sindanus walli) as previously believed, but are genetically very similar to B. sindanus in Pakistan. Furthermore, venom proteomics and comparative transcriptomics revealed completely contrasting venom profiles. While the venom gland transcriptomes of all three species were highly similar, venom proteomes and toxicity profiles differed significantly, suggesting the prominent role of post-genomic regulatory mechanisms in shaping the venoms of these cryptic kraits. In vitro venom recognition and in vivo neutralisation experiments revealed a strong negative impact of venom variability on the preclinical performance of commercial antivenoms. While the venom of B. caeruleus was neutralised as per the manufacturer’s claim, performance against the venoms of B. sindanus and B. romulusi was poor, highlighting the need for regionally-effective antivenoms in India.
Collapse
Affiliation(s)
- Kartik Sunagar
- Evolutionary Venomics Lab, Centre for Ecological Sciences, Indian Institute of Science, Bangalore 560012, Karnataka, India; (S.K.); (R.R.S.L.); (S.A.); (P.D.); (V.S.)
- Correspondence:
| | - Suyog Khochare
- Evolutionary Venomics Lab, Centre for Ecological Sciences, Indian Institute of Science, Bangalore 560012, Karnataka, India; (S.K.); (R.R.S.L.); (S.A.); (P.D.); (V.S.)
| | - R. R. Senji Laxme
- Evolutionary Venomics Lab, Centre for Ecological Sciences, Indian Institute of Science, Bangalore 560012, Karnataka, India; (S.K.); (R.R.S.L.); (S.A.); (P.D.); (V.S.)
| | - Saurabh Attarde
- Evolutionary Venomics Lab, Centre for Ecological Sciences, Indian Institute of Science, Bangalore 560012, Karnataka, India; (S.K.); (R.R.S.L.); (S.A.); (P.D.); (V.S.)
| | - Paulomi Dam
- Evolutionary Venomics Lab, Centre for Ecological Sciences, Indian Institute of Science, Bangalore 560012, Karnataka, India; (S.K.); (R.R.S.L.); (S.A.); (P.D.); (V.S.)
| | - Vivek Suranse
- Evolutionary Venomics Lab, Centre for Ecological Sciences, Indian Institute of Science, Bangalore 560012, Karnataka, India; (S.K.); (R.R.S.L.); (S.A.); (P.D.); (V.S.)
| | - Anil Khaire
- Indian Herpetological Society, 7/47, Pune Satara Road, Pune 411009, Maharashtra, India;
| | - Gerard Martin
- The Liana Trust, Survey #1418/1419 Rathnapuri, Hunsur 571189, Karnataka, India;
| | - Ashok Captain
- 3/1 Boat Club Road, Pune 411001, Maharashtra, India;
| |
Collapse
|
22
|
Surm JM, Moran Y. Insights into how development and life-history dynamics shape the evolution of venom. EvoDevo 2021; 12:1. [PMID: 33413660 PMCID: PMC7791878 DOI: 10.1186/s13227-020-00171-w] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Accepted: 12/22/2020] [Indexed: 02/07/2023] Open
Abstract
Venomous animals are a striking example of the convergent evolution of a complex trait. These animals have independently evolved an apparatus that synthesizes, stores, and secretes a mixture of toxic compounds to the target animal through the infliction of a wound. Among these distantly related animals, some can modulate and compartmentalize functionally distinct venoms related to predation and defense. A process to separate distinct venoms can occur within and across complex life cycles as well as more streamlined ontogenies, depending on their life-history requirements. Moreover, the morphological and cellular complexity of the venom apparatus likely facilitates the functional diversity of venom deployed within a given life stage. Intersexual variation of venoms has also evolved further contributing to the massive diversity of toxic compounds characterized in these animals. These changes in the biochemical phenotype of venom can directly affect the fitness of these animals, having important implications in their diet, behavior, and mating biology. In this review, we explore the current literature that is unraveling the temporal dynamics of the venom system that are required by these animals to meet their ecological functions. These recent findings have important consequences in understanding the evolution and development of a convergent complex trait and its organismal and ecological implications.
Collapse
Affiliation(s)
- Joachim M Surm
- Department of Ecology, Evolution and Behavior, Alexander Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, 9190401, Jerusalem, Israel.
| | - Yehu Moran
- Department of Ecology, Evolution and Behavior, Alexander Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, 9190401, Jerusalem, Israel.
| |
Collapse
|
23
|
Schonour RB, Huff EM, Holding ML, Claunch NM, Ellsworth SA, Hogan MP, Wray K, McGivern J, Margres MJ, Colston TJ, Rokyta DR. Gradual and Discrete Ontogenetic Shifts in Rattlesnake Venom Composition and Assessment of Hormonal and Ecological Correlates. Toxins (Basel) 2020; 12:toxins12100659. [PMID: 33081249 PMCID: PMC7602723 DOI: 10.3390/toxins12100659] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Revised: 10/07/2020] [Accepted: 10/13/2020] [Indexed: 12/13/2022] Open
Abstract
Ontogenetic shifts in venom occur in many snakes but establishing their nature as gradual or discrete processes required additional study. We profiled shifts in venom expression from the neonate to adult sizes of two rattlesnake species, the eastern diamondback and the timber rattlesnake. We used serial sampling and venom chromatographic profiling to test if ontogenetic change occurs gradually or discretely. We found evidence for gradual shifts in overall venom composition in six of eight snakes, which sometimes spanned more than two years. Most chromatographic peaks shift gradually, but one quarter shift in a discrete fashion. Analysis of published diet data showed gradual shifts in overall diet composition across the range of body sizes attained by our eight study animals, while the shifts in abundance of different prey classes varied in form from gradual to discrete. Testosterone concentrations were correlated with the change in venom protein composition, but the relationship is not strong enough to suggest causation. Venom research employing simple juvenile versus adult size thresholds may be failing to account for continuous variation in venom composition lifespan. Our results imply that venom shifts represent adaptive matches to dietary shifts and highlight venom for studies of alternative gene regulatory mechanisms.
Collapse
Affiliation(s)
- Richard B. Schonour
- Department of Biological Sciences, Florida State University, Tallahassee, FL 32304, USA; (R.B.S.); (E.M.H.); (S.A.E.); (M.P.H.); (K.W.); (J.M.); (M.J.M.); (T.J.C.); (D.R.R.)
| | - Emma M. Huff
- Department of Biological Sciences, Florida State University, Tallahassee, FL 32304, USA; (R.B.S.); (E.M.H.); (S.A.E.); (M.P.H.); (K.W.); (J.M.); (M.J.M.); (T.J.C.); (D.R.R.)
| | - Matthew L. Holding
- Department of Biological Sciences, Florida State University, Tallahassee, FL 32304, USA; (R.B.S.); (E.M.H.); (S.A.E.); (M.P.H.); (K.W.); (J.M.); (M.J.M.); (T.J.C.); (D.R.R.)
