1
|
Ahmad A, Majaz S, Saeed A, Noreen S, Abbas M, Khan B, Rahman HU, Nouroz F, Xie Y, Rashid A, Rehman AU. Microevolution and phylogenomic study of Respiratory Syncytial Virus type A. PLoS One 2025; 20:e0319437. [PMID: 39999081 PMCID: PMC11856557 DOI: 10.1371/journal.pone.0319437] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2024] [Accepted: 02/02/2025] [Indexed: 02/27/2025] Open
Abstract
Communal respiratory syncytial virus (RSV) causes mild to severe illnesses, predominantly in older adults, or people with certain chronic medical conditions, and in children. Symptoms may include rhinorrhea, cough, fever, and dyspnea. In most cases, the infection is mild and resolves on its own, but in some cases, it can lead to more serious illness such as bronchiolitis or pneumonia. The RSV genome codes for ten proteins, NS1, NS2, N, P, M, SH, G, F, M2 and L. We aimed to identify the RSV geographical transmission pattern based on parsimony and investigate hotspot regions across the complete RSV genomes. We employed Viral Evolutionary Network Analysis System on full-length available RSV genomes and with HyPhy for elucidating type of selection pressure. These results indicated that RSV strains circulating in South and North America are not mixed to the European samples, however, genomes reported from Australia are the direct decedents of European samples. Samples reported from the United Kingdom exhibited significant diversity, spanning almost every cluster. This report provides a complete mutational analysis of all the individual RSV genes, and particularly the 31 hotspot substituting regions circulating across the globe in RSV type A samples. Further, protein G and L displayed higher level of codons experienced positive selection. This analysis of RSV type A highlights mutational frequencies across the whole genome, offering valuable insights for epidemiological control and drug development.
Collapse
Affiliation(s)
- Ashfaq Ahmad
- Department of Bioinformatics, Faculty of Natural and Computational Sciences, Hazara University, Mansehra, Khyber Pakhtunkhwa, Pakistan
| | - Sidra Majaz
- Department of Bioinformatics, Faculty of Natural and Computational Sciences, Hazara University, Mansehra, Khyber Pakhtunkhwa, Pakistan
| | - Aamir Saeed
- Department of Bioinformatics, Faculty of Natural and Computational Sciences, Hazara University, Mansehra, Khyber Pakhtunkhwa, Pakistan
| | - Shumaila Noreen
- Department of Zoology, Faculty of Biological and Health Sciences, Hazara University, Mansehra, Khyber Pakhtunkhwa, Pakistan
| | - Muhammad Abbas
- Department of Urology, Pakistan Institute of Medical Sciences, Islamabad, Pakistan
| | - Bilal Khan
- Department of Pediatrics, Tehsil Headquarter Hospital (THQ), Dargai, Malakand, Khyber Pakhtunkhwa, Pakistan
| | - Hamid Ur Rahman
- Department of Zoology, Faculty of Biological and Health Sciences, Hazara University, Mansehra, Khyber Pakhtunkhwa, Pakistan
| | - Faisal Nouroz
- Department of Bioinformatics, Faculty of Natural and Computational Sciences, Hazara University, Mansehra, Khyber Pakhtunkhwa, Pakistan
| | - Yingqiu Xie
- Department of Biology, School of Sciences and Humanities, Nazarbayev University, Astana, Kazakhstan
| | - Abdur Rashid
- Government Degree College Ara Khel, F.R Kohat, Higher Education Department, Government of Khyber Pakhtunkhwa, Kohat, Khyber Pakhtunkhwa, Pakistan
| | - Atta Ur Rehman
- Department of Zoology, Faculty of Biological and Health Sciences, Hazara University, Mansehra, Khyber Pakhtunkhwa, Pakistan
| |
Collapse
|
2
|
Pasittungkul S, Thongpan I, Vichaiwattana P, Chuchaona W, Khongwichit S, Wanlapakorn N, Vongpunsawad S, Poovorawan Y. Prevalence and Genetic Diversity of Respiratory Syncytial Virus Reinfections in Young Thai Children, 2016-2023. J Med Virol 2024; 96:e70132. [PMID: 39697012 DOI: 10.1002/jmv.70132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2024] [Revised: 11/15/2024] [Accepted: 11/27/2024] [Indexed: 12/20/2024]
Abstract
Although a vaccine for respiratory syncytial virus (RSV) is now available for pregnant women and the elderly, RSV remains a significant cause of respiratory illness in children globally. Reinfections by the same or different RSV subgroups in children residing in the tropics are currently under-studied. Therefore, we examined the patterns of RSV infection and reinfection in Thai children aged ≤ 5 years with respiratory symptoms from 2016 to 2023. Screening of 7710 pediatric respiratory specimens identified 1245 RSV-positive samples (16.1%), mostly from the rainy months (July-November). Interestingly, 74 children experienced two infections, and 6 had three infections. Reinfection by different RSV subgroups occurred in 30 children: 21 were initially infected with RSV-B and later with RSV-A, while 9 had the reverse pattern. Reinfections only by either RSV-A or RSV-B were observed in 22 and 2 children, respectively, with one child infected with RSV-A three times. All RSV-A reinfections belonged to the ON1 genotype, while RSV-B reinfections were BA9. Notably, reinfections across different seasons were observed within homologous pairs. These findings suggest a transitory immunity to natural RSV infection and provide the knowledge that may help optimize pediatric vaccination schedule. Ongoing epidemiological data on RSV are essential in monitoring genotype circulation and vaccine effectiveness.
Collapse
Affiliation(s)
- Siripat Pasittungkul
- Center of Excellence in Clinical Virology, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - Ilada Thongpan
- Center of Excellence in Clinical Virology, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
- Center for Vaccines and Immunity, Abigail Wexner Research Institute at Nationwide Children's Hospital, Columbus, Ohio, USA
| | - Preeyaporn Vichaiwattana
- Center of Excellence in Clinical Virology, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - Watchaporn Chuchaona
- Center of Excellence in Clinical Virology, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - Sarawut Khongwichit
- Center of Excellence in Clinical Virology, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - Nasamon Wanlapakorn
- Center of Excellence in Clinical Virology, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
- Division of Academic Affairs, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - Sompong Vongpunsawad
- Center of Excellence in Clinical Virology, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - Yong Poovorawan
- Center of Excellence in Clinical Virology, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| |
Collapse
|
3
|
Wanlapakorn N, Thongpan I, Sarawanangkoor N, Vichaiwattana P, Auphimai C, Srimuan D, Thatsanathorn T, Kongkiattikul L, Kerr SJ, Poovorawan Y. Epidemiology and clinical characteristics of severe acute respiratory infections among hospitalized children under 5 years of age in a tertiary care center in Bangkok, Thailand, 2019-2020. Heliyon 2023; 9:e22300. [PMID: 38045212 PMCID: PMC10692904 DOI: 10.1016/j.heliyon.2023.e22300] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Revised: 11/07/2023] [Accepted: 11/09/2023] [Indexed: 12/05/2023] Open
Abstract
BACKGROUND Acute respiratory infections (ARIs) are common in children and can range in severity from mild self-limiting illnesses to more severe conditions such as pneumonia and respiratory failure. Data on the epidemiology of viral and bacterial pathogens causing ARIs in children are scarce in this region. This study aimed to investigate the epidemiology and clinical manifestations of pathogens in children aged ≤5 years presenting with severe acute respiratory infection (SARI) in Bangkok, Thailand. The impact of rapid multiplex PCR-based testing on clinical management is also explored. METHODS This cross-sectional study enrolled consecutive children aged ≤5 years presenting with SARI at a tertiary care centre in Bangkok, Thailand, between 2019 and 2020. Nasopharyngeal swabs were collected once at admission, and viral and bacterial pathogens were tested using the QIAstat-Dx respiratory panel. RESULTS A total of 169 children were enrolled in this study. At least one pathogenic virus was detected in 91.7 % of participants. Based on the final diagnoses made upon discharge, 30.2 % had upper respiratory tract infection, whereas 66.3 % had lower respiratory tract infection. Pneumonia was the most common diagnosis (59.2 %). The most common pathogen identified was rhino/enterovirus (45.2 %), followed by respiratory syncytial virus (31.6 %) and parainfluenza virus (14.2 %). Co-infection was found in 15.4 % and was not associated with increased disease severity. CONCLUSIONS This study provides additional insights into the pathogen profiles, clinical diagnosis, and co-infection combinations of ARIs in hospitalized children. This information is useful for diagnosis and treatment of ARIs, as well as implementation of appropriate infection control measures and guidance for future vaccine policy development.
