1
|
Hobbs SK, Monsky WL, Yuan F, Roberts WG, Griffith L, Torchilin VP, Jain RK. Regulation of transport pathways in tumor vessels: role of tumor type and microenvironment. Proc Natl Acad Sci U S A 1998; 95:4607-12. [PMID: 9539785 PMCID: PMC22537 DOI: 10.1073/pnas.95.8.4607] [Citation(s) in RCA: 1645] [Impact Index Per Article: 60.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Novel anti-neoplastic agents such as gene targeting vectors and encapsulated carriers are quite large (approximately 100-300 nm in diameter). An understanding of the functional size and physiological regulation of transvascular pathways is necessary to optimize delivery of these agents. Here we analyze the functional limits of transvascular transport and its modulation by the microenvironment. One human and five murine tumors including mammary and colorectal carcinomas, hepatoma, glioma, and sarcoma were implanted in the dorsal skin-fold chamber or cranial window, and the pore cutoff size, a functional measure of transvascular gap size, was determined. The microenvironment was modulated: (i) spatially, by growing tumors in subcutaneous or cranial locations and (ii) temporally, by inducing vascular regression in hormone-dependent tumors. Tumors grown subcutaneously exhibited a characteristic pore cutoff size ranging from 200 nm to 1.2 microm. This pore cutoff size was reduced in tumors grown in the cranium or in regressing tumors after hormone withdrawal. Vessels induced in basic fibroblast growth factor-containing gels had a pore cutoff size of 200 nm. Albumin permeability was independent of pore cutoff size. These results have three major implications for the delivery of therapeutic agents: (i) delivery may be less efficient in cranial tumors than in subcutaneous tumors, (ii) delivery may be reduced during tumor regression induced by hormonal ablation, and (iii) permeability to a molecule is independent of pore cutoff size as long as the diameter of the molecule is much less than the pore diameter.
Collapse
|
research-article |
27 |
1645 |
2
|
Helmlinger G, Yuan F, Dellian M, Jain RK. Interstitial pH and pO2 gradients in solid tumors in vivo: high-resolution measurements reveal a lack of correlation. Nat Med 1997; 3:177-82. [PMID: 9018236 DOI: 10.1038/nm0297-177] [Citation(s) in RCA: 1139] [Impact Index Per Article: 40.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
The partial pressure of oxygen (pO2) and pH play critical roles in tumor biology and therapy. We report here the first combined, high-resolution (< or = 10 microns) measurements of interstitial pH and pO2 profiles between adjacent vessels in a human tumor xenograft, using fluorescence ratio imaging and phosphorescence quenching microscopy. We found (1) heterogeneity in shapes of pH and pO2 profiles; (2) a discordant relation between local pH profiles and corresponding pO2 profiles, yet a strong correlation between mean pH and pO2 profiles; (3) no correlation between perivascular pH/pO2 and nearest vessel blood flow; and (4) well-perfused tumor vessels that were hypoxic and, consequently, large hypoxic areas in the surrounding interstitium. Such multiparameter measurements of the in vivo microenvironment provide unique insights into biological processes in tumors and their response to treatment.
Collapse
|
|
28 |
1139 |
3
|
Sali A, Potterton L, Yuan F, van Vlijmen H, Karplus M. Evaluation of comparative protein modeling by MODELLER. Proteins 1995; 23:318-26. [PMID: 8710825 DOI: 10.1002/prot.340230306] [Citation(s) in RCA: 874] [Impact Index Per Article: 29.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
We evaluate 3D models of human nucleoside diphosphate kinase, mouse cellular retinoic acid binding protein I, and human eosinophil neurotoxin that were calculated by MODELLER, a program for comparative protein modeling by satisfaction of spatial restraints. The models have good stereochemistry and are at least as similar to the crystallographic structures as the closest template structures. The largest errors occur in the regions that were not aligned correctly or where the template structures are not similar to the correct structure. These regions correspond predominantly to exposed loops, insertions of any length, and non-conserved side chains. When a template structure with more than 40% sequence identity to the target protein is available, the model is likely to have about 90% of the mainchain atoms modeled with an rms deviation from the X-ray structure of approximately 1 A, in large part because the templates are likely to be that similar to the X-ray structure of the target. This rms deviation is comparable to the overall differences between refined NMR and X-ray crystallography structures of the same protein.
