1
|
Bouyahya A, Balahbib A, Khalid A, Makeen HA, Alhazmi HA, Albratty M, Hermansyah A, Ming LC, Goh KW, El Omari N. Clinical applications and mechanism insights of natural flavonoids against type 2 diabetes mellitus. Heliyon 2024; 10:e29718. [PMID: 38694079 PMCID: PMC11061711 DOI: 10.1016/j.heliyon.2024.e29718] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Revised: 04/03/2024] [Accepted: 04/14/2024] [Indexed: 05/03/2024] Open
Abstract
Diabetes is a complex disease that affects a large percentage of the world's population, and it is associated with several risk factors. Self-management poses a significant challenge, but natural sources have shown great potential in providing effective glucose reducing solutions. Flavonoids, a class of bioactive substances found in different natural sources including medicinal plants, have emerged as promising candidates in this regard. Indeed, several flavonoids, including apigenin, arbutin, catechins, and cyanidin, have demonstrated remarkable anti-diabetic properties. The clinical effectiveness of these flavonoids is linked to their potential to decrease blood glucose concentration and increase insulin concentration. Thus, the regulation of certain metabolic pathways such as glycolysis and neoglycogenesis has also been demonstrated. In vitro and in vivo investigations revealed different mechanisms of action related to flavonoid compounds at subcellular, cellular, and molecular levels. The main actions reside in the activation of glycolytic signaling pathways and the inhibition of signaling that promotes glucose synthesis and storage. In this review, we highlight the clinical efficiency of natural flavonoids as well as the molecular mechanisms underlying this effectiveness.
Collapse
Affiliation(s)
- Abdelhakim Bouyahya
- Laboratory of Human Pathologies Biology, Department of Biology, Faculty of Sciences, Mohammed V University in Rabat, Rabat 10106, Morocco
- Department of Pharmacy Practice, Faculty of Pharmacy, Universitas Airlangga, 60115 Surabaya, Indonesia
| | - Abdelaali Balahbib
- High Institute of Nursing Professions and Health Techniques of Errachidia, Errachidia, Morocco
| | - Asaad Khalid
- Substance Abuse and Toxicology Research Center, Jazan University, P.O. Box: 114, Jazan, Saudi Arabia
- Medicinal and Aromatic Plants Research Institute, National Center for Research, P.O. Box: 2424, Khartoum-11111, Sudan
| | - Hafiz A. Makeen
- Pharmacy Practice Research Unit, Clinical Pharmacy Department, Faculty of Pharmacy, Jazan University, Jazan, Saudi Arabia
| | - Hassan A. Alhazmi
- Substance Abuse and Toxicology Research Center, Jazan University, P.O. Box: 114, Jazan, Saudi Arabia
- Department of Pharmaceutical Chemistry and Pharmacognosy, College of Pharmacy, Jazan University, P.O. Box 114, Postal Code 45142, Jazan, Saudi Arabia
| | - Mohammed Albratty
- Department of Pharmaceutical Chemistry and Pharmacognosy, College of Pharmacy, Jazan University, P.O. Box 114, Postal Code 45142, Jazan, Saudi Arabia
| | - Andi Hermansyah
- Department of Pharmacy Practice, Faculty of Pharmacy, Universitas Airlangga, 60115 Surabaya, Indonesia
| | - Long Chiau Ming
- Department of Pharmacy Practice, Faculty of Pharmacy, Universitas Airlangga, 60115 Surabaya, Indonesia
- School of Medical and Life Sciences, Sunway University, Sunway City 47500, Malaysia
- PAPRSB Institute of Health Sciences, Universiti Brunei Darussalam, Gadong, Brunei Darussalam
| | - Khang Wen Goh
- Faculty of Data Science and Information Technology, INTI International University, Nilai, Malaysia
| | - Nasreddine El Omari
- High Institute of Nursing Professions and Health Techniques of Tetouan, Tetouan, Morocco
| |
Collapse
|
2
|
Uyarlar C, Rahman A, Ozcinar U, Cetingul İS, Gultepe EE, Bayram I. Effect of Myrtus communis L. Plant Extract as a Milk Supplement on the Performance, Selected Blood Parameters and Immune Response of Holstein Calves. Animals (Basel) 2024; 14:725. [PMID: 38473110 DOI: 10.3390/ani14050725] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 02/23/2024] [Accepted: 02/23/2024] [Indexed: 03/14/2024] Open
Abstract
This research aimed to understand the effects of adding myrtle plant extract obtained from its leaves (MPEL) and roots (MPER) to the milk fed to suckling female Holstein calves, focusing on performance, reproduction, selected blood parameters and immune response. The 50 Holstein female calves, one week of age, were divided into five groups: one group received no plant extract (Control), while the others were supplemented with myrtle plant extracts at doses of 25 mL/day leaf extract (MPEL-25), 25 mL/day root extract (MPER-25), 50 mL/day leaf extract (MPEL-50) and 50 mL/day root extract (MPER-50) for each calf in each treatment group. The extracts were given along with the milk to the experimental groups for 60 days, and for an additional 12 days post-weaning. The results reveal that the feed consumption and live weights increased significantly. Significantly higher leukocyte counts were observed in the 50 mL/head × day myrtle groups, and a higher IgG concentration was also noted in the MPER-50 group compared to the other groups. The serum non-esterified fatty acid (NEFA) concentration significantly decreased in the MPEL-50 and MPER-50 groups, whereas the betahyrdoxy butyric acid (BHBA) concentration increased and the serum glucose concentration significantly decreased with myrtle supplementation. In conclusion, it was determined that the performance, immune system and negative energy balance compensation of female Holstein calves were positively affected by administering extracts obtained from the leaves and roots of the Myrtus communis L. plant at dose levels of 25 and 50 mL/head × day for 72 days, without causing any side effects.
Collapse
Affiliation(s)
- Cangir Uyarlar
- Department of Animal Nutrition and Nutritional Diseases, Faculty of Veterinary Medicine, Afyon Kocatepe University, 03204 Afyonkarahisar, Turkey
| | - Abdur Rahman
- Department of Animal Sciences, University of Veterinary and Animal Sciences, Jhang Campus, Lahore 54000, Pakistan
| | - Umit Ozcinar
- Department of Animal Nutrition and Nutritional Diseases, Faculty of Veterinary Medicine, Afyon Kocatepe University, 03204 Afyonkarahisar, Turkey
| | - İbrahim Sadi Cetingul
- Department of Animal Nutrition and Nutritional Diseases, Faculty of Veterinary Medicine, Afyon Kocatepe University, 03204 Afyonkarahisar, Turkey
| | - Eyup Eren Gultepe
- Department of Animal Nutrition and Nutritional Diseases, Faculty of Veterinary Medicine, Afyon Kocatepe University, 03204 Afyonkarahisar, Turkey
| | - Ismail Bayram
- Department of Animal Nutrition and Nutritional Diseases, Faculty of Veterinary Medicine, Afyon Kocatepe University, 03204 Afyonkarahisar, Turkey
| |
Collapse
|
3
|
Boucheffa S, Sobhi W, Attoui A, Selli S, Kelebek H, Semmeq A, Benguerba Y. Effect of the main constituents of Pistacia lentiscus leaves against the DPPH radical and xanthine oxidase: experimental and theoretical study. J Biomol Struct Dyn 2022; 40:9870-9884. [PMID: 34114947 DOI: 10.1080/07391102.2021.1936182] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
The aim of this work is to study the content of phenolic compounds in P lentiscus leaves and their antioxidant effect. After extracting the phenolic compounds, fractionation by liquid/liquid partition with increasing polarity gives five extracts. Three of them (ButF, AqF and ButA) were found to have good antioxidant activity. Their IC50s for the inhibition of the free radical formation of DPPH are 1.76 µg/mL, 1.307 µg/ml, and 1.77 µg/mL, respectively. These values are very interesting, considering the effect of the powerful flavonoid quercetin, whose IC50 against DPPH is 1.53 µg/mL. These extracts are also active against xanthine oxidase (XO). The IC50s measured are 0.14 mg/mL, 0.186 mg/mL and 0.33 mg/mL for ButF, Aq F and ButAq F extract respectively, in comparison with allopurinol (0.44 mg/mL). A phytochemical analysis by LC/ESI-MS-MS was performed to explain the observed activities. The results show 22 peaks representing: flavanols, namely catechin, d-Gallocatechin, and gallocatechin gallate. The only flavone detected in the studied extracts was luteolin glucuronide and was found to be in higher amounts in butanolic extract (2,71mg/mL). The phenolic acids and derivatives were also identified in the extracts. A theoretical study was performed to deduce the specificity of the binding between the major compounds identified in the P. lentiscus extract and the xanthine oxidase enzyme using Schrödinger software. The docking procedure was validated using the extraction of ligands from the binding site. Their re-anchoring to the xanthine oxidase structure using quercetin and allopurinol was considered reference molecules. After docking, post-docking minimization was performed to achieve the best scoring poses with the MM-GBSA approach. The dGBind energy of MM-GBSA representing the binding energy of the receptor and the ligand was calculated based on molecular mechanics. Results reveal that β-Glucogallin compounds such as Digalloylquinic acid, Gallocatechin, and Myricetin-3-O rhamnoside are more active than allopurinol, with stronger Docking score (Gscore) and MM-GBSA dGBind.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Saliha Boucheffa
- Laboratory of Applied Biochemistry (LBA), Faculty of Nature and Life Sciences, Ferhat Abbas Sétif-1 University (UFAS1), Sétif, Algeria
| | - Widad Sobhi
- Laboratory of Applied Biochemistry (LBA), Faculty of Nature and Life Sciences, Ferhat Abbas Sétif-1 University (UFAS1), Sétif, Algeria.,Research Center of Biotechnology (CRBt), Constantine, Algeria
| | - Ayoub Attoui
- Laboratory of Applied Biochemistry (LBA), Faculty of Nature and Life Sciences, Ferhat Abbas Sétif-1 University (UFAS1), Sétif, Algeria.,Laboratoire des Matériaux Polymères Multiphasiques, LMPMP, Université Ferhat ABBAS Sétif-1, Sétif, Algeria
| | - Serkan Selli
- Department of Food Engineering, Faculty of Agriculture, Cukurova University, Adana, Turkey
| | - Hasim Kelebek
- Department of Food Engineering, Faculty of Engineering, Adana Alparslan Turkes Science and Technology University, Adana, Turkey
| | | | - Yacine Benguerba
- Laboratoire des Matériaux Polymères Multiphasiques, LMPMP, Université Ferhat ABBAS Sétif-1, Sétif, Algeria
| |
Collapse
|
4
|
Tan Z, Halter B, Liu D, Gilbert ER, Cline MA. Dietary Flavonoids as Modulators of Lipid Metabolism in Poultry. Front Physiol 2022; 13:863860. [PMID: 35547590 PMCID: PMC9081441 DOI: 10.3389/fphys.2022.863860] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Accepted: 03/07/2022] [Indexed: 01/04/2023] Open
Abstract
Flavonoids, naturally-occurring compounds with multiple phenolic structures, are the most widely distributed phytochemicals in the plant kingdom, and are mainly found in vegetables, fruits, grains, roots, herbs, and tea and red wine products. Flavonoids have health-promoting effects and are indispensable compounds in nutritional and pharmaceutical (i.e., nutraceutical) applications. Among the demonstrated bioactive effects of flavonoids are anti-oxidant, anti-inflammatory, and anti-microbial in a range of research models. Through dietary formulation strategies, numerous flavonoids provide the ability to support bird health while improving the nutritional quality of poultry meat and eggs by changing the profile of fatty acids and reducing cholesterol content. A number of such compounds have been shown to inhibit adipogenesis, and promote lipolysis and apoptosis in adipose tissue cells, and thereby have the potential to affect fat accretion in poultry at various ages and stages of production. Antioxidant and anti-inflammatory properties contribute to animal health by preventing free radical damage in tissues and ameliorating inflammation in adipose tissue, which are concerns in broiler breeders and laying hens. In this review, we summarize the progress in understanding the effects of dietary flavonoids on lipid metabolism and fat deposition in poultry, and discuss the associated physiological mechanisms.