- Correspondence:
| | - Natalie M. Claunch
- School of Natural Resources and Environment, University of Florida, Gainesville, FL 32611, USA;
| | - Schyler A. Ellsworth
- Department of Biological Sciences, Florida State University, Tallahassee, FL 32304, USA; (R.B.S.); (E.M.H.); (S.A.E.); (M.P.H.); (K.W.); (J.M.); (M.J.M.); (T.J.C.); (D.R.R.)
| | - Michael P. Hogan
- Department of Biological Sciences, Florida State University, Tallahassee, FL 32304, USA; (R.B.S.); (E.M.H.); (S.A.E.); (M.P.H.); (K.W.); (J.M.); (M.J.M.); (T.J.C.); (D.R.R.)
| | - Kenneth Wray
- Department of Biological Sciences, Florida State University, Tallahassee, FL 32304, USA; (R.B.S.); (E.M.H.); (S.A.E.); (M.P.H.); (K.W.); (J.M.); (M.J.M.); (T.J.C.); (D.R.R.)
| | - James McGivern
- Department of Biological Sciences, Florida State University, Tallahassee, FL 32304, USA; (R.B.S.); (E.M.H.); (S.A.E.); (M.P.H.); (K.W.); (J.M.); (M.J.M.); (T.J.C.); (D.R.R.)
| | - Mark J. Margres
- Department of Biological Sciences, Florida State University, Tallahassee, FL 32304, USA; (R.B.S.); (E.M.H.); (S.A.E.); (M.P.H.); (K.W.); (J.M.); (M.J.M.); (T.J.C.); (D.R.R.)
- Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, MA 02138, USA
- Department of Integrative Biology, University of South Florida, Tampa, FL 33620, USA
| | - Timothy J. Colston
- Department of Biological Sciences, Florida State University, Tallahassee, FL 32304, USA; (R.B.S.); (E.M.H.); (S.A.E.); (M.P.H.); (K.W.); (J.M.); (M.J.M.); (T.J.C.); (D.R.R.)
| | - Darin R. Rokyta
- Department of Biological Sciences, Florida State University, Tallahassee, FL 32304, USA; (R.B.S.); (E.M.H.); (S.A.E.); (M.P.H.); (K.W.); (J.M.); (M.J.M.); (T.J.C.); (D.R.R.)
| |
Collapse
|
24
|
Abstract
The genetic origins of novelty are a central interest of evolutionary biology. Most new proteins evolve from preexisting proteins but the evolutionary path from ancestral gene to novel protein is challenging to trace, and therefore the requirements for and order of coding sequence changes, expression changes, or gene duplication are not clear. Snake venoms are important novel traits that are comprised of toxins derived from several distinct protein families, but the genomic and evolutionary origins of most venom components are not understood. Here, we have traced the origin and diversification of one prominent family, the snake venom metalloproteinases (SVMPs) that play key roles in subduing prey in many vipers. Genomic analyses of several rattlesnake (Crotalus) species revealed the SVMP family massively expanded from a single, deeply conserved adam28 disintegrin and metalloproteinase gene, to as many as 31 tandem genes in the Western Diamondback rattlesnake (Crotalus atrox) through a number of single gene and multigene duplication events. Furthermore, we identified a series of stepwise intragenic deletions that occurred at different times in the course of gene family expansion and gave rise to the three major classes of secreted SVMP toxins by sequential removal of a membrane-tethering domain, the cysteine-rich domain, and a disintegrin domain, respectively. Finally, we show that gene deletion has further shaped the SVMP complex within rattlesnakes, creating both fusion genes and substantially reduced gene complexes. These results indicate that gene duplication and intragenic deletion played essential roles in the origin and diversification of these novel biochemical weapons.
Collapse
|
25
|
Rautsaw RM, Hofmann EP, Margres MJ, Holding ML, Strickland JL, Mason AJ, Rokyta DR, Parkinson CL. Intraspecific sequence and gene expression variation contribute little to venom diversity in sidewinder rattlesnakes ( Crotalus cerastes). Proc Biol Sci 2019; 286:20190810. [PMID: 31266424 DOI: 10.1098/rspb.2019.0810] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Traits can evolve rapidly through changes in gene expression or protein-coding sequences. However, these forms of genetic variation can be correlated and changes to one can influence the other. As a result, we might expect traits lacking differential expression to preferentially evolve through changes in protein sequences or morphological adaptation. Given the lack of differential expression across the distribution of sidewinder rattlesnakes ( Crotalus cerastes), we tested this hypothesis by comparing the coding regions of genes expressed in the venom gland transcriptomes and fang morphology. We calculated Tajima's D and FST across four populations comparing toxin and nontoxin loci. Overall, we found little evidence of directional selection or differentiation between populations, suggesting that changes to protein sequences do not underlie the evolution of sidewinder venom or that toxins are under extremely variant selection pressures. Although low-expression toxins do not have higher sequence divergence between populations, they do have more standing variation on which selection can act. Additionally, we found significant differences in fang length among populations. The lack of differential expression and sequence divergence suggests sidewinders-given their generalist diet, moderate gene flow and environmental variation-are under stabilizing selection which functions to maintain a generalist phenotype. Overall, we demonstrate the importance of examining the relationship between gene expression and protein-coding changes to understand the evolution of complex traits.