Collapse
|
|
30 |
874 |
4
|
Yuan F, Chen Y, Dellian M, Safabakhsh N, Ferrara N, Jain RK. Time-dependent vascular regression and permeability changes in established human tumor xenografts induced by an anti-vascular endothelial growth factor/vascular permeability factor antibody. Proc Natl Acad Sci U S A 1996; 93:14765-70. [PMID: 8962129 PMCID: PMC26210 DOI: 10.1073/pnas.93.25.14765] [Citation(s) in RCA: 504] [Impact Index Per Article: 17.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
The hyperpermeability of tumor vessels to macromolecules, compared with normal vessels, is presumably due to vascular endothelial growth factor/vascular permeability factor (VEGF/VPF) released by neoplastic and/or host cells. In addition, VEGF/VPF is a potent angiogenic factor. Removal of this growth factor may reduce the permeability and inhibit tumor angiogenesis. To test these hypotheses, we transplanted a human glioblastoma (U87), a human colon adenocarcinoma (LS174T), and a human melanoma (P-MEL) into two locations in immunodeficient mice: the cranial window and the dorsal skinfold chamber. The mice bearing vascularized tumors were treated with a bolus (0.2 ml) of either a neutralizing antibody (A4.6.1) (492 micrograms/ml) against VEGF/VPF or PBS (control). We found that tumor vascular permeability to albumin in antibody-treated groups was lower than in the matched controls and that the effect of the antibody was time-dependent and influenced by the mode of injection. Tumor vascular permeability did not respond to i.p. injection of the antibody until 4 days posttreatment. However, the permeability was reduced within 6 h after i.v. injection of the same amount of antibody. In addition to the reduction in vascular permeability, the tumor vessels became smaller in diameter and less tortuous after antibody injections and eventually disappeared from the surface after four consecutive treatments in U87 tumors. These results demonstrate that tumor vascular permeability can be reduced by neutralization of endogenous VEGF/ VPF and suggest that angiogenesis and the maintenance of integrity of tumor vessels require the presence of VEGF/VPF in the tissue microenvironment. The latter finding reveals a new mechanism of tumor vessel regression-i.e., blocking the interactions between VEFG/VPF and endothelial cells or inhibiting VEGF/VPF synthesis in solid tumors causes dramatic reduction in vessel diameter, which may block the passage of blood elements and thus lead to vascular regression.
Collapse
|
research-article |
29 |
504 |
5
|
Fan S, Wang J, Yuan R, Ma Y, Meng Q, Erdos MR, Pestell RG, Yuan F, Auborn KJ, Goldberg ID, Rosen EM. BRCA1 inhibition of estrogen receptor signaling in transfected cells. Science 1999; 284:1354-6. [PMID: 10334989 DOI: 10.1126/science.284.5418.1354] [Citation(s) in RCA: 347] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
Mutations of the breast cancer susceptibility gene BRCA1 confer increased risk for breast, ovarian, and prostatic cancers, but it is not clear why the mutations are associated with these particular tumor types. In transient transfection assays, BRCA1 was found to inhibit signaling by the ligand-activated estrogen receptor (ER-alpha) through the estrogen-responsive enhancer element and to block the transcriptional activation function AF-2 of ER-alpha. These results raise the possibility that wild-type BRCA1 suppresses estrogen-dependent transcriptional pathways related to mammary epithelial cell proliferation and that loss of this ability contributes to tumorigenesis.
Collapse
|
|
26 |
347 |
6
|
Jain RK, Safabakhsh N, Sckell A, Chen Y, Jiang P, Benjamin L, Yuan F, Keshet E. Endothelial cell death, angiogenesis, and microvascular function after castration in an androgen-dependent tumor: role of vascular endothelial growth factor. Proc Natl Acad Sci U S A 1998; 95:10820-5. [PMID: 9724788 PMCID: PMC27979 DOI: 10.1073/pnas.95.18.10820] [Citation(s) in RCA: 261] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The sequence of events that leads to tumor vessel regression and the functional characteristics of these vessels during hormone-ablation therapy are not known. This is because of the lack of an appropriate animal model and monitoring technology. By using in vivo microscopy and in situ molecular analysis of the androgen-dependent Shionogi carcinoma grown in severe combined immunodeficient mice, we show that castration of these mice leads to tumor regression and a concomitant decrease in vascular endothelial growth factor (VEGF) expression. Androgen withdrawal is known to induce apoptosis in Shionogi tumor cells. Surprisingly, tumor endothelial cells begin to undergo apoptosis before neoplastic cells, and rarefaction of tumor vessels precedes the decrease in tumor size. The regressing vessels begin to exhibit normal phenotype, i.e., lower diameter, tortuosity, vascular permeability, and leukocyte adhesion. Two weeks after castration, a second wave of angiogenesis and tumor growth begins with a concomitant increase in VEGF expression. Because human tumors often relapse following hormone-ablation therapy, our data suggest that these patients may benefit from combined anti-VEGF therapy.