Collapse
Affiliation(s)
- Zhendong Tan
- Department of Animal and Poultry Sciences, Blacksburg, VA, United States
| | - Bailey Halter
- Department of Animal and Poultry Sciences, Blacksburg, VA, United States
| | - Dongmin Liu
- Department of Human Nutrition, Foods, and Exercise, Blacksburg, VA, United States
| | | | - Mark A Cline
- Department of Animal and Poultry Sciences, Blacksburg, VA, United States
| |
Collapse
|
5
|
Moroccan antidiabetic medicinal plants: Ethnobotanical studies, phytochemical bioactive compounds, preclinical investigations, toxicological validations and clinical evidences; challenges, guidance and perspectives for future management of diabetes worldwide. Trends Food Sci Technol 2021. [DOI: 10.1016/j.tifs.2021.03.032] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
6
|
Małecka M, Skoczyńska A, Goodman DM, Hartinger CG, Budzisz E. Biological properties of ruthenium(II)/(III) complexes with flavonoids as ligands. Coord Chem Rev 2021. [DOI: 10.1016/j.ccr.2021.213849] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
7
|
Peng P, Jin J, Zou G, Sui Y, Han Y, Zhao D, Liu L. Hesperidin prevents hyperglycemia in diabetic rats by activating the insulin receptor pathway. Exp Ther Med 2021; 21:53. [PMID: 33273981 PMCID: PMC7706385 DOI: 10.3892/etm.2020.9485] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2019] [Accepted: 08/26/2020] [Indexed: 12/14/2022] Open
Abstract
Diabetes, a disease with high prevalence in China, is a major risk factor of cardiovascular disease. Hesperidin is a flavanone glycoside with anti-hyperglycemic and anti-hyperlipidemic activities. Therefore, the present study aimed to investigate the potential preventive effect of hesperidin against type 2 diabetes mellitus (T2DM) using a rat model of alloxan and high fat diet (HFD)-induced insulin resistance. Male Sprague Dawley rats were orally administered with 100 mg/kg hesperidin or vehicle (sodium carboxy methyl cellulose) for 35 days. Insulin resistance was induced by feeding animals a HFD for 3 weeks (from day 7) and then with an alloxan injection on day 28. Results from the in vivo study demonstrated that hesperidin improved fasting serum glucose (from 19.8 to 10.6 mmol/l) without changing the fasting insulin level, suggesting that hesperidin prevented the development of insulin resistance and diabetes by improving insulin sensitivity. In the oral glucose tolerance test, the development of impaired glucose tolerance was also prevented by hesperidin treatment. Hesperidin was found to regulate glycolysis and gluconeogenesis by enhancing the activity of glucokinase, inducing the phosphorylation of insulin receptor (IR) and phosphoinositide-dependent kinase 1 (PDK1), while decreasing the activity of glucose-6-phosphatase and phosphoenolpyruvate carboxykinase in the liver. In a cell-based assay, hesperidin increased glucose uptake in primary rat adipocytes. Collectively, the present study identified the potent preventive effect of hesperidin against HFD-induced insulin resistance by activating the IR/PDK1 pathway. The current results may provide a potential strategy lacking sides effects to improve metabolic health and reduce risks.
Collapse
Affiliation(s)
- Peng Peng
- Graduate School, First Affiliated Hospital, Heilongjiang University of Chinese Medicine, Harbin, Heilongjiang 150040, P.R. China
| | - Juan Jin
- The First Department of Cardiovascular, First Affiliated Hospital, Heilongjiang University of Chinese Medicine, Harbin, Heilongjiang 150040, P.R. China
| | - Guoliang Zou
- The First Department of Cardiovascular, First Affiliated Hospital, Heilongjiang University of Chinese Medicine, Harbin, Heilongjiang 150040, P.R. China
| | - Yanbo Sui
- The First Department of Cardiovascular, First Affiliated Hospital, Heilongjiang University of Chinese Medicine, Harbin, Heilongjiang 150040, P.R. China
| | - Yubo Han
- Graduate School, First Affiliated Hospital, Heilongjiang University of Chinese Medicine, Harbin, Heilongjiang 150040, P.R. China
| | - Dapeng Zhao
- Department of Nephropathy, First Affiliated Hospital, Heilongjiang University of Chinese Medicine, Harbin, Heilongjiang 150040, P.R. China
| | - Li Liu
- The First Department of Cardiovascular, First Affiliated Hospital, Heilongjiang University of Chinese Medicine, Harbin, Heilongjiang 150040, P.R. China
| |
Collapse
|
8
|
Neamtu AA, Szoke-Kovacs R, Mihok E, Georgescu C, Turcus V, Olah NK, Frum A, Tita O, Neamtu C, Szoke-Kovacs Z, Cziaky Z, Mathe E. Bilberry ( Vaccinium myrtillus L.) Extracts Comparative Analysis Regarding Their Phytonutrient Profiles, Antioxidant Capacity along with the In Vivo Rescue Effects Tested on a Drosophila melanogaster High-Sugar Diet Model. Antioxidants (Basel) 2020; 9:E1067. [PMID: 33143302 PMCID: PMC7694118 DOI: 10.3390/antiox9111067] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2020] [Revised: 10/23/2020] [Accepted: 10/26/2020] [Indexed: 12/26/2022] Open
Abstract
Bilberries (Vaccinium myrtillus L.) have been reported to hold a plentitude of health-promoting properties beyond basic nutrition, mainly attributed to their anthocyanin content and antioxidant activity. In this article, we built the phytochemical profile of three wild bilberry fruit extract formulations (aqueous, methanolic, and hydro-methanolic) using UHPLC-ESI-MS/MS putative analysis, identifying 88 individual phytochemicals, mainly flavonoids (total content 8.41 ± 0.11 mg QE/g dw), free amino acids, polyphenols (total content 21.68 ± 0.19 mg GAE/g dw), carboxylic acids, and vitamins. Furthermore, the antioxidant activity of the extract was assessed, reaching 78.03 ± 0.16% DPPH free radical scavenging activity, comparable to literature values determined for bilberry extracts of other origin. Due to the increased prevalence of metabolic syndrome and based on the reviewed benefits of bilberries, we tested the most potent formulation of our bilberry extracts in this biological context. The in vivo rescue effect of a bilberry extract supplemented diet on Drosophila melanogaster was assessed by monitoring biochemical and genomic markers. Hemolymph trehalose levels were halved upon addition of 3% hydro-methanolic bilberry extract to a high-sugar (1.5 M sucrose) diet, as compared to the non-supplemented high-sugar diet. Noteworthy, the rescue seen for flies kept on the bilberry extract supplemented high-sugar diet appeared to parallel the trehalose levels observed in the case of the control diet (50 mM sucrose) flies. Moreover, next to the trehalose-lowering type of in vivo effects, other gene expression related rescues were also detected for genes such as InR, Akh, AstA, AstC, Irk, Npc2g, and CCHa2 upon supplementation of the high-sugar diet with our hydro-methanolic bilberry fruit extract. Our findings suggest that such a bilberry fruit extract could generate physiological and genomic type of compensatory mechanisms so that further translational approaches would advance the understanding of some human specific pathological conditions.
Collapse
Affiliation(s)
| | - Rita Szoke-Kovacs
- Doctoral School of Molecular Cell Biology and Immunology, Faculty of Medicine, University of Debrecen, H-4032 Debrecen, Hungary;
| | - Emoke Mihok
- Doctoral School of Animal Science, Faculty of Agricultural and Food Sciences and Environmental Management, University of Debrecen, H-4032 Debrecen, Hungary;
| | - Cecilia Georgescu
- Faculty of Agricultural Science, Food Industry and Environmental Protection, “Lucian Blaga” University of Sibiu, 550012 Sibiu, Romania; (A.F.); (O.T.)
| | - Violeta Turcus
- Faculty of Medicine, “Vasile Goldis” Western University of Arad, 310045 Arad, Romania; (V.T.); (C.N.)
| | - Neli Kinga Olah
- Faculty of Pharmacy, “Vasile Goldis” Western University of Arad, 310045 Arad, Romania;
| | - Adina Frum
- Faculty of Agricultural Science, Food Industry and Environmental Protection, “Lucian Blaga” University of Sibiu, 550012 Sibiu, Romania; (A.F.); (O.T.)
| | - Ovidiu Tita
- Faculty of Agricultural Science, Food Industry and Environmental Protection, “Lucian Blaga” University of Sibiu, 550012 Sibiu, Romania; (A.F.); (O.T.)
| | - Carmen Neamtu
- Faculty of Medicine, “Vasile Goldis” Western University of Arad, 310045 Arad, Romania; (V.T.); (C.N.)
| | - Zsombor Szoke-Kovacs
- Doctoral School of Nutrition, Faculty of Agricultural and Food Sciences and Environmental Management, University of Debrecen, H-4032 Debrecen, Hungary;
| | - Zoltan Cziaky
- Agricultural and Molecular Research and Service Institute, University of Nyiregyhaza, H-4400 Nyíregyháza, Hungary;
| | - Endre Mathe
- Faculty of Medicine, “Vasile Goldis” Western University of Arad, 310045 Arad, Romania; (V.T.); (C.N.)
- Faculty of Agricultural and Food Sciences and Environmental Management, University of Debrecen, H-4032 Debrecen, Hungary
| |
Collapse
|
9
|
Taheri Y, Suleria HAR, Martins N, Sytar O, Beyatli A, Yeskaliyeva B, Seitimova G, Salehi B, Semwal P, Painuli S, Kumar A, Azzini E, Martorell M, Setzer WN, Maroyi A, Sharifi-Rad J. Myricetin bioactive effects: moving from preclinical evidence to potential clinical applications. BMC Complement Med Ther 2020; 20:241. [PMID: 32738903 PMCID: PMC7395214 DOI: 10.1186/s12906-020-03033-z] [Citation(s) in RCA: 127] [Impact Index Per Article: 25.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2020] [Accepted: 07/24/2020] [Indexed: 12/21/2022] Open
Abstract
Several flavonoids have been recognized as nutraceuticals, and myricetin is a good example. Myricetin is commonly found in plants and their antimicrobial and antioxidant activities is well demonstrated. One of its beneficial biological effects is the neuroprotective activity, showing preclinical activities on Alzheimer, Parkinson, and Huntington diseases, and even in amyotrophic lateral sclerosis. Also, myricetin has revealed other biological activities, among them as antidiabetic, anticancer, immunomodulatory, cardiovascular, analgesic and antihypertensive. However, few clinical trials have been performed using myricetin as nutraceutical. Thus, this review provides new insights on myricetin preclinical pharmacological activities, and role in selected clinical trials.