Collapse
Affiliation(s)
- Rhett M Rautsaw
- 1 Department of Biological Sciences, Clemson University , Clemson, SC 29634 , USA
| | - Erich P Hofmann
- 1 Department of Biological Sciences, Clemson University , Clemson, SC 29634 , USA
| | - Mark J Margres
- 1 Department of Biological Sciences, Clemson University , Clemson, SC 29634 , USA
| | - Matthew L Holding
- 1 Department of Biological Sciences, Clemson University , Clemson, SC 29634 , USA.,3 Department of Biological Science, Florida State University , Tallahassee, FL 32306 , USA
| | - Jason L Strickland
- 1 Department of Biological Sciences, Clemson University , Clemson, SC 29634 , USA
| | - Andrew J Mason
- 1 Department of Biological Sciences, Clemson University , Clemson, SC 29634 , USA
| | - Darin R Rokyta
- 3 Department of Biological Science, Florida State University , Tallahassee, FL 32306 , USA
| | - Christopher L Parkinson
- 1 Department of Biological Sciences, Clemson University , Clemson, SC 29634 , USA.,2 Department of Forestry and Environmental Conservation, Clemson University , Clemson, SC 29634 , USA
| |
Collapse
|
26
|
Preißler K, Gippner S, Lüddecke T, Krause ET, Schulz S, Vences M, Steinfartz S. More yellow more toxic? Sex rather than alkaloid content is correlated with yellow coloration in the fire salamander. J Zool (1987) 2019. [DOI: 10.1111/jzo.12676] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- K. Preißler
- Zoological Institute Technische Universität Braunschweig Braunschweig Germany
- Institute of Biology, Molecular Evolution and Systematics of Animals University of Leipzig Leipzig Germany
| | - S. Gippner
- Zoological Institute Technische Universität Braunschweig Braunschweig Germany
| | - T. Lüddecke
- Zoological Institute Technische Universität Braunschweig Braunschweig Germany
- Animal Venomics Research Group Fraunhofer Institute for Molecular Biology and Applied Ecology Gießen Germany
| | - E. T. Krause
- Institute of Animal Welfare and Animal Husbandry Friedrich‐Loeffler‐Institut Celle Germany
| | - S. Schulz
- Institute of Organic Chemistry Technische Universität Braunschweig Braunschweig Germany
| | - M. Vences
- Zoological Institute Technische Universität Braunschweig Braunschweig Germany
| | - S. Steinfartz
- Zoological Institute Technische Universität Braunschweig Braunschweig Germany
- Institute of Biology, Molecular Evolution and Systematics of Animals University of Leipzig Leipzig Germany
| |
Collapse
|
27
|
Whittington AC, Mason AJ, Rokyta DR. A Single Mutation Unlocks Cascading Exaptations in the Origin of a Potent Pitviper Neurotoxin. Mol Biol Evol 2019; 35:887-898. [PMID: 29329419 DOI: 10.1093/molbev/msx334] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Evolutionary innovations and complex phenotypes seemingly require an improbable amount of genetic change to evolve. Rattlesnakes display two dramatically different venom phenotypes. Type I venoms are hemorrhagic with low systemic toxicity and high expression of tissue-destroying snake venom metalloproteinases. Type II venoms are highly neurotoxic and lack snake venom metalloproteinase expression and associated hemorrhagic activity. This dichotomy hinges on Mojave toxin (MTx), a phospholipase A2 (PLA2) based β-neurotoxin expressed in Type II venoms. MTx is comprised of a nontoxic acidic subunit that undergoes extensive proteolytic processing and allosterically regulates activity of a neurotoxic basic subunit. Evolution of the acidic subunit presents an evolutionary challenge because the need for high expression of a nontoxic venom component and the proteolytic machinery required for processing suggests genetic changes of seemingly little immediate benefit to fitness. We showed that MTx evolved through a cascading series of exaptations unlocked by a single nucleotide change. The evolution of one new cleavage site in the acidic subunit unmasked buried cleavage sites already present in ancestral PLA2s, enabling proteolytic processing. Snake venom serine proteases, already present in the venom to disrupt prey hemostasis, possess the requisite specificities for MTx acidic subunit proteolysis. The dimerization interface between MTx subunits evolved by exploiting a latent, but masked, hydrophobic interaction between ancestral PLA2s. The evolution of MTx through exaptation of existing functional and structural features suggests complex phenotypes that depend on evolutionary innovations can arise from minimal genetic change enabled by prior evolution.
Collapse
Affiliation(s)
- A Carl Whittington
- Department of Biological Science, Florida State University, Tallahassee, FL
| | - Andrew J Mason
- Department of Biology, University of Central Florida, Orlando, FL
- Department of Biological Sciences, Clemson University, Clemson, SC
| | - Darin R Rokyta
- Department of Biological Science, Florida State University, Tallahassee, FL
| |
Collapse
|
28
|
Borja M, Neri-Castro E, Pérez-Morales R, Strickland JL, Ponce-López R, Parkinson CL, Espinosa-Fematt J, Sáenz-Mata J, Flores-Martínez E, Alagón A, Castañeda-Gaytán G. Ontogenetic Change in the Venom of Mexican Black-Tailed Rattlesnakes ( Crotalus molossus nigrescens). Toxins (Basel) 2018; 10:toxins10120501. [PMID: 30513722 PMCID: PMC6315878 DOI: 10.3390/toxins10120501] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2018] [Revised: 11/22/2018] [Accepted: 11/26/2018] [Indexed: 12/11/2022] Open
Abstract
Ontogenetic changes in venom composition have important ecological implications due the relevance of venom in prey acquisition and defense. Additionally, intraspecific venom variation has direct medical consequences for the treatment of snakebite. However, ontogenetic changes are not well documented in most species. The Mexican Black-tailed Rattlesnake (Crotalus molossus nigrescens) is large-bodied and broadly distributed in Mexico. To document venom variation and test for ontogenetic changes in venom composition, we obtained venom samples from twenty-seven C. m. nigrescens with different total body lengths (TBL) from eight states in Mexico. The primary components in the venom were detected by reverse-phase HPLC, western blot, and mass spectrometry. In addition, we evaluated the biochemical (proteolytic, coagulant and fibrinogenolytic activities) and biological (LD50 and hemorrhagic activity) activities of the venoms. Finally, we tested for recognition and neutralization of Mexican antivenoms against venoms of juvenile and adult snakes. We detected clear ontogenetic venom variation in C. m. nigrescens. Venoms from younger snakes contained more crotamine-like myotoxins and snake venom serine proteinases than venoms from older snakes; however, an increase of snake venom metalloproteinases was detected in venoms of larger snakes. Venoms from juvenile snakes were, in general, more toxic and procoagulant than venoms from adults; however, adult venoms were more proteolytic. Most of the venoms analyzed were hemorrhagic. Importantly, Mexican antivenoms had difficulties recognizing low molecular mass proteins (<12 kDa) of venoms from both juvenile and adult snakes. The antivenoms did not neutralize the crotamine effect caused by the venom of juveniles. Thus, we suggest that Mexican antivenoms would have difficulty neutralizing some human envenomations and, therefore, it may be necessary improve the immunization mixture in Mexican antivenoms to account for low molecular mass proteins, like myotoxins.