Collapse
|
research-article |
27 |
261 |
7
|
Jain RK, Schlenger K, Höckel M, Yuan F. Quantitative angiogenesis assays: progress and problems. Nat Med 1997; 3:1203-8. [PMID: 9359693 DOI: 10.1038/nm1197-1203] [Citation(s) in RCA: 246] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
|
Review |
28 |
246 |
8
|
Zhang Y, Yuan F, Wu X, Wang M, Rechkoblit O, Taylor JS, Geacintov NE, Wang Z. Error-free and error-prone lesion bypass by human DNA polymerase kappa in vitro. Nucleic Acids Res 2000; 28:4138-46. [PMID: 11058110 PMCID: PMC113145 DOI: 10.1093/nar/28.21.4138] [Citation(s) in RCA: 230] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2000] [Revised: 09/13/2000] [Accepted: 09/13/2000] [Indexed: 11/12/2022] Open
Abstract
Error-free lesion bypass and error-prone lesion bypass are important cellular responses to DNA damage during replication, both of which require a DNA polymerase (Pol). To identify lesion bypass DNA polymerases, we have purified human Polkappa encoded by the DINB1 gene and examined its response to damaged DNA templates. Here, we show that human Polkappa is a novel lesion bypass polymerase in vitro. Purified human Polkappa efficiently bypassed a template 8-oxoguanine, incorporating mainly A and less frequently C opposite the lesion. Human Polkappa most frequently incorporated A opposite a template abasic site. Efficient further extension required T as the next template base, and was mediated mainly by a one-nucleotide deletion mechanism. Human Polkappa was able to bypass an acetylaminofluorene-modified G in DNA, incorporating either C or T, and less efficiently A opposite the lesion. Furthermore, human Polkappa effectively bypassed a template (-)-trans-anti-benzo[a]pyrene-N:(2)-dG lesion in an error-free manner by incorporating a C opposite the bulky adduct. In contrast, human Polkappa was unable to bypass a template TT dimer or a TT (6-4) photoproduct, two of the major UV lesions. These results suggest that Polkappa plays an important role in both error-free and error-prone lesion bypass in humans.
Collapse
|
research-article |
25 |
230 |
9
|
Wang QD, Nowak MA, Markoff SB, Baganoff FK, Nayakshin S, Yuan F, Cuadra J, Davis J, Dexter J, Fabian AC, Grosso N, Haggard D, Houck J, Ji L, Li Z, Neilsen J, Porquet D, Ripple F, Shcherbakov RV. Dissecting x-ray-emitting gas around the center of our galaxy. Science 2013; 341:981-3. [PMID: 23990554 DOI: 10.1126/science.1240755] [Citation(s) in RCA: 204] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
Most supermassive black holes (SMBHs) are accreting at very low levels and are difficult to distinguish from the galaxy centers where they reside. Our own Galaxy's SMBH provides an instructive exception, and we present a close-up view of its quiescent x-ray emission based on 3 megaseconds of Chandra observations. Although the x-ray emission is elongated and aligns well with a surrounding disk of massive stars, we can rule out a concentration of low-mass coronally active stars as the origin of the emission on the basis of the lack of predicted iron (Fe) Kα emission. The extremely weak hydrogen (H)-like Fe Kα line further suggests the presence of an outflow from the accretion flow onto the SMBH. These results provide important constraints for models of the prevalent radiatively inefficient accretion state.
Collapse
|
Research Support, U.S. Gov't, Non-P.H.S. |
12 |
204 |
10
|
Thompson SP, Parker JE, Potter J, Hill TP, Birt A, Cobb TM, Yuan F, Tang CC. Beamline I11 at Diamond: a new instrument for high resolution powder diffraction. THE REVIEW OF SCIENTIFIC INSTRUMENTS 2009; 80:075107. [PMID: 19655981 DOI: 10.1063/1.3167217] [Citation(s) in RCA: 179] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
The performance characteristics of a new synchrotron x-ray powder diffraction beamline (I11) at the Diamond Light Source are presented. Using an in-vacuum undulator for photon production and deploying simple x-ray optics centered around a double-crystal monochromator and a pair of harmonic rejection mirrors, a high brightness and low bandpass x-ray beam is delivered at the sample. To provide fast data collection, 45 Si(111) analyzing crystals and detectors are installed onto a large and high precision diffractometer. High resolution powder diffraction data from standard reference materials of Si, alpha-quartz, and LaB6 are used to characterize instrumental performance.