Collapse
Affiliation(s)
- Nasamon Wanlapakorn
- Center of Excellence in Clinical Virology, Department of Pediatrics, Faculty of Medicine, Chulalongkorn University, Bangkok, 10330, Thailand
| | - Ilada Thongpan
- Center of Excellence in Clinical Virology, Department of Pediatrics, Faculty of Medicine, Chulalongkorn University, Bangkok, 10330, Thailand
- Abigail Wexner Research Institute at Nationwide Children's Hospital, Center for Vaccines and Immunity, Columbus, OH 43205, USA
| | - Nasiri Sarawanangkoor
- Center of Excellence in Clinical Virology, Department of Pediatrics, Faculty of Medicine, Chulalongkorn University, Bangkok, 10330, Thailand
| | - Preeyaporn Vichaiwattana
- Center of Excellence in Clinical Virology, Department of Pediatrics, Faculty of Medicine, Chulalongkorn University, Bangkok, 10330, Thailand
| | - Chompoonut Auphimai
- Center of Excellence in Clinical Virology, Department of Pediatrics, Faculty of Medicine, Chulalongkorn University, Bangkok, 10330, Thailand
| | - Donchida Srimuan
- Center of Excellence in Clinical Virology, Department of Pediatrics, Faculty of Medicine, Chulalongkorn University, Bangkok, 10330, Thailand
| | - Thaksaporn Thatsanathorn
- Center of Excellence in Clinical Virology, Department of Pediatrics, Faculty of Medicine, Chulalongkorn University, Bangkok, 10330, Thailand
| | - Lalida Kongkiattikul
- Division of pulmonology and critical care, Department of Pediatrics, Faculty of Medicine, Chulalongkorn University, Bangkok, 10330, Thailand
| | - Stephen J. Kerr
- Biostatistics Excellence Center, Faculty of Medicine, Chulalongkorn University, Bangkok, 10330, Thailand
| | - Yong Poovorawan
- Center of Excellence in Clinical Virology, Department of Pediatrics, Faculty of Medicine, Chulalongkorn University, Bangkok, 10330, Thailand
- FRS(T), the Royal Society of Thailand, Sanam Sueapa, Dusit, Bangkok, 10300, Thailand
| |
Collapse
|
4
|
Chaiut W, Sapbamrer R, Dacha S, Sudjaritruk T, Malasao R. Epidemiology and associated factors for hospitalization related respiratory syncytial virus infection among children less than 5 years of age in Northern Thailand. J Infect Public Health 2023; 16:1659-1665. [PMID: 37633227 DOI: 10.1016/j.jiph.2023.08.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Revised: 07/18/2023] [Accepted: 08/03/2023] [Indexed: 08/28/2023] Open
Abstract
BACKGROUND Respiratory syncytial virus (RSV) is often the main problem in young children that require hospitalization. The objective of this study was to identify factors associated with RSV-related hospitalizations in young children less than five years old. METHODOLOGY A retrospective study was conducted for acute respiratory tract infection (ARTI) at a tertiary care hospital from January 2017 to December 2021 by using binary logistic regression analysis to detect the associated factors with RSV-related hospitalizations in children. RESULTS RSV-related hospitalization was detected in 293 of 410 (71.46 %) cases of RSV infection, most of which appeared in the rainy months of August to November. The most common symptoms and signs were 81.5 % rhinorrhea, 70.7 % cough, 68.5 % sore throat, 68.3 % sputum production, and 66.8 % fever. Factors associated with RSV-related hospitalization were age less than or equal to 2 years (aOR = 4.62, 95 % CI = 1.86-11.44), preterm birth (aOR = 2.61, 95 % CI = 1.05-6.10), patients with underlying disease (aOR = 3.06, 95 % CI = 1.21-10.34), and the presenting symptoms with sputum production (aOR = 16.49, 95 % CI = 3.80-71.55). Laboratory blood tests, low levels of hematocrit (aOR = 9.61, 95 % CI = 1.09-84.49) was the associated factor for hospitalization with RSV infection (p < 0.05). CONCLUSIONS Factors associated with RSV-related hospitalizations in children were age less than or equal to two years, preterm birth, underlying disease, symptoms of sputum production. The low level of hematocrit was also associated with RSV-related hospitalizations in these children.
Collapse
Affiliation(s)
- Wilawan Chaiut
- Department of Community Medicine, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Ratana Sapbamrer
- Department of Community Medicine, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Sauwaluk Dacha
- Department of Physical Therapy, Faculty of Associated Medical Science, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Tavitiya Sudjaritruk
- Division of Infectious Diseases, Department of Pediatrics, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Rungnapa Malasao
- Department of Community Medicine, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand.
| |
Collapse
|
5
|
Malasao R, Chaiut W, Tantipetcharawan W, Tongphung R, Charoensri N, Takarn P, Sudjaritruk T, Maneekarn N. Predominance of ON1 and BA9 genotypes of human respiratory syncytial virus in children with acute respiratory infection in Chiang Mai, Thailand, 2020-2021. J Infect Public Health 2023; 16:1418-1426. [PMID: 37482015 DOI: 10.1016/j.jiph.2023.07.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Revised: 07/06/2023] [Accepted: 07/17/2023] [Indexed: 07/25/2023] Open
Abstract
BACKGROUND Human respiratory syncytial virus (hRSV) is an important cause of acute respiratory infection, especially in children. Few studies have investigated molecular epidemiology of hRSV infection in Thailand. The aims of this study were to investigate the prevalence and genotype diversity of hRSV in children with acute respiratory infection (ARI) in Thailand. METHODS A total of 383 nasopharyngeal swabs collected from children with ARI from October 2020 to September 2021 were screened for hRSV and nucleotide sequences of the hypervariable region 2 (HVR2) of G gene of the detected hRSV were analysed. RESULTS Of 383 nasopharyngeal swabs, 104 (27.2 %) were positive for hRSV, of which 51 (49.0 %), 43 (41.3 %), and 10 (9.6 %) were hRSV-A, hRSV-B, and untypeable strains, respectively. All hRSV-A and hRSV-B were ON1 genotype and BA9 genotype, respectively. Most of the hRSV strains were detected in the cool months, November 2020 to February 2021. Phylogenetic analysis of the HVR2 sequence of G gene revealed three clusters of hRSV-A (ON1 genotype) and two clusters of hRSV-B (BA9 genotype). The hRSV-A strains in cluster 1 and 3 were closely related to the hRSV-A reference strains reported previously from other regions of Thailand whereas those in cluster 2 were closely related to the hRSV-A reference strains reported previously from Europe and Africa. For the hRSV-B strains, both clusters 1 and 2 were closely related to the hRSV-B reference strains reported previously from Europe, Australia, and Taiwan. The predicted N- and O-linked glycosylation sites were found along the length of HVR2 of G protein, mostly in the hRSV-B strains. CONCLUSIONS The ON1 and BA9 were the only two hRSV genotypes that were co-predominant and solely detected in this study. The findings indicated that the ON1 and BA9 are the only two hRSV genotypes currently circulating in children with ARI in northern Thailand.