Collapse
Affiliation(s)
- Yasaman Taheri
- Phytochemistry Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- Department of Pharmacology and Toxicology, School of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | | | - Natália Martins
- Faculty of Medicine, University of Porto, Alameda Prof. Hernâni Monteiro, 4200-319 Porto, Portugal
- Institute for Research and Innovation in Health (i3S), University of Porto, 4200-135 Porto, Portugal
| | - Oksana Sytar
- Department of Plant Biology Department, Taras Shevchenko National University of Kyiv, Institute of Biology, Volodymyrska str., 64, Kyiv, 01033 Ukraine
- Department of Plant Physiology, Slovak University of Agriculture, Nitra, A. Hlinku 2, 94976 Nitra, Slovak Republic
| | - Ahmet Beyatli
- Department of Medicinal and Aromatic Plants, University of Health Sciences, 34668 Istanbul, Turkey
| | - Balakyz Yeskaliyeva
- Faculty of Chemistry and Chemical Technology, Al-Farabi Kazakh National University, Almaty, Kazakhstan
| | - Gulnaz Seitimova
- Faculty of Chemistry and Chemical Technology, Al-Farabi Kazakh National University, Almaty, Kazakhstan
| | - Bahare Salehi
- Noncommunicable Diseases Research Center, Bam University of Medical Sciences, Bam, Iran
- Student Research Committee, School of Medicine, Bam University of Medical Sciences, Bam, Iran
| | - Prabhakar Semwal
- Department of Biotechnology, Graphic Era University, Dehradun, Uttarakhand 248001 India
- Uttarakhand State Council for Science and Technology, Vigyan Dham, Dehradun, Uttarakhand 248007 India
| | - Sakshi Painuli
- Department of Biotechnology, Graphic Era University, Dehradun, Uttarakhand 248001 India
- Himalayan Environmental Studies and Conservation Organization, Prem Nagar, Dehradun, Uttarakhand 248001 India
| | - Anuj Kumar
- Uttarakhand Council for Biotechnology, Silk Park, Prem Nagar, Dehradun, Uttarakhand 248007 India
| | - Elena Azzini
- CREA-Research Centre for Food and Nutrition, Via Ardeatina 546, 00178 Rome, Italy
| | - Miquel Martorell
- Department of Nutrition and Dietetics, Faculty of Pharmacy, and Centre for Healthy Living, University of Concepción, 4070386 Concepción, Chile
- Unidad de Desarrollo Tecnológico, UDT, Universidad de Concepción, 4070386 Concepción, Chile
| | - William N. Setzer
- Department of Chemistry, University of Alabama in Huntsville, Huntsville, AL 35899 USA
- Aromatic Plant Research Center, 230 N 1200 E, Suite 100, Lehi, UT 84043 USA
| | - Alfred Maroyi
- Department of Botany, University of Fort Hare, Private Bag X1314, Alice, 5700 South Africa
| | - Javad Sharifi-Rad
- Zabol Medicinal Plants Research Center, Zabol University of Medical Sciences, Zabol, Iran
| |
Collapse
|
10
|
Wang L, Wu H, Yang F, Dong W. The Protective Effects of Myricetin against Cardiovascular Disease. J Nutr Sci Vitaminol (Tokyo) 2020; 65:470-476. [PMID: 31902859 DOI: 10.3177/jnsv.65.470] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Cardiovascular disease (CVD) is the leading cause of death globally, except Africa, and poses a severe health burden worldwide. Both in vitro and in vivo studies have demonstrated the protective effects of myricetin for preventing CVD. For this review, we have assessed the literature from 2009 to 2019 at home and abroad to uncover the protective roles of myricetin for preventing CVD. Myricetin exhibits cardioprotective, anti-hypertensive, anti-atherosclerotic, anti-hyperglycemic, and anti-hyperlipidemic effects. In addition, myricetin may alleviate some of the complications caused by adult-onset diabetes. The combined functions of myricetin allow for the prevention of CVD. This review describes the possible therapeutic benefits of myricetin, along with its potential mechanisms of action, to support the clinical use of the myricetin for the prevention of CVD.
Collapse
Affiliation(s)
- Lu Wang
- Department of Pharmacy, Jinan Central Hospital Affiliated to Shandong University
| | - Haiyan Wu
- Department of Pharmacy, Jinan Central Hospital Affiliated to Shandong University
| | - Fei Yang
- Quality Department, Qilu Pharmaceutical Company
| | - Wenbin Dong
- Department of Pharmacy, Jinan Central Hospital Affiliated to Shandong University
| |
Collapse
|
11
|
Myricitrin Ameliorates Hyperglycemia, Glucose Intolerance, Hepatic Steatosis, and Inflammation in High-Fat Diet/Streptozotocin-Induced Diabetic Mice. Int J Mol Sci 2020; 21:ijms21051870. [PMID: 32182914 PMCID: PMC7084451 DOI: 10.3390/ijms21051870] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2020] [Revised: 02/29/2020] [Accepted: 03/06/2020] [Indexed: 02/07/2023] Open
Abstract
To test the hypothesis that myricitrin (MYR) improves type 2 diabetes, we examined the effect of MYR on hyperglycemia, glucose intolerance, hepatic steatosis, and inflammation in high-fat diet (HFD) and streptozotocin (STZ)-induced type 2 diabetic mice. Male C57BL/6J mice were randomly divided into three groups: non-diabetic, diabetic control, and MYR (0.005%, w/w)-supplemented diabetic groups. Diabetes was induced by HFD and STZ, and MYR was administered orally for 5 weeks. Myricitrin exerted no significant effects on food intake, body weight, fat weight, or plasma lipids levels. However, MYR significantly decreased fasting blood glucose levels, improved glucose intolerance, and increased pancreatic β-cell mass compared to the diabetic control group. Myricitrin administration also markedly increased glucokinase mRNA expression and activity as well as lowered glucose-6-phosphatase and phosphoenolpyruvate carboxykinase mRNA expression and activity in the liver. In addition, liver weight, hepatic triglyceride content, and lipid droplet accumulation were markedly decreased following MYR administration. These changes were seemingly attributable to the suppression of the hepatic lipogenic enzymes—fatty acid synthase and phosphatidate phosphohydrolase. Myricitrin also significantly lowered plasma MCP-1 and TNF-α levels and the mRNA expression of hepatic pro-inflammatory genes. These results suggest that MYR has anti-diabetic potential.
Collapse
|
12
|
Champ CE, Kundu-Champ A. Maximizing Polyphenol Content to Uncork the Relationship Between Wine and Cancer. Front Nutr 2019; 6:44. [PMID: 31114789 PMCID: PMC6502998 DOI: 10.3389/fnut.2019.00044] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2019] [Accepted: 03/27/2019] [Indexed: 12/12/2022] Open
Abstract
Studies have revealed conflicting results regarding the risk of cancer from alcohol consumption. Furthermore, some studies have suggested that wine may have benefits that separate it from other alcoholic beverages. As wine contains a significant amount of chemicals, specifically polyphenols like anthocyanins and proanthocyanidins (PA), that can affect cellular function and promote health, this hypothesis is reasonably supported by recent research. Polyphenols promote several anticancer cellular pathways, including xenobiotic metabolism, support of innate antioxidant production, and stimulation of phase I and II detoxification of carcinogens. However, the multitude of growing and production conditions of grapes, including temperature, water availability, soil type, maceration, and aging can result in a remarkably varying final product based on the available literature. Thus, we hypothesize that wines produced from grapes cultivated between steady daily temperatures at 15–25°C with moderate sun exposure from flowering to harvest, lower vine-water status, resulting either from lower precipitation, and irrigation practices or more permeable soil types, limitation of fertilizers, extended maceration, and aging in oak will impact the concentration of anthocyanins and PA in the finished wine and may have a differential impact on cancer. This higher concentration of polyphenols would, in theory, create a healthier wine, thus explaining the conflicting reports on the benefits or harms of wine.
Collapse
Affiliation(s)
- Colin E. Champ
- Cancer Prevention Project, Pittsburgh, PA, United States
- Department of Radiation Oncology, University of Pittsburgh Medical Center, Pittsburgh, PA, United States
- *Correspondence: Colin E. Champ
| | | |
Collapse
|
13
|
Jani DK, Goswami S. Antidiabetic activity of Cassia angustifolia Vahl. and Raphanus sativus Linn. leaf extracts. J Tradit Complement Med 2019; 10:124-131. [PMID: 32257875 PMCID: PMC7109471 DOI: 10.1016/j.jtcme.2019.03.002] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2018] [Revised: 03/01/2019] [Accepted: 03/04/2019] [Indexed: 12/11/2022] Open
Abstract
Senna and radish leaf extracts reduced hyperglycemia in diabetic animals. Treatment with study extracts improved lipid profile and decreased atherogenicity. Treatment reduced insulin resistance and ameliorated pancreatic histology. Antidiabetic action attributed to synergistic effect of phytoconstituents.
Collapse
Key Words
- AC, Atherogenic coefficient
- AIP, Atherogenic index of plasma
- ANOVA, analysis of variance
- CA, Cassia angustifolia Vahl.
- CMC, carboxymethylcellulose
- CRI-I, Castelli risk index I
- CRI-II, Castelli risk index II
- Diabetes
- GTT, Glucose tolerance test
- HDL, High density lipoprotein
- HFD, High fat diet
- HOMA-IR, Homeostasis model assessment-estimated insulin resistance
- HPLC, high performance liquid chromatography
- Herbal medicine
- High fat diet
- ITT, Insulin tolerance test
- LDL, Low density lipoprotein
- MET, metformin
- Metformin
- NPD, Normal pellet diet
- RS, Raphanus sativus Linn.
- SEM, standard error of mean
- STZ, streptozotocin
- Streptozotocin
- TC, Total cholesterol
- TG, Triglyceride
- VLDL, Very low density lipoprotein
Collapse
Affiliation(s)
- Deepti Kaushalkumar Jani
- Department of Pharmacology, Babaria Institute of Pharmacy, Varnama, Vadodara, Gujarat, India
- Corresponding author. Department of Pharmacology, Babaria Institute of Pharmacy, BITS Edu Campus, Vadodara-Mumbai NH#08, Varnama, Vadodara, 391240, India.
| | - Sunita Goswami
- Department of Pharmacology, L.M. College of Pharmacy, Ahmedabad, Gujarat, India
| |
Collapse
|
14
|
Chen H, Lin H, Xie S, Huang B, Qian Y, Chen K, Niu Y, Shen HM, Cai J, Li P, Leng J, Yang H, Xia D, Wu Y. Myricetin inhibits NLRP3 inflammasome activation via reduction of ROS-dependent ubiquitination of ASC and promotion of ROS-independent NLRP3 ubiquitination. Toxicol Appl Pharmacol 2018; 365:19-29. [PMID: 30594691 DOI: 10.1016/j.taap.2018.12.019] [Citation(s) in RCA: 52] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2018] [Revised: 12/25/2018] [Accepted: 12/26/2018] [Indexed: 12/12/2022]
Abstract
Myricetin is a plant-derived flavonoid that exhibits diverse pharmacological properties. The NLRP3 (NLR family, pyrin domain-containing 3 protein) inflammasome is a cytosolic multiprotein complex that plays a critical role in the innate immune response and pathogenesis of multiple inflammatory disorders. The present study found that myricetin inhibited NLRP3 inflammasome assembly via promotion of reactive oxygen species (ROS)-independent ubiquitination of NLRP3 and reduction of ROS-dependent ubiquitination of ASC (apoptosis-associated speck-like protein containing a CARD), which disrupted the interaction between ASC and NLRP3 and inhibited ASC oligomerization. This effect was further confirmed in vivo using mouse models of lipopolysaccharide (LPS)-induced sepsis and alum-induced peritonitis. These results suggest the therapeutic value of myricetin by targeting NLRP3-driven inflammatory diseases.