Collapse
|
|
16 |
179 |
11
|
Zhang Y, Yuan F, Wu X, Wang Z. Preferential incorporation of G opposite template T by the low-fidelity human DNA polymerase iota. Mol Cell Biol 2000; 20:7099-108. [PMID: 10982826 PMCID: PMC86254 DOI: 10.1128/mcb.20.19.7099-7108.2000] [Citation(s) in RCA: 164] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
DNA polymerase activity is essential for replication, recombination, repair, and mutagenesis. All DNA polymerases studied so far from any biological source synthesize DNA by the Watson-Crick base-pairing rule, incorporating A, G, C, and T opposite the templates T, C, G, and A, respectively. Non-Watson-Crick base pairs would lead to mutations. In this report, we describe the ninth human DNA polymerase, Pol(iota), encoded by the RAD30B gene. We show that human Pol(iota) violates the Watson-Crick base-pairing rule opposite template T. During base selection, human Pol(iota) preferred T-G base pairing, leading to G incorporation opposite template T. The resulting T-G base pair was less efficiently extended by human Pol(iota) compared to the Watson-Crick base pairs. Consequently, DNA synthesis frequently aborted opposite template T, a property we designated the T stop. This T stop restricted human Pol(iota) to a very short stretch of DNA synthesis. Furthermore, kinetic analyses show that human Pol(iota) copies template C with extraordinarily low fidelity, misincorporating T, A, and C with unprecedented frequencies of 1/9, 1/10, and 1/11, respectively. Human Pol(iota) incorporated one nucleotide opposite a template abasic site more efficiently than opposite a template T, suggesting a role for human Pol(iota) in DNA lesion bypass. The unique features of preferential G incorporation opposite template T and T stop suggest that DNA Pol(iota) may additionally play a specialized function in human biology.
Collapse
|
research-article |
25 |
164 |
12
|
Lin W, Xin H, Zhang Y, Wu X, Yuan F, Wang Z. The human REV1 gene codes for a DNA template-dependent dCMP transferase. Nucleic Acids Res 1999; 27:4468-75. [PMID: 10536157 PMCID: PMC148731 DOI: 10.1093/nar/27.22.4468] [Citation(s) in RCA: 155] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
DNA is frequently damaged by various physical and chemical agents. DNA damage can lead to mutations during replication. In the yeast Saccharomyces cerevisiae, the damage-induced mutagenesis pathway requires the Rev1 protein. We have isolated a human cDNA homologous to the yeast REV1 gene. The human REV1 cDNA consists of 4255 bp and codes for a protein of 1251 amino acid residues with a calculated molecular weight of 138 248 Da. The human REV1 gene is localized between 2q11.1 and 2q11.2. We show that the human REV1 protein is a dCMP transferase that specifically inserts a dCMP residue opposite a DNA template G. In addition, the human REV1 transferase is able to efficiently and specifically insert a dCMP opposite a DNA template apurinic/apyrimidinic (AP) site or a uracil residue. These results suggest that the REV1 transferase may play a critical role during mutagenic translesion DNA synthesis bypassing a template AP site in human cells. Consistent with its role as a fundamental mutagenic protein, the REV1 gene is ubiquitously expressed in various human tissues.
Collapse
|
research-article |
26 |
155 |
13
|
Berk DA, Yuan F, Leunig M, Jain RK. Fluorescence photobleaching with spatial Fourier analysis: measurement of diffusion in light-scattering media. Biophys J 1993; 65:2428-36. [PMID: 8312481 PMCID: PMC1225983 DOI: 10.1016/s0006-3495(93)81326-2] [Citation(s) in RCA: 153] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
A new method for the measurement of diffusion in thick samples is introduced, based upon the spatial Fourier analysis of Tsay and Jacobson (Biophys. J. 60: 360-368, 1991) for the video image analysis of fluorescence recovery after photobleaching (FRAP). In this approach, the diffusion coefficient is calculated from the decay of Fourier transform coefficients in successive fluorescence images. Previously, the application of FRAP in thick samples has been confounded by the optical effects of out-of-focus light and scattering and absorption by the sample. The theory of image formation is invoked to show that the decay rate is the same for both the observed fluorescence intensity and the true concentration distribution in the tissue. The method was tested in a series of macromolecular diffusion measurements in aqueous solution, in agarose gel, and in simulated tissue consisting of tumor cells (45% v/v) and blood cells (5% v/v) in an agarose gel. For a range of fluorescently labeled proteins (MW = 14 to 600 kD) and dextrans (MW = 4.4 to 147.8 kD), the diffusion coefficients in aqueous solution were comparable to previously published values. A comparison of the spatial Fourier analysis with a conventional direct photometric method revealed that even for the weakly scattering agarose sample, the conventional method gives a result that is inaccurate and dependent on sample thickness whereas the diffusion coefficient calculated by the spatial Fourier method agreed with published values and was independent of sample thickness. The diffusion coefficient of albumin in the simulated tissue samples, as determined by the spatial Fourier analysis, varied slightly with sample thickness. In contrast, when the same video images were analyzed by direct photometric analysis, the calculated diffusion coefficients were grossly inaccurate and highly dependent on sample thickness. No simple correction could be devised to ensure the accuracy of the direct photometric method of analysis.These in vitro experiments demonstrate the advantage of our new analysis for obtaining an accurate measure of the local diffusion coefficient in microscopic samples that are thick (thickness greater than the microscope depth of focus) and scatter light.