Collapse
Affiliation(s)
- Miguel Borja
- Facultad de Ciencias Biológicas, Universidad Juárez del Estado de Durango, Av. Universidad s/n. Fracc. Filadelfia, C.P. 35010 Gómez Palacio, Dgo., Mexico.
- Facultad de Ciencias Químicas, Universidad Juárez del Estado de Durango, Av. Artículo 123 s/n. Fracc. Filadelfia, Apartado Postal No. 51, C.P. 35010 Gómez Palacio, Dgo., Mexico.
| | - Edgar Neri-Castro
- Instituto de Biotecnología, Universidad Nacional Autónoma de México, Avenida Universidad 2001, Chamilpa, C.P. 62210 Cuernavaca, Mor., Mexico.
- Programa de Doctorado en Ciencias Biomédicas UNAM, C.P. 04510 México D.F., Mexico.
| | - Rebeca Pérez-Morales
- Facultad de Ciencias Químicas, Universidad Juárez del Estado de Durango, Av. Artículo 123 s/n. Fracc. Filadelfia, Apartado Postal No. 51, C.P. 35010 Gómez Palacio, Dgo., Mexico.
| | - Jason L Strickland
- Department of Biological Sciences, Clemson University, 190 Collings St., Clemson, SC 29634, USA.
| | - Roberto Ponce-López
- Instituto de Biotecnología, Universidad Nacional Autónoma de México, Avenida Universidad 2001, Chamilpa, C.P. 62210 Cuernavaca, Mor., Mexico.
| | - Christopher L Parkinson
- Department of Biological Sciences, Clemson University, 190 Collings St., Clemson, SC 29634, USA.
- Department of Forestry and Environmental Conservation, Clemson University, 190 Collings St., Clemson, SC 29634, USA.
| | - Jorge Espinosa-Fematt
- Facultad de Ciencias de la Salud, Universidad Juárez del Estado de Durango, Calz. Palmas 1, Revolución, 35050 Gómez Palacio, Dgo., Mexico.
| | - Jorge Sáenz-Mata
- Facultad de Ciencias Biológicas, Universidad Juárez del Estado de Durango, Av. Universidad s/n. Fracc. Filadelfia, C.P. 35010 Gómez Palacio, Dgo., Mexico.
| | - Esau Flores-Martínez
- Facultad de Ciencias Biológicas, Universidad Juárez del Estado de Durango, Av. Universidad s/n. Fracc. Filadelfia, C.P. 35010 Gómez Palacio, Dgo., Mexico.
| | - Alejandro Alagón
- Instituto de Biotecnología, Universidad Nacional Autónoma de México, Avenida Universidad 2001, Chamilpa, C.P. 62210 Cuernavaca, Mor., Mexico.
| | - Gamaliel Castañeda-Gaytán
- Facultad de Ciencias Biológicas, Universidad Juárez del Estado de Durango, Av. Universidad s/n. Fracc. Filadelfia, C.P. 35010 Gómez Palacio, Dgo., Mexico.
| |
Collapse
|
29
|
Margres MJ, Ruiz-Aravena M, Hamede R, Jones ME, Lawrance MF, Hendricks SA, Patton A, Davis BW, Ostrander EA, McCallum H, Hohenlohe PA, Storfer A. The Genomic Basis of Tumor Regression in Tasmanian Devils (Sarcophilus harrisii). Genome Biol Evol 2018; 10:3012-3025. [PMID: 30321343 PMCID: PMC6251476 DOI: 10.1093/gbe/evy229] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/10/2018] [Indexed: 02/06/2023] Open
Abstract
Understanding the genetic basis of disease-related phenotypes, such as cancer susceptibility, is crucial for the advancement of personalized medicine. Although most cancers are somatic in origin, a small number of transmissible cancers have been documented. Two such cancers have emerged in the Tasmanian devil (Sarcophilus harrisii) and now threaten the species with extinction. Recently, cases of natural tumor regression in Tasmanian devils infected with the clonally contagious cancer have been detected. We used whole-genome sequencing and FST-based approaches to identify the genetic basis of tumor regression by comparing the genomes of seven individuals that underwent tumor regression with those of three infected individuals that did not. We found three highly differentiated candidate genomic regions containing several genes related to immune response and/or cancer risk, indicating that the genomic basis of tumor regression was polygenic. Within these genomic regions, we identified putative regulatory variation in candidate genes but no nonsynonymous variation, suggesting that natural tumor regression may be driven, at least in part, by differential host expression of key loci. Comparative oncology can provide insight into the genetic basis of cancer risk, tumor development, and the pathogenicity of cancer, particularly due to our limited ability to monitor natural, untreated tumor progression in human patients. Our results support the hypothesis that host immune response is necessary for triggering tumor regression, providing candidate genes that may translate to novel treatments in human and nonhuman cancers.
Collapse
Affiliation(s)
- Mark J Margres
- School of Biological Sciences, Washington State University
| | - Manuel Ruiz-Aravena
- School of Natural Sciences, University of Tasmania, Hobart, Tasmania, Australia
| | - Rodrigo Hamede
- School of Natural Sciences, University of Tasmania, Hobart, Tasmania, Australia.,Centre for Integrative Ecology, Deakin University, Waurn Ponds, Victoria, Australia
| | - Menna E Jones
- School of Natural Sciences, University of Tasmania, Hobart, Tasmania, Australia
| | | | - Sarah A Hendricks
- Department of Biological Sciences, Institute for Bioinformatics and Evolutionary Studies, University of Idaho, Moscow
| | - Austin Patton
- School of Biological Sciences, Washington State University
| | - Brian W Davis
- Department of Veterinary Integrative Biosciences, Texas A&M University, College Station.,Cancer Genetics and Comparative Genomics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, Maryland
| | - Elaine A Ostrander
- Cancer Genetics and Comparative Genomics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, Maryland
| | - Hamish McCallum
- School of Environment, Griffith University, Nathan, Queensland, Australia
| | - Paul A Hohenlohe
- Department of Biological Sciences, Institute for Bioinformatics and Evolutionary Studies, University of Idaho, Moscow
| | - Andrew Storfer
- School of Biological Sciences, Washington State University
| |
Collapse
|
30
|
Hofmann EP, Rautsaw RM, Strickland JL, Holding ML, Hogan MP, Mason AJ, Rokyta DR, Parkinson CL. Comparative venom-gland transcriptomics and venom proteomics of four Sidewinder Rattlesnake (Crotalus cerastes) lineages reveal little differential expression despite individual variation. Sci Rep 2018; 8:15534. [PMID: 30341342 PMCID: PMC6195556 DOI: 10.1038/s41598-018-33943-5] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2018] [Accepted: 10/03/2018] [Indexed: 11/24/2022] Open
Abstract
Changes in gene expression can rapidly influence adaptive traits in the early stages of lineage diversification. Venom is an adaptive trait comprised of numerous toxins used for prey capture and defense. Snake venoms can vary widely between conspecific populations, but the influence of lineage diversification on such compositional differences are unknown. To explore venom differentiation in the early stages of lineage diversification, we used RNA-seq and mass spectrometry to characterize Sidewinder Rattlesnake (Crotalus cerastes) venom. We generated the first venom-gland transcriptomes and complementary venom proteomes for eight individuals collected across the United States and tested for expression differences across life history traits and between subspecific, mitochondrial, and phylotranscriptomic hypotheses. Sidewinder venom was comprised primarily of hemorrhagic toxins, with few cases of differential expression attributable to life history or lineage hypotheses. However, phylotranscriptomic lineage comparisons more than doubled instances of significant expression differences compared to all other factors. Nevertheless, only 6.4% of toxins were differentially expressed overall, suggesting that shallow divergence has not led to major changes in Sidewinder venom composition. Our results demonstrate the need for consensus venom-gland transcriptomes based on multiple individuals and highlight the potential for discrepancies in differential expression between different phylogenetic hypotheses.