Collapse
Affiliation(s)
- Hanwen Chen
- Department of Toxicology, School of Public Health, Zhejiang University, Zhejiang, Hangzhou 310058, China; Department of Gastroenterology, Second Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang, Hangzhou 310009, China
| | - Hui Lin
- Department of Toxicology, School of Public Health, Zhejiang University, Zhejiang, Hangzhou 310058, China; Department of Gynecologic Oncology, Women's Hospital, School of Medicine, Zhejiang University, Zhejiang, Hangzhou 310006, China
| | - Shujun Xie
- Department of Toxicology, School of Public Health, Zhejiang University, Zhejiang, Hangzhou 310058, China
| | - Bo Huang
- Department of Toxicology, School of Public Health, Zhejiang University, Zhejiang, Hangzhou 310058, China
| | - Yufeng Qian
- Department of Cardiology, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Zhejiang, Hangzhou 310006, China
| | - Kelie Chen
- Department of Toxicology, School of Public Health, Zhejiang University, Zhejiang, Hangzhou 310058, China; Department of Gynecologic Oncology, Women's Hospital, School of Medicine, Zhejiang University, Zhejiang, Hangzhou 310006, China
| | - Yuequn Niu
- Department of Toxicology, School of Public Health, Zhejiang University, Zhejiang, Hangzhou 310058, China
| | - Han-Ming Shen
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, 119077, Singapore
| | - Jianting Cai
- Department of Gastroenterology, Second Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang, Hangzhou 310009, China
| | - Peiwei Li
- Department of Gastroenterology, Second Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang, Hangzhou 310009, China
| | - Jianhang Leng
- Central Laboratory, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Zhejiang, Hangzhou 310006, China
| | - Hao Yang
- Department of Toxicology, School of Public Health, Zhejiang University, Zhejiang, Hangzhou 310058, China
| | - Dajing Xia
- Department of Toxicology, School of Public Health, Women's Hospital, School of Medicine, Zhejiang University, Zhejiang, Hangzhou 310058, China.
| | - Yihua Wu
- Department of Toxicology, School of Public Health, Zhejiang University, Zhejiang, Hangzhou 310058, China.
| |
Collapse
|
15
|
Tan G, Uson-Lopez RA, Rahman MM, Hosokawa T, Saito T, Kurasaki M. Myricetin enhances on apoptosis induced by serum deprivation in PC12 cells mediated by mitochondrial signaling pathway. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2018; 57:175-180. [PMID: 29278807 DOI: 10.1016/j.etap.2017.12.016] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2017] [Revised: 05/24/2017] [Accepted: 12/16/2017] [Indexed: 05/05/2023]
Abstract
Polyphenols have many beneficial effects and an effective disease therapeutic auxiliary drug. Previously, myricetin, a polyphenol, had been reported to possess various biological effects on human physiology. However, mechanism of myricetin on apoptosis induced in PC12 cells is still unclear. PC12 cells were treated with myricetin in two concentration levels comprising 0.1 and 1 μM under serum-free condition. As a result, morphological changes were observed using trypan blue assay. DNA fragmentation was determined by DNA ladder assay to evaluate DNA damage levels. Western blotting results showed that cytosolic cytochrome c which was released from mitochondria. Subsequently, tumor suppressor gene p53, pro-apoptotic and anti-apoptotic Bcl-2 family proteins Bax and Bcl-2 were expressed. The caspase cascade reaction was induced through caspase 3 and 9 expression. From these results, it is suggested that myricetin significantly enhanced the apoptosis induced by serum deprivation in a dose-dependent manner in PC12 cells.
Collapse
Affiliation(s)
- Gongxun Tan
- Environmental Adaption Science, Division of Environmental Science Development, Graduate School of Environmental Science, Hokkaido University, Sapporo, 060-0810, Japan
| | - Rachael A Uson-Lopez
- Environmental Adaption Science, Division of Environmental Science Development, Graduate School of Environmental Science, Hokkaido University, Sapporo, 060-0810, Japan
| | - Md Mostafizur Rahman
- Environmental Adaption Science, Division of Environmental Science Development, Graduate School of Environmental Science, Hokkaido University, Sapporo, 060-0810, Japan
| | - Toshiyuki Hosokawa
- Research Division of Higher Education, Institute for the Advancement of Higher Education, Hokkaido University, Sapporo 060-0817, Japan
| | - Takeshi Saito
- Laboratory of Environmental Health Sciences, Faculty of Health Science, Hokkaido University, Sapporo 060-0808, Japan
| | - Masaaki Kurasaki
- Environmental Adaption Science, Division of Environmental Science Development, Graduate School of Environmental Science, Hokkaido University, Sapporo, 060-0810, Japan; Group of Environmental Adaption Science, Faculty of Environmental Earth Science, Hokkaido University, Sapporo 060-0810, Japan.
| |
Collapse
|
16
|
Khan RU, Naz S, Abudabos AM. Towards a better understanding of the therapeutic applications and corresponding mechanisms of action of honey. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2017; 24:27755-27766. [PMID: 29101693 DOI: 10.1007/s11356-017-0567-0] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2017] [Accepted: 10/24/2017] [Indexed: 06/07/2023]
Abstract
Honey is a bee-derived supersaturated solution composed of complex contents mainly glucose, fructose, amino acids, vitamins, and minerals. Composition of honey may vary due to the difference in nectar, season, geography, and storage condition. Honey has been used since times immemorial in folk medicine and has recently been rediscovered as an excellent therapeutic agent. In the past, honey was used for a variety of ailments without knowing the scientific background and active ingredients of honey. Today, honey has been scientifically proven for its antioxidant, regulation of glycemic response, antitumor, antimicrobial, anti-inflammatory, and cardiovascular potentiating agent. It can be used as a wound dressing and healing substance. Honey is different in color, flavor, sensory perception, and medical response. Apart from highlighting the nutritional facts of honey, we collected the finding of the published literature to know the mechanism of action of honey in different diseases. This review covers the composition, physiochemical characteristics, and some medical uses.
Collapse
Affiliation(s)
- Rifat Ullah Khan
- Department of Animal Production, College of Food and Agriculture Sciences, King Saud University, Riyadh, Kingdom of Saudi Arabia.
- Department of Animal Health, Faculty of Animal Husbandry and Veterinary Sciences, The University of Agriculture, Peshawar, Pakistan.
| | - Shabana Naz
- Department of Zoology, GC University, Faisalabad, Pakistan
| | - Alaeldein M Abudabos
- Department of Animal Production, College of Food and Agriculture Sciences, King Saud University, Riyadh, Kingdom of Saudi Arabia
| |
Collapse
|
17
|
Li Y, Zheng X, Yi X, Liu C, Kong D, Zhang J, Gong M. Myricetin: a potent approach for the treatment of type 2 diabetes as a natural class B GPCR agonist. FASEB J 2017; 31:2603-2611. [PMID: 28270518 PMCID: PMC5434659 DOI: 10.1096/fj.201601339r] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2016] [Accepted: 02/13/2017] [Indexed: 01/08/2023]
Abstract
The physiologic properties of glucagon-like peptide 1 (GLP-1) make it a potent candidate drug target in the treatment of type 2 diabetes mellitus (T2DM). GLP-1 is capable of regulating the blood glucose level by insulin secretion after administration of oral glucose. The advantages of GLP-1 for the avoidance of hypoglycemia and the control of body weight are attractive despite its poor stability. The clinical efficacies of long-acting GLP-1 derivatives strongly support discovery pursuits aimed at identifying and developing orally active, small-molecule GLP-1 receptor (GLP-1R) agonists. The purpose of this study was to identify and characterize a novel oral agonist of GLP-1R (i.e., myricetin). The insulinotropic characterization of myricetin was performed in isolated islets and in Wistar rats. Long-term oral administration of myricetin demonstrated glucoregulatory activity. The data in this study suggest that myricetin might be a potential drug candidate for the treatment of T2DM as a GLP-1R agonist. Further structural modifications on myricetin might improve its pharmacology and pharmacokinetics.-Li, Y., Zheng, X., Yi, X., Liu, C., Kong, D., Zhang, J., Gong, M. Myricetin: a potent approach for the treatment of type 2 diabetes as a natural class B GPCR agonist.
Collapse
Affiliation(s)
- Ying Li
- Tianjin Neurological Institute, Tianjin Medical University General Hospital, Tianjin Medical University, Tianjin, China
| | - Xuemin Zheng
- State Key Laboratory of Drug Delivery Technology and Pharmacokinetics, Tianjin Institute of Pharmaceutical Research, Tianjin, China
| | - Xiulin Yi
- State Key Laboratory of Drug Delivery Technology and Pharmacokinetics, Tianjin Institute of Pharmaceutical Research, Tianjin, China
| | - Changxiao Liu
- State Key Laboratory of Drug Delivery Technology and Pharmacokinetics, Tianjin Institute of Pharmaceutical Research, Tianjin, China
| | - Dexin Kong
- Department of Pharmacy, Tianjin Medical University, Tianjin, China
| | - Jianning Zhang
- Tianjin Neurological Institute, Tianjin Medical University General Hospital, Tianjin Medical University, Tianjin, China;
| | - Min Gong
- Department of Pharmacy, Tianjin Medical University, Tianjin, China; .,Department of Oncology, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
18
|
Kawser Hossain M, Abdal Dayem A, Han J, Yin Y, Kim K, Kumar Saha S, Yang GM, Choi HY, Cho SG. Molecular Mechanisms of the Anti-Obesity and Anti-Diabetic Properties of Flavonoids. Int J Mol Sci 2016; 17:569. [PMID: 27092490 PMCID: PMC4849025 DOI: 10.3390/ijms17040569] [Citation(s) in RCA: 273] [Impact Index Per Article: 30.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2016] [Revised: 04/01/2016] [Accepted: 04/06/2016] [Indexed: 12/20/2022] Open
Abstract
Obesity and diabetes are the most prevailing health concerns worldwide and their incidence is increasing at a high rate, resulting in enormous social costs. Obesity is a complex disease commonly accompanied by insulin resistance and increases in oxidative stress and inflammatory marker expression, leading to augmented fat mass in the body. Diabetes mellitus (DM) is a metabolic disorder characterized by the destruction of pancreatic β cells or diminished insulin secretion and action insulin. Obesity causes the development of metabolic disorders such as DM, hypertension, cardiovascular diseases, and inflammation-based pathologies. Flavonoids are the secondary metabolites of plants and have 15-carbon skeleton structures containing two phenyl rings and a heterocyclic ring. More than 5000 naturally occurring flavonoids have been reported from various plants and have been found to possess many beneficial effects with advantages over chemical treatments. A number of studies have demonstrated the potential health benefits of natural flavonoids in treating obesity and DM, and show increased bioavailability and action on multiple molecular targets. This review summarizes the current progress in our understanding of the anti-obesity and anti-diabetic potential of natural flavonoids and their molecular mechanisms for preventing and/or treating obesity and diabetes.