Collapse
|
research-article |
32 |
153 |
14
|
Zhang Y, Yuan F, Wu X, Rechkoblit O, Taylor JS, Geacintov NE, Wang Z. Error-prone lesion bypass by human DNA polymerase eta. Nucleic Acids Res 2000; 28:4717-24. [PMID: 11095682 PMCID: PMC115171 DOI: 10.1093/nar/28.23.4717] [Citation(s) in RCA: 139] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
DNA lesion bypass is an important cellular response to genomic damage during replication. Human DNA polymerase eta (Pol(eta)), encoded by the Xeroderma pigmentosum variant (XPV) gene, is known for its activity of error-free translesion synthesis opposite a TT cis-syn cyclobutane dimer. Using purified human Pol(eta), we have examined bypass activities of this polymerase opposite several other DNA lesions. Human Pol(eta) efficiently bypassed a template 8-oxoguanine, incorporating an A or a C opposite the lesion with similar efficiencies. Human Pol(eta) effectively bypassed a template abasic site, incorporating an A and less frequently a G opposite the lesion. Significant -1 deletion was also observed when the template base 5' to the abasic site is a T. Human Pol(eta) partially bypassed a template (+)-trans-anti-benzo[a]pyrene-N:(2)-dG and predominantly incorporated an A, less frequently a T, and least frequently a G or a C opposite the lesion. This specificity of nucleotide incorporation correlates well with the known mutation spectrum of (+)-trans-anti-benzo[a]pyrene-N:(2)-dG lesion in mammalian cells. These results show that human Pol(eta) is capable of error-prone translesion DNA syntheses in vitro and suggest that Pol(eta) may bypass certain lesions with a mutagenic consequence in humans.
Collapse
|
research-article |
25 |
139 |
15
|
Dellian M, Yuan F, Trubetskoy VS, Torchilin VP, Jain RK. Vascular permeability in a human tumour xenograft: molecular charge dependence. Br J Cancer 2000; 82:1513-8. [PMID: 10789717 PMCID: PMC2363402 DOI: 10.1054/bjoc.1999.1171] [Citation(s) in RCA: 136] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Molecular charge is one of the main determinants of transvascular transport. There are, however, no data available on the effect of molecular charge on microvascular permeability of macromolecules in solid tumours. To this end, we measured tumour microvascular permeability to different proteins having similar size but different charge. Measurements were performed in the human colon adenocarcinoma LS174T transplanted in transparent dorsal skinfold chambers in severe combined immunodeficient (SCID) mice. Bovine serum albumin (BSA) and IgG were fluorescently labelled and were either cationized by conjugation with hexamethylenediamine or anionized by succinylation. The molecules were injected i.v. and the fluorescence in tumour tissue was quantified by intravital fluorescence microscopy. The fluorescence intensity and pharmacokinetic data were used to calculate the microvascular permeability. We found that tumour vascular permeability of cationized BSA (pI-range: 8.6-9.1) and IgG (pI: 8.6-9.3) was more than two-fold higher (4.25 and 4.65x10(-7) cm s(-1)) than that of the anionized BSA (pI approximately 2.0) and IgG (pI: 3.0-3.9; 1.11 and 1.93x10(-7) cm s(-1), respectively). Our results indicate that positively charged molecules extravasate faster in solid tumours compared to the similar-sized compounds with neutral or negative charges. However, the plasma clearance of cationic molecules was approximately 2x faster than that of anionic ones, indicating that the modification of proteins enhances drug delivery to normal organs as well. Therefore, caution should be exercised when such a strategy is used to improve drug and gene delivery to solid tumours.
Collapse
|
research-article |
25 |
136 |
16
|
Yuan F, Leunig M, Berk DA, Jain RK. Microvascular permeability of albumin, vascular surface area, and vascular volume measured in human adenocarcinoma LS174T using dorsal chamber in SCID mice. Microvasc Res 1993; 45:269-89. [PMID: 8321142 DOI: 10.1006/mvre.1993.1024] [Citation(s) in RCA: 135] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
A novel method was developed to measure the effective permeability of microvessels in three-dimensional tumors. Two unique features characterized our approach: (i) Texas Red (with peak excitation and peak emission wavelengths of 596 and 615 nm, respectively) was used for macromolecular labeling, to minimize the absorption of fluorescence light by hemoglobin in blood. Thus the tumor tissue could be treated approximately as a uniform medium with respect to light absorption. (ii) The light absorption and scattering in tumor tissues were accounted for in relating the fluorescence intensity to the amount of Texas Red-labeled macromolecules extravasated. The vascular permeability of Texas Red-labeled bovine serum albumin in human tumor xenograft LS174T implanted in dorsal skin-fold chamber in severe combined immunodeficient mice was measured using this method. The average permeability-surface area product per unit volume (PS/V, x 10(-4) sec-1) and the average effective permeability (P, x 10(-7) cm/sec) were found to be 1.26 +/- 0.72 and 6.06 +/- 4.30, respectively; the fractional volume of tumor vessels (Vves/V, %) was found to be 9.2 +/- 2.9, and the total surface area of vessels per unit volume (S/V, cm2/cm3) was found to be 239 +/- 82. The errors in the estimation of these parameters are discussed. The method described here is general and can be adapted to study the microvascular permeability of superficial tumors in various organs in patients or animals.