Collapse
Affiliation(s)
- Erich P Hofmann
- Clemson University, Department of Biological Sciences, Clemson, SC, 29634, USA
| | - Rhett M Rautsaw
- Clemson University, Department of Biological Sciences, Clemson, SC, 29634, USA
| | - Jason L Strickland
- Clemson University, Department of Biological Sciences, Clemson, SC, 29634, USA
- University of Central Florida, Department of Biology, Orlando, FL, 32816, USA
| | - Matthew L Holding
- Clemson University, Department of Biological Sciences, Clemson, SC, 29634, USA
- Florida State University, Department of Biological Science, Tallahassee, FL, 32306, USA
| | - Michael P Hogan
- Florida State University, Department of Biological Science, Tallahassee, FL, 32306, USA
| | - Andrew J Mason
- Clemson University, Department of Biological Sciences, Clemson, SC, 29634, USA
| | - Darin R Rokyta
- Florida State University, Department of Biological Science, Tallahassee, FL, 32306, USA
| | - Christopher L Parkinson
- Clemson University, Department of Biological Sciences, Clemson, SC, 29634, USA.
- Clemson University, Department of Forestry and Environmental Conservation, Clemson, SC, 29634, USA.
| |
Collapse
|
31
|
Modahl CM, Frietze S, Mackessy SP. Transcriptome-facilitated proteomic characterization of rear-fanged snake venoms reveal abundant metalloproteinases with enhanced activity. J Proteomics 2018; 187:223-234. [PMID: 30092380 DOI: 10.1016/j.jprot.2018.08.004] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2018] [Revised: 07/24/2018] [Accepted: 08/03/2018] [Indexed: 12/18/2022]
Abstract
High-throughput technologies were used to identify venom gland toxin expression and to characterize the venom proteomes of two rear-fanged snakes, Ahaetulla prasina (Asian Green Vine Snake) and Borikenophis portoricensis (Puerto Rican Racer). Sixty-nine complete toxin-coding transcripts from 12 venom protein superfamilies (A. prasina) and 50 complete coding transcripts from 11 venom protein superfamilies (B. portoricensis) were identified in the venom glands. However, only 18% (A. prasina) and 32% (B. portoricensis) of the translated protein isoforms were detected in the proteome of these venoms. Both venom gland transcriptomes and venom proteomes were dominated by P-III metalloproteinases. Three-finger toxins, cysteine-rich secretory proteins, and C-type lectins were present in moderate amounts, but other protein superfamilies showed very low abundances. Venoms contained metalloproteinase activity comparable to viperid snake venom levels, but other common venom enzymes were absent or present at negligible levels. Western blot analysis showed metalloproteinase and cysteine-rich secretory protein epitopes shared with the highly venomous Boomslang (Dispholidus typus). The abundance of metalloproteinases emphasizes the important trophic role of these toxins. Comprehensive, transcriptome-informed definition of proteomes and functional characterization of venom proteins in rear-fanged snake families help to elucidate toxin evolution and provide models for protein structure-function analyses.
Collapse
Affiliation(s)
- Cassandra M Modahl
- School of Biological Sciences, University of Northern Colorado, 501 20th St., Greeley, CO 80639-0017, USA; Department of Biological Sciences, Faculty of Science, National University of Singapore, Singapore 117543, Singapore
| | - Seth Frietze
- Department of Biomedical and Health Sciences, University of Vermont, 302 Rowell, Burlington, VT 05405, USA
| | - Stephen P Mackessy
- School of Biological Sciences, University of Northern Colorado, 501 20th St., Greeley, CO 80639-0017, USA.
| |
Collapse
|
32
|
Calvete JJ, Casewell NR, Hernández-Guzmán U, Quesada-Bernat S, Sanz L, Rokyta DR, Storey D, Albulescu LO, Wüster W, Smith CF, Schuett GW, Booth W. Venom Complexity in a Pitviper Produced by Facultative Parthenogenesis. Sci Rep 2018; 8:11539. [PMID: 30068934 PMCID: PMC6070573 DOI: 10.1038/s41598-018-29791-y] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2017] [Accepted: 07/12/2018] [Indexed: 11/25/2022] Open
Abstract
Facultative parthenogenesis (FP) is asexual reproduction in plant and animal species that would otherwise reproduce sexually. This process in vertebrates typically results from automictic development (likely terminal fusion) and is phylogenetically widespread. In squamate reptiles and chondrichthyan fishes, FP has been reported to occur in nature and can result in the production of reproductively viable offspring; suggesting that it is of ecological and evolutionary significance. However, terminal fusion automixis is believed to result in near genome-wide reductions in heterozygosity; thus, FP seems likely to affect key phenotypic characters, yet this remains almost completely unstudied. Snake venom is a complex phenotypic character primarily used to subjugate prey and is thus tightly linked to individual fitness. Surprisingly, the composition and function of venom produced by a parthenogenetic pitviper exhibits a high degree of similarity to that of its mother and conspecifics from the same population. Therefore, the apparent loss of allelic diversity caused by FP appears unlikely to have a significant impact on the prey-capturing ability of this snake. Accordingly, the pitviper offspring produced by FP retained complex phenotypic characteristics associated with fitness. This result reinforces the potential ecological and evolutionary importance of FP and questions our understanding of the inheritance of venom-associated genes.