Collapse
Affiliation(s)
- Rungnapa Malasao
- Department of Community Medicine, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Wilawan Chaiut
- Department of Community Medicine, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand; School of Integrative Medicine, Mae Fah Luang University, Chiang Rai 57100, Thailand
| | - Wanwisa Tantipetcharawan
- Microbiology unit, Diagnostic laboratory, Maharaj Nakorn Chiang Mai Hospital, Chiang Mai 50200, Thailand
| | - Ratchanu Tongphung
- Microbiology unit, Diagnostic laboratory, Maharaj Nakorn Chiang Mai Hospital, Chiang Mai 50200, Thailand
| | - Nicha Charoensri
- Centre for Research and Development of Medical Diagnostic Laboratories (CMDL), Faculty of Associated Medical Sciences, Khon Kaen University, Khon Kaen 40002, Thailand
| | - Piyawan Takarn
- Department of Microbiology, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Tavitiya Sudjaritruk
- Division of Infectious Diseases, Department of Pediatrics, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Niwat Maneekarn
- Department of Microbiology, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand.
| |
Collapse
|
6
|
Pre COVID-19 molecular epidemiology of respiratory syncytial virus (RSV) among children in Bangladesh. Heliyon 2022; 8:e11043. [PMID: 36247113 PMCID: PMC9551109 DOI: 10.1016/j.heliyon.2022.e11043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Revised: 02/24/2022] [Accepted: 10/06/2022] [Indexed: 11/06/2022] Open
Abstract
Epidemiological data of specific respiratory pathogens from the pre-COVID-19 period are essential to determine the effects of the COVID-19 pandemic on other respiratory infections. In this study, we revealed the pre-COVID-19 molecular epidemiology of respiratory syncytial virus (RSV) among children in Bangladesh. We tested 3170 samples collected from 2008 to 2012 for a panel of respiratory viruses; RSV, human metapneumovirus (hMPV), human parainfluenza viruses (hPIV) 1, 2, 3, and adenovirus. Five hundred fifty-five samples (17.5 %) were positive for RSV, including 2.5% having co-infections with other viruses. Genotypic characterization of RSV showed that RSV-A (82%) contributed more acute respiratory infections than RSV-B (18%). Clinical features were similar with RSV-A and RSV-B infections. However, children with RSV-B were more likely to have upper respiratory infections (URI) (10% vs. 29%, p = 0.03). Among RSV-A cases, hospitalization was higher for ON1 cases (25%, ON1 vs. 8%, NA1, p = 0.04), whereas the recovery without a disability was higher among the NA1 cases (56%, ON1 vs. 88%, NA1, p = 0.02). The time to the most recent common ancestor (TMRCA) for RSV in Bangladesh was 1949 for RSV-A and 1944 for RSV-B. This study revealed the genotypic diversity and evolutionary relatedness of RSV strains in Bangladesh and provided pre-COVID molecular epidemiology data to understand better the COVID-19 impact on upcoming RSV epidemiology in Bangladesh.
Collapse
|
7
|
Dar HA, Almajhdi FN, Aziz S, Waheed Y. Immunoinformatics-Aided Analysis of RSV Fusion and Attachment Glycoproteins to Design a Potent Multi-Epitope Vaccine. Vaccines (Basel) 2022; 10:1381. [PMID: 36146460 PMCID: PMC9502547 DOI: 10.3390/vaccines10091381] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Revised: 08/16/2022] [Accepted: 08/20/2022] [Indexed: 11/16/2022] Open
Abstract
Respiratory syncytial virus (RSV) usually causes respiratory tract infections of upper airways in infants and young children. Despite recent medical advances, no approved vaccine is available to control RSV infections. Therefore, we conducted an immunoinformatics study to design and evaluate a potential multi-epitope vaccine against RSV. Sequence-based analyses of the glycoproteins F and G revealed a total of eight CD8 T-cell and three CD4 T-cell epitopes after considering antigenicity, binding affinity and other parameters. Molecular docking analysis confirmed that these T-cell epitopes developed strong structural associations with HLA allele(s). By integrating these prioritized epitopes with linkers and a cholera toxin-derived adjuvant, a multi-epitope vaccine was designed. The developed vaccine was found to be stable, non-allergenic, flexible and antigenic. Molecular docking analysis revealed a striking mean HADDOCK score (-143.3) of top-ranked vaccine-TLR cluster and a Gibbs free energy change (ΔG) value of -11.3 kcal mol-1. As per computational immune simulation results, the vaccine generated a high titer of antibodies (especially IgM) and effector T-cells. Also, codon optimization and in silico cloning ensured the increased expression of vaccine in Escherichia coli. Altogether, we anticipate that the multi-epitope vaccine reported in this study will stimulate humoral and cellular responses against RSV infection, subject to follow-up experimental validation.
Collapse
Affiliation(s)
- Hamza Arshad Dar
- Department of Bio and Brain Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Korea
| | - Fahad Nasser Almajhdi
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh 11451, Saudi Arabia
| | - Shahkaar Aziz
- Institute of Biotechnology and Genetic Engineering, The University of Agriculture, Peshawar 25000, Pakistan
| | - Yasir Waheed
- Office of Research, Innovation & Commercialization, Shaheed Zulfiqar Ali Bhutto Medical University (SZABMU), Islamabad 44000, Pakistan
| |
Collapse
|
8
|
Lee CY, Fang YP, Wang LC, Chou TY, Liu HF. Genetic Diversity and Molecular Epidemiology of Circulating Respiratory Syncytial Virus in Central Taiwan, 2008-2017. Viruses 2021; 14:v14010032. [PMID: 35062237 PMCID: PMC8777914 DOI: 10.3390/v14010032] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2021] [Revised: 12/17/2021] [Accepted: 12/20/2021] [Indexed: 12/22/2022] Open
Abstract
In this study, we investigated the molecular evolution and phylodynamics of respiratory syncytial virus (RSV) over 10 consecutive seasons (2008–2017) and the genetic variability of the RSV genotypes ON1 and BA in central Taiwan. The ectodomain region of the G gene was sequenced for genotyping. The nucleotide and deduced amino acid sequences of the second hypervariable region of the G protein in RSV ON1 and BA were analyzed. A total of 132 RSV-A and 81 RSV-B isolates were obtained. Phylogenetic analysis revealed that the NA1, ON1, and BA9 genotypes were responsible for the RSV epidemics in central Taiwan in the study period. For RSV-A, the NA1 genotype predominated during the 2008–2011 seasons. The ON1 genotype was first detected in 2011 and replaced NA1 after 2012. For RSV-B, the BA9 and BA10 genotypes cocirculated from 2008 to 2010, but the BA9 genotype has predominated since 2012. Amino acid sequence alignments revealed the continuous evolution of the G gene in the ectodomain region. The predicted N-glycosylation sites were relatively conserved in the ON1 (site 237 and 318) and BA9 (site 296 and 310) genotype strains. Our results contribute to the understanding and prediction of the temporal evolution of RSV at the local level.
Collapse
Affiliation(s)
- Chun-Yi Lee
- Department of Pediatrics, Chang Bing Show Chwan Memorial Hospital, Changhua 505029, Taiwan; (C.-Y.L.); (Y.-P.F.)
- Institute of Clinical Medicine, National Yang Ming Chiao Tung University, Taipei 112304, Taiwan;
| | - Yu-Ping Fang
- Department of Pediatrics, Chang Bing Show Chwan Memorial Hospital, Changhua 505029, Taiwan; (C.-Y.L.); (Y.-P.F.)