Collapse
|
Comparative Study |
32 |
135 |
17
|
Torres Filho IP, Leunig M, Yuan F, Intaglietta M, Jain RK. Noninvasive measurement of microvascular and interstitial oxygen profiles in a human tumor in SCID mice. Proc Natl Acad Sci U S A 1994; 91:2081-5. [PMID: 8134352 PMCID: PMC43313 DOI: 10.1073/pnas.91.6.2081] [Citation(s) in RCA: 128] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
Simultaneous measurements of intravascular and interstitial oxygen partial pressure (PO2) in any tissue have not previously been reported, despite the importance of oxygen in health and in disease. This is due to the limitations of current techniques, both invasive and noninvasive. We have optically measured microscopic profiles of PO2 with high spatial resolution in subcutaneous tissue and transplanted tumors in mice by combining an oxygen-dependent phosphorescence quenching method and a transparent tissue preparation. The strengths of our approach include the ability to follow PO2 in the same location for several weeks and to relate these measurements to local blood flow and vascular architecture. Our results show that (i) PO2 values in blood vessels in well-vascularized regions of a human colon adenocarcinoma xenograft are comparable to those in surrounding arterioles and venules, (ii) carbogen (95% O2/5% CO2) breathing increases microvascular PO2 in tumors, and (iii) in unanesthetized and anesthetized mice PO2 drops to hypoxic values at < 200 microns from isolated vessels but drops by < 5 mmHg (1 mmHg = 133 Pa) in highly vascularized tumor regions. Our method should permit noninvasive evaluations of oxygen-modifying agents and offer further mechanistic information about tumor pathophysiology in tissue preparations where the surface of the tissue can be observed.
Collapse
|
research-article |
31 |
128 |
18
|
Yuan F, Zhang Y, Rajpal DK, Wu X, Guo D, Wang M, Taylor JS, Wang Z. Specificity of DNA lesion bypass by the yeast DNA polymerase eta. J Biol Chem 2000; 275:8233-9. [PMID: 10713149 DOI: 10.1074/jbc.275.11.8233] [Citation(s) in RCA: 122] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
DNA polymerase eta (Pol(eta), xeroderma pigmentosum variant, or Rad30) plays an important role in an error-free response to unrepaired UV damage during replication. It faithfully synthesizes DNA opposite a thymine-thymine cis-syn-cyclobutane dimer. We have purified the yeast Pol(eta) and studied its lesion bypass activity in vitro with various types of DNA damage. The yeast Pol(eta) lacked a nuclease or a proofreading activity. It efficiently bypassed 8-oxoguanine, incorporating C, A, and G opposite the lesion with a relative efficiency of approximately 100:56:14, respectively. The yeast Pol(eta) efficiently incorporated a C opposite an acetylaminofluorene-modified G, and efficiently inserted a G or less frequently an A opposite an apurinic/apyrimidinic (AP) site but was unable to extend the DNA synthesis further in both cases. However, some continued DNA synthesis was observed in the presence of the yeast Pol(zeta) following the Pol(eta) action opposite an AP site, achieving true lesion bypass. In contrast, the yeast Pol(alpha) was able to bypass efficiently a template AP site, predominantly incorporating an A residue opposite the lesion. These results suggest that other than UV damage, Pol(eta) may also play a role in bypassing additional DNA lesions, some of which can be error-prone.
Collapse
|
Comparative Study |
25 |
122 |
19
|
Berk DA, Yuan F, Leunig M, Jain RK. Direct in vivo measurement of targeted binding in a human tumor xenograft. Proc Natl Acad Sci U S A 1997; 94:1785-90. [PMID: 9050856 PMCID: PMC19994 DOI: 10.1073/pnas.94.5.1785] [Citation(s) in RCA: 110] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
Binding is crucial to the function of most biologically active molecules, but difficult to quantify directly in living tissue. To this end, fluorescence recovery after photobleaching was used to detect the immobilization of fluorescently labeled ligand caused by binding to receptors in vivo. Measurements of mAb affinity to target antigen within human tumor xenografts revealed a saturable binding isotherm, from which an in vivo carcinoembryonic antigen density of 0.56 nmol/g (5.0 x 10(5)/cell) and an association constant of Ka < or = 4 x 10(7) M(-1) were estimated. The present method can be adapted for in vivo studies of cell signaling, targeted drugs, gene therapy, and other processes involving receptor-ligand binding.