Collapse
Affiliation(s)
- J J Calvete
- Evolutionary and Translational Venomics Laboratory, CSIC, Valencia, Spain.
| | - N R Casewell
- Alistair Reid Venom Research Unit, Parasitology Department, Liverpool School of Tropical Medicine, Pembroke Place, Liverpool, L3 5QA, UK.
| | - U Hernández-Guzmán
- Evolutionary and Translational Venomics Laboratory, CSIC, Valencia, Spain
- Laboratorio de Química de Biomacromoléculas, Instituto de Química, Universidad Nacional Autónoma de México, Ciudad Universitaria, Delegación Coyoacán C.P, 04510, Ciudad de México, Mexico
| | - S Quesada-Bernat
- Evolutionary and Translational Venomics Laboratory, CSIC, Valencia, Spain
| | - L Sanz
- Evolutionary and Translational Venomics Laboratory, CSIC, Valencia, Spain
| | - D R Rokyta
- Department of Biological Science, Florida State University, Tallahassee, FL, USA
| | - D Storey
- Alistair Reid Venom Research Unit, Parasitology Department, Liverpool School of Tropical Medicine, Pembroke Place, Liverpool, L3 5QA, UK
- Molecular Ecology and Fisheries Genetics Laboratory, School of Biological Sciences, Environment Centre Wales, Bangor University, Bangor, LL57 2UW, UK
| | - L-O Albulescu
- Alistair Reid Venom Research Unit, Parasitology Department, Liverpool School of Tropical Medicine, Pembroke Place, Liverpool, L3 5QA, UK
| | - W Wüster
- Molecular Ecology and Fisheries Genetics Laboratory, School of Biological Sciences, Environment Centre Wales, Bangor University, Bangor, LL57 2UW, UK
- Chiricahua Desert Museum, P.O. Box 376, Rodeo, NM, USA
| | - C F Smith
- Chiricahua Desert Museum, P.O. Box 376, Rodeo, NM, USA
- The Copperhead Institute, P.O. Box 6755, Spartanburg, SC, USA
- Department of Biology, Wofford College, 429 North Church Street, Spartanburg, SC, USA
| | - G W Schuett
- Chiricahua Desert Museum, P.O. Box 376, Rodeo, NM, USA
- The Copperhead Institute, P.O. Box 6755, Spartanburg, SC, USA
- Department of Biology and Neuroscience Institute, Georgia State University, Atlanta, GA, USA
| | - W Booth
- Chiricahua Desert Museum, P.O. Box 376, Rodeo, NM, USA
- The Copperhead Institute, P.O. Box 6755, Spartanburg, SC, USA
- Department of Biological Science, The University of Tulsa, Tulsa, OK, USA
| |
Collapse
|
33
|
Margres MJ, Wray KP, Hassinger ATB, Ward MJ, McGivern JJ, Moriarty Lemmon E, Lemmon AR, Rokyta DR. Quantity, Not Quality: Rapid Adaptation in a Polygenic Trait Proceeded Exclusively through Expression Differentiation. Mol Biol Evol 2018; 34:3099-3110. [PMID: 28962003 DOI: 10.1093/molbev/msx231] [Citation(s) in RCA: 57] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
A trait's genomic architecture can affect the rate and mechanism of adaptation, and although many ecologically-important traits are polygenic, most studies connecting genotype, phenotype, and fitness in natural populations have focused on traits with relatively simple genetic bases. To understand the genetic basis of polygenic adaptation, we must integrate genomics, phenotypic data, ecology, and fitness effects for a genetically tractable, polygenic trait; snake venoms provide such a system for studying polygenic adaptation because of their genetic tractability and vital ecological role in feeding and defense. We used a venom transcriptome-proteome map, quantitative proteomics, genomics, and fitness assays in sympatric prey to construct a genotype-phenotype-fitness map for the venoms of an island-mainland pair of rattlesnake populations. Reciprocal fitness experiments demonstrated that each population was locally adapted to sympatric prey. We identified significant expression differentiation with little to no coding-sequence variation across populations, demonstrating that expression differentiation was exclusively the genetic basis of polygenic adaptation. Previous research on the genetics of adaptation, however, has largely been biased toward investigating protein-coding regions because of the complexity of gene regulation. Our results showed that biases at the molecular level can be in the opposite direction, highlighting the need for more systematic comparisons of different molecular mechanisms underlying rapid, adaptive evolution in polygenic traits.
Collapse
Affiliation(s)
- Mark J Margres
- Department of Biological Science, Florida State University, Tallahassee, FL
| | - Kenneth P Wray
- Department of Biological Science, Florida State University, Tallahassee, FL
| | | | - Micaiah J Ward
- Department of Biological Science, Florida State University, Tallahassee, FL
| | - James J McGivern
- Department of Biological Science, Florida State University, Tallahassee, FL
| | | | - Alan R Lemmon
- Department of Scientific Computing, Florida State University, Tallahassee, FL
| | - Darin R Rokyta
- Department of Biological Science, Florida State University, Tallahassee, FL
| |
Collapse
|
34
|
Venom Ontogeny in the Mexican Lance-Headed Rattlesnake ( Crotalus polystictus). Toxins (Basel) 2018; 10:toxins10070271. [PMID: 29970805 PMCID: PMC6070973 DOI: 10.3390/toxins10070271] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2018] [Revised: 06/26/2018] [Accepted: 06/27/2018] [Indexed: 12/26/2022] Open
Abstract
As trophic adaptations, rattlesnake venoms can vary in composition depending on several intrinsic and extrinsic factors. Ontogenetic changes in venom composition have been documented for numerous species, but little is known of the potential age-related changes in many rattlesnake species found in México. In the current study, venom samples collected from adult and neonate Crotalus polystictus from Estado de México were subjected to enzymatic and electrophoretic analyses, toxicity assays (LD50), and MALDI-TOF mass spectrometry, and a pooled sample of adult venom was analyzed by shotgun proteomics. Electrophoretic profiles of adult males and females were quite similar, and only minor sex-based variation was noted. However, distinct differences were observed between venoms from adult females and their neonate offspring. Several prominent bands, including P-I and P-III snake venom metalloproteinases (SVMPs) and disintegrins (confirmed by MS/MS) were present in adult venoms and absent/greatly reduced in neonate venoms. Age-dependent differences in SVMP, kallikrein-like, phospholipase A2 (PLA2), and L-amino acid oxidase (LAAO) activity levels were confirmed by enzymatic activity assays, and like many other rattlesnake species, venoms from adult snakes have higher SVMP activity than neonate venoms. Conversely, PLA2 activity was approximately 2.5 × greater in venoms from neonates, likely contributing to the increased toxicity (neonate venom LD50 = 4.5 μg/g) towards non-Swiss albino mice when compared to adult venoms (LD50 = 5.5 μg/g). Thrombin-like (TLE) and phosphodiesterase activities did not vary significantly with age. A significant effect of sex (between adult male and adult female venoms) was also observed for SVMP, TLE, and LAAO activities. Analysis of pooled adult venom by LC-MS/MS identified 14 toxin protein families, dominated by bradykinin-inhibitory peptides, SVMPs (P-I, P-II and P-III), disintegrins, PLA2s, C-type-lectins, CRiSPs, serine proteinases, and LAAOs (96% of total venom proteins). Neonate and adult C. polystictus in this population consume almost exclusively mammals, suggesting that age-based differences in composition are related to physical differences in prey (e.g., surface-to-volume ratio differences) rather than taxonomic differences between prey. Venoms from adult C. polystictus fit a Type I pattern (high SVMP activity, lower toxicity), which is characteristic of many larger-bodied rattlesnakes of North America.