Collapse
Affiliation(s)
- Mohammed Kawser Hossain
- Department of Animal Biotechnology, Animal Resources Research Center, Incurable Disease Animal Model and Stem Cell Institute (IDASI), Konkuk University, Gwangjin-gu, Seoul 05029, Korea.
| | - Ahmed Abdal Dayem
- Department of Animal Biotechnology, Animal Resources Research Center, Incurable Disease Animal Model and Stem Cell Institute (IDASI), Konkuk University, Gwangjin-gu, Seoul 05029, Korea.
| | - Jihae Han
- Department of Animal Biotechnology, Animal Resources Research Center, Incurable Disease Animal Model and Stem Cell Institute (IDASI), Konkuk University, Gwangjin-gu, Seoul 05029, Korea.
| | - Yingfu Yin
- Department of Animal Biotechnology, Animal Resources Research Center, Incurable Disease Animal Model and Stem Cell Institute (IDASI), Konkuk University, Gwangjin-gu, Seoul 05029, Korea.
| | - Kyeongseok Kim
- Department of Animal Biotechnology, Animal Resources Research Center, Incurable Disease Animal Model and Stem Cell Institute (IDASI), Konkuk University, Gwangjin-gu, Seoul 05029, Korea.
| | - Subbroto Kumar Saha
- Department of Animal Biotechnology, Animal Resources Research Center, Incurable Disease Animal Model and Stem Cell Institute (IDASI), Konkuk University, Gwangjin-gu, Seoul 05029, Korea.
| | - Gwang-Mo Yang
- Department of Animal Biotechnology, Animal Resources Research Center, Incurable Disease Animal Model and Stem Cell Institute (IDASI), Konkuk University, Gwangjin-gu, Seoul 05029, Korea.
| | - Hye Yeon Choi
- Department of Animal Biotechnology, Animal Resources Research Center, Incurable Disease Animal Model and Stem Cell Institute (IDASI), Konkuk University, Gwangjin-gu, Seoul 05029, Korea.
| | - Ssang-Goo Cho
- Department of Animal Biotechnology, Animal Resources Research Center, Incurable Disease Animal Model and Stem Cell Institute (IDASI), Konkuk University, Gwangjin-gu, Seoul 05029, Korea.
| |
Collapse
|
19
|
Arumugam B, Palanisamy UD, Chua KH, Kuppusamy UR. Potential antihyperglycaemic effect of myricetin derivatives from Syzygium malaccense. J Funct Foods 2016. [DOI: 10.1016/j.jff.2016.01.038] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
|
20
|
Myricetin: A Dietary Molecule with Diverse Biological Activities. Nutrients 2016; 8:90. [PMID: 26891321 PMCID: PMC4772053 DOI: 10.3390/nu8020090] [Citation(s) in RCA: 405] [Impact Index Per Article: 45.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2015] [Revised: 12/16/2015] [Accepted: 12/23/2015] [Indexed: 01/09/2023] Open
Abstract
Myricetin is a common plant-derived flavonoid and is well recognised for its nutraceuticals value. It is one of the key ingredients of various foods and beverages. The compound exhibits a wide range of activities that include strong anti-oxidant, anticancer, antidiabetic and anti-inflammatory activities. It displays several activities that are related to the central nervous system and numerous studies have suggested that the compound may be beneficial to protect against diseases such as Parkinson's and Alzheimer's. The use of myricetin as a preserving agent to extend the shelf life of foods containing oils and fats is attributed to the compound's ability to protect lipids against oxidation. A detailed search of existing literature revealed that there is currently no comprehensive review available on this important molecule. Hence, the present work includes the history, synthesis, pharmaceutical applications and toxicity studies of myricetin. This report also highlights structure-activity relationships and mechanisms of action for various biological activities.
Collapse
|
21
|
Foddai M, Kasabri V, Afifi FU, Azara E, Petretto GL, Pintore G. In vitro inhibitory effects of SardinianPistacia lentiscusL. andPistacia terebinthusL. on metabolic enzymes: Pancreatic lipase, α-amylase, and α-glucosidase. STARCH-STARKE 2014. [DOI: 10.1002/star.201400068] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Marzia Foddai
- Department of Chemistry and Pharmacy; University of Sassari; Sassari Italy
| | - Violet Kasabri
- Faculty of Pharmacy, Department of Biopharmaceutics and Clinical Pharmacy; The University of Jordan; Amman Jordan
| | - Fatma U. Afifi
- Faculty of Pharmacy, Department of Pharmaceutical Sciences; The University of Jordan; Amman Jordan
| | - Emanuela Azara
- National Research Center; Institute of Biomolecular Chemistry; Sassari Italy
| | | | - Giorgio Pintore
- Department of Chemistry and Pharmacy; University of Sassari; Sassari Italy
| |
Collapse
|
22
|
Kandasamy N, Ashokkumar N. Protective effect of bioflavonoid myricetin enhances carbohydrate metabolic enzymes and insulin signaling molecules in streptozotocin–cadmium induced diabetic nephrotoxic rats. Toxicol Appl Pharmacol 2014; 279:173-85. [DOI: 10.1016/j.taap.2014.05.014] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2013] [Revised: 05/11/2014] [Accepted: 05/28/2014] [Indexed: 12/24/2022]
|
23
|
Foddai M, Kasabri V, Petretto GL, Azara E, Sias A, Afifi FU, Delogu G, Chessa M, Pintore G. In vitro Inhibitory Effects of Limonium contortirameum and L. virgatum Extracts from Sardinia on α-Amylase, α-Glucosidase and Pancreatic Lipase. Nat Prod Commun 2014. [DOI: 10.1177/1934578x1400900212] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Pancreatic triacylglycerol lipase (PL), α-amylase and α-glucosidase are interesting pharmacological targets for the management of dyslipidemia, atherosclerosis, and obesity-diabetes. Limonium spp (Plumbaginaceae) are endemic to Sardinia, Italy. Comparable with acarbose, aqueous extracts (AE) of L. contortirameum and L. virgatum, and their phytoconstituent gallic acid concentration gradients (mg/mL) were identified as in vitro potent ( p<0.001, n=3) and efficacious dual inhibitors of α-amylase and α-glucosidase with respective IC50 (mg/mL) values of 0.6 ± 0.1, 1.2 ± 0.1 and 0.15 ± 0.02. Equivalent to orlistat (PL IC50 of 0.114 ± 0.004 μg/mL), L. contortirameum, L. virgatum AE and their phytoprinciple gallic acid inhibited PL substantially ( p<0.001, n=3) in a dose-dependent manner in vitro with PL- IC50 (μg/mL) of 920.4 ± 105.2, 593.1 ± 56.8 and 8.4 ± 0.9, respectively. LC-MS analysis of extracts revealed the presence of several phenolic compounds in their aglycon and glycoside forms. These are catechins, flavones, epigallocatechins and flavonols. Flavonoid- and polyphenol-rich L contortirameum and L. virgatum, modulating gastrointestinal carbohydrate and lipid digestion and absorption, may be advocated as candidates for obesity-diabetes prevention and phytotherapy.
Collapse
Affiliation(s)
- Marzia Foddai
- Department of Chemistry and Pharmacy, University of Sassari, 07100, Sassari, Italy
| | - Violet Kasabri
- Department of Biopharmaceutics and Clinical Pharmacy, Faculty of Pharmacy, The University of Jordan, Amman 11942, Jordan
| | - Giacomo L. Petretto
- Department of Chemistry and Pharmacy, University of Sassari, 07100, Sassari, Italy
| | - Emanuela Azara
- National Research Center, Institute of Biomolecular Chemistry 07100, Sassari, Italy
| | - Angela Sias
- Department of Chemistry and Pharmacy, University of Sassari, 07100, Sassari, Italy
| | - Fatma U. Afifi
- Department of Pharmaceutical Sciences, Faculty of Pharmacy, The University of Jordan, Amman 11942, Jordan
| | - Giovanna Delogu
- National Research Center, Institute of Biomolecular Chemistry 07100, Sassari, Italy
| | - Mario Chessa
- Department of Chemistry and Pharmacy, University of Sassari, 07100, Sassari, Italy
| | - Giorgio Pintore
- Department of Chemistry and Pharmacy, University of Sassari, 07100, Sassari, Italy
| |
Collapse
|
24
|
Cazarolli LH, Pereira DF, Kappel VD, Folador P, Figueiredo MDSRB, Pizzolatti MG, Silva FRMB. Insulin signaling: A potential signaling pathway for the stimulatory effect of kaempferitrin on glucose uptake in skeletal muscle. Eur J Pharmacol 2013; 712:1-7. [DOI: 10.1016/j.ejphar.2013.02.029] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2012] [Revised: 02/08/2013] [Accepted: 02/14/2013] [Indexed: 11/27/2022]
|
25
|
Doshi P, Adsule P, Banerjee K, Oulkar D. Phenolic compounds, antioxidant activity and insulinotropic effect of extracts prepared from grape (Vitis vinifera L) byproducts. Journal of Food Science and Technology 2013; 52:181-90. [PMID: 25593367 DOI: 10.1007/s13197-013-0991-1] [Citation(s) in RCA: 67] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Revised: 12/29/2012] [Accepted: 03/28/2013] [Indexed: 12/24/2022]
Abstract
Grape byproducts are a rich source of phenolics having immense medicinal properties, but usually wasted from juice/wine processing industries. The present study investigates the phenolic antioxidants and the insulinotropic effect of extracts prepared from seed, skin and stems of two red wine grape cultivars: Pusa Navarang and Merlot. Pusa Navarang cultivar has shown high amounts of total phenolics (95.8 mg/ml), flavonoids (30.5 mg/ml) and flavan-3-ols (21.8 mg/ml) in seed extract and total anthocyanin (4.9 mg/ml) in its skin extract as compared to Merlot cultivar. As determined using HPLC, higher amounts of catechin hydrate (14909 mg/l) and epicatechin (9299 mg/l) were observed in its seed extract, while quercetin hydrate (5849 mg/l) was abundant in its skin extract. Similarly, ferric reducing antioxidant power (FRAP) and ABTS(+). [2,2'-azinobis (3-ethylbenzothiazoline)-6-sulfonic acid] and DPPH. (1,1-diphenyl-2-picrylhy- drazyl) radicals scavenging, were higher in its seed extract, respectively being 134.8 mg/ml of Quercetin equivalent (QE), 18.7 mM of trolox equivalent (TE) and 33.5 mM of TE. Strong correlation was obtained between FRAP and total phenolics, flavonoids and flavan-3-ols contents with correlation coefficients (r(2)) of 0.915, 0.738 and 0.838 respectively. Interestingly, there was a 2-8 fold increase in insulin secretion by isolated mice pancreatic islets at 5.5 mM and 16.5 mM glucose concentration in presence of various extracts. Overall, the seed, skin and stem byproducts of both cultivars are rich sources of phenolics and antioxidants and represent a source of new insulin secretagogues.