| | - Li-Chung Wang
- Department of Pathology and Laboratory Medicine, Taichung Veterans General Hospital, Taichung 40705, Taiwan;
| | - Teh-Ying Chou
- Institute of Clinical Medicine, National Yang Ming Chiao Tung University, Taipei 112304, Taiwan;
- Department of Pathology and Laboratory Medicine, Taipei Veterans General Hospital, Taipei 11217, Taiwan
| | - Hsin-Fu Liu
- Department of Medical Research, Mackay Memorial Hospital, Taipei 25160, Taiwan
- Institute of Bioscience and Biotechnology, National Taiwan Ocean University, Keelung 202301, Taiwan
- Institute of Biomedical Sciences, MacKay Medical College, New Taipei City 25245, Taiwan
- Correspondence:
| |
Collapse
|
9
|
Lee YE, Choi OK, Bang SJ, Cho HG, Lee HK, Han BS, Lee SH, Cheng J, Cho JH, Suh JW. Molecular epidemiological study of the G protein of human respiratory syncytial virus detected in patients with acute respiratory infections in Gyeonggi Province, South Korea. J Med Virol 2021; 94:549-556. [PMID: 34730256 DOI: 10.1002/jmv.27431] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Revised: 10/12/2021] [Accepted: 11/01/2021] [Indexed: 11/11/2022]
Abstract
To investigate the molecular characteristics of human respiratory syncytial virus (HRSV) detected in Gyeonggi Province from 2015/16 to 2017/18, 2331 specimens from patients with sporadic acute respiratory illness and 85 specimens from four HRSV outbreaks in the postpartum care center were analyzed by real-time reverse transcription PCR. HRSVs were detected in 97 of the 2416 (4.0%) specimens, and among the positive specimens, 38 (39.2%) were identified as HRSV-A and 59 (60.8%) as HRSV-B. During the study periods, HRSV-B predominated in all seasons, except in 2016/17 during which HRSV-A predominated. Depending on the age groups, HRSV prevalence was the highest in 0- to 2-year-old patients. Comparison of noninfected subjects with HRSV-infected subjects revealed that HRSV infection more frequently resulted in fever, nasal obstruction, and wheezing, although the frequency of sore throat was low; however, comparison of the symptoms between HRSV-A- and HRSV-B-infected patients revealed no significant differences in symptoms. Phylogenetic analysis showed that all HRSV-A patients had an ON1 genotype, and all HRSV-B patients had an BA9 genotype. These results provide a valuable reference regarding the circulating pattern and molecular characterization of HRSV. Continuous monitoring will be essential to detect newly emerging HRSV genotypes.
Collapse
Affiliation(s)
- Yea-Eun Lee
- Team of Infectious Disease Investigation, Gyeonggi-Do Institute of Health and Environment, Suwon, Republic of Korea
| | - Ok-Kyung Choi
- Team of Infectious Disease Investigation, Gyeonggi-Do Institute of Health and Environment, Suwon, Republic of Korea
| | - Seon-Jae Bang
- Team of Infectious Disease Investigation, Gyeonggi-Do Institute of Health and Environment, Suwon, Republic of Korea
| | - Han-Gil Cho
- Team of Infectious Disease Investigation, Gyeonggi-Do Institute of Health and Environment, Suwon, Republic of Korea
| | - Hyun-Kyung Lee
- Team of Infectious Disease Investigation, Gyeonggi-Do Institute of Health and Environment, Suwon, Republic of Korea
| | - Baek-Sang Han
- Team of Infectious Disease Investigation, Gyeonggi-Do Institute of Health and Environment, Suwon, Republic of Korea
| | - Sun-Hwa Lee
- Center of Laboratory Medicine, Seegene Medical Foundation, Seoul, Republic of Korea
| | - Jinhua Cheng
- Myongji Bioefficacy Research Center, Myongji University, Yongin, Republic of Korea
| | - Joo-Hyung Cho
- Myongji Bioefficacy Research Center, Myongji University, Yongin, Republic of Korea
| | - Joo-Won Suh
- Myongji Bioefficacy Research Center, Myongji University, Yongin, Republic of Korea
| |
Collapse
|
10
|
Thongpan I, Vichaiwattana P, Vongpunsawad S, Poovorawan Y. Upsurge of human rhinovirus infection followed by a delayed seasonal respiratory syncytial virus infection in Thai children during the coronavirus pandemic. Influenza Other Respir Viruses 2021; 15:711-720. [PMID: 34350701 PMCID: PMC8542963 DOI: 10.1111/irv.12893] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Accepted: 07/19/2021] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND Respiratory syncytial virus (RSV) and human rhinovirus (HRV) commonly cause influenza-like illness in young children. The global coronavirus pandemic beginning in 2020 altered the seasonality and prevalence of these respiratory infections in Thailand. We aimed to characterize the upsurge of HRV and the subsequent RSV infection observed among young children who sought medical care at a hospital in Bangkok. METHODS From July to December 2020, nasopharyngeal swabs from children ≤5 years of age presented with influenza-like illness were tested for RSV and HRV using reverse-transcription polymerase chain reaction. Positive samples were Sanger sequenced. Genotyping was performed using sequence and phylogenetic analysis. RESULTS Upsurge of HRV infection began in July and was subsequently replaced by a surge of RSV infection from September onward. In 6 months, HRV was detected in 27.5% (158/574) of the samples, of which 44% (69/158) were HRV-A, 7% (11/158) were HRV-B, and 36% (57/158) were HRV-C. Meanwhile, RSV was detected in 40.4% (232/574) of the samples, of which 78% (181/232) were RSV-A and 6% (14/232) were RSV-B. RSV peaked in October 2020, approximately 2 months later than typically seen in previous years. All RSV-A were of subgenotype ON1. Codetection of HRV and RSV was found in 5.1% (29/574). CONCLUSIONS HRV and RSV infection among young children coincided with relaxed local coronavirus public health measures, including the return to in-class schooling. The delayed RSV season in 2020 was predominantly associated with RSV-A.
Collapse
Affiliation(s)
- Ilada Thongpan
- Center of Excellence in Clinical Virology, Department of Pediatrics, Faculty of MedicineChulalongkorn UniversityBangkokThailand
| | - Preeyaporn Vichaiwattana
- Center of Excellence in Clinical Virology, Department of Pediatrics, Faculty of MedicineChulalongkorn UniversityBangkokThailand
| | - Sompong Vongpunsawad
- Center of Excellence in Clinical Virology, Department of Pediatrics, Faculty of MedicineChulalongkorn UniversityBangkokThailand
| | - Yong Poovorawan
- Center of Excellence in Clinical Virology, Department of Pediatrics, Faculty of MedicineChulalongkorn UniversityBangkokThailand
| |
Collapse
|
11
|
Trovão NS, Khuri-Bulos N, Tan Y, Puri V, Shilts MH, Halpin RA, Fedorova NB, Nelson MI, Halasa N, Das SR. Molecular characterization of respiratory syncytial viruses circulating in a paediatric cohort in Amman, Jordan. Microb Genom 2021; 7:000292. [PMID: 31532357 PMCID: PMC8627666 DOI: 10.1099/mgen.0.000292] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2019] [Accepted: 08/15/2019] [Indexed: 12/20/2022] Open
Abstract
Respiratory syncytial viruses (RSVs) are an important cause of mortality worldwide and a major cause of respiratory tract infections in children, driving development of vaccine candidates. However, there are large gaps in our knowledge of the local evolutionary and transmission dynamics of RSVs, particularly in understudied regions such as the Middle East. To address this gap, we sequenced the complete genomes of 58 RSVA and 27 RSVB samples collected in a paediatric cohort in Amman, Jordan, between 2010 and 2013. RSVA and RSVB co-circulated during each winter epidemic of RSV in Amman, and each epidemic comprised multiple independent viral introductions of RSVA and RSVB. However, RSVA and RSVB alternated in dominance across years, potential evidence of immunological interactions. Children infected with RSVA tended to be older than RSVB-infected children [30 months versus 22.4 months, respectively (P value = 0.02)], and tended to developed bronchopneumonia less frequently than those with RSVB, although the difference was not statistically significant (P value = 0.06). Differences in spatial patterns were investigated, and RSVA lineages were often identified in multiple regions in Amman, whereas RSVB introductions did not spread beyond a single region of the city, although these findings were based on small sample sizes. Multiple RSVA genotypes were identified in Amman, including GA2 viruses as well as three viruses from the ON1 sub-genotype that emerged in 2009 and are now the dominant genotype circulating worldwide. As vaccine development advances, further sequencing of RSV is needed to understand viral ecology and transmission, particularly in under-studied locations.