Collapse
|
35
|
Evaluating the Performance of De Novo Assembly Methods for Venom-Gland Transcriptomics. Toxins (Basel) 2018; 10:toxins10060249. [PMID: 29921759 PMCID: PMC6024825 DOI: 10.3390/toxins10060249] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2018] [Revised: 06/14/2018] [Accepted: 06/15/2018] [Indexed: 11/17/2022] Open
Abstract
Venom-gland transcriptomics is a key tool in the study of the evolution, ecology, function, and pharmacology of animal venoms. In particular, gene-expression variation and coding sequences gained through transcriptomics provide key information for explaining functional venom variation over both ecological and evolutionary timescales. The accuracy and usefulness of inferences made through transcriptomics, however, is limited by the accuracy of the transcriptome assembly, which is a bioinformatic problem with several possible solutions. Several methods have been employed to assemble venom-gland transcriptomes, with the Trinity assembler being the most commonly applied among them. Although previous evidence of variation in performance among assembly software exists, particularly regarding recovery of difficult-to-assemble multigene families such as snake venom metalloproteinases, much work to date still employs a single assembly method. We evaluated the performance of several commonly used de novo assembly methods for the recovery of both nontoxin transcripts and complete, high-quality venom-gene transcripts across eleven snake and four scorpion transcriptomes. We varied k-mer sizes used by some assemblers to evaluate the impact of k-mer length on transcript recovery. We showed that the recovery of nontoxin transcripts and toxin transcripts is best accomplished through different assembly software, with SDT at smaller k-mer lengths and Trinity being best for nontoxin recovery and a combination of SeqMan NGen and a seed-and-extend approach implemented in Extender as the best means of recovering a complete set of toxin transcripts. In particular, Extender was the only means tested capable of assembling multiple isoforms of the diverse snake venom metalloproteinase family, while traditional approaches such as Trinity recovered at most one metalloproteinase transcript. Our work demonstrated that traditional metrics of assembly performance are not predictive of performance in the recovery of complete and high quality toxin genes. Instead, effective venom-gland transcriptomic studies should combine and quality-filter the results of several assemblers with varying algorithmic strategies.
Collapse
|
36
|
Strickland JL, Mason AJ, Rokyta DR, Parkinson CL. Phenotypic Variation in Mojave Rattlesnake (Crotalus scutulatus) Venom Is Driven by Four Toxin Families. Toxins (Basel) 2018; 10:toxins10040135. [PMID: 29570631 PMCID: PMC5923301 DOI: 10.3390/toxins10040135] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2018] [Revised: 03/16/2018] [Accepted: 03/18/2018] [Indexed: 02/04/2023] Open
Abstract
Phenotypic diversity generated through altered gene expression is a primary mechanism facilitating evolutionary response in natural systems. By linking the phenotype to genotype through transcriptomics, it is possible to determine what changes are occurring at the molecular level. High phenotypic diversity has been documented in rattlesnake venom, which is under strong selection due to its role in prey acquisition and defense. Rattlesnake venom can be characterized by the presence (Type A) or absence (Type B) of a type of neurotoxic phospholipase A2 (PLA2), such as Mojave toxin, that increases venom toxicity. Mojave rattlesnakes (Crotalus scutulatus), represent this diversity as both venom types are found within this species and within a single panmictic population in the Sonoran Desert. We used comparative venom gland transcriptomics of nine specimens of C. scutulatus from this region to test whether expression differences explain diversity within and between venom types. Type A individuals expressed significantly fewer toxins than Type B individuals owing to the diversity of C-type lectins (CTLs) and snake venom metalloproteinases (SVMPs) found in Type B animals. As expected, both subunits of Mojave toxin were exclusively found in Type A individuals but we found high diversity in four additional PLA2s that was not associated with a venom type. Myotoxin a expression and toxin number variation was not associated with venom type, and myotoxin a had the highest range of expression of any toxin class. Our study represents the most comprehensive transcriptomic profile of the venom type dichotomy in rattlesnakes and C. scutulatus. Even intra-specifically, Mojave rattlesnakes showcase the diversity of snake venoms and illustrate that variation within venom types blurs the distinction of the venom dichotomy.