Collapse
Affiliation(s)
- Pooja Doshi
- Division of Biochemistry, Department of Chemistry, University of Pune, Ganeshkhind Road, Pune, 411 007 Maharashtra India
| | - Pandurang Adsule
- National Research Centre for Grapes, Pune, 412 307 Maharashtra India
| | - Kaushik Banerjee
- National Research Centre for Grapes, Pune, 412 307 Maharashtra India
| | - Dasharath Oulkar
- National Research Centre for Grapes, Pune, 412 307 Maharashtra India
| |
Collapse
|
26
|
|
27
|
Aquila S, Santoro M, De Amicis F, Guido C, Bonofiglio D, Lanzino M, Cesario MG, Perrotta I, Sisci D, Morelli C. Red wine consumption may affect sperm biology: The effects of different concentrations of the phytoestrogen Myricetin on human male gamete function. Mol Reprod Dev 2013; 80:155-65. [DOI: 10.1002/mrd.22145] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2012] [Accepted: 12/14/2012] [Indexed: 12/27/2022]
|
28
|
Li Y, Ding Y. Minireview: Therapeutic potential of myricetin in diabetes mellitus. FOOD SCIENCE AND HUMAN WELLNESS 2012. [DOI: 10.1016/j.fshw.2012.08.002] [Citation(s) in RCA: 82] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
29
|
Myricetin, a natural flavonoid, normalizes hyperglycemia in streptozotocin-cadmium-induced experimental diabetic nephrotoxic rats. ACTA ACUST UNITED AC 2012. [DOI: 10.1016/j.bionut.2012.04.003] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
|
30
|
Chang LS, Li CB, Qin N, Jin MN, Duan HQ. Synthesis and antidiabetic activity of 5,7-dihydroxyflavonoids and analogs. Chem Biodivers 2012; 9:162-9. [PMID: 22253113 DOI: 10.1002/cbdv.201100049] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
In a study to evaluate the structural elements essential for the antidiabetic activity of flavonoids, we synthesized two series of flavonoids, 5,7-dihydroxyflavanones and 5,7-dihydroxyflavones. In a screening for potential antidiabetic activity, most of the flavonoids showed a remarkable in vitro activity, and compounds 1f, 2d, and 3c were significantly more effective than the positive control, metformin. The biological activity was mainly affected by structural modification at the ring B moiety of the flavonoid skeleton. The results suggest that 5,7-dihydroxyflavonoids can be considered as promising candidates in the development of new antidiabetic lead compounds.
Collapse
Affiliation(s)
- Liu-Shuan Chang
- School of Pharmaceutical Sciences, Research Center of Basic Medical Sciences, Tianjin Medical University, Tianjin 300070, P. R. China
| | | | | | | | | |
Collapse
|
31
|
Myricetin attenuates hyperinsulinemia-induced insulin resistance in skeletal muscle cells. Eur Food Res Technol 2012. [DOI: 10.1007/s00217-012-1701-3] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
|
32
|
Chang LS, Li CY, Zhao YM, Xu F, Gu ZY. (E)-1-[2-Hy-droxy-4,6-bis-(meth-oxy-meth-oxy)phen-yl]-3-[3-meth-oxy-4-(meth-oxy-meth-oxy)phen-yl]prop-2-en-1-one. Acta Crystallogr Sect E Struct Rep Online 2012; 67:o2931. [PMID: 22219962 PMCID: PMC3247344 DOI: 10.1107/s1600536811041213] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2011] [Accepted: 10/06/2011] [Indexed: 11/12/2022]
Abstract
The title compound, C22H26O9, crystallizes with two independent molecules in the asymmetric unit in which the dihedral angles between the two benzene rings are 21.4 (2) and 5.1 (2)°. An intramolecular O—H⋯O hydrogen bond occurs in each molecule. Intermolecular C—H⋯O hydrogen bonds stabilize the crystal structure.
Collapse
|
33
|
Beneficial effect of myricetin on renal functions in streptozotocin-induced diabetes. Clin Exp Med 2011; 12:265-72. [DOI: 10.1007/s10238-011-0167-0] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2011] [Accepted: 11/01/2011] [Indexed: 12/30/2022]
|
34
|
Tzeng TF, Liou SS, Liu IM. Myricetin Ameliorates Defective Post-Receptor Insulin Signaling via β-Endorphin Signaling in the Skeletal Muscles of Fructose-Fed Rats. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2011; 2011:150752. [PMID: 21785619 PMCID: PMC3136182 DOI: 10.1093/ecam/neq017] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/03/2009] [Accepted: 01/25/2010] [Indexed: 01/05/2023]
Abstract
β-Endorphin plays a major role in the amelioration of insulin resistance. The present study documents that myricetin (3,5,7,3′, 4′, 5′-hexahydroxyflavone) ameliorates insulin resistance by enhancing β-endorphin production in insulin-resistant rats. The rats were induced for insulin resistance by feeding them a diet containing 60% fructose for 6 weeks. The degree of insulin resistance was measured by the homeostasis model assessment of basal insulin resistance (HOMA-IR). The plasma levels of insulin and β-endorphin were measured by an enzyme-linked immunosorbent assay. The insulin receptor-related signaling mediators in the soleus muscles of rats were evaluated by immunoprecipitation or immunoblotting. Myricetin was injected daily (1 mg kg−1 per injection, thrice daily) for 14 days. Consequently, the high-glucose plasma levels in fructose-fed rats decreased significantly concomitant with an increase in plasma β-endorphin. The reduction of the elevated HOMA-IR index following treatment with myricetin was subsequently inhibited by the administration of β-funaltrexamine hydrochloride (β-FNA) at doses sufficient to block μ-opioid receptors (MOR). The myricetin treatment was also observed to affect the phosphorylation of the insulin receptor, insulin receptor substrate-1, Akt and Akt substrate of 160 kDa, with subsequent effects on glucose-transporter subtype 4 translocation, all of which were blocked by β-FNA pretreatment. These results indicated that enhancement of β-endorphin secretion, which in turn leads to peripheral MOR activation, is involved in the action of myricetin on the amelioration of impaired signaling intermediates downstream of insulin receptors.
Collapse
Affiliation(s)
- Thing-Fong Tzeng
- Department of Internal Medicine, Pao Chien Hospital, Ping Tung City, China
| | | | | |
Collapse
|
35
|
Palanisamy UD, Ling LT, Manaharan T, Sivapalan V, Subramaniam T, Helme MH, Masilamani T. Standardized extract of Syzygium aqueum: a safe cosmetic ingredient. Int J Cosmet Sci 2011; 33:269-75. [PMID: 21284663 DOI: 10.1111/j.1468-2494.2010.00637.x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Syzygium aqueum, a species in the Myrtaceae family, commonly called the water jambu is native to Malaysia and Indonesia. It is well documented as a medicinal plant, and various parts of the tree have been used in traditional medicine, for instance as an antibiotic. In this study, we show S. aqueum leaf extracts to have a significant composition of phenolic compounds, protective activity against free radicals as well as low pro-oxidant capability. Its ethanolic extract, in particular, is characterized by its excellent radical scavenging activity of EC(50) of 133 μg mL(-1) 1,1-diphenyl-2-picryl-hydrazyl (DPPH), 65 μg mL(-1) 2,2'-azino-bis(3-ethylbenzthiazoline-6-sulphonic acid) (ABTS) and 71 μg mL(-1) (Galvinoxyl), low pro-oxidant capabilities and a phenolic content of 585-670 mg GAE g(-1) extract. The extract also displayed other activities, deeming it an ideal cosmetic ingredient. A substantial tyrosinase inhibition activity with an IC(50) of about 60 μg mL(-1) was observed. In addition, the extract was also found to have anti-cellulite activity tested for its ability to cause 98% activation of lipolysis of adipocytes (fat cells) at a concentration of 25 μg mL(-1). In addition, the extract was not cytotoxic to Vero cell lines up to a concentration of 600 μg mL(-1). Although various parts of this plant have been used in traditional medicine, this is the first time it has been shown to have cosmeceutical properties. Therefore, the use of this extract, alone or in combination with other active principles, is of interest to the cosmetic industry.
Collapse
Affiliation(s)
- U D Palanisamy
- Jeffrey Cheah School of Medicine and Health Sciences, Monash University Sunway Campus, Jalan Lagoon Selatan, 46100 Bandar Sunway, Selangor, Malaysia.
| | | | | | | | | | | | | |
Collapse
|
36
|
Synthesis and biological activity of trans-tiliroside derivatives as potent anti-diabetic agents. Molecules 2010; 15:9174-83. [PMID: 21150832 PMCID: PMC6259203 DOI: 10.3390/molecules15129174] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2010] [Revised: 12/07/2010] [Accepted: 12/08/2010] [Indexed: 11/16/2022] Open
Abstract
A set of novel trans-tiliroside derivatives were synthesized. The structures of the derivatives were identified by their IR, 1H-NMR, and MS spectra analysis. Their anti-diabetic activities were evaluated on the insulin resistant (IR) HepG2 cell model. As a result, compounds 7a, 7c, 7h, and trans-tiliroside exhibited significant glucose consumption-enhancing effects in IR-HepG2 cells compared with the positive control (metformin). This research provides useful clues for further design and discovery of anti-diabetic agents.
Collapse
|
37
|
Synthesis, spectral and thermal studies of new rutin vanadyl complexes. Molecules 2010; 15:1578-89. [PMID: 20336002 PMCID: PMC6257295 DOI: 10.3390/molecules15031578] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2010] [Revised: 03/09/2010] [Accepted: 03/10/2010] [Indexed: 01/11/2023] Open
Abstract
Complexes between oxovanadium (IV) cation and flavonoid derivatives were developed recently in order to increase the intestinal absorption and to reduce the toxicity of vanadium compounds. For these reasons, is interesting to investigate the complexation process between flavonoid rutin (Rut) and vanadyl cation in order to isolate new complexes. Two new complexes [VO(Rut)(H2O)2](SO4)0.5 x 2 H2O and [VO(Rut)2] x 4 H2O have been obtained and characterized by elemental and thermal analyses and several spectroscopic techniques (ESI-MS, IR, UV-Vis, fluorescence). The studies concerning complex formation between vanadyl and rutin (Rut) performed in different solutions show the formation of mononuclear complexes with 1:1 and 1:2 metal to ligand stoichiometry.
Collapse
|
38
|
Panda S, Kar A. Apigenin (4‘,5,7-trihydroxyflavone) regulates hyperglycaemia, thyroid dysfunction and lipid peroxidation in alloxan-induced diabetic mice. J Pharm Pharmacol 2010; 59:1543-8. [DOI: 10.1211/jpp.59.11.0012] [Citation(s) in RCA: 86] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Abstract
The potential of apigenin (4′,5,7-trihydroxyflavone) in regulating hyperglycaemia, thyroid dysfunction and lipid peroxidation (LPO) has been revealed. While in alloxan-treated diabetic animals, a significant decrease in the concentrations of serum insulin, thyroxine (T4) and triiodothyronine (T3), with a parallel increase in serum glucose and hepatic glucose-6-phospatase (G-6-Pase) activity, was observed, administration of 0.78 mg kg−1 of apigenin for 10 consecutive days increased the levels of serum insulin and thyroid hormones with a parallel decrease in glucose concentration and hepatic G-6-Pase activity. Alloxan-induced elevation in serum cholesterol was also reduced by the compound. With respect to LPO, while in alloxan-treated animals an increase in hepatic LPO and a decrease in the activity of cellular antioxidants, such as catalase (CAT) and superoxide dismutase (SOD), and in glutathione (GSH) content was observed, administration of apigenin to alloxan-treated mice reversed all these changes, suggesting its hepatoprotective potential. Similar effects of apigenin were also observed in most of the parameters in normoglycaemic animals. It appears that apigenin has a potential to regulate diabetes mellitus, as well as disease-induced thyroid dysfunction and lipid peroxidation.