Collapse
Affiliation(s)
- Nídia S. Trovão
- Division of International Epidemiology and Population Studies, Fogarty International Center, National Institutes of Health, Bethesda, MD, USA
| | - Najwa Khuri-Bulos
- Division of Infectious Diseases, Department of Pediatrics, University of Jordan, Amman, Jordan
| | - Yi Tan
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
- Infectious Disease Group, J. Craig Venter Institute, Rockville, MD, USA
| | - Vinita Puri
- Infectious Disease Group, J. Craig Venter Institute, Rockville, MD, USA
| | - Meghan H. Shilts
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
- Infectious Disease Group, J. Craig Venter Institute, Rockville, MD, USA
| | - Rebecca A. Halpin
- Infectious Disease Group, J. Craig Venter Institute, Rockville, MD, USA
| | - Nadia B. Fedorova
- Infectious Disease Group, J. Craig Venter Institute, Rockville, MD, USA
| | - Martha I. Nelson
- Division of International Epidemiology and Population Studies, Fogarty International Center, National Institutes of Health, Bethesda, MD, USA
| | - Natasha Halasa
- Departments of Pediatrics, Vanderbilt University, Nashville, TN, USA
| | - Suman R. Das
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
- Infectious Disease Group, J. Craig Venter Institute, Rockville, MD, USA
| |
Collapse
|
12
|
Krivitskaya V, Komissarova K, Pisareva M, Sverlova M, Fadeev A, Petrova E, Timonina V, Sominina A, Danilenko D. Respiratory Syncytial Virus G Protein Sequence Variability among Isolates from St. Petersburg, Russia, during the 2013-2014 Epidemic Season. Viruses 2021; 13:119. [PMID: 33477301 PMCID: PMC7830914 DOI: 10.3390/v13010119] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Revised: 01/10/2021] [Accepted: 01/12/2021] [Indexed: 11/16/2022] Open
Abstract
Human respiratory syncytial virus (RSV) is the most common cause of upper and lower respiratory tract infections in infants and young children. It is actively evolving under environmental and herd immunity influences. This work presents, for the first time, sequence variability analysis of RSV G gene and G protein using St. Petersburg (Russia) isolates. Viruses were isolated in a cell culture from the clinical samples of 61 children hospitalized (January-April 2014) with laboratory-confirmed RSV infection. Real-time RT-PCR data showed that 56 isolates (91.8%) belonged to RSV-A and 5 isolates (8.2%) belonged to RSV-B. The G genes were sequenced for 27 RSV-A isolates and all of them belonged to genotype ON1/GA2. Of these RSV-A, 77.8% belonged to the ON1(1.1) genetic sub-cluster, and 14.8% belonged to the ON1(1.2) sub-cluster. The ON1(1.3) sub-cluster constituted a minor group (3.7%). Many single-amino acid substitutions were identified in the G proteins of St. Petersburg isolates, compared with the Canadian ON1/GA2 reference virus (ON67-1210A). Most of the amino acid replacements were found in immunodominant B- and T-cell antigenic determinants of G protein. These may affect the antigenic characteristics of RSV and influence the host antiviral immune response to currently circulating viruses.
Collapse
Affiliation(s)
- Vera Krivitskaya
- Department of Etiology and Epidemiology, Smorodintsev Research Institute of Influenza, 197376 Saint-Petersburg, Russia; (V.K.); (M.P.); (M.S.); (A.F.); (E.P.); (A.S.); (D.D.)
| | - Kseniya Komissarova
- Department of Etiology and Epidemiology, Smorodintsev Research Institute of Influenza, 197376 Saint-Petersburg, Russia; (V.K.); (M.P.); (M.S.); (A.F.); (E.P.); (A.S.); (D.D.)
| | - Maria Pisareva
- Department of Etiology and Epidemiology, Smorodintsev Research Institute of Influenza, 197376 Saint-Petersburg, Russia; (V.K.); (M.P.); (M.S.); (A.F.); (E.P.); (A.S.); (D.D.)
| | - Maria Sverlova
- Department of Etiology and Epidemiology, Smorodintsev Research Institute of Influenza, 197376 Saint-Petersburg, Russia; (V.K.); (M.P.); (M.S.); (A.F.); (E.P.); (A.S.); (D.D.)
| | - Artem Fadeev
- Department of Etiology and Epidemiology, Smorodintsev Research Institute of Influenza, 197376 Saint-Petersburg, Russia; (V.K.); (M.P.); (M.S.); (A.F.); (E.P.); (A.S.); (D.D.)
| | - Ekaterina Petrova
- Department of Etiology and Epidemiology, Smorodintsev Research Institute of Influenza, 197376 Saint-Petersburg, Russia; (V.K.); (M.P.); (M.S.); (A.F.); (E.P.); (A.S.); (D.D.)
| | - Veronika Timonina
- Children’s City Hospital of St. Olga, 194017 Saint-Petersburg, Russia;
| | - Anna Sominina
- Department of Etiology and Epidemiology, Smorodintsev Research Institute of Influenza, 197376 Saint-Petersburg, Russia; (V.K.); (M.P.); (M.S.); (A.F.); (E.P.); (A.S.); (D.D.)
| | - Daria Danilenko
- Department of Etiology and Epidemiology, Smorodintsev Research Institute of Influenza, 197376 Saint-Petersburg, Russia; (V.K.); (M.P.); (M.S.); (A.F.); (E.P.); (A.S.); (D.D.)
| |
Collapse
|
13
|
Dominance of the ON1 Genotype of RSV-A and BA9 Genotype of RSV-B in Respiratory Cases from Jeddah, Saudi Arabia. Genes (Basel) 2020; 11:genes11111323. [PMID: 33182267 PMCID: PMC7695323 DOI: 10.3390/genes11111323] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Revised: 11/03/2020] [Accepted: 11/05/2020] [Indexed: 01/10/2023] Open
Abstract
Human respiratory syncytial virus (HRSV) is a main cause of hospital admission for lower respiratory tract infection. In previous studies from Saudi Arabia, higher prevalence of the NA1 genotype in group A was observed from Riyadh and Taif. This study recruited respiratory cases from Jeddah during January to December, 2017. RSV represented 13.4% in the recruited cases with 64% of them belonging to group A and 36% to group B. All group A cases in this study were ON1 type characterized by duplication of 72 nucleotides, 24 amino acids in the C-terminal in the second hypervariable region of the G gene. In addition, for group B all of the cases were clustered under BA9, which had uniquely characterized as duplication of 60 nucleotides in the G protein. Our sequences showed similarity with earlier sequences from Saudi Arabia, Kuwait, Thailand, South Africa, Spain, the USA and Cyprus. Some amino acid substitutions in the investigated sequences would cause a change in potential O-glycosylation and N-glycosylation profiles from prototype ON1. The predominance of the ON1 and BA9 genotype of RSV-A in Jeddah compared to previous Saudi studies showing predominance of the NA1 genotype for group A. This difference in genotype prevalence could be due to fast spread of the ON1 genotype worldwide or due to the flux of travelers through Jeddah during hajj/umrah compared to Riyadh and Taif. This shift in genotype distribution requires continuous surveillance for genetic characterization of circulating respiratory infections including RSV. These findings may contribute to the understanding of RSV evolution and to the potential development of a vaccine against RSV.
Collapse
|
14
|
Thongpan I, Vongpunsawad S, Poovorawan Y. Respiratory syncytial virus infection trend is associated with meteorological factors. Sci Rep 2020; 10:10931. [PMID: 32616819 PMCID: PMC7331681 DOI: 10.1038/s41598-020-67969-5] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Accepted: 06/16/2020] [Indexed: 11/10/2022] Open
Abstract
Respiratory syncytial virus (RSV) infects young children and causes influenza-like illness. RSV circulation and prevalence differ among countries and climates. To better understand whether climate factors influence the seasonality of RSV in Thailand, we examined RSV data from children ≤ 5 years-old who presented with respiratory symptoms from January 2012-December 2018. From a total of 8,209 nasopharyngeal samples, 13.2% (1,082/8,209) was RSV-positive, of which 37.5% (406/1,082) were RSV-A and 36.4% (394/1,082) were RSV-B. The annual unimodal RSV activity from July-November overlaps with the rainy season. Association between meteorological data including monthly average temperature, relative humidity, rainfall, and wind speed for central Thailand and the incidence of RSV over 7-years was analyzed using Spearman's rank and partial correlation. Multivariate time-series analysis with an autoregressive integrated moving average (ARIMA) model showed that RSV activity correlated positively with rainfall (r = 0.41) and relative humidity (r = 0.25), but negatively with mean temperature (r = - 0.27). The best-fitting ARIMA (1,0,0)(2,1,0)12 model suggests that peak RSV activity lags the hottest month of the year by 4 months. Our results enable possible prediction of RSV activity based on the climate and could help to anticipate the yearly upsurge of RSV in this region.