Collapse
Affiliation(s)
- Jason L Strickland
- Department of Biology, University of Central Florida, 4110 Libra Drive, Orlando, FL 32816, USA.
| | - Andrew J Mason
- Department of Biological Sciences, Clemson University, 190 Collings St., Clemson, SC 29634, USA.
| | - Darin R Rokyta
- Department of Biological Science, Florida State University, 319 Stadium Drive, Tallahassee, FL 32306, USA.
| | - Christopher L Parkinson
- Department of Biology, University of Central Florida, 4110 Libra Drive, Orlando, FL 32816, USA.
| |
Collapse
|
37
|
Pla D, Petras D, Saviola AJ, Modahl CM, Sanz L, Pérez A, Juárez E, Frietze S, Dorrestein PC, Mackessy SP, Calvete JJ. Transcriptomics-guided bottom-up and top-down venomics of neonate and adult specimens of the arboreal rear-fanged Brown Treesnake, Boiga irregularis, from Guam. J Proteomics 2017; 174:71-84. [PMID: 29292096 DOI: 10.1016/j.jprot.2017.12.020] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2017] [Revised: 12/18/2017] [Accepted: 12/26/2017] [Indexed: 12/11/2022]
Abstract
The Brown Treesnake (Boiga irregularis) is an arboreal, nocturnal, rear-fanged venomous snake native to northern and eastern regions of Australia, Papua New Guinea and the Solomon Islands. It was inadvertently introduced onto the island of Guam during the late 1940's to early 1950's, and it has caused massive declines and extirpations of the native bird, lizard, and mammal populations. In the current study, we report the characterization of the venom proteome of an adult and a neonate B. irregularis specimens from Guam by a combination of venom gland transcriptomic and venomic analyses. Venom gland transcriptomic analysis of an adult individual identified toxins belonging to 18 protein families, with three-finger toxin isoforms being the most abundantly expressed transcripts, comprising 94% of all venom protein transcript reads. Transcripts for PIII-metalloproteinases, C-type lectins, cysteine-rich secretory proteins, acetylcholinesterases, natriuretic peptides, ficolins, phospholipase A2 (PLA2) inhibitors, PLA2s, vascular endothelial growth factors, Kunitz-type protease inhibitors, cystatins, phospholipase Bs, cobra venom factors, waprins, SVMP inhibitors, matrix metalloproteinases, and hyaluronidases were also identified, albeit, at very low abundances ranging from 0.05% to 1.7% of the transcriptome. The venom proteomes of neonate and adult B. irregularis were also both overwhelmingly (78 and 84%, respectively) dominated by monomeric and dimeric 3FTxs, followed by moderately abundant (21% (N) and 13% (A)) CRISPs, low abundance (1% (N), 3% (A)) PIII-SVMPs, and very low abundance (<0.01%) PLA2 and SVMP inhibitors. The differences in relative toxin abundances identified between neonate and adult snakes likely correlates to shifts in prey preference between the two age classes, from nearly-exclusively lizards to lizards, birds and small mammals. Immunoaffinity antivenomics with experimentally designed rabbit anti-Brown Treesnake (anti-BTS) venom IgGs against homologous venom from adult snakes demonstrated that CRISPs, PIII-SVMPs, and 60-70% of 3FTxs were effectively immunocaptured. Western blot analysis showed that all venom proteins were recognized by anti-BTS IgGs, and cross-reactivity with other rear-fanged snake venoms was also observed. Incubation of anti-BTS venom IgGs with crude B. irregularis venom resulted in a significant decrease in proteolytic (SVMP) activity against azocasein. These results provide the first comparative venomic and anti-venomic analysis of neonate and adult B. irregularis from Guam, further highlighting evolutionary trends in venom composition among rear-fanged venomous snakes. SIGNIFICANCE PARAGRAPH The Brown Treesnake (Boiga irregularis) has caused extensive ecological and economic damage to the island of Guam where it has become a classic example of the negative impacts of invasive species. In the current study, we report the first combined transcriptomic and proteomic analysis of B. irregularis venom of Guam origin. The transcriptome of an adult snake contained toxin sequences belonging to 18 protein families, with three-finger toxin (3FTx) isoforms being the most abundant and representing 94% of all venom protein transcript reads. Our bottom-up and top-down venomic analyses confirmed that 3FTxs are the major components of B. irregularis venom, and a comparative analysis of neonate and adult venoms demonstrate a clear ontogenetic shift in toxin abundance, likely driven by dietary variation between the two age classes. Second-generation antivenomics and Western blot analysis using purified anti-Brown Treesnake rabbit serum IgGs (anti-BTS IgGs) showed strong immunoreactivity toward B. irregularis venom. Interestingly, our anti-BTS IgGs did not cross-react with 3FTxs found in several other rear-fanged snake venoms, or against 3FTxs in the venom of the elapid Ophiophagus hannah, indicating that epitopes in these 3FTx molecules are quite distinct.
Collapse
Affiliation(s)
- Davinia Pla
- Laboratorio de Venómica Estructural y Funcional, Consejo Superior de Investigaciones Científicas, Valencia, Spain
| | - Daniel Petras
- University of California San Diego, Skaggs School of Pharmacy & Pharmaceutical Sciences, 9500 Gilman Dr, La Jolla, CA 92093, USA
| | - Anthony J Saviola
- Laboratorio de Venómica Estructural y Funcional, Consejo Superior de Investigaciones Científicas, Valencia, Spain; School of Biological Sciences, University of Northern Colorado, 501 20th Street, CB 92, Greeley, CO 80639, USA
| | - Cassandra M Modahl
- School of Biological Sciences, University of Northern Colorado, 501 20th Street, CB 92, Greeley, CO 80639, USA
| | - Libia Sanz
- Laboratorio de Venómica Estructural y Funcional, Consejo Superior de Investigaciones Científicas, Valencia, Spain
| | - Alicia Pérez
- Laboratorio de Venómica Estructural y Funcional, Consejo Superior de Investigaciones Científicas, Valencia, Spain
| | - Elena Juárez
- Laboratorio de Venómica Estructural y Funcional, Consejo Superior de Investigaciones Científicas, Valencia, Spain
| | - Seth Frietze
- School of Biological Sciences, University of Northern Colorado, 501 20th Street, CB 92, Greeley, CO 80639, USA
| | - Pieter C Dorrestein
- University of California San Diego, Skaggs School of Pharmacy & Pharmaceutical Sciences, 9500 Gilman Dr, La Jolla, CA 92093, USA
| | - Stephen P Mackessy
- School of Biological Sciences, University of Northern Colorado, 501 20th Street, CB 92, Greeley, CO 80639, USA.
| | - Juan J Calvete
- Laboratorio de Venómica Estructural y Funcional, Consejo Superior de Investigaciones Científicas, Valencia, Spain.
| |
Collapse
|
38
|
Sáenz A, Ortiz N, Lomonte B, Rucavado A, Díaz C. Comparison of biochemical and cytotoxic activities of extracts obtained from dorsal spines and caudal fin of adult and juvenile non-native Caribbean lionfish (Pterois volitans/miles). Toxicon 2017; 137:158-167. [DOI: 10.1016/j.toxicon.2017.08.004] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2017] [Revised: 08/01/2017] [Accepted: 08/03/2017] [Indexed: 10/19/2022]
|