Collapse
|
research-article |
28 |
110 |
20
|
Kessler R, Marriner J, Childress M, Covarrubias R, D’Andrea CB, Finley DA, Fischer J, Foley RJ, Goldstein D, Gupta RR, Kuehn K, Marcha M, Nichol RC, Papadopoulos A, Sako M, Scolnic D, Smith M, Sullivan M, Wester W, Yuan F, Abbott T, Abdalla FB, Allam S, Benoit-Lévy A, Bernstein GM, Bertin E, Brooks D, Rosell AC, Kind MC, Castander FJ, Crocce M, Costa LND, Desai S, Diehl HT, Eifler TF, Neto AF, Flaugher B, Frieman J, Gerdes DW, Gruen D, Gruendl RA, Honscheid K, James DJ, Kuropatkin N, Li TS, Maia MAG, Marshall JL, Martini P, Miller CJ, Miquel R, Nord B, Ogando R, Plazas AA, Reil K, Romer AK, Roodman A, Sanchez E, Sevilla-Noarbe I, Smith RC, Soares-Santos M, Sobreira F, Tarle G, Thaler J, Thomas RC, Tucker D, Walker AR. THE DIFFERENCE IMAGING PIPELINE FOR THE TRANSIENT SEARCH IN THE DARK ENERGY SURVEY. ACTA ACUST UNITED AC 2015. [DOI: 10.1088/0004-6256/150/6/172] [Citation(s) in RCA: 106] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
|
10 |
106 |
21
|
Zhang Y, Yuan F, Wu X, Taylor JS, Wang Z. Response of human DNA polymerase iota to DNA lesions. Nucleic Acids Res 2001; 29:928-35. [PMID: 11160925 PMCID: PMC29608 DOI: 10.1093/nar/29.4.928] [Citation(s) in RCA: 101] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2000] [Revised: 12/14/2000] [Accepted: 12/14/2000] [Indexed: 11/14/2022] Open
Abstract
Lesion bypass is an important mechanism to overcome replication blockage by DNA damage. Translesion synthesis requires a DNA polymerase (Pol). Human Pol iota encoded by the RAD30B gene is a recently identified DNA polymerase that shares sequence similarity to Pol eta. To investigate whether human Pol iota plays a role in lesion bypass we examined the response of this polymerase to several types of DNA damage in vitro. Surprisingly, 8-oxoguanine significantly blocked human Pol iota. Nevertheless, translesion DNA synthesis opposite 8-oxoguanine was observed with increasing concentrations of purified human Pol iota, resulting in predominant C and less frequent A incorporation opposite the lesion. Opposite a template abasic site human Pol iota efficiently incorporated a G, less frequently a T and even less frequently an A. Opposite an AAF-adducted guanine, human Pol iota was able to incorporate predominantly a C. In both cases, however, further DNA synthesis was not observed. Purified human Pol iota responded to a template TT (6-4) photoproduct by inserting predominantly an A opposite the 3' T of the lesion before aborting DNA synthesis. In contrast, human Pol iota was largely unresponsive to a template TT cis-syn cyclobutane dimer. These results suggest a role for human Pol iota in DNA lesion bypass.
Collapse
|
research-article |
24 |
101 |
22
|
Fenn ME, Allen EB, Weiss SB, Jovan S, Geiser LH, Tonnesen GS, Johnson RF, Rao LE, Gimeno BS, Yuan F, Meixner T, Bytnerowicz A. Nitrogen critical loads and management alternatives for N-impacted ecosystems in California. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2010; 91:2404-23. [PMID: 20705383 DOI: 10.1016/j.jenvman.2010.07.034] [Citation(s) in RCA: 94] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2009] [Revised: 06/23/2010] [Accepted: 07/19/2010] [Indexed: 05/22/2023]
Abstract
Empirical critical loads for N deposition effects and maps showing areas projected to be in exceedance of the critical load (CL) are given for seven major vegetation types in California. Thirty-five percent of the land area for these vegetation types (99,639 km(2)) is estimated to be in excess of the N CL. Low CL values (3-8 kg N ha(-1) yr(-1)) were determined for mixed conifer forests, chaparral and oak woodlands due to highly N-sensitive biota (lichens) and N-poor or low biomass vegetation in the case of coastal sage scrub (CSS), annual grassland, and desert scrub vegetation. At these N deposition critical loads the latter three ecosystem types are at risk of major vegetation type change because N enrichment favors invasion by exotic annual grasses. Fifty-four and forty-four percent of the area for CSS and grasslands are in exceedance of the CL for invasive grasses, while 53 and 41% of the chaparral and oak woodland areas are in exceedance of the CL for impacts on epiphytic lichen communities. Approximately 30% of the desert (based on invasive grasses and increased fire risk) and mixed conifer forest (based on lichen community changes) areas are in exceedance of the CL. These ecosystems are generally located further from emissions sources than many grasslands or CSS areas. By comparison, only 3-15% of the forested and chaparral land areas are estimated to be in exceedance of the NO(3)(-) leaching CL. The CL for incipient N saturation in mixed conifer forest catchments was 17 kg N ha(-1) yr(-1). In 10% of the CL exceedance areas for all seven vegetation types combined, the CL is exceeded by at least 10 kg N ha(-1) yr(-1), and in 27% of the exceedance areas the CL is exceeded by at least 5 kg N ha(-1) yr(-1). Management strategies for mitigating the effects of excess N are based on reducing N emissions and reducing site N capital through approaches such as biomass removal and prescribed fire or control of invasive grasses by mowing, selective herbicides, weeding or domestic animal grazing. Ultimately, decreases in N deposition are needed for long-term ecosystem protection and sustainability, and this is the only strategy that will protect epiphytic lichen communities.