Collapse
Affiliation(s)
- Ilada Thongpan
- Center of Excellence in Clinical Virology, Faculty of Medicine, Chulalongkorn University, Bangkok, 10330, Thailand
| | - Sompong Vongpunsawad
- Center of Excellence in Clinical Virology, Faculty of Medicine, Chulalongkorn University, Bangkok, 10330, Thailand
| | - Yong Poovorawan
- Center of Excellence in Clinical Virology, Faculty of Medicine, Chulalongkorn University, Bangkok, 10330, Thailand.
| |
Collapse
|
15
|
Tahir ul Qamar M, Shokat Z, Muneer I, Ashfaq UA, Javed H, Anwar F, Bari A, Zahid B, Saari N. Multiepitope-Based Subunit Vaccine Design and Evaluation against Respiratory Syncytial Virus Using Reverse Vaccinology Approach. Vaccines (Basel) 2020; 8:E288. [PMID: 32521680 PMCID: PMC7350008 DOI: 10.3390/vaccines8020288] [Citation(s) in RCA: 61] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2020] [Revised: 05/12/2020] [Accepted: 05/15/2020] [Indexed: 02/07/2023] Open
Abstract
Respiratory syncytial virus (RSV) is primarily associated with respiratory disorders globally. Despite the availability of information, there is still no competitive vaccine available for RSV. Therefore, the present study has been designed to develop a multiepitope-based subunit vaccine (MEV) using a reverse vaccinology approach to curb RSV infections. Briefly, two highly antigenic and conserved proteins of RSV (glycoprotein and fusion protein) were selected and potential epitopes of different categories (B-cell and T-cell) were identified from them. Eminently antigenic and overlapping epitopes, which demonstrated strong associations with their respective human leukocyte antigen (HLA) alleles and depicted collective ~70% coverage of the world's populace, were shortlisted. Finally, 282 amino acids long MEV construct was established by connecting 13 major histocompatibility complex (MHC) class-I with two MHC class-II epitopes with appropriate adjuvant and linkers. Adjuvant and linkers were added to increase the immunogenic stimulation of the MEV. Developed MEV was stable, soluble, non-allergenic, non-toxic, flexible and highly antigenic. Furthermore, molecular docking and molecular dynamics (MD) simulations analyses were carried out. Results have shown a firm and robust binding affinity of MEV with human pathogenic toll-like receptor three (TLR3). The computationally mediated immune response of MEV demonstrated increased interferon-γ production, a significant abundance of immunoglobulin and activation of macrophages which are essential for immune-response against RSV. Moreover, MEV codons were optimized and in silico cloning was performed, to ensure its increased expression. These outcomes proposed that the MEV developed in this study will be a significant candidate against RSV to control and prevent RSV-related disorders if further investigated experimentally.
Collapse
Affiliation(s)
| | - Zeeshan Shokat
- Department of Bioinformatics and Biotechnology, Government College University, Faisalabad 38000, Pakistan; (Z.S.); (U.A.A.); (H.J.)
| | - Iqra Muneer
- School of Life Sciences, University of Science and Technology of China, Hefei 230052, China;
| | - Usman Ali Ashfaq
- Department of Bioinformatics and Biotechnology, Government College University, Faisalabad 38000, Pakistan; (Z.S.); (U.A.A.); (H.J.)
| | - Hamna Javed
- Department of Bioinformatics and Biotechnology, Government College University, Faisalabad 38000, Pakistan; (Z.S.); (U.A.A.); (H.J.)
| | - Farooq Anwar
- Department of Chemistry, University of Sargodha, Sargodha 40100, Pakistan;
| | - Amna Bari
- Hubei Key Laboratory of Agricultural Bioinformatics, College of Informatics, Huazhong Agricultural University, Wuhan 430070, China;
| | - Barira Zahid
- Key Laboratory of Horticultural Plant Biology (Ministry of Education), Huazhong Agricultural University, Wuhan 430070, China;
| | - Nazamid Saari
- Department of Food Science, Faculty of Food Science and Technology, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia
| |
Collapse
|
16
|
Lu L, Robertson G, Ashworth J, Pham Hong A, Shi T, Ivens A, Thwaites G, Baker S, Woolhouse M. Epidemiology and Phylogenetic Analysis of Viral Respiratory Infections in Vietnam. Front Microbiol 2020; 11:833. [PMID: 32499763 PMCID: PMC7242649 DOI: 10.3389/fmicb.2020.00833] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Accepted: 04/07/2020] [Indexed: 12/18/2022] Open
Abstract
Acute respiratory infections (ARIs) impose a major public health burden on fragile healthcare systems of developing Southeast Asian countries such as Vietnam. The epidemiology, genetic diversity and transmission patterns of respiratory viral pathogens that circulate in this region are not well characterized. We used RT-PCR to screen for 14 common respiratory viruses in nasal/throat samples from 4326 ARI patients from 5 sites in Vietnam during 2012-2016. 64% of patients tested positive for viruses; 14% tested positive multiple co-infecting viruses. The most frequently detected viruses were Respiratory syncytial virus (RSV, 23%), Human Rhinovirus (HRV, 13%), Influenza A virus (IAV, 11%) and Human Bocavirus (HBoV, 7%). RSV infections peaked in July to October, were relatively more common in children <1 year and in the northernmost hospital. IAV infections peaked in December to February and were relatively more common in patients >5 years in the central region. Coinfection with IAV or RSV was associated with increased disease severity compared with patients only infected with HBoV or HRV. Over a hundred genomes belonging to 13 families and 24 genera were obtained via metagenomic sequencing, including novel viruses and viruses less commonly associated with ARIs. Phylogenetic and phylogeographic analyses further indicated that neighboring countries were the most likely source of many virus lineages causing ARIs in Vietnam and estimated the period that specific lineages have been circulating. Our study illustrates the value of applying the state-of-the-art virus diagnostic methods (multiplex RT-PCR and metagenomic sequencing) and phylodynamic analyses at a national level to generate an integrated picture of viral ARI epidemiology.