Collapse
Affiliation(s)
- Sunanda Panda
- Thyroid Research Laboratory, School of Life Sciences, Devi Ahilya University, Takhshila Campus, Khandwa Road, Indore-452 017, M.P., India
| | - Anand Kar
- Thyroid Research Laboratory, School of Life Sciences, Devi Ahilya University, Takhshila Campus, Khandwa Road, Indore-452 017, M.P., India
| |
Collapse
|
39
|
Grazul M, Budzisz E. Biological activity of metal ions complexes of chromones, coumarins and flavones. Coord Chem Rev 2009. [DOI: 10.1016/j.ccr.2009.06.015] [Citation(s) in RCA: 180] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
40
|
Signaling pathways of kaempferol-3-neohesperidoside in glycogen synthesis in rat soleus muscle. Biochimie 2009; 91:843-9. [DOI: 10.1016/j.biochi.2009.04.004] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2008] [Accepted: 04/07/2009] [Indexed: 11/23/2022]
|
41
|
Cazarolli LH, Folador P, Moresco HH, Brighente IMC, Pizzolatti MG, Silva FRMB. Mechanism of action of the stimulatory effect of apigenin-6-C-(2''-O-alpha-l-rhamnopyranosyl)-beta-L-fucopyranoside on 14C-glucose uptake. Chem Biol Interact 2008; 179:407-12. [PMID: 19070612 DOI: 10.1016/j.cbi.2008.11.012] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2008] [Revised: 11/13/2008] [Accepted: 11/14/2008] [Indexed: 11/17/2022]
Abstract
There has been a growing interest in hypoglycemic agents from natural products, particularly those derived from plants. Flavonoids are naturally occurring phenolic compounds with a broad range of biological activities and the beneficial effects of flavonoids have been studied in relation to diabetes mellitus, either through their capacity to avoid glucose absorption or to improve glucose tolerance. The purpose of this study was to investigate the mechanism of action of the stimulatory effect of apigenin-6-C-(2''-O-alpha-L-rhamnopyranosyl)-beta-L-fucopyranoside (1), isolated from Averrhoa carambola L. (Oxalidaceae) leaves, on (14)C-glucose uptake. This compound (1) was found to have an acute effect on blood glucose lowering in diabetic rats and stimulated glucose-induced insulin secretion after oral treatment in hyperglycemic rats. A significant stimulatory effect of compound 1 on (14)C-glucose uptake was observed at 50 and 100 microM. The effect of compound 1 on glucose uptake was completely nullified by wortmannin, an inhibitor of phosphatidylinositol 3-kinase (PI3K), RO318220, an inhibitor of protein kinase C (PKC), PD98059, a specific inhibitor of mitogen-activated protein kinase (MEK), cycloheximide, an inhibitor of protein synthesis, and colchicine, a microtubule-depolymerizing agent. Compound 1 (100 microM) and insulin (10 nM) did not show any synergistic effect on glucose uptake. These results suggest that the flavonoid may have a dual target of action, as an insulin-secretagogue and also as an insulin-mimetic agent.
Collapse
Affiliation(s)
- Luisa Helena Cazarolli
- Departamento de Bioquímica, Centro de Ciências Biológicas, UFSC, Campus Universitário, Bairro Trindade, Cx. Postal 5069, CEP: 88040-970 Florianópolis, SC, Brazil
| | | | | | | | | | | |
Collapse
|
42
|
Pinent M, Bladé C, Salvadó MJ, Blay M, Pujadas G, Fernández-Larrea J, Arola L, Ardévol A. Procyanidin effects on adipocyte-related pathologies. Crit Rev Food Sci Nutr 2008; 46:543-50. [PMID: 16954063 DOI: 10.1080/10408390500354537] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
Procyanidins, a class of flavonoids, have clear and well-defined beneficial effects against several pathologies including cardiovascular heart disease. Now, studies in vivo are revealing the effects of procyanidins against obesity, where they prevent weight gain and adipose tissue mass increase, and against diabetes and insulin resistance, where they act as antihiperglycemic agents. Several mechanisms may be responsible for these effects. One of these, due to the key role of adipose tissue in the development of obesity and insulin resistance, is their effect on adipocytes. In this review we compile the studies that indicate a protective role for procyanidins in obesity and insulin resistance, focusing on their effects on the adipocyte, where procyanidins modify lipid synthesis, lipid degradation, glucose uptake, and adipose differentiation.
Collapse
Affiliation(s)
- Montse Pinent
- Department of Biochemistry and Biotechnology, Rovira i Virgili University, Tarragona, Spain
| | | | | | | | | | | | | | | |
Collapse
|
43
|
Lee KH, Choi EM. Myricetin, a naturally occurring flavonoid, prevents 2-deoxy-D-ribose induced dysfunction and oxidative damage in osteoblastic MC3T3-E1 cells. Eur J Pharmacol 2008; 591:1-6. [PMID: 18599037 DOI: 10.1016/j.ejphar.2008.06.004] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2007] [Revised: 05/21/2008] [Accepted: 06/02/2008] [Indexed: 11/30/2022]
Abstract
Myricetin, a naturally occurring flavonoid, was investigated to determine whether it could protect osteoblasts from 2-deoxy-d-ribose induced dysfunction and oxidative damage in the MC3T3-E1 cells. MC3T3-E1 cells were incubated with 2-deoxy-d-ribose and/or myricetin, and markers of osteoblast function and oxidative damage were examined. Compared with control incubation, 2-deoxy-d-ribose significantly (P<0.05) inhibited alkaline phosphatase (ALP) activity, collagen content, and calcium deposition at the concentration of 20 mM. Cellular malondialdehyde (MDA), protein carbonyl, and advanced oxidation protein products contents were significantly (P<0.05) increased in the presence of 2-deoxy-d-ribose (20 mM). Myricetin significantly (P<0.05) increased cell survival, ALP activity, collagen, osteocalcin, osteoprotegerin, and calcium deposition and decreased MDA, protein carbonyl, and advanced oxidation protein products contents of osteoblastic MC3T3-E1 cells in the presence of 20 mM 2-deoxy-d-ribose. These results demonstrate that myricetin attenuates 2-deoxy-d-ribose induced damage, suggesting that myricetin may be a useful dietary supplement for minimizing oxidative injury in diabetes related bone diseases.
Collapse
Affiliation(s)
- Kyung-Hee Lee
- Department of Food Service Management, College of Hotel and Tourism Management, Kyung Hee University, Seoul 130-701, Republic of Korea
| | | |
Collapse
|
44
|
Liu IM, Tzeng TF, Liou SS, Lan TW. Myricetin, a naturally occurring flavonol, ameliorates insulin resistance induced by a high-fructose diet in rats. Life Sci 2007; 81:1479-88. [PMID: 17976658 DOI: 10.1016/j.lfs.2007.08.045] [Citation(s) in RCA: 83] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2007] [Revised: 08/19/2007] [Accepted: 08/19/2007] [Indexed: 11/26/2022]
Abstract
The present study was conducted to explore the effects of myricetin on insulin resistance in rats fed for 6 weeks with a diet containing 60% fructose. Repeated intravenous (i.v.) injection of myricetin (1 mg/kg per injection, 3 times daily) for 14 days was found to significantly decrease the high glucose and triglyceride levels in plasma of fructose chow-fed rats. Also, the higher degree of insulin resistance in fructose chow-fed rats as measured by homeostasis model assessment of basal insulin resistance was significantly decreased by myricetin treatment. Myricetin increased the whole-body insulin sensitivity in fructose chow-fed rats, as evidenced by the marked elevation of composite whole-body insulin sensitivity index during the oral glucose tolerance test. Myricetin was found to reverse the defect in expression of insulin receptor substrate-1 (IRS-1) and the p85 regulatory subunit of phosphatidylinositol 3-kinase (PI 3-kinase) in soleus muscle of fructose chow-fed rats under the basal state, despite the protein expression of insulin receptor (IR). Increased basal phosphorylation of IR and IRS-1 as well as Akt was observed in parallel. The reduced level of insulin action on phosphorylation of IR, IRS-1 and Akt in soleus muscle of fructose chow-fed rats was reversed by myricetin treatment. Furthermore, myricetin treatment improved the defective insulin action on the translocation of glucose transporter subtype 4 (GLUT 4) in insulin-resistant soleus muscle. These findings indicate that myricetin improves insulin sensitivity through the enhancement of insulin action on IRS-1-associated PI 3-kinase and GLUT 4 activity in soleus muscles of animals exhibiting insulin resistance.
Collapse
Affiliation(s)
- I-Min Liu
- Department of Pharmacy, Tajen University, Yen-Pou, Ping Tung Shien, Taiwan, ROC.
| | | | | | | |
Collapse
|
45
|
Cazarolli LH, Zanatta L, Jorge AP, de Sousa E, Horst H, Woehl VM, Pizzolatti MG, Szpoganicz B, Silva FRMB. Follow-up studies on glycosylated flavonoids and their complexes with vanadium: Their anti-hyperglycemic potential role in diabetes. Chem Biol Interact 2006; 163:177-91. [PMID: 16963010 DOI: 10.1016/j.cbi.2006.07.010] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2006] [Revised: 07/18/2006] [Accepted: 07/31/2006] [Indexed: 10/24/2022]
Abstract
The present study sought to evaluate the hypoglycemic activities of free glycosylated flavonoids and flavonoid complexes with vanadium(IV), (VO(IV)), on glycemia in experimental diabetic rats. Besides free kaempferol-3,7-O-(alpha)-dirhamnoside and kaempferol-3-neohesperidoside, complexes of these flavonoids with VO(IV) were administered by different routes in order to compare the potency of the compounds as well as the efficacy of insulin or VO(IV) in lowering serum glucose. Wistar rats were made diabetic by alloxan. The glycemia was assessed at different times after the administering of compounds. The equilibrium constants were determined by potentiometric study and two species with VO(IV) are proposed at physiological pH, VOH(2)L(2) for kaempferitrin and VOHL for kaempferol-3-neohesperidoside. The latter exhibited hypoglycemic activity at all times examined with 50 and 100 mg/kg and the former reduced the glycemia from 0 to 6h by i.p. route. The administering of the complexes or 0.0146 mmol/kg VO(IV) resulted in a serum glucose-lowering effect over time in the case of i.p. treatment. A marked hypoglycemic effect was observed for 0.5IU of insulin (67.5%); 0.0146 mmol VO(IV) (16.8%); 0.0294 mmol kaempferitrin-VO(IV) (17.8%) and 0.0286 mmol kaempferol-3-neohesperidoside-VO(IV) (56.0%) at 3h after i.p. treatment when compared with respective zero time in diabetic groups. Kaempferol-3-neohesperidoside-VO(IV) was 2.5 times more effective than VO(IV), twice as effective as the free compound and three times more effective than kaempferitrin-VO(IV). This is of particular interest since kaempferol-3-neohesperidoside appears to represent a suitable ligand for VO(IV) to mimic the efficacy of insulin in lowering serum glucose levels.