Collapse
|
Comparative Study |
15 |
94 |
23
|
Zhang Y, Yuan F, Xin H, Wu X, Rajpal DK, Yang D, Wang Z. Human DNA polymerase kappa synthesizes DNA with extraordinarily low fidelity. Nucleic Acids Res 2000; 28:4147-56. [PMID: 11058111 PMCID: PMC113146 DOI: 10.1093/nar/28.21.4147] [Citation(s) in RCA: 92] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2000] [Revised: 09/13/2000] [Accepted: 09/13/2000] [Indexed: 11/12/2022] Open
Abstract
Escherichia coli DNA polymerase IV encoded by the dinB gene is involved in untargeted mutagenesis. Its human homologue is DNA polymerase kappa (Polkappa) encoded by the DINB1 gene. Our recent studies have indicated that human Polkappa is capable of both error-free and error-prone translesion DNA synthesis in vitro. However, it is not known whether human Polkappa also plays a role in untargeted mutagenesis. To examine this possibility, we have measured the fidelity of human Polkappa during DNA synthesis from undamaged templates. Using kinetic measurements of nucleotide incorporations and a fidelity assay with gapped M13mp2 DNA, we show that human Polkappa synthesizes DNA with extraordinarily low fidelity. At the lacZalpha target gene, human Polkappa made on average one error for every 200 nucleotides synthesized, with a predominant T-->G transversion mutation at a rate of 1/147. The overall error rate of human Polkappa is 1.7-fold lower than human Poleta, but 33-fold higher than human Polbeta, a DNA polymerase with very low fidelity. Thus, human Polkappa is one of the most inaccurate DNA polymerases known. These results support a role for human Polkappa in untargeted mutagenesis surrounding a DNA lesion and in DNA regions without damage.
Collapse
|
research-article |
25 |
92 |
24
|
Abstract
The microvessel wall is a barrier for the delivery of various therapeutic agents to tumor cells. Tumor microvessels are, in general, more permeable to macromolecules than normal vessels. The hyperpermeability is presumably due to the existence of large pore structures in the vessel wall, induced by various cytokines. The cutoff pore size is tumor dependent, as determined by transport studies of nanoparticles. The vascular permeability is heterogeneous in tumors and dependent on physicochemical properties of molecules as well as the ultrastructure of the vessel wall. The ultrastructure is dynamic and can be modulated by the tumor microenvironment. The microenvironment itself can be altered by the transvascular transport because the transport may facilitate angiogenesis, reduce blood flow, and induce interstitial hypertension in tumors. Future studies of transport need to address mechanisms of the barrier formation and emphasize development of novel strategies for circumventing or exploiting the vascular barrier.
Collapse
|
Review |
27 |
91 |
25
|
Meng Q, Yuan F, Goldberg ID, Rosen EM, Auborn K, Fan S. Indole-3-carbinol is a negative regulator of estrogen receptor-alpha signaling in human tumor cells. J Nutr 2000; 130:2927-31. [PMID: 11110848 DOI: 10.1093/jn/130.12.2927] [Citation(s) in RCA: 80] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Estrogen, via its binding to the estrogen receptor (ER), plays an important role in breast cancer cell proliferation and tumor development. Indole-3-carbinol (I3C), a compound occurring naturally in cruciferous vegetables, exhibits a potent antitumor activity via its regulation of estrogen activity and metabolism. This study was designed to determine the effect of I3C on the potential to inhibit the ER-alpha. Using a reporter gene driven by the estrogen receptor, I3C (10-125 micromol/L) significantly repressed the 17ss-estradiol (E2)-activated ER-alpha signaling in a dose-dependent manner. I3C and breast cancer susceptibility gene 1 (BRCA1) synergistically inhibited transcriptional activity of ER-alpha. Moreover, I3C down-regulated the expression of the estrogen-responsive genes, pS2 and cathepsin-D, and up-regulated BRCA1. The inhibitory effects of I3C did not contribute to its cytotoxic effects because these activities were observed at less than toxic concentrations. These results further suggest that antitumor activities of I3C are associated not only with its regulation of estrogen activity and metabolism, but also its modulation of ER transcription activity.
Collapse
|
|
25 |
80 |