Collapse
Affiliation(s)
- Lu Lu
- Usher Institute, The University of Edinburgh, Edinburgh, United Kingdom
| | - Gail Robertson
- Statistical Consultancy Unit, School of Mathematics, The University of Edinburgh, Edinburgh, United Kingdom
| | - Jordan Ashworth
- Institute of Evolutionary Biology, The University of Edinburgh, Edinburgh, United Kingdom
| | - Anh Pham Hong
- Hospital for Tropical Diseases, Wellcome Trust Major Overseas Programme, Oxford University Clinical Research Unit, Ho Chi Minh City, Vietnam
| | - Ting Shi
- Usher Institute, The University of Edinburgh, Edinburgh, United Kingdom
| | - Alasdair Ivens
- Institute of Immunology and Infection Research, The University of Edinburgh, Edinburgh, United Kingdom
| | - Guy Thwaites
- Hospital for Tropical Diseases, Wellcome Trust Major Overseas Programme, Oxford University Clinical Research Unit, Ho Chi Minh City, Vietnam
| | - Stephen Baker
- Cambridge Institute of Therapeutic Immunology and Infectious Disease (CITIID), Department of Medicine, University of Cambridge, Cambridge, United Kingdom
| | - Mark Woolhouse
- Usher Institute, The University of Edinburgh, Edinburgh, United Kingdom
| |
Collapse
|
17
|
Sáez-López E, Cristóvão P, Costa I, Pechirra P, Conde P, Guiomar R, Peres MJ, Viseu R, Lopes P, Soares V, Vale F, Fonseca P, Freitas L, Alves J, Pessanha MA, Toscano C, Mota-Vieira L, Veloso RC, Côrte-Real R, Branquinho P, Pereira-Vaz J, Rodrigues F, Cunha M, Martins L, Mota P, Couto AR, Bruges-Armas J, Almeida S, Rodrigues D. Epidemiology and genetic variability of respiratory syncytial virus in Portugal, 2014-2018. J Clin Virol 2019; 121:104200. [PMID: 31707201 PMCID: PMC7106440 DOI: 10.1016/j.jcv.2019.104200] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2019] [Revised: 09/19/2019] [Accepted: 10/03/2019] [Indexed: 02/03/2023]
Abstract
INTRODUCTION Respiratory syncytial virus (RSV) is associated with substantial morbidity and mortality since it is a predominant viral agent causing respiratory tract infections in infants, young children and the elderly. Considering the availability of the RSV vaccines in the coming years, molecular understanding in RSV is necessary. OBJECTIVE The objective of the present study was to describe RSV epidemiology and genotype variability in Portugal during the 2014/15-2017/18 period. MATERIAL AND METHODS Epidemiological data and RSV-positive samples from patients with a respiratory infection were collected through the non-sentinel and sentinel influenza surveillance system (ISS). RSV detection, subtyping in A and B, and sequencing of the second hypervariable region (HVR2) of G gene were performed by molecular methods. Phylogenetic trees were generated using the Neighbor-Joining method and p-distance model on MEGA 7.0. RESULTS RSV prevalence varied between the sentinel (2.5%, 97/3891) and the non-sentinel ISS (20.7%, 3138/16779), being higher (P < 0.0001) among children aged <5 years. Bronchiolitis (62.9%, 183/291) and influenza-like illness (24.6%, 14/57) were associated (P < 0.0001) with RSV laboratory confirmation among children aged <6 months and adults ≥65 years, respectively. The HVR2 was sequenced for 562 samples. RSV-A (46.4%, 261/562) and RSV-B (53.6%, 301/562) strains clustered mainly to ON1 (89.2%, 233/261) and BA9 (92%, 277/301) genotypes, respectively, although NA1 and BA10 were also present until 2015/2016. CONCLUSION The sequence and phylogenetic analysis reflected the relatively high diversity of Portuguese RSV strains. BA9 and ON1 genotypes, which have been circulating in Portugal since 2010/2011 and 2011/2012 respectively, predominated during the whole study period.
Collapse
Affiliation(s)
- Emma Sáez-López
- Department of Infectious Diseases, National Health Institute Doutor Ricardo Jorge (INSA), Avenida Padre Cruz, 1649-016, Lisbon, Portugal; European Centre for Disease Prevention and Control (ECDC), Gustav III:s Boulevard 40, 16973, Solna, Sweden.
| | - Paula Cristóvão
- Department of Infectious Diseases, National Health Institute Doutor Ricardo Jorge (INSA), Avenida Padre Cruz, 1649-016, Lisbon, Portugal.
| | - Inês Costa
- Department of Infectious Diseases, National Health Institute Doutor Ricardo Jorge (INSA), Avenida Padre Cruz, 1649-016, Lisbon, Portugal.
| | - Pedro Pechirra
- Department of Infectious Diseases, National Health Institute Doutor Ricardo Jorge (INSA), Avenida Padre Cruz, 1649-016, Lisbon, Portugal.
| | - Patrícia Conde
- Department of Infectious Diseases, National Health Institute Doutor Ricardo Jorge (INSA), Avenida Padre Cruz, 1649-016, Lisbon, Portugal.
| | - Raquel Guiomar
- Department of Infectious Diseases, National Health Institute Doutor Ricardo Jorge (INSA), Avenida Padre Cruz, 1649-016, Lisbon, Portugal.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Mahikul W, J. White L, Poovorawan K, Soonthornworasiri N, Sukontamarn P, Chanthavilay P, F. Medley G, Pan-ngum W. Modeling household dynamics on Respiratory Syncytial Virus (RSV). PLoS One 2019; 14:e0219323. [PMID: 31287832 PMCID: PMC6615606 DOI: 10.1371/journal.pone.0219323] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2019] [Accepted: 06/20/2019] [Indexed: 11/19/2022] Open
Abstract
Respiratory Syncytial Virus (RSV) is the most common cause of respiratory tract infection in infants and children and shows increasing trend among elderly people worldwide. In many developing country settings, population and household structures have gone through some significant changes in the past decades, namely fewer births, more elderly population, and smaller household size but more RSV high-risk individuals. These dynamics have been captured in a mathematical model with RSV transmission dynamics to predict the disease burden on the detailed population for future targeted interventions. The population and disease dynamics model was constructed and tested against the hospitalization data for Acute Lower Respiratory Tract Infection due to RSV in rural Thai settings between 2005 and 2011. The proportion of extended families is predicted to increase by about 10% from 2005 to 2020, especially for those with elderly population, while the classic nuclear family type (with adults and children) will decline by about 10%. For RSV, infections from extended family type (approximately 60% of all household types) have majorly contributed to the force of infection (FOI). While the model predicted the increase of FOI from the extended family by 15% from 2005 to 2020, the FOI contributed by other household types would be either stable or decrease in the same time period. RSV incidence rate is predominantly high among babies (92.2%) and has been predicted to decrease slightly over time (from 940 to 864 cases per 100,000 population by 2020), while the incidence rates among children and elderly people may remain steadily low over the same period. However, the estimated incidence rates among elderly people were twice than those in children. The model predicts that approximately 60% of FOI for RSV will come from members of the extended family type. The incidence rate of RSV among children and elderly in extended families was about 20 times lower than that in infants and the trend is steady. Targeted intervention strategies, such as health education in some specific groups and targeted vaccination, may be considered, with the focus on extended family type. Target interventions on babies can lessen the transmission to children and elderly especially when transmission within households of extended family type is high.
Collapse
Affiliation(s)
- Wiriya Mahikul
- Department of Tropical Hygiene, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | - Lisa J. White
- Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
- Centre for Tropical Medicine, Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
| | - Kittiyod Poovorawan
- Department of Clinical Tropical Medicine, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | | | | | - Phetsavanh Chanthavilay
- Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
- Institute of Research and Education Development, UHS, Vientiane, Lao PDR
| | - Graham F. Medley
- Centre for Mathematical Modelling of Infectious Disease & Department of Global Health and Development, London School of Hygiene and Tropical Medicine, London, United Kingdom
| | - Wirichada Pan-ngum
- Department of Tropical Hygiene, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
- Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| |
Collapse
|
19
|
Kombe IK, Munywoki PK, Baguelin M, Nokes DJ, Medley GF. Model-based estimates of transmission of respiratory syncytial virus within households. Epidemics 2019; 27:1-11. [PMID: 30591267 PMCID: PMC6543068 DOI: 10.1016/j.epidem.2018.12.001] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2018] [Revised: 12/14/2018] [Accepted: 12/14/2018] [Indexed: 12/16/2022] Open
Abstract
INTRODUCTION Respiratory syncytial virus (RSV) causes a significant respiratory disease burden in the under 5 population. The transmission pathway to young children is not fully quantified in low-income settings, and this information is required to design interventions. METHODS We used an individual level transmission model to infer transmission parameters using data collected from 493 individuals distributed across 47 households over a period of 6 months spanning the 2009/2010 RSV season. A total of 208 episodes of RSV were observed from 179 individuals. We model competing transmission risk from within household exposure and community exposure while making a distinction between RSV groups A and B. RESULTS We find that 32-53% of all RSV transmissions are between members of the same household; the rate of pair-wise transmission is 58% (95% CrI: 30-74%) lower in larger households (≥8 occupants) than smaller households; symptomatic individuals are 2-7 times more infectious than asymptomatic individuals i.e. 2.48 (95% CrI: 1.22-5.57) among symptomatic individuals with low viral load and 6.7(95% CrI: 2.56-16) among symptomatic individuals with high viral load; previous infection reduces susceptibility to re-infection within the same epidemic by 47% (95% CrI: 17%-68%) for homologous RSV group and 39% (95%CrI: -8%-69%) for heterologous group; RSV B is more frequently introduced into the household, and RSV A is more rapidly transmitted once in the household. DISCUSSION Our analysis presents the first transmission modelling of cohort data for RSV and we find that it is important to consider the household social structuring and household size when modelling transmission. The increased infectiousness of symptomatic individuals implies that a vaccine against RSV related disease would also have an impact on infection transmission. Together, the weak cross immunity between RSV groups and the possibility of different transmission niches could form part of the explanation for the group co-existence.