Collapse
Affiliation(s)
- Luisa Helena Cazarolli
- Departamento de Bioquímica, Centro de Ciências Biológicas, UFSC, Campus Universitário, Bairro Trindade, Cx Postal 5069, CEP 88040-970 Florianópolis, SC, Brazil
| | | | | | | | | | | | | | | | | |
Collapse
|
46
|
Su HC, Hung LM, Chen JK. Resveratrol, a red wine antioxidant, possesses an insulin-like effect in streptozotocin-induced diabetic rats. Am J Physiol Endocrinol Metab 2006; 290:E1339-46. [PMID: 16434553 DOI: 10.1152/ajpendo.00487.2005] [Citation(s) in RCA: 265] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Aberrant energy metabolism is one characteristic of diabetes mellitus (DM). Two types of DM have been identified, type 1 and type 2. Most of type 2 DM patients eventually become insulin dependent because insulin secretion by the islets of Langerhans becomes exhausted. In the present study, we show that resveratrol (3,5,4'-trihydroxylstilbene) possesses hypoglycemic and hypolipidemic effects in streptozotocin-induced DM (STZ-DM) rats. In resveratrol-treated STZ-DM rats, the plasma glucose concentration on day 14 was reduced by 25.3 +/- 4.2%, and the triglyceride concentration was reduced by 50.2 +/- 3.2% compared with the vehicle-treated rats. In STZ-nicotinamide DM rats, the plasma glucose concentration on day 14 was reduced by 20.3 +/- 4.2%, and the triglyceride concentration was reduced by 33.3 +/- 2.2% compared with the vehicle-treated rats. Resveratrol administration ameliorates common DM symptoms, such as body weight loss, polyphagia, and polydipsia. In STZ-nicotinamide DM rats, resveratrol administration significantly decreased insulin secretion and delayed the onset of insulin resistance. Further studies showed that glucose uptake by hepatocytes, adipocytes, and skeletal muscle and hepatic glycogen synthesis were all stimulated by resveratrol treatment. Because the stimulation of glucose uptake was not attenuated in the presence of an optimal amount of insulin in insulin-responsive cells, the antihyperglycemic effect of resveratrol appeared to act through a mechanism(s) different from that of insulin.
Collapse
Affiliation(s)
- Hui-Chen Su
- Dept. of Physiology, College of Medicine, Chang Gung University, 259 Wen-Hwa 1st Road, Kwei-Shan, Tao-Yuan, Taiwan 333
| | | | | |
Collapse
|
47
|
Liu IM, Liou SS, Cheng JT. Mediation of beta-endorphin by myricetin to lower plasma glucose in streptozotocin-induced diabetic rats. JOURNAL OF ETHNOPHARMACOLOGY 2006; 104:199-206. [PMID: 16203117 DOI: 10.1016/j.jep.2005.09.001] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/21/2005] [Revised: 08/24/2005] [Accepted: 09/01/2005] [Indexed: 05/04/2023]
Abstract
Streptozotocin-induced diabetic (STZ-diabetic) rats were employed to investigate the mechanism(s) whereby myricetin, the active principle of Abelmoschus moschatus (Malvaceae), exerts its glucose-lowering effects. Myricetin was purified from the aerial portion of the plant and administered intravenously. A dose-dependent decrease in plasma glucose concentration was observed 30 min following injection, in parallel with increased plasma beta-endorphin-like immunoreactivity (BER). Myricetin enhanced BER release similarly from isolated adrenal medulla. Plasma glucose-lowering and BER-elevating effects of myricetin were both eliminated after bilateral adrenalectomy. Myricetin failed to lower plasma glucose after treatment with opioid mu-receptor antagonists and in opioid mu-receptor knockout diabetic mice. Injection of myricetin three times daily for three consecutive days resulted in increased expression of the glucose transporter subtype 4 (GLUT 4) in soleus muscle and in reduced expression of phosphoenolpyruvate carboxykinase (PEPCK) in liver; these inductions were preventable by opioid mu-receptor blockade. Findings support the conclusion that the plasma glucose-lowering action of myricetin in insulin-deficient animals is mediated by activation of opioid mu-receptors of peripheral tissues in response to increased beta-endorphin secretion. Opioid mu-receptor activation is held responsible for the enhancement of muscle GLUT 4 gene expression and the attenuation of hepatic PEPCK gene expression observed in these myricetin-treated diabetic animals.
Collapse
MESH Headings
- Abelmoschus
- Animals
- Blood Glucose/drug effects
- Blood Glucose/physiology
- Diabetes Mellitus, Experimental/blood
- Diabetes Mellitus, Experimental/drug therapy
- Dose-Response Relationship, Drug
- Flavonoids/isolation & purification
- Flavonoids/pharmacology
- Flavonoids/therapeutic use
- Male
- Mice
- Mice, Knockout
- Plant Components, Aerial
- Plant Extracts/isolation & purification
- Plant Extracts/pharmacology
- Plant Extracts/therapeutic use
- Rats
- Rats, Wistar
- Receptors, Opioid, mu/biosynthesis
- Receptors, Opioid, mu/deficiency
- beta-Endorphin/blood
Collapse
Affiliation(s)
- I-Min Liu
- Department of Pharmacy, Tajen University, Yanpu Shiang, Ping Tung Shien, Taiwan, ROC.
| | | | | |
Collapse
|
48
|
Wiernsperger NF. Is non-insulin dependent glucose uptake a therapeutic alternative? Part 1: physiology, mechanisms and role of non insulin-dependent glucose uptake in type 2 diabetes. DIABETES & METABOLISM 2005; 31:415-26. [PMID: 16357785 DOI: 10.1016/s1262-3636(07)70212-4] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Several decades of research for treating type 2 diabetes have yielded new drugs but the actual experience with the available oral antidiabetic compounds clearly shows that therapeutic needs are not matched. This highlights the urgent need for exploring other pathways. All cell types have the capacity to take up glucose independently of insulin, whereby basal but also hyperglycaemia-promoted glucose supply is ensured. Although poorly explored, insulin-independent glucose uptake might nevertheless represent a therapeutic target, as an alternative to the clear limits of actual drug treatments. This review not only critically examines some major pathways not requiring insulin (although they may be influenced by the hormone) but importantly, this analysis extends to the clinical applicability of these potential therapeutic principles by also considering their predictable tolerability for long-term therapy. In particular vascular safety (the ultimate problem linked with diabetes) will be envisaged because of the ubiquitous distribution of glucose transporters and some linked mechanisms. Several mechanisms can be identified which do not require insulin for their functioning. The first part of this review deals with the description, the regulation and the limits of some mechanisms representing potential pharmacological targets capable of having a highly significant impact on glucose uptake. These selected topics are: a) unmasking and/or activation of glucose transporters in cell plasma membranes, b) insulin mimetics acting at postreceptor level, c) activation of AMPK, d) increasing nitric oxide and e) increasing glucose-6P and glycogen stores.
Collapse
Affiliation(s)
- N F Wiernsperger
- INSERM UMR 585, Bâtiment Louis Pasteur, INSA Lyon, Cedex, France.
| |
Collapse
|
49
|
Pinent M, Blay M, Bladé MC, Salvadó MJ, Arola L, Ardévol A. Grape seed-derived procyanidins have an antihyperglycemic effect in streptozotocin-induced diabetic rats and insulinomimetic activity in insulin-sensitive cell lines. Endocrinology 2004; 145:4985-90. [PMID: 15271880 DOI: 10.1210/en.2004-0764] [Citation(s) in RCA: 239] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Flavonoids are functional constituents of many fruits and vegetables. Some flavonoids have antidiabetic properties because they improve altered glucose and oxidative metabolisms of diabetic states. Procyanidins are flavonoids with an oligomeric structure, and it has been shown that they can improve the pathological oxidative state of a diabetic situation. To evaluate their effects on glucose metabolism, we administered an extract of grape seed procyanidins (PE) orally to streptozotocin-induced diabetic rats. This had an antihyperglycemic effect, which was significantly increased if PE administration was accompanied by a low insulin dose. The antihyperglycemic effect of PE may be partially due to the insulinomimetic activity of procyanidins on insulin-sensitive cell lines. PE stimulated glucose uptake in L6E9 myotubes and 3T3-L1 adipocytes in a dose-dependent manner. Like insulin action, the effect of PE on glucose uptake was sensitive to wortmannin, an inhibitor of phosphoinositol 3-kinase and to SB203580, an inhibitor of p38 MAPK. PE action also stimulated glucose transporter-4 translocation to the plasma membrane. In summary, procyanidins have insulin-like effects in insulin-sensitive cells that could help to explain their antihyperglycemic effect in vivo. These effects must be added to their antioxidant activity to explain why they can improve diabetic situations.
Collapse
Affiliation(s)
- M Pinent
- Department of Biochemistry and Biotechnology, Plaza Imperial Tarraco 1, 43005 Tarragona, Spain
| | | | | | | | | | | |
Collapse
|
50
|
Jung UJ, Lee MK, Jeong KS, Choi MS. The hypoglycemic effects of hesperidin and naringin are partly mediated by hepatic glucose-regulating enzymes in C57BL/KsJ-db/db mice. J Nutr 2004; 134:2499-2503. [PMID: 15465737 DOI: 10.1093/jn/134.10.2499] [Citation(s) in RCA: 238] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Dietary antioxidant compounds such as bioflavonoids may offer some protection against the early stage of diabetes mellitus and the development of complications. We investigated the effect of citrus bioflavonoids on blood glucose level, hepatic glucose-regulating enzymes activities, hepatic glycogen concentration, and plasma insulin levels, and assessed the relations between plasma leptin and body weight, blood glucose, and plasma insulin. Male C57BL/KsJ-db/db mice (db/db mice, 5 wk old), an animal model for type 2 diabetes, were fed a nonpurified diet for 2 wk and then were fed an AIN-76 control diet or the control diet supplemented with hesperidin (0.2 g/kg diet) or naringin (0.2 g/kg diet). Hesperidin and naringin supplementation significantly reduced blood glucose compared with the control group. Hepatic glucokinase activity and glycogen concentration were both significantly elevated in the hesperidin- and the naringin-supplemented groups compared with the control group. Naringin also markedly lowered the activity of hepatic glucose-6-phosphatase and phosphoenolpyruvate carboxykinase compared with the control group. Plasma insulin, C-peptide, and leptin levels in the db/db mice from the 2 bioflavonoid-supplemented groups were significantly higher than those of the control group. Furthermore, plasma leptin was positively correlated with plasma insulin level (r = 0.578, P < 0.01) and body weight (r = 0.541, P < 0.05), and was inversely correlated with the blood glucose level (r = -0.46, P < 0.05). The current results suggest that hesperidin and naringin both play important roles in preventing the progression of hyperglycemia, partly by increasing hepatic glycolysis and glycogen concentration and/or by lowering hepatic gluconeogenesis.
Collapse
Affiliation(s)
- Un Ju Jung
- Department of Food Science and Nutrition, Kyungpook National University, Daegu, 702-701, Korea
| | | | | | | |
Collapse
|