Collapse
Affiliation(s)
- Ivy K Kombe
- KEMRI-Wellcome Trust Research Programme, KEMRI Center for Geographical Medical Research-Coast, P.O. Box 230-80108, Kilifi, Kenya; Centre for Mathematical Modelling of Infectious Disease and Department of Global Health and Development, London School of Hygiene and Tropical Medicine, London, WC1H 9SH, UK.
| | - Patrick K Munywoki
- KEMRI-Wellcome Trust Research Programme, KEMRI Center for Geographical Medical Research-Coast, P.O. Box 230-80108, Kilifi, Kenya
| | - Marc Baguelin
- Centre for Mathematical Modelling of Infectious Disease and Department of Infectious Disease Epidemiology, London School of Hygiene and Tropical Medicine, London, WC1H 9SH, UK
| | - D James Nokes
- KEMRI-Wellcome Trust Research Programme, KEMRI Center for Geographical Medical Research-Coast, P.O. Box 230-80108, Kilifi, Kenya; School of Life Sciences and Zeeman Institute for Systems Biology & Infectious Disease Epidemiology Research, University of Warwick, Coventry, CV4 7AL, UK
| | - Graham F Medley
- Centre for Mathematical Modelling of Infectious Disease and Department of Global Health and Development, London School of Hygiene and Tropical Medicine, London, WC1H 9SH, UK
| |
Collapse
|
20
|
Thongpan I, Suntronwong N, Vichaiwattana P, Wanlapakorn N, Vongpunsawad S, Poovorawan Y. Respiratory syncytial virus, human metapneumovirus, and influenza virus infection in Bangkok, 2016-2017. PeerJ 2019; 7:e6748. [PMID: 30997293 PMCID: PMC6462397 DOI: 10.7717/peerj.6748] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2019] [Accepted: 03/08/2019] [Indexed: 12/20/2022] Open
Abstract
Children and adults residing in densely populated urban centers around the world are at risk of seasonal influenza-like illness caused by respiratory viruses such as influenza virus, human metapneumovirus (hMPV), and respiratory syncytial virus (RSV). In a large metropolitan of Thailand's capital city Bangkok, most respiratory infections are rarely confirmed by molecular diagnostics. We therefore examined the frequency of RSV, hMPV, and influenza virus in 8,842 patients who presented influenza-like illness and sought medical care at a large hospital in Bangkok between 2016 and 2017. Using a multiplex real-time reverse-transcription polymerase chain reaction (RT-PCR), 30.5% (2,699/8,842) of nasopharyngeal (NP) swab samples tested positive for one or more of these viruses. Influenza virus comprised 17.3% (1,528/8,842), of which the majority were influenza A/H3N2. Such infection was most prevalent among adults and the elderly. RSV was identified in 11.4% (1,011/8,842) and were mostly ON1 and BA9 genotypes. Of the hMPV-positive samples (3.6%, 318/8,842), genotypes A2, B1, and B2 were detected. A small number of individuals experienced co-infections (1.8%, 155/8,842), most commonly between RSV and influenza A/H3N2. RSV and hMPV co-infections were also found, but mainly in young children. Viral respiratory tract infection peaked locally in the rainy season (June to September). These findings support the utility of rapid nucleic acid testing of RSV, hMPV, and influenza virus in patients with ILI.
Collapse
Affiliation(s)
- Ilada Thongpan
- Center of Excellence in Clinical Virology, Department of Pediatrics, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - Nungruthai Suntronwong
- Center of Excellence in Clinical Virology, Department of Pediatrics, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - Preeyaporn Vichaiwattana
- Center of Excellence in Clinical Virology, Department of Pediatrics, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - Nasamon Wanlapakorn
- Center of Excellence in Clinical Virology, Department of Pediatrics, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - Sompong Vongpunsawad
- Center of Excellence in Clinical Virology, Department of Pediatrics, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - Yong Poovorawan
- Center of Excellence in Clinical Virology, Department of Pediatrics, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| |
Collapse
|
21
|
Hindupur A, Menon T, Dhandapani P. Genetic diversity of human respiratory syncytial virus in children with acute respiratory infections in Chennai, South India. Indian J Med Microbiol 2019; 37:248-254. [PMID: 31745027 DOI: 10.4103/ijmm.ijmm_19_193] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Introduction Human respiratory syncytial virus (HRSV) an RNA virus belonging to Pneumoviridae family, is an important cause of acute respiratory infections (ARIs) in young children. HRSV circulates as two subgroups A and B, which are further categorised into several genotypes. New genotypes may replace existing ones over successive epidemic seasons and multiple genotypes may cocirculate in the same community rendering it important to monitor them at the molecular level. The present study assessed the circulating genotypes of HRSV in Chennai. Materials and Methods Two hundred and sixty-seven children with ARI were recruited during the study from April 2016 to March 2018 for detecting HRSV A and B by real-time reverse transcription-polymerase chain reaction. Phylogeny and selection pressure analysis were done. Results Fifty-seven of the 267 samples (21.3%) were positive for HRSV, of which 7.1% and 14.2% were HRSV A and B, respectively, indicating that HRSV B was the major subgroup circulating in Chennai. Peak activity of HRSV was observed during the monsoon and winter months. Phylogenetic analysis of 2nd hypervariable region (HVR) of attachment glycoprotein gene (G gene) revealed that the HRSV A strains belonged to ON1 and HRSV B strains belonged to BA9 genotypes. Several unique amino acid substitutions were observed among the study strains. The Shannon entropy plot revealed that the HRSV A strains from our study have a high potential for amino acid substitutions in the 2nd HVR of G gene. Conclusion This study underlines the genetic diversity of HRSV and emphasises the need for continued molecular surveillance for infection management and prevention strategies.
Collapse
Affiliation(s)
- Anusha Hindupur
- Department of Microbiology, Dr. AL Mudaliar PG Institute of Basic Medical Sciences, University of Madras, Chennai, Tamil Nadu, India
| | - Thangam Menon
- Department of Microbiology, Dr. AL Mudaliar PG Institute of Basic Medical Sciences, University of Madras, Chennai, Tamil Nadu, India
| | - Prabu Dhandapani
- Department of Microbiology, Dr. AL Mudaliar PG Institute of Basic Medical Sciences, University of Madras, Chennai, Tamil Nadu, India
| |
Collapse
|
22
|
Evolution of Human Respiratory Syncytial Virus (RSV) over Multiple Seasons in New South Wales, Australia. Viruses 2018; 10:v10090476. [PMID: 30200580 PMCID: PMC6164696 DOI: 10.3390/v10090476] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2018] [Revised: 09/01/2018] [Accepted: 09/05/2018] [Indexed: 01/06/2023] Open
Abstract
There is an ongoing global pandemic of human respiratory syncytial virus (RSV) infection that results in substantial annual morbidity and mortality. In Australia, RSV is a major cause of acute lower respiratory tract infections (ALRI). Nevertheless, little is known about the extent and origins of the genetic diversity of RSV in Australia, nor the factors that shape this diversity. We have conducted a genome-scale analysis of RSV infections in New South Wales (NSW). RSV genomes were successfully sequenced for 144 specimens collected between 2010⁻2016. Of these, 64 belonged to the RSVA and 80 to the RSVB subtype. Phylogenetic analysis revealed a wide diversity of RSV lineages within NSW and that both subtypes evolved rapidly in a strongly clock-like manner, with mean rates of approximately 6⁻8 × 10-4 nucleotide substitutions per site per year. There was only weak evidence for geographic clustering of sequences, indicative of fluid patterns of transmission within the infected population and no evidence of any clustering by patient age such that viruses in the same lineages circulate through the entire host population. Importantly, we show that both subtypes circulated concurrently in NSW with multiple introductions into the Australian population in each year and only limited evidence for multi-year persistence.
Collapse
|